]> Git Repo - J-linux.git/blob - mm/madvise.c
Merge tag 'vfs-6.13-rc7.fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs
[J-linux.git] / mm / madvise.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *      linux/mm/madvise.c
4  *
5  * Copyright (C) 1999  Linus Torvalds
6  * Copyright (C) 2002  Christoph Hellwig
7  */
8
9 #include <linux/mman.h>
10 #include <linux/pagemap.h>
11 #include <linux/syscalls.h>
12 #include <linux/mempolicy.h>
13 #include <linux/page-isolation.h>
14 #include <linux/page_idle.h>
15 #include <linux/userfaultfd_k.h>
16 #include <linux/hugetlb.h>
17 #include <linux/falloc.h>
18 #include <linux/fadvise.h>
19 #include <linux/sched.h>
20 #include <linux/sched/mm.h>
21 #include <linux/mm_inline.h>
22 #include <linux/string.h>
23 #include <linux/uio.h>
24 #include <linux/ksm.h>
25 #include <linux/fs.h>
26 #include <linux/file.h>
27 #include <linux/blkdev.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagewalk.h>
30 #include <linux/swap.h>
31 #include <linux/swapops.h>
32 #include <linux/shmem_fs.h>
33 #include <linux/mmu_notifier.h>
34
35 #include <asm/tlb.h>
36
37 #include "internal.h"
38 #include "swap.h"
39
40 /*
41  * Maximum number of attempts we make to install guard pages before we give up
42  * and return -ERESTARTNOINTR to have userspace try again.
43  */
44 #define MAX_MADVISE_GUARD_RETRIES 3
45
46 struct madvise_walk_private {
47         struct mmu_gather *tlb;
48         bool pageout;
49 };
50
51 /*
52  * Any behaviour which results in changes to the vma->vm_flags needs to
53  * take mmap_lock for writing. Others, which simply traverse vmas, need
54  * to only take it for reading.
55  */
56 static int madvise_need_mmap_write(int behavior)
57 {
58         switch (behavior) {
59         case MADV_REMOVE:
60         case MADV_WILLNEED:
61         case MADV_DONTNEED:
62         case MADV_DONTNEED_LOCKED:
63         case MADV_COLD:
64         case MADV_PAGEOUT:
65         case MADV_FREE:
66         case MADV_POPULATE_READ:
67         case MADV_POPULATE_WRITE:
68         case MADV_COLLAPSE:
69         case MADV_GUARD_INSTALL:
70         case MADV_GUARD_REMOVE:
71                 return 0;
72         default:
73                 /* be safe, default to 1. list exceptions explicitly */
74                 return 1;
75         }
76 }
77
78 #ifdef CONFIG_ANON_VMA_NAME
79 struct anon_vma_name *anon_vma_name_alloc(const char *name)
80 {
81         struct anon_vma_name *anon_name;
82         size_t count;
83
84         /* Add 1 for NUL terminator at the end of the anon_name->name */
85         count = strlen(name) + 1;
86         anon_name = kmalloc(struct_size(anon_name, name, count), GFP_KERNEL);
87         if (anon_name) {
88                 kref_init(&anon_name->kref);
89                 memcpy(anon_name->name, name, count);
90         }
91
92         return anon_name;
93 }
94
95 void anon_vma_name_free(struct kref *kref)
96 {
97         struct anon_vma_name *anon_name =
98                         container_of(kref, struct anon_vma_name, kref);
99         kfree(anon_name);
100 }
101
102 struct anon_vma_name *anon_vma_name(struct vm_area_struct *vma)
103 {
104         mmap_assert_locked(vma->vm_mm);
105
106         return vma->anon_name;
107 }
108
109 /* mmap_lock should be write-locked */
110 static int replace_anon_vma_name(struct vm_area_struct *vma,
111                                  struct anon_vma_name *anon_name)
112 {
113         struct anon_vma_name *orig_name = anon_vma_name(vma);
114
115         if (!anon_name) {
116                 vma->anon_name = NULL;
117                 anon_vma_name_put(orig_name);
118                 return 0;
119         }
120
121         if (anon_vma_name_eq(orig_name, anon_name))
122                 return 0;
123
124         vma->anon_name = anon_vma_name_reuse(anon_name);
125         anon_vma_name_put(orig_name);
126
127         return 0;
128 }
129 #else /* CONFIG_ANON_VMA_NAME */
130 static int replace_anon_vma_name(struct vm_area_struct *vma,
131                                  struct anon_vma_name *anon_name)
132 {
133         if (anon_name)
134                 return -EINVAL;
135
136         return 0;
137 }
138 #endif /* CONFIG_ANON_VMA_NAME */
139 /*
140  * Update the vm_flags on region of a vma, splitting it or merging it as
141  * necessary.  Must be called with mmap_lock held for writing;
142  * Caller should ensure anon_name stability by raising its refcount even when
143  * anon_name belongs to a valid vma because this function might free that vma.
144  */
145 static int madvise_update_vma(struct vm_area_struct *vma,
146                               struct vm_area_struct **prev, unsigned long start,
147                               unsigned long end, unsigned long new_flags,
148                               struct anon_vma_name *anon_name)
149 {
150         struct mm_struct *mm = vma->vm_mm;
151         int error;
152         VMA_ITERATOR(vmi, mm, start);
153
154         if (new_flags == vma->vm_flags && anon_vma_name_eq(anon_vma_name(vma), anon_name)) {
155                 *prev = vma;
156                 return 0;
157         }
158
159         vma = vma_modify_flags_name(&vmi, *prev, vma, start, end, new_flags,
160                                     anon_name);
161         if (IS_ERR(vma))
162                 return PTR_ERR(vma);
163
164         *prev = vma;
165
166         /* vm_flags is protected by the mmap_lock held in write mode. */
167         vma_start_write(vma);
168         vm_flags_reset(vma, new_flags);
169         if (!vma->vm_file || vma_is_anon_shmem(vma)) {
170                 error = replace_anon_vma_name(vma, anon_name);
171                 if (error)
172                         return error;
173         }
174
175         return 0;
176 }
177
178 #ifdef CONFIG_SWAP
179 static int swapin_walk_pmd_entry(pmd_t *pmd, unsigned long start,
180                 unsigned long end, struct mm_walk *walk)
181 {
182         struct vm_area_struct *vma = walk->private;
183         struct swap_iocb *splug = NULL;
184         pte_t *ptep = NULL;
185         spinlock_t *ptl;
186         unsigned long addr;
187
188         for (addr = start; addr < end; addr += PAGE_SIZE) {
189                 pte_t pte;
190                 swp_entry_t entry;
191                 struct folio *folio;
192
193                 if (!ptep++) {
194                         ptep = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
195                         if (!ptep)
196                                 break;
197                 }
198
199                 pte = ptep_get(ptep);
200                 if (!is_swap_pte(pte))
201                         continue;
202                 entry = pte_to_swp_entry(pte);
203                 if (unlikely(non_swap_entry(entry)))
204                         continue;
205
206                 pte_unmap_unlock(ptep, ptl);
207                 ptep = NULL;
208
209                 folio = read_swap_cache_async(entry, GFP_HIGHUSER_MOVABLE,
210                                              vma, addr, &splug);
211                 if (folio)
212                         folio_put(folio);
213         }
214
215         if (ptep)
216                 pte_unmap_unlock(ptep, ptl);
217         swap_read_unplug(splug);
218         cond_resched();
219
220         return 0;
221 }
222
223 static const struct mm_walk_ops swapin_walk_ops = {
224         .pmd_entry              = swapin_walk_pmd_entry,
225         .walk_lock              = PGWALK_RDLOCK,
226 };
227
228 static void shmem_swapin_range(struct vm_area_struct *vma,
229                 unsigned long start, unsigned long end,
230                 struct address_space *mapping)
231 {
232         XA_STATE(xas, &mapping->i_pages, linear_page_index(vma, start));
233         pgoff_t end_index = linear_page_index(vma, end) - 1;
234         struct folio *folio;
235         struct swap_iocb *splug = NULL;
236
237         rcu_read_lock();
238         xas_for_each(&xas, folio, end_index) {
239                 unsigned long addr;
240                 swp_entry_t entry;
241
242                 if (!xa_is_value(folio))
243                         continue;
244                 entry = radix_to_swp_entry(folio);
245                 /* There might be swapin error entries in shmem mapping. */
246                 if (non_swap_entry(entry))
247                         continue;
248
249                 addr = vma->vm_start +
250                         ((xas.xa_index - vma->vm_pgoff) << PAGE_SHIFT);
251                 xas_pause(&xas);
252                 rcu_read_unlock();
253
254                 folio = read_swap_cache_async(entry, mapping_gfp_mask(mapping),
255                                              vma, addr, &splug);
256                 if (folio)
257                         folio_put(folio);
258
259                 rcu_read_lock();
260         }
261         rcu_read_unlock();
262         swap_read_unplug(splug);
263 }
264 #endif          /* CONFIG_SWAP */
265
266 /*
267  * Schedule all required I/O operations.  Do not wait for completion.
