]> Git Repo - J-linux.git/blob - net/core/page_pool.c
Merge tag 'vfs-6.13-rc7.fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs
[J-linux.git] / net / core / page_pool.c
1 /* SPDX-License-Identifier: GPL-2.0
2  *
3  * page_pool.c
4  *      Author: Jesper Dangaard Brouer <[email protected]>
5  *      Copyright (C) 2016 Red Hat, Inc.
6  */
7
8 #include <linux/error-injection.h>
9 #include <linux/types.h>
10 #include <linux/kernel.h>
11 #include <linux/slab.h>
12 #include <linux/device.h>
13
14 #include <net/netdev_rx_queue.h>
15 #include <net/page_pool/helpers.h>
16 #include <net/xdp.h>
17
18 #include <linux/dma-direction.h>
19 #include <linux/dma-mapping.h>
20 #include <linux/page-flags.h>
21 #include <linux/mm.h> /* for put_page() */
22 #include <linux/poison.h>
23 #include <linux/ethtool.h>
24 #include <linux/netdevice.h>
25
26 #include <trace/events/page_pool.h>
27
28 #include "mp_dmabuf_devmem.h"
29 #include "netmem_priv.h"
30 #include "page_pool_priv.h"
31
32 DEFINE_STATIC_KEY_FALSE(page_pool_mem_providers);
33
34 #define DEFER_TIME (msecs_to_jiffies(1000))
35 #define DEFER_WARN_INTERVAL (60 * HZ)
36
37 #define BIAS_MAX        (LONG_MAX >> 1)
38
39 #ifdef CONFIG_PAGE_POOL_STATS
40 static DEFINE_PER_CPU(struct page_pool_recycle_stats, pp_system_recycle_stats);
41
42 /* alloc_stat_inc is intended to be used in softirq context */
43 #define alloc_stat_inc(pool, __stat)    (pool->alloc_stats.__stat++)
44 /* recycle_stat_inc is safe to use when preemption is possible. */
45 #define recycle_stat_inc(pool, __stat)                                                  \
46         do {                                                                            \
47                 struct page_pool_recycle_stats __percpu *s = pool->recycle_stats;       \
48                 this_cpu_inc(s->__stat);                                                \
49         } while (0)
50
51 #define recycle_stat_add(pool, __stat, val)                                             \
52         do {                                                                            \
53                 struct page_pool_recycle_stats __percpu *s = pool->recycle_stats;       \
54                 this_cpu_add(s->__stat, val);                                           \
55         } while (0)
56
57 static const char pp_stats[][ETH_GSTRING_LEN] = {
58         "rx_pp_alloc_fast",
59         "rx_pp_alloc_slow",
60         "rx_pp_alloc_slow_ho",
61         "rx_pp_alloc_empty",
62         "rx_pp_alloc_refill",
63         "rx_pp_alloc_waive",
64         "rx_pp_recycle_cached",
65         "rx_pp_recycle_cache_full",
66         "rx_pp_recycle_ring",
67         "rx_pp_recycle_ring_full",
68         "rx_pp_recycle_released_ref",
69 };
70
71 /**
72  * page_pool_get_stats() - fetch page pool stats
73  * @pool:       pool from which page was allocated
74  * @stats:      struct page_pool_stats to fill in
75  *
76  * Retrieve statistics about the page_pool. This API is only available
77  * if the kernel has been configured with ``CONFIG_PAGE_POOL_STATS=y``.
78  * A pointer to a caller allocated struct page_pool_stats structure
79  * is passed to this API which is filled in. The caller can then report
80  * those stats to the user (perhaps via ethtool, debugfs, etc.).
81  */
82 bool page_pool_get_stats(const struct page_pool *pool,
83                          struct page_pool_stats *stats)
84 {
85         int cpu = 0;
86
87         if (!stats)
88                 return false;
89
90         /* The caller is responsible to initialize stats. */
91         stats->alloc_stats.fast += pool->alloc_stats.fast;
92         stats->alloc_stats.slow += pool->alloc_stats.slow;
93         stats->alloc_stats.slow_high_order += pool->alloc_stats.slow_high_order;
94         stats->alloc_stats.empty += pool->alloc_stats.empty;
95         stats->alloc_stats.refill += pool->alloc_stats.refill;
96         stats->alloc_stats.waive += pool->alloc_stats.waive;
97
98         for_each_possible_cpu(cpu) {
99                 const struct page_pool_recycle_stats *pcpu =
100                         per_cpu_ptr(pool->recycle_stats, cpu);
101
102                 stats->recycle_stats.cached += pcpu->cached;
103                 stats->recycle_stats.cache_full += pcpu->cache_full;
104                 stats->recycle_stats.ring += pcpu->ring;
105                 stats->recycle_stats.ring_full += pcpu->ring_full;
106                 stats->recycle_stats.released_refcnt += pcpu->released_refcnt;
107         }
108
109         return true;
110 }
111 EXPORT_SYMBOL(page_pool_get_stats);
112
113 u8 *page_pool_ethtool_stats_get_strings(u8 *data)
114 {
115         int i;
116
117         for (i = 0; i < ARRAY_SIZE(pp_stats); i++) {
118                 memcpy(data, pp_stats[i], ETH_GSTRING_LEN);
119                 data += ETH_GSTRING_LEN;
120         }
121
122         return data;
123 }
124 EXPORT_SYMBOL(page_pool_ethtool_stats_get_strings);
125
126 int page_pool_ethtool_stats_get_count(void)
127 {
128         return ARRAY_SIZE(pp_stats);
129 }
130 EXPORT_SYMBOL(page_pool_ethtool_stats_get_count);
131
132 u64 *page_pool_ethtool_stats_get(u64 *data, const void *stats)
133 {
134         const struct page_pool_stats *pool_stats = stats;
135
136         *data++ = pool_stats->alloc_stats.fast;
137         *data++ = pool_stats->alloc_stats.slow;
138         *data++ = pool_stats->alloc_stats.slow_high_order;
