1 // SPDX-License-Identifier: GPL-2.0
3 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
7 * Interactivity improvements by Mike Galbraith
10 * Various enhancements by Dmitry Adamushko.
13 * Group scheduling enhancements by Srivatsa Vaddagiri
14 * Copyright IBM Corporation, 2007
17 * Scaled math optimizations by Thomas Gleixner
20 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
21 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
23 #include <linux/energy_model.h>
24 #include <linux/mmap_lock.h>
25 #include <linux/hugetlb_inline.h>
26 #include <linux/jiffies.h>
27 #include <linux/mm_api.h>
28 #include <linux/highmem.h>
29 #include <linux/spinlock_api.h>
30 #include <linux/cpumask_api.h>
31 #include <linux/lockdep_api.h>
32 #include <linux/softirq.h>
33 #include <linux/refcount_api.h>
34 #include <linux/topology.h>
35 #include <linux/sched/clock.h>
36 #include <linux/sched/cond_resched.h>
37 #include <linux/sched/cputime.h>
38 #include <linux/sched/isolation.h>
39 #include <linux/sched/nohz.h>
41 #include <linux/cpuidle.h>
42 #include <linux/interrupt.h>
43 #include <linux/memory-tiers.h>
44 #include <linux/mempolicy.h>
45 #include <linux/mutex_api.h>
46 #include <linux/profile.h>
47 #include <linux/psi.h>
48 #include <linux/ratelimit.h>
49 #include <linux/task_work.h>
50 #include <linux/rbtree_augmented.h>
52 #include <asm/switch_to.h>
56 #include "autogroup.h"
59 * The initial- and re-scaling of tunables is configurable
63 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
64 * SCHED_TUNABLESCALING_LOG - scaled logarithmically, *1+ilog(ncpus)
65 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
67 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
69 unsigned int sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
72 * Minimal preemption granularity for CPU-bound tasks:
74 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
76 unsigned int sysctl_sched_base_slice = 750000ULL;
77 static unsigned int normalized_sysctl_sched_base_slice = 750000ULL;
79 const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
81 static int __init setup_sched_thermal_decay_shift(char *str)
83 pr_warn("Ignoring the deprecated sched_thermal_decay_shift= option\n");
86 __setup("sched_thermal_decay_shift=", setup_sched_thermal_decay_shift);
90 * For asym packing, by default the lower numbered CPU has higher priority.
92 int __weak arch_asym_cpu_priority(int cpu)
98 * The margin used when comparing utilization with CPU capacity.
102 #define fits_capacity(cap, max) ((cap) * 1280 < (max) * 1024)
105 * The margin used when comparing CPU capacities.
106 * is 'cap1' noticeably greater than 'cap2'
110 #define capacity_greater(cap1, cap2) ((cap1) * 1024 > (cap2) * 1078)
113 #ifdef CONFIG_CFS_BANDWIDTH
115 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
116 * each time a cfs_rq requests quota.
118 * Note: in the case that the slice exceeds the runtime remaining (either due
119 * to consumption or the quota being specified to be smaller than the slice)
120 * we will always only issue the remaining available time.
122 * (default: 5 msec, units: microseconds)
124 static unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
127 #ifdef CONFIG_NUMA_BALANCING
128 /* Restrict the NUMA promotion throughput (MB/s) for each target node. */
129 static unsigned int sysctl_numa_balancing_promote_rate_limit = 65536;
133 static struct ctl_table sched_fair_sysctls[] = {
134 #ifdef CONFIG_CFS_BANDWIDTH
136 .procname = "sched_cfs_bandwidth_slice_us",
137 .data = &sysctl_sched_cfs_bandwidth_slice,
138 .maxlen = sizeof(unsigned int),
140 .proc_handler = proc_dointvec_minmax,
141 .extra1 = SYSCTL_ONE,
144 #ifdef CONFIG_NUMA_BALANCING
146 .procname = "numa_balancing_promote_rate_limit_MBps",
147 .data = &sysctl_numa_balancing_promote_rate_limit,
148 .maxlen = sizeof(unsigned int),
150 .proc_handler = proc_dointvec_minmax,
151 .extra1 = SYSCTL_ZERO,
153 #endif /* CONFIG_NUMA_BALANCING */
156 static int __init sched_fair_sysctl_init(void)
158 register_sysctl_init("kernel", sched_fair_sysctls);
161 late_initcall(sched_fair_sysctl_init);
164 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
170 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
176 static inline void update_load_set(struct load_weight *lw, unsigned long w)
183 * Increase the granularity value when there are more CPUs,
184 * because with more CPUs the 'effective latency' as visible
185 * to users decreases. But the relationship is not linear,
186 * so pick a second-best guess by going with the log2 of the
189 * This idea comes from the SD scheduler of Con Kolivas:
191 static unsigned int get_update_sysctl_factor(void)
193 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
196 switch (sysctl_sched_tunable_scaling) {
197 case SCHED_TUNABLESCALING_NONE:
200 case SCHED_TUNABLESCALING_LINEAR:
203 case SCHED_TUNABLESCALING_LOG:
205 factor = 1 + ilog2(cpus);
212 static void update_sysctl(void)
214 unsigned int factor = get_update_sysctl_factor();
216 #define SET_SYSCTL(name) \
217 (sysctl_##name = (factor) * normalized_sysctl_##name)
218 SET_SYSCTL(sched_base_slice);
222 void __init sched_init_granularity(void)
227 #define WMULT_CONST (~0U)
228 #define WMULT_SHIFT 32
230 static void __update_inv_weight(struct load_weight *lw)
234 if (likely(lw->inv_weight))
237 w = scale_load_down(lw->weight);
239 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
241 else if (unlikely(!w))
242 lw->inv_weight = WMULT_CONST;
244 lw->inv_weight = WMULT_CONST / w;
248 * delta_exec * weight / lw.weight
250 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
252 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
253 * we're guaranteed shift stays positive because inv_weight is guaranteed to
254 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
256 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
257 * weight/lw.weight <= 1, and therefore our shift will also be positive.
259 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
261 u64 fact = scale_load_down(weight);
262 u32 fact_hi = (u32)(fact >> 32);
263 int shift = WMULT_SHIFT;
266 __update_inv_weight(lw);
268 if (unlikely(fact_hi)) {
274 fact = mul_u32_u32(fact, lw->inv_weight);
276 fact_hi = (u32)(fact >> 32);
283 return mul_u64_u32_shr(delta_exec, fact, shift);
289 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
291 if (unlikely(se->load.weight != NICE_0_LOAD))
292 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
297 const struct sched_class fair_sched_class;
299 /**************************************************************
300 * CFS operations on generic schedulable entities:
303 #ifdef CONFIG_FAIR_GROUP_SCHED
305 /* Walk up scheduling entities hierarchy */
306 #define for_each_sched_entity(se) \
307 for (; se; se = se->parent)
309 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
311 struct rq *rq = rq_of(cfs_rq);
312 int cpu = cpu_of(rq);
315 return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list;
320 * Ensure we either appear before our parent (if already
321 * enqueued) or force our parent to appear after us when it is
322 * enqueued. The fact that we always enqueue bottom-up
323 * reduces this to two cases and a special case for the root
324 * cfs_rq. Furthermore, it also means that we will always reset
325 * tmp_alone_branch either when the branch is connected
326 * to a tree or when we reach the top of the tree
328 if (cfs_rq->tg->parent &&
329 cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
331 * If parent is already on the list, we add the child
332 * just before. Thanks to circular linked property of
333 * the list, this means to put the child at the tail
334 * of the list that starts by parent.
336 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
337 &(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
339 * The branch is now connected to its tree so we can
340 * reset tmp_alone_branch to the beginning of the
343 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
347 if (!cfs_rq->tg->parent) {
349 * cfs rq without parent should be put
350 * at the tail of the list.
352 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
353 &rq->leaf_cfs_rq_list);
355 * We have reach the top of a tree so we can reset
356 * tmp_alone_branch to the beginning of the list.
358 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
363 * The parent has not already been added so we want to
364 * make sure that it will be put after us.
365 * tmp_alone_branch points to the begin of the branch
366 * where we will add parent.
368 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch);
370 * update tmp_alone_branch to points to the new begin
373 rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
377 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
379 if (cfs_rq->on_list) {
380 struct rq *rq = rq_of(cfs_rq);
383 * With cfs_rq being unthrottled/throttled during an enqueue,
384 * it can happen the tmp_alone_branch points to the leaf that
385 * we finally want to delete. In this case, tmp_alone_branch moves
386 * to the prev element but it will point to rq->leaf_cfs_rq_list
387 * at the end of the enqueue.
