1 // SPDX-License-Identifier: GPL-2.0
3 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
7 int sched_rr_timeslice = RR_TIMESLICE;
8 /* More than 4 hours if BW_SHIFT equals 20. */
9 static const u64 max_rt_runtime = MAX_BW;
12 * period over which we measure -rt task CPU usage in us.
15 int sysctl_sched_rt_period = 1000000;
18 * part of the period that we allow rt tasks to run in us.
21 int sysctl_sched_rt_runtime = 950000;
24 static int sysctl_sched_rr_timeslice = (MSEC_PER_SEC * RR_TIMESLICE) / HZ;
25 static int sched_rt_handler(const struct ctl_table *table, int write, void *buffer,
26 size_t *lenp, loff_t *ppos);
27 static int sched_rr_handler(const struct ctl_table *table, int write, void *buffer,
28 size_t *lenp, loff_t *ppos);
29 static struct ctl_table sched_rt_sysctls[] = {
31 .procname = "sched_rt_period_us",
32 .data = &sysctl_sched_rt_period,
33 .maxlen = sizeof(int),
35 .proc_handler = sched_rt_handler,
37 .extra2 = SYSCTL_INT_MAX,
40 .procname = "sched_rt_runtime_us",
41 .data = &sysctl_sched_rt_runtime,
42 .maxlen = sizeof(int),
44 .proc_handler = sched_rt_handler,
45 .extra1 = SYSCTL_NEG_ONE,
46 .extra2 = (void *)&sysctl_sched_rt_period,
49 .procname = "sched_rr_timeslice_ms",
50 .data = &sysctl_sched_rr_timeslice,
51 .maxlen = sizeof(int),
53 .proc_handler = sched_rr_handler,
57 static int __init sched_rt_sysctl_init(void)
59 register_sysctl_init("kernel", sched_rt_sysctls);
62 late_initcall(sched_rt_sysctl_init);
65 void init_rt_rq(struct rt_rq *rt_rq)
67 struct rt_prio_array *array;
70 array = &rt_rq->active;
71 for (i = 0; i < MAX_RT_PRIO; i++) {
72 INIT_LIST_HEAD(array->queue + i);
73 __clear_bit(i, array->bitmap);
75 /* delimiter for bitsearch: */
76 __set_bit(MAX_RT_PRIO, array->bitmap);
78 #if defined CONFIG_SMP
79 rt_rq->highest_prio.curr = MAX_RT_PRIO-1;
80 rt_rq->highest_prio.next = MAX_RT_PRIO-1;
81 rt_rq->overloaded = 0;
82 plist_head_init(&rt_rq->pushable_tasks);
83 #endif /* CONFIG_SMP */
84 /* We start is dequeued state, because no RT tasks are queued */
87 #ifdef CONFIG_RT_GROUP_SCHED
89 rt_rq->rt_throttled = 0;
90 rt_rq->rt_runtime = 0;
91 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
95 #ifdef CONFIG_RT_GROUP_SCHED
97 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
99 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
101 struct rt_bandwidth *rt_b =
102 container_of(timer, struct rt_bandwidth, rt_period_timer);
106 raw_spin_lock(&rt_b->rt_runtime_lock);
108 overrun = hrtimer_forward_now(timer, rt_b->rt_period);
112 raw_spin_unlock(&rt_b->rt_runtime_lock);
113 idle = do_sched_rt_period_timer(rt_b, overrun);
114 raw_spin_lock(&rt_b->rt_runtime_lock);
117 rt_b->rt_period_active = 0;
118 raw_spin_unlock(&rt_b->rt_runtime_lock);
120 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
123 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
125 rt_b->rt_period = ns_to_ktime(period);
126 rt_b->rt_runtime = runtime;
128 raw_spin_lock_init(&rt_b->rt_runtime_lock);
130 hrtimer_init(&rt_b->rt_period_timer, CLOCK_MONOTONIC,
131 HRTIMER_MODE_REL_HARD);
132 rt_b->rt_period_timer.function = sched_rt_period_timer;
135 static inline void do_start_rt_bandwidth(struct rt_bandwidth *rt_b)
137 raw_spin_lock(&rt_b->rt_runtime_lock);
138 if (!rt_b->rt_period_active) {
139 rt_b->rt_period_active = 1;
141 * SCHED_DEADLINE updates the bandwidth, as a run away
142 * RT task with a DL task could hog a CPU. But DL does
143 * not reset the period. If a deadline task was running
144 * without an RT task running, it can cause RT tasks to
145 * throttle when they start up. Kick the timer right away
146 * to update the period.
148 hrtimer_forward_now(&rt_b->rt_period_timer, ns_to_ktime(0));
149 hrtimer_start_expires(&rt_b->rt_period_timer,
150 HRTIMER_MODE_ABS_PINNED_HARD);
152 raw_spin_unlock(&rt_b->rt_runtime_lock);
155 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
157 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
160 do_start_rt_bandwidth(rt_b);
163 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
165 hrtimer_cancel(&rt_b->rt_period_timer);
168 #define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
170 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
172 #ifdef CONFIG_SCHED_DEBUG
173 WARN_ON_ONCE(!rt_entity_is_task(rt_se));
175 return container_of(rt_se, struct task_struct, rt);
178 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
183 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
188 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
190 struct rt_rq *rt_rq = rt_se->rt_rq;
195 void unregister_rt_sched_group(struct task_group *tg)
198 destroy_rt_bandwidth(&tg->rt_bandwidth);
201 void free_rt_sched_group(struct task_group *tg)
205 for_each_possible_cpu(i) {
216 void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
217 struct sched_rt_entity *rt_se, int cpu,
218 struct sched_rt_entity *parent)
220 struct rq *rq = cpu_rq(cpu);
222 rt_rq->highest_prio.curr = MAX_RT_PRIO-1;
223 rt_rq->rt_nr_boosted = 0;
227 tg->rt_rq[cpu] = rt_rq;
228 tg->rt_se[cpu] = rt_se;
234 rt_se->rt_rq = &rq->rt;
236 rt_se->rt_rq = parent->my_q;
239 rt_se->parent = parent;
240 INIT_LIST_HEAD(&rt_se->run_list);
243 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
246 struct sched_rt_entity *rt_se;
249 tg->rt_rq = kcalloc(nr_cpu_ids, sizeof(rt_rq), GFP_KERNEL);
252 tg->rt_se = kcalloc(nr_cpu_ids, sizeof(rt_se), GFP_KERNEL);
256 init_rt_bandwidth(&tg->rt_bandwidth, ktime_to_ns(global_rt_period()), 0);
258 for_each_possible_cpu(i) {
259 rt_rq = kzalloc_node(sizeof(struct rt_rq),
260 GFP_KERNEL, cpu_to_node(i));
264 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
265 GFP_KERNEL, cpu_to_node(i));
270 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
271 init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
282 #else /* CONFIG_RT_GROUP_SCHED */
284 #define rt_entity_is_task(rt_se) (1)
286 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
288 return container_of(rt_se, struct task_struct, rt);
291 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
293 return container_of(rt_rq, struct rq, rt);
296 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
298 struct task_struct *p = rt_task_of(rt_se);
303 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
305 struct rq *rq = rq_of_rt_se(rt_se);
310 void unregister_rt_sched_group(struct task_group *tg) { }
312 void free_rt_sched_group(struct task_group *tg) { }
314 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
318 #endif /* CONFIG_RT_GROUP_SCHED */
322 static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
324 /* Try to pull RT tasks here if we lower this rq's prio */
325 return rq->online && rq->rt.highest_prio.curr > prev->prio;
328 static inline int rt_overloaded(struct rq *rq)
330 return atomic_read(&rq->rd->rto_count);
333 static inline void rt_set_overload(struct rq *rq)
338 cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
340 * Make sure the mask is visible before we set
341 * the overload count. That is checked to determine
342 * if we should look at the mask. It would be a shame
343 * if we looked at the mask, but the mask was not
346 * Matched by the barrier in pull_rt_task().