139         *data++ = pool_stats->alloc_stats.empty;
140         *data++ = pool_stats->alloc_stats.refill;
141         *data++ = pool_stats->alloc_stats.waive;
142         *data++ = pool_stats->recycle_stats.cached;
143         *data++ = pool_stats->recycle_stats.cache_full;
144         *data++ = pool_stats->recycle_stats.ring;
145         *data++ = pool_stats->recycle_stats.ring_full;
146         *data++ = pool_stats->recycle_stats.released_refcnt;
147
148         return data;
149 }
150 EXPORT_SYMBOL(page_pool_ethtool_stats_get);
151
152 #else
153 #define alloc_stat_inc(pool, __stat)
154 #define recycle_stat_inc(pool, __stat)
155 #define recycle_stat_add(pool, __stat, val)
156 #endif
157
158 static bool page_pool_producer_lock(struct page_pool *pool)
159         __acquires(&pool->ring.producer_lock)
160 {
161         bool in_softirq = in_softirq();
162
163         if (in_softirq)
164                 spin_lock(&pool->ring.producer_lock);
165         else
166                 spin_lock_bh(&pool->ring.producer_lock);
167
168         return in_softirq;
169 }
170
171 static void page_pool_producer_unlock(struct page_pool *pool,
172                                       bool in_softirq)
173         __releases(&pool->ring.producer_lock)
174 {
175         if (in_softirq)
176                 spin_unlock(&pool->ring.producer_lock);
177         else
178                 spin_unlock_bh(&pool->ring.producer_lock);
179 }
180
181 static void page_pool_struct_check(void)
182 {
183         CACHELINE_ASSERT_GROUP_MEMBER(struct page_pool, frag, frag_users);
184         CACHELINE_ASSERT_GROUP_MEMBER(struct page_pool, frag, frag_page);
185         CACHELINE_ASSERT_GROUP_MEMBER(struct page_pool, frag, frag_offset);
186         CACHELINE_ASSERT_GROUP_SIZE(struct page_pool, frag,
187                                     PAGE_POOL_FRAG_GROUP_ALIGN);
188 }
189
190 static int page_pool_init(struct page_pool *pool,
191                           const struct page_pool_params *params,
192                           int cpuid)
193 {
194         unsigned int ring_qsize = 1024; /* Default */
195         struct netdev_rx_queue *rxq;
196         int err;
197
198         page_pool_struct_check();
199
200         memcpy(&pool->p, &params->fast, sizeof(pool->p));
201         memcpy(&pool->slow, &params->slow, sizeof(pool->slow));
202
203         pool->cpuid = cpuid;
204
205         /* Validate only known flags were used */
206         if (pool->slow.flags & ~PP_FLAG_ALL)
207                 return -EINVAL;
208
209         if (pool->p.pool_size)
210                 ring_qsize = pool->p.pool_size;
211
212         /* Sanity limit mem that can be pinned down */
213         if (ring_qsize > 32768)
214                 return -E2BIG;
215
216         /* DMA direction is either DMA_FROM_DEVICE or DMA_BIDIRECTIONAL.
217          * DMA_BIDIRECTIONAL is for allowing page used for DMA sending,
218          * which is the XDP_TX use-case.
219          */
220         if (pool->slow.flags & PP_FLAG_DMA_MAP) {
221                 if ((pool->p.dma_dir != DMA_FROM_DEVICE) &&
222                     (pool->p.dma_dir != DMA_BIDIRECTIONAL))
223                         return -EINVAL;
224
225                 pool->dma_map = true;
226         }
227
228         if (pool->slow.flags & PP_FLAG_DMA_SYNC_DEV) {
229                 /* In order to request DMA-sync-for-device the page
230                  * needs to be mapped
231                  */
232                 if (!(pool->slow.flags & PP_FLAG_DMA_MAP))
233                         return -EINVAL;
234
235                 if (!pool->p.max_len)
236                         return -EINVAL;
237
238                 pool->dma_sync = true;
239
240                 /* pool->p.offset has to be set according to the address
241                  * offset used by the DMA engine to start copying rx data
242                  */
243         }
244
245         pool->has_init_callback = !!pool->slow.init_callback;
246
247 #ifdef CONFIG_PAGE_POOL_STATS
248         if (!(pool->slow.flags & PP_FLAG_SYSTEM_POOL)) {
249                 pool->recycle_stats = alloc_percpu(struct page_pool_recycle_stats);
250                 if (!pool->recycle_stats)
251                         return -ENOMEM;
252         } else {
253                 /* For system page pool instance we use a singular stats object
254                  * instead of allocating a separate percpu variable for each
255                  * (also percpu) page pool instance.
256                  */
257                 pool->recycle_stats = &pp_system_recycle_stats;
258                 pool->system = true;
259         }
260 #endif
261
262         if (ptr_ring_init(&pool->ring, ring_qsize, GFP_KERNEL) < 0) {
263 #ifdef CONFIG_PAGE_POOL_STATS
264                 if (!pool->system)
265                         free_percpu(pool->recycle_stats);
266 #endif
267                 return -ENOMEM;
268         }
269
270         atomic_set(&pool->pages_state_release_cnt, 0);
271
272         /* Driver calling page_pool_create() also call page_pool_destroy() */
273         refcount_set(&pool->user_cnt, 1);
274
275         if (pool->dma_map)
276                 get_device(pool->p.dev);
277
278         if (pool->slow.flags & PP_FLAG_ALLOW_UNREADABLE_NETMEM) {
279                 /* We rely on rtnl_lock()ing to make sure netdev_rx_queue
280                  * configuration doesn't change while we're initializing
281                  * the page_pool.
