]> Git Repo - J-linux.git/blob - kernel/sched/rt.c
Merge tag 'vfs-6.13-rc7.fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs
[J-linux.git] / kernel / sched / rt.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
4  * policies)
5  */
6
7 int sched_rr_timeslice = RR_TIMESLICE;
8 /* More than 4 hours if BW_SHIFT equals 20. */
9 static const u64 max_rt_runtime = MAX_BW;
10
11 /*
12  * period over which we measure -rt task CPU usage in us.
13  * default: 1s
14  */
15 int sysctl_sched_rt_period = 1000000;
16
17 /*
18  * part of the period that we allow rt tasks to run in us.
19  * default: 0.95s
20  */
21 int sysctl_sched_rt_runtime = 950000;
22
23 #ifdef CONFIG_SYSCTL
24 static int sysctl_sched_rr_timeslice = (MSEC_PER_SEC * RR_TIMESLICE) / HZ;
25 static int sched_rt_handler(const struct ctl_table *table, int write, void *buffer,
26                 size_t *lenp, loff_t *ppos);
27 static int sched_rr_handler(const struct ctl_table *table, int write, void *buffer,
28                 size_t *lenp, loff_t *ppos);
29 static struct ctl_table sched_rt_sysctls[] = {
30         {
31                 .procname       = "sched_rt_period_us",
32                 .data           = &sysctl_sched_rt_period,
33                 .maxlen         = sizeof(int),
34                 .mode           = 0644,
35                 .proc_handler   = sched_rt_handler,
36                 .extra1         = SYSCTL_ONE,
37                 .extra2         = SYSCTL_INT_MAX,
38         },
39         {
40                 .procname       = "sched_rt_runtime_us",
41                 .data           = &sysctl_sched_rt_runtime,
42                 .maxlen         = sizeof(int),
43                 .mode           = 0644,
44                 .proc_handler   = sched_rt_handler,
45                 .extra1         = SYSCTL_NEG_ONE,
46                 .extra2         = (void *)&sysctl_sched_rt_period,
47         },
48         {
49                 .procname       = "sched_rr_timeslice_ms",
50                 .data           = &sysctl_sched_rr_timeslice,
51                 .maxlen         = sizeof(int),
52                 .mode           = 0644,
53                 .proc_handler   = sched_rr_handler,
54         },
55 };
56
57 static int __init sched_rt_sysctl_init(void)
58 {
59         register_sysctl_init("kernel", sched_rt_sysctls);
60         return 0;
61 }
62 late_initcall(sched_rt_sysctl_init);
63 #endif
64
65 void init_rt_rq(struct rt_rq *rt_rq)
66 {
67         struct rt_prio_array *array;
68         int i;
69
70         array = &rt_rq->active;
71         for (i = 0; i < MAX_RT_PRIO; i++) {
72                 INIT_LIST_HEAD(array->queue + i);
73                 __clear_bit(i, array->bitmap);
74         }
75         /* delimiter for bitsearch: */
76         __set_bit(MAX_RT_PRIO, array->bitmap);
77
78 #if defined CONFIG_SMP
79         rt_rq->highest_prio.curr = MAX_RT_PRIO-1;
80         rt_rq->highest_prio.next = MAX_RT_PRIO-1;
81         rt_rq->overloaded = 0;
82         plist_head_init(&rt_rq->pushable_tasks);
83 #endif /* CONFIG_SMP */
84         /* We start is dequeued state, because no RT tasks are queued */
85         rt_rq->rt_queued = 0;
86
87 #ifdef CONFIG_RT_GROUP_SCHED
88         rt_rq->rt_time = 0;
89         rt_rq->rt_throttled = 0;
90         rt_rq->rt_runtime = 0;
91         raw_spin_lock_init(&rt_rq->rt_runtime_lock);
92 #endif
93 }
94
95 #ifdef CONFIG_RT_GROUP_SCHED
96
97 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
98
99 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
100 {
101         struct rt_bandwidth *rt_b =
102                 container_of(timer, struct rt_bandwidth, rt_period_timer);
103         int idle = 0;
104         int overrun;
105
106         raw_spin_lock(&rt_b->rt_runtime_lock);
107         for (;;) {
108                 overrun = hrtimer_forward_now(timer, rt_b->rt_period);
109                 if (!overrun)
110                         break;
111
112                 raw_spin_unlock(&rt_b->rt_runtime_lock);
113                 idle = do_sched_rt_period_timer(rt_b, overrun);
114                 raw_spin_lock(&rt_b->rt_runtime_lock);
115         }
116         if (idle)
117                 rt_b->rt_period_active = 0;
118         raw_spin_unlock(&rt_b->rt_runtime_lock);
119
120         return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
121 }
122
123 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
124 {
125         rt_b->rt_period = ns_to_ktime(period);
126         rt_b->rt_runtime = runtime;
127
128         raw_spin_lock_init(&rt_b->rt_runtime_lock);
129
130         hrtimer_init(&rt_b->rt_period_timer, CLOCK_MONOTONIC,
131                      HRTIMER_MODE_REL_HARD);
132         rt_b->rt_period_timer.function = sched_rt_period_timer;
133 }
134
135 static inline void do_start_rt_bandwidth(struct rt_bandwidth *rt_b)
136 {
137         raw_spin_lock(&rt_b->rt_runtime_lock);
138         if (!rt_b->rt_period_active) {
139                 rt_b->rt_period_active = 1;
140                 /*
141                  * SCHED_DEADLINE updates the bandwidth, as a run away
142                  * RT task with a DL task could hog a CPU. But DL does
143                  * not reset the period. If a deadline task was running
144                  * without an RT task running, it can cause RT tasks to
145                  * throttle when they start up. Kick the timer right away
146                  * to update the period.
147                  */
148                 hrtimer_forward_now(&rt_b->rt_period_timer, ns_to_ktime(0));
149                 hrtimer_start_expires(&rt_b->rt_period_timer,
150                                       HRTIMER_MODE_ABS_PINNED_HARD);
151         }
152         raw_spin_unlock(&rt_b->rt_runtime_lock);
153 }
154
155 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
156 {
157         if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
158                 return;
159
160         do_start_rt_bandwidth(rt_b);
161 }
162
163 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
164 {
165         hrtimer_cancel(&rt_b->rt_period_timer);
166 }
167
168 #define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
169
170 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
171 {
172 #ifdef CONFIG_SCHED_DEBUG
173         WARN_ON_ONCE(!rt_entity_is_task(rt_se));
174 #endif
175         return container_of(rt_se, struct task_struct, rt);
176 }
177
178 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
179 {
180         return rt_rq->rq;
181 }
182
183 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
184 {
185         return rt_se->rt_rq;
186 }
187
188 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
189 {
190         struct rt_rq *rt_rq = rt_se->rt_rq;
191
192         return rt_rq->rq;
193 }
194
195 void unregister_rt_sched_group(struct task_group *tg)
196 {
197         if (tg->rt_se)
198                 destroy_rt_bandwidth(&tg->rt_bandwidth);
199 }
200
201 void free_rt_sched_group(struct task_group *tg)
202 {
203         int i;
204
205         for_each_possible_cpu(i) {
206                 if (tg->rt_rq)
207                         kfree(tg->rt_rq[i]);
208                 if (tg->rt_se)
209                         kfree(tg->rt_se[i]);
210         }
211
212         kfree(tg->rt_rq);
213         kfree(tg->rt_se);
214 }
215
216 void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
217                 struct sched_rt_entity *rt_se, int cpu,
218                 struct sched_rt_entity *parent)
219 {
220         struct rq *rq = cpu_rq(cpu);
221
222         rt_rq->highest_prio.curr = MAX_RT_PRIO-1;
223         rt_rq->rt_nr_boosted = 0;
224         rt_rq->rq = rq;
225         rt_rq->tg = tg;
226
227         tg->rt_rq[cpu] = rt_rq;
228         tg->rt_se[cpu] = rt_se;
229
230         if (!rt_se)
231                 return;
232
233         if (!parent)
234                 rt_se->rt_rq = &rq->rt;
235         else
236                 rt_se->rt_rq = parent->my_q;
237
238         rt_se->my_q = rt_rq;
239         rt_se->parent = parent;
240         INIT_LIST_HEAD(&rt_se->run_list);
241 }
242
243 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
244 {
245         struct rt_rq *rt_rq;
246         struct sched_rt_entity *rt_se;
247         int i;
248
249         tg->rt_rq = kcalloc(nr_cpu_ids, sizeof(rt_rq), GFP_KERNEL);
250         if (!tg->rt_rq)
251                 goto err;
252         tg->rt_se = kcalloc(nr_cpu_ids, sizeof(rt_se), GFP_KERNEL);
253         if (!tg->rt_se)
254                 goto err;
255
256         init_rt_bandwidth(&tg->rt_bandwidth, ktime_to_ns(global_rt_period()), 0);
257
258         for_each_possible_cpu(i) {
259                 rt_rq = kzalloc_node(sizeof(struct rt_rq),
260                                      GFP_KERNEL, cpu_to_node(i));
261                 if (!rt_rq)
262                         goto err;
263
264                 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
265                                      GFP_KERNEL, cpu_to_node(i));
266                 if (!rt_se)
267                         goto err_free_rq;
268
269                 init_rt_rq(rt_rq);
270                 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
271                 init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
272         }
273
274         return 1;
275
276 err_free_rq:
277         kfree(rt_rq);
278 err:
279         return 0;
280 }
281
282 #else /* CONFIG_RT_GROUP_SCHED */
283
284 #define rt_entity_is_task(rt_se) (1)
285
286 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
287 {
288         return container_of(rt_se, struct task_struct, rt);
289 }
290
291 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
292 {
293         return container_of(rt_rq, struct rq, rt);
294 }
295
296 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
297 {
298         struct task_struct *p = rt_task_of(rt_se);
299
300         return task_rq(p);
301 }
302
303 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
304 {
305         struct rq *rq = rq_of_rt_se(rt_se);
306
307         return &rq->rt;
308 }
309
310 void unregister_rt_sched_group(struct task_group *tg) { }
311
312 void free_rt_sched_group(struct task_group *tg) { }
313
314 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
315 {
316         return 1;
317 }
318 #endif /* CONFIG_RT_GROUP_SCHED */
319
320 #ifdef CONFIG_SMP
321
322 static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
323 {
324         /* Try to pull RT tasks here if we lower this rq's prio */
325         return rq->online && rq->rt.highest_prio.curr > prev->prio;
326 }
327
328 static inline int rt_overloaded(struct rq *rq)
329 {
330         return atomic_read(&rq->rd->rto_count);
331 }
332
333 static inline void rt_set_overload(struct rq *rq)
334 {
335         if (!rq->online)
336                 return;
337
338         cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
339         /*
340          * Make sure the mask is visible before we set
341          * the overload count. That is checked to determine
342          * if we should look at the mask. It would be a shame
343          * if we looked at the mask, but the mask was not
344          * updated yet.
345          *
346          * Matched by the barrier in pull_rt_task().