349 atomic_inc(&rq->rd->rto_count);
352 static inline void rt_clear_overload(struct rq *rq)
357 /* the order here really doesn't matter */
358 atomic_dec(&rq->rd->rto_count);
359 cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
362 static inline int has_pushable_tasks(struct rq *rq)
364 return !plist_head_empty(&rq->rt.pushable_tasks);
367 static DEFINE_PER_CPU(struct balance_callback, rt_push_head);
368 static DEFINE_PER_CPU(struct balance_callback, rt_pull_head);
370 static void push_rt_tasks(struct rq *);
371 static void pull_rt_task(struct rq *);
373 static inline void rt_queue_push_tasks(struct rq *rq)
375 if (!has_pushable_tasks(rq))
378 queue_balance_callback(rq, &per_cpu(rt_push_head, rq->cpu), push_rt_tasks);
381 static inline void rt_queue_pull_task(struct rq *rq)
383 queue_balance_callback(rq, &per_cpu(rt_pull_head, rq->cpu), pull_rt_task);
386 static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
388 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
389 plist_node_init(&p->pushable_tasks, p->prio);
390 plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
392 /* Update the highest prio pushable task */
393 if (p->prio < rq->rt.highest_prio.next)
394 rq->rt.highest_prio.next = p->prio;
396 if (!rq->rt.overloaded) {
398 rq->rt.overloaded = 1;
402 static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
404 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
406 /* Update the new highest prio pushable task */
407 if (has_pushable_tasks(rq)) {
408 p = plist_first_entry(&rq->rt.pushable_tasks,
409 struct task_struct, pushable_tasks);
410 rq->rt.highest_prio.next = p->prio;
412 rq->rt.highest_prio.next = MAX_RT_PRIO-1;
414 if (rq->rt.overloaded) {
415 rt_clear_overload(rq);
416 rq->rt.overloaded = 0;
423 static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
427 static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
431 static inline void rt_queue_push_tasks(struct rq *rq)
434 #endif /* CONFIG_SMP */
436 static void enqueue_top_rt_rq(struct rt_rq *rt_rq);
437 static void dequeue_top_rt_rq(struct rt_rq *rt_rq, unsigned int count);
439 static inline int on_rt_rq(struct sched_rt_entity *rt_se)
444 #ifdef CONFIG_UCLAMP_TASK
446 * Verify the fitness of task @p to run on @cpu taking into account the uclamp
449 * This check is only important for heterogeneous systems where uclamp_min value
450 * is higher than the capacity of a @cpu. For non-heterogeneous system this
451 * function will always return true.
453 * The function will return true if the capacity of the @cpu is >= the
454 * uclamp_min and false otherwise.
456 * Note that uclamp_min will be clamped to uclamp_max if uclamp_min
459 static inline bool rt_task_fits_capacity(struct task_struct *p, int cpu)
461 unsigned int min_cap;
462 unsigned int max_cap;
463 unsigned int cpu_cap;
465 /* Only heterogeneous systems can benefit from this check */
466 if (!sched_asym_cpucap_active())
469 min_cap = uclamp_eff_value(p, UCLAMP_MIN);
470 max_cap = uclamp_eff_value(p, UCLAMP_MAX);
472 cpu_cap = arch_scale_cpu_capacity(cpu);
474 return cpu_cap >= min(min_cap, max_cap);
477 static inline bool rt_task_fits_capacity(struct task_struct *p, int cpu)
483 #ifdef CONFIG_RT_GROUP_SCHED
485 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
490 return rt_rq->rt_runtime;
493 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
495 return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
498 typedef struct task_group *rt_rq_iter_t;
500 static inline struct task_group *next_task_group(struct task_group *tg)
503 tg = list_entry_rcu(tg->list.next,
504 typeof(struct task_group), list);
505 } while (&tg->list != &task_groups && task_group_is_autogroup(tg));
507 if (&tg->list == &task_groups)
513 #define for_each_rt_rq(rt_rq, iter, rq) \
514 for (iter = container_of(&task_groups, typeof(*iter), list); \
515 (iter = next_task_group(iter)) && \
516 (rt_rq = iter->rt_rq[cpu_of(rq)]);)
518 #define for_each_sched_rt_entity(rt_se) \
519 for (; rt_se; rt_se = rt_se->parent)
521 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
526 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
527 static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
529 static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
531 struct task_struct *donor = rq_of_rt_rq(rt_rq)->donor;
532 struct rq *rq = rq_of_rt_rq(rt_rq);
533 struct sched_rt_entity *rt_se;
535 int cpu = cpu_of(rq);
537 rt_se = rt_rq->tg->rt_se[cpu];
539 if (rt_rq->rt_nr_running) {
541 enqueue_top_rt_rq(rt_rq);
542 else if (!on_rt_rq(rt_se))
543 enqueue_rt_entity(rt_se, 0);
545 if (rt_rq->highest_prio.curr < donor->prio)
550 static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
552 struct sched_rt_entity *rt_se;
553 int cpu = cpu_of(rq_of_rt_rq(rt_rq));
555 rt_se = rt_rq->tg->rt_se[cpu];
558 dequeue_top_rt_rq(rt_rq, rt_rq->rt_nr_running);
559 /* Kick cpufreq (see the comment in kernel/sched/sched.h). */
560 cpufreq_update_util(rq_of_rt_rq(rt_rq), 0);
562 else if (on_rt_rq(rt_se))
563 dequeue_rt_entity(rt_se, 0);
566 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
568 return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
571 static int rt_se_boosted(struct sched_rt_entity *rt_se)
573 struct rt_rq *rt_rq = group_rt_rq(rt_se);
574 struct task_struct *p;
577 return !!rt_rq->rt_nr_boosted;
579 p = rt_task_of(rt_se);
580 return p->prio != p->normal_prio;
584 static inline const struct cpumask *sched_rt_period_mask(void)
586 return this_rq()->rd->span;
589 static inline const struct cpumask *sched_rt_period_mask(void)
591 return cpu_online_mask;
596 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
598 return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
601 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
603 return &rt_rq->tg->rt_bandwidth;
606 bool sched_rt_bandwidth_account(struct rt_rq *rt_rq)
608 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
610 return (hrtimer_active(&rt_b->rt_period_timer) ||
611 rt_rq->rt_time < rt_b->rt_runtime);
616 * We ran out of runtime, see if we can borrow some from our neighbours.
618 static void do_balance_runtime(struct rt_rq *rt_rq)
620 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
621 struct root_domain *rd = rq_of_rt_rq(rt_rq)->rd;
625 weight = cpumask_weight(rd->span);
627 raw_spin_lock(&rt_b->rt_runtime_lock);
628 rt_period = ktime_to_ns(rt_b->rt_period);
629 for_each_cpu(i, rd->span) {
630 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
636 raw_spin_lock(&iter->rt_runtime_lock);
638 * Either all rqs have inf runtime and there's nothing to steal
639 * or __disable_runtime() below sets a specific rq to inf to
640 * indicate its been disabled and disallow stealing.
642 if (iter->rt_runtime == RUNTIME_INF)
646 * From runqueues with spare time, take 1/n part of their
647 * spare time, but no more than our period.
649 diff = iter->rt_runtime - iter->rt_time;
651 diff = div_u64((u64)diff, weight);
652 if (rt_rq->rt_runtime + diff > rt_period)
653 diff = rt_period - rt_rq->rt_runtime;
654 iter->rt_runtime -= diff;
655 rt_rq->rt_runtime += diff;
656 if (rt_rq->rt_runtime == rt_period) {
657 raw_spin_unlock(&iter->rt_runtime_lock);
662 raw_spin_unlock(&iter->rt_runtime_lock);
664 raw_spin_unlock(&rt_b->rt_runtime_lock);
668 * Ensure this RQ takes back all the runtime it lend to its neighbours.
670 static void __disable_runtime(struct rq *rq)
672 struct root_domain *rd = rq->rd;
676 if (unlikely(!scheduler_running))
679 for_each_rt_rq(rt_rq, iter, rq) {
680 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
684 raw_spin_lock(&rt_b->rt_runtime_lock);
685 raw_spin_lock(&rt_rq->rt_runtime_lock);
687 * Either we're all inf and nobody needs to borrow, or we're
688 * already disabled and thus have nothing to do, or we have
689 * exactly the right amount of runtime to take out.
691 if (rt_rq->rt_runtime == RUNTIME_INF ||
692 rt_rq->rt_runtime == rt_b->rt_runtime)
694 raw_spin_unlock(&rt_rq->rt_runtime_lock);
697 * Calculate the difference between what we started out with
698 * and what we current have, that's the amount of runtime
699 * we lend and now have to reclaim.
701 want = rt_b->rt_runtime - rt_rq->rt_runtime;
704 * Greedy reclaim, take back as much as we can.
706 for_each_cpu(i, rd->span) {
707 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
711 * Can't reclaim from ourselves or disabled runqueues.
713 if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
716 raw_spin_lock(&iter->rt_runtime_lock);
718 diff = min_t(s64, iter->rt_runtime, want);
719 iter->rt_runtime -= diff;
722 iter->rt_runtime -= want;
725 raw_spin_unlock(&iter->rt_runtime_lock);
731 raw_spin_lock(&rt_rq->rt_runtime_lock);
733 * We cannot be left wanting - that would mean some runtime
734 * leaked out of the system.
739 * Disable all the borrow logic by pretending we have inf
740 * runtime - in which case borrowing doesn't make sense.