389 if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list)
390 rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev;
392 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
397 static inline void assert_list_leaf_cfs_rq(struct rq *rq)
399 SCHED_WARN_ON(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list);
402 /* Iterate through all leaf cfs_rq's on a runqueue */
403 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \
404 list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list, \
407 /* Do the two (enqueued) entities belong to the same group ? */
408 static inline struct cfs_rq *
409 is_same_group(struct sched_entity *se, struct sched_entity *pse)
411 if (se->cfs_rq == pse->cfs_rq)
417 static inline struct sched_entity *parent_entity(const struct sched_entity *se)
423 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
425 int se_depth, pse_depth;
428 * preemption test can be made between sibling entities who are in the
429 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
430 * both tasks until we find their ancestors who are siblings of common
434 /* First walk up until both entities are at same depth */
435 se_depth = (*se)->depth;
436 pse_depth = (*pse)->depth;
438 while (se_depth > pse_depth) {
440 *se = parent_entity(*se);
443 while (pse_depth > se_depth) {
445 *pse = parent_entity(*pse);
448 while (!is_same_group(*se, *pse)) {
449 *se = parent_entity(*se);
450 *pse = parent_entity(*pse);
454 static int tg_is_idle(struct task_group *tg)
459 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq)
461 return cfs_rq->idle > 0;
464 static int se_is_idle(struct sched_entity *se)
466 if (entity_is_task(se))
467 return task_has_idle_policy(task_of(se));
468 return cfs_rq_is_idle(group_cfs_rq(se));
471 #else /* !CONFIG_FAIR_GROUP_SCHED */
473 #define for_each_sched_entity(se) \
474 for (; se; se = NULL)
476 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
481 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
485 static inline void assert_list_leaf_cfs_rq(struct rq *rq)
489 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \
490 for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos)
492 static inline struct sched_entity *parent_entity(struct sched_entity *se)
498 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
502 static inline int tg_is_idle(struct task_group *tg)
507 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq)
512 static int se_is_idle(struct sched_entity *se)
514 return task_has_idle_policy(task_of(se));
517 #endif /* CONFIG_FAIR_GROUP_SCHED */
519 static __always_inline
520 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
522 /**************************************************************
523 * Scheduling class tree data structure manipulation methods:
526 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
528 s64 delta = (s64)(vruntime - max_vruntime);
530 max_vruntime = vruntime;
535 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
537 s64 delta = (s64)(vruntime - min_vruntime);
539 min_vruntime = vruntime;
544 static inline bool entity_before(const struct sched_entity *a,
545 const struct sched_entity *b)
548 * Tiebreak on vruntime seems unnecessary since it can
551 return (s64)(a->deadline - b->deadline) < 0;
554 static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
556 return (s64)(se->vruntime - cfs_rq->min_vruntime);
559 #define __node_2_se(node) \
560 rb_entry((node), struct sched_entity, run_node)
563 * Compute virtual time from the per-task service numbers:
565 * Fair schedulers conserve lag:
569 * Where lag_i is given by:
571 * lag_i = S - s_i = w_i * (V - v_i)
573 * Where S is the ideal service time and V is it's virtual time counterpart.
577 * \Sum w_i * (V - v_i) = 0
578 * \Sum w_i * V - w_i * v_i = 0
580 * From which we can solve an expression for V in v_i (which we have in
583 * \Sum v_i * w_i \Sum v_i * w_i
584 * V = -------------- = --------------
587 * Specifically, this is the weighted average of all entity virtual runtimes.
589 * [[ NOTE: this is only equal to the ideal scheduler under the condition
590 * that join/leave operations happen at lag_i = 0, otherwise the
591 * virtual time has non-contiguous motion equivalent to:
595 * Also see the comment in place_entity() that deals with this. ]]
597 * However, since v_i is u64, and the multiplication could easily overflow
598 * transform it into a relative form that uses smaller quantities:
600 * Substitute: v_i == (v_i - v0) + v0
602 * \Sum ((v_i - v0) + v0) * w_i \Sum (v_i - v0) * w_i
603 * V = ---------------------------- = --------------------- + v0
606 * Which we track using:
608 * v0 := cfs_rq->min_vruntime
609 * \Sum (v_i - v0) * w_i := cfs_rq->avg_vruntime
610 * \Sum w_i := cfs_rq->avg_load
612 * Since min_vruntime is a monotonic increasing variable that closely tracks
613 * the per-task service, these deltas: (v_i - v), will be in the order of the
614 * maximal (virtual) lag induced in the system due to quantisation.
616 * Also, we use scale_load_down() to reduce the size.
618 * As measured, the max (key * weight) value was ~44 bits for a kernel build.
621 avg_vruntime_add(struct cfs_rq *cfs_rq, struct sched_entity *se)
623 unsigned long weight = scale_load_down(se->load.weight);
624 s64 key = entity_key(cfs_rq, se);
626 cfs_rq->avg_vruntime += key * weight;
627 cfs_rq->avg_load += weight;
631 avg_vruntime_sub(struct cfs_rq *cfs_rq, struct sched_entity *se)
633 unsigned long weight = scale_load_down(se->load.weight);
634 s64 key = entity_key(cfs_rq, se);
636 cfs_rq->avg_vruntime -= key * weight;
637 cfs_rq->avg_load -= weight;
641 void avg_vruntime_update(struct cfs_rq *cfs_rq, s64 delta)
644 * v' = v + d ==> avg_vruntime' = avg_runtime - d*avg_load
646 cfs_rq->avg_vruntime -= cfs_rq->avg_load * delta;
650 * Specifically: avg_runtime() + 0 must result in entity_eligible() := true
651 * For this to be so, the result of this function must have a left bias.
653 u64 avg_vruntime(struct cfs_rq *cfs_rq)
655 struct sched_entity *curr = cfs_rq->curr;
656 s64 avg = cfs_rq->avg_vruntime;
657 long load = cfs_rq->avg_load;
659 if (curr && curr->on_rq) {
660 unsigned long weight = scale_load_down(curr->load.weight);
662 avg += entity_key(cfs_rq, curr) * weight;
667 /* sign flips effective floor / ceiling */
670 avg = div_s64(avg, load);
673 return cfs_rq->min_vruntime + avg;
677 * lag_i = S - s_i = w_i * (V - v_i)
679 * However, since V is approximated by the weighted average of all entities it
680 * is possible -- by addition/removal/reweight to the tree -- to move V around
681 * and end up with a larger lag than we started with.
683 * Limit this to either double the slice length with a minimum of TICK_NSEC
684 * since that is the timing granularity.
686 * EEVDF gives the following limit for a steady state system:
688 * -r_max < lag < max(r_max, q)
690 * XXX could add max_slice to the augmented data to track this.
692 static s64 entity_lag(u64 avruntime, struct sched_entity *se)
696 vlag = avruntime - se->vruntime;
697 limit = calc_delta_fair(max_t(u64, 2*se->slice, TICK_NSEC), se);
699 return clamp(vlag, -limit, limit);
702 static void update_entity_lag(struct cfs_rq *cfs_rq, struct sched_entity *se)
704 SCHED_WARN_ON(!se->on_rq);
706 se->vlag = entity_lag(avg_vruntime(cfs_rq), se);
710 * Entity is eligible once it received less service than it ought to have,
713 * lag_i = S - s_i = w_i*(V - v_i)
715 * lag_i >= 0 -> V >= v_i
718 * V = ------------------ + v
721 * lag_i >= 0 -> \Sum (v_i - v)*w_i >= (v_i - v)*(\Sum w_i)
723 * Note: using 'avg_vruntime() > se->vruntime' is inaccurate due
724 * to the loss in precision caused by the division.
726 static int vruntime_eligible(struct cfs_rq *cfs_rq, u64 vruntime)
728 struct sched_entity *curr = cfs_rq->curr;
729 s64 avg = cfs_rq->avg_vruntime;
730 long load = cfs_rq->avg_load;
732 if (curr && curr->on_rq) {
733 unsigned long weight = scale_load_down(curr->load.weight);
735 avg += entity_key(cfs_rq, curr) * weight;
739 return avg >= (s64)(vruntime - cfs_rq->min_vruntime) * load;
742 int entity_eligible(struct cfs_rq *cfs_rq, struct sched_entity *se)
744 return vruntime_eligible(cfs_rq, se->vruntime);
747 static u64 __update_min_vruntime(struct cfs_rq *cfs_rq, u64 vruntime)
749 u64 min_vruntime = cfs_rq->min_vruntime;
751 * open coded max_vruntime() to allow updating avg_vruntime
753 s64 delta = (s64)(vruntime - min_vruntime);
755 avg_vruntime_update(cfs_rq, delta);
756 min_vruntime = vruntime;
761 static void update_min_vruntime(struct cfs_rq *cfs_rq)
763 struct sched_entity *se = __pick_root_entity(cfs_rq);
764 struct sched_entity *curr = cfs_rq->curr;
765 u64 vruntime = cfs_rq->min_vruntime;
769 vruntime = curr->vruntime;
776 vruntime = se->min_vruntime;
778 vruntime = min_vruntime(vruntime, se->min_vruntime);
781 /* ensure we never gain time by being placed backwards. */
782 cfs_rq->min_vruntime = __update_min_vruntime(cfs_rq, vruntime);
785 static inline u64 cfs_rq_min_slice(struct cfs_rq *cfs_rq)
787 struct sched_entity *root = __pick_root_entity(cfs_rq);
788 struct sched_entity *curr = cfs_rq->curr;
789 u64 min_slice = ~0ULL;
791 if (curr && curr->on_rq)
792 min_slice = curr->slice;
795 min_slice = min(min_slice, root->min_slice);
800 static inline bool __entity_less(struct rb_node *a, const struct rb_node *b)
802 return entity_before(__node_2_se(a), __node_2_se(b));
805 #define vruntime_gt(field, lse, rse) ({ (s64)((lse)->field - (rse)->field) > 0; })
807 static inline void __min_vruntime_update(struct sched_entity *se, struct rb_node *node)
810 struct sched_entity *rse = __node_2_se(node);
811 if (vruntime_gt(min_vruntime, se, rse))
812 se->min_vruntime = rse->min_vruntime;
816 static inline void __min_slice_update(struct sched_entity *se, struct rb_node *node)
819 struct sched_entity *rse = __node_2_se(node);
820 if (rse->min_slice < se->min_slice)
821 se->min_slice = rse->min_slice;
826 * se->min_vruntime = min(se->vruntime, {left,right}->min_vruntime)
828 static inline bool min_vruntime_update(struct sched_entity *se, bool exit)
830 u64 old_min_vruntime = se->min_vruntime;
831 u64 old_min_slice = se->min_slice;
832 struct rb_node *node = &se->run_node;
834 se->min_vruntime = se->vruntime;
835 __min_vruntime_update(se, node->rb_right);
836 __min_vruntime_update(se, node->rb_left);
838 se->min_slice = se->slice;
839 __min_slice_update(se, node->rb_right);
840 __min_slice_update(se, node->rb_left);
842 return se->min_vruntime == old_min_vruntime &&
843 se->min_slice == old_min_slice;
846 RB_DECLARE_CALLBACKS(static, min_vruntime_cb, struct sched_entity,
847 run_node, min_vruntime, min_vruntime_update);
850 * Enqueue an entity into the rb-tree:
852 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
854 avg_vruntime_add(cfs_rq, se);
855 se->min_vruntime = se->vruntime;
856 se->min_slice = se->slice;
857 rb_add_augmented_cached(&se->run_node, &cfs_rq->tasks_timeline,
858 __entity_less, &min_vruntime_cb);
861 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
863 rb_erase_augmented_cached(&se->run_node, &cfs_rq->tasks_timeline,
865 avg_vruntime_sub(cfs_rq, se);
868 struct sched_entity *__pick_root_entity(struct cfs_rq *cfs_rq)
870 struct rb_node *root = cfs_rq->tasks_timeline.rb_root.rb_node;
875 return __node_2_se(root);
878 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
880 struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline);
885 return __node_2_se(left);
889 * Earliest Eligible Virtual Deadline First
891 * In order to provide latency guarantees for different request sizes
892 * EEVDF selects the best runnable task from two criteria:
894 * 1) the task must be eligible (must be owed service)
896 * 2) from those tasks that meet 1), we select the one
897 * with the earliest virtual deadline.
