]> Git Repo - J-linux.git/blob - mm/kmemleak.c
Merge tag 'vfs-6.13-rc7.fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs
[J-linux.git] / mm / kmemleak.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * mm/kmemleak.c
4  *
5  * Copyright (C) 2008 ARM Limited
6  * Written by Catalin Marinas <[email protected]>
7  *
8  * For more information on the algorithm and kmemleak usage, please see
9  * Documentation/dev-tools/kmemleak.rst.
10  *
11  * Notes on locking
12  * ----------------
13  *
14  * The following locks and mutexes are used by kmemleak:
15  *
16  * - kmemleak_lock (raw_spinlock_t): protects the object_list as well as
17  *   del_state modifications and accesses to the object trees
18  *   (object_tree_root, object_phys_tree_root, object_percpu_tree_root). The
19  *   object_list is the main list holding the metadata (struct
20  *   kmemleak_object) for the allocated memory blocks. The object trees are
21  *   red black trees used to look-up metadata based on a pointer to the
22  *   corresponding memory block. The kmemleak_object structures are added to
23  *   the object_list and the object tree root in the create_object() function
24  *   called from the kmemleak_alloc{,_phys,_percpu}() callback and removed in
25  *   delete_object() called from the kmemleak_free{,_phys,_percpu}() callback
26  * - kmemleak_object.lock (raw_spinlock_t): protects a kmemleak_object.
27  *   Accesses to the metadata (e.g. count) are protected by this lock. Note
28  *   that some members of this structure may be protected by other means
29  *   (atomic or kmemleak_lock). This lock is also held when scanning the
30  *   corresponding memory block to avoid the kernel freeing it via the
31  *   kmemleak_free() callback. This is less heavyweight than holding a global
32  *   lock like kmemleak_lock during scanning.
33  * - scan_mutex (mutex): ensures that only one thread may scan the memory for
34  *   unreferenced objects at a time. The gray_list contains the objects which
35  *   are already referenced or marked as false positives and need to be
36  *   scanned. This list is only modified during a scanning episode when the
37  *   scan_mutex is held. At the end of a scan, the gray_list is always empty.
38  *   Note that the kmemleak_object.use_count is incremented when an object is
39  *   added to the gray_list and therefore cannot be freed. This mutex also
40  *   prevents multiple users of the "kmemleak" debugfs file together with
41  *   modifications to the memory scanning parameters including the scan_thread
42  *   pointer
43  *
44  * Locks and mutexes are acquired/nested in the following order:
45  *
46  *   scan_mutex [-> object->lock] -> kmemleak_lock -> other_object->lock (SINGLE_DEPTH_NESTING)
47  *
48  * No kmemleak_lock and object->lock nesting is allowed outside scan_mutex
49  * regions.
50  *
51  * The kmemleak_object structures have a use_count incremented or decremented
52  * using the get_object()/put_object() functions. When the use_count becomes
53  * 0, this count can no longer be incremented and put_object() schedules the
54  * kmemleak_object freeing via an RCU callback. All calls to the get_object()
55  * function must be protected by rcu_read_lock() to avoid accessing a freed
56  * structure.
57  */
58
59 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
60
61 #include <linux/init.h>
62 #include <linux/kernel.h>
63 #include <linux/list.h>
64 #include <linux/sched/signal.h>
65 #include <linux/sched/task.h>
66 #include <linux/sched/task_stack.h>
67 #include <linux/jiffies.h>
68 #include <linux/delay.h>
69 #include <linux/export.h>
70 #include <linux/kthread.h>
71 #include <linux/rbtree.h>
72 #include <linux/fs.h>
73 #include <linux/debugfs.h>
74 #include <linux/seq_file.h>
75 #include <linux/cpumask.h>
76 #include <linux/spinlock.h>
77 #include <linux/module.h>
78 #include <linux/mutex.h>
79 #include <linux/rcupdate.h>
80 #include <linux/stacktrace.h>
81 #include <linux/stackdepot.h>
82 #include <linux/cache.h>
83 #include <linux/percpu.h>
84 #include <linux/memblock.h>
85 #include <linux/pfn.h>
86 #include <linux/mmzone.h>
87 #include <linux/slab.h>
88 #include <linux/thread_info.h>
89 #include <linux/err.h>
90 #include <linux/uaccess.h>
91 #include <linux/string.h>
92 #include <linux/nodemask.h>
93 #include <linux/mm.h>
94 #include <linux/workqueue.h>
95 #include <linux/crc32.h>
96
97 #include <asm/sections.h>
98 #include <asm/processor.h>
99 #include <linux/atomic.h>
100
101 #include <linux/kasan.h>
102 #include <linux/kfence.h>
103 #include <linux/kmemleak.h>
104 #include <linux/memory_hotplug.h>
105
106 /*
107  * Kmemleak configuration and common defines.
108  */
109 #define MAX_TRACE               16      /* stack trace length */
110 #define MSECS_MIN_AGE           5000    /* minimum object age for reporting */
111 #define SECS_FIRST_SCAN         60      /* delay before the first scan */
112 #define SECS_SCAN_WAIT          600     /* subsequent auto scanning delay */
113 #define MAX_SCAN_SIZE           4096    /* maximum size of a scanned block */
114
115 #define BYTES_PER_POINTER       sizeof(void *)
116
117 /* scanning area inside a memory block */
118 struct kmemleak_scan_area {
119         struct hlist_node node;
120         unsigned long start;
121         size_t size;
122 };
123
124 #define KMEMLEAK_GREY   0
125 #define KMEMLEAK_BLACK  -1
126
127 /*
128  * Structure holding the metadata for each allocated memory block.
129  * Modifications to such objects should be made while holding the
130  * object->lock. Insertions or deletions from object_list, gray_list or
131  * rb_node are already protected by the corresponding locks or mutex (see
132  * the notes on locking above). These objects are reference-counted
133  * (use_count) and freed using the RCU mechanism.
134  */
135 struct kmemleak_object {
136         raw_spinlock_t lock;
137         unsigned int flags;             /* object status flags */
138         struct list_head object_list;
139         struct list_head gray_list;
140         struct rb_node rb_node;
141         struct rcu_head rcu;            /* object_list lockless traversal */
142         /* object usage count; object freed when use_count == 0 */
143         atomic_t use_count;
144         unsigned int del_state;         /* deletion state */
145         unsigned long pointer;
146         size_t size;
147         /* pass surplus references to this pointer */
148         unsigned long excess_ref;
149         /* minimum number of a pointers found before it is considered leak */
150         int min_count;
151         /* the total number of pointers found pointing to this object */
152         int count;
153         /* checksum for detecting modified objects */
154         u32 checksum;
155         depot_stack_handle_t trace_handle;
156         /* memory ranges to be scanned inside an object (empty for all) */
157         struct hlist_head area_list;
158         unsigned long jiffies;          /* creation timestamp */
159         pid_t pid;                      /* pid of the current task */
160         char comm[TASK_COMM_LEN];       /* executable name */
161 };
162
163 /* flag representing the memory block allocation status */
164 #define OBJECT_ALLOCATED        (1 << 0)
165 /* flag set after the first reporting of an unreference object */
166 #define OBJECT_REPORTED         (1 << 1)
167 /* flag set to not scan the object */
168 #define OBJECT_NO_SCAN          (1 << 2)
169 /* flag set to fully scan the object when scan_area allocation failed */
170 #define OBJECT_FULL_SCAN        (1 << 3)
171 /* flag set for object allocated with physical address */
172 #define OBJECT_PHYS             (1 << 4)
173 /* flag set for per-CPU pointers */
174 #define OBJECT_PERCPU           (1 << 5)
175
176 /* set when __remove_object() called */
177 #define DELSTATE_REMOVED        (1 << 0)
178 /* set to temporarily prevent deletion from object_list */
179 #define DELSTATE_NO_DELETE      (1 << 1)
180
181 #define HEX_PREFIX              "    "
182 /* number of bytes to print per line; must be 16 or 32 */
183 #define HEX_ROW_SIZE            16
184 /* number of bytes to print at a time (1, 2, 4, 8) */
185 #define HEX_GROUP_SIZE          1
186 /* include ASCII after the hex output */
187 #define HEX_ASCII               1
188 /* max number of lines to be printed */
189 #define HEX_MAX_LINES           2
190
191 /* the list of all allocated objects */
192 static LIST_HEAD(object_list);
193 /* the list of gray-colored objects (see color_gray comment below) */
194 static LIST_HEAD(gray_list);
195 /* memory pool allocation */
196 static struct kmemleak_object mem_pool[CONFIG_DEBUG_KMEMLEAK_MEM_POOL_SIZE];
197 static int mem_pool_free_count = ARRAY_SIZE(mem_pool);
198 static LIST_HEAD(mem_pool_free_list);
199 /* search tree for object boundaries */
200 static struct rb_root object_tree_root = RB_ROOT;
201 /* search tree for object (with OBJECT_PHYS flag) boundaries */
202 static struct rb_root object_phys_tree_root = RB_ROOT;
203 /* search tree for object (with OBJECT_PERCPU flag) boundaries */
204 static struct rb_root object_percpu_tree_root = RB_ROOT;
205 /* protecting the access to object_list, object_tree_root (or object_phys_tree_root) */
206 static DEFINE_RAW_SPINLOCK(kmemleak_lock);
207
208 /* allocation caches for kmemleak internal data */
209 static struct kmem_cache *object_cache;
210 static struct kmem_cache *scan_area_cache;
211
212 /* set if tracing memory operations is enabled */
213 static int kmemleak_enabled = 1;
214 /* same as above but only for the kmemleak_free() callback */
215 static int kmemleak_free_enabled = 1;
216 /* set in the late_initcall if there were no errors */
217 static int kmemleak_late_initialized;
218 /* set if a kmemleak warning was issued */
219 static int kmemleak_warning;
220 /* set if a fatal kmemleak error has occurred */
221 static int kmemleak_error;
222
223 /* minimum and maximum address that may be valid pointers */
224 static unsigned long min_addr = ULONG_MAX;
225 static unsigned long max_addr;
226
227 /* minimum and maximum address that may be valid per-CPU pointers */
228 static unsigned long min_percpu_addr = ULONG_MAX;
229 static unsigned long max_percpu_addr;
230
231 static struct task_struct *scan_thread;
232 /* used to avoid reporting of recently allocated objects */
233 static unsigned long jiffies_min_age;
234 static unsigned long jiffies_last_scan;
235 /* delay between automatic memory scannings */
236 static unsigned long jiffies_scan_wait;
237 /* enables or disables the task stacks scanning */
238 static int kmemleak_stack_scan = 1;
239 /* protects the memory scanning, parameters and debug/kmemleak file access */
240 static DEFINE_MUTEX(scan_mutex);
241 /* setting kmemleak=on, will set this var, skipping the disable */
242 static int kmemleak_skip_disable;
243 /* If there are leaks that can be reported */
244 static bool kmemleak_found_leaks;
245
246 static bool kmemleak_verbose;
247 module_param_named(verbose, kmemleak_verbose, bool, 0600);
248
249 static void kmemleak_disable(void);
250
251 /*
252  * Print a warning and dump the stack trace.
