]> Git Repo - J-linux.git/blob - net/sunrpc/cache.c
Merge tag 'vfs-6.13-rc7.fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs
[J-linux.git] / net / sunrpc / cache.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * net/sunrpc/cache.c
4  *
5  * Generic code for various authentication-related caches
6  * used by sunrpc clients and servers.
7  *
8  * Copyright (C) 2002 Neil Brown <[email protected]>
9  */
10
11 #include <linux/types.h>
12 #include <linux/fs.h>
13 #include <linux/file.h>
14 #include <linux/slab.h>
15 #include <linux/signal.h>
16 #include <linux/sched.h>
17 #include <linux/kmod.h>
18 #include <linux/list.h>
19 #include <linux/module.h>
20 #include <linux/ctype.h>
21 #include <linux/string_helpers.h>
22 #include <linux/uaccess.h>
23 #include <linux/poll.h>
24 #include <linux/seq_file.h>
25 #include <linux/proc_fs.h>
26 #include <linux/net.h>
27 #include <linux/workqueue.h>
28 #include <linux/mutex.h>
29 #include <linux/pagemap.h>
30 #include <asm/ioctls.h>
31 #include <linux/sunrpc/types.h>
32 #include <linux/sunrpc/cache.h>
33 #include <linux/sunrpc/stats.h>
34 #include <linux/sunrpc/rpc_pipe_fs.h>
35 #include <trace/events/sunrpc.h>
36
37 #include "netns.h"
38 #include "fail.h"
39
40 #define  RPCDBG_FACILITY RPCDBG_CACHE
41
42 static bool cache_defer_req(struct cache_req *req, struct cache_head *item);
43 static void cache_revisit_request(struct cache_head *item);
44
45 static void cache_init(struct cache_head *h, struct cache_detail *detail)
46 {
47         time64_t now = seconds_since_boot();
48         INIT_HLIST_NODE(&h->cache_list);
49         h->flags = 0;
50         kref_init(&h->ref);
51         h->expiry_time = now + CACHE_NEW_EXPIRY;
52         if (now <= detail->flush_time)
53                 /* ensure it isn't already expired */
54                 now = detail->flush_time + 1;
55         h->last_refresh = now;
56 }
57
58 static void cache_fresh_unlocked(struct cache_head *head,
59                                 struct cache_detail *detail);
60
61 static struct cache_head *sunrpc_cache_find_rcu(struct cache_detail *detail,
62                                                 struct cache_head *key,
63                                                 int hash)
64 {
65         struct hlist_head *head = &detail->hash_table[hash];
66         struct cache_head *tmp;
67
68         rcu_read_lock();
69         hlist_for_each_entry_rcu(tmp, head, cache_list) {
70                 if (!detail->match(tmp, key))
71                         continue;
72                 if (test_bit(CACHE_VALID, &tmp->flags) &&
73                     cache_is_expired(detail, tmp))
74                         continue;
75                 tmp = cache_get_rcu(tmp);
76                 rcu_read_unlock();
77                 return tmp;
78         }
79         rcu_read_unlock();
80         return NULL;
81 }
82
83 static void sunrpc_begin_cache_remove_entry(struct cache_head *ch,
84                                             struct cache_detail *cd)
85 {
86         /* Must be called under cd->hash_lock */
87         hlist_del_init_rcu(&ch->cache_list);
88         set_bit(CACHE_CLEANED, &ch->flags);
89         cd->entries --;
90 }
91
92 static void sunrpc_end_cache_remove_entry(struct cache_head *ch,
93                                           struct cache_detail *cd)
94 {
95         cache_fresh_unlocked(ch, cd);
96         cache_put(ch, cd);
97 }
98
99 static struct cache_head *sunrpc_cache_add_entry(struct cache_detail *detail,
100                                                  struct cache_head *key,
101                                                  int hash)
102 {
103         struct cache_head *new, *tmp, *freeme = NULL;
104         struct hlist_head *head = &detail->hash_table[hash];
105
106         new = detail->alloc();
107         if (!new)
108                 return NULL;
109         /* must fully initialise 'new', else
110          * we might get lose if we need to
111          * cache_put it soon.
112          */
113         cache_init(new, detail);
114         detail->init(new, key);
115
116         spin_lock(&detail->hash_lock);
117
118         /* check if entry appeared while we slept */
119         hlist_for_each_entry_rcu(tmp, head, cache_list,
120                                  lockdep_is_held(&detail->hash_lock)) {
121                 if (!detail->match(tmp, key))
122                         continue;
123                 if (test_bit(CACHE_VALID, &tmp->flags) &&
124                     cache_is_expired(detail, tmp)) {
125                         sunrpc_begin_cache_remove_entry(tmp, detail);
126                         trace_cache_entry_expired(detail, tmp);
127                         freeme = tmp;
128                         break;
129                 }
130                 cache_get(tmp);
131                 spin_unlock(&detail->hash_lock);
132                 cache_put(new, detail);
133                 return tmp;
134         }
135
136         hlist_add_head_rcu(&new->cache_list, head);
137         detail->entries++;
138         cache_get(new);
139         spin_unlock(&detail->hash_lock);
140
141         if (freeme)
142                 sunrpc_end_cache_remove_entry(freeme, detail);
143         return new;
144 }
145
146 struct cache_head *sunrpc_cache_lookup_rcu(struct cache_detail *detail,
147                                            struct cache_head *key, int hash)
148 {
149         struct cache_head *ret;
150
151         ret = sunrpc_cache_find_rcu(detail, key, hash);
152         if (ret)
153                 return ret;
154         /* Didn't find anything, insert an empty entry */
155         return sunrpc_cache_add_entry(detail, key, hash);
156 }
157 EXPORT_SYMBOL_GPL(sunrpc_cache_lookup_rcu);
158
159 static void cache_dequeue(struct cache_detail *detail, struct cache_head *ch);
160
161 static void cache_fresh_locked(struct cache_head *head, time64_t expiry,
162                                struct cache_detail *detail)
163 {
164         time64_t now = seconds_since_boot();
165         if (now <= detail->flush_time)
166                 /* ensure it isn't immediately treated as expired */
167                 now = detail->flush_time + 1;
168         head->expiry_time = expiry;
169         head->last_refresh = now;
170         smp_wmb(); /* paired with smp_rmb() in cache_is_valid() */
171         set_bit(CACHE_VALID, &head->flags);
172 }
173
174 static void cache_fresh_unlocked(struct cache_head *head,
175                                  struct cache_detail *detail)
176 {
177         if (test_and_clear_bit(CACHE_PENDING, &head->flags)) {
178                 cache_revisit_request(head);
179                 cache_dequeue(detail, head);
180         }
181 }
182
183 static void cache_make_negative(struct cache_detail *detail,
184                                 struct cache_head *h)
185 {
186         set_bit(CACHE_NEGATIVE, &h->flags);
187         trace_cache_entry_make_negative(detail, h);
188 }
189
190 static void cache_entry_update(struct cache_detail *detail,
191                                struct cache_head *h,
192                                struct cache_head *new)
193 {
194         if (!test_bit(CACHE_NEGATIVE, &new->flags)) {
195                 detail->update(h, new);
196                 trace_cache_entry_update(detail, h);
197         } else {
198                 cache_make_negative(detail, h);
199         }
200 }
201
202 struct cache_head *sunrpc_cache_update(struct cache_detail *detail,
203                                        struct cache_head *new, struct cache_head *old, int hash)
204 {
205         /* The 'old' entry is to be replaced by 'new'.