899 * We can do this in O(log n) time due to an augmented RB-tree. The
900 * tree keeps the entries sorted on deadline, but also functions as a
901 * heap based on the vruntime by keeping:
903 * se->min_vruntime = min(se->vruntime, se->{left,right}->min_vruntime)
905 * Which allows tree pruning through eligibility.
907 static struct sched_entity *pick_eevdf(struct cfs_rq *cfs_rq)
909 struct rb_node *node = cfs_rq->tasks_timeline.rb_root.rb_node;
910 struct sched_entity *se = __pick_first_entity(cfs_rq);
911 struct sched_entity *curr = cfs_rq->curr;
912 struct sched_entity *best = NULL;
915 * We can safely skip eligibility check if there is only one entity
916 * in this cfs_rq, saving some cycles.
918 if (cfs_rq->nr_running == 1)
919 return curr && curr->on_rq ? curr : se;
921 if (curr && (!curr->on_rq || !entity_eligible(cfs_rq, curr)))
925 * Once selected, run a task until it either becomes non-eligible or
926 * until it gets a new slice. See the HACK in set_next_entity().
928 if (sched_feat(RUN_TO_PARITY) && curr && curr->vlag == curr->deadline)
931 /* Pick the leftmost entity if it's eligible */
932 if (se && entity_eligible(cfs_rq, se)) {
937 /* Heap search for the EEVD entity */
939 struct rb_node *left = node->rb_left;
942 * Eligible entities in left subtree are always better
943 * choices, since they have earlier deadlines.
945 if (left && vruntime_eligible(cfs_rq,
946 __node_2_se(left)->min_vruntime)) {
951 se = __node_2_se(node);
954 * The left subtree either is empty or has no eligible
955 * entity, so check the current node since it is the one
956 * with earliest deadline that might be eligible.
958 if (entity_eligible(cfs_rq, se)) {
963 node = node->rb_right;
966 if (!best || (curr && entity_before(curr, best)))
972 #ifdef CONFIG_SCHED_DEBUG
973 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
975 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root);
980 return __node_2_se(last);
983 /**************************************************************
984 * Scheduling class statistics methods:
987 int sched_update_scaling(void)
989 unsigned int factor = get_update_sysctl_factor();
991 #define WRT_SYSCTL(name) \
992 (normalized_sysctl_##name = sysctl_##name / (factor))
993 WRT_SYSCTL(sched_base_slice);
1001 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se);
1004 * XXX: strictly: vd_i += N*r_i/w_i such that: vd_i > ve_i
1005 * this is probably good enough.
1007 static bool update_deadline(struct cfs_rq *cfs_rq, struct sched_entity *se)
1009 if ((s64)(se->vruntime - se->deadline) < 0)
1013 * For EEVDF the virtual time slope is determined by w_i (iow.
1014 * nice) while the request time r_i is determined by
1015 * sysctl_sched_base_slice.
1017 if (!se->custom_slice)
1018 se->slice = sysctl_sched_base_slice;
1021 * EEVDF: vd_i = ve_i + r_i / w_i
1023 se->deadline = se->vruntime + calc_delta_fair(se->slice, se);
1026 * The task has consumed its request, reschedule.
1034 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
1035 static unsigned long task_h_load(struct task_struct *p);
1036 static unsigned long capacity_of(int cpu);
1038 /* Give new sched_entity start runnable values to heavy its load in infant time */
1039 void init_entity_runnable_average(struct sched_entity *se)
1041 struct sched_avg *sa = &se->avg;
1043 memset(sa, 0, sizeof(*sa));
1046 * Tasks are initialized with full load to be seen as heavy tasks until
1047 * they get a chance to stabilize to their real load level.
1048 * Group entities are initialized with zero load to reflect the fact that
1049 * nothing has been attached to the task group yet.
1051 if (entity_is_task(se))
1052 sa->load_avg = scale_load_down(se->load.weight);
1054 /* when this task is enqueued, it will contribute to its cfs_rq's load_avg */
1058 * With new tasks being created, their initial util_avgs are extrapolated
1059 * based on the cfs_rq's current util_avg:
1061 * util_avg = cfs_rq->avg.util_avg / (cfs_rq->avg.load_avg + 1)
1064 * However, in many cases, the above util_avg does not give a desired
1065 * value. Moreover, the sum of the util_avgs may be divergent, such
1066 * as when the series is a harmonic series.
1068 * To solve this problem, we also cap the util_avg of successive tasks to
1069 * only 1/2 of the left utilization budget:
1071 * util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n
1073 * where n denotes the nth task and cpu_scale the CPU capacity.
1075 * For example, for a CPU with 1024 of capacity, a simplest series from
1076 * the beginning would be like:
1078 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ...
1079 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
1081 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
1082 * if util_avg > util_avg_cap.
1084 void post_init_entity_util_avg(struct task_struct *p)
1086 struct sched_entity *se = &p->se;
1087 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1088 struct sched_avg *sa = &se->avg;
1089 long cpu_scale = arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq)));
1090 long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2;
1092 if (p->sched_class != &fair_sched_class) {
1094 * For !fair tasks do:
1096 update_cfs_rq_load_avg(now, cfs_rq);
1097 attach_entity_load_avg(cfs_rq, se);
1098 switched_from_fair(rq, p);
1100 * such that the next switched_to_fair() has the
1103 se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq);
1108 if (cfs_rq->avg.util_avg != 0) {
1109 sa->util_avg = cfs_rq->avg.util_avg * se_weight(se);
1110 sa->util_avg /= (cfs_rq->avg.load_avg + 1);
1112 if (sa->util_avg > cap)
1119 sa->runnable_avg = sa->util_avg;
1122 #else /* !CONFIG_SMP */
1123 void init_entity_runnable_average(struct sched_entity *se)
1126 void post_init_entity_util_avg(struct task_struct *p)
1129 static void update_tg_load_avg(struct cfs_rq *cfs_rq)
1132 #endif /* CONFIG_SMP */
1134 static s64 update_curr_se(struct rq *rq, struct sched_entity *curr)
1136 u64 now = rq_clock_task(rq);
1139 delta_exec = now - curr->exec_start;
1140 if (unlikely(delta_exec <= 0))
1143 curr->exec_start = now;
1144 curr->sum_exec_runtime += delta_exec;
1146 if (schedstat_enabled()) {
1147 struct sched_statistics *stats;
1149 stats = __schedstats_from_se(curr);
1150 __schedstat_set(stats->exec_max,
1151 max(delta_exec, stats->exec_max));
1157 static inline void update_curr_task(struct task_struct *p, s64 delta_exec)
1159 trace_sched_stat_runtime(p, delta_exec);
1160 account_group_exec_runtime(p, delta_exec);
1161 cgroup_account_cputime(p, delta_exec);
1164 static inline bool did_preempt_short(struct cfs_rq *cfs_rq, struct sched_entity *curr)
1166 if (!sched_feat(PREEMPT_SHORT))
1169 if (curr->vlag == curr->deadline)
1172 return !entity_eligible(cfs_rq, curr);
1175 static inline bool do_preempt_short(struct cfs_rq *cfs_rq,
1176 struct sched_entity *pse, struct sched_entity *se)
1178 if (!sched_feat(PREEMPT_SHORT))
1181 if (pse->slice >= se->slice)
1184 if (!entity_eligible(cfs_rq, pse))
1187 if (entity_before(pse, se))
1190 if (!entity_eligible(cfs_rq, se))
1197 * Used by other classes to account runtime.
1199 s64 update_curr_common(struct rq *rq)
1201 struct task_struct *donor = rq->donor;
1204 delta_exec = update_curr_se(rq, &donor->se);
1205 if (likely(delta_exec > 0))
1206 update_curr_task(donor, delta_exec);
1212 * Update the current task's runtime statistics.
1214 static void update_curr(struct cfs_rq *cfs_rq)
1216 struct sched_entity *curr = cfs_rq->curr;
1217 struct rq *rq = rq_of(cfs_rq);
1221 if (unlikely(!curr))
1224 delta_exec = update_curr_se(rq, curr);
1225 if (unlikely(delta_exec <= 0))
1228 curr->vruntime += calc_delta_fair(delta_exec, curr);
1229 resched = update_deadline(cfs_rq, curr);
1230 update_min_vruntime(cfs_rq);
1232 if (entity_is_task(curr)) {
1233 struct task_struct *p = task_of(curr);
1235 update_curr_task(p, delta_exec);
1238 * If the fair_server is active, we need to account for the
1239 * fair_server time whether or not the task is running on
1240 * behalf of fair_server or not:
1241 * - If the task is running on behalf of fair_server, we need
1242 * to limit its time based on the assigned runtime.
