]> Git Repo - J-linux.git/blob - mm/zsmalloc.c
Merge tag 'vfs-6.13-rc7.fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs
[J-linux.git] / mm / zsmalloc.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2
3 /*
4  * zsmalloc memory allocator
5  *
6  * Copyright (C) 2011  Nitin Gupta
7  * Copyright (C) 2012, 2013 Minchan Kim
8  *
9  * This code is released using a dual license strategy: BSD/GPL
10  * You can choose the license that better fits your requirements.
11  *
12  * Released under the terms of 3-clause BSD License
13  * Released under the terms of GNU General Public License Version 2.0
14  */
15
16 /*
17  * Following is how we use various fields and flags of underlying
18  * struct page(s) to form a zspage.
19  *
20  * Usage of struct page fields:
21  *      page->private: points to zspage
22  *      page->index: links together all component pages of a zspage
23  *              For the huge page, this is always 0, so we use this field
24  *              to store handle.
25  *      page->page_type: PGTY_zsmalloc, lower 24 bits locate the first object
26  *              offset in a subpage of a zspage
27  *
28  * Usage of struct page flags:
29  *      PG_private: identifies the first component page
30  *      PG_owner_priv_1: identifies the huge component page
31  *
32  */
33
34 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
35
36 /*
37  * lock ordering:
38  *      page_lock
39  *      pool->migrate_lock
40  *      class->lock
41  *      zspage->lock
42  */
43
44 #include <linux/module.h>
45 #include <linux/kernel.h>
46 #include <linux/sched.h>
47 #include <linux/bitops.h>
48 #include <linux/errno.h>
49 #include <linux/highmem.h>
50 #include <linux/string.h>
51 #include <linux/slab.h>
52 #include <linux/pgtable.h>
53 #include <asm/tlbflush.h>
54 #include <linux/cpumask.h>
55 #include <linux/cpu.h>
56 #include <linux/vmalloc.h>
57 #include <linux/preempt.h>
58 #include <linux/spinlock.h>
59 #include <linux/sprintf.h>
60 #include <linux/shrinker.h>
61 #include <linux/types.h>
62 #include <linux/debugfs.h>
63 #include <linux/zsmalloc.h>
64 #include <linux/zpool.h>
65 #include <linux/migrate.h>
66 #include <linux/wait.h>
67 #include <linux/pagemap.h>
68 #include <linux/fs.h>
69 #include <linux/local_lock.h>
70
71 #define ZSPAGE_MAGIC    0x58
72
73 /*
74  * This must be power of 2 and greater than or equal to sizeof(link_free).
75  * These two conditions ensure that any 'struct link_free' itself doesn't
76  * span more than 1 page which avoids complex case of mapping 2 pages simply
77  * to restore link_free pointer values.
78  */
79 #define ZS_ALIGN                8
80
81 #define ZS_HANDLE_SIZE (sizeof(unsigned long))
82
83 /*
84  * Object location (<PFN>, <obj_idx>) is encoded as
85  * a single (unsigned long) handle value.
86  *
87  * Note that object index <obj_idx> starts from 0.
88  *
89  * This is made more complicated by various memory models and PAE.
90  */
91
92 #ifndef MAX_POSSIBLE_PHYSMEM_BITS
93 #ifdef MAX_PHYSMEM_BITS
94 #define MAX_POSSIBLE_PHYSMEM_BITS MAX_PHYSMEM_BITS
95 #else
96 /*
97  * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
98  * be PAGE_SHIFT
99  */
100 #define MAX_POSSIBLE_PHYSMEM_BITS BITS_PER_LONG
101 #endif
102 #endif
103
104 #define _PFN_BITS               (MAX_POSSIBLE_PHYSMEM_BITS - PAGE_SHIFT)
105
106 /*
107  * Head in allocated object should have OBJ_ALLOCATED_TAG
108  * to identify the object was allocated or not.
109  * It's okay to add the status bit in the least bit because
110  * header keeps handle which is 4byte-aligned address so we
111  * have room for two bit at least.
112  */
113 #define OBJ_ALLOCATED_TAG 1
114
115 #define OBJ_TAG_BITS    1
116 #define OBJ_TAG_MASK    OBJ_ALLOCATED_TAG
117
118 #define OBJ_INDEX_BITS  (BITS_PER_LONG - _PFN_BITS)
119 #define OBJ_INDEX_MASK  ((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
120
121 #define HUGE_BITS       1
122 #define FULLNESS_BITS   4
123 #define CLASS_BITS      8
124 #define MAGIC_VAL_BITS  8
125
126 #define ZS_MAX_PAGES_PER_ZSPAGE (_AC(CONFIG_ZSMALLOC_CHAIN_SIZE, UL))
127
128 /* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
129 #define ZS_MIN_ALLOC_SIZE \
130         MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
131 /* each chunk includes extra space to keep handle */
132 #define ZS_MAX_ALLOC_SIZE       PAGE_SIZE
133
134 /*
135  * On systems with 4K page size, this gives 255 size classes! There is a
136  * trader-off here:
137  *  - Large number of size classes is potentially wasteful as free page are
138  *    spread across these classes
139  *  - Small number of size classes causes large internal fragmentation
140  *  - Probably its better to use specific size classes (empirically
141  *    determined). NOTE: all those class sizes must be set as multiple of
142  *    ZS_ALIGN to make sure link_free itself never has to span 2 pages.
143  *
144  *  ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
145  *  (reason above)
146  */
147 #define ZS_SIZE_CLASS_DELTA     (PAGE_SIZE >> CLASS_BITS)
148 #define ZS_SIZE_CLASSES (DIV_ROUND_UP(ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE, \
149                                       ZS_SIZE_CLASS_DELTA) + 1)
150
151 /*
152  * Pages are distinguished by the ratio of used memory (that is the ratio
153  * of ->inuse objects to all objects that page can store). For example,
154  * INUSE_RATIO_10 means that the ratio of used objects is > 0% and <= 10%.
155  *
156  * The number of fullness groups is not random. It allows us to keep
157  * difference between the least busy page in the group (minimum permitted
158  * number of ->inuse objects) and the most busy page (maximum permitted
159  * number of ->inuse objects) at a reasonable value.
160  */
161 enum fullness_group {
162         ZS_INUSE_RATIO_0,
163         ZS_INUSE_RATIO_10,
164         /* NOTE: 8 more fullness groups here */
165         ZS_INUSE_RATIO_99       = 10,
166         ZS_INUSE_RATIO_100,
167         NR_FULLNESS_GROUPS,
168 };
169
170 enum class_stat_type {
171         /* NOTE: stats for 12 fullness groups here: from inuse 0 to 100 */
172         ZS_OBJS_ALLOCATED       = NR_FULLNESS_GROUPS,
173         ZS_OBJS_INUSE,
174         NR_CLASS_STAT_TYPES,
175 };
176
177 struct zs_size_stat {
178         unsigned long objs[NR_CLASS_STAT_TYPES];
179 };
180
181 #ifdef CONFIG_ZSMALLOC_STAT
182 static struct dentry *zs_stat_root;
183 #endif
184
185 static size_t huge_class_size;
186
187 struct size_class {
188         spinlock_t lock;
189         struct list_head fullness_list[NR_FULLNESS_GROUPS];
190         /*
191          * Size of objects stored in this class. Must be multiple
192          * of ZS_ALIGN.
193          */
194         int size;
195         int objs_per_zspage;
196         /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
197         int pages_per_zspage;
198
199         unsigned int index;
200         struct zs_size_stat stats;
201 };
202
203 /*
204  * Placed within free objects to form a singly linked list.
205  * For every zspage, zspage->freeobj gives head of this list.
206  *
207  * This must be power of 2 and less than or equal to ZS_ALIGN
208  */
209 struct link_free {
210         union {
211                 /*
212                  * Free object index;
213                  * It's valid for non-allocated object
214                  */
215                 unsigned long next;
216                 /*
217                  * Handle of allocated object.
