]> Git Repo - J-linux.git/blob - net/openvswitch/actions.c
Merge tag 'vfs-6.13-rc7.fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs
[J-linux.git] / net / openvswitch / actions.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2007-2017 Nicira, Inc.
4  */
5
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7
8 #include <linux/skbuff.h>
9 #include <linux/in.h>
10 #include <linux/ip.h>
11 #include <linux/openvswitch.h>
12 #include <linux/sctp.h>
13 #include <linux/tcp.h>
14 #include <linux/udp.h>
15 #include <linux/in6.h>
16 #include <linux/if_arp.h>
17 #include <linux/if_vlan.h>
18
19 #include <net/dst.h>
20 #include <net/gso.h>
21 #include <net/ip.h>
22 #include <net/ipv6.h>
23 #include <net/ip6_fib.h>
24 #include <net/checksum.h>
25 #include <net/dsfield.h>
26 #include <net/mpls.h>
27
28 #if IS_ENABLED(CONFIG_PSAMPLE)
29 #include <net/psample.h>
30 #endif
31
32 #include <net/sctp/checksum.h>
33
34 #include "datapath.h"
35 #include "drop.h"
36 #include "flow.h"
37 #include "conntrack.h"
38 #include "vport.h"
39 #include "flow_netlink.h"
40 #include "openvswitch_trace.h"
41
42 struct deferred_action {
43         struct sk_buff *skb;
44         const struct nlattr *actions;
45         int actions_len;
46
47         /* Store pkt_key clone when creating deferred action. */
48         struct sw_flow_key pkt_key;
49 };
50
51 #define MAX_L2_LEN      (VLAN_ETH_HLEN + 3 * MPLS_HLEN)
52 struct ovs_frag_data {
53         unsigned long dst;
54         struct vport *vport;
55         struct ovs_skb_cb cb;
56         __be16 inner_protocol;
57         u16 network_offset;     /* valid only for MPLS */
58         u16 vlan_tci;
59         __be16 vlan_proto;
60         unsigned int l2_len;
61         u8 mac_proto;
62         u8 l2_data[MAX_L2_LEN];
63 };
64
65 static DEFINE_PER_CPU(struct ovs_frag_data, ovs_frag_data_storage);
66
67 #define DEFERRED_ACTION_FIFO_SIZE 10
68 #define OVS_RECURSION_LIMIT 5
69 #define OVS_DEFERRED_ACTION_THRESHOLD (OVS_RECURSION_LIMIT - 2)
70 struct action_fifo {
71         int head;
72         int tail;
73         /* Deferred action fifo queue storage. */
74         struct deferred_action fifo[DEFERRED_ACTION_FIFO_SIZE];
75 };
76
77 struct action_flow_keys {
78         struct sw_flow_key key[OVS_DEFERRED_ACTION_THRESHOLD];
79 };
80
81 static struct action_fifo __percpu *action_fifos;
82 static struct action_flow_keys __percpu *flow_keys;
83 static DEFINE_PER_CPU(int, exec_actions_level);
84
85 /* Make a clone of the 'key', using the pre-allocated percpu 'flow_keys'
86  * space. Return NULL if out of key spaces.
87  */
88 static struct sw_flow_key *clone_key(const struct sw_flow_key *key_)
89 {
90         struct action_flow_keys *keys = this_cpu_ptr(flow_keys);
91         int level = this_cpu_read(exec_actions_level);
92         struct sw_flow_key *key = NULL;
93
94         if (level <= OVS_DEFERRED_ACTION_THRESHOLD) {
95                 key = &keys->key[level - 1];
96                 *key = *key_;
97         }
98
99         return key;
100 }
101
102 static void action_fifo_init(struct action_fifo *fifo)
103 {
104         fifo->head = 0;
105         fifo->tail = 0;
106 }
107
108 static bool action_fifo_is_empty(const struct action_fifo *fifo)
109 {
110         return (fifo->head == fifo->tail);
111 }
112
113 static struct deferred_action *action_fifo_get(struct action_fifo *fifo)
114 {
115         if (action_fifo_is_empty(fifo))
116                 return NULL;
117
118         return &fifo->fifo[fifo->tail++];
119 }
120
121 static struct deferred_action *action_fifo_put(struct action_fifo *fifo)
122 {
123         if (fifo->head >= DEFERRED_ACTION_FIFO_SIZE - 1)
124                 return NULL;
125
126         return &fifo->fifo[fifo->head++];
127 }
128
129 /* Return true if fifo is not full */
130 static struct deferred_action *add_deferred_actions(struct sk_buff *skb,
131                                     const struct sw_flow_key *key,
132                                     const struct nlattr *actions,
133                                     const int actions_len)
134 {
135         struct action_fifo *fifo;
136         struct deferred_action *da;
137
138         fifo = this_cpu_ptr(action_fifos);
139         da = action_fifo_put(fifo);
140         if (da) {
141                 da->skb = skb;
142                 da->actions = actions;
143                 da->actions_len = actions_len;
144                 da->pkt_key = *key;
145         }
146
147         return da;
148 }
149
150 static void invalidate_flow_key(struct sw_flow_key *key)
151 {
152         key->mac_proto |= SW_FLOW_KEY_INVALID;
153 }
154
155 static bool is_flow_key_valid(const struct sw_flow_key *key)
156 {
157         return !(key->mac_proto & SW_FLOW_KEY_INVALID);
158 }
159
160 static int clone_execute(struct datapath *dp, struct sk_buff *skb,
161                          struct sw_flow_key *key,
162                          u32 recirc_id,
163                          const struct nlattr *actions, int len,
164                          bool last, bool clone_flow_key);
165
166 static int do_execute_actions(struct datapath *dp, struct sk_buff *skb,
167                               struct sw_flow_key *key,
168                               const struct nlattr *attr, int len);
169
170 static int push_mpls(struct sk_buff *skb, struct sw_flow_key *key,
171                      __be32 mpls_lse, __be16 mpls_ethertype, __u16 mac_len)
172 {
173         int err;
174
175         err = skb_mpls_push(skb, mpls_lse, mpls_ethertype, mac_len, !!mac_len);
176         if (err)
177                 return err;
178
179         if (!mac_len)
180                 key->mac_proto = MAC_PROTO_NONE;
181
182         invalidate_flow_key(key);
183         return 0;
184 }
185
186 static int pop_mpls(struct sk_buff *skb, struct sw_flow_key *key,
187                     const __be16 ethertype)
188 {
189         int err;
190
191         err = skb_mpls_pop(skb, ethertype, skb->mac_len,
192                            ovs_key_mac_proto(key) == MAC_PROTO_ETHERNET);
193         if (err)
194                 return err;
195
196         if (ethertype == htons(ETH_P_TEB))
197                 key->mac_proto = MAC_PROTO_ETHERNET;
198
199         invalidate_flow_key(key);
200         return 0;
201 }
202
203 static int set_mpls(struct sk_buff *skb, struct sw_flow_key *flow_key,
204                     const __be32 *mpls_lse, const __be32 *mask)
205 {
206         struct mpls_shim_hdr *stack;
207         __be32 lse;
208         int err;
209
210         if (!pskb_may_pull(skb, skb_network_offset(skb) + MPLS_HLEN))
211                 return -ENOMEM;
212
213         stack = mpls_hdr(skb);
214         lse = OVS_MASKED(stack->label_stack_entry, *mpls_lse, *mask);
215         err = skb_mpls_update_lse(skb, lse);
216         if (err)
217                 return err;
218
219         flow_key->mpls.lse[0] = lse;
220         return 0;
221 }
222
223 static int pop_vlan(struct sk_buff *skb, struct sw_flow_key *key)
224 {
225         int err;
226
227         err = skb_vlan_pop(skb);
228         if (skb_vlan_tag_present(skb)) {
229                 invalidate_flow_key(key);
230         } else {
231                 key->eth.vlan.tci = 0;
232                 key->eth.vlan.tpid = 0;
233         }
234         return err;
235 }
236
237 static int push_vlan(struct sk_buff *skb, struct sw_flow_key *key,
238                      const struct ovs_action_push_vlan *vlan)
239 {
240         int err;
241
242         if (skb_vlan_tag_present(skb)) {
243                 invalidate_flow_key(key);
244         } else {
245                 key->eth.vlan.tci = vlan->vlan_tci;
246                 key->eth.vlan.tpid = vlan->vlan_tpid;
247         }
248         err = skb_vlan_push(skb, vlan->vlan_tpid,
249                             ntohs(vlan->vlan_tci) & ~VLAN_CFI_MASK);
250         skb_reset_mac_len(skb);
251         return err;
252 }
253
254 /* 'src' is already properly masked. */
255 static void ether_addr_copy_masked(u8 *dst_, const u8 *src_, const u8 *mask_)
256 {
257         u16 *dst = (u16 *)dst_;
258         const u16 *src = (const u16 *)src_;
259         const u16 *mask = (const u16 *)mask_;
260
261         OVS_SET_MASKED(dst[0], src[0], mask[0]);
262         OVS_SET_MASKED(dst[1], src[1], mask[1]);
263         OVS_SET_MASKED(dst[2], src[2], mask[2]);
264 }
265
266 static int set_eth_addr(struct sk_buff *skb, struct sw_flow_key *flow_key,
267                         const struct ovs_key_ethernet *key,
268                         const struct ovs_key_ethernet *mask)
269 {
270         int err;
271
272         err = skb_ensure_writable(skb, ETH_HLEN);
273         if (unlikely(err))
274                 return err;
275
276         skb_postpull_rcsum(skb, eth_hdr(skb), ETH_ALEN * 2);
277
278         ether_addr_copy_masked(eth_hdr(skb)->h_source, key->eth_src,
279                                mask->eth_src);
280         ether_addr_copy_masked(eth_hdr(skb)->h_dest, key->eth_dst,
281                                mask->eth_dst);
282
283         skb_postpush_rcsum(skb, eth_hdr(skb), ETH_ALEN * 2);
284
285         ether_addr_copy(flow_key->eth.src, eth_hdr(skb)->h_source);
286         ether_addr_copy(flow_key->eth.dst, eth_hdr(skb)->h_dest);
287         return 0;
288 }
289
290 /* pop_eth does not support VLAN packets as this action is never called
291  * for them.