206          * If 'old' is not VALID, we update it directly,
207          * otherwise we need to replace it
208          */
209         struct cache_head *tmp;
210
211         if (!test_bit(CACHE_VALID, &old->flags)) {
212                 spin_lock(&detail->hash_lock);
213                 if (!test_bit(CACHE_VALID, &old->flags)) {
214                         cache_entry_update(detail, old, new);
215                         cache_fresh_locked(old, new->expiry_time, detail);
216                         spin_unlock(&detail->hash_lock);
217                         cache_fresh_unlocked(old, detail);
218                         return old;
219                 }
220                 spin_unlock(&detail->hash_lock);
221         }
222         /* We need to insert a new entry */
223         tmp = detail->alloc();
224         if (!tmp) {
225                 cache_put(old, detail);
226                 return NULL;
227         }
228         cache_init(tmp, detail);
229         detail->init(tmp, old);
230
231         spin_lock(&detail->hash_lock);
232         cache_entry_update(detail, tmp, new);
233         hlist_add_head(&tmp->cache_list, &detail->hash_table[hash]);
234         detail->entries++;
235         cache_get(tmp);
236         cache_fresh_locked(tmp, new->expiry_time, detail);
237         cache_fresh_locked(old, 0, detail);
238         spin_unlock(&detail->hash_lock);
239         cache_fresh_unlocked(tmp, detail);
240         cache_fresh_unlocked(old, detail);
241         cache_put(old, detail);
242         return tmp;
243 }
244 EXPORT_SYMBOL_GPL(sunrpc_cache_update);
245
246 static inline int cache_is_valid(struct cache_head *h)
247 {
248         if (!test_bit(CACHE_VALID, &h->flags))
249                 return -EAGAIN;
250         else {
251                 /* entry is valid */
252                 if (test_bit(CACHE_NEGATIVE, &h->flags))
253                         return -ENOENT;
254                 else {
255                         /*
256                          * In combination with write barrier in
257                          * sunrpc_cache_update, ensures that anyone
258                          * using the cache entry after this sees the
259                          * updated contents:
260                          */
261                         smp_rmb();
262                         return 0;
263                 }
264         }
265 }
266
267 static int try_to_negate_entry(struct cache_detail *detail, struct cache_head *h)
268 {
269         int rv;
270
271         spin_lock(&detail->hash_lock);
272         rv = cache_is_valid(h);
273         if (rv == -EAGAIN) {
274                 cache_make_negative(detail, h);
275                 cache_fresh_locked(h, seconds_since_boot()+CACHE_NEW_EXPIRY,
276                                    detail);
277                 rv = -ENOENT;
278         }
279         spin_unlock(&detail->hash_lock);
280         cache_fresh_unlocked(h, detail);
281         return rv;
282 }
283
284 /*
285  * This is the generic cache management routine for all
286  * the authentication caches.
287  * It checks the currency of a cache item and will (later)
288  * initiate an upcall to fill it if needed.
289  *
290  *
291  * Returns 0 if the cache_head can be used, or cache_puts it and returns
292  * -EAGAIN if upcall is pending and request has been queued
293  * -ETIMEDOUT if upcall failed or request could not be queue or
294  *           upcall completed but item is still invalid (implying that
295  *           the cache item has been replaced with a newer one).
296  * -ENOENT if cache entry was negative
297  */
298 int cache_check(struct cache_detail *detail,
299                     struct cache_head *h, struct cache_req *rqstp)
300 {
301         int rv;
302         time64_t refresh_age, age;
303
304         /* First decide return status as best we can */
305         rv = cache_is_valid(h);
306
307         /* now see if we want to start an upcall */
308         refresh_age = (h->expiry_time - h->last_refresh);
309         age = seconds_since_boot() - h->last_refresh;
310
311         if (rqstp == NULL) {
312                 if (rv == -EAGAIN)
313                         rv = -ENOENT;
314         } else if (rv == -EAGAIN ||
315                    (h->expiry_time != 0 && age > refresh_age/2)) {
316                 dprintk("RPC:       Want update, refage=%lld, age=%lld\n",
317                                 refresh_age, age);
318                 switch (detail->cache_upcall(detail, h)) {
319                 case -EINVAL:
320                         rv = try_to_negate_entry(detail, h);
321                         break;
322                 case -EAGAIN:
323                         cache_fresh_unlocked(h, detail);
324                         break;
325                 }
326         }
327
328         if (rv == -EAGAIN) {
329                 if (!cache_defer_req(rqstp, h)) {
330                         /*
331                          * Request was not deferred; handle it as best
332                          * we can ourselves:
333                          */
334                         rv = cache_is_valid(h);
335                         if (rv == -EAGAIN)
336                                 rv = -ETIMEDOUT;
337                 }
338         }
339         if (rv)
340                 cache_put(h, detail);
341         return rv;
342 }
343 EXPORT_SYMBOL_GPL(cache_check);
344
345 /*
346  * caches need to be periodically cleaned.
347  * For this we maintain a list of cache_detail and
348  * a current pointer into that list and into the table
349  * for that entry.
350  *
351  * Each time cache_clean is called it finds the next non-empty entry
352  * in the current table and walks the list in that entry
353  * looking for entries that can be removed.
354  *
355  * An entry gets removed if:
356  * - The expiry is before current time
357  * - The last_refresh time is before the flush_time for that cache
358  *
359  * later we might drop old entries with non-NEVER expiry if that table
360  * is getting 'full' for some definition of 'full'
361  *
362  * The question of "how often to scan a table" is an interesting one
363  * and is answered in part by the use of the "nextcheck" field in the
364  * cache_detail.
365  * When a scan of a table begins, the nextcheck field is set to a time
366  * that is well into the future.
367  * While scanning, if an expiry time is found that is earlier than the
368  * current nextcheck time, nextcheck is set to that expiry time.
369  * If the flush_time is ever set to a time earlier than the nextcheck
370  * time, the nextcheck time is then set to that flush_time.
371  *
372  * A table is then only scanned if the current time is at least
373  * the nextcheck time.
374  *
375  */
376
377 static LIST_HEAD(cache_list);
378 static DEFINE_SPINLOCK(cache_list_lock);
379 static struct cache_detail *current_detail;
380 static int current_index;
381
382 static void do_cache_clean(struct work_struct *work);
383 static struct delayed_work cache_cleaner;
384
385 void sunrpc_init_cache_detail(struct cache_detail *cd)
386 {
387         spin_lock_init(&cd->hash_lock);
388         INIT_LIST_HEAD(&cd->queue);
389         spin_lock(&cache_list_lock);
390         cd->nextcheck = 0;
391         cd->entries = 0;
392         atomic_set(&cd->writers, 0);
393         cd->last_close = 0;
394         cd->last_warn = -1;
395         list_add(&cd->others, &cache_list);
396         spin_unlock(&cache_list_lock);
397
398         /* start the cleaning process */
399         queue_delayed_work(system_power_efficient_wq, &cache_cleaner, 0);
400 }
401 EXPORT_SYMBOL_GPL(sunrpc_init_cache_detail);
402
403 void sunrpc_destroy_cache_detail(struct cache_detail *cd)
404 {
405         cache_purge(cd);
406         spin_lock(&cache_list_lock);
407         spin_lock(&cd->hash_lock);
408         if (current_detail == cd)
409                 current_detail = NULL;
410         list_del_init(&cd->others);
411         spin_unlock(&cd->hash_lock);
412         spin_unlock(&cache_list_lock);
413         if (list_empty(&cache_list)) {
414                 /* module must be being unloaded so its safe to kill the worker */
415                 cancel_delayed_work_sync(&cache_cleaner);
416         }
417 }
418 EXPORT_SYMBOL_GPL(sunrpc_destroy_cache_detail);
419
420 /* clean cache tries to find something to clean
421  * and cleans it.
422  * It returns 1 if it cleaned something,
423  *            0 if it didn't find anything this time
424  *           -1 if it fell off the end of the list.
425  */
426 static int cache_clean(void)
427 {
428         int rv = 0;
429         struct list_head *next;
430
431         spin_lock(&cache_list_lock);
432
433         /* find a suitable table if we don't already have one */
434         while (current_detail == NULL ||
435             current_index >= current_detail->hash_size) {
436                 if (current_detail)
437                         next = current_detail->others.next;
438                 else
439                         next = cache_list.next;
440                 if (next == &cache_list) {
441                         current_detail = NULL;
442                         spin_unlock(&cache_list_lock);
443                         return -1;
444                 }
445                 current_detail = list_entry(next, struct cache_detail, others);
446                 if (current_detail->nextcheck > seconds_since_boot())
447                         current_index = current_detail->hash_size;
448                 else {
449                         current_index = 0;
450                         current_detail->nextcheck = seconds_since_boot()+30*60;
451                 }
452         }
453
454         /* find a non-empty bucket in the table */
455         while (current_detail &&
456                current_index < current_detail->hash_size &&
457                hlist_empty(&current_detail->hash_table[current_index]))
458                 current_index++;
459
460         /* find a cleanable entry in the bucket and clean it, or set to next bucket */
461
462         if (current_detail && current_index < current_detail->hash_size) {
463                 struct cache_head *ch = NULL;
464                 struct cache_detail *d;
465                 struct hlist_head *head;
466                 struct hlist_node *tmp;
467
468                 spin_lock(&current_detail->hash_lock);
469
470                 /* Ok, now to clean this strand */
471
472                 head = &current_detail->hash_table[current_index];
473                 hlist_for_each_entry_safe(ch, tmp, head, cache_list) {
474                         if (current_detail->nextcheck > ch->expiry_time)
475                                 current_detail->nextcheck = ch->expiry_time+1;
476                         if (!cache_is_expired(current_detail, ch))
477                                 continue;
478
479                         sunrpc_begin_cache_remove_entry(ch, current_detail);
480                         trace_cache_entry_expired(current_detail, ch);
481                         rv = 1;
482                         break;
483                 }
484
485                 spin_unlock(&current_detail->hash_lock);
486                 d = current_detail;
487                 if (!ch)
488                         current_index ++;
489                 spin_unlock(&cache_list_lock);
490                 if (ch)
491                         sunrpc_end_cache_remove_entry(ch, d);
492         } else
493                 spin_unlock(&cache_list_lock);
494
495         return rv;
496 }
497
498 /*
499  * We want to regularly clean the cache, so we need to schedule some work ...