268  */
269 static long madvise_willneed(struct vm_area_struct *vma,
270                              struct vm_area_struct **prev,
271                              unsigned long start, unsigned long end)
272 {
273         struct mm_struct *mm = vma->vm_mm;
274         struct file *file = vma->vm_file;
275         loff_t offset;
276
277         *prev = vma;
278 #ifdef CONFIG_SWAP
279         if (!file) {
280                 walk_page_range(vma->vm_mm, start, end, &swapin_walk_ops, vma);
281                 lru_add_drain(); /* Push any new pages onto the LRU now */
282                 return 0;
283         }
284
285         if (shmem_mapping(file->f_mapping)) {
286                 shmem_swapin_range(vma, start, end, file->f_mapping);
287                 lru_add_drain(); /* Push any new pages onto the LRU now */
288                 return 0;
289         }
290 #else
291         if (!file)
292                 return -EBADF;
293 #endif
294
295         if (IS_DAX(file_inode(file))) {
296                 /* no bad return value, but ignore advice */
297                 return 0;
298         }
299
300         /*
301          * Filesystem's fadvise may need to take various locks.  We need to
302          * explicitly grab a reference because the vma (and hence the
303          * vma's reference to the file) can go away as soon as we drop
304          * mmap_lock.
305          */
306         *prev = NULL;   /* tell sys_madvise we drop mmap_lock */
307         get_file(file);
308         offset = (loff_t)(start - vma->vm_start)
309                         + ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
310         mmap_read_unlock(mm);
311         vfs_fadvise(file, offset, end - start, POSIX_FADV_WILLNEED);
312         fput(file);
313         mmap_read_lock(mm);
314         return 0;
315 }
316
317 static inline bool can_do_file_pageout(struct vm_area_struct *vma)
318 {
319         if (!vma->vm_file)
320                 return false;
321         /*
322          * paging out pagecache only for non-anonymous mappings that correspond
323          * to the files the calling process could (if tried) open for writing;
324          * otherwise we'd be including shared non-exclusive mappings, which
325          * opens a side channel.
326          */
327         return inode_owner_or_capable(&nop_mnt_idmap,
328                                       file_inode(vma->vm_file)) ||
329                file_permission(vma->vm_file, MAY_WRITE) == 0;
330 }
331
332 static inline int madvise_folio_pte_batch(unsigned long addr, unsigned long end,
333                                           struct folio *folio, pte_t *ptep,
334                                           pte_t pte, bool *any_young,
335                                           bool *any_dirty)
336 {
337         const fpb_t fpb_flags = FPB_IGNORE_DIRTY | FPB_IGNORE_SOFT_DIRTY;
338         int max_nr = (end - addr) / PAGE_SIZE;
339
340         return folio_pte_batch(folio, addr, ptep, pte, max_nr, fpb_flags, NULL,
341                                any_young, any_dirty);
342 }
343
344 static int madvise_cold_or_pageout_pte_range(pmd_t *pmd,
345                                 unsigned long addr, unsigned long end,
346                                 struct mm_walk *walk)
347 {
348         struct madvise_walk_private *private = walk->private;
349         struct mmu_gather *tlb = private->tlb;
350         bool pageout = private->pageout;
351         struct mm_struct *mm = tlb->mm;
352         struct vm_area_struct *vma = walk->vma;
353         pte_t *start_pte, *pte, ptent;
354         spinlock_t *ptl;
355         struct folio *folio = NULL;
356         LIST_HEAD(folio_list);
357         bool pageout_anon_only_filter;
358         unsigned int batch_count = 0;
359         int nr;
360
361         if (fatal_signal_pending(current))
362                 return -EINTR;
363
364         pageout_anon_only_filter = pageout && !vma_is_anonymous(vma) &&
365                                         !can_do_file_pageout(vma);
366
367 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
368         if (pmd_trans_huge(*pmd)) {
369                 pmd_t orig_pmd;
370                 unsigned long next = pmd_addr_end(addr, end);
371
372                 tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
373                 ptl = pmd_trans_huge_lock(pmd, vma);
374                 if (!ptl)
375                         return 0;
376
377                 orig_pmd = *pmd;
378                 if (is_huge_zero_pmd(orig_pmd))
379                         goto huge_unlock;
380
381                 if (unlikely(!pmd_present(orig_pmd))) {
382                         VM_BUG_ON(thp_migration_supported() &&
383                                         !is_pmd_migration_entry(orig_pmd));
384                         goto huge_unlock;
385                 }
386
387                 folio = pmd_folio(orig_pmd);
388
389                 /* Do not interfere with other mappings of this folio */
390                 if (folio_likely_mapped_shared(folio))
391                         goto huge_unlock;
392
393                 if (pageout_anon_only_filter && !folio_test_anon(folio))
394                         goto huge_unlock;
395
396                 if (next - addr != HPAGE_PMD_SIZE) {
397                         int err;
398
399                         folio_get(folio);
400                         spin_unlock(ptl);
401                         folio_lock(folio);
402                         err = split_folio(folio);
403                         folio_unlock(folio);
404                         folio_put(folio);
405                         if (!err)
406                                 goto regular_folio;
407                         return 0;
408                 }
409
410                 if (!pageout && pmd_young(orig_pmd)) {
411                         pmdp_invalidate(vma, addr, pmd);
412                         orig_pmd = pmd_mkold(orig_pmd);
413
414                         set_pmd_at(mm, addr, pmd, orig_pmd);
415                         tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
416                 }
417
418                 folio_clear_referenced(folio);
419                 folio_test_clear_young(folio);
420                 if (folio_test_active(folio))
421                         folio_set_workingset(folio);
422                 if (pageout) {
423                         if (folio_isolate_lru(folio)) {
424                                 if (folio_test_unevictable(folio))
425                                         folio_putback_lru(folio);
426                                 else
427                                         list_add(&folio->lru, &folio_list);
428                         }
429                 } else
430                         folio_deactivate(folio);
431 huge_unlock:
432                 spin_unlock(ptl);
433                 if (pageout)
434                         reclaim_pages(&folio_list);
435                 return 0;
436         }
437
438 regular_folio:
439 #endif
440         tlb_change_page_size(tlb, PAGE_SIZE);
441 restart:
442         start_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
443         if (!start_pte)
444                 return 0;
445         flush_tlb_batched_pending(mm);
446         arch_enter_lazy_mmu_mode();
447         for (; addr < end; pte += nr, addr += nr * PAGE_SIZE) {
448                 nr = 1;
449                 ptent = ptep_get(pte);
450
451                 if (++batch_count == SWAP_CLUSTER_MAX) {
452                         batch_count = 0;
453                         if (need_resched()) {
454                                 arch_leave_lazy_mmu_mode();
455                                 pte_unmap_unlock(start_pte, ptl);
456                                 cond_resched();
457                                 goto restart;
458                         }
459                 }
460
461                 if (pte_none(ptent))
462                         continue;
463
464                 if (!pte_present(ptent))
465                         continue;
466
467                 folio = vm_normal_folio(vma, addr, ptent);
468                 if (!folio || folio_is_zone_device(folio))
469                         continue;
470
471                 /*
472                  * If we encounter a large folio, only split it if it is not
473                  * fully mapped within the range we are operating on. Otherwise
474                  * leave it as is so that it can be swapped out whole. If we
475                  * fail to split a folio, leave it in place and advance to the
476                  * next pte in the range.