218                  */
219                 unsigned long handle;
220         };
221 };
222
223 struct zs_pool {
224         const char *name;
225
226         struct size_class *size_class[ZS_SIZE_CLASSES];
227         struct kmem_cache *handle_cachep;
228         struct kmem_cache *zspage_cachep;
229
230         atomic_long_t pages_allocated;
231
232         struct zs_pool_stats stats;
233
234         /* Compact classes */
235         struct shrinker *shrinker;
236
237 #ifdef CONFIG_ZSMALLOC_STAT
238         struct dentry *stat_dentry;
239 #endif
240 #ifdef CONFIG_COMPACTION
241         struct work_struct free_work;
242 #endif
243         /* protect page/zspage migration */
244         rwlock_t migrate_lock;
245         atomic_t compaction_in_progress;
246 };
247
248 struct zspage {
249         struct {
250                 unsigned int huge:HUGE_BITS;
251                 unsigned int fullness:FULLNESS_BITS;
252                 unsigned int class:CLASS_BITS + 1;
253                 unsigned int magic:MAGIC_VAL_BITS;
254         };
255         unsigned int inuse;
256         unsigned int freeobj;
257         struct page *first_page;
258         struct list_head list; /* fullness list */
259         struct zs_pool *pool;
260         rwlock_t lock;
261 };
262
263 struct mapping_area {
264         local_lock_t lock;
265         char *vm_buf; /* copy buffer for objects that span pages */
266         char *vm_addr; /* address of kmap_local_page()'ed pages */
267         enum zs_mapmode vm_mm; /* mapping mode */
268 };
269
270 /* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */
271 static void SetZsHugePage(struct zspage *zspage)
272 {
273         zspage->huge = 1;
274 }
275
276 static bool ZsHugePage(struct zspage *zspage)
277 {
278         return zspage->huge;
279 }
280
281 static void migrate_lock_init(struct zspage *zspage);
282 static void migrate_read_lock(struct zspage *zspage);
283 static void migrate_read_unlock(struct zspage *zspage);
284 static void migrate_write_lock(struct zspage *zspage);
285 static void migrate_write_unlock(struct zspage *zspage);
286
287 #ifdef CONFIG_COMPACTION
288 static void kick_deferred_free(struct zs_pool *pool);
289 static void init_deferred_free(struct zs_pool *pool);
290 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage);
291 #else
292 static void kick_deferred_free(struct zs_pool *pool) {}
293 static void init_deferred_free(struct zs_pool *pool) {}
294 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) {}
295 #endif
296
297 static int create_cache(struct zs_pool *pool)
298 {
299         char *name;
300
301         name = kasprintf(GFP_KERNEL, "zs_handle-%s", pool->name);
302         if (!name)
303                 return -ENOMEM;
304         pool->handle_cachep = kmem_cache_create(name, ZS_HANDLE_SIZE,
305                                                 0, 0, NULL);
306         kfree(name);
307         if (!pool->handle_cachep)
308                 return -EINVAL;
309
310         name = kasprintf(GFP_KERNEL, "zspage-%s", pool->name);
311         if (!name)
312                 return -ENOMEM;
313         pool->zspage_cachep = kmem_cache_create(name, sizeof(struct zspage),
314                                                 0, 0, NULL);
315         kfree(name);
316         if (!pool->zspage_cachep) {
317                 kmem_cache_destroy(pool->handle_cachep);
318                 pool->handle_cachep = NULL;
319                 return -EINVAL;
320         }
321
322         return 0;
323 }
324
325 static void destroy_cache(struct zs_pool *pool)
326 {
327         kmem_cache_destroy(pool->handle_cachep);
328         kmem_cache_destroy(pool->zspage_cachep);
329 }
330
331 static unsigned long cache_alloc_handle(struct zs_pool *pool, gfp_t gfp)
332 {
333         return (unsigned long)kmem_cache_alloc(pool->handle_cachep,
334                         gfp & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
335 }
336
337 static void cache_free_handle(struct zs_pool *pool, unsigned long handle)
338 {
339         kmem_cache_free(pool->handle_cachep, (void *)handle);
340 }
341
342 static struct zspage *cache_alloc_zspage(struct zs_pool *pool, gfp_t flags)
343 {
344         return kmem_cache_zalloc(pool->zspage_cachep,
345                         flags & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
346 }
347
348 static void cache_free_zspage(struct zs_pool *pool, struct zspage *zspage)
349 {
350         kmem_cache_free(pool->zspage_cachep, zspage);
351 }
352
353 /* class->lock(which owns the handle) synchronizes races */
354 static void record_obj(unsigned long handle, unsigned long obj)
355 {
356         *(unsigned long *)handle = obj;
357 }
358
359 /* zpool driver */
360
361 #ifdef CONFIG_ZPOOL
362
363 static void *zs_zpool_create(const char *name, gfp_t gfp)
364 {
365         /*
366          * Ignore global gfp flags: zs_malloc() may be invoked from
367          * different contexts and its caller must provide a valid
368          * gfp mask.
369          */
370         return zs_create_pool(name);
371 }
372
373 static void zs_zpool_destroy(void *pool)
374 {
375         zs_destroy_pool(pool);
376 }
377
378 static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp,
379                         unsigned long *handle)
380 {
381         *handle = zs_malloc(pool, size, gfp);
382
383         if (IS_ERR_VALUE(*handle))
384                 return PTR_ERR((void *)*handle);
385         return 0;
386 }
387 static void zs_zpool_free(void *pool, unsigned long handle)
388 {
389         zs_free(pool, handle);
390 }
391
392 static void *zs_zpool_map(void *pool, unsigned long handle,
393                         enum zpool_mapmode mm)
394 {
395         enum zs_mapmode zs_mm;
396
397         switch (mm) {
398         case ZPOOL_MM_RO:
399                 zs_mm = ZS_MM_RO;
400                 break;
401         case ZPOOL_MM_WO:
402                 zs_mm = ZS_MM_WO;
403                 break;
404         case ZPOOL_MM_RW:
405         default:
406                 zs_mm = ZS_MM_RW;
407                 break;
408         }
409
410         return zs_map_object(pool, handle, zs_mm);
411 }
412 static void zs_zpool_unmap(void *pool, unsigned long handle)
413 {
414         zs_unmap_object(pool, handle);
415 }
416
417 static u64 zs_zpool_total_pages(void *pool)
418 {
419         return zs_get_total_pages(pool);
420 }
421
422 static struct zpool_driver zs_zpool_driver = {
423         .type =                   "zsmalloc",
424         .owner =                  THIS_MODULE,
425         .create =                 zs_zpool_create,
426         .destroy =                zs_zpool_destroy,
427         .malloc_support_movable = true,
428         .malloc =                 zs_zpool_malloc,
429         .free =                   zs_zpool_free,
430         .map =                    zs_zpool_map,
431         .unmap =                  zs_zpool_unmap,
432         .total_pages =            zs_zpool_total_pages,
433 };
434
435 MODULE_ALIAS("zpool-zsmalloc");
436 #endif /* CONFIG_ZPOOL */
437
438 /* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
439 static DEFINE_PER_CPU(struct mapping_area, zs_map_area) = {
440         .lock   = INIT_LOCAL_LOCK(lock),
441 };
442
443 static __maybe_unused int is_first_page(struct page *page)
444 {
445         return PagePrivate(page);
446 }
447
448 /* Protected by class->lock */
449 static inline int get_zspage_inuse(struct zspage *zspage)
450 {
451         return zspage->inuse;
452 }
453
454
455 static inline void mod_zspage_inuse(struct zspage *zspage, int val)
456 {
457         zspage->inuse += val;
458 }
459
460 static inline struct page *get_first_page(struct zspage *zspage)
461 {
462         struct page *first_page = zspage->first_page;
463
464         VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
465         return first_page;
466 }
467
468 #define FIRST_OBJ_PAGE_TYPE_MASK        0xffffff
469
470 static inline unsigned int get_first_obj_offset(struct page *page)
471 {
472         VM_WARN_ON_ONCE(!PageZsmalloc(page));
473         return page->page_type & FIRST_OBJ_PAGE_TYPE_MASK;
474 }
475
476 static inline void set_first_obj_offset(struct page *page, unsigned int offset)
477 {
478         /* With 24 bits available, we can support offsets into 16 MiB pages. */
479         BUILD_BUG_ON(PAGE_SIZE > SZ_16M);
480         VM_WARN_ON_ONCE(!PageZsmalloc(page));
481         VM_WARN_ON_ONCE(offset & ~FIRST_OBJ_PAGE_TYPE_MASK);
482         page->page_type &= ~FIRST_OBJ_PAGE_TYPE_MASK;
483         page->page_type |= offset & FIRST_OBJ_PAGE_TYPE_MASK;
484 }
485
486 static inline unsigned int get_freeobj(struct zspage *zspage)
487 {
488         return zspage->freeobj;
489 }
490
491 static inline void set_freeobj(struct zspage *zspage, unsigned int obj)
492 {
493         zspage->freeobj = obj;
494 }
495
496 static struct size_class *zspage_class(struct zs_pool *pool,
497                                        struct zspage *zspage)
498 {
499         return pool->size_class[zspage->class];
500 }
501
502 /*
503  * zsmalloc divides the pool into various size classes where each
504  * class maintains a list of zspages where each zspage is divided
505  * into equal sized chunks. Each allocation falls into one of these
506  * classes depending on its size. This function returns index of the
507  * size class which has chunk size big enough to hold the given size.