742 rt_rq->rt_runtime = RUNTIME_INF;
743 rt_rq->rt_throttled = 0;
744 raw_spin_unlock(&rt_rq->rt_runtime_lock);
745 raw_spin_unlock(&rt_b->rt_runtime_lock);
747 /* Make rt_rq available for pick_next_task() */
748 sched_rt_rq_enqueue(rt_rq);
752 static void __enable_runtime(struct rq *rq)
757 if (unlikely(!scheduler_running))
761 * Reset each runqueue's bandwidth settings
763 for_each_rt_rq(rt_rq, iter, rq) {
764 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
766 raw_spin_lock(&rt_b->rt_runtime_lock);
767 raw_spin_lock(&rt_rq->rt_runtime_lock);
768 rt_rq->rt_runtime = rt_b->rt_runtime;
770 rt_rq->rt_throttled = 0;
771 raw_spin_unlock(&rt_rq->rt_runtime_lock);
772 raw_spin_unlock(&rt_b->rt_runtime_lock);
776 static void balance_runtime(struct rt_rq *rt_rq)
778 if (!sched_feat(RT_RUNTIME_SHARE))
781 if (rt_rq->rt_time > rt_rq->rt_runtime) {
782 raw_spin_unlock(&rt_rq->rt_runtime_lock);
783 do_balance_runtime(rt_rq);
784 raw_spin_lock(&rt_rq->rt_runtime_lock);
787 #else /* !CONFIG_SMP */
788 static inline void balance_runtime(struct rt_rq *rt_rq) {}
789 #endif /* CONFIG_SMP */
791 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
793 int i, idle = 1, throttled = 0;
794 const struct cpumask *span;
796 span = sched_rt_period_mask();
799 * FIXME: isolated CPUs should really leave the root task group,
800 * whether they are isolcpus or were isolated via cpusets, lest
801 * the timer run on a CPU which does not service all runqueues,
802 * potentially leaving other CPUs indefinitely throttled. If
803 * isolation is really required, the user will turn the throttle
804 * off to kill the perturbations it causes anyway. Meanwhile,
805 * this maintains functionality for boot and/or troubleshooting.
807 if (rt_b == &root_task_group.rt_bandwidth)
808 span = cpu_online_mask;
810 for_each_cpu(i, span) {
812 struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
813 struct rq *rq = rq_of_rt_rq(rt_rq);
818 * When span == cpu_online_mask, taking each rq->lock
819 * can be time-consuming. Try to avoid it when possible.
821 raw_spin_lock(&rt_rq->rt_runtime_lock);
822 if (!sched_feat(RT_RUNTIME_SHARE) && rt_rq->rt_runtime != RUNTIME_INF)
823 rt_rq->rt_runtime = rt_b->rt_runtime;
824 skip = !rt_rq->rt_time && !rt_rq->rt_nr_running;
825 raw_spin_unlock(&rt_rq->rt_runtime_lock);
832 if (rt_rq->rt_time) {
835 raw_spin_lock(&rt_rq->rt_runtime_lock);
836 if (rt_rq->rt_throttled)
837 balance_runtime(rt_rq);
838 runtime = rt_rq->rt_runtime;
839 rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
840 if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
841 rt_rq->rt_throttled = 0;
845 * When we're idle and a woken (rt) task is
846 * throttled wakeup_preempt() will set
847 * skip_update and the time between the wakeup
848 * and this unthrottle will get accounted as
851 if (rt_rq->rt_nr_running && rq->curr == rq->idle)
852 rq_clock_cancel_skipupdate(rq);
854 if (rt_rq->rt_time || rt_rq->rt_nr_running)
856 raw_spin_unlock(&rt_rq->rt_runtime_lock);
857 } else if (rt_rq->rt_nr_running) {
859 if (!rt_rq_throttled(rt_rq))
862 if (rt_rq->rt_throttled)
866 sched_rt_rq_enqueue(rt_rq);
870 if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF))
876 static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
878 u64 runtime = sched_rt_runtime(rt_rq);
880 if (rt_rq->rt_throttled)
881 return rt_rq_throttled(rt_rq);
883 if (runtime >= sched_rt_period(rt_rq))
886 balance_runtime(rt_rq);
887 runtime = sched_rt_runtime(rt_rq);
888 if (runtime == RUNTIME_INF)
891 if (rt_rq->rt_time > runtime) {
892 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
895 * Don't actually throttle groups that have no runtime assigned
896 * but accrue some time due to boosting.
898 if (likely(rt_b->rt_runtime)) {
899 rt_rq->rt_throttled = 1;
900 printk_deferred_once("sched: RT throttling activated\n");
903 * In case we did anyway, make it go away,
904 * replenishment is a joke, since it will replenish us
910 if (rt_rq_throttled(rt_rq)) {
911 sched_rt_rq_dequeue(rt_rq);
919 #else /* !CONFIG_RT_GROUP_SCHED */
921 typedef struct rt_rq *rt_rq_iter_t;
923 #define for_each_rt_rq(rt_rq, iter, rq) \
924 for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
926 #define for_each_sched_rt_entity(rt_se) \
927 for (; rt_se; rt_se = NULL)
929 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
934 static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
936 struct rq *rq = rq_of_rt_rq(rt_rq);
938 if (!rt_rq->rt_nr_running)
941 enqueue_top_rt_rq(rt_rq);
945 static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
947 dequeue_top_rt_rq(rt_rq, rt_rq->rt_nr_running);
950 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
955 static inline const struct cpumask *sched_rt_period_mask(void)
957 return cpu_online_mask;
961 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
963 return &cpu_rq(cpu)->rt;
967 static void __enable_runtime(struct rq *rq) { }
968 static void __disable_runtime(struct rq *rq) { }
971 #endif /* CONFIG_RT_GROUP_SCHED */
973 static inline int rt_se_prio(struct sched_rt_entity *rt_se)
975 #ifdef CONFIG_RT_GROUP_SCHED
976 struct rt_rq *rt_rq = group_rt_rq(rt_se);
979 return rt_rq->highest_prio.curr;
982 return rt_task_of(rt_se)->prio;
986 * Update the current task's runtime statistics. Skip current tasks that
987 * are not in our scheduling class.
989 static void update_curr_rt(struct rq *rq)
991 struct task_struct *donor = rq->donor;
994 if (donor->sched_class != &rt_sched_class)
997 delta_exec = update_curr_common(rq);
998 if (unlikely(delta_exec <= 0))
1001 #ifdef CONFIG_RT_GROUP_SCHED
1002 struct sched_rt_entity *rt_se = &donor->rt;
1004 if (!rt_bandwidth_enabled())
1007 for_each_sched_rt_entity(rt_se) {
1008 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1011 if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
1012 raw_spin_lock(&rt_rq->rt_runtime_lock);
1013 rt_rq->rt_time += delta_exec;
1014 exceeded = sched_rt_runtime_exceeded(rt_rq);
1017 raw_spin_unlock(&rt_rq->rt_runtime_lock);
1019 do_start_rt_bandwidth(sched_rt_bandwidth(rt_rq));
1026 dequeue_top_rt_rq(struct rt_rq *rt_rq, unsigned int count)
1028 struct rq *rq = rq_of_rt_rq(rt_rq);
1030 BUG_ON(&rq->rt != rt_rq);
1032 if (!rt_rq->rt_queued)
1035 BUG_ON(!rq->nr_running);
1037 sub_nr_running(rq, count);
1038 rt_rq->rt_queued = 0;
1043 enqueue_top_rt_rq(struct rt_rq *rt_rq)
1045 struct rq *rq = rq_of_rt_rq(rt_rq);
1047 BUG_ON(&rq->rt != rt_rq);
1049 if (rt_rq->rt_queued)
1052 if (rt_rq_throttled(rt_rq))
1055 if (rt_rq->rt_nr_running) {
1056 add_nr_running(rq, rt_rq->rt_nr_running);
1057 rt_rq->rt_queued = 1;
1060 /* Kick cpufreq (see the comment in kernel/sched/sched.h). */
1061 cpufreq_update_util(rq, 0);
1064 #if defined CONFIG_SMP
1067 inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1069 struct rq *rq = rq_of_rt_rq(rt_rq);
1071 #ifdef CONFIG_RT_GROUP_SCHED
1073 * Change rq's cpupri only if rt_rq is the top queue.
1075 if (&rq->rt != rt_rq)
1078 if (rq->online && prio < prev_prio)
1079 cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
1083 dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1085 struct rq *rq = rq_of_rt_rq(rt_rq);
1087 #ifdef CONFIG_RT_GROUP_SCHED
1089 * Change rq's cpupri only if rt_rq is the top queue.