500  */
501 static void do_cache_clean(struct work_struct *work)
502 {
503         int delay;
504
505         if (list_empty(&cache_list))
506                 return;
507
508         if (cache_clean() == -1)
509                 delay = round_jiffies_relative(30*HZ);
510         else
511                 delay = 5;
512
513         queue_delayed_work(system_power_efficient_wq, &cache_cleaner, delay);
514 }
515
516
517 /*
518  * Clean all caches promptly.  This just calls cache_clean
519  * repeatedly until we are sure that every cache has had a chance to
520  * be fully cleaned
521  */
522 void cache_flush(void)
523 {
524         while (cache_clean() != -1)
525                 cond_resched();
526         while (cache_clean() != -1)
527                 cond_resched();
528 }
529 EXPORT_SYMBOL_GPL(cache_flush);
530
531 void cache_purge(struct cache_detail *detail)
532 {
533         struct cache_head *ch = NULL;
534         struct hlist_head *head = NULL;
535         int i = 0;
536
537         spin_lock(&detail->hash_lock);
538         if (!detail->entries) {
539                 spin_unlock(&detail->hash_lock);
540                 return;
541         }
542
543         dprintk("RPC: %d entries in %s cache\n", detail->entries, detail->name);
544         for (i = 0; i < detail->hash_size; i++) {
545                 head = &detail->hash_table[i];
546                 while (!hlist_empty(head)) {
547                         ch = hlist_entry(head->first, struct cache_head,
548                                          cache_list);
549                         sunrpc_begin_cache_remove_entry(ch, detail);
550                         spin_unlock(&detail->hash_lock);
551                         sunrpc_end_cache_remove_entry(ch, detail);
552                         spin_lock(&detail->hash_lock);
553                 }
554         }
555         spin_unlock(&detail->hash_lock);
556 }
557 EXPORT_SYMBOL_GPL(cache_purge);
558
559
560 /*
561  * Deferral and Revisiting of Requests.
562  *
563  * If a cache lookup finds a pending entry, we
564  * need to defer the request and revisit it later.
565  * All deferred requests are stored in a hash table,
566  * indexed by "struct cache_head *".
567  * As it may be wasteful to store a whole request
568  * structure, we allow the request to provide a
569  * deferred form, which must contain a
570  * 'struct cache_deferred_req'
571  * This cache_deferred_req contains a method to allow
572  * it to be revisited when cache info is available
573  */
574
575 #define DFR_HASHSIZE    (PAGE_SIZE/sizeof(struct list_head))
576 #define DFR_HASH(item)  ((((long)item)>>4 ^ (((long)item)>>13)) % DFR_HASHSIZE)
577
578 #define DFR_MAX 300     /* ??? */
579
580 static DEFINE_SPINLOCK(cache_defer_lock);
581 static LIST_HEAD(cache_defer_list);
582 static struct hlist_head cache_defer_hash[DFR_HASHSIZE];
583 static int cache_defer_cnt;
584
585 static void __unhash_deferred_req(struct cache_deferred_req *dreq)
586 {
587         hlist_del_init(&dreq->hash);
588         if (!list_empty(&dreq->recent)) {
589                 list_del_init(&dreq->recent);
590                 cache_defer_cnt--;
591         }
592 }
593
594 static void __hash_deferred_req(struct cache_deferred_req *dreq, struct cache_head *item)
595 {
596         int hash = DFR_HASH(item);
597
598         INIT_LIST_HEAD(&dreq->recent);
599         hlist_add_head(&dreq->hash, &cache_defer_hash[hash]);
600 }
601
602 static void setup_deferral(struct cache_deferred_req *dreq,
603                            struct cache_head *item,
604                            int count_me)
605 {
606
607         dreq->item = item;
608
609         spin_lock(&cache_defer_lock);
610
611         __hash_deferred_req(dreq, item);
612
613         if (count_me) {
614                 cache_defer_cnt++;
615                 list_add(&dreq->recent, &cache_defer_list);
616         }
617
618         spin_unlock(&cache_defer_lock);
619
620 }
621
622 struct thread_deferred_req {
623         struct cache_deferred_req handle;
624         struct completion completion;
625 };
626
627 static void cache_restart_thread(struct cache_deferred_req *dreq, int too_many)
628 {
629         struct thread_deferred_req *dr =
630                 container_of(dreq, struct thread_deferred_req, handle);
631         complete(&dr->completion);
632 }
633
634 static void cache_wait_req(struct cache_req *req, struct cache_head *item)
635 {
636         struct thread_deferred_req sleeper;
637         struct cache_deferred_req *dreq = &sleeper.handle;
638
639         sleeper.completion = COMPLETION_INITIALIZER_ONSTACK(sleeper.completion);
640         dreq->revisit = cache_restart_thread;
641
642         setup_deferral(dreq, item, 0);
643
644         if (!test_bit(CACHE_PENDING, &item->flags) ||
645             wait_for_completion_interruptible_timeout(
646                     &sleeper.completion, req->thread_wait) <= 0) {
647                 /* The completion wasn't completed, so we need
648                  * to clean up
649                  */
650                 spin_lock(&cache_defer_lock);
651                 if (!hlist_unhashed(&sleeper.handle.hash)) {
652                         __unhash_deferred_req(&sleeper.handle);
653                         spin_unlock(&cache_defer_lock);
654                 } else {
655                         /* cache_revisit_request already removed
656                          * this from the hash table, but hasn't
657                          * called ->revisit yet.  It will very soon
658                          * and we need to wait for it.
659                          */
660                         spin_unlock(&cache_defer_lock);
661                         wait_for_completion(&sleeper.completion);
662                 }
663         }
664 }
665
666 static void cache_limit_defers(void)
667 {
668         /* Make sure we haven't exceed the limit of allowed deferred
669          * requests.