508  */
509 static int get_size_class_index(int size)
510 {
511         int idx = 0;
512
513         if (likely(size > ZS_MIN_ALLOC_SIZE))
514                 idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
515                                 ZS_SIZE_CLASS_DELTA);
516
517         return min_t(int, ZS_SIZE_CLASSES - 1, idx);
518 }
519
520 static inline void class_stat_add(struct size_class *class, int type,
521                                   unsigned long cnt)
522 {
523         class->stats.objs[type] += cnt;
524 }
525
526 static inline void class_stat_sub(struct size_class *class, int type,
527                                   unsigned long cnt)
528 {
529         class->stats.objs[type] -= cnt;
530 }
531
532 static inline unsigned long class_stat_read(struct size_class *class, int type)
533 {
534         return class->stats.objs[type];
535 }
536
537 #ifdef CONFIG_ZSMALLOC_STAT
538
539 static void __init zs_stat_init(void)
540 {
541         if (!debugfs_initialized()) {
542                 pr_warn("debugfs not available, stat dir not created\n");
543                 return;
544         }
545
546         zs_stat_root = debugfs_create_dir("zsmalloc", NULL);
547 }
548
549 static void __exit zs_stat_exit(void)
550 {
551         debugfs_remove_recursive(zs_stat_root);
552 }
553
554 static unsigned long zs_can_compact(struct size_class *class);
555
556 static int zs_stats_size_show(struct seq_file *s, void *v)
557 {
558         int i, fg;
559         struct zs_pool *pool = s->private;
560         struct size_class *class;
561         int objs_per_zspage;
562         unsigned long obj_allocated, obj_used, pages_used, freeable;
563         unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0;
564         unsigned long total_freeable = 0;
565         unsigned long inuse_totals[NR_FULLNESS_GROUPS] = {0, };
566
567         seq_printf(s, " %5s %5s %9s %9s %9s %9s %9s %9s %9s %9s %9s %9s %9s %13s %10s %10s %16s %8s\n",
568                         "class", "size", "10%", "20%", "30%", "40%",
569                         "50%", "60%", "70%", "80%", "90%", "99%", "100%",
570                         "obj_allocated", "obj_used", "pages_used",
571                         "pages_per_zspage", "freeable");
572
573         for (i = 0; i < ZS_SIZE_CLASSES; i++) {
574
575                 class = pool->size_class[i];
576
577                 if (class->index != i)
578                         continue;
579
580                 spin_lock(&class->lock);
581
582                 seq_printf(s, " %5u %5u ", i, class->size);
583                 for (fg = ZS_INUSE_RATIO_10; fg < NR_FULLNESS_GROUPS; fg++) {
584                         inuse_totals[fg] += class_stat_read(class, fg);
585                         seq_printf(s, "%9lu ", class_stat_read(class, fg));
586                 }
587
588                 obj_allocated = class_stat_read(class, ZS_OBJS_ALLOCATED);
589                 obj_used = class_stat_read(class, ZS_OBJS_INUSE);
590                 freeable = zs_can_compact(class);
591                 spin_unlock(&class->lock);
592
593                 objs_per_zspage = class->objs_per_zspage;
594                 pages_used = obj_allocated / objs_per_zspage *
595                                 class->pages_per_zspage;
596
597                 seq_printf(s, "%13lu %10lu %10lu %16d %8lu\n",
598                            obj_allocated, obj_used, pages_used,
599                            class->pages_per_zspage, freeable);
600
601                 total_objs += obj_allocated;
602                 total_used_objs += obj_used;
603                 total_pages += pages_used;
604                 total_freeable += freeable;
605         }
606
607         seq_puts(s, "\n");
608         seq_printf(s, " %5s %5s ", "Total", "");
609
610         for (fg = ZS_INUSE_RATIO_10; fg < NR_FULLNESS_GROUPS; fg++)
611                 seq_printf(s, "%9lu ", inuse_totals[fg]);
612
613         seq_printf(s, "%13lu %10lu %10lu %16s %8lu\n",
614                    total_objs, total_used_objs, total_pages, "",
615                    total_freeable);
616
617         return 0;
618 }
619 DEFINE_SHOW_ATTRIBUTE(zs_stats_size);
620
621 static void zs_pool_stat_create(struct zs_pool *pool, const char *name)
622 {
623         if (!zs_stat_root) {
624                 pr_warn("no root stat dir, not creating <%s> stat dir\n", name);
625                 return;
626         }
627
628         pool->stat_dentry = debugfs_create_dir(name, zs_stat_root);
629
630         debugfs_create_file("classes", S_IFREG | 0444, pool->stat_dentry, pool,
631                             &zs_stats_size_fops);
632 }
633
634 static void zs_pool_stat_destroy(struct zs_pool *pool)
635 {
636         debugfs_remove_recursive(pool->stat_dentry);
637 }
638
639 #else /* CONFIG_ZSMALLOC_STAT */
640 static void __init zs_stat_init(void)
641 {
642 }
643
644 static void __exit zs_stat_exit(void)
645 {
646 }
647
648 static inline void zs_pool_stat_create(struct zs_pool *pool, const char *name)
649 {
650 }
651
652 static inline void zs_pool_stat_destroy(struct zs_pool *pool)
653 {
654 }
655 #endif
656
657
658 /*
659  * For each size class, zspages are divided into different groups
660  * depending on their usage ratio. This function returns fullness
661  * status of the given page.
662  */
663 static int get_fullness_group(struct size_class *class, struct zspage *zspage)
664 {
665         int inuse, objs_per_zspage, ratio;
666
667         inuse = get_zspage_inuse(zspage);
668         objs_per_zspage = class->objs_per_zspage;
669
670         if (inuse == 0)
671                 return ZS_INUSE_RATIO_0;
672         if (inuse == objs_per_zspage)
673                 return ZS_INUSE_RATIO_100;
674
675         ratio = 100 * inuse / objs_per_zspage;
676         /*
677          * Take integer division into consideration: a page with one inuse
678          * object out of 127 possible, will end up having 0 usage ratio,
679          * which is wrong as it belongs in ZS_INUSE_RATIO_10 fullness group.
680          */
681         return ratio / 10 + 1;
682 }
683
684 /*
685  * Each size class maintains various freelists and zspages are assigned
686  * to one of these freelists based on the number of live objects they
687  * have. This functions inserts the given zspage into the freelist
688  * identified by <class, fullness_group>.
689  */
690 static void insert_zspage(struct size_class *class,
691                                 struct zspage *zspage,
692                                 int fullness)
693 {
694         class_stat_add(class, fullness, 1);
695         list_add(&zspage->list, &class->fullness_list[fullness]);
696         zspage->fullness = fullness;
697 }
698
699 /*
700  * This function removes the given zspage from the freelist identified
701  * by <class, fullness_group>.
702  */
703 static void remove_zspage(struct size_class *class, struct zspage *zspage)
704 {
705         int fullness = zspage->fullness;
706
707         VM_BUG_ON(list_empty(&class->fullness_list[fullness]));
708
709         list_del_init(&zspage->list);
710         class_stat_sub(class, fullness, 1);
711 }
712
713 /*
714  * Each size class maintains zspages in different fullness groups depending
715  * on the number of live objects they contain. When allocating or freeing
716  * objects, the fullness status of the page can change, for instance, from
717  * INUSE_RATIO_80 to INUSE_RATIO_70 when freeing an object. This function
718  * checks if such a status change has occurred for the given page and
719  * accordingly moves the page from the list of the old fullness group to that
720  * of the new fullness group.
721  */
722 static int fix_fullness_group(struct size_class *class, struct zspage *zspage)
723 {
724         int newfg;
725
726         newfg = get_fullness_group(class, zspage);
727         if (newfg == zspage->fullness)
728                 goto out;
729
730         remove_zspage(class, zspage);
731         insert_zspage(class, zspage, newfg);
732 out:
733         return newfg;
734 }
735
736 static struct zspage *get_zspage(struct page *page)
737 {
738         struct zspage *zspage = (struct zspage *)page_private(page);
739
740         BUG_ON(zspage->magic != ZSPAGE_MAGIC);
741         return zspage;
742 }
743
744 static struct page *get_next_page(struct page *page)
745 {
746         struct zspage *zspage = get_zspage(page);
747
748         if (unlikely(ZsHugePage(zspage)))
749                 return NULL;
750
751         return (struct page *)page->index;
752 }
753
754 /**
755  * obj_to_location - get (<page>, <obj_idx>) from encoded object value
756  * @obj: the encoded object value
757  * @page: page object resides in zspage
758  * @obj_idx: object index
759  */
760 static void obj_to_location(unsigned long obj, struct page **page,
761                                 unsigned int *obj_idx)
762 {
763         *page = pfn_to_page(obj >> OBJ_INDEX_BITS);
764         *obj_idx = (obj & OBJ_INDEX_MASK);
765 }
766
767 static void obj_to_page(unsigned long obj, struct page **page)
768 {
769         *page = pfn_to_page(obj >> OBJ_INDEX_BITS);
770 }
771
772 /**
773  * location_to_obj - get obj value encoded from (<page>, <obj_idx>)
774  * @page: page object resides in zspage
775  * @obj_idx: object index
776  */
777 static unsigned long location_to_obj(struct page *page, unsigned int obj_idx)
778 {
779         unsigned long obj;
780
781         obj = page_to_pfn(page) << OBJ_INDEX_BITS;
782         obj |= obj_idx & OBJ_INDEX_MASK;
783
784         return obj;
785 }
786
787 static unsigned long handle_to_obj(unsigned long handle)
788 {
789         return *(unsigned long *)handle;
790 }
791
792 static inline bool obj_allocated(struct page *page, void *obj,
793                                  unsigned long *phandle)
794 {
795         unsigned long handle;
796         struct zspage *zspage = get_zspage(page);
797
798         if (unlikely(ZsHugePage(zspage))) {
799                 VM_BUG_ON_PAGE(!is_first_page(page), page);
800                 handle = page->index;
801         } else
802                 handle = *(unsigned long *)obj;
803
804         if (!(handle & OBJ_ALLOCATED_TAG))
805                 return false;
806
807         /* Clear all tags before returning the handle */
808         *phandle = handle & ~OBJ_TAG_MASK;
809         return true;
810 }
811
812 static void reset_page(struct page *page)
813 {
814         __ClearPageMovable(page);
815         ClearPagePrivate(page);
816         set_page_private(page, 0);
817         page->index = 0;
818         __ClearPageZsmalloc(page);
819 }
820
821 static int trylock_zspage(struct zspage *zspage)
822 {
823         struct page *cursor, *fail;
824
825         for (cursor = get_first_page(zspage); cursor != NULL; cursor =
826                                         get_next_page(cursor)) {
827                 if (!trylock_page(cursor)) {
828                         fail = cursor;
829                         goto unlock;
830                 }
831         }
832
833         return 1;
834 unlock:
835         for (cursor = get_first_page(zspage); cursor != fail; cursor =
836                                         get_next_page(cursor))
837                 unlock_page(cursor);
838
839         return 0;
840 }
841
842 static void __free_zspage(struct zs_pool *pool, struct size_class *class,
843                                 struct zspage *zspage)
844 {
845         struct page *page, *next;
846
847         assert_spin_locked(&class->lock);
848
849         VM_BUG_ON(get_zspage_inuse(zspage));
850         VM_BUG_ON(zspage->fullness != ZS_INUSE_RATIO_0);
851
852         next = page = get_first_page(zspage);
853         do {
854                 VM_BUG_ON_PAGE(!PageLocked(page), page);
855                 next = get_next_page(page);
856                 reset_page(page);
857                 unlock_page(page);
858                 dec_zone_page_state(page, NR_ZSPAGES);
859                 put_page(page);
860                 page = next;
861         } while (page != NULL);
862
863         cache_free_zspage(pool, zspage);
864
865         class_stat_sub(class, ZS_OBJS_ALLOCATED, class->objs_per_zspage);
866         atomic_long_sub(class->pages_per_zspage, &pool->pages_allocated);
867 }
868
869 static void free_zspage(struct zs_pool *pool, struct size_class *class,
870                                 struct zspage *zspage)
871 {
872         VM_BUG_ON(get_zspage_inuse(zspage));
873         VM_BUG_ON(list_empty(&zspage->list));
874
875         /*
876          * Since zs_free couldn't be sleepable, this function cannot call
877          * lock_page. The page locks trylock_zspage got will be released
878          * by __free_zspage.