253  */
254 #define kmemleak_warn(x...)     do {            \
255         pr_warn(x);                             \
256         dump_stack();                           \
257         kmemleak_warning = 1;                   \
258 } while (0)
259
260 /*
261  * Macro invoked when a serious kmemleak condition occurred and cannot be
262  * recovered from. Kmemleak will be disabled and further allocation/freeing
263  * tracing no longer available.
264  */
265 #define kmemleak_stop(x...)     do {    \
266         kmemleak_warn(x);               \
267         kmemleak_disable();             \
268 } while (0)
269
270 #define warn_or_seq_printf(seq, fmt, ...)       do {    \
271         if (seq)                                        \
272                 seq_printf(seq, fmt, ##__VA_ARGS__);    \
273         else                                            \
274                 pr_warn(fmt, ##__VA_ARGS__);            \
275 } while (0)
276
277 static void warn_or_seq_hex_dump(struct seq_file *seq, int prefix_type,
278                                  int rowsize, int groupsize, const void *buf,
279                                  size_t len, bool ascii)
280 {
281         if (seq)
282                 seq_hex_dump(seq, HEX_PREFIX, prefix_type, rowsize, groupsize,
283                              buf, len, ascii);
284         else
285                 print_hex_dump(KERN_WARNING, pr_fmt(HEX_PREFIX), prefix_type,
286                                rowsize, groupsize, buf, len, ascii);
287 }
288
289 /*
290  * Printing of the objects hex dump to the seq file. The number of lines to be
291  * printed is limited to HEX_MAX_LINES to prevent seq file spamming. The
292  * actual number of printed bytes depends on HEX_ROW_SIZE. It must be called
293  * with the object->lock held.
294  */
295 static void hex_dump_object(struct seq_file *seq,
296                             struct kmemleak_object *object)
297 {
298         const u8 *ptr = (const u8 *)object->pointer;
299         size_t len;
300
301         if (WARN_ON_ONCE(object->flags & OBJECT_PHYS))
302                 return;
303
304         if (object->flags & OBJECT_PERCPU)
305                 ptr = (const u8 *)this_cpu_ptr((void __percpu *)object->pointer);
306
307         /* limit the number of lines to HEX_MAX_LINES */
308         len = min_t(size_t, object->size, HEX_MAX_LINES * HEX_ROW_SIZE);
309
310         if (object->flags & OBJECT_PERCPU)
311                 warn_or_seq_printf(seq, "  hex dump (first %zu bytes on cpu %d):\n",
312                                    len, raw_smp_processor_id());
313         else
314                 warn_or_seq_printf(seq, "  hex dump (first %zu bytes):\n", len);
315         kasan_disable_current();
316         warn_or_seq_hex_dump(seq, DUMP_PREFIX_NONE, HEX_ROW_SIZE,
317                              HEX_GROUP_SIZE, kasan_reset_tag((void *)ptr), len, HEX_ASCII);
318         kasan_enable_current();
319 }
320
321 /*
322  * Object colors, encoded with count and min_count:
323  * - white - orphan object, not enough references to it (count < min_count)
324  * - gray  - not orphan, not marked as false positive (min_count == 0) or
325  *              sufficient references to it (count >= min_count)
326  * - black - ignore, it doesn't contain references (e.g. text section)
327  *              (min_count == -1). No function defined for this color.
328  * Newly created objects don't have any color assigned (object->count == -1)
329  * before the next memory scan when they become white.
330  */
331 static bool color_white(const struct kmemleak_object *object)
332 {
333         return object->count != KMEMLEAK_BLACK &&
334                 object->count < object->min_count;
335 }
336
337 static bool color_gray(const struct kmemleak_object *object)
338 {
339         return object->min_count != KMEMLEAK_BLACK &&
340                 object->count >= object->min_count;
341 }
342
343 /*
344  * Objects are considered unreferenced only if their color is white, they have
345  * not be deleted and have a minimum age to avoid false positives caused by
346  * pointers temporarily stored in CPU registers.
347  */
348 static bool unreferenced_object(struct kmemleak_object *object)
349 {
350         return (color_white(object) && object->flags & OBJECT_ALLOCATED) &&
351                 time_before_eq(object->jiffies + jiffies_min_age,
352                                jiffies_last_scan);
353 }
354
355 /*
356  * Printing of the unreferenced objects information to the seq file. The
357  * print_unreferenced function must be called with the object->lock held.
358  */
359 static void print_unreferenced(struct seq_file *seq,
360                                struct kmemleak_object *object)
361 {
362         int i;
363         unsigned long *entries;
364         unsigned int nr_entries;
365
366         nr_entries = stack_depot_fetch(object->trace_handle, &entries);
367         warn_or_seq_printf(seq, "unreferenced object 0x%08lx (size %zu):\n",
368                           object->pointer, object->size);
369         warn_or_seq_printf(seq, "  comm \"%s\", pid %d, jiffies %lu\n",
370                            object->comm, object->pid, object->jiffies);
371         hex_dump_object(seq, object);
372         warn_or_seq_printf(seq, "  backtrace (crc %x):\n", object->checksum);
373
374         for (i = 0; i < nr_entries; i++) {
375                 void *ptr = (void *)entries[i];
376                 warn_or_seq_printf(seq, "    %pS\n", ptr);
377         }
378 }
379
380 /*
381  * Print the kmemleak_object information. This function is used mainly for
382  * debugging special cases when kmemleak operations. It must be called with
383  * the object->lock held.
384  */
385 static void dump_object_info(struct kmemleak_object *object)
386 {
387         pr_notice("Object 0x%08lx (size %zu):\n",
388                         object->pointer, object->size);
389         pr_notice("  comm \"%s\", pid %d, jiffies %lu\n",
390                         object->comm, object->pid, object->jiffies);
391         pr_notice("  min_count = %d\n", object->min_count);
392         pr_notice("  count = %d\n", object->count);
393         pr_notice("  flags = 0x%x\n", object->flags);
394         pr_notice("  checksum = %u\n", object->checksum);
395         pr_notice("  backtrace:\n");
396         if (object->trace_handle)
397                 stack_depot_print(object->trace_handle);
398 }
399
400 static struct rb_root *object_tree(unsigned long objflags)
401 {
402         if (objflags & OBJECT_PHYS)
403                 return &object_phys_tree_root;
404         if (objflags & OBJECT_PERCPU)
405                 return &object_percpu_tree_root;
406         return &object_tree_root;
407 }
408
409 /*
410  * Look-up a memory block metadata (kmemleak_object) in the object search
411  * tree based on a pointer value. If alias is 0, only values pointing to the
412  * beginning of the memory block are allowed. The kmemleak_lock must be held
413  * when calling this function.
414  */
415 static struct kmemleak_object *__lookup_object(unsigned long ptr, int alias,
416                                                unsigned int objflags)
417 {
418         struct rb_node *rb = object_tree(objflags)->rb_node;
419         unsigned long untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr);
420
421         while (rb) {
422                 struct kmemleak_object *object;
423                 unsigned long untagged_objp;
424
425                 object = rb_entry(rb, struct kmemleak_object, rb_node);
426                 untagged_objp = (unsigned long)kasan_reset_tag((void *)object->pointer);
427
428                 if (untagged_ptr < untagged_objp)
429                         rb = object->rb_node.rb_left;
430                 else if (untagged_objp + object->size <= untagged_ptr)
431                         rb = object->rb_node.rb_right;
432                 else if (untagged_objp == untagged_ptr || alias)
433                         return object;
434                 else {
435                         kmemleak_warn("Found object by alias at 0x%08lx\n",
436                                       ptr);
437                         dump_object_info(object);
438                         break;
439                 }
440         }
441         return NULL;
442 }
443
444 /* Look-up a kmemleak object which allocated with virtual address. */
445 static struct kmemleak_object *lookup_object(unsigned long ptr, int alias)
446 {
447         return __lookup_object(ptr, alias, 0);
448 }
449
450 /*
451  * Increment the object use_count. Return 1 if successful or 0 otherwise. Note
452  * that once an object's use_count reached 0, the RCU freeing was already
453  * registered and the object should no longer be used. This function must be
454  * called under the protection of rcu_read_lock().
455  */
456 static int get_object(struct kmemleak_object *object)
457 {
458         return atomic_inc_not_zero(&object->use_count);
459 }
460
461 /*
462  * Memory pool allocation and freeing. kmemleak_lock must not be held.
463  */
464 static struct kmemleak_object *mem_pool_alloc(gfp_t gfp)
465 {
466         unsigned long flags;
467         struct kmemleak_object *object;
468
469         /* try the slab allocator first */
470         if (object_cache) {
471                 object = kmem_cache_alloc_noprof(object_cache,
472                                                  gfp_nested_mask(gfp));
473                 if (object)
474                         return object;
475         }
476
477         /* slab allocation failed, try the memory pool */
478         raw_spin_lock_irqsave(&kmemleak_lock, flags);
479         object = list_first_entry_or_null(&mem_pool_free_list,
480                                           typeof(*object), object_list);
481         if (object)
482                 list_del(&object->object_list);
483         else if (mem_pool_free_count)
484                 object = &mem_pool[--mem_pool_free_count];
485         else
486                 pr_warn_once("Memory pool empty, consider increasing CONFIG_DEBUG_KMEMLEAK_MEM_POOL_SIZE\n");
487         raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
488
489         return object;
490 }
491
492 /*
493  * Return the object to either the slab allocator or the memory pool.
494  */
495 static void mem_pool_free(struct kmemleak_object *object)
496 {
497         unsigned long flags;
498
499         if (object < mem_pool || object >= mem_pool + ARRAY_SIZE(mem_pool)) {
500                 kmem_cache_free(object_cache, object);
501                 return;
502         }
503
504         /* add the object to the memory pool free list */
505         raw_spin_lock_irqsave(&kmemleak_lock, flags);
506         list_add(&object->object_list, &mem_pool_free_list);
507         raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
508 }
509
510 /*
511  * RCU callback to free a kmemleak_object.