1243 * - Fair task that runs outside of fair_server should account
1244 * against fair_server such that it can account for this time
1245 * and possibly avoid running this period.
1247 if (dl_server_active(&rq->fair_server))
1248 dl_server_update(&rq->fair_server, delta_exec);
1251 account_cfs_rq_runtime(cfs_rq, delta_exec);
1253 if (cfs_rq->nr_running == 1)
1256 if (resched || did_preempt_short(cfs_rq, curr)) {
1257 resched_curr_lazy(rq);
1258 clear_buddies(cfs_rq, curr);
1262 static void update_curr_fair(struct rq *rq)
1264 update_curr(cfs_rq_of(&rq->donor->se));
1268 update_stats_wait_start_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
1270 struct sched_statistics *stats;
1271 struct task_struct *p = NULL;
1273 if (!schedstat_enabled())
1276 stats = __schedstats_from_se(se);
1278 if (entity_is_task(se))
1281 __update_stats_wait_start(rq_of(cfs_rq), p, stats);
1285 update_stats_wait_end_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
1287 struct sched_statistics *stats;
1288 struct task_struct *p = NULL;
1290 if (!schedstat_enabled())
1293 stats = __schedstats_from_se(se);
1296 * When the sched_schedstat changes from 0 to 1, some sched se
1297 * maybe already in the runqueue, the se->statistics.wait_start
1298 * will be 0.So it will let the delta wrong. We need to avoid this
1301 if (unlikely(!schedstat_val(stats->wait_start)))
1304 if (entity_is_task(se))
1307 __update_stats_wait_end(rq_of(cfs_rq), p, stats);
1311 update_stats_enqueue_sleeper_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
1313 struct sched_statistics *stats;
1314 struct task_struct *tsk = NULL;
1316 if (!schedstat_enabled())
1319 stats = __schedstats_from_se(se);
1321 if (entity_is_task(se))
1324 __update_stats_enqueue_sleeper(rq_of(cfs_rq), tsk, stats);
1328 * Task is being enqueued - update stats:
1331 update_stats_enqueue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1333 if (!schedstat_enabled())
1337 * Are we enqueueing a waiting task? (for current tasks
1338 * a dequeue/enqueue event is a NOP)
1340 if (se != cfs_rq->curr)
1341 update_stats_wait_start_fair(cfs_rq, se);
1343 if (flags & ENQUEUE_WAKEUP)
1344 update_stats_enqueue_sleeper_fair(cfs_rq, se);
1348 update_stats_dequeue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1351 if (!schedstat_enabled())
1355 * Mark the end of the wait period if dequeueing a
1358 if (se != cfs_rq->curr)
1359 update_stats_wait_end_fair(cfs_rq, se);
1361 if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
1362 struct task_struct *tsk = task_of(se);
1365 /* XXX racy against TTWU */
1366 state = READ_ONCE(tsk->__state);
1367 if (state & TASK_INTERRUPTIBLE)
1368 __schedstat_set(tsk->stats.sleep_start,
1369 rq_clock(rq_of(cfs_rq)));
1370 if (state & TASK_UNINTERRUPTIBLE)
1371 __schedstat_set(tsk->stats.block_start,
1372 rq_clock(rq_of(cfs_rq)));
1377 * We are picking a new current task - update its stats:
1380 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
1383 * We are starting a new run period:
1385 se->exec_start = rq_clock_task(rq_of(cfs_rq));
1388 /**************************************************
1389 * Scheduling class queueing methods:
1392 static inline bool is_core_idle(int cpu)
1394 #ifdef CONFIG_SCHED_SMT
1397 for_each_cpu(sibling, cpu_smt_mask(cpu)) {
1401 if (!idle_cpu(sibling))
1410 #define NUMA_IMBALANCE_MIN 2
1413 adjust_numa_imbalance(int imbalance, int dst_running, int imb_numa_nr)
1416 * Allow a NUMA imbalance if busy CPUs is less than the maximum
1417 * threshold. Above this threshold, individual tasks may be contending
1418 * for both memory bandwidth and any shared HT resources. This is an
1419 * approximation as the number of running tasks may not be related to
1420 * the number of busy CPUs due to sched_setaffinity.
1422 if (dst_running > imb_numa_nr)
1426 * Allow a small imbalance based on a simple pair of communicating
1427 * tasks that remain local when the destination is lightly loaded.
1429 if (imbalance <= NUMA_IMBALANCE_MIN)
1434 #endif /* CONFIG_NUMA */
1436 #ifdef CONFIG_NUMA_BALANCING
1438 * Approximate time to scan a full NUMA task in ms. The task scan period is
1439 * calculated based on the tasks virtual memory size and
1440 * numa_balancing_scan_size.
1442 unsigned int sysctl_numa_balancing_scan_period_min = 1000;
1443 unsigned int sysctl_numa_balancing_scan_period_max = 60000;
1445 /* Portion of address space to scan in MB */
1446 unsigned int sysctl_numa_balancing_scan_size = 256;
1448 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
1449 unsigned int sysctl_numa_balancing_scan_delay = 1000;
1451 /* The page with hint page fault latency < threshold in ms is considered hot */
1452 unsigned int sysctl_numa_balancing_hot_threshold = MSEC_PER_SEC;
1455 refcount_t refcount;
1457 spinlock_t lock; /* nr_tasks, tasks */
1462 struct rcu_head rcu;
1463 unsigned long total_faults;
1464 unsigned long max_faults_cpu;
1466 * faults[] array is split into two regions: faults_mem and faults_cpu.
1468 * Faults_cpu is used to decide whether memory should move
1469 * towards the CPU. As a consequence, these stats are weighted
1470 * more by CPU use than by memory faults.
1472 unsigned long faults[];
1476 * For functions that can be called in multiple contexts that permit reading
1477 * ->numa_group (see struct task_struct for locking rules).
1479 static struct numa_group *deref_task_numa_group(struct task_struct *p)
1481 return rcu_dereference_check(p->numa_group, p == current ||
1482 (lockdep_is_held(__rq_lockp(task_rq(p))) && !READ_ONCE(p->on_cpu)));
1485 static struct numa_group *deref_curr_numa_group(struct task_struct *p)
1487 return rcu_dereference_protected(p->numa_group, p == current);
1490 static inline unsigned long group_faults_priv(struct numa_group *ng);
1491 static inline unsigned long group_faults_shared(struct numa_group *ng);
1493 static unsigned int task_nr_scan_windows(struct task_struct *p)
1495 unsigned long rss = 0;
1496 unsigned long nr_scan_pages;
1499 * Calculations based on RSS as non-present and empty pages are skipped
1500 * by the PTE scanner and NUMA hinting faults should be trapped based
1503 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
1504 rss = get_mm_rss(p->mm);
1506 rss = nr_scan_pages;
1508 rss = round_up(rss, nr_scan_pages);
1509 return rss / nr_scan_pages;
1512 /* For sanity's sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
1513 #define MAX_SCAN_WINDOW 2560
1515 static unsigned int task_scan_min(struct task_struct *p)
1517 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
1518 unsigned int scan, floor;
1519 unsigned int windows = 1;
1521 if (scan_size < MAX_SCAN_WINDOW)
1522 windows = MAX_SCAN_WINDOW / scan_size;
1523 floor = 1000 / windows;
1525 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
1526 return max_t(unsigned int, floor, scan);
1529 static unsigned int task_scan_start(struct task_struct *p)
1531 unsigned long smin = task_scan_min(p);
1532 unsigned long period = smin;
1533 struct numa_group *ng;
1535 /* Scale the maximum scan period with the amount of shared memory. */
1537 ng = rcu_dereference(p->numa_group);
1539 unsigned long shared = group_faults_shared(ng);
1540 unsigned long private = group_faults_priv(ng);
1542 period *= refcount_read(&ng->refcount);
1543 period *= shared + 1;
1544 period /= private + shared + 1;
1548 return max(smin, period);
1551 static unsigned int task_scan_max(struct task_struct *p)
1553 unsigned long smin = task_scan_min(p);
1555 struct numa_group *ng;
1557 /* Watch for min being lower than max due to floor calculations */
1558 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
1560 /* Scale the maximum scan period with the amount of shared memory. */
1561 ng = deref_curr_numa_group(p);
1563 unsigned long shared = group_faults_shared(ng);
1564 unsigned long private = group_faults_priv(ng);
1565 unsigned long period = smax;
1567 period *= refcount_read(&ng->refcount);
1568 period *= shared + 1;
1569 period /= private + shared + 1;
1571 smax = max(smax, period);
1574 return max(smin, smax);
1577 static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1579 rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE);
1580 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
1583 static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1585 rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE);
1586 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
1589 /* Shared or private faults. */
1590 #define NR_NUMA_HINT_FAULT_TYPES 2
1592 /* Memory and CPU locality */
1593 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1595 /* Averaged statistics, and temporary buffers. */
1596 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1598 pid_t task_numa_group_id(struct task_struct *p)
1600 struct numa_group *ng;
1604 ng = rcu_dereference(p->numa_group);
1613 * The averaged statistics, shared & private, memory & CPU,
1614 * occupy the first half of the array. The second half of the
1615 * array is for current counters, which are averaged into the
1616 * first set by task_numa_placement.
