]> Git Repo - J-linux.git/blob - mm/page_counter.c
Merge tag 'vfs-6.13-rc7.fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs
[J-linux.git] / mm / page_counter.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Lockless hierarchical page accounting & limiting
4  *
5  * Copyright (C) 2014 Red Hat, Inc., Johannes Weiner
6  */
7
8 #include <linux/page_counter.h>
9 #include <linux/atomic.h>
10 #include <linux/kernel.h>
11 #include <linux/string.h>
12 #include <linux/sched.h>
13 #include <linux/bug.h>
14 #include <asm/page.h>
15
16 static bool track_protection(struct page_counter *c)
17 {
18         return c->protection_support;
19 }
20
21 static void propagate_protected_usage(struct page_counter *c,
22                                       unsigned long usage)
23 {
24         unsigned long protected, old_protected;
25         long delta;
26
27         if (!c->parent)
28                 return;
29
30         protected = min(usage, READ_ONCE(c->min));
31         old_protected = atomic_long_read(&c->min_usage);
32         if (protected != old_protected) {
33                 old_protected = atomic_long_xchg(&c->min_usage, protected);
34                 delta = protected - old_protected;
35                 if (delta)
36                         atomic_long_add(delta, &c->parent->children_min_usage);
37         }
38
39         protected = min(usage, READ_ONCE(c->low));
40         old_protected = atomic_long_read(&c->low_usage);
41         if (protected != old_protected) {
42                 old_protected = atomic_long_xchg(&c->low_usage, protected);
43                 delta = protected - old_protected;
44                 if (delta)
45                         atomic_long_add(delta, &c->parent->children_low_usage);
46         }
47 }
48
49 /**
50  * page_counter_cancel - take pages out of the local counter
51  * @counter: counter
52  * @nr_pages: number of pages to cancel
53  */
54 void page_counter_cancel(struct page_counter *counter, unsigned long nr_pages)
55 {
56         long new;
57
58         new = atomic_long_sub_return(nr_pages, &counter->usage);
59         /* More uncharges than charges? */
60         if (WARN_ONCE(new < 0, "page_counter underflow: %ld nr_pages=%lu\n",
61                       new, nr_pages)) {
62                 new = 0;
63                 atomic_long_set(&counter->usage, new);
64         }
65         if (track_protection(counter))
66                 propagate_protected_usage(counter, new);
67 }
68
69 /**
70  * page_counter_charge - hierarchically charge pages
71  * @counter: counter
72  * @nr_pages: number of pages to charge
73  *
74  * NOTE: This does not consider any configured counter limits.
75  */
76 void page_counter_charge(struct page_counter *counter, unsigned long nr_pages)
77 {
78         struct page_counter *c;
79         bool protection = track_protection(counter);
80
81         for (c = counter; c; c = c->parent) {
82                 long new;
83
84                 new = atomic_long_add_return(nr_pages, &c->usage);
85                 if (protection)
86                         propagate_protected_usage(c, new);
87                 /*
88                  * This is indeed racy, but we can live with some
89                  * inaccuracy in the watermark.
90                  *
91                  * Notably, we have two watermarks to allow for both a globally
92                  * visible peak and one that can be reset at a smaller scope.
93                  *
94                  * Since we reset both watermarks when the global reset occurs,
95                  * we can guarantee that watermark >= local_watermark, so we
96                  * don't need to do both comparisons every time.
97                  *
98                  * On systems with branch predictors, the inner condition should
99                  * be almost free.
100                  */
101                 if (new > READ_ONCE(c->local_watermark)) {
102                         WRITE_ONCE(c->local_watermark, new);
103                         if (new > READ_ONCE(c->watermark))
104                                 WRITE_ONCE(c->watermark, new);
105                 }
106         }
107 }
108
109 /**
110  * page_counter_try_charge - try to hierarchically charge pages
111  * @counter: counter
112  * @nr_pages: number of pages to charge
113  * @fail: points first counter to hit its limit, if any
114  *
115  * Returns %true on success, or %false and @fail if the counter or one
116  * of its ancestors has hit its configured limit.