512  */
513 static void free_object_rcu(struct rcu_head *rcu)
514 {
515         struct hlist_node *tmp;
516         struct kmemleak_scan_area *area;
517         struct kmemleak_object *object =
518                 container_of(rcu, struct kmemleak_object, rcu);
519
520         /*
521          * Once use_count is 0 (guaranteed by put_object), there is no other
522          * code accessing this object, hence no need for locking.
523          */
524         hlist_for_each_entry_safe(area, tmp, &object->area_list, node) {
525                 hlist_del(&area->node);
526                 kmem_cache_free(scan_area_cache, area);
527         }
528         mem_pool_free(object);
529 }
530
531 /*
532  * Decrement the object use_count. Once the count is 0, free the object using
533  * an RCU callback. Since put_object() may be called via the kmemleak_free() ->
534  * delete_object() path, the delayed RCU freeing ensures that there is no
535  * recursive call to the kernel allocator. Lock-less RCU object_list traversal
536  * is also possible.
537  */
538 static void put_object(struct kmemleak_object *object)
539 {
540         if (!atomic_dec_and_test(&object->use_count))
541                 return;
542
543         /* should only get here after delete_object was called */
544         WARN_ON(object->flags & OBJECT_ALLOCATED);
545
546         /*
547          * It may be too early for the RCU callbacks, however, there is no
548          * concurrent object_list traversal when !object_cache and all objects
549          * came from the memory pool. Free the object directly.
550          */
551         if (object_cache)
552                 call_rcu(&object->rcu, free_object_rcu);
553         else
554                 free_object_rcu(&object->rcu);
555 }
556
557 /*
558  * Look up an object in the object search tree and increase its use_count.
559  */
560 static struct kmemleak_object *__find_and_get_object(unsigned long ptr, int alias,
561                                                      unsigned int objflags)
562 {
563         unsigned long flags;
564         struct kmemleak_object *object;
565
566         rcu_read_lock();
567         raw_spin_lock_irqsave(&kmemleak_lock, flags);
568         object = __lookup_object(ptr, alias, objflags);
569         raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
570
571         /* check whether the object is still available */
572         if (object && !get_object(object))
573                 object = NULL;
574         rcu_read_unlock();
575
576         return object;
577 }
578
579 /* Look up and get an object which allocated with virtual address. */
580 static struct kmemleak_object *find_and_get_object(unsigned long ptr, int alias)
581 {
582         return __find_and_get_object(ptr, alias, 0);
583 }
584
585 /*
586  * Remove an object from its object tree and object_list. Must be called with
587  * the kmemleak_lock held _if_ kmemleak is still enabled.
588  */
589 static void __remove_object(struct kmemleak_object *object)
590 {
591         rb_erase(&object->rb_node, object_tree(object->flags));
592         if (!(object->del_state & DELSTATE_NO_DELETE))
593                 list_del_rcu(&object->object_list);
594         object->del_state |= DELSTATE_REMOVED;
595 }
596
597 static struct kmemleak_object *__find_and_remove_object(unsigned long ptr,
598                                                         int alias,
599                                                         unsigned int objflags)
600 {
601         struct kmemleak_object *object;
602
603         object = __lookup_object(ptr, alias, objflags);
604         if (object)
605                 __remove_object(object);
606
607         return object;
608 }
609
610 /*
611  * Look up an object in the object search tree and remove it from both object
612  * tree root and object_list. The returned object's use_count should be at
613  * least 1, as initially set by create_object().
614  */
615 static struct kmemleak_object *find_and_remove_object(unsigned long ptr, int alias,
616                                                       unsigned int objflags)
617 {
618         unsigned long flags;
619         struct kmemleak_object *object;
620
621         raw_spin_lock_irqsave(&kmemleak_lock, flags);
622         object = __find_and_remove_object(ptr, alias, objflags);
623         raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
624
625         return object;
626 }
627
628 static noinline depot_stack_handle_t set_track_prepare(void)
629 {
630         depot_stack_handle_t trace_handle;
631         unsigned long entries[MAX_TRACE];
632         unsigned int nr_entries;
633
634         /*
635          * Use object_cache to determine whether kmemleak_init() has
636          * been invoked. stack_depot_early_init() is called before
637          * kmemleak_init() in mm_core_init().
638          */
639         if (!object_cache)
640                 return 0;
641         nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 3);
642         trace_handle = stack_depot_save(entries, nr_entries, GFP_NOWAIT);
643
644         return trace_handle;
645 }
646
647 static struct kmemleak_object *__alloc_object(gfp_t gfp)
648 {
649         struct kmemleak_object *object;
650
651         object = mem_pool_alloc(gfp);
652         if (!object) {
653                 pr_warn("Cannot allocate a kmemleak_object structure\n");
654                 kmemleak_disable();
655                 return NULL;
656         }
657
658         INIT_LIST_HEAD(&object->object_list);
659         INIT_LIST_HEAD(&object->gray_list);
660         INIT_HLIST_HEAD(&object->area_list);
661         raw_spin_lock_init(&object->lock);
662         atomic_set(&object->use_count, 1);
663         object->excess_ref = 0;
664         object->count = 0;                      /* white color initially */
665         object->checksum = 0;
666         object->del_state = 0;
667
668         /* task information */
669         if (in_hardirq()) {
670                 object->pid = 0;
671                 strscpy(object->comm, "hardirq");
672         } else if (in_serving_softirq()) {
673                 object->pid = 0;
674                 strscpy(object->comm, "softirq");
675         } else {
676                 object->pid = current->pid;
677                 /*
678                  * There is a small chance of a race with set_task_comm(),
679                  * however using get_task_comm() here may cause locking
680                  * dependency issues with current->alloc_lock. In the worst
681                  * case, the command line is not correct.
682                  */
683                 strscpy(object->comm, current->comm);
684         }
685
686         /* kernel backtrace */
687         object->trace_handle = set_track_prepare();
688
689         return object;
690 }
691
692 static int __link_object(struct kmemleak_object *object, unsigned long ptr,
693                          size_t size, int min_count, unsigned int objflags)
694 {
695
696         struct kmemleak_object *parent;
697         struct rb_node **link, *rb_parent;
698         unsigned long untagged_ptr;
699         unsigned long untagged_objp;
700
701         object->flags = OBJECT_ALLOCATED | objflags;
702         object->pointer = ptr;
703         object->size = kfence_ksize((void *)ptr) ?: size;
704         object->min_count = min_count;
705         object->jiffies = jiffies;
706
707         untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr);
708         /*
709          * Only update min_addr and max_addr with object storing virtual
710          * address. And update min_percpu_addr max_percpu_addr for per-CPU
711          * objects.
712          */
713         if (objflags & OBJECT_PERCPU) {
714                 min_percpu_addr = min(min_percpu_addr, untagged_ptr);
715                 max_percpu_addr = max(max_percpu_addr, untagged_ptr + size);
716         } else if (!(objflags & OBJECT_PHYS)) {
717                 min_addr = min(min_addr, untagged_ptr);
718                 max_addr = max(max_addr, untagged_ptr + size);
719         }
720         link = &object_tree(objflags)->rb_node;
721         rb_parent = NULL;
722         while (*link) {
723                 rb_parent = *link;
724                 parent = rb_entry(rb_parent, struct kmemleak_object, rb_node);
725                 untagged_objp = (unsigned long)kasan_reset_tag((void *)parent->pointer);
726                 if (untagged_ptr + size <= untagged_objp)
727                         link = &parent->rb_node.rb_left;
728                 else if (untagged_objp + parent->size <= untagged_ptr)
729                         link = &parent->rb_node.rb_right;
730                 else {
731                         kmemleak_stop("Cannot insert 0x%lx into the object search tree (overlaps existing)\n",
732                                       ptr);
733                         /*
734                          * No need for parent->lock here since "parent" cannot
735                          * be freed while the kmemleak_lock is held.
736                          */
737                         dump_object_info(parent);
738                         return -EEXIST;
739                 }
740         }
741         rb_link_node(&object->rb_node, rb_parent, link);
742         rb_insert_color(&object->rb_node, object_tree(objflags));
743         list_add_tail_rcu(&object->object_list, &object_list);
744
745         return 0;
746 }
747
748 /*
749  * Create the metadata (struct kmemleak_object) corresponding to an allocated
750  * memory block and add it to the object_list and object tree.
751  */
752 static void __create_object(unsigned long ptr, size_t size,
753                                 int min_count, gfp_t gfp, unsigned int objflags)
754 {
755         struct kmemleak_object *object;
756         unsigned long flags;
757         int ret;
758
759         object = __alloc_object(gfp);
760         if (!object)
761                 return;
762
763         raw_spin_lock_irqsave(&kmemleak_lock, flags);
764         ret = __link_object(object, ptr, size, min_count, objflags);
765         raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
766         if (ret)
767                 mem_pool_free(object);
768 }
769
770 /* Create kmemleak object which allocated with virtual address. */
771 static void create_object(unsigned long ptr, size_t size,
772                           int min_count, gfp_t gfp)
773 {
774         __create_object(ptr, size, min_count, gfp, 0);
775 }
776
777 /* Create kmemleak object which allocated with physical address. */
778 static void create_object_phys(unsigned long ptr, size_t size,
779                                int min_count, gfp_t gfp)
780 {
781         __create_object(ptr, size, min_count, gfp, OBJECT_PHYS);
782 }
783
784 /* Create kmemleak object corresponding to a per-CPU allocation. */
785 static void create_object_percpu(unsigned long ptr, size_t size,
786                                  int min_count, gfp_t gfp)
787 {
788         __create_object(ptr, size, min_count, gfp, OBJECT_PERCPU);
789 }
790
791 /*
792  * Mark the object as not allocated and schedule RCU freeing via put_object().
793  */
794 static void __delete_object(struct kmemleak_object *object)
795 {
796         unsigned long flags;
797
798         WARN_ON(!(object->flags & OBJECT_ALLOCATED));
799         WARN_ON(atomic_read(&object->use_count) < 1);
800
801         /*
802          * Locking here also ensures that the corresponding memory block
803          * cannot be freed when it is being scanned.
804          */
805         raw_spin_lock_irqsave(&object->lock, flags);
806         object->flags &= ~OBJECT_ALLOCATED;
807         raw_spin_unlock_irqrestore(&object->lock, flags);
808         put_object(object);
809 }
810
811 /*
812  * Look up the metadata (struct kmemleak_object) corresponding to ptr and
813  * delete it.
814  */
815 static void delete_object_full(unsigned long ptr, unsigned int objflags)
816 {
817         struct kmemleak_object *object;
818
819         object = find_and_remove_object(ptr, 0, objflags);
820         if (!object) {
821 #ifdef DEBUG
822                 kmemleak_warn("Freeing unknown object at 0x%08lx\n",
823                               ptr);
824 #endif
825                 return;
826         }
827         __delete_object(object);
828 }
829
830 /*
831  * Look up the metadata (struct kmemleak_object) corresponding to ptr and
832  * delete it. If the memory block is partially freed, the function may create
833  * additional metadata for the remaining parts of the block.