670          */
671         struct cache_deferred_req *discard = NULL;
672
673         if (cache_defer_cnt <= DFR_MAX)
674                 return;
675
676         spin_lock(&cache_defer_lock);
677
678         /* Consider removing either the first or the last */
679         if (cache_defer_cnt > DFR_MAX) {
680                 if (get_random_u32_below(2))
681                         discard = list_entry(cache_defer_list.next,
682                                              struct cache_deferred_req, recent);
683                 else
684                         discard = list_entry(cache_defer_list.prev,
685                                              struct cache_deferred_req, recent);
686                 __unhash_deferred_req(discard);
687         }
688         spin_unlock(&cache_defer_lock);
689         if (discard)
690                 discard->revisit(discard, 1);
691 }
692
693 #if IS_ENABLED(CONFIG_FAIL_SUNRPC)
694 static inline bool cache_defer_immediately(void)
695 {
696         return !fail_sunrpc.ignore_cache_wait &&
697                 should_fail(&fail_sunrpc.attr, 1);
698 }
699 #else
700 static inline bool cache_defer_immediately(void)
701 {
702         return false;
703 }
704 #endif
705
706 /* Return true if and only if a deferred request is queued. */
707 static bool cache_defer_req(struct cache_req *req, struct cache_head *item)
708 {
709         struct cache_deferred_req *dreq;
710
711         if (!cache_defer_immediately()) {
712                 cache_wait_req(req, item);
713                 if (!test_bit(CACHE_PENDING, &item->flags))
714                         return false;
715         }
716
717         dreq = req->defer(req);
718         if (dreq == NULL)
719                 return false;
720         setup_deferral(dreq, item, 1);
721         if (!test_bit(CACHE_PENDING, &item->flags))
722                 /* Bit could have been cleared before we managed to
723                  * set up the deferral, so need to revisit just in case
724                  */
725                 cache_revisit_request(item);
726
727         cache_limit_defers();
728         return true;
729 }
730
731 static void cache_revisit_request(struct cache_head *item)
732 {
733         struct cache_deferred_req *dreq;
734         struct hlist_node *tmp;
735         int hash = DFR_HASH(item);
736         LIST_HEAD(pending);
737
738         spin_lock(&cache_defer_lock);
739
740         hlist_for_each_entry_safe(dreq, tmp, &cache_defer_hash[hash], hash)
741                 if (dreq->item == item) {
742                         __unhash_deferred_req(dreq);
743                         list_add(&dreq->recent, &pending);
744                 }
745
746         spin_unlock(&cache_defer_lock);
747
748         while (!list_empty(&pending)) {
749                 dreq = list_entry(pending.next, struct cache_deferred_req, recent);
750                 list_del_init(&dreq->recent);
751                 dreq->revisit(dreq, 0);
752         }
753 }
754
755 void cache_clean_deferred(void *owner)
756 {
757         struct cache_deferred_req *dreq, *tmp;
758         LIST_HEAD(pending);
759
760         spin_lock(&cache_defer_lock);
761
762         list_for_each_entry_safe(dreq, tmp, &cache_defer_list, recent) {
763                 if (dreq->owner == owner) {
764                         __unhash_deferred_req(dreq);
765                         list_add(&dreq->recent, &pending);
766                 }
767         }
768         spin_unlock(&cache_defer_lock);
769
770         while (!list_empty(&pending)) {
771                 dreq = list_entry(pending.next, struct cache_deferred_req, recent);
772                 list_del_init(&dreq->recent);
773                 dreq->revisit(dreq, 1);
774         }
775 }
776
777 /*
778  * communicate with user-space
779  *
780  * We have a magic /proc file - /proc/net/rpc/<cachename>/channel.
781  * On read, you get a full request, or block.
782  * On write, an update request is processed.
783  * Poll works if anything to read, and always allows write.
784  *
785  * Implemented by linked list of requests.  Each open file has
786  * a ->private that also exists in this list.  New requests are added
787  * to the end and may wakeup and preceding readers.
788  * New readers are added to the head.  If, on read, an item is found with
789  * CACHE_UPCALLING clear, we free it from the list.
790  *
791  */
792
793 static DEFINE_SPINLOCK(queue_lock);
794
795 struct cache_queue {
796         struct list_head        list;
797         int                     reader; /* if 0, then request */
798 };
799 struct cache_request {
800         struct cache_queue      q;
801         struct cache_head       *item;
802         char                    * buf;
803         int                     len;
804         int                     readers;
805 };
806 struct cache_reader {
807         struct cache_queue      q;
808         int                     offset; /* if non-0, we have a refcnt on next request */
809 };
810
811 static int cache_request(struct cache_detail *detail,
812                                struct cache_request *crq)
813 {
814         char *bp = crq->buf;
815         int len = PAGE_SIZE;
816
817         detail->cache_request(detail, crq->item, &bp, &len);
818         if (len < 0)
819                 return -E2BIG;
820         return PAGE_SIZE - len;
821 }
822
823 static ssize_t cache_read(struct file *filp, char __user *buf, size_t count,
824                           loff_t *ppos, struct cache_detail *cd)
825 {
826         struct cache_reader *rp = filp->private_data;
827         struct cache_request *rq;
828         struct inode *inode = file_inode(filp);
829         int err;
830
831         if (count == 0)
832                 return 0;
833
834         inode_lock(inode); /* protect against multiple concurrent
835                               * readers on this file */
836  again:
837         spin_lock(&queue_lock);
838         /* need to find next request */
839         while (rp->q.list.next != &cd->queue &&
840                list_entry(rp->q.list.next, struct cache_queue, list)
841                ->reader) {
842                 struct list_head *next = rp->q.list.next;
843                 list_move(&rp->q.list, next);
844         }
845         if (rp->q.list.next == &cd->queue) {
846                 spin_unlock(&queue_lock);
847                 inode_unlock(inode);
848                 WARN_ON_ONCE(rp->offset);
849                 return 0;
850         }
851         rq = container_of(rp->q.list.next, struct cache_request, q.list);
852         WARN_ON_ONCE(rq->q.reader);
853         if (rp->offset == 0)
854                 rq->readers++;
855         spin_unlock(&queue_lock);
856
857         if (rq->len == 0) {
858                 err = cache_request(cd, rq);
859                 if (err < 0)
860                         goto out;
861                 rq->len = err;
862         }
863
864         if (rp->offset == 0 && !test_bit(CACHE_PENDING, &rq->item->flags)) {
865                 err = -EAGAIN;
866                 spin_lock(&queue_lock);
867                 list_move(&rp->q.list, &rq->q.list);
868                 spin_unlock(&queue_lock);
869         } else {
870                 if (rp->offset + count > rq->len)
871                         count = rq->len - rp->offset;
872                 err = -EFAULT;
873                 if (copy_to_user(buf, rq->buf + rp->offset, count))
874                         goto out;
875                 rp->offset += count;
876                 if (rp->offset >= rq->len) {
877                         rp->offset = 0;
878                         spin_lock(&queue_lock);
879                         list_move(&rp->q.list, &rq->q.list);
880                         spin_unlock(&queue_lock);
881                 }
882                 err = 0;
883         }
884  out:
885         if (rp->offset == 0) {
886                 /* need to release rq */
887                 spin_lock(&queue_lock);
888                 rq->readers--;
889                 if (rq->readers == 0 &&
890                     !test_bit(CACHE_PENDING, &rq->item->flags)) {
891                         list_del(&rq->q.list);
892                         spin_unlock(&queue_lock);
893                         cache_put(rq->item, cd);
894                         kfree(rq->buf);
895                         kfree(rq);
896                 } else
897                         spin_unlock(&queue_lock);
898         }
899         if (err == -EAGAIN)
900                 goto again;
901         inode_unlock(inode);
902         return err ? err :  count;
903 }
904
905 static ssize_t cache_do_downcall(char *kaddr, const char __user *buf,
906                                  size_t count, struct cache_detail *cd)
907 {
908         ssize_t ret;
909
910         if (count == 0)
911                 return -EINVAL;
912         if (copy_from_user(kaddr, buf, count))
913                 return -EFAULT;
914         kaddr[count] = '\0';
915         ret = cd->cache_parse(cd, kaddr, count);
916         if (!ret)
917                 ret = count;
918         return ret;
919 }
920
921 static ssize_t cache_downcall(struct address_space *mapping,
922                               const char __user *buf,
923                               size_t count, struct cache_detail *cd)
924 {
925         char *write_buf;
926         ssize_t ret = -ENOMEM;
927
928         if (count >= 32768) { /* 32k is max userland buffer, lets check anyway */
