]> Git Repo - J-linux.git/blob - kernel/time/alarmtimer.c
Merge tag 'vfs-6.13-rc7.fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs
[J-linux.git] / kernel / time / alarmtimer.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Alarmtimer interface
4  *
5  * This interface provides a timer which is similar to hrtimers,
6  * but triggers a RTC alarm if the box is suspend.
7  *
8  * This interface is influenced by the Android RTC Alarm timer
9  * interface.
10  *
11  * Copyright (C) 2010 IBM Corporation
12  *
13  * Author: John Stultz <[email protected]>
14  */
15 #include <linux/time.h>
16 #include <linux/hrtimer.h>
17 #include <linux/timerqueue.h>
18 #include <linux/rtc.h>
19 #include <linux/sched/signal.h>
20 #include <linux/sched/debug.h>
21 #include <linux/alarmtimer.h>
22 #include <linux/mutex.h>
23 #include <linux/platform_device.h>
24 #include <linux/posix-timers.h>
25 #include <linux/workqueue.h>
26 #include <linux/freezer.h>
27 #include <linux/compat.h>
28 #include <linux/module.h>
29 #include <linux/time_namespace.h>
30
31 #include "posix-timers.h"
32
33 #define CREATE_TRACE_POINTS
34 #include <trace/events/alarmtimer.h>
35
36 /**
37  * struct alarm_base - Alarm timer bases
38  * @lock:               Lock for syncrhonized access to the base
39  * @timerqueue:         Timerqueue head managing the list of events
40  * @get_ktime:          Function to read the time correlating to the base
41  * @get_timespec:       Function to read the namespace time correlating to the base
42  * @base_clockid:       clockid for the base
43  */
44 static struct alarm_base {
45         spinlock_t              lock;
46         struct timerqueue_head  timerqueue;
47         ktime_t                 (*get_ktime)(void);
48         void                    (*get_timespec)(struct timespec64 *tp);
49         clockid_t               base_clockid;
50 } alarm_bases[ALARM_NUMTYPE];
51
52 #if defined(CONFIG_POSIX_TIMERS) || defined(CONFIG_RTC_CLASS)
53 /* freezer information to handle clock_nanosleep triggered wakeups */
54 static enum alarmtimer_type freezer_alarmtype;
55 static ktime_t freezer_expires;
56 static ktime_t freezer_delta;
57 static DEFINE_SPINLOCK(freezer_delta_lock);
58 #endif
59
60 #ifdef CONFIG_RTC_CLASS
61 /* rtc timer and device for setting alarm wakeups at suspend */
62 static struct rtc_timer         rtctimer;
63 static struct rtc_device        *rtcdev;
64 static DEFINE_SPINLOCK(rtcdev_lock);
65
66 /**
67  * alarmtimer_get_rtcdev - Return selected rtcdevice
68  *
69  * This function returns the rtc device to use for wakealarms.
70  */
71 struct rtc_device *alarmtimer_get_rtcdev(void)
72 {
73         unsigned long flags;
74         struct rtc_device *ret;
75
76         spin_lock_irqsave(&rtcdev_lock, flags);
77         ret = rtcdev;
78         spin_unlock_irqrestore(&rtcdev_lock, flags);
79
80         return ret;
81 }
82 EXPORT_SYMBOL_GPL(alarmtimer_get_rtcdev);
83
84 static int alarmtimer_rtc_add_device(struct device *dev)
85 {
86         unsigned long flags;
87         struct rtc_device *rtc = to_rtc_device(dev);
88         struct platform_device *pdev;
89         int ret = 0;
90
91         if (rtcdev)
92                 return -EBUSY;
93
94         if (!test_bit(RTC_FEATURE_ALARM, rtc->features))
95                 return -1;
96         if (!device_may_wakeup(rtc->dev.parent))
97                 return -1;
98
99         pdev = platform_device_register_data(dev, "alarmtimer",
100                                              PLATFORM_DEVID_AUTO, NULL, 0);
101         if (!IS_ERR(pdev))
102                 device_init_wakeup(&pdev->dev, true);
103
104         spin_lock_irqsave(&rtcdev_lock, flags);
105         if (!IS_ERR(pdev) && !rtcdev) {
106                 if (!try_module_get(rtc->owner)) {
107                         ret = -1;
108                         goto unlock;
109                 }
110
111                 rtcdev = rtc;