834  */
835 static void delete_object_part(unsigned long ptr, size_t size,
836                                unsigned int objflags)
837 {
838         struct kmemleak_object *object, *object_l, *object_r;
839         unsigned long start, end, flags;
840
841         object_l = __alloc_object(GFP_KERNEL);
842         if (!object_l)
843                 return;
844
845         object_r = __alloc_object(GFP_KERNEL);
846         if (!object_r)
847                 goto out;
848
849         raw_spin_lock_irqsave(&kmemleak_lock, flags);
850         object = __find_and_remove_object(ptr, 1, objflags);
851         if (!object) {
852 #ifdef DEBUG
853                 kmemleak_warn("Partially freeing unknown object at 0x%08lx (size %zu)\n",
854                               ptr, size);
855 #endif
856                 goto unlock;
857         }
858
859         /*
860          * Create one or two objects that may result from the memory block
861          * split. Note that partial freeing is only done by free_bootmem() and
862          * this happens before kmemleak_init() is called.
863          */
864         start = object->pointer;
865         end = object->pointer + object->size;
866         if ((ptr > start) &&
867             !__link_object(object_l, start, ptr - start,
868                            object->min_count, objflags))
869                 object_l = NULL;
870         if ((ptr + size < end) &&
871             !__link_object(object_r, ptr + size, end - ptr - size,
872                            object->min_count, objflags))
873                 object_r = NULL;
874
875 unlock:
876         raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
877         if (object)
878                 __delete_object(object);
879
880 out:
881         if (object_l)
882                 mem_pool_free(object_l);
883         if (object_r)
884                 mem_pool_free(object_r);
885 }
886
887 static void __paint_it(struct kmemleak_object *object, int color)
888 {
889         object->min_count = color;
890         if (color == KMEMLEAK_BLACK)
891                 object->flags |= OBJECT_NO_SCAN;
892 }
893
894 static void paint_it(struct kmemleak_object *object, int color)
895 {
896         unsigned long flags;
897
898         raw_spin_lock_irqsave(&object->lock, flags);
899         __paint_it(object, color);
900         raw_spin_unlock_irqrestore(&object->lock, flags);
901 }
902
903 static void paint_ptr(unsigned long ptr, int color, unsigned int objflags)
904 {
905         struct kmemleak_object *object;
906
907         object = __find_and_get_object(ptr, 0, objflags);
908         if (!object) {
909                 kmemleak_warn("Trying to color unknown object at 0x%08lx as %s\n",
910                               ptr,
911                               (color == KMEMLEAK_GREY) ? "Grey" :
912                               (color == KMEMLEAK_BLACK) ? "Black" : "Unknown");
913                 return;
914         }
915         paint_it(object, color);
916         put_object(object);
917 }
918
919 /*
920  * Mark an object permanently as gray-colored so that it can no longer be
921  * reported as a leak. This is used in general to mark a false positive.
922  */
923 static void make_gray_object(unsigned long ptr)
924 {
925         paint_ptr(ptr, KMEMLEAK_GREY, 0);
926 }
927
928 /*
929  * Mark the object as black-colored so that it is ignored from scans and
930  * reporting.
931  */
932 static void make_black_object(unsigned long ptr, unsigned int objflags)
933 {
934         paint_ptr(ptr, KMEMLEAK_BLACK, objflags);
935 }
936
937 /*
938  * Reset the checksum of an object. The immediate effect is that it will not
939  * be reported as a leak during the next scan until its checksum is updated.
940  */
941 static void reset_checksum(unsigned long ptr)
942 {
943         unsigned long flags;
944         struct kmemleak_object *object;
945
946         object = find_and_get_object(ptr, 0);
947         if (!object) {
948                 kmemleak_warn("Not resetting the checksum of an unknown object at 0x%08lx\n",
949                               ptr);
950                 return;
951         }
952
953         raw_spin_lock_irqsave(&object->lock, flags);
954         object->checksum = 0;
955         raw_spin_unlock_irqrestore(&object->lock, flags);
956         put_object(object);
957 }
958
959 /*
960  * Add a scanning area to the object. If at least one such area is added,
961  * kmemleak will only scan these ranges rather than the whole memory block.
962  */
963 static void add_scan_area(unsigned long ptr, size_t size, gfp_t gfp)
964 {
965         unsigned long flags;
966         struct kmemleak_object *object;
967         struct kmemleak_scan_area *area = NULL;
968         unsigned long untagged_ptr;
969         unsigned long untagged_objp;
970
971         object = find_and_get_object(ptr, 1);
972         if (!object) {
973                 kmemleak_warn("Adding scan area to unknown object at 0x%08lx\n",
974                               ptr);
975                 return;
976         }
977
978         untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr);
979         untagged_objp = (unsigned long)kasan_reset_tag((void *)object->pointer);
980
981         if (scan_area_cache)
982                 area = kmem_cache_alloc_noprof(scan_area_cache,
983                                                gfp_nested_mask(gfp));
984
985         raw_spin_lock_irqsave(&object->lock, flags);
986         if (!area) {
987                 pr_warn_once("Cannot allocate a scan area, scanning the full object\n");
988                 /* mark the object for full scan to avoid false positives */
989                 object->flags |= OBJECT_FULL_SCAN;
990                 goto out_unlock;
991         }
992         if (size == SIZE_MAX) {
993                 size = untagged_objp + object->size - untagged_ptr;
994         } else if (untagged_ptr + size > untagged_objp + object->size) {
995                 kmemleak_warn("Scan area larger than object 0x%08lx\n", ptr);
996                 dump_object_info(object);
997                 kmem_cache_free(scan_area_cache, area);
998                 goto out_unlock;
999         }
1000
1001         INIT_HLIST_NODE(&area->node);
1002         area->start = ptr;
1003         area->size = size;
1004
1005         hlist_add_head(&area->node, &object->area_list);
1006 out_unlock:
1007         raw_spin_unlock_irqrestore(&object->lock, flags);
1008         put_object(object);
1009 }
1010
1011 /*
1012  * Any surplus references (object already gray) to 'ptr' are passed to
1013  * 'excess_ref'. This is used in the vmalloc() case where a pointer to
1014  * vm_struct may be used as an alternative reference to the vmalloc'ed object
1015  * (see free_thread_stack()).
1016  */
1017 static void object_set_excess_ref(unsigned long ptr, unsigned long excess_ref)
1018 {
1019         unsigned long flags;
1020         struct kmemleak_object *object;
1021
1022         object = find_and_get_object(ptr, 0);
1023         if (!object) {
1024                 kmemleak_warn("Setting excess_ref on unknown object at 0x%08lx\n",
1025                               ptr);
1026                 return;
1027         }
1028
1029         raw_spin_lock_irqsave(&object->lock, flags);
1030         object->excess_ref = excess_ref;
1031         raw_spin_unlock_irqrestore(&object->lock, flags);
1032         put_object(object);
1033 }
1034
1035 /*
1036  * Set the OBJECT_NO_SCAN flag for the object corresponding to the given
1037  * pointer. Such object will not be scanned by kmemleak but references to it
1038  * are searched.
1039  */
1040 static void object_no_scan(unsigned long ptr)
1041 {
1042         unsigned long flags;
1043         struct kmemleak_object *object;
1044
1045         object = find_and_get_object(ptr, 0);
1046         if (!object) {
1047                 kmemleak_warn("Not scanning unknown object at 0x%08lx\n", ptr);
1048                 return;
1049         }
1050
1051         raw_spin_lock_irqsave(&object->lock, flags);
1052         object->flags |= OBJECT_NO_SCAN;
1053         raw_spin_unlock_irqrestore(&object->lock, flags);
1054         put_object(object);
1055 }
1056
1057 /**
1058  * kmemleak_alloc - register a newly allocated object
1059  * @ptr:        pointer to beginning of the object
1060  * @size:       size of the object
1061  * @min_count:  minimum number of references to this object. If during memory
1062  *              scanning a number of references less than @min_count is found,
1063  *              the object is reported as a memory leak. If @min_count is 0,
1064  *              the object is never reported as a leak. If @min_count is -1,
1065  *              the object is ignored (not scanned and not reported as a leak)
1066  * @gfp:        kmalloc() flags used for kmemleak internal memory allocations
1067  *
1068  * This function is called from the kernel allocators when a new object
1069  * (memory block) is allocated (kmem_cache_alloc, kmalloc etc.).
1070  */
1071 void __ref kmemleak_alloc(const void *ptr, size_t size, int min_count,
1072                           gfp_t gfp)
1073 {
1074         pr_debug("%s(0x%px, %zu, %d)\n", __func__, ptr, size, min_count);
1075
1076         if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1077                 create_object((unsigned long)ptr, size, min_count, gfp);
1078 }
1079 EXPORT_SYMBOL_GPL(kmemleak_alloc);
1080
1081 /**
1082  * kmemleak_alloc_percpu - register a newly allocated __percpu object
1083  * @ptr:        __percpu pointer to beginning of the object
1084  * @size:       size of the object
1085  * @gfp:        flags used for kmemleak internal memory allocations
1086  *
1087  * This function is called from the kernel percpu allocator when a new object
1088  * (memory block) is allocated (alloc_percpu).
1089  */
1090 void __ref kmemleak_alloc_percpu(const void __percpu *ptr, size_t size,
1091                                  gfp_t gfp)
1092 {
1093         pr_debug("%s(0x%px, %zu)\n", __func__, ptr, size);
1094
1095         if (kmemleak_enabled && ptr && !IS_ERR_PCPU(ptr))
1096                 create_object_percpu((__force unsigned long)ptr, size, 0, gfp);
1097 }
1098 EXPORT_SYMBOL_GPL(kmemleak_alloc_percpu);
1099
1100 /**
1101  * kmemleak_vmalloc - register a newly vmalloc'ed object
1102  * @area:       pointer to vm_struct
1103  * @size:       size of the object
1104  * @gfp:        __vmalloc() flags used for kmemleak internal memory allocations
1105  *
1106  * This function is called from the vmalloc() kernel allocator when a new
1107  * object (memory block) is allocated.
1108  */
1109 void __ref kmemleak_vmalloc(const struct vm_struct *area, size_t size, gfp_t gfp)
1110 {
1111         pr_debug("%s(0x%px, %zu)\n", __func__, area, size);
1112
1113         /*
1114          * A min_count = 2 is needed because vm_struct contains a reference to
1115          * the virtual address of the vmalloc'ed block.