282                  */
283                 ASSERT_RTNL();
284                 rxq = __netif_get_rx_queue(pool->slow.netdev,
285                                            pool->slow.queue_idx);
286                 pool->mp_priv = rxq->mp_params.mp_priv;
287         }
288
289         if (pool->mp_priv) {
290                 err = mp_dmabuf_devmem_init(pool);
291                 if (err) {
292                         pr_warn("%s() mem-provider init failed %d\n", __func__,
293                                 err);
294                         goto free_ptr_ring;
295                 }
296
297                 static_branch_inc(&page_pool_mem_providers);
298         }
299
300         return 0;
301
302 free_ptr_ring:
303         ptr_ring_cleanup(&pool->ring, NULL);
304 #ifdef CONFIG_PAGE_POOL_STATS
305         if (!pool->system)
306                 free_percpu(pool->recycle_stats);
307 #endif
308         return err;
309 }
310
311 static void page_pool_uninit(struct page_pool *pool)
312 {
313         ptr_ring_cleanup(&pool->ring, NULL);
314
315         if (pool->dma_map)
316                 put_device(pool->p.dev);
317
318 #ifdef CONFIG_PAGE_POOL_STATS
319         if (!pool->system)
320                 free_percpu(pool->recycle_stats);
321 #endif
322 }
323
324 /**
325  * page_pool_create_percpu() - create a page pool for a given cpu.
326  * @params: parameters, see struct page_pool_params
327  * @cpuid: cpu identifier
328  */
329 struct page_pool *
330 page_pool_create_percpu(const struct page_pool_params *params, int cpuid)
331 {
332         struct page_pool *pool;
333         int err;
334
335         pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, params->nid);
336         if (!pool)
337                 return ERR_PTR(-ENOMEM);
338
339         err = page_pool_init(pool, params, cpuid);
340         if (err < 0)
341                 goto err_free;
342
343         err = page_pool_list(pool);
344         if (err)
345                 goto err_uninit;
346
347         return pool;
348
349 err_uninit:
350         page_pool_uninit(pool);
351 err_free:
352         pr_warn("%s() gave up with errno %d\n", __func__, err);
353         kfree(pool);
354         return ERR_PTR(err);
355 }
356 EXPORT_SYMBOL(page_pool_create_percpu);
357
358 /**
359  * page_pool_create() - create a page pool
360  * @params: parameters, see struct page_pool_params
361  */
362 struct page_pool *page_pool_create(const struct page_pool_params *params)
363 {
364         return page_pool_create_percpu(params, -1);
365 }
366 EXPORT_SYMBOL(page_pool_create);
367
368 static void page_pool_return_page(struct page_pool *pool, netmem_ref netmem);
369
370 static noinline netmem_ref page_pool_refill_alloc_cache(struct page_pool *pool)
371 {
372         struct ptr_ring *r = &pool->ring;
373         netmem_ref netmem;
374         int pref_nid; /* preferred NUMA node */
375
376         /* Quicker fallback, avoid locks when ring is empty */
377         if (__ptr_ring_empty(r)) {
378                 alloc_stat_inc(pool, empty);
379                 return 0;
380         }
381
382         /* Softirq guarantee CPU and thus NUMA node is stable. This,
383          * assumes CPU refilling driver RX-ring will also run RX-NAPI.
384          */
385 #ifdef CONFIG_NUMA
386         pref_nid = (pool->p.nid == NUMA_NO_NODE) ? numa_mem_id() : pool->p.nid;
387 #else
388         /* Ignore pool->p.nid setting if !CONFIG_NUMA, helps compiler */
389         pref_nid = numa_mem_id(); /* will be zero like page_to_nid() */
390 #endif
391
392         /* Refill alloc array, but only if NUMA match */
393         do {
394                 netmem = (__force netmem_ref)__ptr_ring_consume(r);
395                 if (unlikely(!netmem))
396                         break;
397
398                 if (likely(netmem_is_pref_nid(netmem, pref_nid))) {
399                         pool->alloc.cache[pool->alloc.count++] = netmem;
400                 } else {
401                         /* NUMA mismatch;
402                          * (1) release 1 page to page-allocator and
403                          * (2) break out to fallthrough to alloc_pages_node.
404                          * This limit stress on page buddy alloactor.