112                 /* hold a reference so it doesn't go away */
113                 get_device(dev);
114                 pdev = NULL;
115         } else {
116                 ret = -1;
117         }
118 unlock:
119         spin_unlock_irqrestore(&rtcdev_lock, flags);
120
121         platform_device_unregister(pdev);
122
123         return ret;
124 }
125
126 static inline void alarmtimer_rtc_timer_init(void)
127 {
128         rtc_timer_init(&rtctimer, NULL, NULL);
129 }
130
131 static struct class_interface alarmtimer_rtc_interface = {
132         .add_dev = &alarmtimer_rtc_add_device,
133 };
134
135 static int alarmtimer_rtc_interface_setup(void)
136 {
137         alarmtimer_rtc_interface.class = &rtc_class;
138         return class_interface_register(&alarmtimer_rtc_interface);
139 }
140 static void alarmtimer_rtc_interface_remove(void)
141 {
142         class_interface_unregister(&alarmtimer_rtc_interface);
143 }
144 #else
145 static inline int alarmtimer_rtc_interface_setup(void) { return 0; }
146 static inline void alarmtimer_rtc_interface_remove(void) { }
147 static inline void alarmtimer_rtc_timer_init(void) { }
148 #endif
149
150 /**
151  * alarmtimer_enqueue - Adds an alarm timer to an alarm_base timerqueue
152  * @base: pointer to the base where the timer is being run
153  * @alarm: pointer to alarm being enqueued.
154  *
155  * Adds alarm to a alarm_base timerqueue
156  *
157  * Must hold base->lock when calling.
158  */
159 static void alarmtimer_enqueue(struct alarm_base *base, struct alarm *alarm)
160 {
161         if (alarm->state & ALARMTIMER_STATE_ENQUEUED)
162                 timerqueue_del(&base->timerqueue, &alarm->node);
163
164         timerqueue_add(&base->timerqueue, &alarm->node);
165         alarm->state |= ALARMTIMER_STATE_ENQUEUED;
166 }
167
168 /**
169  * alarmtimer_dequeue - Removes an alarm timer from an alarm_base timerqueue
170  * @base: pointer to the base where the timer is running
171  * @alarm: pointer to alarm being removed
172  *
173  * Removes alarm to a alarm_base timerqueue
174  *
175  * Must hold base->lock when calling.
176  */
177 static void alarmtimer_dequeue(struct alarm_base *base, struct alarm *alarm)
178 {
179         if (!(alarm->state & ALARMTIMER_STATE_ENQUEUED))
180                 return;
181
182         timerqueue_del(&base->timerqueue, &alarm->node);
183         alarm->state &= ~ALARMTIMER_STATE_ENQUEUED;
184 }
185
186
187 /**
188  * alarmtimer_fired - Handles alarm hrtimer being fired.
189  * @timer: pointer to hrtimer being run
190  *
191  * When a alarm timer fires, this runs through the timerqueue to
192  * see which alarms expired, and runs those. If there are more alarm
193  * timers queued for the future, we set the hrtimer to fire when
194  * the next future alarm timer expires.
195  */
196 static enum hrtimer_restart alarmtimer_fired(struct hrtimer *timer)
197 {
198         struct alarm *alarm = container_of(timer, struct alarm, timer);
199         struct alarm_base *base = &alarm_bases[alarm->type];
200
201         scoped_guard (spinlock_irqsave, &base->lock)
202                 alarmtimer_dequeue(base, alarm);
203
204         if (alarm->function)
205                 alarm->function(alarm, base->get_ktime());
206
207         trace_alarmtimer_fired(alarm, base->get_ktime());
208         return HRTIMER_NORESTART;
209 }
210
211 ktime_t alarm_expires_remaining(const struct alarm *alarm)
212 {
213         struct alarm_base *base = &alarm_bases[alarm->type];
214         return ktime_sub(alarm->node.expires, base->get_ktime());
215 }
216 EXPORT_SYMBOL_GPL(alarm_expires_remaining);
217
218 #ifdef CONFIG_RTC_CLASS
219 /**
220  * alarmtimer_suspend - Suspend time callback
221  * @dev: unused
222  *
223  * When we are going into suspend, we look through the bases
224  * to see which is the soonest timer to expire. We then
225  * set an rtc timer to fire that far into the future, which
226  * will wake us from suspend.