347          */
348         smp_wmb();
349         atomic_inc(&rq->rd->rto_count);
350 }
351
352 static inline void rt_clear_overload(struct rq *rq)
353 {
354         if (!rq->online)
355                 return;
356
357         /* the order here really doesn't matter */
358         atomic_dec(&rq->rd->rto_count);
359         cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
360 }
361
362 static inline int has_pushable_tasks(struct rq *rq)
363 {
364         return !plist_head_empty(&rq->rt.pushable_tasks);
365 }
366
367 static DEFINE_PER_CPU(struct balance_callback, rt_push_head);
368 static DEFINE_PER_CPU(struct balance_callback, rt_pull_head);
369
370 static void push_rt_tasks(struct rq *);
371 static void pull_rt_task(struct rq *);
372
373 static inline void rt_queue_push_tasks(struct rq *rq)
374 {
375         if (!has_pushable_tasks(rq))
376                 return;
377
378         queue_balance_callback(rq, &per_cpu(rt_push_head, rq->cpu), push_rt_tasks);
379 }
380
381 static inline void rt_queue_pull_task(struct rq *rq)
382 {
383         queue_balance_callback(rq, &per_cpu(rt_pull_head, rq->cpu), pull_rt_task);
384 }
385
386 static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
387 {
388         plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
389         plist_node_init(&p->pushable_tasks, p->prio);
390         plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
391
392         /* Update the highest prio pushable task */
393         if (p->prio < rq->rt.highest_prio.next)
394                 rq->rt.highest_prio.next = p->prio;
395
396         if (!rq->rt.overloaded) {
397                 rt_set_overload(rq);
398                 rq->rt.overloaded = 1;
399         }
400 }
401
402 static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
403 {
404         plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
405
406         /* Update the new highest prio pushable task */
407         if (has_pushable_tasks(rq)) {
408                 p = plist_first_entry(&rq->rt.pushable_tasks,
409                                       struct task_struct, pushable_tasks);
410                 rq->rt.highest_prio.next = p->prio;
411         } else {
412                 rq->rt.highest_prio.next = MAX_RT_PRIO-1;
413
414                 if (rq->rt.overloaded) {
415                         rt_clear_overload(rq);
416                         rq->rt.overloaded = 0;
417                 }
418         }
419 }
420
421 #else
422
423 static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
424 {
425 }
426
427 static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
428 {
429 }
430
431 static inline void rt_queue_push_tasks(struct rq *rq)
432 {
433 }
434 #endif /* CONFIG_SMP */
435
436 static void enqueue_top_rt_rq(struct rt_rq *rt_rq);
437 static void dequeue_top_rt_rq(struct rt_rq *rt_rq, unsigned int count);
438
439 static inline int on_rt_rq(struct sched_rt_entity *rt_se)
440 {
441         return rt_se->on_rq;
442 }
443
444 #ifdef CONFIG_UCLAMP_TASK
445 /*
446  * Verify the fitness of task @p to run on @cpu taking into account the uclamp
447  * settings.
448  *
449  * This check is only important for heterogeneous systems where uclamp_min value
450  * is higher than the capacity of a @cpu. For non-heterogeneous system this
451  * function will always return true.
452  *
453  * The function will return true if the capacity of the @cpu is >= the
454  * uclamp_min and false otherwise.
455  *
456  * Note that uclamp_min will be clamped to uclamp_max if uclamp_min
457  * > uclamp_max.
458  */
459 static inline bool rt_task_fits_capacity(struct task_struct *p, int cpu)
460 {
461         unsigned int min_cap;
462         unsigned int max_cap;
463         unsigned int cpu_cap;
464
465         /* Only heterogeneous systems can benefit from this check */
466         if (!sched_asym_cpucap_active())
467                 return true;
468
469         min_cap = uclamp_eff_value(p, UCLAMP_MIN);
470         max_cap = uclamp_eff_value(p, UCLAMP_MAX);
471
472         cpu_cap = arch_scale_cpu_capacity(cpu);
473
474         return cpu_cap >= min(min_cap, max_cap);
475 }
476 #else
477 static inline bool rt_task_fits_capacity(struct task_struct *p, int cpu)
478 {
479         return true;
480 }
481 #endif
482
483 #ifdef CONFIG_RT_GROUP_SCHED
484
485 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
486 {
487         if (!rt_rq->tg)
488                 return RUNTIME_INF;
489
490         return rt_rq->rt_runtime;
491 }
492
493 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
494 {
495         return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
496 }
497
498 typedef struct task_group *rt_rq_iter_t;
499
500 static inline struct task_group *next_task_group(struct task_group *tg)
501 {
502         do {
503                 tg = list_entry_rcu(tg->list.next,
504                         typeof(struct task_group), list);
505         } while (&tg->list != &task_groups && task_group_is_autogroup(tg));
506
507         if (&tg->list == &task_groups)
508                 tg = NULL;
509
510         return tg;
511 }
512
513 #define for_each_rt_rq(rt_rq, iter, rq)                                 \
514         for (iter = container_of(&task_groups, typeof(*iter), list);    \
515                 (iter = next_task_group(iter)) &&                       \
516                 (rt_rq = iter->rt_rq[cpu_of(rq)]);)
517
518 #define for_each_sched_rt_entity(rt_se) \
519         for (; rt_se; rt_se = rt_se->parent)
520
521 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
522 {
523         return rt_se->my_q;
524 }
525
526 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
527 static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
528
529 static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
530 {
531         struct task_struct *donor = rq_of_rt_rq(rt_rq)->donor;
532         struct rq *rq = rq_of_rt_rq(rt_rq);
533         struct sched_rt_entity *rt_se;
534
535         int cpu = cpu_of(rq);
536
537         rt_se = rt_rq->tg->rt_se[cpu];
538
539         if (rt_rq->rt_nr_running) {
540                 if (!rt_se)
541                         enqueue_top_rt_rq(rt_rq);
542                 else if (!on_rt_rq(rt_se))
543                         enqueue_rt_entity(rt_se, 0);
544
545                 if (rt_rq->highest_prio.curr < donor->prio)
546                         resched_curr(rq);
547         }
548 }
549
550 static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
551 {
552         struct sched_rt_entity *rt_se;
553         int cpu = cpu_of(rq_of_rt_rq(rt_rq));
554
555         rt_se = rt_rq->tg->rt_se[cpu];
556
557         if (!rt_se) {
558                 dequeue_top_rt_rq(rt_rq, rt_rq->rt_nr_running);
559                 /* Kick cpufreq (see the comment in kernel/sched/sched.h). */
560                 cpufreq_update_util(rq_of_rt_rq(rt_rq), 0);
561         }
562         else if (on_rt_rq(rt_se))
563                 dequeue_rt_entity(rt_se, 0);
564 }
565
566 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
567 {
568         return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
569 }
570
571 static int rt_se_boosted(struct sched_rt_entity *rt_se)
572 {
573         struct rt_rq *rt_rq = group_rt_rq(rt_se);
574         struct task_struct *p;
575
576         if (rt_rq)
577                 return !!rt_rq->rt_nr_boosted;
578
579         p = rt_task_of(rt_se);
580         return p->prio != p->normal_prio;
581 }
582
583 #ifdef CONFIG_SMP
584 static inline const struct cpumask *sched_rt_period_mask(void)
585 {
586         return this_rq()->rd->span;
587 }
588 #else
589 static inline const struct cpumask *sched_rt_period_mask(void)
590 {
591         return cpu_online_mask;
592 }
593 #endif
594
595 static inline
596 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
597 {
598         return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
599 }
600
601 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
602 {
603         return &rt_rq->tg->rt_bandwidth;
604 }
605
606 bool sched_rt_bandwidth_account(struct rt_rq *rt_rq)
607 {
608         struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
609
610         return (hrtimer_active(&rt_b->rt_period_timer) ||
611                 rt_rq->rt_time < rt_b->rt_runtime);
612 }
613
614 #ifdef CONFIG_SMP
615 /*
616  * We ran out of runtime, see if we can borrow some from our neighbours.
617  */
618 static void do_balance_runtime(struct rt_rq *rt_rq)
619 {
620         struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
621         struct root_domain *rd = rq_of_rt_rq(rt_rq)->rd;
622         int i, weight;
623         u64 rt_period;
624
625         weight = cpumask_weight(rd->span);
626
627         raw_spin_lock(&rt_b->rt_runtime_lock);
628         rt_period = ktime_to_ns(rt_b->rt_period);
629         for_each_cpu(i, rd->span) {
630                 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
631                 s64 diff;
632
633                 if (iter == rt_rq)
634                         continue;
635
636                 raw_spin_lock(&iter->rt_runtime_lock);
637                 /*
638                  * Either all rqs have inf runtime and there's nothing to steal
639                  * or __disable_runtime() below sets a specific rq to inf to
640                  * indicate its been disabled and disallow stealing.
641                  */
642                 if (iter->rt_runtime == RUNTIME_INF)
643                         goto next;
644
645                 /*
646                  * From runqueues with spare time, take 1/n part of their
647                  * spare time, but no more than our period.
648                  */
649                 diff = iter->rt_runtime - iter->rt_time;
650                 if (diff > 0) {
651                         diff = div_u64((u64)diff, weight);
652                         if (rt_rq->rt_runtime + diff > rt_period)
653                                 diff = rt_period - rt_rq->rt_runtime;
654                         iter->rt_runtime -= diff;
655                         rt_rq->rt_runtime += diff;
656                         if (rt_rq->rt_runtime == rt_period) {
657                                 raw_spin_unlock(&iter->rt_runtime_lock);
658                                 break;
659                         }
660                 }
661 next:
662                 raw_spin_unlock(&iter->rt_runtime_lock);
663         }
664         raw_spin_unlock(&rt_b->rt_runtime_lock);
665 }
666
667 /*
668  * Ensure this RQ takes back all the runtime it lend to its neighbours.
669  */
670 static void __disable_runtime(struct rq *rq)
671 {
672         struct root_domain *rd = rq->rd;
673         rt_rq_iter_t iter;
674         struct rt_rq *rt_rq;
675
676         if (unlikely(!scheduler_running))
677                 return;
678
679         for_each_rt_rq(rt_rq, iter, rq) {
680                 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
681                 s64 want;
682                 int i;
683
684                 raw_spin_lock(&rt_b->rt_runtime_lock);
685                 raw_spin_lock(&rt_rq->rt_runtime_lock);
686                 /*
687                  * Either we're all inf and nobody needs to borrow, or we're
688                  * already disabled and thus have nothing to do, or we have
689                  * exactly the right amount of runtime to take out.
690                  */
691                 if (rt_rq->rt_runtime == RUNTIME_INF ||
692                                 rt_rq->rt_runtime == rt_b->rt_runtime)
693                         goto balanced;
694                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
695
696                 /*
697                  * Calculate the difference between what we started out with
698                  * and what we current have, that's the amount of runtime
699                  * we lend and now have to reclaim.
700                  */
701                 want = rt_b->rt_runtime - rt_rq->rt_runtime;
702
703                 /*
704                  * Greedy reclaim, take back as much as we can.
705                  */
706                 for_each_cpu(i, rd->span) {
707                         struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
708                         s64 diff;
709
710                         /*
711                          * Can't reclaim from ourselves or disabled runqueues.
712                          */
713                         if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
714                                 continue;
715
716                         raw_spin_lock(&iter->rt_runtime_lock);
717                         if (want > 0) {
718                                 diff = min_t(s64, iter->rt_runtime, want);
719                                 iter->rt_runtime -= diff;
720                                 want -= diff;
721                         } else {
722                                 iter->rt_runtime -= want;
723                                 want -= want;
724                         }
725                         raw_spin_unlock(&iter->rt_runtime_lock);
726
727                         if (!want)
728                                 break;
729                 }
730
731                 raw_spin_lock(&rt_rq->rt_runtime_lock);
732                 /*
733                  * We cannot be left wanting - that would mean some runtime
734                  * leaked out of the system.
735                  */
736                 WARN_ON_ONCE(want);
737 balanced:
738                 /*
739                  * Disable all the borrow logic by pretending we have inf
740                  * runtime - in which case borrowing doesn't make sense.
741                  */
742                 rt_rq->rt_runtime = RUNTIME_INF;
743                 rt_rq->rt_throttled = 0;
744                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
745                 raw_spin_unlock(&rt_b->rt_runtime_lock);
746
747                 /* Make rt_rq available for pick_next_task() */
748                 sched_rt_rq_enqueue(rt_rq);
749         }
750 }
751
752 static void __enable_runtime(struct rq *rq)
753 {
754         rt_rq_iter_t iter;
755         struct rt_rq *rt_rq;
756
757         if (unlikely(!scheduler_running))
758                 return;
759
760         /*
761          * Reset each runqueue's bandwidth settings
762          */
763         for_each_rt_rq(rt_rq, iter, rq) {
764                 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
765
766                 raw_spin_lock(&rt_b->rt_runtime_lock);
767                 raw_spin_lock(&rt_rq->rt_runtime_lock);
768                 rt_rq->rt_runtime = rt_b->rt_runtime;
769                 rt_rq->rt_time = 0;
770                 rt_rq->rt_throttled = 0;
771                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
772                 raw_spin_unlock(&rt_b->rt_runtime_lock);
773         }
774 }
775
776 static void balance_runtime(struct rt_rq *rt_rq)
777 {
778         if (!sched_feat(RT_RUNTIME_SHARE))
779                 return;
780
781         if (rt_rq->rt_time > rt_rq->rt_runtime) {
782                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
783                 do_balance_runtime(rt_rq);
784                 raw_spin_lock(&rt_rq->rt_runtime_lock);
785         }
786 }
787 #else /* !CONFIG_SMP */
788 static inline void balance_runtime(struct rt_rq *rt_rq) {}
789 #endif /* CONFIG_SMP */
790
791 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
792 {
793         int i, idle = 1, throttled = 0;
794         const struct cpumask *span;
795
796         span = sched_rt_period_mask();
797
798         /*
799          * FIXME: isolated CPUs should really leave the root task group,
800          * whether they are isolcpus or were isolated via cpusets, lest
801          * the timer run on a CPU which does not service all runqueues,
802          * potentially leaving other CPUs indefinitely throttled.  If
803          * isolation is really required, the user will turn the throttle
804          * off to kill the perturbations it causes anyway.  Meanwhile,
805          * this maintains functionality for boot and/or troubleshooting.