1116          */
1117         if (kmemleak_enabled) {
1118                 create_object((unsigned long)area->addr, size, 2, gfp);
1119                 object_set_excess_ref((unsigned long)area,
1120                                       (unsigned long)area->addr);
1121         }
1122 }
1123 EXPORT_SYMBOL_GPL(kmemleak_vmalloc);
1124
1125 /**
1126  * kmemleak_free - unregister a previously registered object
1127  * @ptr:        pointer to beginning of the object
1128  *
1129  * This function is called from the kernel allocators when an object (memory
1130  * block) is freed (kmem_cache_free, kfree, vfree etc.).
1131  */
1132 void __ref kmemleak_free(const void *ptr)
1133 {
1134         pr_debug("%s(0x%px)\n", __func__, ptr);
1135
1136         if (kmemleak_free_enabled && ptr && !IS_ERR(ptr))
1137                 delete_object_full((unsigned long)ptr, 0);
1138 }
1139 EXPORT_SYMBOL_GPL(kmemleak_free);
1140
1141 /**
1142  * kmemleak_free_part - partially unregister a previously registered object
1143  * @ptr:        pointer to the beginning or inside the object. This also
1144  *              represents the start of the range to be freed
1145  * @size:       size to be unregistered
1146  *
1147  * This function is called when only a part of a memory block is freed
1148  * (usually from the bootmem allocator).
1149  */
1150 void __ref kmemleak_free_part(const void *ptr, size_t size)
1151 {
1152         pr_debug("%s(0x%px)\n", __func__, ptr);
1153
1154         if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1155                 delete_object_part((unsigned long)ptr, size, 0);
1156 }
1157 EXPORT_SYMBOL_GPL(kmemleak_free_part);
1158
1159 /**
1160  * kmemleak_free_percpu - unregister a previously registered __percpu object
1161  * @ptr:        __percpu pointer to beginning of the object
1162  *
1163  * This function is called from the kernel percpu allocator when an object
1164  * (memory block) is freed (free_percpu).
1165  */
1166 void __ref kmemleak_free_percpu(const void __percpu *ptr)
1167 {
1168         pr_debug("%s(0x%px)\n", __func__, ptr);
1169
1170         if (kmemleak_free_enabled && ptr && !IS_ERR_PCPU(ptr))
1171                 delete_object_full((__force unsigned long)ptr, OBJECT_PERCPU);
1172 }
1173 EXPORT_SYMBOL_GPL(kmemleak_free_percpu);
1174
1175 /**
1176  * kmemleak_update_trace - update object allocation stack trace
1177  * @ptr:        pointer to beginning of the object
1178  *
1179  * Override the object allocation stack trace for cases where the actual
1180  * allocation place is not always useful.
1181  */
1182 void __ref kmemleak_update_trace(const void *ptr)
1183 {
1184         struct kmemleak_object *object;
1185         depot_stack_handle_t trace_handle;
1186         unsigned long flags;
1187
1188         pr_debug("%s(0x%px)\n", __func__, ptr);
1189
1190         if (!kmemleak_enabled || IS_ERR_OR_NULL(ptr))
1191                 return;
1192
1193         object = find_and_get_object((unsigned long)ptr, 1);
1194         if (!object) {
1195 #ifdef DEBUG
1196                 kmemleak_warn("Updating stack trace for unknown object at %p\n",
1197                               ptr);
1198 #endif
1199                 return;
1200         }
1201
1202         trace_handle = set_track_prepare();
1203         raw_spin_lock_irqsave(&object->lock, flags);
1204         object->trace_handle = trace_handle;
1205         raw_spin_unlock_irqrestore(&object->lock, flags);
1206
1207         put_object(object);
1208 }
1209 EXPORT_SYMBOL(kmemleak_update_trace);
1210
1211 /**
1212  * kmemleak_not_leak - mark an allocated object as false positive
1213  * @ptr:        pointer to beginning of the object
1214  *
1215  * Calling this function on an object will cause the memory block to no longer
1216  * be reported as leak and always be scanned.
1217  */
1218 void __ref kmemleak_not_leak(const void *ptr)
1219 {
1220         pr_debug("%s(0x%px)\n", __func__, ptr);
1221
1222         if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1223                 make_gray_object((unsigned long)ptr);
1224 }
1225 EXPORT_SYMBOL(kmemleak_not_leak);
1226
1227 /**
1228  * kmemleak_transient_leak - mark an allocated object as transient false positive
1229  * @ptr:        pointer to beginning of the object
1230  *
1231  * Calling this function on an object will cause the memory block to not be
1232  * reported as a leak temporarily. This may happen, for example, if the object
1233  * is part of a singly linked list and the ->next reference to it is changed.
1234  */
1235 void __ref kmemleak_transient_leak(const void *ptr)
1236 {
1237         pr_debug("%s(0x%px)\n", __func__, ptr);
1238
1239         if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1240                 reset_checksum((unsigned long)ptr);
1241 }
1242 EXPORT_SYMBOL(kmemleak_transient_leak);
1243
1244 /**
1245  * kmemleak_ignore - ignore an allocated object
1246  * @ptr:        pointer to beginning of the object
1247  *
1248  * Calling this function on an object will cause the memory block to be
1249  * ignored (not scanned and not reported as a leak). This is usually done when
1250  * it is known that the corresponding block is not a leak and does not contain
1251  * any references to other allocated memory blocks.
1252  */
1253 void __ref kmemleak_ignore(const void *ptr)
1254 {
1255         pr_debug("%s(0x%px)\n", __func__, ptr);
1256
1257         if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1258                 make_black_object((unsigned long)ptr, 0);
1259 }
1260 EXPORT_SYMBOL(kmemleak_ignore);
1261
1262 /**
1263  * kmemleak_scan_area - limit the range to be scanned in an allocated object
1264  * @ptr:        pointer to beginning or inside the object. This also
1265  *              represents the start of the scan area
1266  * @size:       size of the scan area
1267  * @gfp:        kmalloc() flags used for kmemleak internal memory allocations
1268  *
1269  * This function is used when it is known that only certain parts of an object
1270  * contain references to other objects. Kmemleak will only scan these areas
1271  * reducing the number false negatives.
1272  */
1273 void __ref kmemleak_scan_area(const void *ptr, size_t size, gfp_t gfp)
1274 {
1275         pr_debug("%s(0x%px)\n", __func__, ptr);
1276
1277         if (kmemleak_enabled && ptr && size && !IS_ERR(ptr))
1278                 add_scan_area((unsigned long)ptr, size, gfp);
1279 }
1280 EXPORT_SYMBOL(kmemleak_scan_area);
1281
1282 /**
1283  * kmemleak_no_scan - do not scan an allocated object
1284  * @ptr:        pointer to beginning of the object
1285  *
1286  * This function notifies kmemleak not to scan the given memory block. Useful
1287  * in situations where it is known that the given object does not contain any
1288  * references to other objects. Kmemleak will not scan such objects reducing
1289  * the number of false negatives.
1290  */
1291 void __ref kmemleak_no_scan(const void *ptr)
1292 {
1293         pr_debug("%s(0x%px)\n", __func__, ptr);
1294
1295         if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1296                 object_no_scan((unsigned long)ptr);
1297 }
1298 EXPORT_SYMBOL(kmemleak_no_scan);
1299
1300 /**
1301  * kmemleak_alloc_phys - similar to kmemleak_alloc but taking a physical
1302  *                       address argument
1303  * @phys:       physical address of the object
1304  * @size:       size of the object
1305  * @gfp:        kmalloc() flags used for kmemleak internal memory allocations
1306  */
1307 void __ref kmemleak_alloc_phys(phys_addr_t phys, size_t size, gfp_t gfp)
1308 {
1309         pr_debug("%s(0x%px, %zu)\n", __func__, &phys, size);
1310
1311         if (kmemleak_enabled)
1312                 /*
1313                  * Create object with OBJECT_PHYS flag and
1314                  * assume min_count 0.
1315                  */
1316                 create_object_phys((unsigned long)phys, size, 0, gfp);
1317 }
1318 EXPORT_SYMBOL(kmemleak_alloc_phys);
1319
1320 /**
1321  * kmemleak_free_part_phys - similar to kmemleak_free_part but taking a
1322  *                           physical address argument
1323  * @phys:       physical address if the beginning or inside an object. This
1324  *              also represents the start of the range to be freed
1325  * @size:       size to be unregistered
1326  */
1327 void __ref kmemleak_free_part_phys(phys_addr_t phys, size_t size)
1328 {
1329         pr_debug("%s(0x%px)\n", __func__, &phys);
1330
1331         if (kmemleak_enabled)
1332                 delete_object_part((unsigned long)phys, size, OBJECT_PHYS);
1333 }
1334 EXPORT_SYMBOL(kmemleak_free_part_phys);
1335
1336 /**
1337  * kmemleak_ignore_phys - similar to kmemleak_ignore but taking a physical
1338  *                        address argument
1339  * @phys:       physical address of the object
1340  */
1341 void __ref kmemleak_ignore_phys(phys_addr_t phys)
1342 {
1343         pr_debug("%s(0x%px)\n", __func__, &phys);
1344
1345         if (kmemleak_enabled)
1346                 make_black_object((unsigned long)phys, OBJECT_PHYS);
1347 }
1348 EXPORT_SYMBOL(kmemleak_ignore_phys);
1349
1350 /*
1351  * Update an object's checksum and return true if it was modified.
1352  */
1353 static bool update_checksum(struct kmemleak_object *object)
1354 {
1355         u32 old_csum = object->checksum;
1356
1357         if (WARN_ON_ONCE(object->flags & OBJECT_PHYS))
1358                 return false;
1359
1360         kasan_disable_current();
1361         kcsan_disable_current();
1362         if (object->flags & OBJECT_PERCPU) {
1363                 unsigned int cpu;
1364
1365                 object->checksum = 0;
1366                 for_each_possible_cpu(cpu) {
1367                         void *ptr = per_cpu_ptr((void __percpu *)object->pointer, cpu);
1368
1369                         object->checksum ^= crc32(0, kasan_reset_tag((void *)ptr), object->size);
1370                 }
1371         } else {
1372                 object->checksum = crc32(0, kasan_reset_tag((void *)object->pointer), object->size);
1373         }
1374         kasan_enable_current();
1375         kcsan_enable_current();
1376
1377         return object->checksum != old_csum;
1378 }
1379
1380 /*
1381  * Update an object's references. object->lock must be held by the caller.