929                 ret = -EINVAL;
930                 goto out;
931         }
932
933         write_buf = kvmalloc(count + 1, GFP_KERNEL);
934         if (!write_buf)
935                 goto out;
936
937         ret = cache_do_downcall(write_buf, buf, count, cd);
938         kvfree(write_buf);
939 out:
940         return ret;
941 }
942
943 static ssize_t cache_write(struct file *filp, const char __user *buf,
944                            size_t count, loff_t *ppos,
945                            struct cache_detail *cd)
946 {
947         struct address_space *mapping = filp->f_mapping;
948         struct inode *inode = file_inode(filp);
949         ssize_t ret = -EINVAL;
950
951         if (!cd->cache_parse)
952                 goto out;
953
954         inode_lock(inode);
955         ret = cache_downcall(mapping, buf, count, cd);
956         inode_unlock(inode);
957 out:
958         return ret;
959 }
960
961 static DECLARE_WAIT_QUEUE_HEAD(queue_wait);
962
963 static __poll_t cache_poll(struct file *filp, poll_table *wait,
964                                struct cache_detail *cd)
965 {
966         __poll_t mask;
967         struct cache_reader *rp = filp->private_data;
968         struct cache_queue *cq;
969
970         poll_wait(filp, &queue_wait, wait);
971
972         /* alway allow write */
973         mask = EPOLLOUT | EPOLLWRNORM;
974
975         if (!rp)
976                 return mask;
977
978         spin_lock(&queue_lock);
979
980         for (cq= &rp->q; &cq->list != &cd->queue;
981              cq = list_entry(cq->list.next, struct cache_queue, list))
982                 if (!cq->reader) {
983                         mask |= EPOLLIN | EPOLLRDNORM;
984                         break;
985                 }
986         spin_unlock(&queue_lock);
987         return mask;
988 }
989
990 static int cache_ioctl(struct inode *ino, struct file *filp,
991                        unsigned int cmd, unsigned long arg,
992                        struct cache_detail *cd)
993 {
994         int len = 0;
995         struct cache_reader *rp = filp->private_data;
996         struct cache_queue *cq;
997
998         if (cmd != FIONREAD || !rp)
999                 return -EINVAL;
1000
1001         spin_lock(&queue_lock);
1002
1003         /* only find the length remaining in current request,
1004          * or the length of the next request
1005          */
1006         for (cq= &rp->q; &cq->list != &cd->queue;
1007              cq = list_entry(cq->list.next, struct cache_queue, list))
1008                 if (!cq->reader) {
1009                         struct cache_request *cr =
1010                                 container_of(cq, struct cache_request, q);
1011                         len = cr->len - rp->offset;
1012                         break;
1013                 }
1014         spin_unlock(&queue_lock);
1015
1016         return put_user(len, (int __user *)arg);
1017 }
1018
1019 static int cache_open(struct inode *inode, struct file *filp,
1020                       struct cache_detail *cd)
1021 {
1022         struct cache_reader *rp = NULL;
1023
1024         if (!cd || !try_module_get(cd->owner))
1025                 return -EACCES;
1026         nonseekable_open(inode, filp);
1027         if (filp->f_mode & FMODE_READ) {
1028                 rp = kmalloc(sizeof(*rp), GFP_KERNEL);
1029                 if (!rp) {
1030                         module_put(cd->owner);
1031                         return -ENOMEM;
1032                 }
1033                 rp->offset = 0;
1034                 rp->q.reader = 1;
1035
1036                 spin_lock(&queue_lock);
1037                 list_add(&rp->q.list, &cd->queue);
1038                 spin_unlock(&queue_lock);
1039         }
1040         if (filp->f_mode & FMODE_WRITE)
1041                 atomic_inc(&cd->writers);
1042         filp->private_data = rp;
1043         return 0;
1044 }
1045
1046 static int cache_release(struct inode *inode, struct file *filp,
1047                          struct cache_detail *cd)
1048 {
1049         struct cache_reader *rp = filp->private_data;
1050
1051         if (rp) {
1052                 spin_lock(&queue_lock);
1053                 if (rp->offset) {
1054                         struct cache_queue *cq;
1055                         for (cq= &rp->q; &cq->list != &cd->queue;
1056                              cq = list_entry(cq->list.next, struct cache_queue, list))
1057                                 if (!cq->reader) {
1058                                         container_of(cq, struct cache_request, q)
1059                                                 ->readers--;
1060                                         break;
1061                                 }
1062                         rp->offset = 0;
1063                 }
1064                 list_del(&rp->q.list);
1065                 spin_unlock(&queue_lock);
1066
1067                 filp->private_data = NULL;
1068                 kfree(rp);
1069
1070         }
1071         if (filp->f_mode & FMODE_WRITE) {
1072                 atomic_dec(&cd->writers);
1073                 cd->last_close = seconds_since_boot();
1074         }
1075         module_put(cd->owner);
1076         return 0;
1077 }
1078
1079
1080
1081 static void cache_dequeue(struct cache_detail *detail, struct cache_head *ch)
1082 {
1083         struct cache_queue *cq, *tmp;
1084         struct cache_request *cr;
1085         LIST_HEAD(dequeued);
1086
1087         spin_lock(&queue_lock);
1088         list_for_each_entry_safe(cq, tmp, &detail->queue, list)
1089                 if (!cq->reader) {
1090                         cr = container_of(cq, struct cache_request, q);
1091                         if (cr->item != ch)
1092                                 continue;
1093                         if (test_bit(CACHE_PENDING, &ch->flags))
1094                                 /* Lost a race and it is pending again */
1095                                 break;
1096                         if (cr->readers != 0)
1097                                 continue;
1098                         list_move(&cr->q.list, &dequeued);
1099                 }
1100         spin_unlock(&queue_lock);
1101         while (!list_empty(&dequeued)) {
1102                 cr = list_entry(dequeued.next, struct cache_request, q.list);
1103                 list_del(&cr->q.list);
1104                 cache_put(cr->item, detail);
1105                 kfree(cr->buf);
1106                 kfree(cr);
1107         }
1108 }
1109
1110 /*
1111  * Support routines for text-based upcalls.
1112  * Fields are separated by spaces.
1113  * Fields are either mangled to quote space tab newline slosh with slosh
1114  * or a hexified with a leading \x
1115  * Record is terminated with newline.
1116  *
1117  */
1118
1119 void qword_add(char **bpp, int *lp, char *str)
1120 {
1121         char *bp = *bpp;
1122         int len = *lp;
1123         int ret;
1124
1125         if (len < 0) return;
1126
1127         ret = string_escape_str(str, bp, len, ESCAPE_OCTAL, "\\ \n\t");
1128         if (ret >= len) {
1129                 bp += len;
1130                 len = -1;
1131         } else {
1132                 bp += ret;
1133                 len -= ret;
1134                 *bp++ = ' ';
1135                 len--;
1136         }
1137         *bpp = bp;
1138         *lp = len;
1139 }
1140 EXPORT_SYMBOL_GPL(qword_add);
1141
1142 void qword_addhex(char **bpp, int *lp, char *buf, int blen)
1143 {
1144         char *bp = *bpp;
1145         int len = *lp;
1146
1147         if (len < 0) return;
1148
1149         if (len > 2) {
1150                 *bp++ = '\\';
1151                 *bp++ = 'x';
1152                 len -= 2;
1153                 while (blen && len >= 2) {
1154                         bp = hex_byte_pack(bp, *buf++);
1155                         len -= 2;
1156                         blen--;
1157                 }
1158         }
1159         if (blen || len<1) len = -1;
1160         else {
1161                 *bp++ = ' ';
1162                 len--;
1163         }
1164         *bpp = bp;
1165         *lp = len;
1166 }
1167 EXPORT_SYMBOL_GPL(qword_addhex);
1168
1169 static void warn_no_listener(struct cache_detail *detail)
1170 {
1171         if (detail->last_warn != detail->last_close) {
1172                 detail->last_warn = detail->last_close;
1173                 if (detail->warn_no_listener)
1174                         detail->warn_no_listener(detail, detail->last_close != 0);
1175         }
1176 }
1177
1178 static bool cache_listeners_exist(struct cache_detail *detail)
1179 {
1180         if (atomic_read(&detail->writers))
1181                 return true;
1182         if (detail->last_close == 0)
1183                 /* This cache was never opened */
1184                 return false;
1185         if (detail->last_close < seconds_since_boot() - 30)
1186                 /*
1187                  * We allow for the possibility that someone might
1188                  * restart a userspace daemon without restarting the
1189                  * server; but after 30 seconds, we give up.
1190                  */
1191                  return false;
1192         return true;
1193 }
1194
1195 /*
1196  * register an upcall request to user-space and queue it up for read() by the
1197  * upcall daemon.
1198  *
1199  * Each request is at most one page long.