806          */
807         if (rt_b == &root_task_group.rt_bandwidth)
808                 span = cpu_online_mask;
809
810         for_each_cpu(i, span) {
811                 int enqueue = 0;
812                 struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
813                 struct rq *rq = rq_of_rt_rq(rt_rq);
814                 struct rq_flags rf;
815                 int skip;
816
817                 /*
818                  * When span == cpu_online_mask, taking each rq->lock
819                  * can be time-consuming. Try to avoid it when possible.
820                  */
821                 raw_spin_lock(&rt_rq->rt_runtime_lock);
822                 if (!sched_feat(RT_RUNTIME_SHARE) && rt_rq->rt_runtime != RUNTIME_INF)
823                         rt_rq->rt_runtime = rt_b->rt_runtime;
824                 skip = !rt_rq->rt_time && !rt_rq->rt_nr_running;
825                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
826                 if (skip)
827                         continue;
828
829                 rq_lock(rq, &rf);
830                 update_rq_clock(rq);
831
832                 if (rt_rq->rt_time) {
833                         u64 runtime;
834
835                         raw_spin_lock(&rt_rq->rt_runtime_lock);
836                         if (rt_rq->rt_throttled)
837                                 balance_runtime(rt_rq);
838                         runtime = rt_rq->rt_runtime;
839                         rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
840                         if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
841                                 rt_rq->rt_throttled = 0;
842                                 enqueue = 1;
843
844                                 /*
845                                  * When we're idle and a woken (rt) task is
846                                  * throttled wakeup_preempt() will set
847                                  * skip_update and the time between the wakeup
848                                  * and this unthrottle will get accounted as
849                                  * 'runtime'.
850                                  */
851                                 if (rt_rq->rt_nr_running && rq->curr == rq->idle)
852                                         rq_clock_cancel_skipupdate(rq);
853                         }
854                         if (rt_rq->rt_time || rt_rq->rt_nr_running)
855                                 idle = 0;
856                         raw_spin_unlock(&rt_rq->rt_runtime_lock);
857                 } else if (rt_rq->rt_nr_running) {
858                         idle = 0;
859                         if (!rt_rq_throttled(rt_rq))
860                                 enqueue = 1;
861                 }
862                 if (rt_rq->rt_throttled)
863                         throttled = 1;
864
865                 if (enqueue)
866                         sched_rt_rq_enqueue(rt_rq);
867                 rq_unlock(rq, &rf);
868         }
869
870         if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF))
871                 return 1;
872
873         return idle;
874 }
875
876 static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
877 {
878         u64 runtime = sched_rt_runtime(rt_rq);
879
880         if (rt_rq->rt_throttled)
881                 return rt_rq_throttled(rt_rq);
882
883         if (runtime >= sched_rt_period(rt_rq))
884                 return 0;
885
886         balance_runtime(rt_rq);
887         runtime = sched_rt_runtime(rt_rq);
888         if (runtime == RUNTIME_INF)
889                 return 0;
890
891         if (rt_rq->rt_time > runtime) {
892                 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
893
894                 /*
895                  * Don't actually throttle groups that have no runtime assigned
896                  * but accrue some time due to boosting.
897                  */
898                 if (likely(rt_b->rt_runtime)) {
899                         rt_rq->rt_throttled = 1;
900                         printk_deferred_once("sched: RT throttling activated\n");
901                 } else {
902                         /*
903                          * In case we did anyway, make it go away,
904                          * replenishment is a joke, since it will replenish us
905                          * with exactly 0 ns.
906                          */
907                         rt_rq->rt_time = 0;
908                 }
909
910                 if (rt_rq_throttled(rt_rq)) {
911                         sched_rt_rq_dequeue(rt_rq);
912                         return 1;
913                 }
914         }
915
916         return 0;
917 }
918
919 #else /* !CONFIG_RT_GROUP_SCHED */
920
921 typedef struct rt_rq *rt_rq_iter_t;
922
923 #define for_each_rt_rq(rt_rq, iter, rq) \
924         for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
925
926 #define for_each_sched_rt_entity(rt_se) \
927         for (; rt_se; rt_se = NULL)
928
929 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
930 {
931         return NULL;
932 }
933
934 static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
935 {
936         struct rq *rq = rq_of_rt_rq(rt_rq);
937
938         if (!rt_rq->rt_nr_running)
939                 return;
940
941         enqueue_top_rt_rq(rt_rq);
942         resched_curr(rq);
943 }
944
945 static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
946 {
947         dequeue_top_rt_rq(rt_rq, rt_rq->rt_nr_running);
948 }
949
950 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
951 {
952         return false;
953 }
954
955 static inline const struct cpumask *sched_rt_period_mask(void)
956 {
957         return cpu_online_mask;
958 }
959
960 static inline
961 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
962 {
963         return &cpu_rq(cpu)->rt;
964 }
965
966 #ifdef CONFIG_SMP
967 static void __enable_runtime(struct rq *rq) { }
968 static void __disable_runtime(struct rq *rq) { }
969 #endif
970
971 #endif /* CONFIG_RT_GROUP_SCHED */
972
973 static inline int rt_se_prio(struct sched_rt_entity *rt_se)
974 {
975 #ifdef CONFIG_RT_GROUP_SCHED
976         struct rt_rq *rt_rq = group_rt_rq(rt_se);
977
978         if (rt_rq)
979                 return rt_rq->highest_prio.curr;
980 #endif
981
982         return rt_task_of(rt_se)->prio;
983 }
984
985 /*
986  * Update the current task's runtime statistics. Skip current tasks that
987  * are not in our scheduling class.
988  */
989 static void update_curr_rt(struct rq *rq)
990 {
991         struct task_struct *donor = rq->donor;
992         s64 delta_exec;
993
994         if (donor->sched_class != &rt_sched_class)
995                 return;
996
997         delta_exec = update_curr_common(rq);
998         if (unlikely(delta_exec <= 0))
999                 return;
1000
1001 #ifdef CONFIG_RT_GROUP_SCHED
1002         struct sched_rt_entity *rt_se = &donor->rt;
1003
1004         if (!rt_bandwidth_enabled())
1005                 return;
1006
1007         for_each_sched_rt_entity(rt_se) {
1008                 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1009                 int exceeded;
1010
1011                 if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
1012                         raw_spin_lock(&rt_rq->rt_runtime_lock);
1013                         rt_rq->rt_time += delta_exec;
1014                         exceeded = sched_rt_runtime_exceeded(rt_rq);
1015                         if (exceeded)
1016                                 resched_curr(rq);
1017                         raw_spin_unlock(&rt_rq->rt_runtime_lock);
1018                         if (exceeded)
1019                                 do_start_rt_bandwidth(sched_rt_bandwidth(rt_rq));
1020                 }
1021         }
1022 #endif
1023 }
1024
1025 static void
1026 dequeue_top_rt_rq(struct rt_rq *rt_rq, unsigned int count)
1027 {
1028         struct rq *rq = rq_of_rt_rq(rt_rq);
1029
1030         BUG_ON(&rq->rt != rt_rq);
1031
1032         if (!rt_rq->rt_queued)
1033                 return;
1034
1035         BUG_ON(!rq->nr_running);
1036
1037         sub_nr_running(rq, count);
1038         rt_rq->rt_queued = 0;
1039
1040 }
1041
1042 static void
1043 enqueue_top_rt_rq(struct rt_rq *rt_rq)
1044 {
1045         struct rq *rq = rq_of_rt_rq(rt_rq);
1046
1047         BUG_ON(&rq->rt != rt_rq);
1048
1049         if (rt_rq->rt_queued)
1050                 return;
1051
1052         if (rt_rq_throttled(rt_rq))
1053                 return;
1054
1055         if (rt_rq->rt_nr_running) {
1056                 add_nr_running(rq, rt_rq->rt_nr_running);
1057                 rt_rq->rt_queued = 1;
1058         }
1059
1060         /* Kick cpufreq (see the comment in kernel/sched/sched.h). */
1061         cpufreq_update_util(rq, 0);
1062 }
1063
1064 #if defined CONFIG_SMP
1065
1066 static void
1067 inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1068 {
1069         struct rq *rq = rq_of_rt_rq(rt_rq);
1070
1071 #ifdef CONFIG_RT_GROUP_SCHED
1072         /*
1073          * Change rq's cpupri only if rt_rq is the top queue.
1074          */
1075         if (&rq->rt != rt_rq)
1076                 return;
1077 #endif
1078         if (rq->online && prio < prev_prio)
1079                 cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
1080 }
1081
1082 static void
1083 dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1084 {
1085         struct rq *rq = rq_of_rt_rq(rt_rq);
1086
1087 #ifdef CONFIG_RT_GROUP_SCHED
1088         /*
1089          * Change rq's cpupri only if rt_rq is the top queue.