1618 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
1620 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
1623 static inline unsigned long task_faults(struct task_struct *p, int nid)
1625 if (!p->numa_faults)
1628 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1629 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
1632 static inline unsigned long group_faults(struct task_struct *p, int nid)
1634 struct numa_group *ng = deref_task_numa_group(p);
1639 return ng->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1640 ng->faults[task_faults_idx(NUMA_MEM, nid, 1)];
1643 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1645 return group->faults[task_faults_idx(NUMA_CPU, nid, 0)] +
1646 group->faults[task_faults_idx(NUMA_CPU, nid, 1)];
1649 static inline unsigned long group_faults_priv(struct numa_group *ng)
1651 unsigned long faults = 0;
1654 for_each_online_node(node) {
1655 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
1661 static inline unsigned long group_faults_shared(struct numa_group *ng)
1663 unsigned long faults = 0;
1666 for_each_online_node(node) {
1667 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)];
1674 * A node triggering more than 1/3 as many NUMA faults as the maximum is
1675 * considered part of a numa group's pseudo-interleaving set. Migrations
1676 * between these nodes are slowed down, to allow things to settle down.
1678 #define ACTIVE_NODE_FRACTION 3
1680 static bool numa_is_active_node(int nid, struct numa_group *ng)
1682 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1685 /* Handle placement on systems where not all nodes are directly connected. */
1686 static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1687 int lim_dist, bool task)
1689 unsigned long score = 0;
1693 * All nodes are directly connected, and the same distance
1694 * from each other. No need for fancy placement algorithms.
1696 if (sched_numa_topology_type == NUMA_DIRECT)
1699 /* sched_max_numa_distance may be changed in parallel. */
1700 max_dist = READ_ONCE(sched_max_numa_distance);
1702 * This code is called for each node, introducing N^2 complexity,
1703 * which should be OK given the number of nodes rarely exceeds 8.
1705 for_each_online_node(node) {
1706 unsigned long faults;
1707 int dist = node_distance(nid, node);
1710 * The furthest away nodes in the system are not interesting
1711 * for placement; nid was already counted.
1713 if (dist >= max_dist || node == nid)
1717 * On systems with a backplane NUMA topology, compare groups
1718 * of nodes, and move tasks towards the group with the most
1719 * memory accesses. When comparing two nodes at distance
1720 * "hoplimit", only nodes closer by than "hoplimit" are part
1721 * of each group. Skip other nodes.
1723 if (sched_numa_topology_type == NUMA_BACKPLANE && dist >= lim_dist)
1726 /* Add up the faults from nearby nodes. */
1728 faults = task_faults(p, node);
1730 faults = group_faults(p, node);
1733 * On systems with a glueless mesh NUMA topology, there are
1734 * no fixed "groups of nodes". Instead, nodes that are not
1735 * directly connected bounce traffic through intermediate
1736 * nodes; a numa_group can occupy any set of nodes.
1737 * The further away a node is, the less the faults count.
1738 * This seems to result in good task placement.
1740 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1741 faults *= (max_dist - dist);
1742 faults /= (max_dist - LOCAL_DISTANCE);
1752 * These return the fraction of accesses done by a particular task, or
1753 * task group, on a particular numa node. The group weight is given a
1754 * larger multiplier, in order to group tasks together that are almost
1755 * evenly spread out between numa nodes.
1757 static inline unsigned long task_weight(struct task_struct *p, int nid,
1760 unsigned long faults, total_faults;
1762 if (!p->numa_faults)
1765 total_faults = p->total_numa_faults;
1770 faults = task_faults(p, nid);
1771 faults += score_nearby_nodes(p, nid, dist, true);
1773 return 1000 * faults / total_faults;
1776 static inline unsigned long group_weight(struct task_struct *p, int nid,
1779 struct numa_group *ng = deref_task_numa_group(p);
1780 unsigned long faults, total_faults;
1785 total_faults = ng->total_faults;
1790 faults = group_faults(p, nid);
1791 faults += score_nearby_nodes(p, nid, dist, false);
1793 return 1000 * faults / total_faults;
1797 * If memory tiering mode is enabled, cpupid of slow memory page is
1798 * used to record scan time instead of CPU and PID. When tiering mode
1799 * is disabled at run time, the scan time (in cpupid) will be
1800 * interpreted as CPU and PID. So CPU needs to be checked to avoid to
1801 * access out of array bound.
1803 static inline bool cpupid_valid(int cpupid)
1805 return cpupid_to_cpu(cpupid) < nr_cpu_ids;
1809 * For memory tiering mode, if there are enough free pages (more than
1810 * enough watermark defined here) in fast memory node, to take full
1811 * advantage of fast memory capacity, all recently accessed slow
1812 * memory pages will be migrated to fast memory node without
1813 * considering hot threshold.
1815 static bool pgdat_free_space_enough(struct pglist_data *pgdat)
1818 unsigned long enough_wmark;
1820 enough_wmark = max(1UL * 1024 * 1024 * 1024 >> PAGE_SHIFT,
1821 pgdat->node_present_pages >> 4);
1822 for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1823 struct zone *zone = pgdat->node_zones + z;
1825 if (!populated_zone(zone))
1828 if (zone_watermark_ok(zone, 0,
1829 promo_wmark_pages(zone) + enough_wmark,
1837 * For memory tiering mode, when page tables are scanned, the scan
1838 * time will be recorded in struct page in addition to make page
1839 * PROT_NONE for slow memory page. So when the page is accessed, in
1840 * hint page fault handler, the hint page fault latency is calculated
1843 * hint page fault latency = hint page fault time - scan time
1845 * The smaller the hint page fault latency, the higher the possibility
1846 * for the page to be hot.
1848 static int numa_hint_fault_latency(struct folio *folio)
1850 int last_time, time;
1852 time = jiffies_to_msecs(jiffies);
1853 last_time = folio_xchg_access_time(folio, time);
1855 return (time - last_time) & PAGE_ACCESS_TIME_MASK;
1859 * For memory tiering mode, too high promotion/demotion throughput may
1860 * hurt application latency. So we provide a mechanism to rate limit
1861 * the number of pages that are tried to be promoted.
1863 static bool numa_promotion_rate_limit(struct pglist_data *pgdat,
1864 unsigned long rate_limit, int nr)
1866 unsigned long nr_cand;
1867 unsigned int now, start;
1869 now = jiffies_to_msecs(jiffies);
1870 mod_node_page_state(pgdat, PGPROMOTE_CANDIDATE, nr);
1871 nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE);
1872 start = pgdat->nbp_rl_start;
1873 if (now - start > MSEC_PER_SEC &&
1874 cmpxchg(&pgdat->nbp_rl_start, start, now) == start)
1875 pgdat->nbp_rl_nr_cand = nr_cand;
1876 if (nr_cand - pgdat->nbp_rl_nr_cand >= rate_limit)
1881 #define NUMA_MIGRATION_ADJUST_STEPS 16
1883 static void numa_promotion_adjust_threshold(struct pglist_data *pgdat,
1884 unsigned long rate_limit,
1885 unsigned int ref_th)
1887 unsigned int now, start, th_period, unit_th, th;
1888 unsigned long nr_cand, ref_cand, diff_cand;
1890 now = jiffies_to_msecs(jiffies);
1891 th_period = sysctl_numa_balancing_scan_period_max;
1892 start = pgdat->nbp_th_start;
1893 if (now - start > th_period &&
1894 cmpxchg(&pgdat->nbp_th_start, start, now) == start) {
1895 ref_cand = rate_limit *
1896 sysctl_numa_balancing_scan_period_max / MSEC_PER_SEC;
1897 nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE);
1898 diff_cand = nr_cand - pgdat->nbp_th_nr_cand;
1899 unit_th = ref_th * 2 / NUMA_MIGRATION_ADJUST_STEPS;
1900 th = pgdat->nbp_threshold ? : ref_th;
1901 if (diff_cand > ref_cand * 11 / 10)
1902 th = max(th - unit_th, unit_th);
1903 else if (diff_cand < ref_cand * 9 / 10)
1904 th = min(th + unit_th, ref_th * 2);
1905 pgdat->nbp_th_nr_cand = nr_cand;
1906 pgdat->nbp_threshold = th;
1910 bool should_numa_migrate_memory(struct task_struct *p, struct folio *folio,
1911 int src_nid, int dst_cpu)
1913 struct numa_group *ng = deref_curr_numa_group(p);
1914 int dst_nid = cpu_to_node(dst_cpu);
1915 int last_cpupid, this_cpupid;
1918 * Cannot migrate to memoryless nodes.
1920 if (!node_state(dst_nid, N_MEMORY))
1924 * The pages in slow memory node should be migrated according
1925 * to hot/cold instead of private/shared.
1927 if (folio_use_access_time(folio)) {
1928 struct pglist_data *pgdat;
1929 unsigned long rate_limit;
1930 unsigned int latency, th, def_th;
1932 pgdat = NODE_DATA(dst_nid);
1933 if (pgdat_free_space_enough(pgdat)) {
1934 /* workload changed, reset hot threshold */
1935 pgdat->nbp_threshold = 0;
1939 def_th = sysctl_numa_balancing_hot_threshold;
1940 rate_limit = sysctl_numa_balancing_promote_rate_limit << \
1942 numa_promotion_adjust_threshold(pgdat, rate_limit, def_th);
1944 th = pgdat->nbp_threshold ? : def_th;
1945 latency = numa_hint_fault_latency(folio);
1949 return !numa_promotion_rate_limit(pgdat, rate_limit,
1950 folio_nr_pages(folio));
1953 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1954 last_cpupid = folio_xchg_last_cpupid(folio, this_cpupid);
1956 if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
1957 !node_is_toptier(src_nid) && !cpupid_valid(last_cpupid))
1961 * Allow first faults or private faults to migrate immediately early in
1962 * the lifetime of a task. The magic number 4 is based on waiting for
1963 * two full passes of the "multi-stage node selection" test that is
1966 if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) &&
1967 (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid)))
1971 * Multi-stage node selection is used in conjunction with a periodic
1972 * migration fault to build a temporal task<->page relation. By using
1973 * a two-stage filter we remove short/unlikely relations.