117  */
118 bool page_counter_try_charge(struct page_counter *counter,
119                              unsigned long nr_pages,
120                              struct page_counter **fail)
121 {
122         struct page_counter *c;
123         bool protection = track_protection(counter);
124
125         for (c = counter; c; c = c->parent) {
126                 long new;
127                 /*
128                  * Charge speculatively to avoid an expensive CAS.  If
129                  * a bigger charge fails, it might falsely lock out a
130                  * racing smaller charge and send it into reclaim
131                  * early, but the error is limited to the difference
132                  * between the two sizes, which is less than 2M/4M in
133                  * case of a THP locking out a regular page charge.
134                  *
135                  * The atomic_long_add_return() implies a full memory
136                  * barrier between incrementing the count and reading
137                  * the limit.  When racing with page_counter_set_max(),
138                  * we either see the new limit or the setter sees the
139                  * counter has changed and retries.
140                  */
141                 new = atomic_long_add_return(nr_pages, &c->usage);
142                 if (new > c->max) {
143                         atomic_long_sub(nr_pages, &c->usage);
144                         /*
145                          * This is racy, but we can live with some
146                          * inaccuracy in the failcnt which is only used
147                          * to report stats.
148                          */
149                         data_race(c->failcnt++);
150                         *fail = c;
151                         goto failed;
152                 }
153                 if (protection)
154                         propagate_protected_usage(c, new);
155
156                 /* see comment on page_counter_charge */
157                 if (new > READ_ONCE(c->local_watermark)) {
158                         WRITE_ONCE(c->local_watermark, new);
159                         if (new > READ_ONCE(c->watermark))
160                                 WRITE_ONCE(c->watermark, new);
161                 }
162         }
163         return true;
164
165 failed:
166         for (c = counter; c != *fail; c = c->parent)
167                 page_counter_cancel(c, nr_pages);
168
169         return false;
170 }
171
172 /**
173  * page_counter_uncharge - hierarchically uncharge pages
174  * @counter: counter
175  * @nr_pages: number of pages to uncharge
176  */
177 void page_counter_uncharge(struct page_counter *counter, unsigned long nr_pages)
178 {
179         struct page_counter *c;
180
181         for (c = counter; c; c = c->parent)
182                 page_counter_cancel(c, nr_pages);
183 }
184
185 /**
186  * page_counter_set_max - set the maximum number of pages allowed
187  * @counter: counter
188  * @nr_pages: limit to set
189  *
190  * Returns 0 on success, -EBUSY if the current number of pages on the
191  * counter already exceeds the specified limit.
192  *
193  * The caller must serialize invocations on the same counter.
194  */
195 int page_counter_set_max(struct page_counter *counter, unsigned long nr_pages)
196 {
197         for (;;) {
198                 unsigned long old;
199                 long usage;
200
201                 /*
202                  * Update the limit while making sure that it's not
203                  * below the concurrently-changing counter value.
204                  *
205                  * The xchg implies two full memory barriers before
206                  * and after, so the read-swap-read is ordered and
207                  * ensures coherency with page_counter_try_charge():
208                  * that function modifies the count before checking
209                  * the limit, so if it sees the old limit, we see the
210                  * modified counter and retry.
211                  */
212                 usage = page_counter_read(counter);
213
214                 if (usage > nr_pages)
215                         return -EBUSY;
216
217                 old = xchg(&counter->max, nr_pages);
218
219                 if (page_counter_read(counter) <= usage || nr_pages >= old)
220                         return 0;
221
222                 counter->max = old;
223                 cond_resched();
224         }
225 }
226
227 /**
228  * page_counter_set_min - set the amount of protected memory
229  * @counter: counter
230  * @nr_pages: value to set
231  *
232  * The caller must serialize invocations on the same counter.