1090          */
1091         if (&rq->rt != rt_rq)
1092                 return;
1093 #endif
1094         if (rq->online && rt_rq->highest_prio.curr != prev_prio)
1095                 cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
1096 }
1097
1098 #else /* CONFIG_SMP */
1099
1100 static inline
1101 void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1102 static inline
1103 void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1104
1105 #endif /* CONFIG_SMP */
1106
1107 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
1108 static void
1109 inc_rt_prio(struct rt_rq *rt_rq, int prio)
1110 {
1111         int prev_prio = rt_rq->highest_prio.curr;
1112
1113         if (prio < prev_prio)
1114                 rt_rq->highest_prio.curr = prio;
1115
1116         inc_rt_prio_smp(rt_rq, prio, prev_prio);
1117 }
1118
1119 static void
1120 dec_rt_prio(struct rt_rq *rt_rq, int prio)
1121 {
1122         int prev_prio = rt_rq->highest_prio.curr;
1123
1124         if (rt_rq->rt_nr_running) {
1125
1126                 WARN_ON(prio < prev_prio);
1127
1128                 /*
1129                  * This may have been our highest task, and therefore
1130                  * we may have some re-computation to do
1131                  */
1132                 if (prio == prev_prio) {
1133                         struct rt_prio_array *array = &rt_rq->active;
1134
1135                         rt_rq->highest_prio.curr =
1136                                 sched_find_first_bit(array->bitmap);
1137                 }
1138
1139         } else {
1140                 rt_rq->highest_prio.curr = MAX_RT_PRIO-1;
1141         }
1142
1143         dec_rt_prio_smp(rt_rq, prio, prev_prio);
1144 }
1145
1146 #else
1147
1148 static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
1149 static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}
1150
1151 #endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
1152
1153 #ifdef CONFIG_RT_GROUP_SCHED
1154
1155 static void
1156 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1157 {
1158         if (rt_se_boosted(rt_se))
1159                 rt_rq->rt_nr_boosted++;
1160
1161         if (rt_rq->tg)
1162                 start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
1163 }
1164
1165 static void
1166 dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1167 {
1168         if (rt_se_boosted(rt_se))
1169                 rt_rq->rt_nr_boosted--;
1170
1171         WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
1172 }
1173
1174 #else /* CONFIG_RT_GROUP_SCHED */
1175
1176 static void
1177 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1178 {
1179 }
1180
1181 static inline
1182 void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
1183
1184 #endif /* CONFIG_RT_GROUP_SCHED */
1185
1186 static inline
1187 unsigned int rt_se_nr_running(struct sched_rt_entity *rt_se)
1188 {
1189         struct rt_rq *group_rq = group_rt_rq(rt_se);
1190
1191         if (group_rq)
1192                 return group_rq->rt_nr_running;
1193         else
1194                 return 1;
1195 }
1196
1197 static inline
1198 unsigned int rt_se_rr_nr_running(struct sched_rt_entity *rt_se)
1199 {
1200         struct rt_rq *group_rq = group_rt_rq(rt_se);
1201         struct task_struct *tsk;
1202
1203         if (group_rq)
1204                 return group_rq->rr_nr_running;
1205
1206         tsk = rt_task_of(rt_se);
1207
1208         return (tsk->policy == SCHED_RR) ? 1 : 0;
1209 }
1210
1211 static inline
1212 void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1213 {
1214         int prio = rt_se_prio(rt_se);
1215
1216         WARN_ON(!rt_prio(prio));
1217         rt_rq->rt_nr_running += rt_se_nr_running(rt_se);
1218         rt_rq->rr_nr_running += rt_se_rr_nr_running(rt_se);
1219
1220         inc_rt_prio(rt_rq, prio);
1221         inc_rt_group(rt_se, rt_rq);
1222 }
1223
1224 static inline
1225 void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1226 {
1227         WARN_ON(!rt_prio(rt_se_prio(rt_se)));
1228         WARN_ON(!rt_rq->rt_nr_running);
1229         rt_rq->rt_nr_running -= rt_se_nr_running(rt_se);
1230         rt_rq->rr_nr_running -= rt_se_rr_nr_running(rt_se);
1231
1232         dec_rt_prio(rt_rq, rt_se_prio(rt_se));
1233         dec_rt_group(rt_se, rt_rq);
1234 }
1235
1236 /*
1237  * Change rt_se->run_list location unless SAVE && !MOVE
1238  *
1239  * assumes ENQUEUE/DEQUEUE flags match
1240  */
1241 static inline bool move_entity(unsigned int flags)
1242 {
1243         if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE)
1244                 return false;
1245
1246         return true;
1247 }
1248
1249 static void __delist_rt_entity(struct sched_rt_entity *rt_se, struct rt_prio_array *array)
1250 {
1251         list_del_init(&rt_se->run_list);
1252
1253         if (list_empty(array->queue + rt_se_prio(rt_se)))
1254                 __clear_bit(rt_se_prio(rt_se), array->bitmap);
1255
1256         rt_se->on_list = 0;
1257 }
1258
1259 static inline struct sched_statistics *
1260 __schedstats_from_rt_se(struct sched_rt_entity *rt_se)
1261 {
1262 #ifdef CONFIG_RT_GROUP_SCHED
1263         /* schedstats is not supported for rt group. */
1264         if (!rt_entity_is_task(rt_se))
1265                 return NULL;
1266 #endif
1267
1268         return &rt_task_of(rt_se)->stats;
1269 }
1270
1271 static inline void
1272 update_stats_wait_start_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se)
1273 {
1274         struct sched_statistics *stats;
1275         struct task_struct *p = NULL;
1276
1277         if (!schedstat_enabled())
1278                 return;
1279
1280         if (rt_entity_is_task(rt_se))
1281                 p = rt_task_of(rt_se);
1282
1283         stats = __schedstats_from_rt_se(rt_se);
1284         if (!stats)
1285                 return;
1286
1287         __update_stats_wait_start(rq_of_rt_rq(rt_rq), p, stats);
1288 }
1289
1290 static inline void
1291 update_stats_enqueue_sleeper_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se)
1292 {
1293         struct sched_statistics *stats;
1294         struct task_struct *p = NULL;
1295
1296         if (!schedstat_enabled())
1297                 return;
1298
1299         if (rt_entity_is_task(rt_se))
1300                 p = rt_task_of(rt_se);
1301
1302         stats = __schedstats_from_rt_se(rt_se);
1303         if (!stats)
1304                 return;
1305
1306         __update_stats_enqueue_sleeper(rq_of_rt_rq(rt_rq), p, stats);
1307 }
1308
1309 static inline void
1310 update_stats_enqueue_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se,
1311                         int flags)
1312 {
1313         if (!schedstat_enabled())
1314                 return;
1315
1316         if (flags & ENQUEUE_WAKEUP)
1317                 update_stats_enqueue_sleeper_rt(rt_rq, rt_se);
1318 }
1319
1320 static inline void
1321 update_stats_wait_end_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se)
1322 {
1323         struct sched_statistics *stats;
1324         struct task_struct *p = NULL;
1325
1326         if (!schedstat_enabled())
1327                 return;
1328
1329         if (rt_entity_is_task(rt_se))
1330                 p = rt_task_of(rt_se);
1331
1332         stats = __schedstats_from_rt_se(rt_se);
1333         if (!stats)
1334                 return;
1335
1336         __update_stats_wait_end(rq_of_rt_rq(rt_rq), p, stats);
1337 }
1338
1339 static inline void
1340 update_stats_dequeue_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se,
1341                         int flags)
1342 {
1343         struct task_struct *p = NULL;
1344
1345         if (!schedstat_enabled())
1346                 return;
1347
1348         if (rt_entity_is_task(rt_se))
1349                 p = rt_task_of(rt_se);
1350
1351         if ((flags & DEQUEUE_SLEEP) && p) {
1352                 unsigned int state;
1353
1354                 state = READ_ONCE(p->__state);
1355                 if (state & TASK_INTERRUPTIBLE)
1356                         __schedstat_set(p->stats.sleep_start,
1357                                         rq_clock(rq_of_rt_rq(rt_rq)));
1358
1359                 if (state & TASK_UNINTERRUPTIBLE)
1360                         __schedstat_set(p->stats.block_start,
1361                                         rq_clock(rq_of_rt_rq(rt_rq)));
1362         }
1363 }
1364
1365 static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1366 {
1367         struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1368         struct rt_prio_array *array = &rt_rq->active;
1369         struct rt_rq *group_rq = group_rt_rq(rt_se);
1370         struct list_head *queue = array->queue + rt_se_prio(rt_se);
1371
1372         /*
1373          * Don't enqueue the group if its throttled, or when empty.
1374          * The latter is a consequence of the former when a child group
1375          * get throttled and the current group doesn't have any other
1376          * active members.
1377          */
1378         if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running)) {
1379                 if (rt_se->on_list)
1380                         __delist_rt_entity(rt_se, array);
1381                 return;
1382         }
1383
1384         if (move_entity(flags)) {
1385                 WARN_ON_ONCE(rt_se->on_list);
1386                 if (flags & ENQUEUE_HEAD)
1387                         list_add(&rt_se->run_list, queue);
1388                 else
1389                         list_add_tail(&rt_se->run_list, queue);
1390
1391                 __set_bit(rt_se_prio(rt_se), array->bitmap);
1392                 rt_se->on_list = 1;
1393         }
1394         rt_se->on_rq = 1;
1395
1396         inc_rt_tasks(rt_se, rt_rq);
1397 }
1398
1399 static void __dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1400 {
1401         struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1402         struct rt_prio_array *array = &rt_rq->active;
1403
1404         if (move_entity(flags)) {
1405                 WARN_ON_ONCE(!rt_se->on_list);
1406                 __delist_rt_entity(rt_se, array);
1407         }
1408         rt_se->on_rq = 0;
1409
1410         dec_rt_tasks(rt_se, rt_rq);
1411 }
1412
1413 /*
1414  * Because the prio of an upper entry depends on the lower
1415  * entries, we must remove entries top - down.
1416  */
1417 static void dequeue_rt_stack(struct sched_rt_entity *rt_se, unsigned int flags)
1418 {
1419         struct sched_rt_entity *back = NULL;
1420         unsigned int rt_nr_running;
1421
1422         for_each_sched_rt_entity(rt_se) {
1423                 rt_se->back = back;
1424                 back = rt_se;
1425         }
1426
1427         rt_nr_running = rt_rq_of_se(back)->rt_nr_running;
1428
1429         for (rt_se = back; rt_se; rt_se = rt_se->back) {
1430                 if (on_rt_rq(rt_se))
1431                         __dequeue_rt_entity(rt_se, flags);
1432         }
1433
1434         dequeue_top_rt_rq(rt_rq_of_se(back), rt_nr_running);
1435 }
1436
1437 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1438 {
1439         struct rq *rq = rq_of_rt_se(rt_se);
1440
1441         update_stats_enqueue_rt(rt_rq_of_se(rt_se), rt_se, flags);
1442
1443         dequeue_rt_stack(rt_se, flags);
1444         for_each_sched_rt_entity(rt_se)
1445                 __enqueue_rt_entity(rt_se, flags);
1446         enqueue_top_rt_rq(&rq->rt);
1447 }
1448
1449 static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1450 {
1451         struct rq *rq = rq_of_rt_se(rt_se);
1452
1453         update_stats_dequeue_rt(rt_rq_of_se(rt_se), rt_se, flags);
1454
1455         dequeue_rt_stack(rt_se, flags);
1456
1457         for_each_sched_rt_entity(rt_se) {
1458                 struct rt_rq *rt_rq = group_rt_rq(rt_se);
1459
1460                 if (rt_rq && rt_rq->rt_nr_running)
1461                         __enqueue_rt_entity(rt_se, flags);
1462         }
1463         enqueue_top_rt_rq(&rq->rt);
1464 }
1465
1466 /*
1467  * Adding/removing a task to/from a priority array:
1468  */
1469 static void
1470 enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1471 {
1472         struct sched_rt_entity *rt_se = &p->rt;
1473
1474         if (flags & ENQUEUE_WAKEUP)
1475                 rt_se->timeout = 0;
1476
1477         check_schedstat_required();
1478         update_stats_wait_start_rt(rt_rq_of_se(rt_se), rt_se);
1479
1480         enqueue_rt_entity(rt_se, flags);
1481
1482         if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
1483                 enqueue_pushable_task(rq, p);
1484 }
1485
1486 static bool dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1487 {
1488         struct sched_rt_entity *rt_se = &p->rt;
1489
1490         update_curr_rt(rq);
1491         dequeue_rt_entity(rt_se, flags);
1492
1493         dequeue_pushable_task(rq, p);
1494
1495         return true;
1496 }
1497
1498 /*
1499  * Put task to the head or the end of the run list without the overhead of
1500  * dequeue followed by enqueue.
1501  */
1502 static void
1503 requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
1504 {
1505         if (on_rt_rq(rt_se)) {
1506                 struct rt_prio_array *array = &rt_rq->active;
1507                 struct list_head *queue = array->queue + rt_se_prio(rt_se);
1508
1509                 if (head)
1510                         list_move(&rt_se->run_list, queue);
1511                 else
1512                         list_move_tail(&rt_se->run_list, queue);
1513         }
1514 }
1515
1516 static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
1517 {
1518         struct sched_rt_entity *rt_se = &p->rt;
1519         struct rt_rq *rt_rq;
1520
1521         for_each_sched_rt_entity(rt_se) {
1522                 rt_rq = rt_rq_of_se(rt_se);
1523                 requeue_rt_entity(rt_rq, rt_se, head);
1524         }
1525 }
1526
1527 static void yield_task_rt(struct rq *rq)
1528 {
1529         requeue_task_rt(rq, rq->curr, 0);
1530 }
1531
1532 #ifdef CONFIG_SMP
1533 static int find_lowest_rq(struct task_struct *task);
1534
1535 static int
1536 select_task_rq_rt(struct task_struct *p, int cpu, int flags)
1537 {
1538         struct task_struct *curr, *donor;
1539         struct rq *rq;
1540         bool test;
1541
1542         /* For anything but wake ups, just return the task_cpu */
1543         if (!(flags & (WF_TTWU | WF_FORK)))
1544                 goto out;
1545
1546         rq = cpu_rq(cpu);
1547
1548         rcu_read_lock();
1549         curr = READ_ONCE(rq->curr); /* unlocked access */
1550         donor = READ_ONCE(rq->donor);
1551
1552         /*
1553          * If the current task on @p's runqueue is an RT task, then
1554          * try to see if we can wake this RT task up on another
1555          * runqueue. Otherwise simply start this RT task
1556          * on its current runqueue.