477                  */
478                 if (folio_test_large(folio)) {
479                         bool any_young;
480
481                         nr = madvise_folio_pte_batch(addr, end, folio, pte,
482                                                      ptent, &any_young, NULL);
483                         if (any_young)
484                                 ptent = pte_mkyoung(ptent);
485
486                         if (nr < folio_nr_pages(folio)) {
487                                 int err;
488
489                                 if (folio_likely_mapped_shared(folio))
490                                         continue;
491                                 if (pageout_anon_only_filter && !folio_test_anon(folio))
492                                         continue;
493                                 if (!folio_trylock(folio))
494                                         continue;
495                                 folio_get(folio);
496                                 arch_leave_lazy_mmu_mode();
497                                 pte_unmap_unlock(start_pte, ptl);
498                                 start_pte = NULL;
499                                 err = split_folio(folio);
500                                 folio_unlock(folio);
501                                 folio_put(folio);
502                                 start_pte = pte =
503                                         pte_offset_map_lock(mm, pmd, addr, &ptl);
504                                 if (!start_pte)
505                                         break;
506                                 arch_enter_lazy_mmu_mode();
507                                 if (!err)
508                                         nr = 0;
509                                 continue;
510                         }
511                 }
512
513                 /*
514                  * Do not interfere with other mappings of this folio and
515                  * non-LRU folio. If we have a large folio at this point, we
516                  * know it is fully mapped so if its mapcount is the same as its
517                  * number of pages, it must be exclusive.
518                  */
519                 if (!folio_test_lru(folio) ||
520                     folio_mapcount(folio) != folio_nr_pages(folio))
521                         continue;
522
523                 if (pageout_anon_only_filter && !folio_test_anon(folio))
524                         continue;
525
526                 if (!pageout && pte_young(ptent)) {
527                         clear_young_dirty_ptes(vma, addr, pte, nr,
528                                                CYDP_CLEAR_YOUNG);
529                         tlb_remove_tlb_entries(tlb, pte, nr, addr);
530                 }
531
532                 /*
533                  * We are deactivating a folio for accelerating reclaiming.
534                  * VM couldn't reclaim the folio unless we clear PG_young.
535                  * As a side effect, it makes confuse idle-page tracking
536                  * because they will miss recent referenced history.
537                  */
538                 folio_clear_referenced(folio);
539                 folio_test_clear_young(folio);
540                 if (folio_test_active(folio))
541                         folio_set_workingset(folio);
542                 if (pageout) {
543                         if (folio_isolate_lru(folio)) {
544                                 if (folio_test_unevictable(folio))
545                                         folio_putback_lru(folio);
546                                 else
547                                         list_add(&folio->lru, &folio_list);
548                         }
549                 } else
550                         folio_deactivate(folio);
551         }
552
553         if (start_pte) {
554                 arch_leave_lazy_mmu_mode();
555                 pte_unmap_unlock(start_pte, ptl);
556         }
557         if (pageout)
558                 reclaim_pages(&folio_list);
559         cond_resched();
560
561         return 0;
562 }
563
564 static const struct mm_walk_ops cold_walk_ops = {
565         .pmd_entry = madvise_cold_or_pageout_pte_range,
566         .walk_lock = PGWALK_RDLOCK,
567 };
568
569 static void madvise_cold_page_range(struct mmu_gather *tlb,
570                              struct vm_area_struct *vma,
571                              unsigned long addr, unsigned long end)
572 {
573         struct madvise_walk_private walk_private = {
574                 .pageout = false,
575                 .tlb = tlb,
576         };
577
578         tlb_start_vma(tlb, vma);
579         walk_page_range(vma->vm_mm, addr, end, &cold_walk_ops, &walk_private);
580         tlb_end_vma(tlb, vma);
581 }
582
583 static inline bool can_madv_lru_vma(struct vm_area_struct *vma)
584 {
585         return !(vma->vm_flags & (VM_LOCKED|VM_PFNMAP|VM_HUGETLB));
586 }
587
588 static long madvise_cold(struct vm_area_struct *vma,
589                         struct vm_area_struct **prev,
590                         unsigned long start_addr, unsigned long end_addr)
591 {
592         struct mm_struct *mm = vma->vm_mm;
593         struct mmu_gather tlb;
594
595         *prev = vma;
596         if (!can_madv_lru_vma(vma))
597                 return -EINVAL;
598
599         lru_add_drain();
600         tlb_gather_mmu(&tlb, mm);
601         madvise_cold_page_range(&tlb, vma, start_addr, end_addr);
602         tlb_finish_mmu(&tlb);
603
604         return 0;
605 }
606
607 static void madvise_pageout_page_range(struct mmu_gather *tlb,
608                              struct vm_area_struct *vma,
609                              unsigned long addr, unsigned long end)
610 {
611         struct madvise_walk_private walk_private = {
612                 .pageout = true,
613                 .tlb = tlb,
614         };
615
616         tlb_start_vma(tlb, vma);
617         walk_page_range(vma->vm_mm, addr, end, &cold_walk_ops, &walk_private);
618         tlb_end_vma(tlb, vma);
619 }
620
621 static long madvise_pageout(struct vm_area_struct *vma,
622                         struct vm_area_struct **prev,
623                         unsigned long start_addr, unsigned long end_addr)
624 {
625         struct mm_struct *mm = vma->vm_mm;
626         struct mmu_gather tlb;
627
628         *prev = vma;
629         if (!can_madv_lru_vma(vma))
630                 return -EINVAL;
631
632         /*
633          * If the VMA belongs to a private file mapping, there can be private
634          * dirty pages which can be paged out if even this process is neither
635          * owner nor write capable of the file. We allow private file mappings
636          * further to pageout dirty anon pages.
637          */
638         if (!vma_is_anonymous(vma) && (!can_do_file_pageout(vma) &&
639                                 (vma->vm_flags & VM_MAYSHARE)))
640                 return 0;
641
642         lru_add_drain();
643         tlb_gather_mmu(&tlb, mm);
644         madvise_pageout_page_range(&tlb, vma, start_addr, end_addr);
645         tlb_finish_mmu(&tlb);
646
647         return 0;
648 }
649
650 static int madvise_free_pte_range(pmd_t *pmd, unsigned long addr,
651                                 unsigned long end, struct mm_walk *walk)
652
653 {
654         const cydp_t cydp_flags = CYDP_CLEAR_YOUNG | CYDP_CLEAR_DIRTY;
655         struct mmu_gather *tlb = walk->private;
656         struct mm_struct *mm = tlb->mm;
657         struct vm_area_struct *vma = walk->vma;
658         spinlock_t *ptl;
659         pte_t *start_pte, *pte, ptent;
660         struct folio *folio;
661         int nr_swap = 0;
662         unsigned long next;
663         int nr, max_nr;
664
665         next = pmd_addr_end(addr, end);
666         if (pmd_trans_huge(*pmd))
667                 if (madvise_free_huge_pmd(tlb, vma, pmd, addr, next))
668                         return 0;
669
670         tlb_change_page_size(tlb, PAGE_SIZE);
671         start_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
672         if (!start_pte)
673                 return 0;
674         flush_tlb_batched_pending(mm);
675         arch_enter_lazy_mmu_mode();
676         for (; addr != end; pte += nr, addr += PAGE_SIZE * nr) {
677                 nr = 1;
678                 ptent = ptep_get(pte);
679
680                 if (pte_none(ptent))
681                         continue;
682                 /*
683                  * If the pte has swp_entry, just clear page table to
684                  * prevent swap-in which is more expensive rather than
685                  * (page allocation + zeroing).
686                  */
687                 if (!pte_present(ptent)) {
688                         swp_entry_t entry;
689
690                         entry = pte_to_swp_entry(ptent);
691                         if (!non_swap_entry(entry)) {
692                                 max_nr = (end - addr) / PAGE_SIZE;
693                                 nr = swap_pte_batch(pte, max_nr, ptent);
694                                 nr_swap -= nr;
695                                 free_swap_and_cache_nr(entry, nr);
696                                 clear_not_present_full_ptes(mm, addr, pte, nr, tlb->fullmm);
697                         } else if (is_hwpoison_entry(entry) ||
698                                    is_poisoned_swp_entry(entry)) {
699                                 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
700                         }
701                         continue;
702                 }
703
704                 folio = vm_normal_folio(vma, addr, ptent);
705                 if (!folio || folio_is_zone_device(folio))
706                         continue;
707
708                 /*
709                  * If we encounter a large folio, only split it if it is not
710                  * fully mapped within the range we are operating on. Otherwise
711                  * leave it as is so that it can be marked as lazyfree. If we
712                  * fail to split a folio, leave it in place and advance to the
713                  * next pte in the range.