1200  */
1201 static int cache_pipe_upcall(struct cache_detail *detail, struct cache_head *h)
1202 {
1203         char *buf;
1204         struct cache_request *crq;
1205         int ret = 0;
1206
1207         if (test_bit(CACHE_CLEANED, &h->flags))
1208                 /* Too late to make an upcall */
1209                 return -EAGAIN;
1210
1211         buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1212         if (!buf)
1213                 return -EAGAIN;
1214
1215         crq = kmalloc(sizeof (*crq), GFP_KERNEL);
1216         if (!crq) {
1217                 kfree(buf);
1218                 return -EAGAIN;
1219         }
1220
1221         crq->q.reader = 0;
1222         crq->buf = buf;
1223         crq->len = 0;
1224         crq->readers = 0;
1225         spin_lock(&queue_lock);
1226         if (test_bit(CACHE_PENDING, &h->flags)) {
1227                 crq->item = cache_get(h);
1228                 list_add_tail(&crq->q.list, &detail->queue);
1229                 trace_cache_entry_upcall(detail, h);
1230         } else
1231                 /* Lost a race, no longer PENDING, so don't enqueue */
1232                 ret = -EAGAIN;
1233         spin_unlock(&queue_lock);
1234         wake_up(&queue_wait);
1235         if (ret == -EAGAIN) {
1236                 kfree(buf);
1237                 kfree(crq);
1238         }
1239         return ret;
1240 }
1241
1242 int sunrpc_cache_pipe_upcall(struct cache_detail *detail, struct cache_head *h)
1243 {
1244         if (test_and_set_bit(CACHE_PENDING, &h->flags))
1245                 return 0;
1246         return cache_pipe_upcall(detail, h);
1247 }
1248 EXPORT_SYMBOL_GPL(sunrpc_cache_pipe_upcall);
1249
1250 int sunrpc_cache_pipe_upcall_timeout(struct cache_detail *detail,
1251                                      struct cache_head *h)
1252 {
1253         if (!cache_listeners_exist(detail)) {
1254                 warn_no_listener(detail);
1255                 trace_cache_entry_no_listener(detail, h);
1256                 return -EINVAL;
1257         }
1258         return sunrpc_cache_pipe_upcall(detail, h);
1259 }
1260 EXPORT_SYMBOL_GPL(sunrpc_cache_pipe_upcall_timeout);
1261
1262 /*
1263  * parse a message from user-space and pass it
1264  * to an appropriate cache
1265  * Messages are, like requests, separated into fields by
1266  * spaces and dequotes as \xHEXSTRING or embedded \nnn octal
1267  *
1268  * Message is
1269  *   reply cachename expiry key ... content....
1270  *
1271  * key and content are both parsed by cache
1272  */
1273
1274 int qword_get(char **bpp, char *dest, int bufsize)
1275 {
1276         /* return bytes copied, or -1 on error */
1277         char *bp = *bpp;
1278         int len = 0;
1279
1280         while (*bp == ' ') bp++;
1281
1282         if (bp[0] == '\\' && bp[1] == 'x') {
1283                 /* HEX STRING */
1284                 bp += 2;
1285                 while (len < bufsize - 1) {
1286                         int h, l;
1287
1288                         h = hex_to_bin(bp[0]);
1289                         if (h < 0)
1290                                 break;
1291
1292                         l = hex_to_bin(bp[1]);
1293                         if (l < 0)
1294                                 break;
1295
1296                         *dest++ = (h << 4) | l;
1297                         bp += 2;
1298                         len++;
1299                 }
1300         } else {
1301                 /* text with \nnn octal quoting */
1302                 while (*bp != ' ' && *bp != '\n' && *bp && len < bufsize-1) {
1303                         if (*bp == '\\' &&
1304                             isodigit(bp[1]) && (bp[1] <= '3') &&
1305                             isodigit(bp[2]) &&
1306                             isodigit(bp[3])) {
1307                                 int byte = (*++bp -'0');
1308                                 bp++;
1309                                 byte = (byte << 3) | (*bp++ - '0');
1310                                 byte = (byte << 3) | (*bp++ - '0');
1311                                 *dest++ = byte;
1312                                 len++;
1313                         } else {
1314                                 *dest++ = *bp++;
1315                                 len++;
1316                         }
1317                 }
1318         }
1319
1320         if (*bp != ' ' && *bp != '\n' && *bp != '\0')
1321                 return -1;
1322         while (*bp == ' ') bp++;
1323         *bpp = bp;
1324         *dest = '\0';
1325         return len;
1326 }
1327 EXPORT_SYMBOL_GPL(qword_get);
1328
1329
1330 /*
1331  * support /proc/net/rpc/$CACHENAME/content
1332  * as a seqfile.
1333  * We call ->cache_show passing NULL for the item to
1334  * get a header, then pass each real item in the cache
1335  */
1336
1337 static void *__cache_seq_start(struct seq_file *m, loff_t *pos)
1338 {
1339         loff_t n = *pos;
1340         unsigned int hash, entry;
1341         struct cache_head *ch;
1342         struct cache_detail *cd = m->private;
1343
1344         if (!n--)
1345                 return SEQ_START_TOKEN;
1346         hash = n >> 32;
1347         entry = n & ((1LL<<32) - 1);
1348
1349         hlist_for_each_entry_rcu(ch, &cd->hash_table[hash], cache_list)
1350                 if (!entry--)
1351                         return ch;
1352         n &= ~((1LL<<32) - 1);
1353         do {
1354                 hash++;
1355                 n += 1LL<<32;
1356         } while(hash < cd->hash_size &&
1357                 hlist_empty(&cd->hash_table[hash]));
1358         if (hash >= cd->hash_size)
1359                 return NULL;
1360         *pos = n+1;
1361         return hlist_entry_safe(rcu_dereference_raw(
1362                                 hlist_first_rcu(&cd->hash_table[hash])),
1363                                 struct cache_head, cache_list);
1364 }
1365
1366 static void *cache_seq_next(struct seq_file *m, void *p, loff_t *pos)
1367 {
1368         struct cache_head *ch = p;
1369         int hash = (*pos >> 32);
1370         struct cache_detail *cd = m->private;
1371
1372         if (p == SEQ_START_TOKEN)
1373                 hash = 0;
1374         else if (ch->cache_list.next == NULL) {
1375                 hash++;
1376                 *pos += 1LL<<32;
1377         } else {
1378                 ++*pos;
1379                 return hlist_entry_safe(rcu_dereference_raw(
1380                                         hlist_next_rcu(&ch->cache_list)),
1381                                         struct cache_head, cache_list);
1382         }
1383         *pos &= ~((1LL<<32) - 1);
1384         while (hash < cd->hash_size &&
1385                hlist_empty(&cd->hash_table[hash])) {
1386                 hash++;
1387                 *pos += 1LL<<32;
1388         }
1389         if (hash >= cd->hash_size)
1390                 return NULL;
1391         ++*pos;
1392         return hlist_entry_safe(rcu_dereference_raw(
1393                                 hlist_first_rcu(&cd->hash_table[hash])),
1394                                 struct cache_head, cache_list);
1395 }
1396
1397 void *cache_seq_start_rcu(struct seq_file *m, loff_t *pos)
1398         __acquires(RCU)
1399 {
1400         rcu_read_lock();
1401         return __cache_seq_start(m, pos);
1402 }
1403 EXPORT_SYMBOL_GPL(cache_seq_start_rcu);
1404
1405 void *cache_seq_next_rcu(struct seq_file *file, void *p, loff_t *pos)
1406 {
1407         return cache_seq_next(file, p, pos);
1408 }
1409 EXPORT_SYMBOL_GPL(cache_seq_next_rcu);
1410
1411 void cache_seq_stop_rcu(struct seq_file *m, void *p)
1412         __releases(RCU)
1413 {
1414         rcu_read_unlock();
1415 }
1416 EXPORT_SYMBOL_GPL(cache_seq_stop_rcu);
1417
1418 static int c_show(struct seq_file *m, void *p)
1419 {
1420         struct cache_head *cp = p;
1421         struct cache_detail *cd = m->private;
1422
1423         if (p == SEQ_START_TOKEN)
1424                 return cd->cache_show(m, cd, NULL);
1425
1426         ifdebug(CACHE)
1427                 seq_printf(m, "# expiry=%lld refcnt=%d flags=%lx\n",
1428                            convert_to_wallclock(cp->expiry_time),
1429                            kref_read(&cp->ref), cp->flags);
1430         if (!cache_get_rcu(cp))
1431                 return 0;
1432
1433         if (cache_check(cd, cp, NULL))