292  */
293 static int pop_eth(struct sk_buff *skb, struct sw_flow_key *key)
294 {
295         int err;
296
297         err = skb_eth_pop(skb);
298         if (err)
299                 return err;
300
301         /* safe right before invalidate_flow_key */
302         key->mac_proto = MAC_PROTO_NONE;
303         invalidate_flow_key(key);
304         return 0;
305 }
306
307 static int push_eth(struct sk_buff *skb, struct sw_flow_key *key,
308                     const struct ovs_action_push_eth *ethh)
309 {
310         int err;
311
312         err = skb_eth_push(skb, ethh->addresses.eth_dst,
313                            ethh->addresses.eth_src);
314         if (err)
315                 return err;
316
317         /* safe right before invalidate_flow_key */
318         key->mac_proto = MAC_PROTO_ETHERNET;
319         invalidate_flow_key(key);
320         return 0;
321 }
322
323 static noinline_for_stack int push_nsh(struct sk_buff *skb,
324                                        struct sw_flow_key *key,
325                                        const struct nlattr *a)
326 {
327         u8 buffer[NSH_HDR_MAX_LEN];
328         struct nshhdr *nh = (struct nshhdr *)buffer;
329         int err;
330
331         err = nsh_hdr_from_nlattr(a, nh, NSH_HDR_MAX_LEN);
332         if (err)
333                 return err;
334
335         err = nsh_push(skb, nh);
336         if (err)
337                 return err;
338
339         /* safe right before invalidate_flow_key */
340         key->mac_proto = MAC_PROTO_NONE;
341         invalidate_flow_key(key);
342         return 0;
343 }
344
345 static int pop_nsh(struct sk_buff *skb, struct sw_flow_key *key)
346 {
347         int err;
348
349         err = nsh_pop(skb);
350         if (err)
351                 return err;
352
353         /* safe right before invalidate_flow_key */
354         if (skb->protocol == htons(ETH_P_TEB))
355                 key->mac_proto = MAC_PROTO_ETHERNET;
356         else
357                 key->mac_proto = MAC_PROTO_NONE;
358         invalidate_flow_key(key);
359         return 0;
360 }
361
362 static void update_ip_l4_checksum(struct sk_buff *skb, struct iphdr *nh,
363                                   __be32 addr, __be32 new_addr)
364 {
365         int transport_len = skb->len - skb_transport_offset(skb);
366
367         if (nh->frag_off & htons(IP_OFFSET))
368                 return;
369
370         if (nh->protocol == IPPROTO_TCP) {
371                 if (likely(transport_len >= sizeof(struct tcphdr)))
372                         inet_proto_csum_replace4(&tcp_hdr(skb)->check, skb,
373                                                  addr, new_addr, true);
374         } else if (nh->protocol == IPPROTO_UDP) {
375                 if (likely(transport_len >= sizeof(struct udphdr))) {
376                         struct udphdr *uh = udp_hdr(skb);
377
378                         if (uh->check || skb->ip_summed == CHECKSUM_PARTIAL) {
379                                 inet_proto_csum_replace4(&uh->check, skb,
380                                                          addr, new_addr, true);
381                                 if (!uh->check)
382                                         uh->check = CSUM_MANGLED_0;
383                         }
384                 }
385         }
386 }
387
388 static void set_ip_addr(struct sk_buff *skb, struct iphdr *nh,
389                         __be32 *addr, __be32 new_addr)
390 {
391         update_ip_l4_checksum(skb, nh, *addr, new_addr);
392         csum_replace4(&nh->check, *addr, new_addr);
393         skb_clear_hash(skb);
394         ovs_ct_clear(skb, NULL);
395         *addr = new_addr;
396 }
397
398 static void update_ipv6_checksum(struct sk_buff *skb, u8 l4_proto,
399                                  __be32 addr[4], const __be32 new_addr[4])
400 {
401         int transport_len = skb->len - skb_transport_offset(skb);
402
403         if (l4_proto == NEXTHDR_TCP) {
404                 if (likely(transport_len >= sizeof(struct tcphdr)))
405                         inet_proto_csum_replace16(&tcp_hdr(skb)->check, skb,
406                                                   addr, new_addr, true);
407         } else if (l4_proto == NEXTHDR_UDP) {
408                 if (likely(transport_len >= sizeof(struct udphdr))) {
409                         struct udphdr *uh = udp_hdr(skb);
410
411                         if (uh->check || skb->ip_summed == CHECKSUM_PARTIAL) {
412                                 inet_proto_csum_replace16(&uh->check, skb,
413                                                           addr, new_addr, true);
414                                 if (!uh->check)
415                                         uh->check = CSUM_MANGLED_0;
416                         }
417                 }
418         } else if (l4_proto == NEXTHDR_ICMP) {
419                 if (likely(transport_len >= sizeof(struct icmp6hdr)))
420                         inet_proto_csum_replace16(&icmp6_hdr(skb)->icmp6_cksum,
421                                                   skb, addr, new_addr, true);
422         }
423 }
424
425 static void mask_ipv6_addr(const __be32 old[4], const __be32 addr[4],
426                            const __be32 mask[4], __be32 masked[4])
427 {
428         masked[0] = OVS_MASKED(old[0], addr[0], mask[0]);
429         masked[1] = OVS_MASKED(old[1], addr[1], mask[1]);
430         masked[2] = OVS_MASKED(old[2], addr[2], mask[2]);
431         masked[3] = OVS_MASKED(old[3], addr[3], mask[3]);
432 }
433
434 static void set_ipv6_addr(struct sk_buff *skb, u8 l4_proto,
435                           __be32 addr[4], const __be32 new_addr[4],
436                           bool recalculate_csum)
437 {
438         if (recalculate_csum)
439                 update_ipv6_checksum(skb, l4_proto, addr, new_addr);
440
441         skb_clear_hash(skb);
442         ovs_ct_clear(skb, NULL);
443         memcpy(addr, new_addr, sizeof(__be32[4]));
444 }
445
446 static void set_ipv6_dsfield(struct sk_buff *skb, struct ipv6hdr *nh, u8 ipv6_tclass, u8 mask)
447 {
448         u8 old_ipv6_tclass = ipv6_get_dsfield(nh);
449
450         ipv6_tclass = OVS_MASKED(old_ipv6_tclass, ipv6_tclass, mask);
451
452         if (skb->ip_summed == CHECKSUM_COMPLETE)
453                 csum_replace(&skb->csum, (__force __wsum)(old_ipv6_tclass << 12),
454                              (__force __wsum)(ipv6_tclass << 12));
455
456         ipv6_change_dsfield(nh, ~mask, ipv6_tclass);
457 }
458
459 static void set_ipv6_fl(struct sk_buff *skb, struct ipv6hdr *nh, u32 fl, u32 mask)
460 {
461         u32 ofl;
462
463         ofl = nh->flow_lbl[0] << 16 |  nh->flow_lbl[1] << 8 |  nh->flow_lbl[2];
464         fl = OVS_MASKED(ofl, fl, mask);
465
466         /* Bits 21-24 are always unmasked, so this retains their values. */
467         nh->flow_lbl[0] = (u8)(fl >> 16);
468         nh->flow_lbl[1] = (u8)(fl >> 8);
469         nh->flow_lbl[2] = (u8)fl;
470
471         if (skb->ip_summed == CHECKSUM_COMPLETE)
472                 csum_replace(&skb->csum, (__force __wsum)htonl(ofl), (__force __wsum)htonl(fl));
473 }
474
475 static void set_ipv6_ttl(struct sk_buff *skb, struct ipv6hdr *nh, u8 new_ttl, u8 mask)
476 {
477         new_ttl = OVS_MASKED(nh->hop_limit, new_ttl, mask);
478
479         if (skb->ip_summed == CHECKSUM_COMPLETE)
480                 csum_replace(&skb->csum, (__force __wsum)(nh->hop_limit << 8),
481                              (__force __wsum)(new_ttl << 8));
482         nh->hop_limit = new_ttl;
483 }
484
485 static void set_ip_ttl(struct sk_buff *skb, struct iphdr *nh, u8 new_ttl,
486                        u8 mask)
487 {
488         new_ttl = OVS_MASKED(nh->ttl, new_ttl, mask);
489
490         csum_replace2(&nh->check, htons(nh->ttl << 8), htons(new_ttl << 8));
491         nh->ttl = new_ttl;
492 }
493
494 static int set_ipv4(struct sk_buff *skb, struct sw_flow_key *flow_key,
495                     const struct ovs_key_ipv4 *key,
496                     const struct ovs_key_ipv4 *mask)
497 {
498         struct iphdr *nh;
499         __be32 new_addr;
500         int err;
501
502         err = skb_ensure_writable(skb, skb_network_offset(skb) +
503                                   sizeof(struct iphdr));
504         if (unlikely(err))
505                 return err;
506
507         nh = ip_hdr(skb);
508
509         /* Setting an IP addresses is typically only a side effect of
510          * matching on them in the current userspace implementation, so it
511          * makes sense to check if the value actually changed.