1975 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1976 * a task's usage of a particular page (n_p) per total usage of this
1977 * page (n_t) (in a given time-span) to a probability.
1979 * Our periodic faults will sample this probability and getting the
1980 * same result twice in a row, given these samples are fully
1981 * independent, is then given by P(n)^2, provided our sample period
1982 * is sufficiently short compared to the usage pattern.
1984 * This quadric squishes small probabilities, making it less likely we
1985 * act on an unlikely task<->page relation.
1987 if (!cpupid_pid_unset(last_cpupid) &&
1988 cpupid_to_nid(last_cpupid) != dst_nid)
1991 /* Always allow migrate on private faults */
1992 if (cpupid_match_pid(p, last_cpupid))
1995 /* A shared fault, but p->numa_group has not been set up yet. */
2000 * Destination node is much more heavily used than the source
2001 * node? Allow migration.
2003 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
2004 ACTIVE_NODE_FRACTION)
2008 * Distribute memory according to CPU & memory use on each node,
2009 * with 3/4 hysteresis to avoid unnecessary memory migrations:
2011 * faults_cpu(dst) 3 faults_cpu(src)
2012 * --------------- * - > ---------------
2013 * faults_mem(dst) 4 faults_mem(src)
2015 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
2016 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
2020 * 'numa_type' describes the node at the moment of load balancing.
2023 /* The node has spare capacity that can be used to run more tasks. */
2026 * The node is fully used and the tasks don't compete for more CPU
2027 * cycles. Nevertheless, some tasks might wait before running.
2031 * The node is overloaded and can't provide expected CPU cycles to all
2037 /* Cached statistics for all CPUs within a node */
2040 unsigned long runnable;
2042 /* Total compute capacity of CPUs on a node */
2043 unsigned long compute_capacity;
2044 unsigned int nr_running;
2045 unsigned int weight;
2046 enum numa_type node_type;
2050 struct task_numa_env {
2051 struct task_struct *p;
2053 int src_cpu, src_nid;
2054 int dst_cpu, dst_nid;
2057 struct numa_stats src_stats, dst_stats;
2062 struct task_struct *best_task;
2067 static unsigned long cpu_load(struct rq *rq);
2068 static unsigned long cpu_runnable(struct rq *rq);
2071 numa_type numa_classify(unsigned int imbalance_pct,
2072 struct numa_stats *ns)
2074 if ((ns->nr_running > ns->weight) &&
2075 (((ns->compute_capacity * 100) < (ns->util * imbalance_pct)) ||
2076 ((ns->compute_capacity * imbalance_pct) < (ns->runnable * 100))))
2077 return node_overloaded;
2079 if ((ns->nr_running < ns->weight) ||
2080 (((ns->compute_capacity * 100) > (ns->util * imbalance_pct)) &&
2081 ((ns->compute_capacity * imbalance_pct) > (ns->runnable * 100))))
2082 return node_has_spare;
2084 return node_fully_busy;
2087 #ifdef CONFIG_SCHED_SMT
2088 /* Forward declarations of select_idle_sibling helpers */
2089 static inline bool test_idle_cores(int cpu);
2090 static inline int numa_idle_core(int idle_core, int cpu)
2092 if (!static_branch_likely(&sched_smt_present) ||
2093 idle_core >= 0 || !test_idle_cores(cpu))
2097 * Prefer cores instead of packing HT siblings
2098 * and triggering future load balancing.
2100 if (is_core_idle(cpu))
2106 static inline int numa_idle_core(int idle_core, int cpu)
2113 * Gather all necessary information to make NUMA balancing placement
2114 * decisions that are compatible with standard load balancer. This
2115 * borrows code and logic from update_sg_lb_stats but sharing a
2116 * common implementation is impractical.
2118 static void update_numa_stats(struct task_numa_env *env,
2119 struct numa_stats *ns, int nid,
2122 int cpu, idle_core = -1;
2124 memset(ns, 0, sizeof(*ns));
2128 for_each_cpu(cpu, cpumask_of_node(nid)) {
2129 struct rq *rq = cpu_rq(cpu);
2131 ns->load += cpu_load(rq);
2132 ns->runnable += cpu_runnable(rq);
2133 ns->util += cpu_util_cfs(cpu);
2134 ns->nr_running += rq->cfs.h_nr_running;
2135 ns->compute_capacity += capacity_of(cpu);
2137 if (find_idle && idle_core < 0 && !rq->nr_running && idle_cpu(cpu)) {
2138 if (READ_ONCE(rq->numa_migrate_on) ||
2139 !cpumask_test_cpu(cpu, env->p->cpus_ptr))
2142 if (ns->idle_cpu == -1)
2145 idle_core = numa_idle_core(idle_core, cpu);
2150 ns->weight = cpumask_weight(cpumask_of_node(nid));
2152 ns->node_type = numa_classify(env->imbalance_pct, ns);
2155 ns->idle_cpu = idle_core;
2158 static void task_numa_assign(struct task_numa_env *env,
2159 struct task_struct *p, long imp)
2161 struct rq *rq = cpu_rq(env->dst_cpu);
2163 /* Check if run-queue part of active NUMA balance. */
2164 if (env->best_cpu != env->dst_cpu && xchg(&rq->numa_migrate_on, 1)) {
2166 int start = env->dst_cpu;
2168 /* Find alternative idle CPU. */
2169 for_each_cpu_wrap(cpu, cpumask_of_node(env->dst_nid), start + 1) {
2170 if (cpu == env->best_cpu || !idle_cpu(cpu) ||
2171 !cpumask_test_cpu(cpu, env->p->cpus_ptr)) {
2176 rq = cpu_rq(env->dst_cpu);
2177 if (!xchg(&rq->numa_migrate_on, 1))
2181 /* Failed to find an alternative idle CPU */
2187 * Clear previous best_cpu/rq numa-migrate flag, since task now
2188 * found a better CPU to move/swap.
2190 if (env->best_cpu != -1 && env->best_cpu != env->dst_cpu) {
2191 rq = cpu_rq(env->best_cpu);
2192 WRITE_ONCE(rq->numa_migrate_on, 0);
2196 put_task_struct(env->best_task);
2201 env->best_imp = imp;
2202 env->best_cpu = env->dst_cpu;
2205 static bool load_too_imbalanced(long src_load, long dst_load,
2206 struct task_numa_env *env)
2209 long orig_src_load, orig_dst_load;
2210 long src_capacity, dst_capacity;
2213 * The load is corrected for the CPU capacity available on each node.
2216 * ------------ vs ---------
2217 * src_capacity dst_capacity
2219 src_capacity = env->src_stats.compute_capacity;
2220 dst_capacity = env->dst_stats.compute_capacity;
2222 imb = abs(dst_load * src_capacity - src_load * dst_capacity);
2224 orig_src_load = env->src_stats.load;
2225 orig_dst_load = env->dst_stats.load;
2227 old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity);
2229 /* Would this change make things worse? */
2230 return (imb > old_imb);
2234 * Maximum NUMA importance can be 1998 (2*999);
2235 * SMALLIMP @ 30 would be close to 1998/64.
2236 * Used to deter task migration.
2241 * This checks if the overall compute and NUMA accesses of the system would
2242 * be improved if the source tasks was migrated to the target dst_cpu taking
2243 * into account that it might be best if task running on the dst_cpu should
2244 * be exchanged with the source task
2246 static bool task_numa_compare(struct task_numa_env *env,
2247 long taskimp, long groupimp, bool maymove)
2249 struct numa_group *cur_ng, *p_ng = deref_curr_numa_group(env->p);
2250 struct rq *dst_rq = cpu_rq(env->dst_cpu);
2251 long imp = p_ng ? groupimp : taskimp;
2252 struct task_struct *cur;
2253 long src_load, dst_load;
2254 int dist = env->dist;
2257 bool stopsearch = false;
2259 if (READ_ONCE(dst_rq->numa_migrate_on))
2263 cur = rcu_dereference(dst_rq->curr);
2264 if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
2268 * Because we have preemption enabled we can get migrated around and
2269 * end try selecting ourselves (current == env->p) as a swap candidate.
2271 if (cur == env->p) {
2277 if (maymove && moveimp >= env->best_imp)
2283 /* Skip this swap candidate if cannot move to the source cpu. */
2284 if (!cpumask_test_cpu(env->src_cpu, cur->cpus_ptr))
2288 * Skip this swap candidate if it is not moving to its preferred
2289 * node and the best task is.
2291 if (env->best_task &&
2292 env->best_task->numa_preferred_nid == env->src_nid &&
2293 cur->numa_preferred_nid != env->src_nid) {
2298 * "imp" is the fault differential for the source task between the
2299 * source and destination node. Calculate the total differential for
2300 * the source task and potential destination task. The more negative
2301 * the value is, the more remote accesses that would be expected to
2302 * be incurred if the tasks were swapped.
2304 * If dst and source tasks are in the same NUMA group, or not
2305 * in any group then look only at task weights.
2307 cur_ng = rcu_dereference(cur->numa_group);
2308 if (cur_ng == p_ng) {
2310 * Do not swap within a group or between tasks that have
2311 * no group if there is spare capacity. Swapping does
2312 * not address the load imbalance and helps one task at
2313 * the cost of punishing another.
2315 if (env->dst_stats.node_type == node_has_spare)
2318 imp = taskimp + task_weight(cur, env->src_nid, dist) -
2319 task_weight(cur, env->dst_nid, dist);
2321 * Add some hysteresis to prevent swapping the
2322 * tasks within a group over tiny differences.
2328 * Compare the group weights. If a task is all by itself
2329 * (not part of a group), use the task weight instead.