1091 if (&rq->rt != rt_rq)
1094 if (rq->online && rt_rq->highest_prio.curr != prev_prio)
1095 cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
1098 #else /* CONFIG_SMP */
1101 void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1103 void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1105 #endif /* CONFIG_SMP */
1107 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
1109 inc_rt_prio(struct rt_rq *rt_rq, int prio)
1111 int prev_prio = rt_rq->highest_prio.curr;
1113 if (prio < prev_prio)
1114 rt_rq->highest_prio.curr = prio;
1116 inc_rt_prio_smp(rt_rq, prio, prev_prio);
1120 dec_rt_prio(struct rt_rq *rt_rq, int prio)
1122 int prev_prio = rt_rq->highest_prio.curr;
1124 if (rt_rq->rt_nr_running) {
1126 WARN_ON(prio < prev_prio);
1129 * This may have been our highest task, and therefore
1130 * we may have some re-computation to do
1132 if (prio == prev_prio) {
1133 struct rt_prio_array *array = &rt_rq->active;
1135 rt_rq->highest_prio.curr =
1136 sched_find_first_bit(array->bitmap);
1140 rt_rq->highest_prio.curr = MAX_RT_PRIO-1;
1143 dec_rt_prio_smp(rt_rq, prio, prev_prio);
1148 static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
1149 static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}
1151 #endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
1153 #ifdef CONFIG_RT_GROUP_SCHED
1156 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1158 if (rt_se_boosted(rt_se))
1159 rt_rq->rt_nr_boosted++;
1162 start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
1166 dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1168 if (rt_se_boosted(rt_se))
1169 rt_rq->rt_nr_boosted--;
1171 WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
1174 #else /* CONFIG_RT_GROUP_SCHED */
1177 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1182 void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
1184 #endif /* CONFIG_RT_GROUP_SCHED */
1187 unsigned int rt_se_nr_running(struct sched_rt_entity *rt_se)
1189 struct rt_rq *group_rq = group_rt_rq(rt_se);
1192 return group_rq->rt_nr_running;
1198 unsigned int rt_se_rr_nr_running(struct sched_rt_entity *rt_se)
1200 struct rt_rq *group_rq = group_rt_rq(rt_se);
1201 struct task_struct *tsk;
1204 return group_rq->rr_nr_running;
1206 tsk = rt_task_of(rt_se);
1208 return (tsk->policy == SCHED_RR) ? 1 : 0;
1212 void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1214 int prio = rt_se_prio(rt_se);
1216 WARN_ON(!rt_prio(prio));
1217 rt_rq->rt_nr_running += rt_se_nr_running(rt_se);
1218 rt_rq->rr_nr_running += rt_se_rr_nr_running(rt_se);
1220 inc_rt_prio(rt_rq, prio);
1221 inc_rt_group(rt_se, rt_rq);
1225 void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1227 WARN_ON(!rt_prio(rt_se_prio(rt_se)));
1228 WARN_ON(!rt_rq->rt_nr_running);
1229 rt_rq->rt_nr_running -= rt_se_nr_running(rt_se);
1230 rt_rq->rr_nr_running -= rt_se_rr_nr_running(rt_se);
1232 dec_rt_prio(rt_rq, rt_se_prio(rt_se));
1233 dec_rt_group(rt_se, rt_rq);
1237 * Change rt_se->run_list location unless SAVE && !MOVE
1239 * assumes ENQUEUE/DEQUEUE flags match
1241 static inline bool move_entity(unsigned int flags)
1243 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE)
1249 static void __delist_rt_entity(struct sched_rt_entity *rt_se, struct rt_prio_array *array)
1251 list_del_init(&rt_se->run_list);
1253 if (list_empty(array->queue + rt_se_prio(rt_se)))
1254 __clear_bit(rt_se_prio(rt_se), array->bitmap);
1259 static inline struct sched_statistics *
1260 __schedstats_from_rt_se(struct sched_rt_entity *rt_se)
1262 #ifdef CONFIG_RT_GROUP_SCHED
1263 /* schedstats is not supported for rt group. */
1264 if (!rt_entity_is_task(rt_se))
1268 return &rt_task_of(rt_se)->stats;
1272 update_stats_wait_start_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se)
1274 struct sched_statistics *stats;
1275 struct task_struct *p = NULL;
1277 if (!schedstat_enabled())
1280 if (rt_entity_is_task(rt_se))
1281 p = rt_task_of(rt_se);
1283 stats = __schedstats_from_rt_se(rt_se);
1287 __update_stats_wait_start(rq_of_rt_rq(rt_rq), p, stats);
1291 update_stats_enqueue_sleeper_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se)
1293 struct sched_statistics *stats;
1294 struct task_struct *p = NULL;
1296 if (!schedstat_enabled())
1299 if (rt_entity_is_task(rt_se))
1300 p = rt_task_of(rt_se);
1302 stats = __schedstats_from_rt_se(rt_se);
1306 __update_stats_enqueue_sleeper(rq_of_rt_rq(rt_rq), p, stats);
1310 update_stats_enqueue_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se,
1313 if (!schedstat_enabled())
1316 if (flags & ENQUEUE_WAKEUP)
1317 update_stats_enqueue_sleeper_rt(rt_rq, rt_se);
1321 update_stats_wait_end_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se)
1323 struct sched_statistics *stats;
1324 struct task_struct *p = NULL;
1326 if (!schedstat_enabled())
1329 if (rt_entity_is_task(rt_se))
1330 p = rt_task_of(rt_se);
1332 stats = __schedstats_from_rt_se(rt_se);
1336 __update_stats_wait_end(rq_of_rt_rq(rt_rq), p, stats);
1340 update_stats_dequeue_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se,
1343 struct task_struct *p = NULL;
1345 if (!schedstat_enabled())
1348 if (rt_entity_is_task(rt_se))
1349 p = rt_task_of(rt_se);
1351 if ((flags & DEQUEUE_SLEEP) && p) {
1354 state = READ_ONCE(p->__state);
1355 if (state & TASK_INTERRUPTIBLE)
1356 __schedstat_set(p->stats.sleep_start,
1357 rq_clock(rq_of_rt_rq(rt_rq)));
1359 if (state & TASK_UNINTERRUPTIBLE)
1360 __schedstat_set(p->stats.block_start,
1361 rq_clock(rq_of_rt_rq(rt_rq)));
1365 static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1367 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1368 struct rt_prio_array *array = &rt_rq->active;
1369 struct rt_rq *group_rq = group_rt_rq(rt_se);
1370 struct list_head *queue = array->queue + rt_se_prio(rt_se);
1373 * Don't enqueue the group if its throttled, or when empty.
1374 * The latter is a consequence of the former when a child group
1375 * get throttled and the current group doesn't have any other
1378 if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running)) {
1380 __delist_rt_entity(rt_se, array);
1384 if (move_entity(flags)) {
1385 WARN_ON_ONCE(rt_se->on_list);
1386 if (flags & ENQUEUE_HEAD)
1387 list_add(&rt_se->run_list, queue);
1389 list_add_tail(&rt_se->run_list, queue);
1391 __set_bit(rt_se_prio(rt_se), array->bitmap);
1396 inc_rt_tasks(rt_se, rt_rq);
1399 static void __dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1401 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1402 struct rt_prio_array *array = &rt_rq->active;
1404 if (move_entity(flags)) {
1405 WARN_ON_ONCE(!rt_se->on_list);
1406 __delist_rt_entity(rt_se, array);
1410 dec_rt_tasks(rt_se, rt_rq);
1414 * Because the prio of an upper entry depends on the lower
1415 * entries, we must remove entries top - down.
1417 static void dequeue_rt_stack(struct sched_rt_entity *rt_se, unsigned int flags)
1419 struct sched_rt_entity *back = NULL;
1420 unsigned int rt_nr_running;
1422 for_each_sched_rt_entity(rt_se) {
1427 rt_nr_running = rt_rq_of_se(back)->rt_nr_running;
1429 for (rt_se = back; rt_se; rt_se = rt_se->back) {
1430 if (on_rt_rq(rt_se))
1431 __dequeue_rt_entity(rt_se, flags);
1434 dequeue_top_rt_rq(rt_rq_of_se(back), rt_nr_running);
1437 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1439 struct rq *rq = rq_of_rt_se(rt_se);
1441 update_stats_enqueue_rt(rt_rq_of_se(rt_se), rt_se, flags);
1443 dequeue_rt_stack(rt_se, flags);
1444 for_each_sched_rt_entity(rt_se)
1445 __enqueue_rt_entity(rt_se, flags);
1446 enqueue_top_rt_rq(&rq->rt);
1449 static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1451 struct rq *rq = rq_of_rt_se(rt_se);
1453 update_stats_dequeue_rt(rt_rq_of_se(rt_se), rt_se, flags);
1455 dequeue_rt_stack(rt_se, flags);
1457 for_each_sched_rt_entity(rt_se) {
1458 struct rt_rq *rt_rq = group_rt_rq(rt_se);
1460 if (rt_rq && rt_rq->rt_nr_running)
1461 __enqueue_rt_entity(rt_se, flags);
1463 enqueue_top_rt_rq(&rq->rt);
1467 * Adding/removing a task to/from a priority array:
1470 enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1472 struct sched_rt_entity *rt_se = &p->rt;
1474 if (flags & ENQUEUE_WAKEUP)
1477 check_schedstat_required();
1478 update_stats_wait_start_rt(rt_rq_of_se(rt_se), rt_se);
1480 enqueue_rt_entity(rt_se, flags);
1482 if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
1483 enqueue_pushable_task(rq, p);
1486 static bool dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1488 struct sched_rt_entity *rt_se = &p->rt;
1491 dequeue_rt_entity(rt_se, flags);
1493 dequeue_pushable_task(rq, p);
1499 * Put task to the head or the end of the run list without the overhead of
1500 * dequeue followed by enqueue.
1503 requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
1505 if (on_rt_rq(rt_se)) {
1506 struct rt_prio_array *array = &rt_rq->active;
1507 struct list_head *queue = array->queue + rt_se_prio(rt_se);
1510 list_move(&rt_se->run_list, queue);
1512 list_move_tail(&rt_se->run_list, queue);
1516 static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
1518 struct sched_rt_entity *rt_se = &p->rt;
1519 struct rt_rq *rt_rq;
1521 for_each_sched_rt_entity(rt_se) {
1522 rt_rq = rt_rq_of_se(rt_se);
1523 requeue_rt_entity(rt_rq, rt_se, head);
1527 static void yield_task_rt(struct rq *rq)
1529 requeue_task_rt(rq, rq->curr, 0);
1533 static int find_lowest_rq(struct task_struct *task);
1536 select_task_rq_rt(struct task_struct *p, int cpu, int flags)
1538 struct task_struct *curr, *donor;
1542 /* For anything but wake ups, just return the task_cpu */
1543 if (!(flags & (WF_TTWU | WF_FORK)))
1549 curr = READ_ONCE(rq->curr); /* unlocked access */
1550 donor = READ_ONCE(rq->donor);
1553 * If the current task on @p's runqueue is an RT task, then
1554 * try to see if we can wake this RT task up on another
1555 * runqueue. Otherwise simply start this RT task
1556 * on its current runqueue.