512          */
513         if (mask->ipv4_src) {
514                 new_addr = OVS_MASKED(nh->saddr, key->ipv4_src, mask->ipv4_src);
515
516                 if (unlikely(new_addr != nh->saddr)) {
517                         set_ip_addr(skb, nh, &nh->saddr, new_addr);
518                         flow_key->ipv4.addr.src = new_addr;
519                 }
520         }
521         if (mask->ipv4_dst) {
522                 new_addr = OVS_MASKED(nh->daddr, key->ipv4_dst, mask->ipv4_dst);
523
524                 if (unlikely(new_addr != nh->daddr)) {
525                         set_ip_addr(skb, nh, &nh->daddr, new_addr);
526                         flow_key->ipv4.addr.dst = new_addr;
527                 }
528         }
529         if (mask->ipv4_tos) {
530                 ipv4_change_dsfield(nh, ~mask->ipv4_tos, key->ipv4_tos);
531                 flow_key->ip.tos = nh->tos;
532         }
533         if (mask->ipv4_ttl) {
534                 set_ip_ttl(skb, nh, key->ipv4_ttl, mask->ipv4_ttl);
535                 flow_key->ip.ttl = nh->ttl;
536         }
537
538         return 0;
539 }
540
541 static bool is_ipv6_mask_nonzero(const __be32 addr[4])
542 {
543         return !!(addr[0] | addr[1] | addr[2] | addr[3]);
544 }
545
546 static int set_ipv6(struct sk_buff *skb, struct sw_flow_key *flow_key,
547                     const struct ovs_key_ipv6 *key,
548                     const struct ovs_key_ipv6 *mask)
549 {
550         struct ipv6hdr *nh;
551         int err;
552
553         err = skb_ensure_writable(skb, skb_network_offset(skb) +
554                                   sizeof(struct ipv6hdr));
555         if (unlikely(err))
556                 return err;
557
558         nh = ipv6_hdr(skb);
559
560         /* Setting an IP addresses is typically only a side effect of
561          * matching on them in the current userspace implementation, so it
562          * makes sense to check if the value actually changed.
563          */
564         if (is_ipv6_mask_nonzero(mask->ipv6_src)) {
565                 __be32 *saddr = (__be32 *)&nh->saddr;
566                 __be32 masked[4];
567
568                 mask_ipv6_addr(saddr, key->ipv6_src, mask->ipv6_src, masked);
569
570                 if (unlikely(memcmp(saddr, masked, sizeof(masked)))) {
571                         set_ipv6_addr(skb, flow_key->ip.proto, saddr, masked,
572                                       true);
573                         memcpy(&flow_key->ipv6.addr.src, masked,
574                                sizeof(flow_key->ipv6.addr.src));
575                 }
576         }
577         if (is_ipv6_mask_nonzero(mask->ipv6_dst)) {
578                 unsigned int offset = 0;
579                 int flags = IP6_FH_F_SKIP_RH;
580                 bool recalc_csum = true;
581                 __be32 *daddr = (__be32 *)&nh->daddr;
582                 __be32 masked[4];
583
584                 mask_ipv6_addr(daddr, key->ipv6_dst, mask->ipv6_dst, masked);
585
586                 if (unlikely(memcmp(daddr, masked, sizeof(masked)))) {
587                         if (ipv6_ext_hdr(nh->nexthdr))
588                                 recalc_csum = (ipv6_find_hdr(skb, &offset,
589                                                              NEXTHDR_ROUTING,
590                                                              NULL, &flags)
591                                                != NEXTHDR_ROUTING);
592
593                         set_ipv6_addr(skb, flow_key->ip.proto, daddr, masked,
594                                       recalc_csum);
595                         memcpy(&flow_key->ipv6.addr.dst, masked,
596                                sizeof(flow_key->ipv6.addr.dst));
597                 }
598         }
599         if (mask->ipv6_tclass) {
600                 set_ipv6_dsfield(skb, nh, key->ipv6_tclass, mask->ipv6_tclass);
601                 flow_key->ip.tos = ipv6_get_dsfield(nh);
602         }
603         if (mask->ipv6_label) {
604                 set_ipv6_fl(skb, nh, ntohl(key->ipv6_label),
605                             ntohl(mask->ipv6_label));
606                 flow_key->ipv6.label =
607                     *(__be32 *)nh & htonl(IPV6_FLOWINFO_FLOWLABEL);
608         }
609         if (mask->ipv6_hlimit) {
610                 set_ipv6_ttl(skb, nh, key->ipv6_hlimit, mask->ipv6_hlimit);
611                 flow_key->ip.ttl = nh->hop_limit;
612         }
613         return 0;
614 }
615
616 static int set_nsh(struct sk_buff *skb, struct sw_flow_key *flow_key,
617                    const struct nlattr *a)
618 {
619         struct nshhdr *nh;
620         size_t length;
621         int err;
622         u8 flags;
623         u8 ttl;
624         int i;
625
626         struct ovs_key_nsh key;
627         struct ovs_key_nsh mask;
628
629         err = nsh_key_from_nlattr(a, &key, &mask);
630         if (err)
631                 return err;
632
633         /* Make sure the NSH base header is there */
634         if (!pskb_may_pull(skb, skb_network_offset(skb) + NSH_BASE_HDR_LEN))
635                 return -ENOMEM;
636
637         nh = nsh_hdr(skb);
638         length = nsh_hdr_len(nh);
639
640         /* Make sure the whole NSH header is there */
641         err = skb_ensure_writable(skb, skb_network_offset(skb) +
642                                        length);
643         if (unlikely(err))
644                 return err;
645
646         nh = nsh_hdr(skb);
647         skb_postpull_rcsum(skb, nh, length);
648         flags = nsh_get_flags(nh);
649         flags = OVS_MASKED(flags, key.base.flags, mask.base.flags);
650         flow_key->nsh.base.flags = flags;
651         ttl = nsh_get_ttl(nh);
652         ttl = OVS_MASKED(ttl, key.base.ttl, mask.base.ttl);
653         flow_key->nsh.base.ttl = ttl;
654         nsh_set_flags_and_ttl(nh, flags, ttl);
655         nh->path_hdr = OVS_MASKED(nh->path_hdr, key.base.path_hdr,
656                                   mask.base.path_hdr);
657         flow_key->nsh.base.path_hdr = nh->path_hdr;
658         switch (nh->mdtype) {
659         case NSH_M_TYPE1:
660                 for (i = 0; i < NSH_MD1_CONTEXT_SIZE; i++) {
661                         nh->md1.context[i] =
662                             OVS_MASKED(nh->md1.context[i], key.context[i],
663                                        mask.context[i]);
664                 }
665                 memcpy(flow_key->nsh.context, nh->md1.context,