879          */
880         if (!trylock_zspage(zspage)) {
881                 kick_deferred_free(pool);
882                 return;
883         }
884
885         remove_zspage(class, zspage);
886         __free_zspage(pool, class, zspage);
887 }
888
889 /* Initialize a newly allocated zspage */
890 static void init_zspage(struct size_class *class, struct zspage *zspage)
891 {
892         unsigned int freeobj = 1;
893         unsigned long off = 0;
894         struct page *page = get_first_page(zspage);
895
896         while (page) {
897                 struct page *next_page;
898                 struct link_free *link;
899                 void *vaddr;
900
901                 set_first_obj_offset(page, off);
902
903                 vaddr = kmap_local_page(page);
904                 link = (struct link_free *)vaddr + off / sizeof(*link);
905
906                 while ((off += class->size) < PAGE_SIZE) {
907                         link->next = freeobj++ << OBJ_TAG_BITS;
908                         link += class->size / sizeof(*link);
909                 }
910
911                 /*
912                  * We now come to the last (full or partial) object on this
913                  * page, which must point to the first object on the next
914                  * page (if present)
915                  */
916                 next_page = get_next_page(page);
917                 if (next_page) {
918                         link->next = freeobj++ << OBJ_TAG_BITS;
919                 } else {
920                         /*
921                          * Reset OBJ_TAG_BITS bit to last link to tell
922                          * whether it's allocated object or not.
923                          */
924                         link->next = -1UL << OBJ_TAG_BITS;
925                 }
926                 kunmap_local(vaddr);
927                 page = next_page;
928                 off %= PAGE_SIZE;
929         }
930
931         set_freeobj(zspage, 0);
932 }
933
934 static void create_page_chain(struct size_class *class, struct zspage *zspage,
935                                 struct page *pages[])
936 {
937         int i;
938         struct page *page;
939         struct page *prev_page = NULL;
940         int nr_pages = class->pages_per_zspage;
941
942         /*
943          * Allocate individual pages and link them together as:
944          * 1. all pages are linked together using page->index
945          * 2. each sub-page point to zspage using page->private
946          *
947          * we set PG_private to identify the first page (i.e. no other sub-page
948          * has this flag set).
949          */
950         for (i = 0; i < nr_pages; i++) {
951                 page = pages[i];
952                 set_page_private(page, (unsigned long)zspage);
953                 page->index = 0;
954                 if (i == 0) {
955                         zspage->first_page = page;
956                         SetPagePrivate(page);
957                         if (unlikely(class->objs_per_zspage == 1 &&
958                                         class->pages_per_zspage == 1))
959                                 SetZsHugePage(zspage);
960                 } else {
961                         prev_page->index = (unsigned long)page;
962                 }
963                 prev_page = page;
964         }
965 }
966
967 /*
968  * Allocate a zspage for the given size class
969  */
970 static struct zspage *alloc_zspage(struct zs_pool *pool,
971                                         struct size_class *class,
972                                         gfp_t gfp)
973 {
974         int i;
975         struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE];
976         struct zspage *zspage = cache_alloc_zspage(pool, gfp);
977
978         if (!zspage)
979                 return NULL;
980
981         zspage->magic = ZSPAGE_MAGIC;
982         migrate_lock_init(zspage);
983
984         for (i = 0; i < class->pages_per_zspage; i++) {
985                 struct page *page;
986
987                 page = alloc_page(gfp);
988                 if (!page) {
989                         while (--i >= 0) {
990                                 dec_zone_page_state(pages[i], NR_ZSPAGES);
991                                 __ClearPageZsmalloc(pages[i]);
992                                 __free_page(pages[i]);
993                         }
994                         cache_free_zspage(pool, zspage);
995                         return NULL;
996                 }
997                 __SetPageZsmalloc(page);
998
999                 inc_zone_page_state(page, NR_ZSPAGES);
1000                 pages[i] = page;
1001         }
1002
1003         create_page_chain(class, zspage, pages);
1004         init_zspage(class, zspage);
1005         zspage->pool = pool;
1006         zspage->class = class->index;
1007
1008         return zspage;
1009 }
1010
1011 static struct zspage *find_get_zspage(struct size_class *class)
1012 {
1013         int i;
1014         struct zspage *zspage;
1015
1016         for (i = ZS_INUSE_RATIO_99; i >= ZS_INUSE_RATIO_0; i--) {
1017                 zspage = list_first_entry_or_null(&class->fullness_list[i],
1018                                                   struct zspage, list);
1019                 if (zspage)
1020                         break;
1021         }
1022
1023         return zspage;
1024 }
1025
1026 static inline int __zs_cpu_up(struct mapping_area *area)
1027 {
1028         /*
1029          * Make sure we don't leak memory if a cpu UP notification
1030          * and zs_init() race and both call zs_cpu_up() on the same cpu
1031          */
1032         if (area->vm_buf)
1033                 return 0;
1034         area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL);
1035         if (!area->vm_buf)
1036                 return -ENOMEM;
1037         return 0;
1038 }
1039
1040 static inline void __zs_cpu_down(struct mapping_area *area)
1041 {
1042         kfree(area->vm_buf);
1043         area->vm_buf = NULL;
1044 }
1045
1046 static void *__zs_map_object(struct mapping_area *area,
1047                         struct page *pages[2], int off, int size)
1048 {
1049         size_t sizes[2];
1050         char *buf = area->vm_buf;
1051
1052         /* disable page faults to match kmap_local_page() return conditions */
1053         pagefault_disable();
1054
1055         /* no read fastpath */
1056         if (area->vm_mm == ZS_MM_WO)
1057                 goto out;
1058
1059         sizes[0] = PAGE_SIZE - off;
1060         sizes[1] = size - sizes[0];
1061
1062         /* copy object to per-cpu buffer */
1063         memcpy_from_page(buf, pages[0], off, sizes[0]);
1064         memcpy_from_page(buf + sizes[0], pages[1], 0, sizes[1]);
1065 out:
1066         return area->vm_buf;
1067 }
1068
1069 static void __zs_unmap_object(struct mapping_area *area,
1070                         struct page *pages[2], int off, int size)
1071 {
1072         size_t sizes[2];
1073         char *buf;
1074
1075         /* no write fastpath */
1076         if (area->vm_mm == ZS_MM_RO)
1077                 goto out;
1078
1079         buf = area->vm_buf;
1080         buf = buf + ZS_HANDLE_SIZE;
1081         size -= ZS_HANDLE_SIZE;
1082         off += ZS_HANDLE_SIZE;
1083
1084         sizes[0] = PAGE_SIZE - off;
1085         sizes[1] = size - sizes[0];
1086
1087         /* copy per-cpu buffer to object */
1088         memcpy_to_page(pages[0], off, buf, sizes[0]);
1089         memcpy_to_page(pages[1], 0, buf + sizes[0], sizes[1]);
1090
1091 out:
1092         /* enable page faults to match kunmap_local() return conditions */
1093         pagefault_enable();
1094 }
1095
1096 static int zs_cpu_prepare(unsigned int cpu)
1097 {
1098         struct mapping_area *area;
1099
1100         area = &per_cpu(zs_map_area, cpu);
1101         return __zs_cpu_up(area);
1102 }
1103
1104 static int zs_cpu_dead(unsigned int cpu)
1105 {
1106         struct mapping_area *area;
1107
1108         area = &per_cpu(zs_map_area, cpu);
1109         __zs_cpu_down(area);
1110         return 0;
1111 }
1112
1113 static bool can_merge(struct size_class *prev, int pages_per_zspage,
1114                                         int objs_per_zspage)
1115 {
1116         if (prev->pages_per_zspage == pages_per_zspage &&
1117                 prev->objs_per_zspage == objs_per_zspage)
1118                 return true;
1119
1120         return false;
1121 }
1122
1123 static bool zspage_full(struct size_class *class, struct zspage *zspage)
1124 {
1125         return get_zspage_inuse(zspage) == class->objs_per_zspage;
1126 }
1127
1128 static bool zspage_empty(struct zspage *zspage)
1129 {
1130         return get_zspage_inuse(zspage) == 0;
1131 }
1132
1133 /**
1134  * zs_lookup_class_index() - Returns index of the zsmalloc &size_class
1135  * that hold objects of the provided size.
1136  * @pool: zsmalloc pool to use
1137  * @size: object size
1138  *
1139  * Context: Any context.
1140  *
1141  * Return: the index of the zsmalloc &size_class that hold objects of the
1142  * provided size.
1143  */
1144 unsigned int zs_lookup_class_index(struct zs_pool *pool, unsigned int size)
1145 {
1146         struct size_class *class;
1147
1148         class = pool->size_class[get_size_class_index(size)];
1149
1150         return class->index;
1151 }
1152 EXPORT_SYMBOL_GPL(zs_lookup_class_index);
1153
1154 unsigned long zs_get_total_pages(struct zs_pool *pool)
1155 {
1156         return atomic_long_read(&pool->pages_allocated);
1157 }
1158 EXPORT_SYMBOL_GPL(zs_get_total_pages);
1159
1160 /**
1161  * zs_map_object - get address of allocated object from handle.
1162  * @pool: pool from which the object was allocated
1163  * @handle: handle returned from zs_malloc
1164  * @mm: mapping mode to use
1165  *
1166  * Before using an object allocated from zs_malloc, it must be mapped using
1167  * this function. When done with the object, it must be unmapped using
1168  * zs_unmap_object.