1558 * We want to avoid overloading runqueues. If the woken
1559 * task is a higher priority, then it will stay on this CPU
1560 * and the lower prio task should be moved to another CPU.
1561 * Even though this will probably make the lower prio task
1562 * lose its cache, we do not want to bounce a higher task
1563 * around just because it gave up its CPU, perhaps for a
1566 * For equal prio tasks, we just let the scheduler sort it out.
1568 * Otherwise, just let it ride on the affine RQ and the
1569 * post-schedule router will push the preempted task away
1571 * This test is optimistic, if we get it wrong the load-balancer
1572 * will have to sort it out.
1574 * We take into account the capacity of the CPU to ensure it fits the
1575 * requirement of the task - which is only important on heterogeneous
1576 * systems like big.LITTLE.
1579 unlikely(rt_task(donor)) &&
1580 (curr->nr_cpus_allowed < 2 || donor->prio <= p->prio);
1582 if (test || !rt_task_fits_capacity(p, cpu)) {
1583 int target = find_lowest_rq(p);
1586 * Bail out if we were forcing a migration to find a better
1587 * fitting CPU but our search failed.
1589 if (!test && target != -1 && !rt_task_fits_capacity(p, target))
1593 * Don't bother moving it if the destination CPU is
1594 * not running a lower priority task.
1597 p->prio < cpu_rq(target)->rt.highest_prio.curr)
1608 static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
1610 if (rq->curr->nr_cpus_allowed == 1 ||
1611 !cpupri_find(&rq->rd->cpupri, rq->donor, NULL))
1615 * p is migratable, so let's not schedule it and
1616 * see if it is pushed or pulled somewhere else.
1618 if (p->nr_cpus_allowed != 1 &&
1619 cpupri_find(&rq->rd->cpupri, p, NULL))
1623 * There appear to be other CPUs that can accept
1624 * the current task but none can run 'p', so lets reschedule
1625 * to try and push the current task away:
1627 requeue_task_rt(rq, p, 1);
1631 static int balance_rt(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
1633 if (!on_rt_rq(&p->rt) && need_pull_rt_task(rq, p)) {
1635 * This is OK, because current is on_cpu, which avoids it being
1636 * picked for load-balance and preemption/IRQs are still
1637 * disabled avoiding further scheduler activity on it and we've
1638 * not yet started the picking loop.
1640 rq_unpin_lock(rq, rf);
1642 rq_repin_lock(rq, rf);
1645 return sched_stop_runnable(rq) || sched_dl_runnable(rq) || sched_rt_runnable(rq);
1647 #endif /* CONFIG_SMP */
1650 * Preempt the current task with a newly woken task if needed:
1652 static void wakeup_preempt_rt(struct rq *rq, struct task_struct *p, int flags)
1654 struct task_struct *donor = rq->donor;
1656 if (p->prio < donor->prio) {
1665 * - the newly woken task is of equal priority to the current task
1666 * - the newly woken task is non-migratable while current is migratable
1667 * - current will be preempted on the next reschedule
1669 * we should check to see if current can readily move to a different
1670 * cpu. If so, we will reschedule to allow the push logic to try
1671 * to move current somewhere else, making room for our non-migratable
1674 if (p->prio == donor->prio && !test_tsk_need_resched(rq->curr))
1675 check_preempt_equal_prio(rq, p);
1679 static inline void set_next_task_rt(struct rq *rq, struct task_struct *p, bool first)
1681 struct sched_rt_entity *rt_se = &p->rt;
1682 struct rt_rq *rt_rq = &rq->rt;
1684 p->se.exec_start = rq_clock_task(rq);
1685 if (on_rt_rq(&p->rt))
1686 update_stats_wait_end_rt(rt_rq, rt_se);
1688 /* The running task is never eligible for pushing */
1689 dequeue_pushable_task(rq, p);
1695 * If prev task was rt, put_prev_task() has already updated the
1696 * utilization. We only care of the case where we start to schedule a
1699 if (rq->donor->sched_class != &rt_sched_class)
1700 update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 0);
1702 rt_queue_push_tasks(rq);
1705 static struct sched_rt_entity *pick_next_rt_entity(struct rt_rq *rt_rq)
1707 struct rt_prio_array *array = &rt_rq->active;
1708 struct sched_rt_entity *next = NULL;
1709 struct list_head *queue;
1712 idx = sched_find_first_bit(array->bitmap);
1713 BUG_ON(idx >= MAX_RT_PRIO);
1715 queue = array->queue + idx;
1716 if (SCHED_WARN_ON(list_empty(queue)))
1718 next = list_entry(queue->next, struct sched_rt_entity, run_list);
1723 static struct task_struct *_pick_next_task_rt(struct rq *rq)
1725 struct sched_rt_entity *rt_se;
1726 struct rt_rq *rt_rq = &rq->rt;
1729 rt_se = pick_next_rt_entity(rt_rq);
1730 if (unlikely(!rt_se))
1732 rt_rq = group_rt_rq(rt_se);
1735 return rt_task_of(rt_se);
1738 static struct task_struct *pick_task_rt(struct rq *rq)
1740 struct task_struct *p;
1742 if (!sched_rt_runnable(rq))
1745 p = _pick_next_task_rt(rq);
1750 static void put_prev_task_rt(struct rq *rq, struct task_struct *p, struct task_struct *next)
1752 struct sched_rt_entity *rt_se = &p->rt;
1753 struct rt_rq *rt_rq = &rq->rt;
1755 if (on_rt_rq(&p->rt))
1756 update_stats_wait_start_rt(rt_rq, rt_se);
1760 update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 1);
1763 * The previous task needs to be made eligible for pushing
1764 * if it is still active
1766 if (on_rt_rq(&p->rt) && p->nr_cpus_allowed > 1)
1767 enqueue_pushable_task(rq, p);
1772 /* Only try algorithms three times */
1773 #define RT_MAX_TRIES 3
1776 * Return the highest pushable rq's task, which is suitable to be executed
1777 * on the CPU, NULL otherwise
1779 static struct task_struct *pick_highest_pushable_task(struct rq *rq, int cpu)
1781 struct plist_head *head = &rq->rt.pushable_tasks;
1782 struct task_struct *p;
1784 if (!has_pushable_tasks(rq))
1787 plist_for_each_entry(p, head, pushable_tasks) {
1788 if (task_is_pushable(rq, p, cpu))
1795 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
1797 static int find_lowest_rq(struct task_struct *task)
1799 struct sched_domain *sd;
1800 struct cpumask *lowest_mask = this_cpu_cpumask_var_ptr(local_cpu_mask);
1801 int this_cpu = smp_processor_id();
1802 int cpu = task_cpu(task);
1805 /* Make sure the mask is initialized first */
1806 if (unlikely(!lowest_mask))
1809 if (task->nr_cpus_allowed == 1)
1810 return -1; /* No other targets possible */
1813 * If we're on asym system ensure we consider the different capacities
1814 * of the CPUs when searching for the lowest_mask.
1816 if (sched_asym_cpucap_active()) {
1818 ret = cpupri_find_fitness(&task_rq(task)->rd->cpupri,
1820 rt_task_fits_capacity);
1823 ret = cpupri_find(&task_rq(task)->rd->cpupri,
1828 return -1; /* No targets found */
1831 * At this point we have built a mask of CPUs representing the
1832 * lowest priority tasks in the system. Now we want to elect
1833 * the best one based on our affinity and topology.
1835 * We prioritize the last CPU that the task executed on since
1836 * it is most likely cache-hot in that location.
1838 if (cpumask_test_cpu(cpu, lowest_mask))
1842 * Otherwise, we consult the sched_domains span maps to figure
1843 * out which CPU is logically closest to our hot cache data.
1845 if (!cpumask_test_cpu(this_cpu, lowest_mask))
1846 this_cpu = -1; /* Skip this_cpu opt if not among lowest */
1849 for_each_domain(cpu, sd) {
1850 if (sd->flags & SD_WAKE_AFFINE) {
1854 * "this_cpu" is cheaper to preempt than a
1857 if (this_cpu != -1 &&
1858 cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1863 best_cpu = cpumask_any_and_distribute(lowest_mask,
1864 sched_domain_span(sd));
1865 if (best_cpu < nr_cpu_ids) {
1874 * And finally, if there were no matches within the domains
1875 * just give the caller *something* to work with from the compatible
1881 cpu = cpumask_any_distribute(lowest_mask);
1882 if (cpu < nr_cpu_ids)
1888 /* Will lock the rq it finds */
1889 static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
1891 struct rq *lowest_rq = NULL;
1895 for (tries = 0; tries < RT_MAX_TRIES; tries++) {
1896 cpu = find_lowest_rq(task);
1898 if ((cpu == -1) || (cpu == rq->cpu))
1901 lowest_rq = cpu_rq(cpu);
1903 if (lowest_rq->rt.highest_prio.curr <= task->prio) {
1905 * Target rq has tasks of equal or higher priority,
1906 * retrying does not release any lock and is unlikely
1907 * to yield a different result.