405                          */
406                         page_pool_return_page(pool, netmem);
407                         alloc_stat_inc(pool, waive);
408                         netmem = 0;
409                         break;
410                 }
411         } while (pool->alloc.count < PP_ALLOC_CACHE_REFILL);
412
413         /* Return last page */
414         if (likely(pool->alloc.count > 0)) {
415                 netmem = pool->alloc.cache[--pool->alloc.count];
416                 alloc_stat_inc(pool, refill);
417         }
418
419         return netmem;
420 }
421
422 /* fast path */
423 static netmem_ref __page_pool_get_cached(struct page_pool *pool)
424 {
425         netmem_ref netmem;
426
427         /* Caller MUST guarantee safe non-concurrent access, e.g. softirq */
428         if (likely(pool->alloc.count)) {
429                 /* Fast-path */
430                 netmem = pool->alloc.cache[--pool->alloc.count];
431                 alloc_stat_inc(pool, fast);
432         } else {
433                 netmem = page_pool_refill_alloc_cache(pool);
434         }
435
436         return netmem;
437 }
438
439 static void __page_pool_dma_sync_for_device(const struct page_pool *pool,
440                                             netmem_ref netmem,
441                                             u32 dma_sync_size)
442 {
443 #if defined(CONFIG_HAS_DMA) && defined(CONFIG_DMA_NEED_SYNC)
444         dma_addr_t dma_addr = page_pool_get_dma_addr_netmem(netmem);
445
446         dma_sync_size = min(dma_sync_size, pool->p.max_len);
447         __dma_sync_single_for_device(pool->p.dev, dma_addr + pool->p.offset,
448                                      dma_sync_size, pool->p.dma_dir);
449 #endif
450 }
451
452 static __always_inline void
453 page_pool_dma_sync_for_device(const struct page_pool *pool,
454                               netmem_ref netmem,
455                               u32 dma_sync_size)
456 {
457         if (pool->dma_sync && dma_dev_need_sync(pool->p.dev))
458                 __page_pool_dma_sync_for_device(pool, netmem, dma_sync_size);
459 }
460
461 static bool page_pool_dma_map(struct page_pool *pool, netmem_ref netmem)
462 {
463         dma_addr_t dma;
464
465         /* Setup DMA mapping: use 'struct page' area for storing DMA-addr
466          * since dma_addr_t can be either 32 or 64 bits and does not always fit
467          * into page private data (i.e 32bit cpu with 64bit DMA caps)
468          * This mapping is kept for lifetime of page, until leaving pool.
469          */
470         dma = dma_map_page_attrs(pool->p.dev, netmem_to_page(netmem), 0,
471                                  (PAGE_SIZE << pool->p.order), pool->p.dma_dir,
472                                  DMA_ATTR_SKIP_CPU_SYNC |
473                                          DMA_ATTR_WEAK_ORDERING);
474         if (dma_mapping_error(pool->p.dev, dma))
475                 return false;
476
477         if (page_pool_set_dma_addr_netmem(netmem, dma))
478                 goto unmap_failed;
479
480         page_pool_dma_sync_for_device(pool, netmem, pool->p.max_len);
481
482         return true;
483
484 unmap_failed:
485         WARN_ONCE(1, "unexpected DMA address, please report to netdev@");
486         dma_unmap_page_attrs(pool->p.dev, dma,
487                              PAGE_SIZE << pool->p.order, pool->p.dma_dir,
488                              DMA_ATTR_SKIP_CPU_SYNC | DMA_ATTR_WEAK_ORDERING);
489         return false;
490 }
491
492 static struct page *__page_pool_alloc_page_order(struct page_pool *pool,
493                                                  gfp_t gfp)
494 {
495         struct page *page;
496
497         gfp |= __GFP_COMP;
498         page = alloc_pages_node(pool->p.nid, gfp, pool->p.order);
499         if (unlikely(!page))
500                 return NULL;
501
502         if (pool->dma_map && unlikely(!page_pool_dma_map(pool, page_to_netmem(page)))) {
503                 put_page(page);
504                 return NULL;
505         }
506
507         alloc_stat_inc(pool, slow_high_order);
508         page_pool_set_pp_info(pool, page_to_netmem(page));
509
510         /* Track how many pages are held 'in-flight' */
511         pool->pages_state_hold_cnt++;
512         trace_page_pool_state_hold(pool, page_to_netmem(page),
513                                    pool->pages_state_hold_cnt);
514         return page;
515 }
516
517 /* slow path */
518 static noinline netmem_ref __page_pool_alloc_pages_slow(struct page_pool *pool,
519                                                         gfp_t gfp)
520 {
521         const int bulk = PP_ALLOC_CACHE_REFILL;
522         unsigned int pp_order = pool->p.order;
523         bool dma_map = pool->dma_map;
524         netmem_ref netmem;
525         int i, nr_pages;
526
527         /* Don't support bulk alloc for high-order pages */
528         if (unlikely(pp_order))
529                 return page_to_netmem(__page_pool_alloc_page_order(pool, gfp));
530
531         /* Unnecessary as alloc cache is empty, but guarantees zero count */
532         if (unlikely(pool->alloc.count > 0))
533                 return pool->alloc.cache[--pool->alloc.count];
534
535         /* Mark empty alloc.cache slots "empty" for alloc_pages_bulk_array */
536         memset(&pool->alloc.cache, 0, sizeof(void *) * bulk);
537
538         nr_pages = alloc_pages_bulk_array_node(gfp,
539                                                pool->p.nid, bulk,
540                                                (struct page **)pool->alloc.cache);
541         if (unlikely(!nr_pages))
542                 return 0;
543
544         /* Pages have been filled into alloc.cache array, but count is zero and
545          * page element have not been (possibly) DMA mapped.
546          */
547         for (i = 0; i < nr_pages; i++) {
548                 netmem = pool->alloc.cache[i];
549                 if (dma_map && unlikely(!page_pool_dma_map(pool, netmem))) {
550                         put_page(netmem_to_page(netmem));
551                         continue;
552                 }
553
554                 page_pool_set_pp_info(pool, netmem);
555                 pool->alloc.cache[pool->alloc.count++] = netmem;
556                 /* Track how many pages are held 'in-flight' */
557                 pool->pages_state_hold_cnt++;
558                 trace_page_pool_state_hold(pool, netmem,
559                                            pool->pages_state_hold_cnt);
560         }
561
562         /* Return last page */
563         if (likely(pool->alloc.count > 0)) {
564                 netmem = pool->alloc.cache[--pool->alloc.count];
565                 alloc_stat_inc(pool, slow);
566         } else {
567                 netmem = 0;
568         }
569
570         /* When page just alloc'ed is should/must have refcnt 1. */
571         return netmem;
572 }
573
574 /* For using page_pool replace: alloc_pages() API calls, but provide
575  * synchronization guarantee for allocation side.