1169  *
1170  * Only one object can be mapped per cpu at a time. There is no protection
1171  * against nested mappings.
1172  *
1173  * This function returns with preemption and page faults disabled.
1174  */
1175 void *zs_map_object(struct zs_pool *pool, unsigned long handle,
1176                         enum zs_mapmode mm)
1177 {
1178         struct zspage *zspage;
1179         struct page *page;
1180         unsigned long obj, off;
1181         unsigned int obj_idx;
1182
1183         struct size_class *class;
1184         struct mapping_area *area;
1185         struct page *pages[2];
1186         void *ret;
1187
1188         /*
1189          * Because we use per-cpu mapping areas shared among the
1190          * pools/users, we can't allow mapping in interrupt context
1191          * because it can corrupt another users mappings.
1192          */
1193         BUG_ON(in_interrupt());
1194
1195         /* It guarantees it can get zspage from handle safely */
1196         read_lock(&pool->migrate_lock);
1197         obj = handle_to_obj(handle);
1198         obj_to_location(obj, &page, &obj_idx);
1199         zspage = get_zspage(page);
1200
1201         /*
1202          * migration cannot move any zpages in this zspage. Here, class->lock
1203          * is too heavy since callers would take some time until they calls
1204          * zs_unmap_object API so delegate the locking from class to zspage
1205          * which is smaller granularity.
1206          */
1207         migrate_read_lock(zspage);
1208         read_unlock(&pool->migrate_lock);
1209
1210         class = zspage_class(pool, zspage);
1211         off = offset_in_page(class->size * obj_idx);
1212
1213         local_lock(&zs_map_area.lock);
1214         area = this_cpu_ptr(&zs_map_area);
1215         area->vm_mm = mm;
1216         if (off + class->size <= PAGE_SIZE) {
1217                 /* this object is contained entirely within a page */
1218                 area->vm_addr = kmap_local_page(page);
1219                 ret = area->vm_addr + off;
1220                 goto out;
1221         }
1222
1223         /* this object spans two pages */
1224         pages[0] = page;
1225         pages[1] = get_next_page(page);
1226         BUG_ON(!pages[1]);
1227
1228         ret = __zs_map_object(area, pages, off, class->size);
1229 out:
1230         if (likely(!ZsHugePage(zspage)))
1231                 ret += ZS_HANDLE_SIZE;
1232
1233         return ret;
1234 }
1235 EXPORT_SYMBOL_GPL(zs_map_object);
1236
1237 void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
1238 {
1239         struct zspage *zspage;
1240         struct page *page;
1241         unsigned long obj, off;
1242         unsigned int obj_idx;
1243
1244         struct size_class *class;
1245         struct mapping_area *area;
1246
1247         obj = handle_to_obj(handle);
1248         obj_to_location(obj, &page, &obj_idx);
1249         zspage = get_zspage(page);
1250         class = zspage_class(pool, zspage);
1251         off = offset_in_page(class->size * obj_idx);
1252
1253         area = this_cpu_ptr(&zs_map_area);
1254         if (off + class->size <= PAGE_SIZE)
1255                 kunmap_local(area->vm_addr);
1256         else {
1257                 struct page *pages[2];
1258
1259                 pages[0] = page;
1260                 pages[1] = get_next_page(page);
1261                 BUG_ON(!pages[1]);
1262
1263                 __zs_unmap_object(area, pages, off, class->size);
1264         }
1265         local_unlock(&zs_map_area.lock);
1266
1267         migrate_read_unlock(zspage);
1268 }
1269 EXPORT_SYMBOL_GPL(zs_unmap_object);
1270
1271 /**
1272  * zs_huge_class_size() - Returns the size (in bytes) of the first huge
1273  *                        zsmalloc &size_class.
1274  * @pool: zsmalloc pool to use
1275  *
1276  * The function returns the size of the first huge class - any object of equal
1277  * or bigger size will be stored in zspage consisting of a single physical
1278  * page.
1279  *
1280  * Context: Any context.
1281  *
1282  * Return: the size (in bytes) of the first huge zsmalloc &size_class.
1283  */
1284 size_t zs_huge_class_size(struct zs_pool *pool)
1285 {
1286         return huge_class_size;
1287 }
1288 EXPORT_SYMBOL_GPL(zs_huge_class_size);
1289
1290 static unsigned long obj_malloc(struct zs_pool *pool,
1291                                 struct zspage *zspage, unsigned long handle)
1292 {
1293         int i, nr_page, offset;
1294         unsigned long obj;
1295         struct link_free *link;
1296         struct size_class *class;
1297
1298         struct page *m_page;
1299         unsigned long m_offset;
1300         void *vaddr;
1301
1302         class = pool->size_class[zspage->class];
1303         obj = get_freeobj(zspage);
1304
1305         offset = obj * class->size;
1306         nr_page = offset >> PAGE_SHIFT;
1307         m_offset = offset_in_page(offset);
1308         m_page = get_first_page(zspage);
1309
1310         for (i = 0; i < nr_page; i++)
1311                 m_page = get_next_page(m_page);
1312
1313         vaddr = kmap_local_page(m_page);
1314         link = (struct link_free *)vaddr + m_offset / sizeof(*link);
1315         set_freeobj(zspage, link->next >> OBJ_TAG_BITS);
1316         if (likely(!ZsHugePage(zspage)))
1317                 /* record handle in the header of allocated chunk */
1318                 link->handle = handle | OBJ_ALLOCATED_TAG;
1319         else
1320                 /* record handle to page->index */
1321                 zspage->first_page->index = handle | OBJ_ALLOCATED_TAG;
1322
1323         kunmap_local(vaddr);
1324         mod_zspage_inuse(zspage, 1);
1325
1326         obj = location_to_obj(m_page, obj);
1327         record_obj(handle, obj);
1328
1329         return obj;
1330 }
1331
1332
1333 /**
1334  * zs_malloc - Allocate block of given size from pool.
1335  * @pool: pool to allocate from
1336  * @size: size of block to allocate
1337  * @gfp: gfp flags when allocating object
1338  *
1339  * On success, handle to the allocated object is returned,
1340  * otherwise an ERR_PTR().
1341  * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
1342  */
1343 unsigned long zs_malloc(struct zs_pool *pool, size_t size, gfp_t gfp)
1344 {
1345         unsigned long handle;
1346         struct size_class *class;
1347         int newfg;
1348         struct zspage *zspage;
1349
1350         if (unlikely(!size))
1351                 return (unsigned long)ERR_PTR(-EINVAL);
1352
1353         if (unlikely(size > ZS_MAX_ALLOC_SIZE))
1354                 return (unsigned long)ERR_PTR(-ENOSPC);
1355
1356         handle = cache_alloc_handle(pool, gfp);
1357         if (!handle)
1358                 return (unsigned long)ERR_PTR(-ENOMEM);
1359
1360         /* extra space in chunk to keep the handle */
1361         size += ZS_HANDLE_SIZE;
1362         class = pool->size_class[get_size_class_index(size)];
1363
1364         /* class->lock effectively protects the zpage migration */
1365         spin_lock(&class->lock);
1366         zspage = find_get_zspage(class);
1367         if (likely(zspage)) {
1368                 obj_malloc(pool, zspage, handle);
1369                 /* Now move the zspage to another fullness group, if required */
1370                 fix_fullness_group(class, zspage);
1371                 class_stat_add(class, ZS_OBJS_INUSE, 1);
1372
1373                 goto out;
1374         }
1375
1376         spin_unlock(&class->lock);
1377
1378         zspage = alloc_zspage(pool, class, gfp);
1379         if (!zspage) {
1380                 cache_free_handle(pool, handle);
1381                 return (unsigned long)ERR_PTR(-ENOMEM);
1382         }
1383
1384         spin_lock(&class->lock);
1385         obj_malloc(pool, zspage, handle);
1386         newfg = get_fullness_group(class, zspage);
1387         insert_zspage(class, zspage, newfg);
1388         atomic_long_add(class->pages_per_zspage, &pool->pages_allocated);
1389         class_stat_add(class, ZS_OBJS_ALLOCATED, class->objs_per_zspage);
1390         class_stat_add(class, ZS_OBJS_INUSE, 1);
1391
1392         /* We completely set up zspage so mark them as movable */
1393         SetZsPageMovable(pool, zspage);
1394 out:
1395         spin_unlock(&class->lock);
1396
1397         return handle;
1398 }
1399 EXPORT_SYMBOL_GPL(zs_malloc);
1400
1401 static void obj_free(int class_size, unsigned long obj)
1402 {
1403         struct link_free *link;
1404         struct zspage *zspage;
1405         struct page *f_page;
1406         unsigned long f_offset;
1407         unsigned int f_objidx;
1408         void *vaddr;
1409
1410         obj_to_location(obj, &f_page, &f_objidx);
1411         f_offset = offset_in_page(class_size * f_objidx);
1412         zspage = get_zspage(f_page);
1413
1414         vaddr = kmap_local_page(f_page);
1415         link = (struct link_free *)(vaddr + f_offset);
1416
1417         /* Insert this object in containing zspage's freelist */
1418         if (likely(!ZsHugePage(zspage)))
1419                 link->next = get_freeobj(zspage) << OBJ_TAG_BITS;
1420         else
1421                 f_page->index = 0;
1422         set_freeobj(zspage, f_objidx);
1423
1424         kunmap_local(vaddr);
1425         mod_zspage_inuse(zspage, -1);
1426 }
1427
1428 void zs_free(struct zs_pool *pool, unsigned long handle)
1429 {
1430         struct zspage *zspage;
1431         struct page *f_page;
1432         unsigned long obj;
1433         struct size_class *class;
1434         int fullness;
1435
1436         if (IS_ERR_OR_NULL((void *)handle))
1437                 return;
1438
1439         /*
1440          * The pool->migrate_lock protects the race with zpage's migration
1441          * so it's safe to get the page from handle.