227  */
228 static int alarmtimer_suspend(struct device *dev)
229 {
230         ktime_t min, now, expires;
231         int i, ret, type;
232         struct rtc_device *rtc;
233         unsigned long flags;
234         struct rtc_time tm;
235
236         spin_lock_irqsave(&freezer_delta_lock, flags);
237         min = freezer_delta;
238         expires = freezer_expires;
239         type = freezer_alarmtype;
240         freezer_delta = 0;
241         spin_unlock_irqrestore(&freezer_delta_lock, flags);
242
243         rtc = alarmtimer_get_rtcdev();
244         /* If we have no rtcdev, just return */
245         if (!rtc)
246                 return 0;
247
248         /* Find the soonest timer to expire*/
249         for (i = 0; i < ALARM_NUMTYPE; i++) {
250                 struct alarm_base *base = &alarm_bases[i];
251                 struct timerqueue_node *next;
252                 ktime_t delta;
253
254                 spin_lock_irqsave(&base->lock, flags);
255                 next = timerqueue_getnext(&base->timerqueue);
256                 spin_unlock_irqrestore(&base->lock, flags);
257                 if (!next)
258                         continue;
259                 delta = ktime_sub(next->expires, base->get_ktime());
260                 if (!min || (delta < min)) {
261                         expires = next->expires;
262                         min = delta;
263                         type = i;
264                 }
265         }
266         if (min == 0)
267                 return 0;
268
269         if (ktime_to_ns(min) < 2 * NSEC_PER_SEC) {
270                 pm_wakeup_event(dev, 2 * MSEC_PER_SEC);
271                 return -EBUSY;
272         }
273
274         trace_alarmtimer_suspend(expires, type);
275
276         /* Setup an rtc timer to fire that far in the future */
277         rtc_timer_cancel(rtc, &rtctimer);
278         rtc_read_time(rtc, &tm);
279         now = rtc_tm_to_ktime(tm);
280
281         /*
282          * If the RTC alarm timer only supports a limited time offset, set the
283          * alarm time to the maximum supported value.
284          * The system may wake up earlier (possibly much earlier) than expected
285          * when the alarmtimer runs. This is the best the kernel can do if
286          * the alarmtimer exceeds the time that the rtc device can be programmed
287          * for.
288          */
289         min = rtc_bound_alarmtime(rtc, min);
290
291         now = ktime_add(now, min);
292
293         /* Set alarm, if in the past reject suspend briefly to handle */
294         ret = rtc_timer_start(rtc, &rtctimer, now, 0);
295         if (ret < 0)
296                 pm_wakeup_event(dev, MSEC_PER_SEC);
297         return ret;
298 }
299
300 static int alarmtimer_resume(struct device *dev)
301 {
302         struct rtc_device *rtc;
303
304         rtc = alarmtimer_get_rtcdev();
305         if (rtc)
306                 rtc_timer_cancel(rtc, &rtctimer);
307         return 0;
308 }
309
310 #else
311 static int alarmtimer_suspend(struct device *dev)
312 {
313         return 0;
314 }
315
316 static int alarmtimer_resume(struct device *dev)
317 {
318         return 0;
319 }
320 #endif
321
322 static void
323 __alarm_init(struct alarm *alarm, enum alarmtimer_type type,
324              void (*function)(struct alarm *, ktime_t))
325 {
326         timerqueue_init(&alarm->node);