576  */
577 netmem_ref page_pool_alloc_netmem(struct page_pool *pool, gfp_t gfp)
578 {
579         netmem_ref netmem;
580
581         /* Fast-path: Get a page from cache */
582         netmem = __page_pool_get_cached(pool);
583         if (netmem)
584                 return netmem;
585
586         /* Slow-path: cache empty, do real allocation */
587         if (static_branch_unlikely(&page_pool_mem_providers) && pool->mp_priv)
588                 netmem = mp_dmabuf_devmem_alloc_netmems(pool, gfp);
589         else
590                 netmem = __page_pool_alloc_pages_slow(pool, gfp);
591         return netmem;
592 }
593 EXPORT_SYMBOL(page_pool_alloc_netmem);
594
595 struct page *page_pool_alloc_pages(struct page_pool *pool, gfp_t gfp)
596 {
597         return netmem_to_page(page_pool_alloc_netmem(pool, gfp));
598 }
599 EXPORT_SYMBOL(page_pool_alloc_pages);
600 ALLOW_ERROR_INJECTION(page_pool_alloc_pages, NULL);
601
602 /* Calculate distance between two u32 values, valid if distance is below 2^(31)
603  *  https://en.wikipedia.org/wiki/Serial_number_arithmetic#General_Solution
604  */
605 #define _distance(a, b) (s32)((a) - (b))
606
607 s32 page_pool_inflight(const struct page_pool *pool, bool strict)
608 {
609         u32 release_cnt = atomic_read(&pool->pages_state_release_cnt);
610         u32 hold_cnt = READ_ONCE(pool->pages_state_hold_cnt);
611         s32 inflight;
612
613         inflight = _distance(hold_cnt, release_cnt);
614
615         if (strict) {
616                 trace_page_pool_release(pool, inflight, hold_cnt, release_cnt);
617                 WARN(inflight < 0, "Negative(%d) inflight packet-pages",
618                      inflight);
619         } else {
620                 inflight = max(0, inflight);
621         }
622
623         return inflight;
624 }
625
626 void page_pool_set_pp_info(struct page_pool *pool, netmem_ref netmem)
627 {
628         netmem_set_pp(netmem, pool);
629         netmem_or_pp_magic(netmem, PP_SIGNATURE);
630
631         /* Ensuring all pages have been split into one fragment initially:
632          * page_pool_set_pp_info() is only called once for every page when it
633          * is allocated from the page allocator and page_pool_fragment_page()
634          * is dirtying the same cache line as the page->pp_magic above, so
635          * the overhead is negligible.
636          */
637         page_pool_fragment_netmem(netmem, 1);
638         if (pool->has_init_callback)
639                 pool->slow.init_callback(netmem, pool->slow.init_arg);
640 }
641
642 void page_pool_clear_pp_info(netmem_ref netmem)
643 {
644         netmem_clear_pp_magic(netmem);
645         netmem_set_pp(netmem, NULL);
646 }
647
648 static __always_inline void __page_pool_release_page_dma(struct page_pool *pool,
649                                                          netmem_ref netmem)
650 {
651         dma_addr_t dma;
652
653         if (!pool->dma_map)
654                 /* Always account for inflight pages, even if we didn't
655                  * map them
656                  */
657                 return;
658
659         dma = page_pool_get_dma_addr_netmem(netmem);
660
661         /* When page is unmapped, it cannot be returned to our pool */
662         dma_unmap_page_attrs(pool->p.dev, dma,
663                              PAGE_SIZE << pool->p.order, pool->p.dma_dir,
664                              DMA_ATTR_SKIP_CPU_SYNC | DMA_ATTR_WEAK_ORDERING);
665         page_pool_set_dma_addr_netmem(netmem, 0);
666 }
667
668 /* Disconnects a page (from a page_pool).  API users can have a need
669  * to disconnect a page (from a page_pool), to allow it to be used as
670  * a regular page (that will eventually be returned to the normal
671  * page-allocator via put_page).
672  */
673 void page_pool_return_page(struct page_pool *pool, netmem_ref netmem)
674 {
675         int count;
676         bool put;
677
678         put = true;
679         if (static_branch_unlikely(&page_pool_mem_providers) && pool->mp_priv)
680                 put = mp_dmabuf_devmem_release_page(pool, netmem);
681         else
682                 __page_pool_release_page_dma(pool, netmem);
683
684         /* This may be the last page returned, releasing the pool, so
685          * it is not safe to reference pool afterwards.
686          */
687         count = atomic_inc_return_relaxed(&pool->pages_state_release_cnt);
688         trace_page_pool_state_release(pool, netmem, count);
689
690         if (put) {
691                 page_pool_clear_pp_info(netmem);
692                 put_page(netmem_to_page(netmem));
693         }
694         /* An optimization would be to call __free_pages(page, pool->p.order)
695          * knowing page is not part of page-cache (thus avoiding a
696          * __page_cache_release() call).