1442          */
1443         read_lock(&pool->migrate_lock);
1444         obj = handle_to_obj(handle);
1445         obj_to_page(obj, &f_page);
1446         zspage = get_zspage(f_page);
1447         class = zspage_class(pool, zspage);
1448         spin_lock(&class->lock);
1449         read_unlock(&pool->migrate_lock);
1450
1451         class_stat_sub(class, ZS_OBJS_INUSE, 1);
1452         obj_free(class->size, obj);
1453
1454         fullness = fix_fullness_group(class, zspage);
1455         if (fullness == ZS_INUSE_RATIO_0)
1456                 free_zspage(pool, class, zspage);
1457
1458         spin_unlock(&class->lock);
1459         cache_free_handle(pool, handle);
1460 }
1461 EXPORT_SYMBOL_GPL(zs_free);
1462
1463 static void zs_object_copy(struct size_class *class, unsigned long dst,
1464                                 unsigned long src)
1465 {
1466         struct page *s_page, *d_page;
1467         unsigned int s_objidx, d_objidx;
1468         unsigned long s_off, d_off;
1469         void *s_addr, *d_addr;
1470         int s_size, d_size, size;
1471         int written = 0;
1472
1473         s_size = d_size = class->size;
1474
1475         obj_to_location(src, &s_page, &s_objidx);
1476         obj_to_location(dst, &d_page, &d_objidx);
1477
1478         s_off = offset_in_page(class->size * s_objidx);
1479         d_off = offset_in_page(class->size * d_objidx);
1480
1481         if (s_off + class->size > PAGE_SIZE)
1482                 s_size = PAGE_SIZE - s_off;
1483
1484         if (d_off + class->size > PAGE_SIZE)
1485                 d_size = PAGE_SIZE - d_off;
1486
1487         s_addr = kmap_local_page(s_page);
1488         d_addr = kmap_local_page(d_page);
1489
1490         while (1) {
1491                 size = min(s_size, d_size);
1492                 memcpy(d_addr + d_off, s_addr + s_off, size);
1493                 written += size;
1494
1495                 if (written == class->size)
1496                         break;
1497
1498                 s_off += size;
1499                 s_size -= size;
1500                 d_off += size;
1501                 d_size -= size;
1502
1503                 /*
1504                  * Calling kunmap_local(d_addr) is necessary. kunmap_local()
1505                  * calls must occurs in reverse order of calls to kmap_local_page().
1506                  * So, to call kunmap_local(s_addr) we should first call
1507                  * kunmap_local(d_addr). For more details see
1508                  * Documentation/mm/highmem.rst.
1509                  */
1510                 if (s_off >= PAGE_SIZE) {
1511                         kunmap_local(d_addr);
1512                         kunmap_local(s_addr);
1513                         s_page = get_next_page(s_page);
1514                         s_addr = kmap_local_page(s_page);
1515                         d_addr = kmap_local_page(d_page);
1516                         s_size = class->size - written;
1517                         s_off = 0;
1518                 }
1519
1520                 if (d_off >= PAGE_SIZE) {
1521                         kunmap_local(d_addr);
1522                         d_page = get_next_page(d_page);
1523                         d_addr = kmap_local_page(d_page);
1524                         d_size = class->size - written;
1525                         d_off = 0;
1526                 }
1527         }
1528
1529         kunmap_local(d_addr);
1530         kunmap_local(s_addr);
1531 }
1532
1533 /*
1534  * Find alloced object in zspage from index object and
1535  * return handle.
1536  */
1537 static unsigned long find_alloced_obj(struct size_class *class,
1538                                       struct page *page, int *obj_idx)
1539 {
1540         unsigned int offset;
1541         int index = *obj_idx;
1542         unsigned long handle = 0;
1543         void *addr = kmap_local_page(page);
1544
1545         offset = get_first_obj_offset(page);
1546         offset += class->size * index;
1547
1548         while (offset < PAGE_SIZE) {
1549                 if (obj_allocated(page, addr + offset, &handle))
1550                         break;
1551
1552                 offset += class->size;
1553                 index++;
1554         }
1555
1556         kunmap_local(addr);
1557
1558         *obj_idx = index;
1559
1560         return handle;
1561 }
1562
1563 static void migrate_zspage(struct zs_pool *pool, struct zspage *src_zspage,
1564                            struct zspage *dst_zspage)
1565 {
1566         unsigned long used_obj, free_obj;
1567         unsigned long handle;
1568         int obj_idx = 0;
1569         struct page *s_page = get_first_page(src_zspage);
1570         struct size_class *class = pool->size_class[src_zspage->class];
1571
1572         while (1) {
1573                 handle = find_alloced_obj(class, s_page, &obj_idx);
1574                 if (!handle) {
1575                         s_page = get_next_page(s_page);
1576                         if (!s_page)
1577                                 break;
1578                         obj_idx = 0;
1579                         continue;
1580                 }
1581
1582                 used_obj = handle_to_obj(handle);
1583                 free_obj = obj_malloc(pool, dst_zspage, handle);
1584                 zs_object_copy(class, free_obj, used_obj);
1585                 obj_idx++;
1586                 obj_free(class->size, used_obj);
1587
1588                 /* Stop if there is no more space */
1589                 if (zspage_full(class, dst_zspage))
1590                         break;
1591
1592                 /* Stop if there are no more objects to migrate */
1593                 if (zspage_empty(src_zspage))
1594                         break;
1595         }
1596 }
1597
1598 static struct zspage *isolate_src_zspage(struct size_class *class)
1599 {
1600         struct zspage *zspage;
1601         int fg;
1602
1603         for (fg = ZS_INUSE_RATIO_10; fg <= ZS_INUSE_RATIO_99; fg++) {
1604                 zspage = list_first_entry_or_null(&class->fullness_list[fg],
1605                                                   struct zspage, list);
1606                 if (zspage) {
1607                         remove_zspage(class, zspage);
1608                         return zspage;
1609                 }
1610         }
1611
1612         return zspage;
1613 }
1614
1615 static struct zspage *isolate_dst_zspage(struct size_class *class)
1616 {
1617         struct zspage *zspage;
1618         int fg;
1619
1620         for (fg = ZS_INUSE_RATIO_99; fg >= ZS_INUSE_RATIO_10; fg--) {
1621                 zspage = list_first_entry_or_null(&class->fullness_list[fg],
1622                                                   struct zspage, list);
1623                 if (zspage) {
1624                         remove_zspage(class, zspage);
1625                         return zspage;
1626                 }
1627         }
1628
1629         return zspage;
1630 }
1631
1632 /*
1633  * putback_zspage - add @zspage into right class's fullness list
1634  * @class: destination class
1635  * @zspage: target page
1636  *
1637  * Return @zspage's fullness status
1638  */
1639 static int putback_zspage(struct size_class *class, struct zspage *zspage)
1640 {
1641         int fullness;
1642
1643         fullness = get_fullness_group(class, zspage);
1644         insert_zspage(class, zspage, fullness);
1645
1646         return fullness;
1647 }
1648
1649 #ifdef CONFIG_COMPACTION
1650 /*
1651  * To prevent zspage destroy during migration, zspage freeing should
1652  * hold locks of all pages in the zspage.
1653  */
1654 static void lock_zspage(struct zspage *zspage)
1655 {
1656         struct page *curr_page, *page;
1657
1658         /*
1659          * Pages we haven't locked yet can be migrated off the list while we're
1660          * trying to lock them, so we need to be careful and only attempt to
1661          * lock each page under migrate_read_lock(). Otherwise, the page we lock
1662          * may no longer belong to the zspage. This means that we may wait for
1663          * the wrong page to unlock, so we must take a reference to the page
1664          * prior to waiting for it to unlock outside migrate_read_lock().
1665          */
1666         while (1) {
1667                 migrate_read_lock(zspage);
1668                 page = get_first_page(zspage);
1669                 if (trylock_page(page))
1670                         break;
1671                 get_page(page);
1672                 migrate_read_unlock(zspage);
1673                 wait_on_page_locked(page);
1674                 put_page(page);
1675         }
1676
1677         curr_page = page;
1678         while ((page = get_next_page(curr_page))) {
1679                 if (trylock_page(page)) {
1680                         curr_page = page;
1681                 } else {
1682                         get_page(page);
1683                         migrate_read_unlock(zspage);
1684                         wait_on_page_locked(page);
1685                         put_page(page);
1686                         migrate_read_lock(zspage);
1687                 }
1688         }
1689         migrate_read_unlock(zspage);
1690 }
1691 #endif /* CONFIG_COMPACTION */
1692
1693 static void migrate_lock_init(struct zspage *zspage)
1694 {
1695         rwlock_init(&zspage->lock);
1696 }
1697
1698 static void migrate_read_lock(struct zspage *zspage) __acquires(&zspage->lock)
1699 {
1700         read_lock(&zspage->lock);
1701 }
1702
1703 static void migrate_read_unlock(struct zspage *zspage) __releases(&zspage->lock)
1704 {
1705         read_unlock(&zspage->lock);
1706 }
1707
1708 static void migrate_write_lock(struct zspage *zspage)
1709 {
1710         write_lock(&zspage->lock);
1711 }
1712
1713 static void migrate_write_unlock(struct zspage *zspage)
1714 {
1715         write_unlock(&zspage->lock);
1716 }
1717
1718 #ifdef CONFIG_COMPACTION
1719
1720 static const struct movable_operations zsmalloc_mops;
1721
1722 static void replace_sub_page(struct size_class *class, struct zspage *zspage,
1723                                 struct page *newpage, struct page *oldpage)
1724 {
1725         struct page *page;
1726         struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE] = {NULL, };
1727         int idx = 0;
1728
1729         page = get_first_page(zspage);
1730         do {
1731                 if (page == oldpage)
1732                         pages[idx] = newpage;
1733                 else
1734                         pages[idx] = page;
1735                 idx++;
1736         } while ((page = get_next_page(page)) != NULL);
1737
1738         create_page_chain(class, zspage, pages);
1739         set_first_obj_offset(newpage, get_first_obj_offset(oldpage));
1740         if (unlikely(ZsHugePage(zspage)))
1741                 newpage->index = oldpage->index;
1742         __SetPageMovable(newpage, &zsmalloc_mops);
1743 }
1744
1745 static bool zs_page_isolate(struct page *page, isolate_mode_t mode)
1746 {
1747         /*
1748          * Page is locked so zspage couldn't be destroyed. For detail, look at
1749          * lock_zspage in free_zspage.