1913 /* if the prio of this runqueue changed, try again */
1914 if (double_lock_balance(rq, lowest_rq)) {
1916 * We had to unlock the run queue. In
1917 * the mean time, task could have
1918 * migrated already or had its affinity changed.
1919 * Also make sure that it wasn't scheduled on its rq.
1920 * It is possible the task was scheduled, set
1921 * "migrate_disabled" and then got preempted, so we must
1922 * check the task migration disable flag here too.
1924 if (unlikely(task_rq(task) != rq ||
1925 !cpumask_test_cpu(lowest_rq->cpu, &task->cpus_mask) ||
1926 task_on_cpu(rq, task) ||
1928 is_migration_disabled(task) ||
1929 !task_on_rq_queued(task))) {
1931 double_unlock_balance(rq, lowest_rq);
1937 /* If this rq is still suitable use it. */
1938 if (lowest_rq->rt.highest_prio.curr > task->prio)
1942 double_unlock_balance(rq, lowest_rq);
1949 static struct task_struct *pick_next_pushable_task(struct rq *rq)
1951 struct task_struct *p;
1953 if (!has_pushable_tasks(rq))
1956 p = plist_first_entry(&rq->rt.pushable_tasks,
1957 struct task_struct, pushable_tasks);
1959 BUG_ON(rq->cpu != task_cpu(p));
1960 BUG_ON(task_current(rq, p));
1961 BUG_ON(task_current_donor(rq, p));
1962 BUG_ON(p->nr_cpus_allowed <= 1);
1964 BUG_ON(!task_on_rq_queued(p));
1965 BUG_ON(!rt_task(p));
1971 * If the current CPU has more than one RT task, see if the non
1972 * running task can migrate over to a CPU that is running a task
1973 * of lesser priority.
1975 static int push_rt_task(struct rq *rq, bool pull)
1977 struct task_struct *next_task;
1978 struct rq *lowest_rq;
1981 if (!rq->rt.overloaded)
1984 next_task = pick_next_pushable_task(rq);
1990 * It's possible that the next_task slipped in of
1991 * higher priority than current. If that's the case
1992 * just reschedule current.
1994 if (unlikely(next_task->prio < rq->donor->prio)) {
1999 if (is_migration_disabled(next_task)) {
2000 struct task_struct *push_task = NULL;
2003 if (!pull || rq->push_busy)
2007 * Invoking find_lowest_rq() on anything but an RT task doesn't
2008 * make sense. Per the above priority check, curr has to
2009 * be of higher priority than next_task, so no need to
2010 * reschedule when bailing out.
2012 * Note that the stoppers are masqueraded as SCHED_FIFO
2013 * (cf. sched_set_stop_task()), so we can't rely on rt_task().
2015 if (rq->donor->sched_class != &rt_sched_class)
2018 cpu = find_lowest_rq(rq->curr);
2019 if (cpu == -1 || cpu == rq->cpu)
2023 * Given we found a CPU with lower priority than @next_task,
2024 * therefore it should be running. However we cannot migrate it
2025 * to this other CPU, instead attempt to push the current
2026 * running task on this CPU away.
2028 push_task = get_push_task(rq);
2031 raw_spin_rq_unlock(rq);
2032 stop_one_cpu_nowait(rq->cpu, push_cpu_stop,
2033 push_task, &rq->push_work);
2035 raw_spin_rq_lock(rq);
2041 if (WARN_ON(next_task == rq->curr))
2044 /* We might release rq lock */
2045 get_task_struct(next_task);
2047 /* find_lock_lowest_rq locks the rq if found */
2048 lowest_rq = find_lock_lowest_rq(next_task, rq);
2050 struct task_struct *task;
2052 * find_lock_lowest_rq releases rq->lock
2053 * so it is possible that next_task has migrated.
2055 * We need to make sure that the task is still on the same
2056 * run-queue and is also still the next task eligible for
2059 task = pick_next_pushable_task(rq);
2060 if (task == next_task) {
2062 * The task hasn't migrated, and is still the next
2063 * eligible task, but we failed to find a run-queue
2064 * to push it to. Do not retry in this case, since
2065 * other CPUs will pull from us when ready.
2071 /* No more tasks, just exit */
2075 * Something has shifted, try again.
2077 put_task_struct(next_task);
2082 move_queued_task_locked(rq, lowest_rq, next_task);
2083 resched_curr(lowest_rq);
2086 double_unlock_balance(rq, lowest_rq);
2088 put_task_struct(next_task);
2093 static void push_rt_tasks(struct rq *rq)
2095 /* push_rt_task will return true if it moved an RT */
2096 while (push_rt_task(rq, false))
2100 #ifdef HAVE_RT_PUSH_IPI
2103 * When a high priority task schedules out from a CPU and a lower priority
2104 * task is scheduled in, a check is made to see if there's any RT tasks
2105 * on other CPUs that are waiting to run because a higher priority RT task
2106 * is currently running on its CPU. In this case, the CPU with multiple RT
2107 * tasks queued on it (overloaded) needs to be notified that a CPU has opened
2108 * up that may be able to run one of its non-running queued RT tasks.
2110 * All CPUs with overloaded RT tasks need to be notified as there is currently
2111 * no way to know which of these CPUs have the highest priority task waiting
2112 * to run. Instead of trying to take a spinlock on each of these CPUs,
2113 * which has shown to cause large latency when done on machines with many
2114 * CPUs, sending an IPI to the CPUs to have them push off the overloaded
2115 * RT tasks waiting to run.
2117 * Just sending an IPI to each of the CPUs is also an issue, as on large
2118 * count CPU machines, this can cause an IPI storm on a CPU, especially
2119 * if its the only CPU with multiple RT tasks queued, and a large number
2120 * of CPUs scheduling a lower priority task at the same time.
2122 * Each root domain has its own IRQ work function that can iterate over
2123 * all CPUs with RT overloaded tasks. Since all CPUs with overloaded RT
2124 * task must be checked if there's one or many CPUs that are lowering
2125 * their priority, there's a single IRQ work iterator that will try to
2126 * push off RT tasks that are waiting to run.
2128 * When a CPU schedules a lower priority task, it will kick off the
2129 * IRQ work iterator that will jump to each CPU with overloaded RT tasks.
2130 * As it only takes the first CPU that schedules a lower priority task
2131 * to start the process, the rto_start variable is incremented and if
2132 * the atomic result is one, then that CPU will try to take the rto_lock.
2133 * This prevents high contention on the lock as the process handles all
2134 * CPUs scheduling lower priority tasks.
2136 * All CPUs that are scheduling a lower priority task will increment the
2137 * rt_loop_next variable. This will make sure that the IRQ work iterator
2138 * checks all RT overloaded CPUs whenever a CPU schedules a new lower
2139 * priority task, even if the iterator is in the middle of a scan. Incrementing
2140 * the rt_loop_next will cause the iterator to perform another scan.
2143 static int rto_next_cpu(struct root_domain *rd)
2149 * When starting the IPI RT pushing, the rto_cpu is set to -1,
2150 * rt_next_cpu() will simply return the first CPU found in
2153 * If rto_next_cpu() is called with rto_cpu is a valid CPU, it
2154 * will return the next CPU found in the rto_mask.
2156 * If there are no more CPUs left in the rto_mask, then a check is made
2157 * against rto_loop and rto_loop_next. rto_loop is only updated with
2158 * the rto_lock held, but any CPU may increment the rto_loop_next
2159 * without any locking.
2163 /* When rto_cpu is -1 this acts like cpumask_first() */
2164 cpu = cpumask_next(rd->rto_cpu, rd->rto_mask);
2168 if (cpu < nr_cpu_ids)
2174 * ACQUIRE ensures we see the @rto_mask changes
2175 * made prior to the @next value observed.
2177 * Matches WMB in rt_set_overload().
2179 next = atomic_read_acquire(&rd->rto_loop_next);
2181 if (rd->rto_loop == next)
2184 rd->rto_loop = next;
2190 static inline bool rto_start_trylock(atomic_t *v)
2192 return !atomic_cmpxchg_acquire(v, 0, 1);
2195 static inline void rto_start_unlock(atomic_t *v)
2197 atomic_set_release(v, 0);
2200 static void tell_cpu_to_push(struct rq *rq)
2204 /* Keep the loop going if the IPI is currently active */
2205 atomic_inc(&rq->rd->rto_loop_next);
2207 /* Only one CPU can initiate a loop at a time */
2208 if (!rto_start_trylock(&rq->rd->rto_loop_start))
2211 raw_spin_lock(&rq->rd->rto_lock);
2214 * The rto_cpu is updated under the lock, if it has a valid CPU
2215 * then the IPI is still running and will continue due to the
2216 * update to loop_next, and nothing needs to be done here.