1434                 /* cache_check does a cache_put on failure */
1435                 seq_puts(m, "# ");
1436         else {
1437                 if (cache_is_expired(cd, cp))
1438                         seq_puts(m, "# ");
1439                 cache_put(cp, cd);
1440         }
1441
1442         return cd->cache_show(m, cd, cp);
1443 }
1444
1445 static const struct seq_operations cache_content_op = {
1446         .start  = cache_seq_start_rcu,
1447         .next   = cache_seq_next_rcu,
1448         .stop   = cache_seq_stop_rcu,
1449         .show   = c_show,
1450 };
1451
1452 static int content_open(struct inode *inode, struct file *file,
1453                         struct cache_detail *cd)
1454 {
1455         struct seq_file *seq;
1456         int err;
1457
1458         if (!cd || !try_module_get(cd->owner))
1459                 return -EACCES;
1460
1461         err = seq_open(file, &cache_content_op);
1462         if (err) {
1463                 module_put(cd->owner);
1464                 return err;
1465         }
1466
1467         seq = file->private_data;
1468         seq->private = cd;
1469         return 0;
1470 }
1471
1472 static int content_release(struct inode *inode, struct file *file,
1473                 struct cache_detail *cd)
1474 {
1475         int ret = seq_release(inode, file);
1476         module_put(cd->owner);
1477         return ret;
1478 }
1479
1480 static int open_flush(struct inode *inode, struct file *file,
1481                         struct cache_detail *cd)
1482 {
1483         if (!cd || !try_module_get(cd->owner))
1484                 return -EACCES;
1485         return nonseekable_open(inode, file);
1486 }
1487
1488 static int release_flush(struct inode *inode, struct file *file,
1489                         struct cache_detail *cd)
1490 {
1491         module_put(cd->owner);
1492         return 0;
1493 }
1494
1495 static ssize_t read_flush(struct file *file, char __user *buf,
1496                           size_t count, loff_t *ppos,
1497                           struct cache_detail *cd)
1498 {
1499         char tbuf[22];
1500         size_t len;
1501
1502         len = snprintf(tbuf, sizeof(tbuf), "%llu\n",
1503                         convert_to_wallclock(cd->flush_time));
1504         return simple_read_from_buffer(buf, count, ppos, tbuf, len);
1505 }
1506
1507 static ssize_t write_flush(struct file *file, const char __user *buf,
1508                            size_t count, loff_t *ppos,
1509                            struct cache_detail *cd)
1510 {
1511         char tbuf[20];
1512         char *ep;
1513         time64_t now;
1514
1515         if (*ppos || count > sizeof(tbuf)-1)
1516                 return -EINVAL;
1517         if (copy_from_user(tbuf, buf, count))
1518                 return -EFAULT;
1519         tbuf[count] = 0;
1520         simple_strtoul(tbuf, &ep, 0);
1521         if (*ep && *ep != '\n')
1522                 return -EINVAL;
1523         /* Note that while we check that 'buf' holds a valid number,
1524          * we always ignore the value and just flush everything.
1525          * Making use of the number leads to races.
1526          */
1527
1528         now = seconds_since_boot();
1529         /* Always flush everything, so behave like cache_purge()
1530          * Do this by advancing flush_time to the current time,
1531          * or by one second if it has already reached the current time.
1532          * Newly added cache entries will always have ->last_refresh greater
1533          * that ->flush_time, so they don't get flushed prematurely.
1534          */
1535
1536         if (cd->flush_time >= now)
1537                 now = cd->flush_time + 1;
1538
1539         cd->flush_time = now;
1540         cd->nextcheck = now;
1541         cache_flush();
1542
1543         if (cd->flush)
1544                 cd->flush();
1545
1546         *ppos += count;
1547         return count;
1548 }
1549
1550 static ssize_t cache_read_procfs(struct file *filp, char __user *buf,
1551                                  size_t count, loff_t *ppos)
1552 {
1553         struct cache_detail *cd = pde_data(file_inode(filp));
1554
1555         return cache_read(filp, buf, count, ppos, cd);
1556 }
1557
1558 static ssize_t cache_write_procfs(struct file *filp, const char __user *buf,
1559                                   size_t count, loff_t *ppos)
1560 {
1561         struct cache_detail *cd = pde_data(file_inode(filp));
1562
1563         return cache_write(filp, buf, count, ppos, cd);
1564 }
1565
1566 static __poll_t cache_poll_procfs(struct file *filp, poll_table *wait)
1567 {
1568         struct cache_detail *cd = pde_data(file_inode(filp));
1569
1570         return cache_poll(filp, wait, cd);
1571 }
1572
1573 static long cache_ioctl_procfs(struct file *filp,
1574                                unsigned int cmd, unsigned long arg)
1575 {
1576         struct inode *inode = file_inode(filp);
1577         struct cache_detail *cd = pde_data(inode);
1578
1579         return cache_ioctl(inode, filp, cmd, arg, cd);
1580 }
1581
1582 static int cache_open_procfs(struct inode *inode, struct file *filp)
1583 {
1584         struct cache_detail *cd = pde_data(inode);
1585
1586         return cache_open(inode, filp, cd);
1587 }
1588
1589 static int cache_release_procfs(struct inode *inode, struct file *filp)
1590 {
1591         struct cache_detail *cd = pde_data(inode);
1592
1593         return cache_release(inode, filp, cd);
1594 }
1595
1596 static const struct proc_ops cache_channel_proc_ops = {
1597         .proc_read      = cache_read_procfs,
1598         .proc_write     = cache_write_procfs,
1599         .proc_poll      = cache_poll_procfs,
1600         .proc_ioctl     = cache_ioctl_procfs, /* for FIONREAD */
1601         .proc_open      = cache_open_procfs,
1602         .proc_release   = cache_release_procfs,
1603 };
1604
1605 static int content_open_procfs(struct inode *inode, struct file *filp)
1606 {
1607         struct cache_detail *cd = pde_data(inode);
1608
1609         return content_open(inode, filp, cd);
1610 }
1611
1612 static int content_release_procfs(struct inode *inode, struct file *filp)
1613 {
1614         struct cache_detail *cd = pde_data(inode);
1615
1616         return content_release(inode, filp, cd);
1617 }
1618
1619 static const struct proc_ops content_proc_ops = {
1620         .proc_open      = content_open_procfs,
1621         .proc_read      = seq_read,
1622         .proc_lseek     = seq_lseek,
1623         .proc_release   = content_release_procfs,
1624 };
1625
1626 static int open_flush_procfs(struct inode *inode, struct file *filp)
1627 {
1628         struct cache_detail *cd = pde_data(inode);
1629
1630         return open_flush(inode, filp, cd);
1631 }
1632
1633 static int release_flush_procfs(struct inode *inode, struct file *filp)
1634 {
1635         struct cache_detail *cd = pde_data(inode);
1636
1637         return release_flush(inode, filp, cd);
1638 }
1639
1640 static ssize_t read_flush_procfs(struct file *filp, char __user *buf,
1641                             size_t count, loff_t *ppos)
1642 {
1643         struct cache_detail *cd = pde_data(file_inode(filp));
1644
1645         return read_flush(filp, buf, count, ppos, cd);
1646 }
1647
1648 static ssize_t write_flush_procfs(struct file *filp,
1649                                   const char __user *buf,
1650                                   size_t count, loff_t *ppos)
1651 {
1652         struct cache_detail *cd = pde_data(file_inode(filp));
1653
1654         return write_flush(filp, buf, count, ppos, cd);
1655 }
1656
1657 static const struct proc_ops cache_flush_proc_ops = {
1658         .proc_open      = open_flush_procfs,
1659         .proc_read      = read_flush_procfs,
1660         .proc_write     = write_flush_procfs,
1661         .proc_release   = release_flush_procfs,
1662 };
1663
1664 static void remove_cache_proc_entries(struct cache_detail *cd)
1665 {
1666         if (cd->procfs) {
1667                 proc_remove(cd->procfs);
1668                 cd->procfs = NULL;
1669         }
1670 }
1671
1672 #ifdef CONFIG_PROC_FS
1673 static int create_cache_proc_entries(struct cache_detail *cd, struct net *net)
1674 {
1675         struct proc_dir_entry *p;
1676         struct sunrpc_net *sn;
1677