697          */
698 }
699
700 static bool page_pool_recycle_in_ring(struct page_pool *pool, netmem_ref netmem)
701 {
702         int ret;
703         /* BH protection not needed if current is softirq */
704         if (in_softirq())
705                 ret = ptr_ring_produce(&pool->ring, (__force void *)netmem);
706         else
707                 ret = ptr_ring_produce_bh(&pool->ring, (__force void *)netmem);
708
709         if (!ret) {
710                 recycle_stat_inc(pool, ring);
711                 return true;
712         }
713
714         return false;
715 }
716
717 /* Only allow direct recycling in special circumstances, into the
718  * alloc side cache.  E.g. during RX-NAPI processing for XDP_DROP use-case.
719  *
720  * Caller must provide appropriate safe context.
721  */
722 static bool page_pool_recycle_in_cache(netmem_ref netmem,
723                                        struct page_pool *pool)
724 {
725         if (unlikely(pool->alloc.count == PP_ALLOC_CACHE_SIZE)) {
726                 recycle_stat_inc(pool, cache_full);
727                 return false;
728         }
729
730         /* Caller MUST have verified/know (page_ref_count(page) == 1) */
731         pool->alloc.cache[pool->alloc.count++] = netmem;
732         recycle_stat_inc(pool, cached);
733         return true;
734 }
735
736 static bool __page_pool_page_can_be_recycled(netmem_ref netmem)
737 {
738         return netmem_is_net_iov(netmem) ||
739                (page_ref_count(netmem_to_page(netmem)) == 1 &&
740                 !page_is_pfmemalloc(netmem_to_page(netmem)));
741 }
742
743 /* If the page refcnt == 1, this will try to recycle the page.
744  * If pool->dma_sync is set, we'll try to sync the DMA area for
745  * the configured size min(dma_sync_size, pool->max_len).
746  * If the page refcnt != 1, then the page will be returned to memory
747  * subsystem.
748  */
749 static __always_inline netmem_ref
750 __page_pool_put_page(struct page_pool *pool, netmem_ref netmem,
751                      unsigned int dma_sync_size, bool allow_direct)
752 {
753         lockdep_assert_no_hardirq();
754
755         /* This allocator is optimized for the XDP mode that uses
756          * one-frame-per-page, but have fallbacks that act like the
757          * regular page allocator APIs.
758          *
759          * refcnt == 1 means page_pool owns page, and can recycle it.
760          *
761          * page is NOT reusable when allocated when system is under
762          * some pressure. (page_is_pfmemalloc)
763          */
764         if (likely(__page_pool_page_can_be_recycled(netmem))) {
765                 /* Read barrier done in page_ref_count / READ_ONCE */
766
767                 page_pool_dma_sync_for_device(pool, netmem, dma_sync_size);
768
769                 if (allow_direct && page_pool_recycle_in_cache(netmem, pool))
770                         return 0;
771
772                 /* Page found as candidate for recycling */
773                 return netmem;
774         }
775
776         /* Fallback/non-XDP mode: API user have elevated refcnt.
777          *
778          * Many drivers split up the page into fragments, and some
779          * want to keep doing this to save memory and do refcnt based
780          * recycling. Support this use case too, to ease drivers
781          * switching between XDP/non-XDP.
782          *
783          * In-case page_pool maintains the DMA mapping, API user must
784          * call page_pool_put_page once.  In this elevated refcnt
785          * case, the DMA is unmapped/released, as driver is likely
786          * doing refcnt based recycle tricks, meaning another process
787          * will be invoking put_page.
788          */
789         recycle_stat_inc(pool, released_refcnt);
790         page_pool_return_page(pool, netmem);
791
792         return 0;
793 }
794
795 static bool page_pool_napi_local(const struct page_pool *pool)
796 {
797         const struct napi_struct *napi;
798         u32 cpuid;
799
800         if (unlikely(!in_softirq()))
801                 return false;
802
803         /* Allow direct recycle if we have reasons to believe that we are
804          * in the same context as the consumer would run, so there's
805          * no possible race.
806          * __page_pool_put_page() makes sure we're not in hardirq context
807          * and interrupts are enabled prior to accessing the cache.
808          */
809         cpuid = smp_processor_id();
810         if (READ_ONCE(pool->cpuid) == cpuid)
811                 return true;
812
813         napi = READ_ONCE(pool->p.napi);
814
815         return napi && READ_ONCE(napi->list_owner) == cpuid;
816 }
817
818 void page_pool_put_unrefed_netmem(struct page_pool *pool, netmem_ref netmem,
819                                   unsigned int dma_sync_size, bool allow_direct)
820 {
821         if (!allow_direct)
822                 allow_direct = page_pool_napi_local(pool);
823
824         netmem =
825                 __page_pool_put_page(pool, netmem, dma_sync_size, allow_direct);
826         if (netmem && !page_pool_recycle_in_ring(pool, netmem)) {
827                 /* Cache full, fallback to free pages */
828                 recycle_stat_inc(pool, ring_full);
829                 page_pool_return_page(pool, netmem);
830         }
831 }
832 EXPORT_SYMBOL(page_pool_put_unrefed_netmem);
833
834 void page_pool_put_unrefed_page(struct page_pool *pool, struct page *page,
835                                 unsigned int dma_sync_size, bool allow_direct)
836 {
837         page_pool_put_unrefed_netmem(pool, page_to_netmem(page), dma_sync_size,
838                                      allow_direct);
839 }
840 EXPORT_SYMBOL(page_pool_put_unrefed_page);
841
842 /**
843  * page_pool_put_page_bulk() - release references on multiple pages
844  * @pool:       pool from which pages were allocated
845  * @data:       array holding page pointers
846  * @count:      number of pages in @data
847  *
848  * Tries to refill a number of pages into the ptr_ring cache holding ptr_ring
849  * producer lock. If the ptr_ring is full, page_pool_put_page_bulk()
850  * will release leftover pages to the page allocator.