2332 imp += group_weight(cur, env->src_nid, dist) -
2333 group_weight(cur, env->dst_nid, dist);
2335 imp += task_weight(cur, env->src_nid, dist) -
2336 task_weight(cur, env->dst_nid, dist);
2339 /* Discourage picking a task already on its preferred node */
2340 if (cur->numa_preferred_nid == env->dst_nid)
2344 * Encourage picking a task that moves to its preferred node.
2345 * This potentially makes imp larger than it's maximum of
2346 * 1998 (see SMALLIMP and task_weight for why) but in this
2347 * case, it does not matter.
2349 if (cur->numa_preferred_nid == env->src_nid)
2352 if (maymove && moveimp > imp && moveimp > env->best_imp) {
2359 * Prefer swapping with a task moving to its preferred node over a
2362 if (env->best_task && cur->numa_preferred_nid == env->src_nid &&
2363 env->best_task->numa_preferred_nid != env->src_nid) {
2368 * If the NUMA importance is less than SMALLIMP,
2369 * task migration might only result in ping pong
2370 * of tasks and also hurt performance due to cache
2373 if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2)
2377 * In the overloaded case, try and keep the load balanced.
2379 load = task_h_load(env->p) - task_h_load(cur);
2383 dst_load = env->dst_stats.load + load;
2384 src_load = env->src_stats.load - load;
2386 if (load_too_imbalanced(src_load, dst_load, env))
2390 /* Evaluate an idle CPU for a task numa move. */
2392 int cpu = env->dst_stats.idle_cpu;
2394 /* Nothing cached so current CPU went idle since the search. */
2399 * If the CPU is no longer truly idle and the previous best CPU
2400 * is, keep using it.
2402 if (!idle_cpu(cpu) && env->best_cpu >= 0 &&
2403 idle_cpu(env->best_cpu)) {
2404 cpu = env->best_cpu;
2410 task_numa_assign(env, cur, imp);
2413 * If a move to idle is allowed because there is capacity or load
2414 * balance improves then stop the search. While a better swap
2415 * candidate may exist, a search is not free.
2417 if (maymove && !cur && env->best_cpu >= 0 && idle_cpu(env->best_cpu))
2421 * If a swap candidate must be identified and the current best task
2422 * moves its preferred node then stop the search.
2424 if (!maymove && env->best_task &&
2425 env->best_task->numa_preferred_nid == env->src_nid) {
2434 static void task_numa_find_cpu(struct task_numa_env *env,
2435 long taskimp, long groupimp)
2437 bool maymove = false;
2441 * If dst node has spare capacity, then check if there is an
2442 * imbalance that would be overruled by the load balancer.
2444 if (env->dst_stats.node_type == node_has_spare) {
2445 unsigned int imbalance;
2446 int src_running, dst_running;
2449 * Would movement cause an imbalance? Note that if src has
2450 * more running tasks that the imbalance is ignored as the
2451 * move improves the imbalance from the perspective of the
2452 * CPU load balancer.
2454 src_running = env->src_stats.nr_running - 1;
2455 dst_running = env->dst_stats.nr_running + 1;
2456 imbalance = max(0, dst_running - src_running);
2457 imbalance = adjust_numa_imbalance(imbalance, dst_running,
2460 /* Use idle CPU if there is no imbalance */
2463 if (env->dst_stats.idle_cpu >= 0) {
2464 env->dst_cpu = env->dst_stats.idle_cpu;
2465 task_numa_assign(env, NULL, 0);
2470 long src_load, dst_load, load;
2472 * If the improvement from just moving env->p direction is better
2473 * than swapping tasks around, check if a move is possible.
2475 load = task_h_load(env->p);
2476 dst_load = env->dst_stats.load + load;
2477 src_load = env->src_stats.load - load;
2478 maymove = !load_too_imbalanced(src_load, dst_load, env);
2481 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
2482 /* Skip this CPU if the source task cannot migrate */
2483 if (!cpumask_test_cpu(cpu, env->p->cpus_ptr))
2487 if (task_numa_compare(env, taskimp, groupimp, maymove))
2492 static int task_numa_migrate(struct task_struct *p)
2494 struct task_numa_env env = {
2497 .src_cpu = task_cpu(p),
2498 .src_nid = task_node(p),
2500 .imbalance_pct = 112,
2506 unsigned long taskweight, groupweight;
2507 struct sched_domain *sd;
2508 long taskimp, groupimp;
2509 struct numa_group *ng;
2514 * Pick the lowest SD_NUMA domain, as that would have the smallest
2515 * imbalance and would be the first to start moving tasks about.
2517 * And we want to avoid any moving of tasks about, as that would create
2518 * random movement of tasks -- counter the numa conditions we're trying
2522 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
2524 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
2525 env.imb_numa_nr = sd->imb_numa_nr;
2530 * Cpusets can break the scheduler domain tree into smaller
2531 * balance domains, some of which do not cross NUMA boundaries.
2532 * Tasks that are "trapped" in such domains cannot be migrated
2533 * elsewhere, so there is no point in (re)trying.
2535 if (unlikely(!sd)) {
2536 sched_setnuma(p, task_node(p));
2540 env.dst_nid = p->numa_preferred_nid;
2541 dist = env.dist = node_distance(env.src_nid, env.dst_nid);
2542 taskweight = task_weight(p, env.src_nid, dist);
2543 groupweight = group_weight(p, env.src_nid, dist);
2544 update_numa_stats(&env, &env.src_stats, env.src_nid, false);
2545 taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
2546 groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
2547 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
2549 /* Try to find a spot on the preferred nid. */
2550 task_numa_find_cpu(&env, taskimp, groupimp);
2553 * Look at other nodes in these cases:
2554 * - there is no space available on the preferred_nid
2555 * - the task is part of a numa_group that is interleaved across
2556 * multiple NUMA nodes; in order to better consolidate the group,
2557 * we need to check other locations.
2559 ng = deref_curr_numa_group(p);
2560 if (env.best_cpu == -1 || (ng && ng->active_nodes > 1)) {
2561 for_each_node_state(nid, N_CPU) {
2562 if (nid == env.src_nid || nid == p->numa_preferred_nid)
2565 dist = node_distance(env.src_nid, env.dst_nid);
2566 if (sched_numa_topology_type == NUMA_BACKPLANE &&
2568 taskweight = task_weight(p, env.src_nid, dist);
2569 groupweight = group_weight(p, env.src_nid, dist);
2572 /* Only consider nodes where both task and groups benefit */
2573 taskimp = task_weight(p, nid, dist) - taskweight;
2574 groupimp = group_weight(p, nid, dist) - groupweight;
2575 if (taskimp < 0 && groupimp < 0)
2580 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
2581 task_numa_find_cpu(&env, taskimp, groupimp);
2586 * If the task is part of a workload that spans multiple NUMA nodes,
2587 * and is migrating into one of the workload's active nodes, remember
2588 * this node as the task's preferred numa node, so the workload can
2590 * A task that migrated to a second choice node will be better off
2591 * trying for a better one later. Do not set the preferred node here.
2594 if (env.best_cpu == -1)
2597 nid = cpu_to_node(env.best_cpu);
2599 if (nid != p->numa_preferred_nid)
2600 sched_setnuma(p, nid);
2603 /* No better CPU than the current one was found. */
2604 if (env.best_cpu == -1) {
2605 trace_sched_stick_numa(p, env.src_cpu, NULL, -1);
2609 best_rq = cpu_rq(env.best_cpu);
2610 if (env.best_task == NULL) {
2611 ret = migrate_task_to(p, env.best_cpu);
2612 WRITE_ONCE(best_rq->numa_migrate_on, 0);
2614 trace_sched_stick_numa(p, env.src_cpu, NULL, env.best_cpu);
2618 ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu);
2619 WRITE_ONCE(best_rq->numa_migrate_on, 0);
2622 trace_sched_stick_numa(p, env.src_cpu, env.best_task, env.best_cpu);
2623 put_task_struct(env.best_task);
2627 /* Attempt to migrate a task to a CPU on the preferred node. */
2628 static void numa_migrate_preferred(struct task_struct *p)
2630 unsigned long interval = HZ;
2632 /* This task has no NUMA fault statistics yet */
2633 if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults))
2636 /* Periodically retry migrating the task to the preferred node */
2637 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
2638 p->numa_migrate_retry = jiffies + interval;
2640 /* Success if task is already running on preferred CPU */
2641 if (task_node(p) == p->numa_preferred_nid)
2644 /* Otherwise, try migrate to a CPU on the preferred node */
2645 task_numa_migrate(p);
2649 * Find out how many nodes the workload is actively running on. Do this by
2650 * tracking the nodes from which NUMA hinting faults are triggered. This can
2651 * be different from the set of nodes where the workload's memory is currently
2654 static void numa_group_count_active_nodes(struct numa_group *numa_group)
2656 unsigned long faults, max_faults = 0;
2657 int nid, active_nodes = 0;
2659 for_each_node_state(nid, N_CPU) {
2660 faults = group_faults_cpu(numa_group, nid);
2661 if (faults > max_faults)
2662 max_faults = faults;
2665 for_each_node_state(nid, N_CPU) {
2666 faults = group_faults_cpu(numa_group, nid);
2667 if (faults * ACTIVE_NODE_FRACTION > max_faults)
2671 numa_group->max_faults_cpu = max_faults;
2672 numa_group->active_nodes = active_nodes;
2676 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
2677 * increments. The more local the fault statistics are, the higher the scan
2678 * period will be for the next scan window. If local/(local+remote) ratio is
2679 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
2680 * the scan period will decrease. Aim for 70% local accesses.
2682 #define NUMA_PERIOD_SLOTS 10
2683 #define NUMA_PERIOD_THRESHOLD 7
2686 * Increase the scan period (slow down scanning) if the majority of
2687 * our memory is already on our local node, or if the majority of
2688 * the page accesses are shared with other processes.