1557          *
1558          * We want to avoid overloading runqueues. If the woken
1559          * task is a higher priority, then it will stay on this CPU
1560          * and the lower prio task should be moved to another CPU.
1561          * Even though this will probably make the lower prio task
1562          * lose its cache, we do not want to bounce a higher task
1563          * around just because it gave up its CPU, perhaps for a
1564          * lock?
1565          *
1566          * For equal prio tasks, we just let the scheduler sort it out.
1567          *
1568          * Otherwise, just let it ride on the affine RQ and the
1569          * post-schedule router will push the preempted task away
1570          *
1571          * This test is optimistic, if we get it wrong the load-balancer
1572          * will have to sort it out.
1573          *
1574          * We take into account the capacity of the CPU to ensure it fits the
1575          * requirement of the task - which is only important on heterogeneous
1576          * systems like big.LITTLE.
1577          */
1578         test = curr &&
1579                unlikely(rt_task(donor)) &&
1580                (curr->nr_cpus_allowed < 2 || donor->prio <= p->prio);
1581
1582         if (test || !rt_task_fits_capacity(p, cpu)) {
1583                 int target = find_lowest_rq(p);
1584
1585                 /*
1586                  * Bail out if we were forcing a migration to find a better
1587                  * fitting CPU but our search failed.
1588                  */
1589                 if (!test && target != -1 && !rt_task_fits_capacity(p, target))
1590                         goto out_unlock;
1591
1592                 /*
1593                  * Don't bother moving it if the destination CPU is
1594                  * not running a lower priority task.
1595                  */
1596                 if (target != -1 &&
1597                     p->prio < cpu_rq(target)->rt.highest_prio.curr)
1598                         cpu = target;
1599         }
1600
1601 out_unlock:
1602         rcu_read_unlock();
1603
1604 out:
1605         return cpu;
1606 }
1607
1608 static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
1609 {
1610         if (rq->curr->nr_cpus_allowed == 1 ||
1611             !cpupri_find(&rq->rd->cpupri, rq->donor, NULL))
1612                 return;
1613
1614         /*
1615          * p is migratable, so let's not schedule it and
1616          * see if it is pushed or pulled somewhere else.
1617          */
1618         if (p->nr_cpus_allowed != 1 &&
1619             cpupri_find(&rq->rd->cpupri, p, NULL))
1620                 return;
1621
1622         /*
1623          * There appear to be other CPUs that can accept
1624          * the current task but none can run 'p', so lets reschedule
1625          * to try and push the current task away:
1626          */
1627         requeue_task_rt(rq, p, 1);
1628         resched_curr(rq);
1629 }
1630
1631 static int balance_rt(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
1632 {
1633         if (!on_rt_rq(&p->rt) && need_pull_rt_task(rq, p)) {
1634                 /*
1635                  * This is OK, because current is on_cpu, which avoids it being
1636                  * picked for load-balance and preemption/IRQs are still
1637                  * disabled avoiding further scheduler activity on it and we've
1638                  * not yet started the picking loop.
1639                  */
1640                 rq_unpin_lock(rq, rf);
1641                 pull_rt_task(rq);
1642                 rq_repin_lock(rq, rf);
1643         }
1644
1645         return sched_stop_runnable(rq) || sched_dl_runnable(rq) || sched_rt_runnable(rq);
1646 }
1647 #endif /* CONFIG_SMP */
1648
1649 /*
1650  * Preempt the current task with a newly woken task if needed:
1651  */
1652 static void wakeup_preempt_rt(struct rq *rq, struct task_struct *p, int flags)
1653 {
1654         struct task_struct *donor = rq->donor;
1655
1656         if (p->prio < donor->prio) {
1657                 resched_curr(rq);
1658                 return;
1659         }
1660
1661 #ifdef CONFIG_SMP
1662         /*
1663          * If:
1664          *
1665          * - the newly woken task is of equal priority to the current task
1666          * - the newly woken task is non-migratable while current is migratable
1667          * - current will be preempted on the next reschedule
1668          *
1669          * we should check to see if current can readily move to a different
1670          * cpu.  If so, we will reschedule to allow the push logic to try
1671          * to move current somewhere else, making room for our non-migratable
1672          * task.
1673          */
1674         if (p->prio == donor->prio && !test_tsk_need_resched(rq->curr))
1675                 check_preempt_equal_prio(rq, p);
1676 #endif
1677 }
1678
1679 static inline void set_next_task_rt(struct rq *rq, struct task_struct *p, bool first)
1680 {
1681         struct sched_rt_entity *rt_se = &p->rt;
1682         struct rt_rq *rt_rq = &rq->rt;
1683
1684         p->se.exec_start = rq_clock_task(rq);
1685         if (on_rt_rq(&p->rt))
1686                 update_stats_wait_end_rt(rt_rq, rt_se);
1687
1688         /* The running task is never eligible for pushing */
1689         dequeue_pushable_task(rq, p);
1690
1691         if (!first)
1692                 return;
1693
1694         /*
1695          * If prev task was rt, put_prev_task() has already updated the
1696          * utilization. We only care of the case where we start to schedule a
1697          * rt task
1698          */
1699         if (rq->donor->sched_class != &rt_sched_class)
1700                 update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 0);
1701
1702         rt_queue_push_tasks(rq);
1703 }
1704
1705 static struct sched_rt_entity *pick_next_rt_entity(struct rt_rq *rt_rq)
1706 {
1707         struct rt_prio_array *array = &rt_rq->active;
1708         struct sched_rt_entity *next = NULL;
1709         struct list_head *queue;
1710         int idx;
1711
1712         idx = sched_find_first_bit(array->bitmap);
1713         BUG_ON(idx >= MAX_RT_PRIO);
1714
1715         queue = array->queue + idx;
1716         if (SCHED_WARN_ON(list_empty(queue)))
1717                 return NULL;
1718         next = list_entry(queue->next, struct sched_rt_entity, run_list);
1719
1720         return next;
1721 }
1722
1723 static struct task_struct *_pick_next_task_rt(struct rq *rq)
1724 {
1725         struct sched_rt_entity *rt_se;
1726         struct rt_rq *rt_rq  = &rq->rt;
1727
1728         do {
1729                 rt_se = pick_next_rt_entity(rt_rq);
1730                 if (unlikely(!rt_se))
1731                         return NULL;
1732                 rt_rq = group_rt_rq(rt_se);
1733         } while (rt_rq);
1734
1735         return rt_task_of(rt_se);
1736 }
1737
1738 static struct task_struct *pick_task_rt(struct rq *rq)
1739 {
1740         struct task_struct *p;
1741
1742         if (!sched_rt_runnable(rq))
1743                 return NULL;
1744
1745         p = _pick_next_task_rt(rq);
1746
1747         return p;
1748 }
1749
1750 static void put_prev_task_rt(struct rq *rq, struct task_struct *p, struct task_struct *next)
1751 {
1752         struct sched_rt_entity *rt_se = &p->rt;
1753         struct rt_rq *rt_rq = &rq->rt;
1754
1755         if (on_rt_rq(&p->rt))
1756                 update_stats_wait_start_rt(rt_rq, rt_se);
1757
1758         update_curr_rt(rq);
1759
1760         update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 1);
1761
1762         /*
1763          * The previous task needs to be made eligible for pushing
1764          * if it is still active
1765          */
1766         if (on_rt_rq(&p->rt) && p->nr_cpus_allowed > 1)
1767                 enqueue_pushable_task(rq, p);
1768 }
1769
1770 #ifdef CONFIG_SMP
1771
1772 /* Only try algorithms three times */
1773 #define RT_MAX_TRIES 3
1774
1775 /*
1776  * Return the highest pushable rq's task, which is suitable to be executed
1777  * on the CPU, NULL otherwise
1778  */
1779 static struct task_struct *pick_highest_pushable_task(struct rq *rq, int cpu)
1780 {
1781         struct plist_head *head = &rq->rt.pushable_tasks;
1782         struct task_struct *p;
1783
1784         if (!has_pushable_tasks(rq))
1785                 return NULL;
1786
1787         plist_for_each_entry(p, head, pushable_tasks) {
1788                 if (task_is_pushable(rq, p, cpu))
1789                         return p;
1790         }
1791
1792         return NULL;
1793 }
1794
1795 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
1796
1797 static int find_lowest_rq(struct task_struct *task)
1798 {
1799         struct sched_domain *sd;
1800         struct cpumask *lowest_mask = this_cpu_cpumask_var_ptr(local_cpu_mask);
1801         int this_cpu = smp_processor_id();
1802         int cpu      = task_cpu(task);
1803         int ret;
1804
1805         /* Make sure the mask is initialized first */
1806         if (unlikely(!lowest_mask))
1807                 return -1;
1808
1809         if (task->nr_cpus_allowed == 1)
1810                 return -1; /* No other targets possible */
1811
1812         /*
1813          * If we're on asym system ensure we consider the different capacities
1814          * of the CPUs when searching for the lowest_mask.
1815          */
1816         if (sched_asym_cpucap_active()) {
1817
1818                 ret = cpupri_find_fitness(&task_rq(task)->rd->cpupri,
1819                                           task, lowest_mask,
1820                                           rt_task_fits_capacity);
1821         } else {
1822
1823                 ret = cpupri_find(&task_rq(task)->rd->cpupri,
1824                                   task, lowest_mask);
1825         }
1826
1827         if (!ret)
1828                 return -1; /* No targets found */
1829
1830         /*
1831          * At this point we have built a mask of CPUs representing the
1832          * lowest priority tasks in the system.  Now we want to elect
1833          * the best one based on our affinity and topology.
1834          *
1835          * We prioritize the last CPU that the task executed on since
1836          * it is most likely cache-hot in that location.
1837          */
1838         if (cpumask_test_cpu(cpu, lowest_mask))
1839                 return cpu;
1840
1841         /*
1842          * Otherwise, we consult the sched_domains span maps to figure
1843          * out which CPU is logically closest to our hot cache data.
1844          */
1845         if (!cpumask_test_cpu(this_cpu, lowest_mask))
1846                 this_cpu = -1; /* Skip this_cpu opt if not among lowest */
1847
1848         rcu_read_lock();
1849         for_each_domain(cpu, sd) {
1850                 if (sd->flags & SD_WAKE_AFFINE) {
1851                         int best_cpu;
1852
1853                         /*
1854                          * "this_cpu" is cheaper to preempt than a
1855                          * remote processor.
1856                          */
1857                         if (this_cpu != -1 &&
1858                             cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1859                                 rcu_read_unlock();
1860                                 return this_cpu;
1861                         }
1862
1863                         best_cpu = cpumask_any_and_distribute(lowest_mask,
1864                                                               sched_domain_span(sd));
1865                         if (best_cpu < nr_cpu_ids) {
1866                                 rcu_read_unlock();
1867                                 return best_cpu;
1868                         }
1869                 }
1870         }
1871         rcu_read_unlock();
1872
1873         /*
1874          * And finally, if there were no matches within the domains
1875          * just give the caller *something* to work with from the compatible
1876          * locations.
1877          */
1878         if (this_cpu != -1)
1879                 return this_cpu;
1880
1881         cpu = cpumask_any_distribute(lowest_mask);
1882         if (cpu < nr_cpu_ids)
1883                 return cpu;
1884
1885         return -1;
1886 }
1887
1888 /* Will lock the rq it finds */
1889 static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
1890 {
1891         struct rq *lowest_rq = NULL;
1892         int tries;
1893         int cpu;
1894
1895         for (tries = 0; tries < RT_MAX_TRIES; tries++) {
1896                 cpu = find_lowest_rq(task);
1897
1898                 if ((cpu == -1) || (cpu == rq->cpu))
1899                         break;
1900
1901                 lowest_rq = cpu_rq(cpu);
1902
1903                 if (lowest_rq->rt.highest_prio.curr <= task->prio) {
1904                         /*
1905                          * Target rq has tasks of equal or higher priority,
1906                          * retrying does not release any lock and is unlikely
1907                          * to yield a different result.