666                        sizeof(nh->md1.context));
667                 break;
668         case NSH_M_TYPE2:
669                 memset(flow_key->nsh.context, 0,
670                        sizeof(flow_key->nsh.context));
671                 break;
672         default:
673                 return -EINVAL;
674         }
675         skb_postpush_rcsum(skb, nh, length);
676         return 0;
677 }
678
679 /* Must follow skb_ensure_writable() since that can move the skb data. */
680 static void set_tp_port(struct sk_buff *skb, __be16 *port,
681                         __be16 new_port, __sum16 *check)
682 {
683         ovs_ct_clear(skb, NULL);
684         inet_proto_csum_replace2(check, skb, *port, new_port, false);
685         *port = new_port;
686 }
687
688 static int set_udp(struct sk_buff *skb, struct sw_flow_key *flow_key,
689                    const struct ovs_key_udp *key,
690                    const struct ovs_key_udp *mask)
691 {
692         struct udphdr *uh;
693         __be16 src, dst;
694         int err;
695
696         err = skb_ensure_writable(skb, skb_transport_offset(skb) +
697                                   sizeof(struct udphdr));
698         if (unlikely(err))
699                 return err;
700
701         uh = udp_hdr(skb);
702         /* Either of the masks is non-zero, so do not bother checking them. */
703         src = OVS_MASKED(uh->source, key->udp_src, mask->udp_src);
704         dst = OVS_MASKED(uh->dest, key->udp_dst, mask->udp_dst);
705
706         if (uh->check && skb->ip_summed != CHECKSUM_PARTIAL) {
707                 if (likely(src != uh->source)) {
708                         set_tp_port(skb, &uh->source, src, &uh->check);
709                         flow_key->tp.src = src;
710                 }
711                 if (likely(dst != uh->dest)) {
712                         set_tp_port(skb, &uh->dest, dst, &uh->check);
713                         flow_key->tp.dst = dst;
714                 }
715
716                 if (unlikely(!uh->check))
717                         uh->check = CSUM_MANGLED_0;
718         } else {
719                 uh->source = src;
720                 uh->dest = dst;
721                 flow_key->tp.src = src;
722                 flow_key->tp.dst = dst;
723                 ovs_ct_clear(skb, NULL);
724         }
725
726         skb_clear_hash(skb);
727
728         return 0;
729 }
730
731 static int set_tcp(struct sk_buff *skb, struct sw_flow_key *flow_key,
732                    const struct ovs_key_tcp *key,
733                    const struct ovs_key_tcp *mask)
734 {
735         struct tcphdr *th;
736         __be16 src, dst;
737         int err;
738
739         err = skb_ensure_writable(skb, skb_transport_offset(skb) +
740                                   sizeof(struct tcphdr));
741         if (unlikely(err))
742                 return err;
743
744         th = tcp_hdr(skb);
745         src = OVS_MASKED(th->source, key->tcp_src, mask->tcp_src);
746         if (likely(src != th->source)) {
747                 set_tp_port(skb, &th->source, src, &th->check);
748                 flow_key->tp.src = src;
749         }
750         dst = OVS_MASKED(th->dest, key->tcp_dst, mask->tcp_dst);
751         if (likely(dst != th->dest)) {
752                 set_tp_port(skb, &th->dest, dst, &th->check);
753                 flow_key->tp.dst = dst;
754         }
755         skb_clear_hash(skb);
756
757         return 0;
758 }
759
760 static int set_sctp(struct sk_buff *skb, struct sw_flow_key *flow_key,
761                     const struct ovs_key_sctp *key,
762                     const struct ovs_key_sctp *mask)
763 {
764         unsigned int sctphoff = skb_transport_offset(skb);
765         struct sctphdr *sh;
766         __le32 old_correct_csum, new_csum, old_csum;
767         int err;
768
769         err = skb_ensure_writable(skb, sctphoff + sizeof(struct sctphdr));
770         if (unlikely(err))
771                 return err;
772
773         sh = sctp_hdr(skb);
774         old_csum = sh->checksum;
775         old_correct_csum = sctp_compute_cksum(skb, sctphoff);
776
777         sh->source = OVS_MASKED(sh->source, key->sctp_src, mask->sctp_src);
778         sh->dest = OVS_MASKED(sh->dest, key->sctp_dst, mask->sctp_dst);
779
780         new_csum = sctp_compute_cksum(skb, sctphoff);
781
782         /* Carry any checksum errors through. */
783         sh->checksum = old_csum ^ old_correct_csum ^ new_csum;
784
785         skb_clear_hash(skb);
786         ovs_ct_clear(skb, NULL);
787
788         flow_key->tp.src = sh->source;
789         flow_key->tp.dst = sh->dest;
790
791         return 0;
792 }
793
794 static int ovs_vport_output(struct net *net, struct sock *sk,
795                             struct sk_buff *skb)
796 {
797         struct ovs_frag_data *data = this_cpu_ptr(&ovs_frag_data_storage);
798         struct vport *vport = data->vport;
799
800         if (skb_cow_head(skb, data->l2_len) < 0) {
801                 kfree_skb_reason(skb, SKB_DROP_REASON_NOMEM);
802                 return -ENOMEM;
803         }
804
805         __skb_dst_copy(skb, data->dst);
806         *OVS_CB(skb) = data->cb;
807         skb->inner_protocol = data->inner_protocol;
808         if (data->vlan_tci & VLAN_CFI_MASK)
809                 __vlan_hwaccel_put_tag(skb, data->vlan_proto, data->vlan_tci & ~VLAN_CFI_MASK);
810         else
811                 __vlan_hwaccel_clear_tag(skb);
812
813         /* Reconstruct the MAC header.  */
814         skb_push(skb, data->l2_len);
815         memcpy(skb->data, &data->l2_data, data->l2_len);
816         skb_postpush_rcsum(skb, skb->data, data->l2_len);
817         skb_reset_mac_header(skb);
818
819         if (eth_p_mpls(skb->protocol)) {
820                 skb->inner_network_header = skb->network_header;
821                 skb_set_network_header(skb, data->network_offset);
822                 skb_reset_mac_len(skb);
823         }
824
825         ovs_vport_send(vport, skb, data->mac_proto);
826         return 0;
827 }
828
829 static unsigned int
830 ovs_dst_get_mtu(const struct dst_entry *dst)
831 {
832         return dst->dev->mtu;
833 }
834
835 static struct dst_ops ovs_dst_ops = {
836         .family = AF_UNSPEC,
837         .mtu = ovs_dst_get_mtu,
838 };
839
840 /* prepare_frag() is called once per (larger-than-MTU) frame; its inverse is
841  * ovs_vport_output(), which is called once per fragmented packet.