1750          */
1751         VM_BUG_ON_PAGE(PageIsolated(page), page);
1752
1753         return true;
1754 }
1755
1756 static int zs_page_migrate(struct page *newpage, struct page *page,
1757                 enum migrate_mode mode)
1758 {
1759         struct zs_pool *pool;
1760         struct size_class *class;
1761         struct zspage *zspage;
1762         struct page *dummy;
1763         void *s_addr, *d_addr, *addr;
1764         unsigned int offset;
1765         unsigned long handle;
1766         unsigned long old_obj, new_obj;
1767         unsigned int obj_idx;
1768
1769         VM_BUG_ON_PAGE(!PageIsolated(page), page);
1770
1771         /* We're committed, tell the world that this is a Zsmalloc page. */
1772         __SetPageZsmalloc(newpage);
1773
1774         /* The page is locked, so this pointer must remain valid */
1775         zspage = get_zspage(page);
1776         pool = zspage->pool;
1777
1778         /*
1779          * The pool migrate_lock protects the race between zpage migration
1780          * and zs_free.
1781          */
1782         write_lock(&pool->migrate_lock);
1783         class = zspage_class(pool, zspage);
1784
1785         /*
1786          * the class lock protects zpage alloc/free in the zspage.
1787          */
1788         spin_lock(&class->lock);
1789         /* the migrate_write_lock protects zpage access via zs_map_object */
1790         migrate_write_lock(zspage);
1791
1792         offset = get_first_obj_offset(page);
1793         s_addr = kmap_local_page(page);
1794
1795         /*
1796          * Here, any user cannot access all objects in the zspage so let's move.
1797          */
1798         d_addr = kmap_local_page(newpage);
1799         copy_page(d_addr, s_addr);
1800         kunmap_local(d_addr);
1801
1802         for (addr = s_addr + offset; addr < s_addr + PAGE_SIZE;
1803                                         addr += class->size) {
1804                 if (obj_allocated(page, addr, &handle)) {
1805
1806                         old_obj = handle_to_obj(handle);
1807                         obj_to_location(old_obj, &dummy, &obj_idx);
1808                         new_obj = (unsigned long)location_to_obj(newpage,
1809                                                                 obj_idx);
1810                         record_obj(handle, new_obj);
1811                 }
1812         }
1813         kunmap_local(s_addr);
1814
1815         replace_sub_page(class, zspage, newpage, page);
1816         /*
1817          * Since we complete the data copy and set up new zspage structure,
1818          * it's okay to release migration_lock.
1819          */
1820         write_unlock(&pool->migrate_lock);
1821         spin_unlock(&class->lock);
1822         migrate_write_unlock(zspage);
1823
1824         get_page(newpage);
1825         if (page_zone(newpage) != page_zone(page)) {
1826                 dec_zone_page_state(page, NR_ZSPAGES);
1827                 inc_zone_page_state(newpage, NR_ZSPAGES);
1828         }
1829
1830         reset_page(page);
1831         put_page(page);
1832
1833         return MIGRATEPAGE_SUCCESS;
1834 }
1835
1836 static void zs_page_putback(struct page *page)
1837 {
1838         VM_BUG_ON_PAGE(!PageIsolated(page), page);
1839 }
1840
1841 static const struct movable_operations zsmalloc_mops = {
1842         .isolate_page = zs_page_isolate,
1843         .migrate_page = zs_page_migrate,
1844         .putback_page = zs_page_putback,
1845 };
1846
1847 /*
1848  * Caller should hold page_lock of all pages in the zspage
1849  * In here, we cannot use zspage meta data.
1850  */
1851 static void async_free_zspage(struct work_struct *work)
1852 {
1853         int i;
1854         struct size_class *class;
1855         struct zspage *zspage, *tmp;
1856         LIST_HEAD(free_pages);
1857         struct zs_pool *pool = container_of(work, struct zs_pool,
1858                                         free_work);
1859
1860         for (i = 0; i < ZS_SIZE_CLASSES; i++) {
1861                 class = pool->size_class[i];
1862                 if (class->index != i)
1863                         continue;
1864
1865                 spin_lock(&class->lock);
1866                 list_splice_init(&class->fullness_list[ZS_INUSE_RATIO_0],
1867                                  &free_pages);
1868                 spin_unlock(&class->lock);
1869         }
1870
1871         list_for_each_entry_safe(zspage, tmp, &free_pages, list) {
1872                 list_del(&zspage->list);
1873                 lock_zspage(zspage);
1874
1875                 class = zspage_class(pool, zspage);
1876                 spin_lock(&class->lock);
1877                 class_stat_sub(class, ZS_INUSE_RATIO_0, 1);
1878                 __free_zspage(pool, class, zspage);
1879                 spin_unlock(&class->lock);
1880         }
1881 };
1882
1883 static void kick_deferred_free(struct zs_pool *pool)
1884 {
1885         schedule_work(&pool->free_work);
1886 }
1887
1888 static void zs_flush_migration(struct zs_pool *pool)
1889 {
1890         flush_work(&pool->free_work);
1891 }
1892
1893 static void init_deferred_free(struct zs_pool *pool)
1894 {
1895         INIT_WORK(&pool->free_work, async_free_zspage);
1896 }
1897
1898 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage)
1899 {
1900         struct page *page = get_first_page(zspage);
1901
1902         do {
1903                 WARN_ON(!trylock_page(page));
1904                 __SetPageMovable(page, &zsmalloc_mops);
1905                 unlock_page(page);
1906         } while ((page = get_next_page(page)) != NULL);
1907 }
1908 #else
1909 static inline void zs_flush_migration(struct zs_pool *pool) { }
1910 #endif
1911
1912 /*
1913  *
1914  * Based on the number of unused allocated objects calculate
1915  * and return the number of pages that we can free.
1916  */
1917 static unsigned long zs_can_compact(struct size_class *class)
1918 {
1919         unsigned long obj_wasted;
1920         unsigned long obj_allocated = class_stat_read(class, ZS_OBJS_ALLOCATED);
1921         unsigned long obj_used = class_stat_read(class, ZS_OBJS_INUSE);
1922
1923         if (obj_allocated <= obj_used)
1924                 return 0;
1925
1926         obj_wasted = obj_allocated - obj_used;
1927         obj_wasted /= class->objs_per_zspage;
1928
1929         return obj_wasted * class->pages_per_zspage;
1930 }
1931
1932 static unsigned long __zs_compact(struct zs_pool *pool,
1933                                   struct size_class *class)
1934 {
1935         struct zspage *src_zspage = NULL;
1936         struct zspage *dst_zspage = NULL;
1937         unsigned long pages_freed = 0;
1938
1939         /*
1940          * protect the race between zpage migration and zs_free
1941          * as well as zpage allocation/free
1942          */
1943         write_lock(&pool->migrate_lock);
1944         spin_lock(&class->lock);
1945         while (zs_can_compact(class)) {
1946                 int fg;
1947
1948                 if (!dst_zspage) {
1949                         dst_zspage = isolate_dst_zspage(class);
1950                         if (!dst_zspage)
1951                                 break;
1952                 }
1953
1954                 src_zspage = isolate_src_zspage(class);
1955                 if (!src_zspage)
1956                         break;
1957
1958                 migrate_write_lock(src_zspage);
1959                 migrate_zspage(pool, src_zspage, dst_zspage);
1960                 migrate_write_unlock(src_zspage);
1961
1962                 fg = putback_zspage(class, src_zspage);
1963                 if (fg == ZS_INUSE_RATIO_0) {
1964                         free_zspage(pool, class, src_zspage);
1965                         pages_freed += class->pages_per_zspage;
1966                 }
1967                 src_zspage = NULL;
1968
1969                 if (get_fullness_group(class, dst_zspage) == ZS_INUSE_RATIO_100
1970                     || rwlock_is_contended(&pool->migrate_lock)) {
1971                         putback_zspage(class, dst_zspage);
1972                         dst_zspage = NULL;
1973
1974                         spin_unlock(&class->lock);
1975                         write_unlock(&pool->migrate_lock);
1976                         cond_resched();
1977                         write_lock(&pool->migrate_lock);
1978                         spin_lock(&class->lock);
1979                 }
1980         }
1981
1982         if (src_zspage)
1983                 putback_zspage(class, src_zspage);
1984
1985         if (dst_zspage)
1986                 putback_zspage(class, dst_zspage);
1987
1988         spin_unlock(&class->lock);
1989         write_unlock(&pool->migrate_lock);
1990
1991         return pages_freed;
1992 }
1993
1994 unsigned long zs_compact(struct zs_pool *pool)
1995 {
1996         int i;
1997         struct size_class *class;
1998         unsigned long pages_freed = 0;
1999
2000         /*
2001          * Pool compaction is performed under pool->migrate_lock so it is basically
2002          * single-threaded. Having more than one thread in __zs_compact()
2003          * will increase pool->migrate_lock contention, which will impact other
2004          * zsmalloc operations that need pool->migrate_lock.