1908                          */
1909                         lowest_rq = NULL;
1910                         break;
1911                 }
1912
1913                 /* if the prio of this runqueue changed, try again */
1914                 if (double_lock_balance(rq, lowest_rq)) {
1915                         /*
1916                          * We had to unlock the run queue. In
1917                          * the mean time, task could have
1918                          * migrated already or had its affinity changed.
1919                          * Also make sure that it wasn't scheduled on its rq.
1920                          * It is possible the task was scheduled, set
1921                          * "migrate_disabled" and then got preempted, so we must
1922                          * check the task migration disable flag here too.
1923                          */
1924                         if (unlikely(task_rq(task) != rq ||
1925                                      !cpumask_test_cpu(lowest_rq->cpu, &task->cpus_mask) ||
1926                                      task_on_cpu(rq, task) ||
1927                                      !rt_task(task) ||
1928                                      is_migration_disabled(task) ||
1929                                      !task_on_rq_queued(task))) {
1930
1931                                 double_unlock_balance(rq, lowest_rq);
1932                                 lowest_rq = NULL;
1933                                 break;
1934                         }
1935                 }
1936
1937                 /* If this rq is still suitable use it. */
1938                 if (lowest_rq->rt.highest_prio.curr > task->prio)
1939                         break;
1940
1941                 /* try again */
1942                 double_unlock_balance(rq, lowest_rq);
1943                 lowest_rq = NULL;
1944         }
1945
1946         return lowest_rq;
1947 }
1948
1949 static struct task_struct *pick_next_pushable_task(struct rq *rq)
1950 {
1951         struct task_struct *p;
1952
1953         if (!has_pushable_tasks(rq))
1954                 return NULL;
1955
1956         p = plist_first_entry(&rq->rt.pushable_tasks,
1957                               struct task_struct, pushable_tasks);
1958
1959         BUG_ON(rq->cpu != task_cpu(p));
1960         BUG_ON(task_current(rq, p));
1961         BUG_ON(task_current_donor(rq, p));
1962         BUG_ON(p->nr_cpus_allowed <= 1);
1963
1964         BUG_ON(!task_on_rq_queued(p));
1965         BUG_ON(!rt_task(p));
1966
1967         return p;
1968 }
1969
1970 /*
1971  * If the current CPU has more than one RT task, see if the non
1972  * running task can migrate over to a CPU that is running a task
1973  * of lesser priority.
1974  */
1975 static int push_rt_task(struct rq *rq, bool pull)
1976 {
1977         struct task_struct *next_task;
1978         struct rq *lowest_rq;
1979         int ret = 0;
1980
1981         if (!rq->rt.overloaded)
1982                 return 0;
1983
1984         next_task = pick_next_pushable_task(rq);
1985         if (!next_task)
1986                 return 0;
1987
1988 retry:
1989         /*
1990          * It's possible that the next_task slipped in of
1991          * higher priority than current. If that's the case
1992          * just reschedule current.
1993          */
1994         if (unlikely(next_task->prio < rq->donor->prio)) {
1995                 resched_curr(rq);
1996                 return 0;
1997         }
1998
1999         if (is_migration_disabled(next_task)) {
2000                 struct task_struct *push_task = NULL;
2001                 int cpu;
2002
2003                 if (!pull || rq->push_busy)
2004                         return 0;
2005
2006                 /*
2007                  * Invoking find_lowest_rq() on anything but an RT task doesn't
2008                  * make sense. Per the above priority check, curr has to
2009                  * be of higher priority than next_task, so no need to
2010                  * reschedule when bailing out.
2011                  *
2012                  * Note that the stoppers are masqueraded as SCHED_FIFO
2013                  * (cf. sched_set_stop_task()), so we can't rely on rt_task().
2014                  */
2015                 if (rq->donor->sched_class != &rt_sched_class)
2016                         return 0;
2017
2018                 cpu = find_lowest_rq(rq->curr);
2019                 if (cpu == -1 || cpu == rq->cpu)
2020                         return 0;
2021
2022                 /*
2023                  * Given we found a CPU with lower priority than @next_task,
2024                  * therefore it should be running. However we cannot migrate it
2025                  * to this other CPU, instead attempt to push the current
2026                  * running task on this CPU away.
2027                  */
2028                 push_task = get_push_task(rq);
2029                 if (push_task) {
2030                         preempt_disable();
2031                         raw_spin_rq_unlock(rq);
2032                         stop_one_cpu_nowait(rq->cpu, push_cpu_stop,
2033                                             push_task, &rq->push_work);
2034                         preempt_enable();
2035                         raw_spin_rq_lock(rq);
2036                 }
2037
2038                 return 0;
2039         }
2040
2041         if (WARN_ON(next_task == rq->curr))
2042                 return 0;
2043
2044         /* We might release rq lock */
2045         get_task_struct(next_task);
2046
2047         /* find_lock_lowest_rq locks the rq if found */
2048         lowest_rq = find_lock_lowest_rq(next_task, rq);
2049         if (!lowest_rq) {
2050                 struct task_struct *task;
2051                 /*
2052                  * find_lock_lowest_rq releases rq->lock
2053                  * so it is possible that next_task has migrated.
2054                  *
2055                  * We need to make sure that the task is still on the same
2056                  * run-queue and is also still the next task eligible for
2057                  * pushing.
2058                  */
2059                 task = pick_next_pushable_task(rq);
2060                 if (task == next_task) {
2061                         /*
2062                          * The task hasn't migrated, and is still the next
2063                          * eligible task, but we failed to find a run-queue
2064                          * to push it to.  Do not retry in this case, since
2065                          * other CPUs will pull from us when ready.
2066                          */
2067                         goto out;
2068                 }
2069
2070                 if (!task)
2071                         /* No more tasks, just exit */
2072                         goto out;
2073
2074                 /*
2075                  * Something has shifted, try again.
2076                  */
2077                 put_task_struct(next_task);
2078                 next_task = task;
2079                 goto retry;
2080         }
2081
2082         move_queued_task_locked(rq, lowest_rq, next_task);
2083         resched_curr(lowest_rq);
2084         ret = 1;
2085
2086         double_unlock_balance(rq, lowest_rq);
2087 out:
2088         put_task_struct(next_task);
2089
2090         return ret;
2091 }
2092
2093 static void push_rt_tasks(struct rq *rq)
2094 {
2095         /* push_rt_task will return true if it moved an RT */
2096         while (push_rt_task(rq, false))
2097                 ;
2098 }
2099
2100 #ifdef HAVE_RT_PUSH_IPI
2101
2102 /*
2103  * When a high priority task schedules out from a CPU and a lower priority
2104  * task is scheduled in, a check is made to see if there's any RT tasks
2105  * on other CPUs that are waiting to run because a higher priority RT task
2106  * is currently running on its CPU. In this case, the CPU with multiple RT
2107  * tasks queued on it (overloaded) needs to be notified that a CPU has opened
2108  * up that may be able to run one of its non-running queued RT tasks.
2109  *
2110  * All CPUs with overloaded RT tasks need to be notified as there is currently
2111  * no way to know which of these CPUs have the highest priority task waiting
2112  * to run. Instead of trying to take a spinlock on each of these CPUs,
2113  * which has shown to cause large latency when done on machines with many
2114  * CPUs, sending an IPI to the CPUs to have them push off the overloaded
2115  * RT tasks waiting to run.
2116  *
2117  * Just sending an IPI to each of the CPUs is also an issue, as on large
2118  * count CPU machines, this can cause an IPI storm on a CPU, especially
2119  * if its the only CPU with multiple RT tasks queued, and a large number
2120  * of CPUs scheduling a lower priority task at the same time.
2121  *
2122  * Each root domain has its own IRQ work function that can iterate over
2123  * all CPUs with RT overloaded tasks. Since all CPUs with overloaded RT
2124  * task must be checked if there's one or many CPUs that are lowering
2125  * their priority, there's a single IRQ work iterator that will try to
2126  * push off RT tasks that are waiting to run.
2127  *
2128  * When a CPU schedules a lower priority task, it will kick off the
2129  * IRQ work iterator that will jump to each CPU with overloaded RT tasks.
2130  * As it only takes the first CPU that schedules a lower priority task
2131  * to start the process, the rto_start variable is incremented and if
2132  * the atomic result is one, then that CPU will try to take the rto_lock.
2133  * This prevents high contention on the lock as the process handles all
2134  * CPUs scheduling lower priority tasks.
2135  *
2136  * All CPUs that are scheduling a lower priority task will increment the
2137  * rt_loop_next variable. This will make sure that the IRQ work iterator
2138  * checks all RT overloaded CPUs whenever a CPU schedules a new lower
2139  * priority task, even if the iterator is in the middle of a scan. Incrementing
2140  * the rt_loop_next will cause the iterator to perform another scan.
2141  *
2142  */
2143 static int rto_next_cpu(struct root_domain *rd)
2144 {
2145         int next;
2146         int cpu;
2147
2148         /*
2149          * When starting the IPI RT pushing, the rto_cpu is set to -1,
2150          * rt_next_cpu() will simply return the first CPU found in
2151          * the rto_mask.
2152          *
2153          * If rto_next_cpu() is called with rto_cpu is a valid CPU, it
2154          * will return the next CPU found in the rto_mask.
2155          *
2156          * If there are no more CPUs left in the rto_mask, then a check is made
2157          * against rto_loop and rto_loop_next. rto_loop is only updated with
2158          * the rto_lock held, but any CPU may increment the rto_loop_next
2159          * without any locking.
2160          */
2161         for (;;) {
2162
2163                 /* When rto_cpu is -1 this acts like cpumask_first() */
2164                 cpu = cpumask_next(rd->rto_cpu, rd->rto_mask);
2165
2166                 rd->rto_cpu = cpu;
2167
2168                 if (cpu < nr_cpu_ids)
2169                         return cpu;
2170
2171                 rd->rto_cpu = -1;
2172
2173                 /*
2174                  * ACQUIRE ensures we see the @rto_mask changes
2175                  * made prior to the @next value observed.
2176                  *
2177                  * Matches WMB in rt_set_overload().
2178                  */
2179                 next = atomic_read_acquire(&rd->rto_loop_next);
2180
2181                 if (rd->rto_loop == next)
2182                         break;
2183
2184                 rd->rto_loop = next;
2185         }
2186
2187         return -1;
2188 }
2189
2190 static inline bool rto_start_trylock(atomic_t *v)
2191 {
2192         return !atomic_cmpxchg_acquire(v, 0, 1);
2193 }
2194
2195 static inline void rto_start_unlock(atomic_t *v)
2196 {
2197         atomic_set_release(v, 0);
2198 }
2199
2200 static void tell_cpu_to_push(struct rq *rq)
2201 {
2202         int cpu = -1;
2203
2204         /* Keep the loop going if the IPI is currently active */
2205         atomic_inc(&rq->rd->rto_loop_next);
2206
2207         /* Only one CPU can initiate a loop at a time */
2208         if (!rto_start_trylock(&rq->rd->rto_loop_start))
2209                 return;
2210
2211         raw_spin_lock(&rq->rd->rto_lock);
2212
2213         /*
2214          * The rto_cpu is updated under the lock, if it has a valid CPU
2215          * then the IPI is still running and will continue due to the
2216          * update to loop_next, and nothing needs to be done here.
2217          * Otherwise it is finishing up and an IPI needs to be sent.
2218          */
2219         if (rq->rd->rto_cpu < 0)
2220                 cpu = rto_next_cpu(rq->rd);
2221
2222         raw_spin_unlock(&rq->rd->rto_lock);
2223
2224         rto_start_unlock(&rq->rd->rto_loop_start);
2225
2226         if (cpu >= 0) {
2227                 /* Make sure the rd does not get freed while pushing */
2228                 sched_get_rd(rq->rd);
2229                 irq_work_queue_on(&rq->rd->rto_push_work, cpu);
2230         }
2231 }
2232
2233 /* Called from hardirq context */
2234 void rto_push_irq_work_func(struct irq_work *work)
2235 {
2236         struct root_domain *rd =
2237                 container_of(work, struct root_domain, rto_push_work);
2238         struct rq *rq;
2239         int cpu;
2240
2241         rq = this_rq();
2242
2243         /*
2244          * We do not need to grab the lock to check for has_pushable_tasks.