1382  */
1383 static void update_refs(struct kmemleak_object *object)
1384 {
1385         if (!color_white(object)) {
1386                 /* non-orphan, ignored or new */
1387                 return;
1388         }
1389
1390         /*
1391          * Increase the object's reference count (number of pointers to the
1392          * memory block). If this count reaches the required minimum, the
1393          * object's color will become gray and it will be added to the
1394          * gray_list.
1395          */
1396         object->count++;
1397         if (color_gray(object)) {
1398                 /* put_object() called when removing from gray_list */
1399                 WARN_ON(!get_object(object));
1400                 list_add_tail(&object->gray_list, &gray_list);
1401         }
1402 }
1403
1404 static void pointer_update_refs(struct kmemleak_object *scanned,
1405                          unsigned long pointer, unsigned int objflags)
1406 {
1407         struct kmemleak_object *object;
1408         unsigned long untagged_ptr;
1409         unsigned long excess_ref;
1410
1411         untagged_ptr = (unsigned long)kasan_reset_tag((void *)pointer);
1412         if (objflags & OBJECT_PERCPU) {
1413                 if (untagged_ptr < min_percpu_addr || untagged_ptr >= max_percpu_addr)
1414                         return;
1415         } else {
1416                 if (untagged_ptr < min_addr || untagged_ptr >= max_addr)
1417                         return;
1418         }
1419
1420         /*
1421          * No need for get_object() here since we hold kmemleak_lock.
1422          * object->use_count cannot be dropped to 0 while the object
1423          * is still present in object_tree_root and object_list
1424          * (with updates protected by kmemleak_lock).
1425          */
1426         object = __lookup_object(pointer, 1, objflags);
1427         if (!object)
1428                 return;
1429         if (object == scanned)
1430                 /* self referenced, ignore */
1431                 return;
1432
1433         /*
1434          * Avoid the lockdep recursive warning on object->lock being
1435          * previously acquired in scan_object(). These locks are
1436          * enclosed by scan_mutex.
1437          */
1438         raw_spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING);
1439         /* only pass surplus references (object already gray) */
1440         if (color_gray(object)) {
1441                 excess_ref = object->excess_ref;
1442                 /* no need for update_refs() if object already gray */
1443         } else {
1444                 excess_ref = 0;
1445                 update_refs(object);
1446         }
1447         raw_spin_unlock(&object->lock);
1448
1449         if (excess_ref) {
1450                 object = lookup_object(excess_ref, 0);
1451                 if (!object)
1452                         return;
1453                 if (object == scanned)
1454                         /* circular reference, ignore */
1455                         return;
1456                 raw_spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING);
1457                 update_refs(object);
1458                 raw_spin_unlock(&object->lock);
1459         }
1460 }
1461
1462 /*
1463  * Memory scanning is a long process and it needs to be interruptible. This
1464  * function checks whether such interrupt condition occurred.
1465  */
1466 static int scan_should_stop(void)
1467 {
1468         if (!kmemleak_enabled)
1469                 return 1;
1470
1471         /*
1472          * This function may be called from either process or kthread context,
1473          * hence the need to check for both stop conditions.
1474          */
1475         if (current->mm)
1476                 return signal_pending(current);
1477         else
1478                 return kthread_should_stop();
1479
1480         return 0;
1481 }
1482
1483 /*
1484  * Scan a memory block (exclusive range) for valid pointers and add those
1485  * found to the gray list.
1486  */
1487 static void scan_block(void *_start, void *_end,
1488                        struct kmemleak_object *scanned)
1489 {
1490         unsigned long *ptr;
1491         unsigned long *start = PTR_ALIGN(_start, BYTES_PER_POINTER);
1492         unsigned long *end = _end - (BYTES_PER_POINTER - 1);
1493         unsigned long flags;
1494
1495         raw_spin_lock_irqsave(&kmemleak_lock, flags);
1496         for (ptr = start; ptr < end; ptr++) {
1497                 unsigned long pointer;
1498
1499                 if (scan_should_stop())
1500                         break;
1501
1502                 kasan_disable_current();
1503                 pointer = *(unsigned long *)kasan_reset_tag((void *)ptr);
1504                 kasan_enable_current();
1505
1506                 pointer_update_refs(scanned, pointer, 0);
1507                 pointer_update_refs(scanned, pointer, OBJECT_PERCPU);
1508         }
1509         raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
1510 }
1511
1512 /*
1513  * Scan a large memory block in MAX_SCAN_SIZE chunks to reduce the latency.
1514  */
1515 #ifdef CONFIG_SMP
1516 static void scan_large_block(void *start, void *end)
1517 {
1518         void *next;
1519
1520         while (start < end) {
1521                 next = min(start + MAX_SCAN_SIZE, end);
1522                 scan_block(start, next, NULL);
1523                 start = next;
1524                 cond_resched();
1525         }
1526 }
1527 #endif
1528
1529 /*
1530  * Scan a memory block corresponding to a kmemleak_object. A condition is
1531  * that object->use_count >= 1.
1532  */
1533 static void scan_object(struct kmemleak_object *object)
1534 {
1535         struct kmemleak_scan_area *area;
1536         unsigned long flags;
1537
1538         /*
1539          * Once the object->lock is acquired, the corresponding memory block
1540          * cannot be freed (the same lock is acquired in delete_object).
1541          */
1542         raw_spin_lock_irqsave(&object->lock, flags);
1543         if (object->flags & OBJECT_NO_SCAN)
1544                 goto out;
1545         if (!(object->flags & OBJECT_ALLOCATED))
1546                 /* already freed object */
1547                 goto out;
1548
1549         if (object->flags & OBJECT_PERCPU) {
1550                 unsigned int cpu;
1551
1552                 for_each_possible_cpu(cpu) {
1553                         void *start = per_cpu_ptr((void __percpu *)object->pointer, cpu);
1554                         void *end = start + object->size;
1555
1556                         scan_block(start, end, object);
1557
1558                         raw_spin_unlock_irqrestore(&object->lock, flags);
1559                         cond_resched();
1560                         raw_spin_lock_irqsave(&object->lock, flags);
1561                         if (!(object->flags & OBJECT_ALLOCATED))
1562                                 break;
1563                 }
1564         } else if (hlist_empty(&object->area_list) ||
1565             object->flags & OBJECT_FULL_SCAN) {
1566                 void *start = object->flags & OBJECT_PHYS ?
1567                                 __va((phys_addr_t)object->pointer) :
1568                                 (void *)object->pointer;
1569                 void *end = start + object->size;
1570                 void *next;
1571
1572                 do {
1573                         next = min(start + MAX_SCAN_SIZE, end);
1574                         scan_block(start, next, object);
1575
1576                         start = next;
1577                         if (start >= end)
1578                                 break;
1579
1580                         raw_spin_unlock_irqrestore(&object->lock, flags);
1581                         cond_resched();
1582                         raw_spin_lock_irqsave(&object->lock, flags);
1583                 } while (object->flags & OBJECT_ALLOCATED);
1584         } else {
1585                 hlist_for_each_entry(area, &object->area_list, node)
1586                         scan_block((void *)area->start,
1587                                    (void *)(area->start + area->size),
1588                                    object);
1589         }
1590 out:
1591         raw_spin_unlock_irqrestore(&object->lock, flags);
1592 }
1593
1594 /*
1595  * Scan the objects already referenced (gray objects). More objects will be
1596  * referenced and, if there are no memory leaks, all the objects are scanned.
1597  */
1598 static void scan_gray_list(void)
1599 {
1600         struct kmemleak_object *object, *tmp;
1601
1602         /*
1603          * The list traversal is safe for both tail additions and removals
1604          * from inside the loop. The kmemleak objects cannot be freed from
1605          * outside the loop because their use_count was incremented.
1606          */
1607         object = list_entry(gray_list.next, typeof(*object), gray_list);
1608         while (&object->gray_list != &gray_list) {
1609                 cond_resched();
1610
1611                 /* may add new objects to the list */
1612                 if (!scan_should_stop())
1613                         scan_object(object);
1614
1615                 tmp = list_entry(object->gray_list.next, typeof(*object),
1616                                  gray_list);
1617
1618                 /* remove the object from the list and release it */
1619                 list_del(&object->gray_list);
1620                 put_object(object);
1621
1622                 object = tmp;
1623         }
1624         WARN_ON(!list_empty(&gray_list));
1625 }
1626
1627 /*
1628  * Conditionally call resched() in an object iteration loop while making sure
1629  * that the given object won't go away without RCU read lock by performing a
1630  * get_object() if necessaary.
1631  */
1632 static void kmemleak_cond_resched(struct kmemleak_object *object)
1633 {
1634         if (!get_object(object))
1635                 return; /* Try next object */
1636
1637         raw_spin_lock_irq(&kmemleak_lock);
1638         if (object->del_state & DELSTATE_REMOVED)
1639                 goto unlock_put;        /* Object removed */
1640         object->del_state |= DELSTATE_NO_DELETE;
1641         raw_spin_unlock_irq(&kmemleak_lock);
1642
1643         rcu_read_unlock();
1644         cond_resched();
1645         rcu_read_lock();
1646
1647         raw_spin_lock_irq(&kmemleak_lock);
1648         if (object->del_state & DELSTATE_REMOVED)
1649                 list_del_rcu(&object->object_list);
1650         object->del_state &= ~DELSTATE_NO_DELETE;
1651 unlock_put:
1652         raw_spin_unlock_irq(&kmemleak_lock);
1653         put_object(object);
1654 }
1655
1656 /*
1657  * Scan data sections and all the referenced memory blocks allocated via the
1658  * kernel's standard allocators. This function must be called with the
1659  * scan_mutex held.
1660  */
1661 static void kmemleak_scan(void)
1662 {
1663         struct kmemleak_object *object;
1664         struct zone *zone;
1665         int __maybe_unused i;
1666         int new_leaks = 0;
1667
1668         jiffies_last_scan = jiffies;
1669
1670         /* prepare the kmemleak_object's */
1671         rcu_read_lock();
1672         list_for_each_entry_rcu(object, &object_list, object_list) {
1673                 raw_spin_lock_irq(&object->lock);
1674 #ifdef DEBUG
1675                 /*
1676                  * With a few exceptions there should be a maximum of
1677                  * 1 reference to any object at this point.