233  */
234 void page_counter_set_min(struct page_counter *counter, unsigned long nr_pages)
235 {
236         struct page_counter *c;
237
238         WRITE_ONCE(counter->min, nr_pages);
239
240         for (c = counter; c; c = c->parent)
241                 propagate_protected_usage(c, atomic_long_read(&c->usage));
242 }
243
244 /**
245  * page_counter_set_low - set the amount of protected memory
246  * @counter: counter
247  * @nr_pages: value to set
248  *
249  * The caller must serialize invocations on the same counter.
250  */
251 void page_counter_set_low(struct page_counter *counter, unsigned long nr_pages)
252 {
253         struct page_counter *c;
254
255         WRITE_ONCE(counter->low, nr_pages);
256
257         for (c = counter; c; c = c->parent)
258                 propagate_protected_usage(c, atomic_long_read(&c->usage));
259 }
260
261 /**
262  * page_counter_memparse - memparse() for page counter limits
263  * @buf: string to parse
264  * @max: string meaning maximum possible value
265  * @nr_pages: returns the result in number of pages
266  *
267  * Returns -EINVAL, or 0 and @nr_pages on success.  @nr_pages will be
268  * limited to %PAGE_COUNTER_MAX.
269  */
270 int page_counter_memparse(const char *buf, const char *max,
271                           unsigned long *nr_pages)
272 {
273         char *end;
274         u64 bytes;
275
276         if (!strcmp(buf, max)) {
277                 *nr_pages = PAGE_COUNTER_MAX;
278                 return 0;
279         }
280
281         bytes = memparse(buf, &end);
282         if (*end != '\0')
283                 return -EINVAL;
284
285         *nr_pages = min(bytes / PAGE_SIZE, (u64)PAGE_COUNTER_MAX);
286
287         return 0;
288 }
289
290
291 #ifdef CONFIG_MEMCG
292 /*
293  * This function calculates an individual page counter's effective
294  * protection which is derived from its own memory.min/low, its
295  * parent's and siblings' settings, as well as the actual memory
296  * distribution in the tree.
297  *
298  * The following rules apply to the effective protection values:
299  *
300  * 1. At the first level of reclaim, effective protection is equal to
301  *    the declared protection in memory.min and memory.low.
302  *
303  * 2. To enable safe delegation of the protection configuration, at
304  *    subsequent levels the effective protection is capped to the
305  *    parent's effective protection.
306  *
307  * 3. To make complex and dynamic subtrees easier to configure, the
308  *    user is allowed to overcommit the declared protection at a given
309  *    level. If that is the case, the parent's effective protection is
310  *    distributed to the children in proportion to how much protection
311  *    they have declared and how much of it they are utilizing.
312  *
313  *    This makes distribution proportional, but also work-conserving:
314  *    if one counter claims much more protection than it uses memory,
315  *    the unused remainder is available to its siblings.
316  *
317  * 4. Conversely, when the declared protection is undercommitted at a
318  *    given level, the distribution of the larger parental protection
319  *    budget is NOT proportional. A counter's protection from a sibling
320  *    is capped to its own memory.min/low setting.
321  *
322  * 5. However, to allow protecting recursive subtrees from each other
323  *    without having to declare each individual counter's fixed share
324  *    of the ancestor's claim to protection, any unutilized -
325  *    "floating" - protection from up the tree is distributed in
326  *    proportion to each counter's *usage*. This makes the protection
327  *    neutral wrt sibling cgroups and lets them compete freely over
328  *    the shared parental protection budget, but it protects the
329  *    subtree as a whole from neighboring subtrees.
330  *
331  * Note that 4. and 5. are not in conflict: 4. is about protecting
332  * against immediate siblings whereas 5. is about protecting against
333  * neighboring subtrees.
334  */
335 static unsigned long effective_protection(unsigned long usage,
336                                           unsigned long parent_usage,
337                                           unsigned long setting,
338                                           unsigned long parent_effective,
339                                           unsigned long siblings_protected,
340                                           bool recursive_protection)
341 {
342         unsigned long protected;
343         unsigned long ep;
344
345         protected = min(usage, setting);
346         /*
347          * If all cgroups at this level combined claim and use more
348          * protection than what the parent affords them, distribute
349          * shares in proportion to utilization.