327         alarm->function = function;
328         alarm->type = type;
329         alarm->state = ALARMTIMER_STATE_INACTIVE;
330 }
331
332 /**
333  * alarm_init - Initialize an alarm structure
334  * @alarm: ptr to alarm to be initialized
335  * @type: the type of the alarm
336  * @function: callback that is run when the alarm fires
337  */
338 void alarm_init(struct alarm *alarm, enum alarmtimer_type type,
339                 void (*function)(struct alarm *, ktime_t))
340 {
341         hrtimer_setup(&alarm->timer, alarmtimer_fired, alarm_bases[type].base_clockid,
342                       HRTIMER_MODE_ABS);
343         __alarm_init(alarm, type, function);
344 }
345 EXPORT_SYMBOL_GPL(alarm_init);
346
347 /**
348  * alarm_start - Sets an absolute alarm to fire
349  * @alarm: ptr to alarm to set
350  * @start: time to run the alarm
351  */
352 void alarm_start(struct alarm *alarm, ktime_t start)
353 {
354         struct alarm_base *base = &alarm_bases[alarm->type];
355         unsigned long flags;
356
357         spin_lock_irqsave(&base->lock, flags);
358         alarm->node.expires = start;
359         alarmtimer_enqueue(base, alarm);
360         hrtimer_start(&alarm->timer, alarm->node.expires, HRTIMER_MODE_ABS);
361         spin_unlock_irqrestore(&base->lock, flags);
362
363         trace_alarmtimer_start(alarm, base->get_ktime());
364 }
365 EXPORT_SYMBOL_GPL(alarm_start);
366
367 /**
368  * alarm_start_relative - Sets a relative alarm to fire
369  * @alarm: ptr to alarm to set
370  * @start: time relative to now to run the alarm
371  */
372 void alarm_start_relative(struct alarm *alarm, ktime_t start)
373 {
374         struct alarm_base *base = &alarm_bases[alarm->type];
375
376         start = ktime_add_safe(start, base->get_ktime());
377         alarm_start(alarm, start);
378 }
379 EXPORT_SYMBOL_GPL(alarm_start_relative);
380
381 void alarm_restart(struct alarm *alarm)
382 {
383         struct alarm_base *base = &alarm_bases[alarm->type];
384         unsigned long flags;
385
386         spin_lock_irqsave(&base->lock, flags);
387         hrtimer_set_expires(&alarm->timer, alarm->node.expires);
388         hrtimer_restart(&alarm->timer);
389         alarmtimer_enqueue(base, alarm);
390         spin_unlock_irqrestore(&base->lock, flags);
391 }
392 EXPORT_SYMBOL_GPL(alarm_restart);
393
394 /**
395  * alarm_try_to_cancel - Tries to cancel an alarm timer
396  * @alarm: ptr to alarm to be canceled
397  *
398  * Returns 1 if the timer was canceled, 0 if it was not running,
399  * and -1 if the callback was running
400  */
401 int alarm_try_to_cancel(struct alarm *alarm)
402 {
403         struct alarm_base *base = &alarm_bases[alarm->type];
404         unsigned long flags;
405         int ret;
406
407         spin_lock_irqsave(&base->lock, flags);
408         ret = hrtimer_try_to_cancel(&alarm->timer);
409         if (ret >= 0)
410                 alarmtimer_dequeue(base, alarm);
411         spin_unlock_irqrestore(&base->lock, flags);
412
413         trace_alarmtimer_cancel(alarm, base->get_ktime());
414         return ret;
415 }
416 EXPORT_SYMBOL_GPL(alarm_try_to_cancel);
417
418
419 /**
420  * alarm_cancel - Spins trying to cancel an alarm timer until it is done
421  * @alarm: ptr to alarm to be canceled
422  *
423  * Returns 1 if the timer was canceled, 0 if it was not active.