714                  */
715                 if (folio_test_large(folio)) {
716                         bool any_young, any_dirty;
717
718                         nr = madvise_folio_pte_batch(addr, end, folio, pte,
719                                                      ptent, &any_young, &any_dirty);
720
721                         if (nr < folio_nr_pages(folio)) {
722                                 int err;
723
724                                 if (folio_likely_mapped_shared(folio))
725                                         continue;
726                                 if (!folio_trylock(folio))
727                                         continue;
728                                 folio_get(folio);
729                                 arch_leave_lazy_mmu_mode();
730                                 pte_unmap_unlock(start_pte, ptl);
731                                 start_pte = NULL;
732                                 err = split_folio(folio);
733                                 folio_unlock(folio);
734                                 folio_put(folio);
735                                 pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
736                                 start_pte = pte;
737                                 if (!start_pte)
738                                         break;
739                                 arch_enter_lazy_mmu_mode();
740                                 if (!err)
741                                         nr = 0;
742                                 continue;
743                         }
744
745                         if (any_young)
746                                 ptent = pte_mkyoung(ptent);
747                         if (any_dirty)
748                                 ptent = pte_mkdirty(ptent);
749                 }
750
751                 if (folio_test_swapcache(folio) || folio_test_dirty(folio)) {
752                         if (!folio_trylock(folio))
753                                 continue;
754                         /*
755                          * If we have a large folio at this point, we know it is
756                          * fully mapped so if its mapcount is the same as its
757                          * number of pages, it must be exclusive.
758                          */
759                         if (folio_mapcount(folio) != folio_nr_pages(folio)) {
760                                 folio_unlock(folio);
761                                 continue;
762                         }
763
764                         if (folio_test_swapcache(folio) &&
765                             !folio_free_swap(folio)) {
766                                 folio_unlock(folio);
767                                 continue;
768                         }
769
770                         folio_clear_dirty(folio);
771                         folio_unlock(folio);
772                 }
773
774                 if (pte_young(ptent) || pte_dirty(ptent)) {
775                         clear_young_dirty_ptes(vma, addr, pte, nr, cydp_flags);
776                         tlb_remove_tlb_entries(tlb, pte, nr, addr);
777                 }
778                 folio_mark_lazyfree(folio);
779         }
780
781         if (nr_swap)
782                 add_mm_counter(mm, MM_SWAPENTS, nr_swap);
783         if (start_pte) {
784                 arch_leave_lazy_mmu_mode();
785                 pte_unmap_unlock(start_pte, ptl);
786         }
787         cond_resched();
788
789         return 0;
790 }
791
792 static const struct mm_walk_ops madvise_free_walk_ops = {
793         .pmd_entry              = madvise_free_pte_range,
794         .walk_lock              = PGWALK_RDLOCK,
795 };
796
797 static int madvise_free_single_vma(struct vm_area_struct *vma,
798                         unsigned long start_addr, unsigned long end_addr)
799 {
800         struct mm_struct *mm = vma->vm_mm;
801         struct mmu_notifier_range range;
802         struct mmu_gather tlb;
803
804         /* MADV_FREE works for only anon vma at the moment */
805         if (!vma_is_anonymous(vma))
806                 return -EINVAL;
807
808         range.start = max(vma->vm_start, start_addr);
809         if (range.start >= vma->vm_end)
810                 return -EINVAL;
811         range.end = min(vma->vm_end, end_addr);
812         if (range.end <= vma->vm_start)
813                 return -EINVAL;
814         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
815                                 range.start, range.end);
816
817         lru_add_drain();
818         tlb_gather_mmu(&tlb, mm);
819         update_hiwater_rss(mm);
820
821         mmu_notifier_invalidate_range_start(&range);
822         tlb_start_vma(&tlb, vma);
823         walk_page_range(vma->vm_mm, range.start, range.end,
824                         &madvise_free_walk_ops, &tlb);
825         tlb_end_vma(&tlb, vma);
826         mmu_notifier_invalidate_range_end(&range);
827         tlb_finish_mmu(&tlb);
828
829         return 0;
830 }
831
832 /*
833  * Application no longer needs these pages.  If the pages are dirty,
834  * it's OK to just throw them away.  The app will be more careful about
835  * data it wants to keep.  Be sure to free swap resources too.  The
836  * zap_page_range_single call sets things up for shrink_active_list to actually
837  * free these pages later if no one else has touched them in the meantime,
838  * although we could add these pages to a global reuse list for
839  * shrink_active_list to pick up before reclaiming other pages.
840  *
841  * NB: This interface discards data rather than pushes it out to swap,
842  * as some implementations do.  This has performance implications for
843  * applications like large transactional databases which want to discard
844  * pages in anonymous maps after committing to backing store the data
845  * that was kept in them.  There is no reason to write this data out to
846  * the swap area if the application is discarding it.
847  *
848  * An interface that causes the system to free clean pages and flush
849  * dirty pages is already available as msync(MS_INVALIDATE).
850  */
851 static long madvise_dontneed_single_vma(struct vm_area_struct *vma,
852                                         unsigned long start, unsigned long end)
853 {
854         zap_page_range_single(vma, start, end - start, NULL);
855         return 0;
856 }
857
858 static bool madvise_dontneed_free_valid_vma(struct vm_area_struct *vma,
859                                             unsigned long start,
860                                             unsigned long *end,
861                                             int behavior)
862 {
863         if (!is_vm_hugetlb_page(vma)) {
864                 unsigned int forbidden = VM_PFNMAP;
865
866                 if (behavior != MADV_DONTNEED_LOCKED)
867                         forbidden |= VM_LOCKED;
868
869                 return !(vma->vm_flags & forbidden);
870         }
871
872         if (behavior != MADV_DONTNEED && behavior != MADV_DONTNEED_LOCKED)
873                 return false;
874         if (start & ~huge_page_mask(hstate_vma(vma)))
875                 return false;
876
877         /*
878          * Madvise callers expect the length to be rounded up to PAGE_SIZE
879          * boundaries, and may be unaware that this VMA uses huge pages.
880          * Avoid unexpected data loss by rounding down the number of
881          * huge pages freed.
882          */
883         *end = ALIGN_DOWN(*end, huge_page_size(hstate_vma(vma)));
884
885         return true;
886 }
887
888 static long madvise_dontneed_free(struct vm_area_struct *vma,
889                                   struct vm_area_struct **prev,
890                                   unsigned long start, unsigned long end,
891                                   int behavior)
892 {
893         struct mm_struct *mm = vma->vm_mm;
894
895         *prev = vma;
896         if (!madvise_dontneed_free_valid_vma(vma, start, &end, behavior))
897                 return -EINVAL;
898
899         if (start == end)
900                 return 0;
901
902         if (!userfaultfd_remove(vma, start, end)) {
903                 *prev = NULL; /* mmap_lock has been dropped, prev is stale */
904
905                 mmap_read_lock(mm);
906                 vma = vma_lookup(mm, start);
907                 if (!vma)
908                         return -ENOMEM;
909                 /*
910                  * Potential end adjustment for hugetlb vma is OK as
911                  * the check below keeps end within vma.
912                  */
913                 if (!madvise_dontneed_free_valid_vma(vma, start, &end,
914                                                      behavior))
915                         return -EINVAL;
916                 if (end > vma->vm_end) {
917                         /*
918                          * Don't fail if end > vma->vm_end. If the old
919                          * vma was split while the mmap_lock was
920                          * released the effect of the concurrent
921                          * operation may not cause madvise() to
922                          * have an undefined result. There may be an
923                          * adjacent next vma that we'll walk
924                          * next. userfaultfd_remove() will generate an
925                          * UFFD_EVENT_REMOVE repetition on the
926                          * end-vma->vm_end range, but the manager can
927                          * handle a repetition fine.