2217 * Otherwise it is finishing up and an IPI needs to be sent.
2219 if (rq->rd->rto_cpu < 0)
2220 cpu = rto_next_cpu(rq->rd);
2222 raw_spin_unlock(&rq->rd->rto_lock);
2224 rto_start_unlock(&rq->rd->rto_loop_start);
2227 /* Make sure the rd does not get freed while pushing */
2228 sched_get_rd(rq->rd);
2229 irq_work_queue_on(&rq->rd->rto_push_work, cpu);
2233 /* Called from hardirq context */
2234 void rto_push_irq_work_func(struct irq_work *work)
2236 struct root_domain *rd =
2237 container_of(work, struct root_domain, rto_push_work);
2244 * We do not need to grab the lock to check for has_pushable_tasks.
2245 * When it gets updated, a check is made if a push is possible.
2247 if (has_pushable_tasks(rq)) {
2248 raw_spin_rq_lock(rq);
2249 while (push_rt_task(rq, true))
2251 raw_spin_rq_unlock(rq);
2254 raw_spin_lock(&rd->rto_lock);
2256 /* Pass the IPI to the next rt overloaded queue */
2257 cpu = rto_next_cpu(rd);
2259 raw_spin_unlock(&rd->rto_lock);
2266 /* Try the next RT overloaded CPU */
2267 irq_work_queue_on(&rd->rto_push_work, cpu);
2269 #endif /* HAVE_RT_PUSH_IPI */
2271 static void pull_rt_task(struct rq *this_rq)
2273 int this_cpu = this_rq->cpu, cpu;
2274 bool resched = false;
2275 struct task_struct *p, *push_task;
2277 int rt_overload_count = rt_overloaded(this_rq);
2279 if (likely(!rt_overload_count))
2283 * Match the barrier from rt_set_overloaded; this guarantees that if we
2284 * see overloaded we must also see the rto_mask bit.
2288 /* If we are the only overloaded CPU do nothing */
2289 if (rt_overload_count == 1 &&
2290 cpumask_test_cpu(this_rq->cpu, this_rq->rd->rto_mask))
2293 #ifdef HAVE_RT_PUSH_IPI
2294 if (sched_feat(RT_PUSH_IPI)) {
2295 tell_cpu_to_push(this_rq);
2300 for_each_cpu(cpu, this_rq->rd->rto_mask) {
2301 if (this_cpu == cpu)
2304 src_rq = cpu_rq(cpu);
2307 * Don't bother taking the src_rq->lock if the next highest
2308 * task is known to be lower-priority than our current task.
2309 * This may look racy, but if this value is about to go
2310 * logically higher, the src_rq will push this task away.
2311 * And if its going logically lower, we do not care
2313 if (src_rq->rt.highest_prio.next >=
2314 this_rq->rt.highest_prio.curr)
2318 * We can potentially drop this_rq's lock in
2319 * double_lock_balance, and another CPU could
2323 double_lock_balance(this_rq, src_rq);
2326 * We can pull only a task, which is pushable
2327 * on its rq, and no others.
2329 p = pick_highest_pushable_task(src_rq, this_cpu);
2332 * Do we have an RT task that preempts
2333 * the to-be-scheduled task?
2335 if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
2336 WARN_ON(p == src_rq->curr);
2337 WARN_ON(!task_on_rq_queued(p));
2340 * There's a chance that p is higher in priority
2341 * than what's currently running on its CPU.
2342 * This is just that p is waking up and hasn't
2343 * had a chance to schedule. We only pull
2344 * p if it is lower in priority than the
2345 * current task on the run queue
2347 if (p->prio < src_rq->donor->prio)
2350 if (is_migration_disabled(p)) {
2351 push_task = get_push_task(src_rq);
2353 move_queued_task_locked(src_rq, this_rq, p);
2357 * We continue with the search, just in
2358 * case there's an even higher prio task
2359 * in another runqueue. (low likelihood
2364 double_unlock_balance(this_rq, src_rq);
2368 raw_spin_rq_unlock(this_rq);
2369 stop_one_cpu_nowait(src_rq->cpu, push_cpu_stop,
2370 push_task, &src_rq->push_work);
2372 raw_spin_rq_lock(this_rq);
2377 resched_curr(this_rq);
2381 * If we are not running and we are not going to reschedule soon, we should
2382 * try to push tasks away now
2384 static void task_woken_rt(struct rq *rq, struct task_struct *p)
2386 bool need_to_push = !task_on_cpu(rq, p) &&
2387 !test_tsk_need_resched(rq->curr) &&
2388 p->nr_cpus_allowed > 1 &&
2389 (dl_task(rq->donor) || rt_task(rq->donor)) &&
2390 (rq->curr->nr_cpus_allowed < 2 ||
2391 rq->donor->prio <= p->prio);
2397 /* Assumes rq->lock is held */
2398 static void rq_online_rt(struct rq *rq)
2400 if (rq->rt.overloaded)
2401 rt_set_overload(rq);
2403 __enable_runtime(rq);
2405 cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
2408 /* Assumes rq->lock is held */
2409 static void rq_offline_rt(struct rq *rq)
2411 if (rq->rt.overloaded)
2412 rt_clear_overload(rq);
2414 __disable_runtime(rq);
2416 cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
2420 * When switch from the rt queue, we bring ourselves to a position
2421 * that we might want to pull RT tasks from other runqueues.
2423 static void switched_from_rt(struct rq *rq, struct task_struct *p)
2426 * If there are other RT tasks then we will reschedule
2427 * and the scheduling of the other RT tasks will handle
2428 * the balancing. But if we are the last RT task
2429 * we may need to handle the pulling of RT tasks
2432 if (!task_on_rq_queued(p) || rq->rt.rt_nr_running)
2435 rt_queue_pull_task(rq);
2438 void __init init_sched_rt_class(void)
2442 for_each_possible_cpu(i) {
2443 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
2444 GFP_KERNEL, cpu_to_node(i));
2447 #endif /* CONFIG_SMP */
2450 * When switching a task to RT, we may overload the runqueue
2451 * with RT tasks. In this case we try to push them off to
2454 static void switched_to_rt(struct rq *rq, struct task_struct *p)
2457 * If we are running, update the avg_rt tracking, as the running time
2458 * will now on be accounted into the latter.
2460 if (task_current(rq, p)) {
2461 update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 0);
2466 * If we are not running we may need to preempt the current
2467 * running task. If that current running task is also an RT task
2468 * then see if we can move to another run queue.
2470 if (task_on_rq_queued(p)) {
2472 if (p->nr_cpus_allowed > 1 && rq->rt.overloaded)
2473 rt_queue_push_tasks(rq);
2474 #endif /* CONFIG_SMP */
2475 if (p->prio < rq->donor->prio && cpu_online(cpu_of(rq)))
2481 * Priority of the task has changed. This may cause
2482 * us to initiate a push or pull.
2485 prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
2487 if (!task_on_rq_queued(p))
2490 if (task_current_donor(rq, p)) {
2493 * If our priority decreases while running, we
2494 * may need to pull tasks to this runqueue.
2496 if (oldprio < p->prio)
2497 rt_queue_pull_task(rq);
2500 * If there's a higher priority task waiting to run
2503 if (p->prio > rq->rt.highest_prio.curr)
2506 /* For UP simply resched on drop of prio */
2507 if (oldprio < p->prio)
2509 #endif /* CONFIG_SMP */
2512 * This task is not running, but if it is
2513 * greater than the current running task
2516 if (p->prio < rq->donor->prio)
2521 #ifdef CONFIG_POSIX_TIMERS
2522 static void watchdog(struct rq *rq, struct task_struct *p)
2524 unsigned long soft, hard;
2526 /* max may change after cur was read, this will be fixed next tick */
2527 soft = task_rlimit(p, RLIMIT_RTTIME);
2528 hard = task_rlimit_max(p, RLIMIT_RTTIME);
2530 if (soft != RLIM_INFINITY) {
2533 if (p->rt.watchdog_stamp != jiffies) {
2535 p->rt.watchdog_stamp = jiffies;
2538 next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
2539 if (p->rt.timeout > next) {
2540 posix_cputimers_rt_watchdog(&p->posix_cputimers,
2541 p->se.sum_exec_runtime);
2546 static inline void watchdog(struct rq *rq, struct task_struct *p) { }
2550 * scheduler tick hitting a task of our scheduling class.
2552 * NOTE: This function can be called remotely by the tick offload that
2553 * goes along full dynticks. Therefore no local assumption can be made
2554 * and everything must be accessed through the @rq and @curr passed in
2557 static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
2559 struct sched_rt_entity *rt_se = &p->rt;
2562 update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 1);
2567 * RR tasks need a special form of time-slice management.
2568 * FIFO tasks have no timeslices.