424  */
425 int alarm_cancel(struct alarm *alarm)
426 {
427         for (;;) {
428                 int ret = alarm_try_to_cancel(alarm);
429                 if (ret >= 0)
430                         return ret;
431                 hrtimer_cancel_wait_running(&alarm->timer);
432         }
433 }
434 EXPORT_SYMBOL_GPL(alarm_cancel);
435
436
437 u64 alarm_forward(struct alarm *alarm, ktime_t now, ktime_t interval)
438 {
439         u64 overrun = 1;
440         ktime_t delta;
441
442         delta = ktime_sub(now, alarm->node.expires);
443
444         if (delta < 0)
445                 return 0;
446
447         if (unlikely(delta >= interval)) {
448                 s64 incr = ktime_to_ns(interval);
449
450                 overrun = ktime_divns(delta, incr);
451
452                 alarm->node.expires = ktime_add_ns(alarm->node.expires,
453                                                         incr*overrun);
454
455                 if (alarm->node.expires > now)
456                         return overrun;
457                 /*
458                  * This (and the ktime_add() below) is the
459                  * correction for exact:
460                  */
461                 overrun++;
462         }
463
464         alarm->node.expires = ktime_add_safe(alarm->node.expires, interval);
465         return overrun;
466 }
467 EXPORT_SYMBOL_GPL(alarm_forward);
468
469 u64 alarm_forward_now(struct alarm *alarm, ktime_t interval)
470 {
471         struct alarm_base *base = &alarm_bases[alarm->type];
472
473         return alarm_forward(alarm, base->get_ktime(), interval);
474 }
475 EXPORT_SYMBOL_GPL(alarm_forward_now);
476
477 #ifdef CONFIG_POSIX_TIMERS
478
479 static void alarmtimer_freezerset(ktime_t absexp, enum alarmtimer_type type)
480 {
481         struct alarm_base *base;
482         unsigned long flags;
483         ktime_t delta;
484
485         switch(type) {
486         case ALARM_REALTIME:
487                 base = &alarm_bases[ALARM_REALTIME];
488                 type = ALARM_REALTIME_FREEZER;
489                 break;
490         case ALARM_BOOTTIME:
491                 base = &alarm_bases[ALARM_BOOTTIME];
492                 type = ALARM_BOOTTIME_FREEZER;
493                 break;
494         default:
495                 WARN_ONCE(1, "Invalid alarm type: %d\n", type);
496                 return;
497         }
498
499         delta = ktime_sub(absexp, base->get_ktime());
500
501         spin_lock_irqsave(&freezer_delta_lock, flags);
502         if (!freezer_delta || (delta < freezer_delta)) {
503                 freezer_delta = delta;
504                 freezer_expires = absexp;
505                 freezer_alarmtype = type;
506         }
507         spin_unlock_irqrestore(&freezer_delta_lock, flags);
508 }
509
510 /**
511  * clock2alarm - helper that converts from clockid to alarmtypes
512  * @clockid: clockid.
513  */
514 static enum alarmtimer_type clock2alarm(clockid_t clockid)
515 {
516         if (clockid == CLOCK_REALTIME_ALARM)
517                 return ALARM_REALTIME;
518         if (clockid == CLOCK_BOOTTIME_ALARM)
519                 return ALARM_BOOTTIME;
520         return -1;
521 }
522
523 /**
524  * alarm_handle_timer - Callback for posix timers
525  * @alarm: alarm that fired
526  * @now: time at the timer expiration
527  *
528  * Posix timer callback for expired alarm timers.
529  *
530  * Return: whether the timer is to be restarted
531  */
532 static void alarm_handle_timer(struct alarm *alarm, ktime_t now)
533 {
534         struct k_itimer *ptr = container_of(alarm, struct k_itimer, it.alarm.alarmtimer);
535
536         guard(spinlock_irqsave)(&ptr->it_lock);
537         posix_timer_queue_signal(ptr);
538 }
539
540 /**
541  * alarm_timer_rearm - Posix timer callback for rearming timer
542  * @timr:       Pointer to the posixtimer data struct
543  */
544 static void alarm_timer_rearm(struct k_itimer *timr)
545 {
546         struct alarm *alarm = &timr->it.alarm.alarmtimer;
547
548         timr->it_overrun += alarm_forward_now(alarm, timr->it_interval);
549         alarm_start(alarm, alarm->node.expires);
550 }
551
552 /**
553  * alarm_timer_forward - Posix timer callback for forwarding timer
554  * @timr:       Pointer to the posixtimer data struct
555  * @now:        Current time to forward the timer against
556  */
557 static s64 alarm_timer_forward(struct k_itimer *timr, ktime_t now)
558 {
559         struct alarm *alarm = &timr->it.alarm.alarmtimer;
560
561         return alarm_forward(alarm, timr->it_interval, now);
562 }
563
564 /**
565  * alarm_timer_remaining - Posix timer callback to retrieve remaining time
566  * @timr:       Pointer to the posixtimer data struct
567  * @now:        Current time to calculate against
568  */
569 static ktime_t alarm_timer_remaining(struct k_itimer *timr, ktime_t now)
570 {
571         struct alarm *alarm = &timr->it.alarm.alarmtimer;
572
573         return ktime_sub(alarm->node.expires, now);
574 }
575
576 /**
577  * alarm_timer_try_to_cancel - Posix timer callback to cancel a timer
578  * @timr:       Pointer to the posixtimer data struct
579  */
580 static int alarm_timer_try_to_cancel(struct k_itimer *timr)
581 {
582         return alarm_try_to_cancel(&timr->it.alarm.alarmtimer);
583 }
584
585 /**
586  * alarm_timer_wait_running - Posix timer callback to wait for a timer
587  * @timr:       Pointer to the posixtimer data struct
588  *
589  * Called from the core code when timer cancel detected that the callback
590  * is running. @timr is unlocked and rcu read lock is held to prevent it
591  * from being freed.