851  * page_pool_put_page_bulk() is suitable to be run inside the driver NAPI tx
852  * completion loop for the XDP_REDIRECT use case.
853  *
854  * Please note the caller must not use data area after running
855  * page_pool_put_page_bulk(), as this function overwrites it.
856  */
857 void page_pool_put_page_bulk(struct page_pool *pool, void **data,
858                              int count)
859 {
860         int i, bulk_len = 0;
861         bool allow_direct;
862         bool in_softirq;
863
864         allow_direct = page_pool_napi_local(pool);
865
866         for (i = 0; i < count; i++) {
867                 netmem_ref netmem = page_to_netmem(virt_to_head_page(data[i]));
868
869                 /* It is not the last user for the page frag case */
870                 if (!page_pool_is_last_ref(netmem))
871                         continue;
872
873                 netmem = __page_pool_put_page(pool, netmem, -1, allow_direct);
874                 /* Approved for bulk recycling in ptr_ring cache */
875                 if (netmem)
876                         data[bulk_len++] = (__force void *)netmem;
877         }
878
879         if (!bulk_len)
880                 return;
881
882         /* Bulk producer into ptr_ring page_pool cache */
883         in_softirq = page_pool_producer_lock(pool);
884         for (i = 0; i < bulk_len; i++) {
885                 if (__ptr_ring_produce(&pool->ring, data[i])) {
886                         /* ring full */
887                         recycle_stat_inc(pool, ring_full);
888                         break;
889                 }
890         }
891         recycle_stat_add(pool, ring, i);
892         page_pool_producer_unlock(pool, in_softirq);
893
894         /* Hopefully all pages was return into ptr_ring */
895         if (likely(i == bulk_len))
896                 return;
897
898         /* ptr_ring cache full, free remaining pages outside producer lock
899          * since put_page() with refcnt == 1 can be an expensive operation
900          */
901         for (; i < bulk_len; i++)
902                 page_pool_return_page(pool, (__force netmem_ref)data[i]);
903 }
904 EXPORT_SYMBOL(page_pool_put_page_bulk);
905
906 static netmem_ref page_pool_drain_frag(struct page_pool *pool,
907                                        netmem_ref netmem)
908 {
909         long drain_count = BIAS_MAX - pool->frag_users;
910
911         /* Some user is still using the page frag */
912         if (likely(page_pool_unref_netmem(netmem, drain_count)))
913                 return 0;
914
915         if (__page_pool_page_can_be_recycled(netmem)) {
916                 page_pool_dma_sync_for_device(pool, netmem, -1);
917                 return netmem;
918         }
919
920         page_pool_return_page(pool, netmem);
921         return 0;
922 }
923
924 static void page_pool_free_frag(struct page_pool *pool)
925 {
926         long drain_count = BIAS_MAX - pool->frag_users;
927         netmem_ref netmem = pool->frag_page;
928
929         pool->frag_page = 0;
930
931         if (!netmem || page_pool_unref_netmem(netmem, drain_count))
932                 return;
933
934         page_pool_return_page(pool, netmem);
935 }
936
937 netmem_ref page_pool_alloc_frag_netmem(struct page_pool *pool,
938                                        unsigned int *offset, unsigned int size,
939                                        gfp_t gfp)
940 {
941         unsigned int max_size = PAGE_SIZE << pool->p.order;
942         netmem_ref netmem = pool->frag_page;
943
944         if (WARN_ON(size > max_size))
945                 return 0;
946
947         size = ALIGN(size, dma_get_cache_alignment());
948         *offset = pool->frag_offset;
949
950         if (netmem && *offset + size > max_size) {
951                 netmem = page_pool_drain_frag(pool, netmem);
952                 if (netmem) {
953                         recycle_stat_inc(pool, cached);
954                         alloc_stat_inc(pool, fast);
955                         goto frag_reset;
956                 }
957         }
958
959         if (!netmem) {
960                 netmem = page_pool_alloc_netmem(pool, gfp);
961                 if (unlikely(!netmem)) {
962                         pool->frag_page = 0;
963                         return 0;
964                 }
965
966                 pool->frag_page = netmem;
967
968 frag_reset:
969                 pool->frag_users = 1;
970                 *offset = 0;
971                 pool->frag_offset = size;
972                 page_pool_fragment_netmem(netmem, BIAS_MAX);
973                 return netmem;
974         }
975
976         pool->frag_users++;
977         pool->frag_offset = *offset + size;
978         return netmem;
979 }
980 EXPORT_SYMBOL(page_pool_alloc_frag_netmem);
981
982 struct page *page_pool_alloc_frag(struct page_pool *pool, unsigned int *offset,
983                                   unsigned int size, gfp_t gfp)
984 {
985         return netmem_to_page(page_pool_alloc_frag_netmem(pool, offset, size,
986                                                           gfp));
987 }
988 EXPORT_SYMBOL(page_pool_alloc_frag);
989
990 static void page_pool_empty_ring(struct page_pool *pool)
991 {
992         netmem_ref netmem;
993
994         /* Empty recycle ring */
995         while ((netmem = (__force netmem_ref)ptr_ring_consume_bh(&pool->ring))) {
996                 /* Verify the refcnt invariant of cached pages */
997                 if (!(netmem_ref_count(netmem) == 1))
998                         pr_crit("%s() page_pool refcnt %d violation\n",
999                                 __func__, netmem_ref_count(netmem));
1000
1001                 page_pool_return_page(pool, netmem);
1002         }
1003 }
1004
1005 static void __page_pool_destroy(struct page_pool *pool)
1006 {
1007         if (pool->disconnect)
1008                 pool->disconnect(pool);
1009
1010         page_pool_unlist(pool);
1011         page_pool_uninit(pool);
1012
1013         if (pool->mp_priv) {
1014                 mp_dmabuf_devmem_destroy(pool);
1015                 static_branch_dec(&page_pool_mem_providers);
1016         }
1017
1018         kfree(pool);
1019 }
1020
1021 static void page_pool_empty_alloc_cache_once(struct page_pool *pool)
1022 {
1023         netmem_ref netmem;
1024
1025         if (pool->destroy_cnt)
1026                 return;
1027
1028         /* Empty alloc cache, assume caller made sure this is
1029          * no-longer in use, and page_pool_alloc_pages() cannot be
1030          * call concurrently.