1678                  */
1679                 if (atomic_read(&object->use_count) > 1) {
1680                         pr_debug("object->use_count = %d\n",
1681                                  atomic_read(&object->use_count));
1682                         dump_object_info(object);
1683                 }
1684 #endif
1685
1686                 /* ignore objects outside lowmem (paint them black) */
1687                 if ((object->flags & OBJECT_PHYS) &&
1688                    !(object->flags & OBJECT_NO_SCAN)) {
1689                         unsigned long phys = object->pointer;
1690
1691                         if (PHYS_PFN(phys) < min_low_pfn ||
1692                             PHYS_PFN(phys + object->size) >= max_low_pfn)
1693                                 __paint_it(object, KMEMLEAK_BLACK);
1694                 }
1695
1696                 /* reset the reference count (whiten the object) */
1697                 object->count = 0;
1698                 if (color_gray(object) && get_object(object))
1699                         list_add_tail(&object->gray_list, &gray_list);
1700
1701                 raw_spin_unlock_irq(&object->lock);
1702
1703                 if (need_resched())
1704                         kmemleak_cond_resched(object);
1705         }
1706         rcu_read_unlock();
1707
1708 #ifdef CONFIG_SMP
1709         /* per-cpu sections scanning */
1710         for_each_possible_cpu(i)
1711                 scan_large_block(__per_cpu_start + per_cpu_offset(i),
1712                                  __per_cpu_end + per_cpu_offset(i));
1713 #endif
1714
1715         /*
1716          * Struct page scanning for each node.
1717          */
1718         get_online_mems();
1719         for_each_populated_zone(zone) {
1720                 unsigned long start_pfn = zone->zone_start_pfn;
1721                 unsigned long end_pfn = zone_end_pfn(zone);
1722                 unsigned long pfn;
1723
1724                 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1725                         struct page *page = pfn_to_online_page(pfn);
1726
1727                         if (!(pfn & 63))
1728                                 cond_resched();
1729
1730                         if (!page)
1731                                 continue;
1732
1733                         /* only scan pages belonging to this zone */
1734                         if (page_zone(page) != zone)
1735                                 continue;
1736                         /* only scan if page is in use */
1737                         if (page_count(page) == 0)
1738                                 continue;
1739                         scan_block(page, page + 1, NULL);
1740                 }
1741         }
1742         put_online_mems();
1743
1744         /*
1745          * Scanning the task stacks (may introduce false negatives).
1746          */
1747         if (kmemleak_stack_scan) {
1748                 struct task_struct *p, *g;
1749
1750                 rcu_read_lock();
1751                 for_each_process_thread(g, p) {
1752                         void *stack = try_get_task_stack(p);
1753                         if (stack) {
1754                                 scan_block(stack, stack + THREAD_SIZE, NULL);
1755                                 put_task_stack(p);
1756                         }
1757                 }
1758                 rcu_read_unlock();
1759         }
1760
1761         /*
1762          * Scan the objects already referenced from the sections scanned
1763          * above.
1764          */
1765         scan_gray_list();
1766
1767         /*
1768          * Check for new or unreferenced objects modified since the previous
1769          * scan and color them gray until the next scan.
1770          */
1771         rcu_read_lock();
1772         list_for_each_entry_rcu(object, &object_list, object_list) {
1773                 if (need_resched())
1774                         kmemleak_cond_resched(object);
1775
1776                 /*
1777                  * This is racy but we can save the overhead of lock/unlock
1778                  * calls. The missed objects, if any, should be caught in
1779                  * the next scan.
1780                  */
1781                 if (!color_white(object))
1782                         continue;
1783                 raw_spin_lock_irq(&object->lock);
1784                 if (color_white(object) && (object->flags & OBJECT_ALLOCATED)
1785                     && update_checksum(object) && get_object(object)) {
1786                         /* color it gray temporarily */
1787                         object->count = object->min_count;
1788                         list_add_tail(&object->gray_list, &gray_list);
1789                 }
1790                 raw_spin_unlock_irq(&object->lock);
1791         }
1792         rcu_read_unlock();
1793
1794         /*
1795          * Re-scan the gray list for modified unreferenced objects.
1796          */
1797         scan_gray_list();
1798
1799         /*
1800          * If scanning was stopped do not report any new unreferenced objects.
1801          */
1802         if (scan_should_stop())
1803                 return;
1804
1805         /*
1806          * Scanning result reporting.
1807          */
1808         rcu_read_lock();
1809         list_for_each_entry_rcu(object, &object_list, object_list) {
1810                 if (need_resched())
1811                         kmemleak_cond_resched(object);
1812
1813                 /*
1814                  * This is racy but we can save the overhead of lock/unlock
1815                  * calls. The missed objects, if any, should be caught in
1816                  * the next scan.
1817                  */
1818                 if (!color_white(object))
1819                         continue;
1820                 raw_spin_lock_irq(&object->lock);
1821                 if (unreferenced_object(object) &&
1822                     !(object->flags & OBJECT_REPORTED)) {
1823                         object->flags |= OBJECT_REPORTED;
1824
1825                         if (kmemleak_verbose)
1826                                 print_unreferenced(NULL, object);
1827
1828                         new_leaks++;
1829                 }
1830                 raw_spin_unlock_irq(&object->lock);
1831         }
1832         rcu_read_unlock();
1833
1834         if (new_leaks) {
1835                 kmemleak_found_leaks = true;
1836
1837                 pr_info("%d new suspected memory leaks (see /sys/kernel/debug/kmemleak)\n",
1838                         new_leaks);
1839         }
1840
1841 }
1842
1843 /*
1844  * Thread function performing automatic memory scanning. Unreferenced objects
1845  * at the end of a memory scan are reported but only the first time.
1846  */
1847 static int kmemleak_scan_thread(void *arg)
1848 {
1849         static int first_run = IS_ENABLED(CONFIG_DEBUG_KMEMLEAK_AUTO_SCAN);
1850
1851         pr_info("Automatic memory scanning thread started\n");
1852         set_user_nice(current, 10);
1853
1854         /*
1855          * Wait before the first scan to allow the system to fully initialize.
1856          */
1857         if (first_run) {
1858                 signed long timeout = msecs_to_jiffies(SECS_FIRST_SCAN * 1000);
1859                 first_run = 0;
1860                 while (timeout && !kthread_should_stop())
1861                         timeout = schedule_timeout_interruptible(timeout);
1862         }
1863
1864         while (!kthread_should_stop()) {
1865                 signed long timeout = READ_ONCE(jiffies_scan_wait);
1866
1867                 mutex_lock(&scan_mutex);
1868                 kmemleak_scan();
1869                 mutex_unlock(&scan_mutex);
1870
1871                 /* wait before the next scan */
1872                 while (timeout && !kthread_should_stop())
1873                         timeout = schedule_timeout_interruptible(timeout);
1874         }
1875
1876         pr_info("Automatic memory scanning thread ended\n");
1877
1878         return 0;
1879 }
1880
1881 /*
1882  * Start the automatic memory scanning thread. This function must be called
1883  * with the scan_mutex held.
1884  */
1885 static void start_scan_thread(void)
1886 {
1887         if (scan_thread)
1888                 return;
1889         scan_thread = kthread_run(kmemleak_scan_thread, NULL, "kmemleak");
1890         if (IS_ERR(scan_thread)) {
1891                 pr_warn("Failed to create the scan thread\n");
1892                 scan_thread = NULL;
1893         }
1894 }
1895
1896 /*
1897  * Stop the automatic memory scanning thread.
1898  */
1899 static void stop_scan_thread(void)
1900 {
1901         if (scan_thread) {
1902                 kthread_stop(scan_thread);
1903                 scan_thread = NULL;
1904         }
1905 }
1906
1907 /*
1908  * Iterate over the object_list and return the first valid object at or after
1909  * the required position with its use_count incremented. The function triggers
1910  * a memory scanning when the pos argument points to the first position.
1911  */
1912 static void *kmemleak_seq_start(struct seq_file *seq, loff_t *pos)
1913 {
1914         struct kmemleak_object *object;
1915         loff_t n = *pos;
1916         int err;
1917
1918         err = mutex_lock_interruptible(&scan_mutex);
1919         if (err < 0)
1920                 return ERR_PTR(err);
1921
1922         rcu_read_lock();
1923         list_for_each_entry_rcu(object, &object_list, object_list) {
1924                 if (n-- > 0)
1925                         continue;
1926                 if (get_object(object))
1927                         goto out;
1928         }
1929         object = NULL;
1930 out:
1931         return object;
1932 }
1933
1934 /*
1935  * Return the next object in the object_list. The function decrements the
1936  * use_count of the previous object and increases that of the next one.
1937  */
1938 static void *kmemleak_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1939 {
1940         struct kmemleak_object *prev_obj = v;
1941         struct kmemleak_object *next_obj = NULL;
1942         struct kmemleak_object *obj = prev_obj;
1943
1944         ++(*pos);
1945
1946         list_for_each_entry_continue_rcu(obj, &object_list, object_list) {
1947                 if (get_object(obj)) {
1948                         next_obj = obj;
1949                         break;
1950                 }
1951         }
1952
1953         put_object(prev_obj);
1954         return next_obj;
1955 }
1956
1957 /*
1958  * Decrement the use_count of the last object required, if any.
1959  */
1960 static void kmemleak_seq_stop(struct seq_file *seq, void *v)
1961 {
1962         if (!IS_ERR(v)) {
1963                 /*
1964                  * kmemleak_seq_start may return ERR_PTR if the scan_mutex
1965                  * waiting was interrupted, so only release it if !IS_ERR.
1966                  */
1967                 rcu_read_unlock();
1968                 mutex_unlock(&scan_mutex);
1969                 if (v)
1970                         put_object(v);
1971         }
1972 }
1973
1974 /*
1975  * Print the information for an unreferenced object to the seq file.
1976  */
1977 static int kmemleak_seq_show(struct seq_file *seq, void *v)
1978 {
1979         struct kmemleak_object *object = v;
1980         unsigned long flags;
1981
1982         raw_spin_lock_irqsave(&object->lock, flags);
1983         if ((object->flags & OBJECT_REPORTED) && unreferenced_object(object))
1984                 print_unreferenced(seq, object);
1985         raw_spin_unlock_irqrestore(&object->lock, flags);
1986         return 0;
1987 }
1988
1989 static const struct seq_operations kmemleak_seq_ops = {
1990         .start = kmemleak_seq_start,
1991         .next  = kmemleak_seq_next,
1992         .stop  = kmemleak_seq_stop,
1993         .show  = kmemleak_seq_show,
1994 };
1995
1996 static int kmemleak_open(struct inode *inode, struct file *file)
1997 {
1998         return seq_open(file, &kmemleak_seq_ops);
1999 }
2000
2001 static int dump_str_object_info(const char *str)
2002 {
2003         unsigned long flags;
2004         struct kmemleak_object *object;
2005         unsigned long addr;
2006
2007         if (kstrtoul(str, 0, &addr))
2008                 return -EINVAL;
2009         object = find_and_get_object(addr, 0);
2010         if (!object) {
2011                 pr_info("Unknown object at 0x%08lx\n", addr);
2012                 return -EINVAL;
2013         }
2014
2015         raw_spin_lock_irqsave(&object->lock, flags);
2016         dump_object_info(object);
2017         raw_spin_unlock_irqrestore(&object->lock, flags);
2018
2019         put_object(object);
2020         return 0;
2021 }
2022
2023 /*
2024  * We use grey instead of black to ensure we can do future scans on the same
2025  * objects. If we did not do future scans these black objects could
2026  * potentially contain references to newly allocated objects in the future and
2027  * we'd end up with false positives.