592  */
593 static void alarm_timer_wait_running(struct k_itimer *timr)
594 {
595         hrtimer_cancel_wait_running(&timr->it.alarm.alarmtimer.timer);
596 }
597
598 /**
599  * alarm_timer_arm - Posix timer callback to arm a timer
600  * @timr:       Pointer to the posixtimer data struct
601  * @expires:    The new expiry time
602  * @absolute:   Expiry value is absolute time
603  * @sigev_none: Posix timer does not deliver signals
604  */
605 static void alarm_timer_arm(struct k_itimer *timr, ktime_t expires,
606                             bool absolute, bool sigev_none)
607 {
608         struct alarm *alarm = &timr->it.alarm.alarmtimer;
609         struct alarm_base *base = &alarm_bases[alarm->type];
610
611         if (!absolute)
612                 expires = ktime_add_safe(expires, base->get_ktime());
613         if (sigev_none)
614                 alarm->node.expires = expires;
615         else
616                 alarm_start(&timr->it.alarm.alarmtimer, expires);
617 }
618
619 /**
620  * alarm_clock_getres - posix getres interface
621  * @which_clock: clockid
622  * @tp: timespec to fill
623  *
624  * Returns the granularity of underlying alarm base clock
625  */
626 static int alarm_clock_getres(const clockid_t which_clock, struct timespec64 *tp)
627 {
628         if (!alarmtimer_get_rtcdev())
629                 return -EINVAL;
630
631         tp->tv_sec = 0;
632         tp->tv_nsec = hrtimer_resolution;
633         return 0;
634 }
635
636 /**
637  * alarm_clock_get_timespec - posix clock_get_timespec interface
638  * @which_clock: clockid
639  * @tp: timespec to fill.
640  *
641  * Provides the underlying alarm base time in a tasks time namespace.
642  */
643 static int alarm_clock_get_timespec(clockid_t which_clock, struct timespec64 *tp)
644 {
645         struct alarm_base *base = &alarm_bases[clock2alarm(which_clock)];
646
647         if (!alarmtimer_get_rtcdev())
648                 return -EINVAL;
649
650         base->get_timespec(tp);
651
652         return 0;
653 }
654
655 /**
656  * alarm_clock_get_ktime - posix clock_get_ktime interface
657  * @which_clock: clockid
658  *
659  * Provides the underlying alarm base time in the root namespace.
660  */
661 static ktime_t alarm_clock_get_ktime(clockid_t which_clock)
662 {
663         struct alarm_base *base = &alarm_bases[clock2alarm(which_clock)];
664
665         if (!alarmtimer_get_rtcdev())
666                 return -EINVAL;
667
668         return base->get_ktime();
669 }
670
671 /**
672  * alarm_timer_create - posix timer_create interface
673  * @new_timer: k_itimer pointer to manage
674  *
675  * Initializes the k_itimer structure.