842  */
843 static void prepare_frag(struct vport *vport, struct sk_buff *skb,
844                          u16 orig_network_offset, u8 mac_proto)
845 {
846         unsigned int hlen = skb_network_offset(skb);
847         struct ovs_frag_data *data;
848
849         data = this_cpu_ptr(&ovs_frag_data_storage);
850         data->dst = skb->_skb_refdst;
851         data->vport = vport;
852         data->cb = *OVS_CB(skb);
853         data->inner_protocol = skb->inner_protocol;
854         data->network_offset = orig_network_offset;
855         if (skb_vlan_tag_present(skb))
856                 data->vlan_tci = skb_vlan_tag_get(skb) | VLAN_CFI_MASK;
857         else
858                 data->vlan_tci = 0;
859         data->vlan_proto = skb->vlan_proto;
860         data->mac_proto = mac_proto;
861         data->l2_len = hlen;
862         memcpy(&data->l2_data, skb->data, hlen);
863
864         memset(IPCB(skb), 0, sizeof(struct inet_skb_parm));
865         skb_pull(skb, hlen);
866 }
867
868 static void ovs_fragment(struct net *net, struct vport *vport,
869                          struct sk_buff *skb, u16 mru,
870                          struct sw_flow_key *key)
871 {
872         enum ovs_drop_reason reason;
873         u16 orig_network_offset = 0;
874
875         if (eth_p_mpls(skb->protocol)) {
876                 orig_network_offset = skb_network_offset(skb);
877                 skb->network_header = skb->inner_network_header;
878         }
879
880         if (skb_network_offset(skb) > MAX_L2_LEN) {
881                 OVS_NLERR(1, "L2 header too long to fragment");
882                 reason = OVS_DROP_FRAG_L2_TOO_LONG;
883                 goto err;
884         }
885
886         if (key->eth.type == htons(ETH_P_IP)) {
887                 struct rtable ovs_rt = { 0 };
888                 unsigned long orig_dst;
889
890                 prepare_frag(vport, skb, orig_network_offset,
891                              ovs_key_mac_proto(key));
892                 dst_init(&ovs_rt.dst, &ovs_dst_ops, NULL,
893                          DST_OBSOLETE_NONE, DST_NOCOUNT);
894                 ovs_rt.dst.dev = vport->dev;
895
896                 orig_dst = skb->_skb_refdst;
897                 skb_dst_set_noref(skb, &ovs_rt.dst);
898                 IPCB(skb)->frag_max_size = mru;
899
900                 ip_do_fragment(net, skb->sk, skb, ovs_vport_output);
901                 refdst_drop(orig_dst);
902         } else if (key->eth.type == htons(ETH_P_IPV6)) {
903                 unsigned long orig_dst;
904                 struct rt6_info ovs_rt;
905
906                 prepare_frag(vport, skb, orig_network_offset,
907                              ovs_key_mac_proto(key));
908                 memset(&ovs_rt, 0, sizeof(ovs_rt));
909                 dst_init(&ovs_rt.dst, &ovs_dst_ops, NULL,
910                          DST_OBSOLETE_NONE, DST_NOCOUNT);
911                 ovs_rt.dst.dev = vport->dev;
912
913                 orig_dst = skb->_skb_refdst;
914                 skb_dst_set_noref(skb, &ovs_rt.dst);
915                 IP6CB(skb)->frag_max_size = mru;
916
917                 ipv6_stub->ipv6_fragment(net, skb->sk, skb, ovs_vport_output);
918                 refdst_drop(orig_dst);
919         } else {
920                 WARN_ONCE(1, "Failed fragment ->%s: eth=%04x, MRU=%d, MTU=%d.",
921                           ovs_vport_name(vport), ntohs(key->eth.type), mru,
922                           vport->dev->mtu);
923                 reason = OVS_DROP_FRAG_INVALID_PROTO;
924                 goto err;
925         }
926
927         return;
928 err:
929         ovs_kfree_skb_reason(skb, reason);
930 }
931
932 static void do_output(struct datapath *dp, struct sk_buff *skb, int out_port,
933                       struct sw_flow_key *key)
934 {
935         struct vport *vport = ovs_vport_rcu(dp, out_port);
936
937         if (likely(vport && netif_carrier_ok(vport->dev))) {
938                 u16 mru = OVS_CB(skb)->mru;
939                 u32 cutlen = OVS_CB(skb)->cutlen;
940
941                 if (unlikely(cutlen > 0)) {
942                         if (skb->len - cutlen > ovs_mac_header_len(key))
943                                 pskb_trim(skb, skb->len - cutlen);
944                         else
945                                 pskb_trim(skb, ovs_mac_header_len(key));
946                 }
947
948                 /* Need to set the pkt_type to involve the routing layer.  The
949                  * packet movement through the OVS datapath doesn't generally
950                  * use routing, but this is needed for tunnel cases.
951                  */
952                 skb->pkt_type = PACKET_OUTGOING;
953
954                 if (likely(!mru ||
955                            (skb->len <= mru + vport->dev->hard_header_len))) {
956                         ovs_vport_send(vport, skb, ovs_key_mac_proto(key));
957                 } else if (mru <= vport->dev->mtu) {
958                         struct net *net = read_pnet(&dp->net);
959
960                         ovs_fragment(net, vport, skb, mru, key);
961                 } else {
962                         kfree_skb_reason(skb, SKB_DROP_REASON_PKT_TOO_BIG);
963                 }
964         } else {
965                 kfree_skb_reason(skb, SKB_DROP_REASON_DEV_READY);
966         }
967 }
968
969 static int output_userspace(struct datapath *dp, struct sk_buff *skb,
970                             struct sw_flow_key *key, const struct nlattr *attr,
971                             const struct nlattr *actions, int actions_len,
972                             uint32_t cutlen)
973 {
974         struct dp_upcall_info upcall;
975         const struct nlattr *a;
976         int rem;
977
978         memset(&upcall, 0, sizeof(upcall));
979         upcall.cmd = OVS_PACKET_CMD_ACTION;
980         upcall.mru = OVS_CB(skb)->mru;
981
982         for (a = nla_data(attr), rem = nla_len(attr); rem > 0;
983              a = nla_next(a, &rem)) {
984                 switch (nla_type(a)) {
985                 case OVS_USERSPACE_ATTR_USERDATA:
986                         upcall.userdata = a;
987                         break;
988
989                 case OVS_USERSPACE_ATTR_PID:
990                         if (dp->user_features &
991                             OVS_DP_F_DISPATCH_UPCALL_PER_CPU)
992                                 upcall.portid =
993                                   ovs_dp_get_upcall_portid(dp,
994                                                            smp_processor_id());
995                         else
996                                 upcall.portid = nla_get_u32(a);
997                         break;
998
999                 case OVS_USERSPACE_ATTR_EGRESS_TUN_PORT: {
1000                         /* Get out tunnel info. */
1001                         struct vport *vport;
1002
1003                         vport = ovs_vport_rcu(dp, nla_get_u32(a));
1004                         if (vport) {
1005                                 int err;
1006
1007                                 err = dev_fill_metadata_dst(vport->dev, skb);
1008                                 if (!err)
1009                                         upcall.egress_tun_info = skb_tunnel_info(skb);
1010                         }
1011
1012                         break;
1013                 }
1014
1015                 case OVS_USERSPACE_ATTR_ACTIONS: {
1016                         /* Include actions. */
1017                         upcall.actions = actions;
1018                         upcall.actions_len = actions_len;
1019                         break;
1020                 }
1021
1022                 } /* End of switch. */
1023         }
1024
1025         return ovs_dp_upcall(dp, skb, key, &upcall, cutlen);
1026 }
1027
1028 static int dec_ttl_exception_handler(struct datapath *dp, struct sk_buff *skb,
1029                                      struct sw_flow_key *key,
1030                                      const struct nlattr *attr)
1031 {
1032         /* The first attribute is always 'OVS_DEC_TTL_ATTR_ACTION'. */
1033         struct nlattr *actions = nla_data(attr);
1034
1035         if (nla_len(actions))
1036                 return clone_execute(dp, skb, key, 0, nla_data(actions),
1037                                      nla_len(actions), true, false);
1038
1039         ovs_kfree_skb_reason(skb, OVS_DROP_IP_TTL);
1040         return 0;
1041 }
1042
1043 /* When 'last' is true, sample() should always consume the 'skb'.
1044  * Otherwise, sample() should keep 'skb' intact regardless what
1045  * actions are executed within sample().
1046  */
1047 static int sample(struct datapath *dp, struct sk_buff *skb,
1048                   struct sw_flow_key *key, const struct nlattr *attr,
1049                   bool last)
1050 {
1051         struct nlattr *actions;
1052         struct nlattr *sample_arg;
1053         int rem = nla_len(attr);
1054         const struct sample_arg *arg;
1055         u32 init_probability;
1056         bool clone_flow_key;
1057         int err;
1058
1059         /* The first action is always 'OVS_SAMPLE_ATTR_ARG'. */
1060         sample_arg = nla_data(attr);
1061         arg = nla_data(sample_arg);
1062         actions = nla_next(sample_arg, &rem);
1063         init_probability = OVS_CB(skb)->probability;
1064
1065         if ((arg->probability != U32_MAX) &&
1066             (!arg->probability || get_random_u32() > arg->probability)) {
1067                 if (last)
1068                         ovs_kfree_skb_reason(skb, OVS_DROP_LAST_ACTION);
1069                 return 0;
1070         }
1071
1072         OVS_CB(skb)->probability = arg->probability;
1073
1074         clone_flow_key = !arg->exec;
1075         err = clone_execute(dp, skb, key, 0, actions, rem, last,
1076                             clone_flow_key);
1077
1078         if (!last)
1079                 OVS_CB(skb)->probability = init_probability;
1080
1081         return err;
1082 }
1083
1084 /* When 'last' is true, clone() should always consume the 'skb'.