928                          */
929                         end = vma->vm_end;
930                 }
931                 VM_WARN_ON(start >= end);
932         }
933
934         if (behavior == MADV_DONTNEED || behavior == MADV_DONTNEED_LOCKED)
935                 return madvise_dontneed_single_vma(vma, start, end);
936         else if (behavior == MADV_FREE)
937                 return madvise_free_single_vma(vma, start, end);
938         else
939                 return -EINVAL;
940 }
941
942 static long madvise_populate(struct mm_struct *mm, unsigned long start,
943                 unsigned long end, int behavior)
944 {
945         const bool write = behavior == MADV_POPULATE_WRITE;
946         int locked = 1;
947         long pages;
948
949         while (start < end) {
950                 /* Populate (prefault) page tables readable/writable. */
951                 pages = faultin_page_range(mm, start, end, write, &locked);
952                 if (!locked) {
953                         mmap_read_lock(mm);
954                         locked = 1;
955                 }
956                 if (pages < 0) {
957                         switch (pages) {
958                         case -EINTR:
959                                 return -EINTR;
960                         case -EINVAL: /* Incompatible mappings / permissions. */
961                                 return -EINVAL;
962                         case -EHWPOISON:
963                                 return -EHWPOISON;
964                         case -EFAULT: /* VM_FAULT_SIGBUS or VM_FAULT_SIGSEGV */
965                                 return -EFAULT;
966                         default:
967                                 pr_warn_once("%s: unhandled return value: %ld\n",
968                                              __func__, pages);
969                                 fallthrough;
970                         case -ENOMEM: /* No VMA or out of memory. */
971                                 return -ENOMEM;
972                         }
973                 }
974                 start += pages * PAGE_SIZE;
975         }
976         return 0;
977 }
978
979 /*
980  * Application wants to free up the pages and associated backing store.
981  * This is effectively punching a hole into the middle of a file.
982  */
983 static long madvise_remove(struct vm_area_struct *vma,
984                                 struct vm_area_struct **prev,
985                                 unsigned long start, unsigned long end)
986 {
987         loff_t offset;
988         int error;
989         struct file *f;
990         struct mm_struct *mm = vma->vm_mm;
991
992         *prev = NULL;   /* tell sys_madvise we drop mmap_lock */
993
994         if (vma->vm_flags & VM_LOCKED)
995                 return -EINVAL;
996
997         f = vma->vm_file;
998
999         if (!f || !f->f_mapping || !f->f_mapping->host) {
1000                         return -EINVAL;
1001         }
1002
1003         if (!vma_is_shared_maywrite(vma))
1004                 return -EACCES;
1005
1006         offset = (loff_t)(start - vma->vm_start)
1007                         + ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
1008
1009         /*
1010          * Filesystem's fallocate may need to take i_rwsem.  We need to
1011          * explicitly grab a reference because the vma (and hence the
1012          * vma's reference to the file) can go away as soon as we drop
1013          * mmap_lock.
1014          */
1015         get_file(f);
1016         if (userfaultfd_remove(vma, start, end)) {
1017                 /* mmap_lock was not released by userfaultfd_remove() */
1018                 mmap_read_unlock(mm);
1019         }
1020         error = vfs_fallocate(f,
1021                                 FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
1022                                 offset, end - start);
1023         fput(f);
1024         mmap_read_lock(mm);
1025         return error;
1026 }
1027
1028 static bool is_valid_guard_vma(struct vm_area_struct *vma, bool allow_locked)
1029 {
1030         vm_flags_t disallowed = VM_SPECIAL | VM_HUGETLB;
1031
1032         /*
1033          * A user could lock after setting a guard range but that's fine, as
1034          * they'd not be able to fault in. The issue arises when we try to zap
1035          * existing locked VMAs. We don't want to do that.
1036          */
1037         if (!allow_locked)
1038                 disallowed |= VM_LOCKED;
1039
1040         if (!vma_is_anonymous(vma))
1041                 return false;
1042
1043         if ((vma->vm_flags & (VM_MAYWRITE | disallowed)) != VM_MAYWRITE)
1044                 return false;
1045
1046         return true;
1047 }
1048
1049 static bool is_guard_pte_marker(pte_t ptent)
1050 {
1051         return is_pte_marker(ptent) &&
1052                 is_guard_swp_entry(pte_to_swp_entry(ptent));
1053 }
1054
1055 static int guard_install_pud_entry(pud_t *pud, unsigned long addr,
1056                                    unsigned long next, struct mm_walk *walk)
1057 {
1058         pud_t pudval = pudp_get(pud);
1059
1060         /* If huge return >0 so we abort the operation + zap. */
1061         return pud_trans_huge(pudval) || pud_devmap(pudval);
1062 }
1063
1064 static int guard_install_pmd_entry(pmd_t *pmd, unsigned long addr,
1065                                    unsigned long next, struct mm_walk *walk)
1066 {
1067         pmd_t pmdval = pmdp_get(pmd);
1068
1069         /* If huge return >0 so we abort the operation + zap. */
1070         return pmd_trans_huge(pmdval) || pmd_devmap(pmdval);
1071 }
1072
1073 static int guard_install_pte_entry(pte_t *pte, unsigned long addr,
1074                                    unsigned long next, struct mm_walk *walk)
1075 {
1076         pte_t pteval = ptep_get(pte);
1077         unsigned long *nr_pages = (unsigned long *)walk->private;
1078
1079         /* If there is already a guard page marker, we have nothing to do. */
1080         if (is_guard_pte_marker(pteval)) {
1081                 (*nr_pages)++;
1082
1083                 return 0;
1084         }
1085
1086         /* If populated return >0 so we abort the operation + zap. */
1087         return 1;
1088 }
1089
1090 static int guard_install_set_pte(unsigned long addr, unsigned long next,
1091                                  pte_t *ptep, struct mm_walk *walk)
1092 {
1093         unsigned long *nr_pages = (unsigned long *)walk->private;
1094
1095         /* Simply install a PTE marker, this causes segfault on access. */
1096         *ptep = make_pte_marker(PTE_MARKER_GUARD);
1097         (*nr_pages)++;
1098
1099         return 0;
1100 }
1101
1102 static const struct mm_walk_ops guard_install_walk_ops = {
1103         .pud_entry              = guard_install_pud_entry,
1104         .pmd_entry              = guard_install_pmd_entry,
1105         .pte_entry              = guard_install_pte_entry,
1106         .install_pte            = guard_install_set_pte,
1107         .walk_lock              = PGWALK_RDLOCK,
1108 };
1109
1110 static long madvise_guard_install(struct vm_area_struct *vma,
1111                                  struct vm_area_struct **prev,
1112                                  unsigned long start, unsigned long end)
1113 {
1114         long err;
1115         int i;
1116
1117         *prev = vma;
1118         if (!is_valid_guard_vma(vma, /* allow_locked = */false))
1119                 return -EINVAL;
1120
1121         /*
1122          * If we install guard markers, then the range is no longer
1123          * empty from a page table perspective and therefore it's
1124          * appropriate to have an anon_vma.
1125          *
1126          * This ensures that on fork, we copy page tables correctly.
1127          */
1128         err = anon_vma_prepare(vma);
1129         if (err)
1130                 return err;
1131
1132         /*
1133          * Optimistically try to install the guard marker pages first. If any
1134          * non-guard pages are encountered, give up and zap the range before
1135          * trying again.
1136          *
1137          * We try a few times before giving up and releasing back to userland to
1138          * loop around, releasing locks in the process to avoid contention. This
1139          * would only happen if there was a great many racing page faults.
1140          *
1141          * In most cases we should simply install the guard markers immediately
1142          * with no zap or looping.
1143          */
1144         for (i = 0; i < MAX_MADVISE_GUARD_RETRIES; i++) {
1145                 unsigned long nr_pages = 0;
1146
1147                 /* Returns < 0 on error, == 0 if success, > 0 if zap needed. */
1148                 err = walk_page_range_mm(vma->vm_mm, start, end,
1149                                          &guard_install_walk_ops, &nr_pages);
1150                 if (err < 0)
1151                         return err;
1152
1153                 if (err == 0) {
1154                         unsigned long nr_expected_pages = PHYS_PFN(end - start);
1155
1156                         VM_WARN_ON(nr_pages != nr_expected_pages);
1157                         return 0;
1158                 }
1159
1160                 /*
1161                  * OK some of the range have non-guard pages mapped, zap
1162                  * them. This leaves existing guard pages in place.