676  */
677 static int alarm_timer_create(struct k_itimer *new_timer)
678 {
679         enum  alarmtimer_type type;
680
681         if (!alarmtimer_get_rtcdev())
682                 return -EOPNOTSUPP;
683
684         if (!capable(CAP_WAKE_ALARM))
685                 return -EPERM;
686
687         type = clock2alarm(new_timer->it_clock);
688         alarm_init(&new_timer->it.alarm.alarmtimer, type, alarm_handle_timer);
689         return 0;
690 }
691
692 /**
693  * alarmtimer_nsleep_wakeup - Wakeup function for alarm_timer_nsleep
694  * @alarm: ptr to alarm that fired
695  * @now: time at the timer expiration
696  *
697  * Wakes up the task that set the alarmtimer
698  */
699 static void alarmtimer_nsleep_wakeup(struct alarm *alarm, ktime_t now)
700 {
701         struct task_struct *task = alarm->data;
702
703         alarm->data = NULL;
704         if (task)
705                 wake_up_process(task);
706 }
707
708 /**
709  * alarmtimer_do_nsleep - Internal alarmtimer nsleep implementation
710  * @alarm: ptr to alarmtimer
711  * @absexp: absolute expiration time
712  * @type: alarm type (BOOTTIME/REALTIME).
713  *
714  * Sets the alarm timer and sleeps until it is fired or interrupted.
715  */
716 static int alarmtimer_do_nsleep(struct alarm *alarm, ktime_t absexp,
717                                 enum alarmtimer_type type)
718 {
719         struct restart_block *restart;
720         alarm->data = (void *)current;
721         do {
722                 set_current_state(TASK_INTERRUPTIBLE);
723                 alarm_start(alarm, absexp);
724                 if (likely(alarm->data))
725                         schedule();
726
727                 alarm_cancel(alarm);
728         } while (alarm->data && !signal_pending(current));
729
730         __set_current_state(TASK_RUNNING);
731
732         destroy_hrtimer_on_stack(&alarm->timer);
733
734         if (!alarm->data)
735                 return 0;
736
737         if (freezing(current))
738                 alarmtimer_freezerset(absexp, type);
739         restart = &current->restart_block;
740         if (restart->nanosleep.type != TT_NONE) {
741                 struct timespec64 rmt;
742                 ktime_t rem;
743
744                 rem = ktime_sub(absexp, alarm_bases[type].get_ktime());
745
746                 if (rem <= 0)
747                         return 0;
748                 rmt = ktime_to_timespec64(rem);
749
750                 return nanosleep_copyout(restart, &rmt);
751         }
752         return -ERESTART_RESTARTBLOCK;
753 }
754
755 static void
756 alarm_init_on_stack(struct alarm *alarm, enum alarmtimer_type type,
757                     void (*function)(struct alarm *, ktime_t))
758 {
759         hrtimer_setup_on_stack(&alarm->timer, alarmtimer_fired, alarm_bases[type].base_clockid,
760                                HRTIMER_MODE_ABS);
761         __alarm_init(alarm, type, function);
762 }
763
764 /**
765  * alarm_timer_nsleep_restart - restartblock alarmtimer nsleep
766  * @restart: ptr to restart block
767  *
768  * Handles restarted clock_nanosleep calls
769  */
770 static long __sched alarm_timer_nsleep_restart(struct restart_block *restart)
771 {
772         enum  alarmtimer_type type = restart->nanosleep.clockid;
773         ktime_t exp = restart->nanosleep.expires;
774         struct alarm alarm;
775
776         alarm_init_on_stack(&alarm, type, alarmtimer_nsleep_wakeup);
777
778         return alarmtimer_do_nsleep(&alarm, exp, type);
779 }
780
781 /**
782  * alarm_timer_nsleep - alarmtimer nanosleep
783  * @which_clock: clockid
784  * @flags: determines abstime or relative
785  * @tsreq: requested sleep time (abs or rel)
786  *
787  * Handles clock_nanosleep calls against _ALARM clockids
788  */
789 static int alarm_timer_nsleep(const clockid_t which_clock, int flags,
790                               const struct timespec64 *tsreq)
791 {
792         enum  alarmtimer_type type = clock2alarm(which_clock);
793         struct restart_block *restart = &current->restart_block;
794         struct alarm alarm;
795         ktime_t exp;