1085  * Otherwise, clone() should keep 'skb' intact regardless what
1086  * actions are executed within clone().
1087  */
1088 static int clone(struct datapath *dp, struct sk_buff *skb,
1089                  struct sw_flow_key *key, const struct nlattr *attr,
1090                  bool last)
1091 {
1092         struct nlattr *actions;
1093         struct nlattr *clone_arg;
1094         int rem = nla_len(attr);
1095         bool dont_clone_flow_key;
1096
1097         /* The first action is always 'OVS_CLONE_ATTR_EXEC'. */
1098         clone_arg = nla_data(attr);
1099         dont_clone_flow_key = nla_get_u32(clone_arg);
1100         actions = nla_next(clone_arg, &rem);
1101
1102         return clone_execute(dp, skb, key, 0, actions, rem, last,
1103                              !dont_clone_flow_key);
1104 }
1105
1106 static void execute_hash(struct sk_buff *skb, struct sw_flow_key *key,
1107                          const struct nlattr *attr)
1108 {
1109         struct ovs_action_hash *hash_act = nla_data(attr);
1110         u32 hash = 0;
1111
1112         if (hash_act->hash_alg == OVS_HASH_ALG_L4) {
1113                 /* OVS_HASH_ALG_L4 hasing type. */
1114                 hash = skb_get_hash(skb);
1115         } else if (hash_act->hash_alg == OVS_HASH_ALG_SYM_L4) {
1116                 /* OVS_HASH_ALG_SYM_L4 hashing type.  NOTE: this doesn't
1117                  * extend past an encapsulated header.
1118                  */
1119                 hash = __skb_get_hash_symmetric(skb);
1120         }
1121
1122         hash = jhash_1word(hash, hash_act->hash_basis);
1123         if (!hash)
1124                 hash = 0x1;
1125
1126         key->ovs_flow_hash = hash;
1127 }
1128
1129 static int execute_set_action(struct sk_buff *skb,
1130                               struct sw_flow_key *flow_key,
1131                               const struct nlattr *a)
1132 {
1133         /* Only tunnel set execution is supported without a mask. */
1134         if (nla_type(a) == OVS_KEY_ATTR_TUNNEL_INFO) {
1135                 struct ovs_tunnel_info *tun = nla_data(a);
1136
1137                 skb_dst_drop(skb);
1138                 dst_hold((struct dst_entry *)tun->tun_dst);
1139                 skb_dst_set(skb, (struct dst_entry *)tun->tun_dst);
1140                 return 0;
1141         }
1142
1143         return -EINVAL;
1144 }
1145
1146 /* Mask is at the midpoint of the data. */
1147 #define get_mask(a, type) ((const type)nla_data(a) + 1)
1148
1149 static int execute_masked_set_action(struct sk_buff *skb,
1150                                      struct sw_flow_key *flow_key,
1151                                      const struct nlattr *a)
1152 {
1153         int err = 0;
1154
1155         switch (nla_type(a)) {
1156         case OVS_KEY_ATTR_PRIORITY:
1157                 OVS_SET_MASKED(skb->priority, nla_get_u32(a),
1158                                *get_mask(a, u32 *));
1159                 flow_key->phy.priority = skb->priority;
1160                 break;
1161
1162         case OVS_KEY_ATTR_SKB_MARK:
1163                 OVS_SET_MASKED(skb->mark, nla_get_u32(a), *get_mask(a, u32 *));
1164                 flow_key->phy.skb_mark = skb->mark;
1165                 break;
1166
1167         case OVS_KEY_ATTR_TUNNEL_INFO:
1168                 /* Masked data not supported for tunnel. */
1169                 err = -EINVAL;
1170                 break;
1171
1172         case OVS_KEY_ATTR_ETHERNET:
1173                 err = set_eth_addr(skb, flow_key, nla_data(a),
1174                                    get_mask(a, struct ovs_key_ethernet *));
1175                 break;
1176
1177         case OVS_KEY_ATTR_NSH:
1178                 err = set_nsh(skb, flow_key, a);
1179                 break;
1180
1181         case OVS_KEY_ATTR_IPV4:
1182                 err = set_ipv4(skb, flow_key, nla_data(a),
1183                                get_mask(a, struct ovs_key_ipv4 *));
1184                 break;
1185
1186         case OVS_KEY_ATTR_IPV6:
1187                 err = set_ipv6(skb, flow_key, nla_data(a),
1188                                get_mask(a, struct ovs_key_ipv6 *));
1189                 break;
1190
1191         case OVS_KEY_ATTR_TCP:
1192                 err = set_tcp(skb, flow_key, nla_data(a),
1193                               get_mask(a, struct ovs_key_tcp *));
1194                 break;
1195
1196         case OVS_KEY_ATTR_UDP:
1197                 err = set_udp(skb, flow_key, nla_data(a),
1198                               get_mask(a, struct ovs_key_udp *));
1199                 break;
1200
1201         case OVS_KEY_ATTR_SCTP:
1202                 err = set_sctp(skb, flow_key, nla_data(a),
1203                                get_mask(a, struct ovs_key_sctp *));
1204                 break;
1205
1206         case OVS_KEY_ATTR_MPLS:
1207                 err = set_mpls(skb, flow_key, nla_data(a), get_mask(a,
1208                                                                     __be32 *));
1209                 break;
1210
1211         case OVS_KEY_ATTR_CT_STATE:
1212         case OVS_KEY_ATTR_CT_ZONE:
1213         case OVS_KEY_ATTR_CT_MARK:
1214         case OVS_KEY_ATTR_CT_LABELS:
1215         case OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4:
1216         case OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6:
1217                 err = -EINVAL;
1218                 break;
1219         }
1220
1221         return err;
1222 }
1223
1224 static int execute_recirc(struct datapath *dp, struct sk_buff *skb,
1225                           struct sw_flow_key *key,
1226                           const struct nlattr *a, bool last)
1227 {
1228         u32 recirc_id;
1229
1230         if (!is_flow_key_valid(key)) {
1231                 int err;
1232
1233                 err = ovs_flow_key_update(skb, key);
1234                 if (err)
1235                         return err;
1236         }
1237         BUG_ON(!is_flow_key_valid(key));
1238
1239         recirc_id = nla_get_u32(a);
1240         return clone_execute(dp, skb, key, recirc_id, NULL, 0, last, true);
1241 }
1242
1243 static int execute_check_pkt_len(struct datapath *dp, struct sk_buff *skb,
1244                                  struct sw_flow_key *key,
1245                                  const struct nlattr *attr, bool last)
1246 {
1247         struct ovs_skb_cb *ovs_cb = OVS_CB(skb);
1248         const struct nlattr *actions, *cpl_arg;
1249         int len, max_len, rem = nla_len(attr);
1250         const struct check_pkt_len_arg *arg;
1251         bool clone_flow_key;
1252
1253         /* The first netlink attribute in 'attr' is always
1254          * 'OVS_CHECK_PKT_LEN_ATTR_ARG'.
1255          */
1256         cpl_arg = nla_data(attr);
1257         arg = nla_data(cpl_arg);
1258
1259         len = ovs_cb->mru ? ovs_cb->mru + skb->mac_len : skb->len;
1260         max_len = arg->pkt_len;
1261
1262         if ((skb_is_gso(skb) && skb_gso_validate_mac_len(skb, max_len)) ||
1263             len <= max_len) {
1264                 /* Second netlink attribute in 'attr' is always
1265                  * 'OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_LESS_EQUAL'.
1266                  */
1267                 actions = nla_next(cpl_arg, &rem);
1268                 clone_flow_key = !arg->exec_for_lesser_equal;
1269         } else {
1270                 /* Third netlink attribute in 'attr' is always
1271                  * 'OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_GREATER'.