2570 if (p->policy != SCHED_RR)
2573 if (--p->rt.time_slice)
2576 p->rt.time_slice = sched_rr_timeslice;
2579 * Requeue to the end of queue if we (and all of our ancestors) are not
2580 * the only element on the queue
2582 for_each_sched_rt_entity(rt_se) {
2583 if (rt_se->run_list.prev != rt_se->run_list.next) {
2584 requeue_task_rt(rq, p, 0);
2591 static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
2594 * Time slice is 0 for SCHED_FIFO tasks
2596 if (task->policy == SCHED_RR)
2597 return sched_rr_timeslice;
2602 #ifdef CONFIG_SCHED_CORE
2603 static int task_is_throttled_rt(struct task_struct *p, int cpu)
2605 struct rt_rq *rt_rq;
2607 #ifdef CONFIG_RT_GROUP_SCHED
2608 rt_rq = task_group(p)->rt_rq[cpu];
2610 rt_rq = &cpu_rq(cpu)->rt;
2613 return rt_rq_throttled(rt_rq);
2617 DEFINE_SCHED_CLASS(rt) = {
2619 .enqueue_task = enqueue_task_rt,
2620 .dequeue_task = dequeue_task_rt,
2621 .yield_task = yield_task_rt,
2623 .wakeup_preempt = wakeup_preempt_rt,
2625 .pick_task = pick_task_rt,
2626 .put_prev_task = put_prev_task_rt,
2627 .set_next_task = set_next_task_rt,
2630 .balance = balance_rt,
2631 .select_task_rq = select_task_rq_rt,
2632 .set_cpus_allowed = set_cpus_allowed_common,
2633 .rq_online = rq_online_rt,
2634 .rq_offline = rq_offline_rt,
2635 .task_woken = task_woken_rt,
2636 .switched_from = switched_from_rt,
2637 .find_lock_rq = find_lock_lowest_rq,
2640 .task_tick = task_tick_rt,
2642 .get_rr_interval = get_rr_interval_rt,
2644 .prio_changed = prio_changed_rt,
2645 .switched_to = switched_to_rt,
2647 .update_curr = update_curr_rt,
2649 #ifdef CONFIG_SCHED_CORE
2650 .task_is_throttled = task_is_throttled_rt,
2653 #ifdef CONFIG_UCLAMP_TASK
2654 .uclamp_enabled = 1,
2658 #ifdef CONFIG_RT_GROUP_SCHED
2660 * Ensure that the real time constraints are schedulable.
2662 static DEFINE_MUTEX(rt_constraints_mutex);
2664 static inline int tg_has_rt_tasks(struct task_group *tg)
2666 struct task_struct *task;
2667 struct css_task_iter it;
2671 * Autogroups do not have RT tasks; see autogroup_create().
2673 if (task_group_is_autogroup(tg))
2676 css_task_iter_start(&tg->css, 0, &it);
2677 while (!ret && (task = css_task_iter_next(&it)))
2678 ret |= rt_task(task);
2679 css_task_iter_end(&it);
2684 struct rt_schedulable_data {
2685 struct task_group *tg;
2690 static int tg_rt_schedulable(struct task_group *tg, void *data)
2692 struct rt_schedulable_data *d = data;
2693 struct task_group *child;
2694 unsigned long total, sum = 0;
2695 u64 period, runtime;
2697 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
2698 runtime = tg->rt_bandwidth.rt_runtime;
2701 period = d->rt_period;
2702 runtime = d->rt_runtime;
2706 * Cannot have more runtime than the period.
2708 if (runtime > period && runtime != RUNTIME_INF)
2712 * Ensure we don't starve existing RT tasks if runtime turns zero.
2714 if (rt_bandwidth_enabled() && !runtime &&
2715 tg->rt_bandwidth.rt_runtime && tg_has_rt_tasks(tg))
2718 total = to_ratio(period, runtime);
2721 * Nobody can have more than the global setting allows.
2723 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
2727 * The sum of our children's runtime should not exceed our own.
2729 list_for_each_entry_rcu(child, &tg->children, siblings) {
2730 period = ktime_to_ns(child->rt_bandwidth.rt_period);
2731 runtime = child->rt_bandwidth.rt_runtime;
2733 if (child == d->tg) {
2734 period = d->rt_period;
2735 runtime = d->rt_runtime;
2738 sum += to_ratio(period, runtime);
2747 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
2751 struct rt_schedulable_data data = {
2753 .rt_period = period,
2754 .rt_runtime = runtime,
2758 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
2764 static int tg_set_rt_bandwidth(struct task_group *tg,
2765 u64 rt_period, u64 rt_runtime)
2770 * Disallowing the root group RT runtime is BAD, it would disallow the
2771 * kernel creating (and or operating) RT threads.
2773 if (tg == &root_task_group && rt_runtime == 0)
2776 /* No period doesn't make any sense. */
2781 * Bound quota to defend quota against overflow during bandwidth shift.
2783 if (rt_runtime != RUNTIME_INF && rt_runtime > max_rt_runtime)
2786 mutex_lock(&rt_constraints_mutex);
2787 err = __rt_schedulable(tg, rt_period, rt_runtime);
2791 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
2792 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
2793 tg->rt_bandwidth.rt_runtime = rt_runtime;
2795 for_each_possible_cpu(i) {
2796 struct rt_rq *rt_rq = tg->rt_rq[i];
2798 raw_spin_lock(&rt_rq->rt_runtime_lock);
2799 rt_rq->rt_runtime = rt_runtime;
2800 raw_spin_unlock(&rt_rq->rt_runtime_lock);
2802 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
2804 mutex_unlock(&rt_constraints_mutex);
2809 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
2811 u64 rt_runtime, rt_period;
2813 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
2814 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
2815 if (rt_runtime_us < 0)
2816 rt_runtime = RUNTIME_INF;
2817 else if ((u64)rt_runtime_us > U64_MAX / NSEC_PER_USEC)
2820 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
2823 long sched_group_rt_runtime(struct task_group *tg)
2827 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
2830 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
2831 do_div(rt_runtime_us, NSEC_PER_USEC);
2832 return rt_runtime_us;
2835 int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
2837 u64 rt_runtime, rt_period;
2839 if (rt_period_us > U64_MAX / NSEC_PER_USEC)
2842 rt_period = rt_period_us * NSEC_PER_USEC;
2843 rt_runtime = tg->rt_bandwidth.rt_runtime;
2845 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
2848 long sched_group_rt_period(struct task_group *tg)
2852 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
2853 do_div(rt_period_us, NSEC_PER_USEC);
2854 return rt_period_us;
2857 #ifdef CONFIG_SYSCTL
2858 static int sched_rt_global_constraints(void)
2862 mutex_lock(&rt_constraints_mutex);
2863 ret = __rt_schedulable(NULL, 0, 0);
2864 mutex_unlock(&rt_constraints_mutex);
2868 #endif /* CONFIG_SYSCTL */
2870 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
2872 /* Don't accept real-time tasks when there is no way for them to run */
2873 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
2879 #else /* !CONFIG_RT_GROUP_SCHED */
2881 #ifdef CONFIG_SYSCTL
2882 static int sched_rt_global_constraints(void)
2886 #endif /* CONFIG_SYSCTL */
2887 #endif /* CONFIG_RT_GROUP_SCHED */
2889 #ifdef CONFIG_SYSCTL
2890 static int sched_rt_global_validate(void)
2892 if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
2893 ((sysctl_sched_rt_runtime > sysctl_sched_rt_period) ||
2894 ((u64)sysctl_sched_rt_runtime *
2895 NSEC_PER_USEC > max_rt_runtime)))
2901 static void sched_rt_do_global(void)
2905 static int sched_rt_handler(const struct ctl_table *table, int write, void *buffer,
2906 size_t *lenp, loff_t *ppos)
2908 int old_period, old_runtime;
2909 static DEFINE_MUTEX(mutex);
2913 old_period = sysctl_sched_rt_period;
2914 old_runtime = sysctl_sched_rt_runtime;
2916 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2918 if (!ret && write) {
2919 ret = sched_rt_global_validate();
2923 ret = sched_dl_global_validate();
2927 ret = sched_rt_global_constraints();
2931 sched_rt_do_global();
2932 sched_dl_do_global();
2936 sysctl_sched_rt_period = old_period;
2937 sysctl_sched_rt_runtime = old_runtime;
2939 mutex_unlock(&mutex);
2944 static int sched_rr_handler(const struct ctl_table *table, int write, void *buffer,
2945 size_t *lenp, loff_t *ppos)
2948 static DEFINE_MUTEX(mutex);
2951 ret = proc_dointvec(table, write, buffer, lenp, ppos);
2953 * Make sure that internally we keep jiffies.
2954 * Also, writing zero resets the time-slice to default:
2956 if (!ret && write) {
2957 sched_rr_timeslice =
2958 sysctl_sched_rr_timeslice <= 0 ? RR_TIMESLICE :
2959 msecs_to_jiffies(sysctl_sched_rr_timeslice);
2961 if (sysctl_sched_rr_timeslice <= 0)
2962 sysctl_sched_rr_timeslice = jiffies_to_msecs(RR_TIMESLICE);
2964 mutex_unlock(&mutex);
2968 #endif /* CONFIG_SYSCTL */
2970 #ifdef CONFIG_SCHED_DEBUG
2971 void print_rt_stats(struct seq_file *m, int cpu)
2974 struct rt_rq *rt_rq;
2977 for_each_rt_rq(rt_rq, iter, cpu_rq(cpu))
2978 print_rt_rq(m, cpu, rt_rq);
2981 #endif /* CONFIG_SCHED_DEBUG */