796         int ret;
797
798         if (!alarmtimer_get_rtcdev())
799                 return -EOPNOTSUPP;
800
801         if (flags & ~TIMER_ABSTIME)
802                 return -EINVAL;
803
804         if (!capable(CAP_WAKE_ALARM))
805                 return -EPERM;
806
807         alarm_init_on_stack(&alarm, type, alarmtimer_nsleep_wakeup);
808
809         exp = timespec64_to_ktime(*tsreq);
810         /* Convert (if necessary) to absolute time */
811         if (flags != TIMER_ABSTIME) {
812                 ktime_t now = alarm_bases[type].get_ktime();
813
814                 exp = ktime_add_safe(now, exp);
815         } else {
816                 exp = timens_ktime_to_host(which_clock, exp);
817         }
818
819         ret = alarmtimer_do_nsleep(&alarm, exp, type);
820         if (ret != -ERESTART_RESTARTBLOCK)
821                 return ret;
822
823         /* abs timers don't set remaining time or restart */
824         if (flags == TIMER_ABSTIME)
825                 return -ERESTARTNOHAND;
826
827         restart->nanosleep.clockid = type;
828         restart->nanosleep.expires = exp;
829         set_restart_fn(restart, alarm_timer_nsleep_restart);
830         return ret;
831 }
832
833 const struct k_clock alarm_clock = {
834         .clock_getres           = alarm_clock_getres,
835         .clock_get_ktime        = alarm_clock_get_ktime,
836         .clock_get_timespec     = alarm_clock_get_timespec,
837         .timer_create           = alarm_timer_create,
838         .timer_set              = common_timer_set,
839         .timer_del              = common_timer_del,
840         .timer_get              = common_timer_get,
841         .timer_arm              = alarm_timer_arm,
842         .timer_rearm            = alarm_timer_rearm,
843         .timer_forward          = alarm_timer_forward,
844         .timer_remaining        = alarm_timer_remaining,
845         .timer_try_to_cancel    = alarm_timer_try_to_cancel,
846         .timer_wait_running     = alarm_timer_wait_running,
847         .nsleep                 = alarm_timer_nsleep,
848 };
849 #endif /* CONFIG_POSIX_TIMERS */
850
851
852 /* Suspend hook structures */
853 static const struct dev_pm_ops alarmtimer_pm_ops = {
854         .suspend = alarmtimer_suspend,
855         .resume = alarmtimer_resume,
856 };
857
858 static struct platform_driver alarmtimer_driver = {
859         .driver = {
860                 .name = "alarmtimer",
861                 .pm = &alarmtimer_pm_ops,
862         }
863 };
864
865 static void get_boottime_timespec(struct timespec64 *tp)
866 {
867         ktime_get_boottime_ts64(tp);
868         timens_add_boottime(tp);
869 }
870
871 /**
872  * alarmtimer_init - Initialize alarm timer code
873  *
874  * This function initializes the alarm bases and registers
875  * the posix clock ids.
876  */
877 static int __init alarmtimer_init(void)
878 {
879         int error;
880         int i;
881
882         alarmtimer_rtc_timer_init();
883
884         /* Initialize alarm bases */
885         alarm_bases[ALARM_REALTIME].base_clockid = CLOCK_REALTIME;
886         alarm_bases[ALARM_REALTIME].get_ktime = &ktime_get_real;
887         alarm_bases[ALARM_REALTIME].get_timespec = ktime_get_real_ts64;
888         alarm_bases[ALARM_BOOTTIME].base_clockid = CLOCK_BOOTTIME;
889         alarm_bases[ALARM_BOOTTIME].get_ktime = &ktime_get_boottime;
890         alarm_bases[ALARM_BOOTTIME].get_timespec = get_boottime_timespec;
891         for (i = 0; i < ALARM_NUMTYPE; i++) {
892                 timerqueue_init_head(&alarm_bases[i].timerqueue);
893                 spin_lock_init(&alarm_bases[i].lock);
894         }
895
896         error = alarmtimer_rtc_interface_setup();
897         if (error)
898                 return error;
899
900         error = platform_driver_register(&alarmtimer_driver);
901         if (error)
902                 goto out_if;
903
904         return 0;
905 out_if:
906         alarmtimer_rtc_interface_remove();
907         return error;
908 }
909 device_initcall(alarmtimer_init);
This page took 0.075798 seconds and 4 git commands to generate.