2245          * When it gets updated, a check is made if a push is possible.
2246          */
2247         if (has_pushable_tasks(rq)) {
2248                 raw_spin_rq_lock(rq);
2249                 while (push_rt_task(rq, true))
2250                         ;
2251                 raw_spin_rq_unlock(rq);
2252         }
2253
2254         raw_spin_lock(&rd->rto_lock);
2255
2256         /* Pass the IPI to the next rt overloaded queue */
2257         cpu = rto_next_cpu(rd);
2258
2259         raw_spin_unlock(&rd->rto_lock);
2260
2261         if (cpu < 0) {
2262                 sched_put_rd(rd);
2263                 return;
2264         }
2265
2266         /* Try the next RT overloaded CPU */
2267         irq_work_queue_on(&rd->rto_push_work, cpu);
2268 }
2269 #endif /* HAVE_RT_PUSH_IPI */
2270
2271 static void pull_rt_task(struct rq *this_rq)
2272 {
2273         int this_cpu = this_rq->cpu, cpu;
2274         bool resched = false;
2275         struct task_struct *p, *push_task;
2276         struct rq *src_rq;
2277         int rt_overload_count = rt_overloaded(this_rq);
2278
2279         if (likely(!rt_overload_count))
2280                 return;
2281
2282         /*
2283          * Match the barrier from rt_set_overloaded; this guarantees that if we
2284          * see overloaded we must also see the rto_mask bit.
2285          */
2286         smp_rmb();
2287
2288         /* If we are the only overloaded CPU do nothing */
2289         if (rt_overload_count == 1 &&
2290             cpumask_test_cpu(this_rq->cpu, this_rq->rd->rto_mask))
2291                 return;
2292
2293 #ifdef HAVE_RT_PUSH_IPI
2294         if (sched_feat(RT_PUSH_IPI)) {
2295                 tell_cpu_to_push(this_rq);
2296                 return;
2297         }
2298 #endif
2299
2300         for_each_cpu(cpu, this_rq->rd->rto_mask) {
2301                 if (this_cpu == cpu)
2302                         continue;
2303
2304                 src_rq = cpu_rq(cpu);
2305
2306                 /*
2307                  * Don't bother taking the src_rq->lock if the next highest
2308                  * task is known to be lower-priority than our current task.
2309                  * This may look racy, but if this value is about to go
2310                  * logically higher, the src_rq will push this task away.
2311                  * And if its going logically lower, we do not care
2312                  */
2313                 if (src_rq->rt.highest_prio.next >=
2314                     this_rq->rt.highest_prio.curr)
2315                         continue;
2316
2317                 /*
2318                  * We can potentially drop this_rq's lock in
2319                  * double_lock_balance, and another CPU could
2320                  * alter this_rq
2321                  */
2322                 push_task = NULL;
2323                 double_lock_balance(this_rq, src_rq);
2324
2325                 /*
2326                  * We can pull only a task, which is pushable
2327                  * on its rq, and no others.
2328                  */
2329                 p = pick_highest_pushable_task(src_rq, this_cpu);
2330
2331                 /*
2332                  * Do we have an RT task that preempts
2333                  * the to-be-scheduled task?
2334                  */
2335                 if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
2336                         WARN_ON(p == src_rq->curr);
2337                         WARN_ON(!task_on_rq_queued(p));
2338
2339                         /*
2340                          * There's a chance that p is higher in priority
2341                          * than what's currently running on its CPU.
2342                          * This is just that p is waking up and hasn't
2343                          * had a chance to schedule. We only pull
2344                          * p if it is lower in priority than the
2345                          * current task on the run queue
2346                          */
2347                         if (p->prio < src_rq->donor->prio)
2348                                 goto skip;
2349
2350                         if (is_migration_disabled(p)) {
2351                                 push_task = get_push_task(src_rq);
2352                         } else {
2353                                 move_queued_task_locked(src_rq, this_rq, p);
2354                                 resched = true;
2355                         }
2356                         /*
2357                          * We continue with the search, just in
2358                          * case there's an even higher prio task
2359                          * in another runqueue. (low likelihood
2360                          * but possible)
2361                          */
2362                 }
2363 skip:
2364                 double_unlock_balance(this_rq, src_rq);
2365
2366                 if (push_task) {
2367                         preempt_disable();
2368                         raw_spin_rq_unlock(this_rq);
2369                         stop_one_cpu_nowait(src_rq->cpu, push_cpu_stop,
2370                                             push_task, &src_rq->push_work);
2371                         preempt_enable();
2372                         raw_spin_rq_lock(this_rq);
2373                 }
2374         }
2375
2376         if (resched)
2377                 resched_curr(this_rq);
2378 }
2379
2380 /*
2381  * If we are not running and we are not going to reschedule soon, we should
2382  * try to push tasks away now
2383  */
2384 static void task_woken_rt(struct rq *rq, struct task_struct *p)
2385 {
2386         bool need_to_push = !task_on_cpu(rq, p) &&
2387                             !test_tsk_need_resched(rq->curr) &&
2388                             p->nr_cpus_allowed > 1 &&
2389                             (dl_task(rq->donor) || rt_task(rq->donor)) &&
2390                             (rq->curr->nr_cpus_allowed < 2 ||
2391                              rq->donor->prio <= p->prio);
2392
2393         if (need_to_push)
2394                 push_rt_tasks(rq);
2395 }
2396
2397 /* Assumes rq->lock is held */
2398 static void rq_online_rt(struct rq *rq)
2399 {
2400         if (rq->rt.overloaded)
2401                 rt_set_overload(rq);
2402
2403         __enable_runtime(rq);
2404
2405         cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
2406 }
2407
2408 /* Assumes rq->lock is held */
2409 static void rq_offline_rt(struct rq *rq)
2410 {
2411         if (rq->rt.overloaded)
2412                 rt_clear_overload(rq);
2413
2414         __disable_runtime(rq);
2415
2416         cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
2417 }
2418
2419 /*
2420  * When switch from the rt queue, we bring ourselves to a position
2421  * that we might want to pull RT tasks from other runqueues.
2422  */
2423 static void switched_from_rt(struct rq *rq, struct task_struct *p)
2424 {
2425         /*
2426          * If there are other RT tasks then we will reschedule
2427          * and the scheduling of the other RT tasks will handle
2428          * the balancing. But if we are the last RT task
2429          * we may need to handle the pulling of RT tasks
2430          * now.
2431          */
2432         if (!task_on_rq_queued(p) || rq->rt.rt_nr_running)
2433                 return;
2434
2435         rt_queue_pull_task(rq);
2436 }
2437
2438 void __init init_sched_rt_class(void)
2439 {
2440         unsigned int i;
2441
2442         for_each_possible_cpu(i) {
2443                 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
2444                                         GFP_KERNEL, cpu_to_node(i));
2445         }
2446 }
2447 #endif /* CONFIG_SMP */
2448
2449 /*
2450  * When switching a task to RT, we may overload the runqueue
2451  * with RT tasks. In this case we try to push them off to
2452  * other runqueues.
2453  */
2454 static void switched_to_rt(struct rq *rq, struct task_struct *p)
2455 {
2456         /*
2457          * If we are running, update the avg_rt tracking, as the running time
2458          * will now on be accounted into the latter.
2459          */
2460         if (task_current(rq, p)) {
2461                 update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 0);
2462                 return;
2463         }
2464
2465         /*
2466          * If we are not running we may need to preempt the current
2467          * running task. If that current running task is also an RT task
2468          * then see if we can move to another run queue.
2469          */
2470         if (task_on_rq_queued(p)) {
2471 #ifdef CONFIG_SMP
2472                 if (p->nr_cpus_allowed > 1 && rq->rt.overloaded)
2473                         rt_queue_push_tasks(rq);
2474 #endif /* CONFIG_SMP */
2475                 if (p->prio < rq->donor->prio && cpu_online(cpu_of(rq)))
2476                         resched_curr(rq);
2477         }
2478 }
2479
2480 /*
2481  * Priority of the task has changed. This may cause
2482  * us to initiate a push or pull.
2483  */
2484 static void
2485 prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
2486 {
2487         if (!task_on_rq_queued(p))
2488                 return;
2489
2490         if (task_current_donor(rq, p)) {
2491 #ifdef CONFIG_SMP
2492                 /*
2493                  * If our priority decreases while running, we
2494                  * may need to pull tasks to this runqueue.
2495                  */
2496                 if (oldprio < p->prio)
2497                         rt_queue_pull_task(rq);
2498
2499                 /*
2500                  * If there's a higher priority task waiting to run
2501                  * then reschedule.
2502                  */
2503                 if (p->prio > rq->rt.highest_prio.curr)
2504                         resched_curr(rq);
2505 #else
2506                 /* For UP simply resched on drop of prio */
2507                 if (oldprio < p->prio)
2508                         resched_curr(rq);
2509 #endif /* CONFIG_SMP */
2510         } else {
2511                 /*
2512                  * This task is not running, but if it is
2513                  * greater than the current running task
2514                  * then reschedule.
2515                  */
2516                 if (p->prio < rq->donor->prio)
2517                         resched_curr(rq);
2518         }
2519 }
2520
2521 #ifdef CONFIG_POSIX_TIMERS
2522 static void watchdog(struct rq *rq, struct task_struct *p)
2523 {
2524         unsigned long soft, hard;
2525
2526         /* max may change after cur was read, this will be fixed next tick */
2527         soft = task_rlimit(p, RLIMIT_RTTIME);
2528         hard = task_rlimit_max(p, RLIMIT_RTTIME);
2529
2530         if (soft != RLIM_INFINITY) {
2531                 unsigned long next;
2532
2533                 if (p->rt.watchdog_stamp != jiffies) {
2534                         p->rt.timeout++;
2535                         p->rt.watchdog_stamp = jiffies;
2536                 }
2537
2538                 next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
2539                 if (p->rt.timeout > next) {
2540                         posix_cputimers_rt_watchdog(&p->posix_cputimers,
2541                                                     p->se.sum_exec_runtime);
2542                 }
2543         }
2544 }
2545 #else
2546 static inline void watchdog(struct rq *rq, struct task_struct *p) { }
2547 #endif
2548
2549 /*
2550  * scheduler tick hitting a task of our scheduling class.
2551  *
2552  * NOTE: This function can be called remotely by the tick offload that
2553  * goes along full dynticks. Therefore no local assumption can be made
2554  * and everything must be accessed through the @rq and @curr passed in
2555  * parameters.
2556  */
2557 static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
2558 {
2559         struct sched_rt_entity *rt_se = &p->rt;
2560
2561         update_curr_rt(rq);
2562         update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 1);
2563
2564         watchdog(rq, p);
2565
2566         /*
2567          * RR tasks need a special form of time-slice management.
2568          * FIFO tasks have no timeslices.