2028  */
2029 static void kmemleak_clear(void)
2030 {
2031         struct kmemleak_object *object;
2032
2033         rcu_read_lock();
2034         list_for_each_entry_rcu(object, &object_list, object_list) {
2035                 raw_spin_lock_irq(&object->lock);
2036                 if ((object->flags & OBJECT_REPORTED) &&
2037                     unreferenced_object(object))
2038                         __paint_it(object, KMEMLEAK_GREY);
2039                 raw_spin_unlock_irq(&object->lock);
2040         }
2041         rcu_read_unlock();
2042
2043         kmemleak_found_leaks = false;
2044 }
2045
2046 static void __kmemleak_do_cleanup(void);
2047
2048 /*
2049  * File write operation to configure kmemleak at run-time. The following
2050  * commands can be written to the /sys/kernel/debug/kmemleak file:
2051  *   off        - disable kmemleak (irreversible)
2052  *   stack=on   - enable the task stacks scanning
2053  *   stack=off  - disable the tasks stacks scanning
2054  *   scan=on    - start the automatic memory scanning thread
2055  *   scan=off   - stop the automatic memory scanning thread
2056  *   scan=...   - set the automatic memory scanning period in seconds (0 to
2057  *                disable it)
2058  *   scan       - trigger a memory scan
2059  *   clear      - mark all current reported unreferenced kmemleak objects as
2060  *                grey to ignore printing them, or free all kmemleak objects
2061  *                if kmemleak has been disabled.
2062  *   dump=...   - dump information about the object found at the given address
2063  */
2064 static ssize_t kmemleak_write(struct file *file, const char __user *user_buf,
2065                               size_t size, loff_t *ppos)
2066 {
2067         char buf[64];
2068         int buf_size;
2069         int ret;
2070
2071         buf_size = min(size, (sizeof(buf) - 1));
2072         if (strncpy_from_user(buf, user_buf, buf_size) < 0)
2073                 return -EFAULT;
2074         buf[buf_size] = 0;
2075
2076         ret = mutex_lock_interruptible(&scan_mutex);
2077         if (ret < 0)
2078                 return ret;
2079
2080         if (strncmp(buf, "clear", 5) == 0) {
2081                 if (kmemleak_enabled)
2082                         kmemleak_clear();
2083                 else
2084                         __kmemleak_do_cleanup();
2085                 goto out;
2086         }
2087
2088         if (!kmemleak_enabled) {
2089                 ret = -EPERM;
2090                 goto out;
2091         }
2092
2093         if (strncmp(buf, "off", 3) == 0)
2094                 kmemleak_disable();
2095         else if (strncmp(buf, "stack=on", 8) == 0)
2096                 kmemleak_stack_scan = 1;
2097         else if (strncmp(buf, "stack=off", 9) == 0)
2098                 kmemleak_stack_scan = 0;
2099         else if (strncmp(buf, "scan=on", 7) == 0)
2100                 start_scan_thread();
2101         else if (strncmp(buf, "scan=off", 8) == 0)
2102                 stop_scan_thread();
2103         else if (strncmp(buf, "scan=", 5) == 0) {
2104                 unsigned secs;
2105                 unsigned long msecs;
2106
2107                 ret = kstrtouint(buf + 5, 0, &secs);
2108                 if (ret < 0)
2109                         goto out;
2110
2111                 msecs = secs * MSEC_PER_SEC;
2112                 if (msecs > UINT_MAX)
2113                         msecs = UINT_MAX;
2114
2115                 stop_scan_thread();
2116                 if (msecs) {
2117                         WRITE_ONCE(jiffies_scan_wait, msecs_to_jiffies(msecs));
2118                         start_scan_thread();
2119                 }
2120         } else if (strncmp(buf, "scan", 4) == 0)
2121                 kmemleak_scan();
2122         else if (strncmp(buf, "dump=", 5) == 0)
2123                 ret = dump_str_object_info(buf + 5);
2124         else
2125                 ret = -EINVAL;
2126
2127 out:
2128         mutex_unlock(&scan_mutex);
2129         if (ret < 0)
2130                 return ret;
2131
2132         /* ignore the rest of the buffer, only one command at a time */
2133         *ppos += size;
2134         return size;
2135 }
2136
2137 static const struct file_operations kmemleak_fops = {
2138         .owner          = THIS_MODULE,
2139         .open           = kmemleak_open,
2140         .read           = seq_read,
2141         .write          = kmemleak_write,
2142         .llseek         = seq_lseek,
2143         .release        = seq_release,
2144 };
2145
2146 static void __kmemleak_do_cleanup(void)
2147 {
2148         struct kmemleak_object *object, *tmp;
2149
2150         /*
2151          * Kmemleak has already been disabled, no need for RCU list traversal
2152          * or kmemleak_lock held.
2153          */
2154         list_for_each_entry_safe(object, tmp, &object_list, object_list) {
2155                 __remove_object(object);
2156                 __delete_object(object);
2157         }
2158 }
2159
2160 /*
2161  * Stop the memory scanning thread and free the kmemleak internal objects if
2162  * no previous scan thread (otherwise, kmemleak may still have some useful
2163  * information on memory leaks).
2164  */
2165 static void kmemleak_do_cleanup(struct work_struct *work)
2166 {
2167         stop_scan_thread();
2168
2169         mutex_lock(&scan_mutex);
2170         /*
2171          * Once it is made sure that kmemleak_scan has stopped, it is safe to no
2172          * longer track object freeing. Ordering of the scan thread stopping and
2173          * the memory accesses below is guaranteed by the kthread_stop()
2174          * function.
2175          */
2176         kmemleak_free_enabled = 0;
2177         mutex_unlock(&scan_mutex);
2178
2179         if (!kmemleak_found_leaks)
2180                 __kmemleak_do_cleanup();
2181         else
2182                 pr_info("Kmemleak disabled without freeing internal data. Reclaim the memory with \"echo clear > /sys/kernel/debug/kmemleak\".\n");
2183 }
2184
2185 static DECLARE_WORK(cleanup_work, kmemleak_do_cleanup);
2186
2187 /*
2188  * Disable kmemleak. No memory allocation/freeing will be traced once this
2189  * function is called. Disabling kmemleak is an irreversible operation.
2190  */
2191 static void kmemleak_disable(void)
2192 {
2193         /* atomically check whether it was already invoked */
2194         if (cmpxchg(&kmemleak_error, 0, 1))
2195                 return;
2196
2197         /* stop any memory operation tracing */
2198         kmemleak_enabled = 0;
2199
2200         /* check whether it is too early for a kernel thread */
2201         if (kmemleak_late_initialized)
2202                 schedule_work(&cleanup_work);
2203         else
2204                 kmemleak_free_enabled = 0;
2205
2206         pr_info("Kernel memory leak detector disabled\n");
2207 }
2208
2209 /*
2210  * Allow boot-time kmemleak disabling (enabled by default).
2211  */
2212 static int __init kmemleak_boot_config(char *str)
2213 {
2214         if (!str)
2215                 return -EINVAL;
2216         if (strcmp(str, "off") == 0)
2217                 kmemleak_disable();
2218         else if (strcmp(str, "on") == 0) {
2219                 kmemleak_skip_disable = 1;
2220                 stack_depot_request_early_init();
2221         }
2222         else
2223                 return -EINVAL;
2224         return 0;
2225 }
2226 early_param("kmemleak", kmemleak_boot_config);
2227
2228 /*
2229  * Kmemleak initialization.
2230  */
2231 void __init kmemleak_init(void)
2232 {
2233 #ifdef CONFIG_DEBUG_KMEMLEAK_DEFAULT_OFF
2234         if (!kmemleak_skip_disable) {
2235                 kmemleak_disable();
2236                 return;
2237         }
2238 #endif
2239
2240         if (kmemleak_error)
2241                 return;
2242
2243         jiffies_min_age = msecs_to_jiffies(MSECS_MIN_AGE);
2244         jiffies_scan_wait = msecs_to_jiffies(SECS_SCAN_WAIT * 1000);
2245
2246         object_cache = KMEM_CACHE(kmemleak_object, SLAB_NOLEAKTRACE);
2247         scan_area_cache = KMEM_CACHE(kmemleak_scan_area, SLAB_NOLEAKTRACE);
2248
2249         /* register the data/bss sections */
2250         create_object((unsigned long)_sdata, _edata - _sdata,
2251                       KMEMLEAK_GREY, GFP_ATOMIC);
2252         create_object((unsigned long)__bss_start, __bss_stop - __bss_start,
2253                       KMEMLEAK_GREY, GFP_ATOMIC);
2254         /* only register .data..ro_after_init if not within .data */
2255         if (&__start_ro_after_init < &_sdata || &__end_ro_after_init > &_edata)
2256                 create_object((unsigned long)__start_ro_after_init,
2257                               __end_ro_after_init - __start_ro_after_init,
2258                               KMEMLEAK_GREY, GFP_ATOMIC);
2259 }
2260
2261 /*
2262  * Late initialization function.
2263  */
2264 static int __init kmemleak_late_init(void)
2265 {
2266         kmemleak_late_initialized = 1;
2267
2268         debugfs_create_file("kmemleak", 0644, NULL, NULL, &kmemleak_fops);
2269
2270         if (kmemleak_error) {
2271                 /*
2272                  * Some error occurred and kmemleak was disabled. There is a
2273                  * small chance that kmemleak_disable() was called immediately
2274                  * after setting kmemleak_late_initialized and we may end up with
2275                  * two clean-up threads but serialized by scan_mutex.
2276                  */
2277                 schedule_work(&cleanup_work);
2278                 return -ENOMEM;
2279         }
2280
2281         if (IS_ENABLED(CONFIG_DEBUG_KMEMLEAK_AUTO_SCAN)) {
2282                 mutex_lock(&scan_mutex);
2283                 start_scan_thread();
2284                 mutex_unlock(&scan_mutex);
2285         }
2286
2287         pr_info("Kernel memory leak detector initialized (mem pool available: %d)\n",
2288                 mem_pool_free_count);
2289
2290         return 0;
2291 }
2292 late_initcall(kmemleak_late_init);
This page took 0.151496 seconds and 4 git commands to generate.