1678         sn = net_generic(net, sunrpc_net_id);
1679         cd->procfs = proc_mkdir(cd->name, sn->proc_net_rpc);
1680         if (cd->procfs == NULL)
1681                 goto out_nomem;
1682
1683         p = proc_create_data("flush", S_IFREG | 0600,
1684                              cd->procfs, &cache_flush_proc_ops, cd);
1685         if (p == NULL)
1686                 goto out_nomem;
1687
1688         if (cd->cache_request || cd->cache_parse) {
1689                 p = proc_create_data("channel", S_IFREG | 0600, cd->procfs,
1690                                      &cache_channel_proc_ops, cd);
1691                 if (p == NULL)
1692                         goto out_nomem;
1693         }
1694         if (cd->cache_show) {
1695                 p = proc_create_data("content", S_IFREG | 0400, cd->procfs,
1696                                      &content_proc_ops, cd);
1697                 if (p == NULL)
1698                         goto out_nomem;
1699         }
1700         return 0;
1701 out_nomem:
1702         remove_cache_proc_entries(cd);
1703         return -ENOMEM;
1704 }
1705 #else /* CONFIG_PROC_FS */
1706 static int create_cache_proc_entries(struct cache_detail *cd, struct net *net)
1707 {
1708         return 0;
1709 }
1710 #endif
1711
1712 void __init cache_initialize(void)
1713 {
1714         INIT_DEFERRABLE_WORK(&cache_cleaner, do_cache_clean);
1715 }
1716
1717 int cache_register_net(struct cache_detail *cd, struct net *net)
1718 {
1719         int ret;
1720
1721         sunrpc_init_cache_detail(cd);
1722         ret = create_cache_proc_entries(cd, net);
1723         if (ret)
1724                 sunrpc_destroy_cache_detail(cd);
1725         return ret;
1726 }
1727 EXPORT_SYMBOL_GPL(cache_register_net);
1728
1729 void cache_unregister_net(struct cache_detail *cd, struct net *net)
1730 {
1731         remove_cache_proc_entries(cd);
1732         sunrpc_destroy_cache_detail(cd);
1733 }
1734 EXPORT_SYMBOL_GPL(cache_unregister_net);
1735
1736 struct cache_detail *cache_create_net(const struct cache_detail *tmpl, struct net *net)
1737 {
1738         struct cache_detail *cd;
1739         int i;
1740
1741         cd = kmemdup(tmpl, sizeof(struct cache_detail), GFP_KERNEL);
1742         if (cd == NULL)
1743                 return ERR_PTR(-ENOMEM);
1744
1745         cd->hash_table = kcalloc(cd->hash_size, sizeof(struct hlist_head),
1746                                  GFP_KERNEL);
1747         if (cd->hash_table == NULL) {
1748                 kfree(cd);
1749                 return ERR_PTR(-ENOMEM);
1750         }
1751
1752         for (i = 0; i < cd->hash_size; i++)
1753                 INIT_HLIST_HEAD(&cd->hash_table[i]);
1754         cd->net = net;
1755         return cd;
1756 }
1757 EXPORT_SYMBOL_GPL(cache_create_net);
1758
1759 void cache_destroy_net(struct cache_detail *cd, struct net *net)
1760 {
1761         kfree(cd->hash_table);
1762         kfree(cd);
1763 }
1764 EXPORT_SYMBOL_GPL(cache_destroy_net);
1765
1766 static ssize_t cache_read_pipefs(struct file *filp, char __user *buf,
1767                                  size_t count, loff_t *ppos)
1768 {
1769         struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1770
1771         return cache_read(filp, buf, count, ppos, cd);
1772 }
1773
1774 static ssize_t cache_write_pipefs(struct file *filp, const char __user *buf,
1775                                   size_t count, loff_t *ppos)
1776 {
1777         struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1778
1779         return cache_write(filp, buf, count, ppos, cd);
1780 }
1781
1782 static __poll_t cache_poll_pipefs(struct file *filp, poll_table *wait)
1783 {
1784         struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1785
1786         return cache_poll(filp, wait, cd);
1787 }
1788
1789 static long cache_ioctl_pipefs(struct file *filp,
1790                               unsigned int cmd, unsigned long arg)
1791 {
1792         struct inode *inode = file_inode(filp);
1793         struct cache_detail *cd = RPC_I(inode)->private;
1794
1795         return cache_ioctl(inode, filp, cmd, arg, cd);
1796 }
1797
1798 static int cache_open_pipefs(struct inode *inode, struct file *filp)
1799 {
1800         struct cache_detail *cd = RPC_I(inode)->private;
1801
1802         return cache_open(inode, filp, cd);
1803 }
1804
1805 static int cache_release_pipefs(struct inode *inode, struct file *filp)
1806 {
1807         struct cache_detail *cd = RPC_I(inode)->private;
1808
1809         return cache_release(inode, filp, cd);
1810 }
1811
1812 const struct file_operations cache_file_operations_pipefs = {
1813         .owner          = THIS_MODULE,
1814         .read           = cache_read_pipefs,
1815         .write          = cache_write_pipefs,
1816         .poll           = cache_poll_pipefs,
1817         .unlocked_ioctl = cache_ioctl_pipefs, /* for FIONREAD */
1818         .open           = cache_open_pipefs,
1819         .release        = cache_release_pipefs,
1820 };
1821
1822 static int content_open_pipefs(struct inode *inode, struct file *filp)
1823 {
1824         struct cache_detail *cd = RPC_I(inode)->private;
1825
1826         return content_open(inode, filp, cd);
1827 }
1828
1829 static int content_release_pipefs(struct inode *inode, struct file *filp)
1830 {
1831         struct cache_detail *cd = RPC_I(inode)->private;
1832
1833         return content_release(inode, filp, cd);
1834 }
1835
1836 const struct file_operations content_file_operations_pipefs = {
1837         .open           = content_open_pipefs,
1838         .read           = seq_read,
1839         .llseek         = seq_lseek,
1840         .release        = content_release_pipefs,
1841 };
1842
1843 static int open_flush_pipefs(struct inode *inode, struct file *filp)
1844 {
1845         struct cache_detail *cd = RPC_I(inode)->private;
1846
1847         return open_flush(inode, filp, cd);
1848 }
1849
1850 static int release_flush_pipefs(struct inode *inode, struct file *filp)
1851 {
1852         struct cache_detail *cd = RPC_I(inode)->private;
1853
1854         return release_flush(inode, filp, cd);
1855 }
1856
1857 static ssize_t read_flush_pipefs(struct file *filp, char __user *buf,
1858                             size_t count, loff_t *ppos)
1859 {
1860         struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1861
1862         return read_flush(filp, buf, count, ppos, cd);
1863 }
1864
1865 static ssize_t write_flush_pipefs(struct file *filp,
1866                                   const char __user *buf,
1867                                   size_t count, loff_t *ppos)
1868 {
1869         struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1870
1871         return write_flush(filp, buf, count, ppos, cd);
1872 }
1873
1874 const struct file_operations cache_flush_operations_pipefs = {
1875         .open           = open_flush_pipefs,
1876         .read           = read_flush_pipefs,
1877         .write          = write_flush_pipefs,
1878         .release        = release_flush_pipefs,
1879 };
1880
1881 int sunrpc_cache_register_pipefs(struct dentry *parent,
1882                                  const char *name, umode_t umode,
1883                                  struct cache_detail *cd)
1884 {
1885         struct dentry *dir = rpc_create_cache_dir(parent, name, umode, cd);
1886         if (IS_ERR(dir))
1887                 return PTR_ERR(dir);
1888         cd->pipefs = dir;
1889         return 0;
1890 }
1891 EXPORT_SYMBOL_GPL(sunrpc_cache_register_pipefs);
1892
1893 void sunrpc_cache_unregister_pipefs(struct cache_detail *cd)
1894 {
1895         if (cd->pipefs) {
1896                 rpc_remove_cache_dir(cd->pipefs);
1897                 cd->pipefs = NULL;
1898         }
1899 }
1900 EXPORT_SYMBOL_GPL(sunrpc_cache_unregister_pipefs);
1901
1902 void sunrpc_cache_unhash(struct cache_detail *cd, struct cache_head *h)
1903 {
1904         spin_lock(&cd->hash_lock);
1905         if (!hlist_unhashed(&h->cache_list)){
1906                 sunrpc_begin_cache_remove_entry(h, cd);
1907                 spin_unlock(&cd->hash_lock);
1908                 sunrpc_end_cache_remove_entry(h, cd);
1909         } else
1910                 spin_unlock(&cd->hash_lock);
1911 }
1912 EXPORT_SYMBOL_GPL(sunrpc_cache_unhash);
This page took 0.128889 seconds and 4 git commands to generate.