2569          */
2570         if (p->policy != SCHED_RR)
2571                 return;
2572
2573         if (--p->rt.time_slice)
2574                 return;
2575
2576         p->rt.time_slice = sched_rr_timeslice;
2577
2578         /*
2579          * Requeue to the end of queue if we (and all of our ancestors) are not
2580          * the only element on the queue
2581          */
2582         for_each_sched_rt_entity(rt_se) {
2583                 if (rt_se->run_list.prev != rt_se->run_list.next) {
2584                         requeue_task_rt(rq, p, 0);
2585                         resched_curr(rq);
2586                         return;
2587                 }
2588         }
2589 }
2590
2591 static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
2592 {
2593         /*
2594          * Time slice is 0 for SCHED_FIFO tasks
2595          */
2596         if (task->policy == SCHED_RR)
2597                 return sched_rr_timeslice;
2598         else
2599                 return 0;
2600 }
2601
2602 #ifdef CONFIG_SCHED_CORE
2603 static int task_is_throttled_rt(struct task_struct *p, int cpu)
2604 {
2605         struct rt_rq *rt_rq;
2606
2607 #ifdef CONFIG_RT_GROUP_SCHED
2608         rt_rq = task_group(p)->rt_rq[cpu];
2609 #else
2610         rt_rq = &cpu_rq(cpu)->rt;
2611 #endif
2612
2613         return rt_rq_throttled(rt_rq);
2614 }
2615 #endif
2616
2617 DEFINE_SCHED_CLASS(rt) = {
2618
2619         .enqueue_task           = enqueue_task_rt,
2620         .dequeue_task           = dequeue_task_rt,
2621         .yield_task             = yield_task_rt,
2622
2623         .wakeup_preempt         = wakeup_preempt_rt,
2624
2625         .pick_task              = pick_task_rt,
2626         .put_prev_task          = put_prev_task_rt,
2627         .set_next_task          = set_next_task_rt,
2628
2629 #ifdef CONFIG_SMP
2630         .balance                = balance_rt,
2631         .select_task_rq         = select_task_rq_rt,
2632         .set_cpus_allowed       = set_cpus_allowed_common,
2633         .rq_online              = rq_online_rt,
2634         .rq_offline             = rq_offline_rt,
2635         .task_woken             = task_woken_rt,
2636         .switched_from          = switched_from_rt,
2637         .find_lock_rq           = find_lock_lowest_rq,
2638 #endif
2639
2640         .task_tick              = task_tick_rt,
2641
2642         .get_rr_interval        = get_rr_interval_rt,
2643
2644         .prio_changed           = prio_changed_rt,
2645         .switched_to            = switched_to_rt,
2646
2647         .update_curr            = update_curr_rt,
2648
2649 #ifdef CONFIG_SCHED_CORE
2650         .task_is_throttled      = task_is_throttled_rt,
2651 #endif
2652
2653 #ifdef CONFIG_UCLAMP_TASK
2654         .uclamp_enabled         = 1,
2655 #endif
2656 };
2657
2658 #ifdef CONFIG_RT_GROUP_SCHED
2659 /*
2660  * Ensure that the real time constraints are schedulable.
2661  */
2662 static DEFINE_MUTEX(rt_constraints_mutex);
2663
2664 static inline int tg_has_rt_tasks(struct task_group *tg)
2665 {
2666         struct task_struct *task;
2667         struct css_task_iter it;
2668         int ret = 0;
2669
2670         /*
2671          * Autogroups do not have RT tasks; see autogroup_create().
2672          */
2673         if (task_group_is_autogroup(tg))
2674                 return 0;
2675
2676         css_task_iter_start(&tg->css, 0, &it);
2677         while (!ret && (task = css_task_iter_next(&it)))
2678                 ret |= rt_task(task);
2679         css_task_iter_end(&it);
2680
2681         return ret;
2682 }
2683
2684 struct rt_schedulable_data {
2685         struct task_group *tg;
2686         u64 rt_period;
2687         u64 rt_runtime;
2688 };
2689
2690 static int tg_rt_schedulable(struct task_group *tg, void *data)
2691 {
2692         struct rt_schedulable_data *d = data;
2693         struct task_group *child;
2694         unsigned long total, sum = 0;
2695         u64 period, runtime;
2696
2697         period = ktime_to_ns(tg->rt_bandwidth.rt_period);
2698         runtime = tg->rt_bandwidth.rt_runtime;
2699
2700         if (tg == d->tg) {
2701                 period = d->rt_period;
2702                 runtime = d->rt_runtime;
2703         }
2704
2705         /*
2706          * Cannot have more runtime than the period.
2707          */
2708         if (runtime > period && runtime != RUNTIME_INF)
2709                 return -EINVAL;
2710
2711         /*
2712          * Ensure we don't starve existing RT tasks if runtime turns zero.
2713          */
2714         if (rt_bandwidth_enabled() && !runtime &&
2715             tg->rt_bandwidth.rt_runtime && tg_has_rt_tasks(tg))
2716                 return -EBUSY;
2717
2718         total = to_ratio(period, runtime);
2719
2720         /*
2721          * Nobody can have more than the global setting allows.
2722          */
2723         if (total > to_ratio(global_rt_period(), global_rt_runtime()))
2724                 return -EINVAL;
2725
2726         /*
2727          * The sum of our children's runtime should not exceed our own.
2728          */
2729         list_for_each_entry_rcu(child, &tg->children, siblings) {
2730                 period = ktime_to_ns(child->rt_bandwidth.rt_period);
2731                 runtime = child->rt_bandwidth.rt_runtime;
2732
2733                 if (child == d->tg) {
2734                         period = d->rt_period;
2735                         runtime = d->rt_runtime;
2736                 }
2737
2738                 sum += to_ratio(period, runtime);
2739         }
2740
2741         if (sum > total)
2742                 return -EINVAL;
2743
2744         return 0;
2745 }
2746
2747 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
2748 {
2749         int ret;
2750
2751         struct rt_schedulable_data data = {
2752                 .tg = tg,
2753                 .rt_period = period,
2754                 .rt_runtime = runtime,
2755         };
2756
2757         rcu_read_lock();
2758         ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
2759         rcu_read_unlock();
2760
2761         return ret;
2762 }
2763
2764 static int tg_set_rt_bandwidth(struct task_group *tg,
2765                 u64 rt_period, u64 rt_runtime)
2766 {
2767         int i, err = 0;
2768
2769         /*
2770          * Disallowing the root group RT runtime is BAD, it would disallow the
2771          * kernel creating (and or operating) RT threads.
2772          */
2773         if (tg == &root_task_group && rt_runtime == 0)
2774                 return -EINVAL;
2775
2776         /* No period doesn't make any sense. */
2777         if (rt_period == 0)
2778                 return -EINVAL;
2779
2780         /*
2781          * Bound quota to defend quota against overflow during bandwidth shift.
2782          */
2783         if (rt_runtime != RUNTIME_INF && rt_runtime > max_rt_runtime)
2784                 return -EINVAL;
2785
2786         mutex_lock(&rt_constraints_mutex);
2787         err = __rt_schedulable(tg, rt_period, rt_runtime);
2788         if (err)
2789                 goto unlock;
2790
2791         raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
2792         tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
2793         tg->rt_bandwidth.rt_runtime = rt_runtime;
2794
2795         for_each_possible_cpu(i) {
2796                 struct rt_rq *rt_rq = tg->rt_rq[i];
2797
2798                 raw_spin_lock(&rt_rq->rt_runtime_lock);
2799                 rt_rq->rt_runtime = rt_runtime;
2800                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
2801         }
2802         raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
2803 unlock:
2804         mutex_unlock(&rt_constraints_mutex);
2805
2806         return err;
2807 }
2808
2809 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
2810 {
2811         u64 rt_runtime, rt_period;
2812
2813         rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
2814         rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
2815         if (rt_runtime_us < 0)
2816                 rt_runtime = RUNTIME_INF;
2817         else if ((u64)rt_runtime_us > U64_MAX / NSEC_PER_USEC)
2818                 return -EINVAL;
2819
2820         return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
2821 }
2822
2823 long sched_group_rt_runtime(struct task_group *tg)
2824 {
2825         u64 rt_runtime_us;
2826
2827         if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
2828                 return -1;
2829
2830         rt_runtime_us = tg->rt_bandwidth.rt_runtime;
2831         do_div(rt_runtime_us, NSEC_PER_USEC);
2832         return rt_runtime_us;
2833 }
2834
2835 int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
2836 {
2837         u64 rt_runtime, rt_period;
2838
2839         if (rt_period_us > U64_MAX / NSEC_PER_USEC)
2840                 return -EINVAL;
2841
2842         rt_period = rt_period_us * NSEC_PER_USEC;
2843         rt_runtime = tg->rt_bandwidth.rt_runtime;
2844
2845         return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
2846 }
2847
2848 long sched_group_rt_period(struct task_group *tg)
2849 {
2850         u64 rt_period_us;
2851
2852         rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
2853         do_div(rt_period_us, NSEC_PER_USEC);
2854         return rt_period_us;
2855 }
2856
2857 #ifdef CONFIG_SYSCTL
2858 static int sched_rt_global_constraints(void)
2859 {
2860         int ret = 0;
2861
2862         mutex_lock(&rt_constraints_mutex);
2863         ret = __rt_schedulable(NULL, 0, 0);
2864         mutex_unlock(&rt_constraints_mutex);
2865
2866         return ret;
2867 }
2868 #endif /* CONFIG_SYSCTL */
2869
2870 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
2871 {
2872         /* Don't accept real-time tasks when there is no way for them to run */
2873         if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
2874                 return 0;
2875
2876         return 1;
2877 }
2878
2879 #else /* !CONFIG_RT_GROUP_SCHED */
2880
2881 #ifdef CONFIG_SYSCTL
2882 static int sched_rt_global_constraints(void)
2883 {
2884         return 0;
2885 }
2886 #endif /* CONFIG_SYSCTL */
2887 #endif /* CONFIG_RT_GROUP_SCHED */
2888
2889 #ifdef CONFIG_SYSCTL
2890 static int sched_rt_global_validate(void)
2891 {
2892         if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
2893                 ((sysctl_sched_rt_runtime > sysctl_sched_rt_period) ||
2894                  ((u64)sysctl_sched_rt_runtime *
2895                         NSEC_PER_USEC > max_rt_runtime)))
2896                 return -EINVAL;
2897
2898         return 0;
2899 }
2900
2901 static void sched_rt_do_global(void)
2902 {
2903 }
2904
2905 static int sched_rt_handler(const struct ctl_table *table, int write, void *buffer,
2906                 size_t *lenp, loff_t *ppos)
2907 {
2908         int old_period, old_runtime;
2909         static DEFINE_MUTEX(mutex);
2910         int ret;
2911
2912         mutex_lock(&mutex);
2913         old_period = sysctl_sched_rt_period;
2914         old_runtime = sysctl_sched_rt_runtime;
2915
2916         ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2917
2918         if (!ret && write) {
2919                 ret = sched_rt_global_validate();
2920                 if (ret)
2921                         goto undo;
2922
2923                 ret = sched_dl_global_validate();
2924                 if (ret)
2925                         goto undo;
2926
2927                 ret = sched_rt_global_constraints();
2928                 if (ret)
2929                         goto undo;
2930
2931                 sched_rt_do_global();
2932                 sched_dl_do_global();
2933         }
2934         if (0) {
2935 undo:
2936                 sysctl_sched_rt_period = old_period;
2937                 sysctl_sched_rt_runtime = old_runtime;
2938         }
2939         mutex_unlock(&mutex);
2940
2941         return ret;
2942 }
2943
2944 static int sched_rr_handler(const struct ctl_table *table, int write, void *buffer,
2945                 size_t *lenp, loff_t *ppos)
2946 {
2947         int ret;
2948         static DEFINE_MUTEX(mutex);
2949
2950         mutex_lock(&mutex);
2951         ret = proc_dointvec(table, write, buffer, lenp, ppos);
2952         /*
2953          * Make sure that internally we keep jiffies.
2954          * Also, writing zero resets the time-slice to default:
2955          */
2956         if (!ret && write) {
2957                 sched_rr_timeslice =
2958                         sysctl_sched_rr_timeslice <= 0 ? RR_TIMESLICE :
2959                         msecs_to_jiffies(sysctl_sched_rr_timeslice);
2960
2961                 if (sysctl_sched_rr_timeslice <= 0)
2962                         sysctl_sched_rr_timeslice = jiffies_to_msecs(RR_TIMESLICE);
2963         }
2964         mutex_unlock(&mutex);
2965
2966         return ret;
2967 }
2968 #endif /* CONFIG_SYSCTL */
2969
2970 #ifdef CONFIG_SCHED_DEBUG
2971 void print_rt_stats(struct seq_file *m, int cpu)
2972 {
2973         rt_rq_iter_t iter;
2974         struct rt_rq *rt_rq;
2975
2976         rcu_read_lock();
2977         for_each_rt_rq(rt_rq, iter, cpu_rq(cpu))
2978                 print_rt_rq(m, cpu, rt_rq);
2979         rcu_read_unlock();
2980 }
2981 #endif /* CONFIG_SCHED_DEBUG */
This page took 0.189441 seconds and 4 git commands to generate.