1272                  */
1273                 actions = nla_next(cpl_arg, &rem);
1274                 actions = nla_next(actions, &rem);
1275                 clone_flow_key = !arg->exec_for_greater;
1276         }
1277
1278         return clone_execute(dp, skb, key, 0, nla_data(actions),
1279                              nla_len(actions), last, clone_flow_key);
1280 }
1281
1282 static int execute_dec_ttl(struct sk_buff *skb, struct sw_flow_key *key)
1283 {
1284         int err;
1285
1286         if (skb->protocol == htons(ETH_P_IPV6)) {
1287                 struct ipv6hdr *nh;
1288
1289                 err = skb_ensure_writable(skb, skb_network_offset(skb) +
1290                                           sizeof(*nh));
1291                 if (unlikely(err))
1292                         return err;
1293
1294                 nh = ipv6_hdr(skb);
1295
1296                 if (nh->hop_limit <= 1)
1297                         return -EHOSTUNREACH;
1298
1299                 key->ip.ttl = --nh->hop_limit;
1300         } else if (skb->protocol == htons(ETH_P_IP)) {
1301                 struct iphdr *nh;
1302                 u8 old_ttl;
1303
1304                 err = skb_ensure_writable(skb, skb_network_offset(skb) +
1305                                           sizeof(*nh));
1306                 if (unlikely(err))
1307                         return err;
1308
1309                 nh = ip_hdr(skb);
1310                 if (nh->ttl <= 1)
1311                         return -EHOSTUNREACH;
1312
1313                 old_ttl = nh->ttl--;
1314                 csum_replace2(&nh->check, htons(old_ttl << 8),
1315                               htons(nh->ttl << 8));
1316                 key->ip.ttl = nh->ttl;
1317         }
1318         return 0;
1319 }
1320
1321 #if IS_ENABLED(CONFIG_PSAMPLE)
1322 static void execute_psample(struct datapath *dp, struct sk_buff *skb,
1323                             const struct nlattr *attr)
1324 {
1325         struct psample_group psample_group = {};
1326         struct psample_metadata md = {};
1327         const struct nlattr *a;
1328         u32 rate;
1329         int rem;
1330
1331         nla_for_each_attr(a, nla_data(attr), nla_len(attr), rem) {
1332                 switch (nla_type(a)) {
1333                 case OVS_PSAMPLE_ATTR_GROUP:
1334                         psample_group.group_num = nla_get_u32(a);
1335                         break;
1336
1337                 case OVS_PSAMPLE_ATTR_COOKIE:
1338                         md.user_cookie = nla_data(a);
1339                         md.user_cookie_len = nla_len(a);
1340                         break;
1341                 }
1342         }
1343
1344         psample_group.net = ovs_dp_get_net(dp);
1345         md.in_ifindex = OVS_CB(skb)->input_vport->dev->ifindex;
1346         md.trunc_size = skb->len - OVS_CB(skb)->cutlen;
1347         md.rate_as_probability = 1;
1348
1349         rate = OVS_CB(skb)->probability ? OVS_CB(skb)->probability : U32_MAX;
1350
1351         psample_sample_packet(&psample_group, skb, rate, &md);
1352 }
1353 #else
1354 static void execute_psample(struct datapath *dp, struct sk_buff *skb,
1355                             const struct nlattr *attr)
1356 {}
1357 #endif
1358
1359 /* Execute a list of actions against 'skb'. */
1360 static int do_execute_actions(struct datapath *dp, struct sk_buff *skb,
1361                               struct sw_flow_key *key,
1362                               const struct nlattr *attr, int len)
1363 {
1364         const struct nlattr *a;
1365         int rem;
1366
1367         for (a = attr, rem = len; rem > 0;
1368              a = nla_next(a, &rem)) {
1369                 int err = 0;
1370
1371                 if (trace_ovs_do_execute_action_enabled())
1372                         trace_ovs_do_execute_action(dp, skb, key, a, rem);
1373
1374                 /* Actions that rightfully have to consume the skb should do it
1375                  * and return directly.
1376                  */
1377                 switch (nla_type(a)) {
1378                 case OVS_ACTION_ATTR_OUTPUT: {
1379                         int port = nla_get_u32(a);
1380                         struct sk_buff *clone;
1381
1382                         /* Every output action needs a separate clone
1383                          * of 'skb', In case the output action is the
1384                          * last action, cloning can be avoided.
1385                          */
1386                         if (nla_is_last(a, rem)) {
1387                                 do_output(dp, skb, port, key);
1388                                 /* 'skb' has been used for output.
1389                                  */
1390                                 return 0;
1391                         }
1392
1393                         clone = skb_clone(skb, GFP_ATOMIC);
1394                         if (clone)
1395                                 do_output(dp, clone, port, key);
1396                         OVS_CB(skb)->cutlen = 0;
1397                         break;
1398                 }
1399
1400                 case OVS_ACTION_ATTR_TRUNC: {
1401                         struct ovs_action_trunc *trunc = nla_data(a);
1402
1403                         if (skb->len > trunc->max_len)
1404                                 OVS_CB(skb)->cutlen = skb->len - trunc->max_len;
1405                         break;
1406                 }
1407
1408                 case OVS_ACTION_ATTR_USERSPACE:
1409                         output_userspace(dp, skb, key, a, attr,
1410                                                      len, OVS_CB(skb)->cutlen);
1411                         OVS_CB(skb)->cutlen = 0;
1412                         if (nla_is_last(a, rem)) {
1413                                 consume_skb(skb);
1414                                 return 0;
1415                         }
1416                         break;
1417
1418                 case OVS_ACTION_ATTR_HASH:
1419                         execute_hash(skb, key, a);
1420                         break;
1421
1422                 case OVS_ACTION_ATTR_PUSH_MPLS: {
1423                         struct ovs_action_push_mpls *mpls = nla_data(a);
1424
1425                         err = push_mpls(skb, key, mpls->mpls_lse,
1426                                         mpls->mpls_ethertype, skb->mac_len);
1427                         break;
1428                 }
1429                 case OVS_ACTION_ATTR_ADD_MPLS: {
1430                         struct ovs_action_add_mpls *mpls = nla_data(a);
1431                         __u16 mac_len = 0;
1432
1433                         if (mpls->tun_flags & OVS_MPLS_L3_TUNNEL_FLAG_MASK)
1434                                 mac_len = skb->mac_len;
1435
1436                         err = push_mpls(skb, key, mpls->mpls_lse,
1437                                         mpls->mpls_ethertype, mac_len);
1438                         break;
1439                 }
1440                 case OVS_ACTION_ATTR_POP_MPLS:
1441                         err = pop_mpls(skb, key, nla_get_be16(a));
1442                         break;
1443
1444                 case OVS_ACTION_ATTR_PUSH_VLAN:
1445                         err = push_vlan(skb, key, nla_data(a));
1446                         break;
1447
1448                 case OVS_ACTION_ATTR_POP_VLAN:
1449                         err = pop_vlan(skb, key);
1450                         break;
1451
1452                 case OVS_ACTION_ATTR_RECIRC: {
1453                         bool last = nla_is_last(a, rem);
1454
1455                         err = execute_recirc(dp, skb, key, a, last);
1456                         if (last) {
1457                                 /* If this is the last action, the skb has
1458                                  * been consumed or freed.
1459                                  * Return immediately.