1031          */
1032         while (pool->alloc.count) {
1033                 netmem = pool->alloc.cache[--pool->alloc.count];
1034                 page_pool_return_page(pool, netmem);
1035         }
1036 }
1037
1038 static void page_pool_scrub(struct page_pool *pool)
1039 {
1040         page_pool_empty_alloc_cache_once(pool);
1041         pool->destroy_cnt++;
1042
1043         /* No more consumers should exist, but producers could still
1044          * be in-flight.
1045          */
1046         page_pool_empty_ring(pool);
1047 }
1048
1049 static int page_pool_release(struct page_pool *pool)
1050 {
1051         int inflight;
1052
1053         page_pool_scrub(pool);
1054         inflight = page_pool_inflight(pool, true);
1055         if (!inflight)
1056                 __page_pool_destroy(pool);
1057
1058         return inflight;
1059 }
1060
1061 static void page_pool_release_retry(struct work_struct *wq)
1062 {
1063         struct delayed_work *dwq = to_delayed_work(wq);
1064         struct page_pool *pool = container_of(dwq, typeof(*pool), release_dw);
1065         void *netdev;
1066         int inflight;
1067
1068         inflight = page_pool_release(pool);
1069         if (!inflight)
1070                 return;
1071
1072         /* Periodic warning for page pools the user can't see */
1073         netdev = READ_ONCE(pool->slow.netdev);
1074         if (time_after_eq(jiffies, pool->defer_warn) &&
1075             (!netdev || netdev == NET_PTR_POISON)) {
1076                 int sec = (s32)((u32)jiffies - (u32)pool->defer_start) / HZ;
1077
1078                 pr_warn("%s() stalled pool shutdown: id %u, %d inflight %d sec\n",
1079                         __func__, pool->user.id, inflight, sec);
1080                 pool->defer_warn = jiffies + DEFER_WARN_INTERVAL;
1081         }
1082
1083         /* Still not ready to be disconnected, retry later */
1084         schedule_delayed_work(&pool->release_dw, DEFER_TIME);
1085 }
1086
1087 void page_pool_use_xdp_mem(struct page_pool *pool, void (*disconnect)(void *),
1088                            const struct xdp_mem_info *mem)
1089 {
1090         refcount_inc(&pool->user_cnt);
1091         pool->disconnect = disconnect;
1092         pool->xdp_mem_id = mem->id;
1093 }
1094
1095 void page_pool_disable_direct_recycling(struct page_pool *pool)
1096 {
1097         /* Disable direct recycling based on pool->cpuid.
1098          * Paired with READ_ONCE() in page_pool_napi_local().
1099          */
1100         WRITE_ONCE(pool->cpuid, -1);
1101
1102         if (!pool->p.napi)
1103                 return;
1104
1105         /* To avoid races with recycling and additional barriers make sure
1106          * pool and NAPI are unlinked when NAPI is disabled.
1107          */
1108         WARN_ON(!test_bit(NAPI_STATE_SCHED, &pool->p.napi->state));
1109         WARN_ON(READ_ONCE(pool->p.napi->list_owner) != -1);
1110
1111         WRITE_ONCE(pool->p.napi, NULL);
1112 }
1113 EXPORT_SYMBOL(page_pool_disable_direct_recycling);
1114
1115 void page_pool_destroy(struct page_pool *pool)
1116 {
1117         if (!pool)
1118                 return;
1119
1120         if (!page_pool_put(pool))
1121                 return;
1122
1123         page_pool_disable_direct_recycling(pool);
1124         page_pool_free_frag(pool);
1125
1126         if (!page_pool_release(pool))
1127                 return;
1128
1129         page_pool_detached(pool);
1130         pool->defer_start = jiffies;
1131         pool->defer_warn  = jiffies + DEFER_WARN_INTERVAL;
1132
1133         INIT_DELAYED_WORK(&pool->release_dw, page_pool_release_retry);
1134         schedule_delayed_work(&pool->release_dw, DEFER_TIME);
1135 }
1136 EXPORT_SYMBOL(page_pool_destroy);
1137
1138 /* Caller must provide appropriate safe context, e.g. NAPI. */
1139 void page_pool_update_nid(struct page_pool *pool, int new_nid)
1140 {
1141         netmem_ref netmem;
1142
1143         trace_page_pool_update_nid(pool, new_nid);
1144         pool->p.nid = new_nid;
1145
1146         /* Flush pool alloc cache, as refill will check NUMA node */
1147         while (pool->alloc.count) {
1148                 netmem = pool->alloc.cache[--pool->alloc.count];
1149                 page_pool_return_page(pool, netmem);
1150         }
1151 }
1152 EXPORT_SYMBOL(page_pool_update_nid);
This page took 0.091824 seconds and 4 git commands to generate.