350          *
351          * We are using actual utilization rather than the statically
352          * claimed protection in order to be work-conserving: claimed
353          * but unused protection is available to siblings that would
354          * otherwise get a smaller chunk than what they claimed.
355          */
356         if (siblings_protected > parent_effective)
357                 return protected * parent_effective / siblings_protected;
358
359         /*
360          * Ok, utilized protection of all children is within what the
361          * parent affords them, so we know whatever this child claims
362          * and utilizes is effectively protected.
363          *
364          * If there is unprotected usage beyond this value, reclaim
365          * will apply pressure in proportion to that amount.
366          *
367          * If there is unutilized protection, the cgroup will be fully
368          * shielded from reclaim, but we do return a smaller value for
369          * protection than what the group could enjoy in theory. This
370          * is okay. With the overcommit distribution above, effective
371          * protection is always dependent on how memory is actually
372          * consumed among the siblings anyway.
373          */
374         ep = protected;
375
376         /*
377          * If the children aren't claiming (all of) the protection
378          * afforded to them by the parent, distribute the remainder in
379          * proportion to the (unprotected) memory of each cgroup. That
380          * way, cgroups that aren't explicitly prioritized wrt each
381          * other compete freely over the allowance, but they are
382          * collectively protected from neighboring trees.
383          *
384          * We're using unprotected memory for the weight so that if
385          * some cgroups DO claim explicit protection, we don't protect
386          * the same bytes twice.
387          *
388          * Check both usage and parent_usage against the respective
389          * protected values. One should imply the other, but they
390          * aren't read atomically - make sure the division is sane.
391          */
392         if (!recursive_protection)
393                 return ep;
394
395         if (parent_effective > siblings_protected &&
396             parent_usage > siblings_protected &&
397             usage > protected) {
398                 unsigned long unclaimed;
399
400                 unclaimed = parent_effective - siblings_protected;
401                 unclaimed *= usage - protected;
402                 unclaimed /= parent_usage - siblings_protected;
403
404                 ep += unclaimed;
405         }
406
407         return ep;
408 }
409
410
411 /**
412  * page_counter_calculate_protection - check if memory consumption is in the normal range
413  * @root: the top ancestor of the sub-tree being checked
414  * @counter: the page_counter the counter to update
415  * @recursive_protection: Whether to use memory_recursiveprot behavior.
416  *
417  * Calculates elow/emin thresholds for given page_counter.
418  *
419  * WARNING: This function is not stateless! It can only be used as part
420  *          of a top-down tree iteration, not for isolated queries.
421  */
422 void page_counter_calculate_protection(struct page_counter *root,
423                                        struct page_counter *counter,
424                                        bool recursive_protection)
425 {
426         unsigned long usage, parent_usage;
427         struct page_counter *parent = counter->parent;
428
429         /*
430          * Effective values of the reclaim targets are ignored so they
431          * can be stale. Have a look at mem_cgroup_protection for more
432          * details.
433          * TODO: calculation should be more robust so that we do not need
434          * that special casing.
435          */
436         if (root == counter)
437                 return;
438
439         usage = page_counter_read(counter);
440         if (!usage)
441                 return;
442
443         if (parent == root) {
444                 counter->emin = READ_ONCE(counter->min);
445                 counter->elow = READ_ONCE(counter->low);
446                 return;
447         }
448
449         parent_usage = page_counter_read(parent);
450
451         WRITE_ONCE(counter->emin, effective_protection(usage, parent_usage,
452                         READ_ONCE(counter->min),
453                         READ_ONCE(parent->emin),
454                         atomic_long_read(&parent->children_min_usage),
455                         recursive_protection));
456
457         WRITE_ONCE(counter->elow, effective_protection(usage, parent_usage,
458                         READ_ONCE(counter->low),
459                         READ_ONCE(parent->elow),
460                         atomic_long_read(&parent->children_low_usage),
461                         recursive_protection));
462 }
463 #endif /* CONFIG_MEMCG */
This page took 0.051067 seconds and 4 git commands to generate.