1163                  */
1164                 zap_page_range_single(vma, start, end - start, NULL);
1165         }
1166
1167         /*
1168          * We were unable to install the guard pages due to being raced by page
1169          * faults. This should not happen ordinarily. We return to userspace and
1170          * immediately retry, relieving lock contention.
1171          */
1172         return restart_syscall();
1173 }
1174
1175 static int guard_remove_pud_entry(pud_t *pud, unsigned long addr,
1176                                   unsigned long next, struct mm_walk *walk)
1177 {
1178         pud_t pudval = pudp_get(pud);
1179
1180         /* If huge, cannot have guard pages present, so no-op - skip. */
1181         if (pud_trans_huge(pudval) || pud_devmap(pudval))
1182                 walk->action = ACTION_CONTINUE;
1183
1184         return 0;
1185 }
1186
1187 static int guard_remove_pmd_entry(pmd_t *pmd, unsigned long addr,
1188                                   unsigned long next, struct mm_walk *walk)
1189 {
1190         pmd_t pmdval = pmdp_get(pmd);
1191
1192         /* If huge, cannot have guard pages present, so no-op - skip. */
1193         if (pmd_trans_huge(pmdval) || pmd_devmap(pmdval))
1194                 walk->action = ACTION_CONTINUE;
1195
1196         return 0;
1197 }
1198
1199 static int guard_remove_pte_entry(pte_t *pte, unsigned long addr,
1200                                   unsigned long next, struct mm_walk *walk)
1201 {
1202         pte_t ptent = ptep_get(pte);
1203
1204         if (is_guard_pte_marker(ptent)) {
1205                 /* Simply clear the PTE marker. */
1206                 pte_clear_not_present_full(walk->mm, addr, pte, false);
1207                 update_mmu_cache(walk->vma, addr, pte);
1208         }
1209
1210         return 0;
1211 }
1212
1213 static const struct mm_walk_ops guard_remove_walk_ops = {
1214         .pud_entry              = guard_remove_pud_entry,
1215         .pmd_entry              = guard_remove_pmd_entry,
1216         .pte_entry              = guard_remove_pte_entry,
1217         .walk_lock              = PGWALK_RDLOCK,
1218 };
1219
1220 static long madvise_guard_remove(struct vm_area_struct *vma,
1221                                  struct vm_area_struct **prev,
1222                                  unsigned long start, unsigned long end)
1223 {
1224         *prev = vma;
1225         /*
1226          * We're ok with removing guards in mlock()'d ranges, as this is a
1227          * non-destructive action.
1228          */
1229         if (!is_valid_guard_vma(vma, /* allow_locked = */true))
1230                 return -EINVAL;
1231
1232         return walk_page_range(vma->vm_mm, start, end,
1233                                &guard_remove_walk_ops, NULL);
1234 }
1235
1236 /*
1237  * Apply an madvise behavior to a region of a vma.  madvise_update_vma
1238  * will handle splitting a vm area into separate areas, each area with its own
1239  * behavior.
1240  */
1241 static int madvise_vma_behavior(struct vm_area_struct *vma,
1242                                 struct vm_area_struct **prev,
1243                                 unsigned long start, unsigned long end,
1244                                 unsigned long behavior)
1245 {
1246         int error;
1247         struct anon_vma_name *anon_name;
1248         unsigned long new_flags = vma->vm_flags;
1249
1250         if (unlikely(!can_modify_vma_madv(vma, behavior)))
1251                 return -EPERM;
1252
1253         switch (behavior) {
1254         case MADV_REMOVE:
1255                 return madvise_remove(vma, prev, start, end);
1256         case MADV_WILLNEED:
1257                 return madvise_willneed(vma, prev, start, end);
1258         case MADV_COLD:
1259                 return madvise_cold(vma, prev, start, end);
1260         case MADV_PAGEOUT:
1261                 return madvise_pageout(vma, prev, start, end);
1262         case MADV_FREE:
1263         case MADV_DONTNEED:
1264         case MADV_DONTNEED_LOCKED:
1265                 return madvise_dontneed_free(vma, prev, start, end, behavior);
1266         case MADV_NORMAL:
1267                 new_flags = new_flags & ~VM_RAND_READ & ~VM_SEQ_READ;
1268                 break;
1269         case MADV_SEQUENTIAL:
1270                 new_flags = (new_flags & ~VM_RAND_READ) | VM_SEQ_READ;
1271                 break;
1272         case MADV_RANDOM:
1273                 new_flags = (new_flags & ~VM_SEQ_READ) | VM_RAND_READ;
1274                 break;
1275         case MADV_DONTFORK:
1276                 new_flags |= VM_DONTCOPY;
1277                 break;
1278         case MADV_DOFORK:
1279                 if (vma->vm_flags & VM_IO)
1280                         return -EINVAL;
1281                 new_flags &= ~VM_DONTCOPY;
1282                 break;
1283         case MADV_WIPEONFORK:
1284                 /* MADV_WIPEONFORK is only supported on anonymous memory. */
1285                 if (vma->vm_file || vma->vm_flags & VM_SHARED)
1286                         return -EINVAL;
1287                 new_flags |= VM_WIPEONFORK;
1288                 break;
1289         case MADV_KEEPONFORK:
1290                 if (vma->vm_flags & VM_DROPPABLE)
1291                         return -EINVAL;
1292                 new_flags &= ~VM_WIPEONFORK;
1293                 break;
1294         case MADV_DONTDUMP:
1295                 new_flags |= VM_DONTDUMP;
1296                 break;
1297         case MADV_DODUMP:
1298                 if ((!is_vm_hugetlb_page(vma) && new_flags & VM_SPECIAL) ||
1299                     (vma->vm_flags & VM_DROPPABLE))
1300                         return -EINVAL;
1301                 new_flags &= ~VM_DONTDUMP;
1302                 break;
1303         case MADV_MERGEABLE:
1304         case MADV_UNMERGEABLE:
1305                 error = ksm_madvise(vma, start, end, behavior, &new_flags);
1306                 if (error)
1307                         goto out;
1308                 break;
1309         case MADV_HUGEPAGE:
1310         case MADV_NOHUGEPAGE:
1311                 error = hugepage_madvise(vma, &new_flags, behavior);
1312                 if (error)
1313                         goto out;
1314                 break;
1315         case MADV_COLLAPSE:
1316                 return madvise_collapse(vma, prev, start, end);
1317         case MADV_GUARD_INSTALL:
1318                 return madvise_guard_install(vma, prev, start, end);
1319         case MADV_GUARD_REMOVE:
1320                 return madvise_guard_remove(vma, prev, start, end);
1321         }
1322
1323         anon_name = anon_vma_name(vma);
1324         anon_vma_name_get(anon_name);
1325         error = madvise_update_vma(vma, prev, start, end, new_flags,
1326                                    anon_name);
1327         anon_vma_name_put(anon_name);
1328
1329 out:
1330         /*
1331          * madvise() returns EAGAIN if kernel resources, such as
1332          * slab, are temporarily unavailable.
1333          */
1334         if (error == -ENOMEM)
1335                 error = -EAGAIN;
1336         return error;
1337 }
1338
1339 #ifdef CONFIG_MEMORY_FAILURE
1340 /*
1341  * Error injection support for memory error handling.
1342  */
1343 static int madvise_inject_error(int behavior,
1344                 unsigned long start, unsigned long end)
1345 {
1346         unsigned long size;
1347
1348         if (!capable(CAP_SYS_ADMIN))
1349                 return -EPERM;
1350
1351
1352         for (; start < end; start += size) {
1353                 unsigned long pfn;
1354                 struct page *page;
1355                 int ret;
1356
1357                 ret = get_user_pages_fast(start, 1, 0, &page);
1358                 if (ret != 1)
1359                         return ret;
1360                 pfn = page_to_pfn(page);
1361
1362                 /*
1363                  * When soft offlining hugepages, after migrating the page
1364                  * we dissolve it, therefore in the second loop "page" will
1365                  * no longer be a compound page.