2005          */
2006         if (atomic_xchg(&pool->compaction_in_progress, 1))
2007                 return 0;
2008
2009         for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2010                 class = pool->size_class[i];
2011                 if (class->index != i)
2012                         continue;
2013                 pages_freed += __zs_compact(pool, class);
2014         }
2015         atomic_long_add(pages_freed, &pool->stats.pages_compacted);
2016         atomic_set(&pool->compaction_in_progress, 0);
2017
2018         return pages_freed;
2019 }
2020 EXPORT_SYMBOL_GPL(zs_compact);
2021
2022 void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats)
2023 {
2024         memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats));
2025 }
2026 EXPORT_SYMBOL_GPL(zs_pool_stats);
2027
2028 static unsigned long zs_shrinker_scan(struct shrinker *shrinker,
2029                 struct shrink_control *sc)
2030 {
2031         unsigned long pages_freed;
2032         struct zs_pool *pool = shrinker->private_data;
2033
2034         /*
2035          * Compact classes and calculate compaction delta.
2036          * Can run concurrently with a manually triggered
2037          * (by user) compaction.
2038          */
2039         pages_freed = zs_compact(pool);
2040
2041         return pages_freed ? pages_freed : SHRINK_STOP;
2042 }
2043
2044 static unsigned long zs_shrinker_count(struct shrinker *shrinker,
2045                 struct shrink_control *sc)
2046 {
2047         int i;
2048         struct size_class *class;
2049         unsigned long pages_to_free = 0;
2050         struct zs_pool *pool = shrinker->private_data;
2051
2052         for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2053                 class = pool->size_class[i];
2054                 if (class->index != i)
2055                         continue;
2056
2057                 pages_to_free += zs_can_compact(class);
2058         }
2059
2060         return pages_to_free;
2061 }
2062
2063 static void zs_unregister_shrinker(struct zs_pool *pool)
2064 {
2065         shrinker_free(pool->shrinker);
2066 }
2067
2068 static int zs_register_shrinker(struct zs_pool *pool)
2069 {
2070         pool->shrinker = shrinker_alloc(0, "mm-zspool:%s", pool->name);
2071         if (!pool->shrinker)
2072                 return -ENOMEM;
2073
2074         pool->shrinker->scan_objects = zs_shrinker_scan;
2075         pool->shrinker->count_objects = zs_shrinker_count;
2076         pool->shrinker->batch = 0;
2077         pool->shrinker->private_data = pool;
2078
2079         shrinker_register(pool->shrinker);
2080
2081         return 0;
2082 }
2083
2084 static int calculate_zspage_chain_size(int class_size)
2085 {
2086         int i, min_waste = INT_MAX;
2087         int chain_size = 1;
2088
2089         if (is_power_of_2(class_size))
2090                 return chain_size;
2091
2092         for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
2093                 int waste;
2094
2095                 waste = (i * PAGE_SIZE) % class_size;
2096                 if (waste < min_waste) {
2097                         min_waste = waste;
2098                         chain_size = i;
2099                 }
2100         }
2101
2102         return chain_size;
2103 }
2104
2105 /**
2106  * zs_create_pool - Creates an allocation pool to work from.
2107  * @name: pool name to be created
2108  *
2109  * This function must be called before anything when using
2110  * the zsmalloc allocator.
2111  *
2112  * On success, a pointer to the newly created pool is returned,
2113  * otherwise NULL.
2114  */
2115 struct zs_pool *zs_create_pool(const char *name)
2116 {
2117         int i;
2118         struct zs_pool *pool;
2119         struct size_class *prev_class = NULL;
2120
2121         pool = kzalloc(sizeof(*pool), GFP_KERNEL);
2122         if (!pool)
2123                 return NULL;
2124
2125         init_deferred_free(pool);
2126         rwlock_init(&pool->migrate_lock);
2127         atomic_set(&pool->compaction_in_progress, 0);
2128
2129         pool->name = kstrdup(name, GFP_KERNEL);
2130         if (!pool->name)
2131                 goto err;
2132
2133         if (create_cache(pool))
2134                 goto err;
2135
2136         /*
2137          * Iterate reversely, because, size of size_class that we want to use
2138          * for merging should be larger or equal to current size.
2139          */
2140         for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2141                 int size;
2142                 int pages_per_zspage;
2143                 int objs_per_zspage;
2144                 struct size_class *class;
2145                 int fullness;
2146
2147                 size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
2148                 if (size > ZS_MAX_ALLOC_SIZE)
2149                         size = ZS_MAX_ALLOC_SIZE;
2150                 pages_per_zspage = calculate_zspage_chain_size(size);
2151                 objs_per_zspage = pages_per_zspage * PAGE_SIZE / size;
2152
2153                 /*
2154                  * We iterate from biggest down to smallest classes,
2155                  * so huge_class_size holds the size of the first huge
2156                  * class. Any object bigger than or equal to that will
2157                  * endup in the huge class.
2158                  */
2159                 if (pages_per_zspage != 1 && objs_per_zspage != 1 &&
2160                                 !huge_class_size) {
2161                         huge_class_size = size;
2162                         /*
2163                          * The object uses ZS_HANDLE_SIZE bytes to store the
2164                          * handle. We need to subtract it, because zs_malloc()
2165                          * unconditionally adds handle size before it performs
2166                          * size class search - so object may be smaller than
2167                          * huge class size, yet it still can end up in the huge
2168                          * class because it grows by ZS_HANDLE_SIZE extra bytes
2169                          * right before class lookup.
2170                          */
2171                         huge_class_size -= (ZS_HANDLE_SIZE - 1);
2172                 }
2173
2174                 /*
2175                  * size_class is used for normal zsmalloc operation such
2176                  * as alloc/free for that size. Although it is natural that we
2177                  * have one size_class for each size, there is a chance that we
2178                  * can get more memory utilization if we use one size_class for
2179                  * many different sizes whose size_class have same
2180                  * characteristics. So, we makes size_class point to
2181                  * previous size_class if possible.
2182                  */
2183                 if (prev_class) {
2184                         if (can_merge(prev_class, pages_per_zspage, objs_per_zspage)) {
2185                                 pool->size_class[i] = prev_class;
2186                                 continue;
2187                         }
2188                 }
2189
2190                 class = kzalloc(sizeof(struct size_class), GFP_KERNEL);
2191                 if (!class)
2192                         goto err;
2193
2194                 class->size = size;
2195                 class->index = i;
2196                 class->pages_per_zspage = pages_per_zspage;
2197                 class->objs_per_zspage = objs_per_zspage;
2198                 spin_lock_init(&class->lock);
2199                 pool->size_class[i] = class;
2200
2201                 fullness = ZS_INUSE_RATIO_0;
2202                 while (fullness < NR_FULLNESS_GROUPS) {
2203                         INIT_LIST_HEAD(&class->fullness_list[fullness]);
2204                         fullness++;
2205                 }
2206
2207                 prev_class = class;
2208         }
2209
2210         /* debug only, don't abort if it fails */
2211         zs_pool_stat_create(pool, name);
2212
2213         /*
2214          * Not critical since shrinker is only used to trigger internal
2215          * defragmentation of the pool which is pretty optional thing.  If
2216          * registration fails we still can use the pool normally and user can
2217          * trigger compaction manually. Thus, ignore return code.
2218          */
2219         zs_register_shrinker(pool);
2220
2221         return pool;
2222
2223 err:
2224         zs_destroy_pool(pool);
2225         return NULL;
2226 }
2227 EXPORT_SYMBOL_GPL(zs_create_pool);
2228
2229 void zs_destroy_pool(struct zs_pool *pool)
2230 {
2231         int i;
2232
2233         zs_unregister_shrinker(pool);
2234         zs_flush_migration(pool);
2235         zs_pool_stat_destroy(pool);
2236
2237         for (i = 0; i < ZS_SIZE_CLASSES; i++) {
2238                 int fg;
2239                 struct size_class *class = pool->size_class[i];
2240
2241                 if (!class)
2242                         continue;
2243
2244                 if (class->index != i)
2245                         continue;
2246
2247                 for (fg = ZS_INUSE_RATIO_0; fg < NR_FULLNESS_GROUPS; fg++) {
2248                         if (list_empty(&class->fullness_list[fg]))
2249                                 continue;
2250
2251                         pr_err("Class-%d fullness group %d is not empty\n",
2252                                class->size, fg);
2253                 }
2254                 kfree(class);
2255         }
2256
2257         destroy_cache(pool);
2258         kfree(pool->name);
2259         kfree(pool);
2260 }
2261 EXPORT_SYMBOL_GPL(zs_destroy_pool);
2262
2263 static int __init zs_init(void)
2264 {
2265         int ret;
2266
2267         ret = cpuhp_setup_state(CPUHP_MM_ZS_PREPARE, "mm/zsmalloc:prepare",
2268                                 zs_cpu_prepare, zs_cpu_dead);
2269         if (ret)
2270                 goto out;
2271
2272 #ifdef CONFIG_ZPOOL
2273         zpool_register_driver(&zs_zpool_driver);
2274 #endif
2275
2276         zs_stat_init();
2277
2278         return 0;
2279
2280 out:
2281         return ret;
2282 }
2283
2284 static void __exit zs_exit(void)
2285 {
2286 #ifdef CONFIG_ZPOOL
2287         zpool_unregister_driver(&zs_zpool_driver);
2288 #endif
2289         cpuhp_remove_state(CPUHP_MM_ZS_PREPARE);
2290
2291         zs_stat_exit();
2292 }
2293
2294 module_init(zs_init);
2295 module_exit(zs_exit);
2296
2297 MODULE_LICENSE("Dual BSD/GPL");
2298 MODULE_AUTHOR("Nitin Gupta <[email protected]>");
2299 MODULE_DESCRIPTION("zsmalloc memory allocator");
This page took 0.154305 seconds and 4 git commands to generate.