1460                                  */
1461                                 return err;
1462                         }
1463                         break;
1464                 }
1465
1466                 case OVS_ACTION_ATTR_SET:
1467                         err = execute_set_action(skb, key, nla_data(a));
1468                         break;
1469
1470                 case OVS_ACTION_ATTR_SET_MASKED:
1471                 case OVS_ACTION_ATTR_SET_TO_MASKED:
1472                         err = execute_masked_set_action(skb, key, nla_data(a));
1473                         break;
1474
1475                 case OVS_ACTION_ATTR_SAMPLE: {
1476                         bool last = nla_is_last(a, rem);
1477
1478                         err = sample(dp, skb, key, a, last);
1479                         if (last)
1480                                 return err;
1481
1482                         break;
1483                 }
1484
1485                 case OVS_ACTION_ATTR_CT:
1486                         if (!is_flow_key_valid(key)) {
1487                                 err = ovs_flow_key_update(skb, key);
1488                                 if (err)
1489                                         return err;
1490                         }
1491
1492                         err = ovs_ct_execute(ovs_dp_get_net(dp), skb, key,
1493                                              nla_data(a));
1494
1495                         /* Hide stolen IP fragments from user space. */
1496                         if (err)
1497                                 return err == -EINPROGRESS ? 0 : err;
1498                         break;
1499
1500                 case OVS_ACTION_ATTR_CT_CLEAR:
1501                         err = ovs_ct_clear(skb, key);
1502                         break;
1503
1504                 case OVS_ACTION_ATTR_PUSH_ETH:
1505                         err = push_eth(skb, key, nla_data(a));
1506                         break;
1507
1508                 case OVS_ACTION_ATTR_POP_ETH:
1509                         err = pop_eth(skb, key);
1510                         break;
1511
1512                 case OVS_ACTION_ATTR_PUSH_NSH:
1513                         err = push_nsh(skb, key, nla_data(a));
1514                         break;
1515
1516                 case OVS_ACTION_ATTR_POP_NSH:
1517                         err = pop_nsh(skb, key);
1518                         break;
1519
1520                 case OVS_ACTION_ATTR_METER:
1521                         if (ovs_meter_execute(dp, skb, key, nla_get_u32(a))) {
1522                                 ovs_kfree_skb_reason(skb, OVS_DROP_METER);
1523                                 return 0;
1524                         }
1525                         break;
1526
1527                 case OVS_ACTION_ATTR_CLONE: {
1528                         bool last = nla_is_last(a, rem);
1529
1530                         err = clone(dp, skb, key, a, last);
1531                         if (last)
1532                                 return err;
1533
1534                         break;
1535                 }
1536
1537                 case OVS_ACTION_ATTR_CHECK_PKT_LEN: {
1538                         bool last = nla_is_last(a, rem);
1539
1540                         err = execute_check_pkt_len(dp, skb, key, a, last);
1541                         if (last)
1542                                 return err;
1543
1544                         break;
1545                 }
1546
1547                 case OVS_ACTION_ATTR_DEC_TTL:
1548                         err = execute_dec_ttl(skb, key);
1549                         if (err == -EHOSTUNREACH)
1550                                 return dec_ttl_exception_handler(dp, skb,
1551                                                                  key, a);
1552                         break;
1553
1554                 case OVS_ACTION_ATTR_DROP: {
1555                         enum ovs_drop_reason reason = nla_get_u32(a)
1556                                 ? OVS_DROP_EXPLICIT_WITH_ERROR
1557                                 : OVS_DROP_EXPLICIT;
1558
1559                         ovs_kfree_skb_reason(skb, reason);
1560                         return 0;
1561                 }
1562
1563                 case OVS_ACTION_ATTR_PSAMPLE:
1564                         execute_psample(dp, skb, a);
1565                         OVS_CB(skb)->cutlen = 0;
1566                         if (nla_is_last(a, rem)) {
1567                                 consume_skb(skb);
1568                                 return 0;
1569                         }
1570                         break;
1571                 }
1572
1573                 if (unlikely(err)) {
1574                         ovs_kfree_skb_reason(skb, OVS_DROP_ACTION_ERROR);
1575                         return err;
1576                 }
1577         }
1578
1579         ovs_kfree_skb_reason(skb, OVS_DROP_LAST_ACTION);
1580         return 0;
1581 }
1582
1583 /* Execute the actions on the clone of the packet. The effect of the
1584  * execution does not affect the original 'skb' nor the original 'key'.
1585  *
1586  * The execution may be deferred in case the actions can not be executed
1587  * immediately.
1588  */
1589 static int clone_execute(struct datapath *dp, struct sk_buff *skb,
1590                          struct sw_flow_key *key, u32 recirc_id,
1591                          const struct nlattr *actions, int len,
1592                          bool last, bool clone_flow_key)
1593 {
1594         struct deferred_action *da;
1595         struct sw_flow_key *clone;
1596
1597         skb = last ? skb : skb_clone(skb, GFP_ATOMIC);
1598         if (!skb) {
1599                 /* Out of memory, skip this action.
1600                  */
1601                 return 0;
1602         }
1603
1604         /* When clone_flow_key is false, the 'key' will not be change
1605          * by the actions, then the 'key' can be used directly.
1606          * Otherwise, try to clone key from the next recursion level of
1607          * 'flow_keys'. If clone is successful, execute the actions
1608          * without deferring.
1609          */
1610         clone = clone_flow_key ? clone_key(key) : key;
1611         if (clone) {
1612                 int err = 0;
1613
1614                 if (actions) { /* Sample action */
1615                         if (clone_flow_key)
1616                                 __this_cpu_inc(exec_actions_level);
1617
1618                         err = do_execute_actions(dp, skb, clone,
1619                                                  actions, len);
1620
1621                         if (clone_flow_key)
1622                                 __this_cpu_dec(exec_actions_level);
1623                 } else { /* Recirc action */
1624                         clone->recirc_id = recirc_id;
1625                         ovs_dp_process_packet(skb, clone);
1626                 }
1627                 return err;
1628         }
1629
1630         /* Out of 'flow_keys' space. Defer actions */
1631         da = add_deferred_actions(skb, key, actions, len);
1632         if (da) {
1633                 if (!actions) { /* Recirc action */
1634                         key = &da->pkt_key;
1635                         key->recirc_id = recirc_id;
1636                 }
1637         } else {
1638                 /* Out of per CPU action FIFO space. Drop the 'skb' and
1639                  * log an error.
1640                  */
1641                 ovs_kfree_skb_reason(skb, OVS_DROP_DEFERRED_LIMIT);
1642
1643                 if (net_ratelimit()) {
1644                         if (actions) { /* Sample action */
1645                                 pr_warn("%s: deferred action limit reached, drop sample action\n",
1646                                         ovs_dp_name(dp));
1647                         } else {  /* Recirc action */
1648                                 pr_warn("%s: deferred action limit reached, drop recirc action (recirc_id=%#x)\n",
1649                                         ovs_dp_name(dp), recirc_id);
1650                         }
1651                 }
1652         }
1653         return 0;
1654 }
1655
1656 static void process_deferred_actions(struct datapath *dp)
1657 {
1658         struct action_fifo *fifo = this_cpu_ptr(action_fifos);
1659
1660         /* Do not touch the FIFO in case there is no deferred actions. */
1661         if (action_fifo_is_empty(fifo))
1662                 return;
1663
1664         /* Finishing executing all deferred actions. */
1665         do {
1666                 struct deferred_action *da = action_fifo_get(fifo);
1667                 struct sk_buff *skb = da->skb;
1668                 struct sw_flow_key *key = &da->pkt_key;
1669                 const struct nlattr *actions = da->actions;
1670                 int actions_len = da->actions_len;
1671
1672                 if (actions)
1673                         do_execute_actions(dp, skb, key, actions, actions_len);
1674                 else
1675                         ovs_dp_process_packet(skb, key);
1676         } while (!action_fifo_is_empty(fifo));
1677
1678         /* Reset FIFO for the next packet.  */
1679         action_fifo_init(fifo);
1680 }
1681
1682 /* Execute a list of actions against 'skb'. */
1683 int ovs_execute_actions(struct datapath *dp, struct sk_buff *skb,
1684                         const struct sw_flow_actions *acts,
1685                         struct sw_flow_key *key)
1686 {
1687         int err, level;
1688
1689         level = __this_cpu_inc_return(exec_actions_level);
1690         if (unlikely(level > OVS_RECURSION_LIMIT)) {
1691                 net_crit_ratelimited("ovs: recursion limit reached on datapath %s, probable configuration error\n",
1692                                      ovs_dp_name(dp));
1693                 ovs_kfree_skb_reason(skb, OVS_DROP_RECURSION_LIMIT);
1694                 err = -ENETDOWN;
1695                 goto out;
1696         }
1697
1698         OVS_CB(skb)->acts_origlen = acts->orig_len;
1699         err = do_execute_actions(dp, skb, key,
1700                                  acts->actions, acts->actions_len);
1701
1702         if (level == 1)
1703                 process_deferred_actions(dp);
1704
1705 out:
1706         __this_cpu_dec(exec_actions_level);
1707         return err;
1708 }
1709
1710 int action_fifos_init(void)
1711 {
1712         action_fifos = alloc_percpu(struct action_fifo);
1713         if (!action_fifos)
1714                 return -ENOMEM;
1715
1716         flow_keys = alloc_percpu(struct action_flow_keys);
1717         if (!flow_keys) {
1718                 free_percpu(action_fifos);
1719                 return -ENOMEM;
1720         }
1721
1722         return 0;
1723 }
1724
1725 void action_fifos_exit(void)
1726 {
1727         free_percpu(action_fifos);
1728         free_percpu(flow_keys);
1729 }
This page took 0.12433 seconds and 4 git commands to generate.