1366                  */
1367                 size = page_size(compound_head(page));
1368
1369                 if (behavior == MADV_SOFT_OFFLINE) {
1370                         pr_info("Soft offlining pfn %#lx at process virtual address %#lx\n",
1371                                  pfn, start);
1372                         ret = soft_offline_page(pfn, MF_COUNT_INCREASED);
1373                 } else {
1374                         pr_info("Injecting memory failure for pfn %#lx at process virtual address %#lx\n",
1375                                  pfn, start);
1376                         ret = memory_failure(pfn, MF_ACTION_REQUIRED | MF_COUNT_INCREASED | MF_SW_SIMULATED);
1377                         if (ret == -EOPNOTSUPP)
1378                                 ret = 0;
1379                 }
1380
1381                 if (ret)
1382                         return ret;
1383         }
1384
1385         return 0;
1386 }
1387 #endif
1388
1389 static bool
1390 madvise_behavior_valid(int behavior)
1391 {
1392         switch (behavior) {
1393         case MADV_DOFORK:
1394         case MADV_DONTFORK:
1395         case MADV_NORMAL:
1396         case MADV_SEQUENTIAL:
1397         case MADV_RANDOM:
1398         case MADV_REMOVE:
1399         case MADV_WILLNEED:
1400         case MADV_DONTNEED:
1401         case MADV_DONTNEED_LOCKED:
1402         case MADV_FREE:
1403         case MADV_COLD:
1404         case MADV_PAGEOUT:
1405         case MADV_POPULATE_READ:
1406         case MADV_POPULATE_WRITE:
1407 #ifdef CONFIG_KSM
1408         case MADV_MERGEABLE:
1409         case MADV_UNMERGEABLE:
1410 #endif
1411 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1412         case MADV_HUGEPAGE:
1413         case MADV_NOHUGEPAGE:
1414         case MADV_COLLAPSE:
1415 #endif
1416         case MADV_DONTDUMP:
1417         case MADV_DODUMP:
1418         case MADV_WIPEONFORK:
1419         case MADV_KEEPONFORK:
1420         case MADV_GUARD_INSTALL:
1421         case MADV_GUARD_REMOVE:
1422 #ifdef CONFIG_MEMORY_FAILURE
1423         case MADV_SOFT_OFFLINE:
1424         case MADV_HWPOISON:
1425 #endif
1426                 return true;
1427
1428         default:
1429                 return false;
1430         }
1431 }
1432
1433 /* Can we invoke process_madvise() on a remote mm for the specified behavior? */
1434 static bool process_madvise_remote_valid(int behavior)
1435 {
1436         switch (behavior) {
1437         case MADV_COLD:
1438         case MADV_PAGEOUT:
1439         case MADV_WILLNEED:
1440         case MADV_COLLAPSE:
1441                 return true;
1442         default:
1443                 return false;
1444         }
1445 }
1446
1447 /*
1448  * Walk the vmas in range [start,end), and call the visit function on each one.
1449  * The visit function will get start and end parameters that cover the overlap
1450  * between the current vma and the original range.  Any unmapped regions in the
1451  * original range will result in this function returning -ENOMEM while still
1452  * calling the visit function on all of the existing vmas in the range.
1453  * Must be called with the mmap_lock held for reading or writing.
1454  */
1455 static
1456 int madvise_walk_vmas(struct mm_struct *mm, unsigned long start,
1457                       unsigned long end, unsigned long arg,
1458                       int (*visit)(struct vm_area_struct *vma,
1459                                    struct vm_area_struct **prev, unsigned long start,
1460                                    unsigned long end, unsigned long arg))
1461 {
1462         struct vm_area_struct *vma;
1463         struct vm_area_struct *prev;
1464         unsigned long tmp;
1465         int unmapped_error = 0;
1466
1467         /*
1468          * If the interval [start,end) covers some unmapped address
1469          * ranges, just ignore them, but return -ENOMEM at the end.
1470          * - different from the way of handling in mlock etc.
1471          */
1472         vma = find_vma_prev(mm, start, &prev);
1473         if (vma && start > vma->vm_start)
1474                 prev = vma;
1475
1476         for (;;) {
1477                 int error;
1478
1479                 /* Still start < end. */
1480                 if (!vma)
1481                         return -ENOMEM;
1482
1483                 /* Here start < (end|vma->vm_end). */
1484                 if (start < vma->vm_start) {
1485                         unmapped_error = -ENOMEM;
1486                         start = vma->vm_start;
1487                         if (start >= end)
1488                                 break;
1489                 }
1490
1491                 /* Here vma->vm_start <= start < (end|vma->vm_end) */
1492                 tmp = vma->vm_end;
1493                 if (end < tmp)
1494                         tmp = end;
1495
1496                 /* Here vma->vm_start <= start < tmp <= (end|vma->vm_end). */
1497                 error = visit(vma, &prev, start, tmp, arg);
1498                 if (error)
1499                         return error;
1500                 start = tmp;
1501                 if (prev && start < prev->vm_end)
1502                         start = prev->vm_end;
1503                 if (start >= end)
1504                         break;
1505                 if (prev)
1506                         vma = find_vma(mm, prev->vm_end);
1507                 else    /* madvise_remove dropped mmap_lock */
1508                         vma = find_vma(mm, start);
1509         }
1510
1511         return unmapped_error;
1512 }
1513
1514 #ifdef CONFIG_ANON_VMA_NAME
1515 static int madvise_vma_anon_name(struct vm_area_struct *vma,
1516                                  struct vm_area_struct **prev,
1517                                  unsigned long start, unsigned long end,
1518                                  unsigned long anon_name)
1519 {
1520         int error;
1521
1522         /* Only anonymous mappings can be named */
1523         if (vma->vm_file && !vma_is_anon_shmem(vma))
1524                 return -EBADF;
1525
1526         error = madvise_update_vma(vma, prev, start, end, vma->vm_flags,
1527                                    (struct anon_vma_name *)anon_name);
1528
1529         /*
1530          * madvise() returns EAGAIN if kernel resources, such as
1531          * slab, are temporarily unavailable.
1532          */
1533         if (error == -ENOMEM)
1534                 error = -EAGAIN;
1535         return error;
1536 }
1537
1538 int madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
1539                           unsigned long len_in, struct anon_vma_name *anon_name)
1540 {
1541         unsigned long end;
1542         unsigned long len;
1543
1544         if (start & ~PAGE_MASK)
1545                 return -EINVAL;
1546         len = (len_in + ~PAGE_MASK) & PAGE_MASK;
1547
1548         /* Check to see whether len was rounded up from small -ve to zero */
1549         if (len_in && !len)
1550                 return -EINVAL;
1551
1552         end = start + len;
1553         if (end < start)
1554                 return -EINVAL;
1555
1556         if (end == start)
1557                 return 0;
1558
1559         return madvise_walk_vmas(mm, start, end, (unsigned long)anon_name,
1560                                  madvise_vma_anon_name);
1561 }
1562 #endif /* CONFIG_ANON_VMA_NAME */
1563 /*
1564  * The madvise(2) system call.
1565  *
1566  * Applications can use madvise() to advise the kernel how it should
1567  * handle paging I/O in this VM area.  The idea is to help the kernel
1568  * use appropriate read-ahead and caching techniques.  The information
1569  * provided is advisory only, and can be safely disregarded by the
1570  * kernel without affecting the correct operation of the application.
1571  *
1572  * behavior values:
1573  *  MADV_NORMAL - the default behavior is to read clusters.  This
1574  *              results in some read-ahead and read-behind.
1575  *  MADV_RANDOM - the system should read the minimum amount of data
1576  *              on any access, since it is unlikely that the appli-
1577  *              cation will need more than what it asks for.
1578  *  MADV_SEQUENTIAL - pages in the given range will probably be accessed
1579  *              once, so they can be aggressively read ahead, and
1580  *              can be freed soon after they are accessed.
1581  *  MADV_WILLNEED - the application is notifying the system to read
1582  *              some pages ahead.
1583  *  MADV_DONTNEED - the application is finished with the given range,
1584  *              so the kernel can free resources associated with it.
1585  *  MADV_FREE - the application marks pages in the given range as lazy free,
1586  *              where actual purges are postponed until memory pressure happens.
1587  *  MADV_REMOVE - the application wants to free up the given range of
1588  *              pages and associated backing store.
1589  *  MADV_DONTFORK - omit this area from child's address space when forking:
1590  *              typically, to avoid COWing pages pinned by get_user_pages().
1591  *  MADV_DOFORK - cancel MADV_DONTFORK: no longer omit this area when forking.
1592  *  MADV_WIPEONFORK - present the child process with zero-filled memory in this
1593  *              range after a fork.
1594  *  MADV_KEEPONFORK - undo the effect of MADV_WIPEONFORK
1595  *  MADV_HWPOISON - trigger memory error handler as if the given memory range
1596  *              were corrupted by unrecoverable hardware memory failure.
1597  *  MADV_SOFT_OFFLINE - try to soft-offline the given range of memory.
1598  *  MADV_MERGEABLE - the application recommends that KSM try to merge pages in
1599  *              this area with pages of identical content from other such areas.
1600  *  MADV_UNMERGEABLE- cancel MADV_MERGEABLE: no longer merge pages with others.
1601  *  MADV_HUGEPAGE - the application wants to back the given range by transparent
1602  *              huge pages in the future. Existing pages might be coalesced and
1603  *              new pages might be allocated as THP.
1604  *  MADV_NOHUGEPAGE - mark the given range as not worth being backed by
1605  *              transparent huge pages so the existing pages will not be
1606  *              coalesced into THP and new pages will not be allocated as THP.
1607  *  MADV_COLLAPSE - synchronously coalesce pages into new THP.
1608  *  MADV_DONTDUMP - the application wants to prevent pages in the given range
1609  *              from being included in its core dump.
1610  *  MADV_DODUMP - cancel MADV_DONTDUMP: no longer exclude from core dump.
1611  *  MADV_COLD - the application is not expected to use this memory soon,
1612  *              deactivate pages in this range so that they can be reclaimed
1613  *              easily if memory pressure happens.
1614  *  MADV_PAGEOUT - the application is not expected to use this memory soon,
1615  *              page out the pages in this range immediately.
1616  *  MADV_POPULATE_READ - populate (prefault) page tables readable by
1617  *              triggering read faults if required
1618  *  MADV_POPULATE_WRITE - populate (prefault) page tables writable by
1619  *              triggering write faults if required
1620  *
1621  * return values:
1622  *  zero    - success
1623  *  -EINVAL - start + len < 0, start is not page-aligned,
1624  *              "behavior" is not a valid value, or application
1625  *              is attempting to release locked or shared pages,
1626  *              or the specified address range includes file, Huge TLB,
1627  *              MAP_SHARED or VMPFNMAP range.
1628  *  -ENOMEM - addresses in the specified range are not currently
1629  *              mapped, or are outside the AS of the process.
1630  *  -EIO    - an I/O error occurred while paging in data.
1631  *  -EBADF  - map exists, but area maps something that isn't a file.
1632  *  -EAGAIN - a kernel resource was temporarily unavailable.
1633  *  -EPERM  - memory is sealed.
1634  */
1635 int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior)
1636 {
1637         unsigned long end;
1638         int error;
1639         int write;
1640         size_t len;
1641         struct blk_plug plug;
1642
1643         if (!madvise_behavior_valid(behavior))
1644                 return -EINVAL;
1645
1646         if (!PAGE_ALIGNED(start))
1647                 return -EINVAL;
1648         len = PAGE_ALIGN(len_in);
1649
1650         /* Check to see whether len was rounded up from small -ve to zero */
1651         if (len_in && !len)
1652                 return -EINVAL;
1653
1654         end = start + len;
1655         if (end < start)
1656                 return -EINVAL;
1657
1658         if (end == start)
1659                 return 0;
1660
1661 #ifdef CONFIG_MEMORY_FAILURE
1662         if (behavior == MADV_HWPOISON || behavior == MADV_SOFT_OFFLINE)
1663                 return madvise_inject_error(behavior, start, start + len_in);
1664 #endif
1665
1666         write = madvise_need_mmap_write(behavior);
1667         if (write) {
1668                 if (mmap_write_lock_killable(mm))
1669                         return -EINTR;
1670         } else {
1671                 mmap_read_lock(mm);
1672         }
1673
1674         start = untagged_addr_remote(mm, start);
1675         end = start + len;
1676
1677         blk_start_plug(&plug);
1678         switch (behavior) {
1679         case MADV_POPULATE_READ:
1680         case MADV_POPULATE_WRITE:
1681                 error = madvise_populate(mm, start, end, behavior);
1682                 break;
1683         default:
1684                 error = madvise_walk_vmas(mm, start, end, behavior,
1685                                           madvise_vma_behavior);
1686                 break;
1687         }
1688         blk_finish_plug(&plug);
1689
1690         if (write)
1691                 mmap_write_unlock(mm);
1692         else
1693                 mmap_read_unlock(mm);
1694
1695         return error;
1696 }
1697
1698 SYSCALL_DEFINE3(madvise, unsigned long, start, size_t, len_in, int, behavior)
1699 {
1700         return do_madvise(current->mm, start, len_in, behavior);
1701 }
1702
1703 /* Perform an madvise operation over a vector of addresses and lengths. */
1704 static ssize_t vector_madvise(struct mm_struct *mm, struct iov_iter *iter,
1705                               int behavior)
1706 {
1707         ssize_t ret = 0;
1708         size_t total_len;
1709
1710         total_len = iov_iter_count(iter);
1711
1712         while (iov_iter_count(iter)) {
1713                 ret = do_madvise(mm, (unsigned long)iter_iov_addr(iter),
1714                                  iter_iov_len(iter), behavior);
1715                 /*
1716                  * An madvise operation is attempting to restart the syscall,
1717                  * but we cannot proceed as it would not be correct to repeat
1718                  * the operation in aggregate, and would be surprising to the
1719                  * user.
1720                  *
1721                  * As we have already dropped locks, it is safe to just loop and
1722                  * try again. We check for fatal signals in case we need exit
1723                  * early anyway.
1724                  */
1725                 if (ret == -ERESTARTNOINTR) {
1726                         if (fatal_signal_pending(current)) {
1727                                 ret = -EINTR;
1728                                 break;
1729                         }
1730                         continue;
1731                 }
1732                 if (ret < 0)
1733                         break;
1734                 iov_iter_advance(iter, iter_iov_len(iter));
1735         }
1736
1737         ret = (total_len - iov_iter_count(iter)) ? : ret;
1738
1739         return ret;
1740 }
1741
1742 SYSCALL_DEFINE5(process_madvise, int, pidfd, const struct iovec __user *, vec,
1743                 size_t, vlen, int, behavior, unsigned int, flags)
1744 {
1745         ssize_t ret;
1746         struct iovec iovstack[UIO_FASTIOV];
1747         struct iovec *iov = iovstack;
1748         struct iov_iter iter;
1749         struct task_struct *task;
1750         struct mm_struct *mm;
1751         unsigned int f_flags;
1752
1753         if (flags != 0) {
1754                 ret = -EINVAL;
1755                 goto out;
1756         }
1757
1758         ret = import_iovec(ITER_DEST, vec, vlen, ARRAY_SIZE(iovstack), &iov, &iter);
1759         if (ret < 0)
1760                 goto out;
1761
1762         task = pidfd_get_task(pidfd, &f_flags);
1763         if (IS_ERR(task)) {
1764                 ret = PTR_ERR(task);
1765                 goto free_iov;
1766         }
1767
1768         /* Require PTRACE_MODE_READ to avoid leaking ASLR metadata. */
1769         mm = mm_access(task, PTRACE_MODE_READ_FSCREDS);
1770         if (IS_ERR(mm)) {
1771                 ret = PTR_ERR(mm);
1772                 goto release_task;
1773         }
1774
1775         /*
1776          * We need only perform this check if we are attempting to manipulate a
1777          * remote process's address space.
1778          */
1779         if (mm != current->mm && !process_madvise_remote_valid(behavior)) {
1780                 ret = -EINVAL;
1781                 goto release_mm;
1782         }
1783
1784         /*
1785          * Require CAP_SYS_NICE for influencing process performance. Note that
1786          * only non-destructive hints are currently supported for remote
1787          * processes.
1788          */
1789         if (mm != current->mm && !capable(CAP_SYS_NICE)) {
1790                 ret = -EPERM;
1791                 goto release_mm;
1792         }
1793
1794         ret = vector_madvise(mm, &iter, behavior);
1795
1796 release_mm:
1797         mmput(mm);
1798 release_task:
1799         put_task_struct(task);
1800 free_iov:
1801         kfree(iov);
1802 out:
1803         return ret;
1804 }
This page took 0.131909 seconds and 4 git commands to generate.