2689 * Otherwise, decrease the scan period.
2691 static void update_task_scan_period(struct task_struct *p,
2692 unsigned long shared, unsigned long private)
2694 unsigned int period_slot;
2695 int lr_ratio, ps_ratio;
2698 unsigned long remote = p->numa_faults_locality[0];
2699 unsigned long local = p->numa_faults_locality[1];
2702 * If there were no record hinting faults then either the task is
2703 * completely idle or all activity is in areas that are not of interest
2704 * to automatic numa balancing. Related to that, if there were failed
2705 * migration then it implies we are migrating too quickly or the local
2706 * node is overloaded. In either case, scan slower
2708 if (local + shared == 0 || p->numa_faults_locality[2]) {
2709 p->numa_scan_period = min(p->numa_scan_period_max,
2710 p->numa_scan_period << 1);
2712 p->mm->numa_next_scan = jiffies +
2713 msecs_to_jiffies(p->numa_scan_period);
2719 * Prepare to scale scan period relative to the current period.
2720 * == NUMA_PERIOD_THRESHOLD scan period stays the same
2721 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
2722 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
2724 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
2725 lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
2726 ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared);
2728 if (ps_ratio >= NUMA_PERIOD_THRESHOLD) {
2730 * Most memory accesses are local. There is no need to
2731 * do fast NUMA scanning, since memory is already local.
2733 int slot = ps_ratio - NUMA_PERIOD_THRESHOLD;
2736 diff = slot * period_slot;
2737 } else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) {
2739 * Most memory accesses are shared with other tasks.
2740 * There is no point in continuing fast NUMA scanning,
2741 * since other tasks may just move the memory elsewhere.
2743 int slot = lr_ratio - NUMA_PERIOD_THRESHOLD;
2746 diff = slot * period_slot;
2749 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS,
2750 * yet they are not on the local NUMA node. Speed up
2751 * NUMA scanning to get the memory moved over.
2753 int ratio = max(lr_ratio, ps_ratio);
2754 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
2757 p->numa_scan_period = clamp(p->numa_scan_period + diff,
2758 task_scan_min(p), task_scan_max(p));
2759 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2763 * Get the fraction of time the task has been running since the last
2764 * NUMA placement cycle. The scheduler keeps similar statistics, but
2765 * decays those on a 32ms period, which is orders of magnitude off
2766 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
2767 * stats only if the task is so new there are no NUMA statistics yet.
2769 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
2771 u64 runtime, delta, now;
2772 /* Use the start of this time slice to avoid calculations. */
2773 now = p->se.exec_start;
2774 runtime = p->se.sum_exec_runtime;
2776 if (p->last_task_numa_placement) {
2777 delta = runtime - p->last_sum_exec_runtime;
2778 *period = now - p->last_task_numa_placement;
2780 /* Avoid time going backwards, prevent potential divide error: */
2781 if (unlikely((s64)*period < 0))
2784 delta = p->se.avg.load_sum;
2785 *period = LOAD_AVG_MAX;
2788 p->last_sum_exec_runtime = runtime;
2789 p->last_task_numa_placement = now;
2795 * Determine the preferred nid for a task in a numa_group. This needs to
2796 * be done in a way that produces consistent results with group_weight,
2797 * otherwise workloads might not converge.
2799 static int preferred_group_nid(struct task_struct *p, int nid)
2804 /* Direct connections between all NUMA nodes. */
2805 if (sched_numa_topology_type == NUMA_DIRECT)
2809 * On a system with glueless mesh NUMA topology, group_weight
2810 * scores nodes according to the number of NUMA hinting faults on
2811 * both the node itself, and on nearby nodes.
2813 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
2814 unsigned long score, max_score = 0;
2815 int node, max_node = nid;
2817 dist = sched_max_numa_distance;
2819 for_each_node_state(node, N_CPU) {
2820 score = group_weight(p, node, dist);
2821 if (score > max_score) {
2830 * Finding the preferred nid in a system with NUMA backplane
2831 * interconnect topology is more involved. The goal is to locate
2832 * tasks from numa_groups near each other in the system, and
2833 * untangle workloads from different sides of the system. This requires
2834 * searching down the hierarchy of node groups, recursively searching
2835 * inside the highest scoring group of nodes. The nodemask tricks
2836 * keep the complexity of the search down.
2838 nodes = node_states[N_CPU];
2839 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
2840 unsigned long max_faults = 0;
2841 nodemask_t max_group = NODE_MASK_NONE;
2844 /* Are there nodes at this distance from each other? */
2845 if (!find_numa_distance(dist))
2848 for_each_node_mask(a, nodes) {
2849 unsigned long faults = 0;
2850 nodemask_t this_group;
2851 nodes_clear(this_group);
2853 /* Sum group's NUMA faults; includes a==b case. */
2854 for_each_node_mask(b, nodes) {
2855 if (node_distance(a, b) < dist) {
2856 faults += group_faults(p, b);
2857 node_set(b, this_group);
2858 node_clear(b, nodes);
2862 /* Remember the top group. */
2863 if (faults > max_faults) {
2864 max_faults = faults;
2865 max_group = this_group;
2867 * subtle: at the smallest distance there is
2868 * just one node left in each "group", the
2869 * winner is the preferred nid.
2874 /* Next round, evaluate the nodes within max_group. */
2882 static void task_numa_placement(struct task_struct *p)
2884 int seq, nid, max_nid = NUMA_NO_NODE;
2885 unsigned long max_faults = 0;
2886 unsigned long fault_types[2] = { 0, 0 };
2887 unsigned long total_faults;
2888 u64 runtime, period;
2889 spinlock_t *group_lock = NULL;
2890 struct numa_group *ng;
2893 * The p->mm->numa_scan_seq field gets updated without
2894 * exclusive access. Use READ_ONCE() here to ensure
2895 * that the field is read in a single access:
2897 seq = READ_ONCE(p->mm->numa_scan_seq);
2898 if (p->numa_scan_seq == seq)
2900 p->numa_scan_seq = seq;
2901 p->numa_scan_period_max = task_scan_max(p);
2903 total_faults = p->numa_faults_locality[0] +
2904 p->numa_faults_locality[1];
2905 runtime = numa_get_avg_runtime(p, &period);
2907 /* If the task is part of a group prevent parallel updates to group stats */
2908 ng = deref_curr_numa_group(p);
2910 group_lock = &ng->lock;
2911 spin_lock_irq(group_lock);
2914 /* Find the node with the highest number of faults */
2915 for_each_online_node(nid) {
2916 /* Keep track of the offsets in numa_faults array */
2917 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
2918 unsigned long faults = 0, group_faults = 0;
2921 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
2922 long diff, f_diff, f_weight;
2924 mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
2925 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
2926 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
2927 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
2929 /* Decay existing window, copy faults since last scan */
2930 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
2931 fault_types[priv] += p->numa_faults[membuf_idx];
2932 p->numa_faults[membuf_idx] = 0;
2935 * Normalize the faults_from, so all tasks in a group
2936 * count according to CPU use, instead of by the raw
2937 * number of faults. Tasks with little runtime have
2938 * little over-all impact on throughput, and thus their
2939 * faults are less important.
2941 f_weight = div64_u64(runtime << 16, period + 1);
2942 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
2944 f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
2945 p->numa_faults[cpubuf_idx] = 0;
2947 p->numa_faults[mem_idx] += diff;
2948 p->numa_faults[cpu_idx] += f_diff;
2949 faults += p->numa_faults[mem_idx];
2950 p->total_numa_faults += diff;
2953 * safe because we can only change our own group
2955 * mem_idx represents the offset for a given
2956 * nid and priv in a specific region because it
2957 * is at the beginning of the numa_faults array.
2959 ng->faults[mem_idx] += diff;
2960 ng->faults[cpu_idx] += f_diff;
2961 ng->total_faults += diff;
2962 group_faults += ng->faults[mem_idx];
2967 if (faults > max_faults) {
2968 max_faults = faults;
2971 } else if (group_faults > max_faults) {
2972 max_faults = group_faults;
2977 /* Cannot migrate task to CPU-less node */
2978 max_nid = numa_nearest_node(max_nid, N_CPU);
2981 numa_group_count_active_nodes(ng);
2982 spin_unlock_irq(group_lock);
2983 max_nid = preferred_group_nid(p, max_nid);
2987 /* Set the new preferred node */
2988 if (max_nid != p->numa_preferred_nid)
2989 sched_setnuma(p, max_nid);
2992 update_task_scan_period(p, fault_types[0], fault_types[1]);
2995 static inline int get_numa_group(struct numa_group *grp)
2997 return refcount_inc_not_zero(&grp->refcount);
3000 static inline void put_numa_group(struct numa_group *grp)
3002 if (refcount_dec_and_test(&grp->refcount))
3003 kfree_rcu(grp, rcu);
3006 static void task_numa_group(struct task_struct *p, int cpupid, int flags,
3009 struct numa_group *grp, *my_grp;
3010 struct task_struct *tsk;
3012 int cpu = cpupid_to_cpu(cpupid);
3015 if (unlikely(!deref_curr_numa_group(p))) {
3016 unsigned int size = sizeof(struct numa_group) +
3017 NR_NUMA_HINT_FAULT_STATS *
3018 nr_node_ids * sizeof(unsigned long);
3020 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
3024 refcount_set(&grp->refcount, 1);
3025 grp->active_nodes = 1;
3026 grp->max_faults_cpu = 0;
3027 spin_lock_init(&grp->lock);
3030 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
3031 grp->faults[i] = p->numa_faults[i];
3033 grp->total_faults = p->total_numa_faults;
3036 rcu_assign_pointer(p->numa_group, grp);
3040 tsk = READ_ONCE(cpu_rq(cpu)->curr);
3042 if (!cpupid_match_pid(tsk, cpupid))
3045 grp = rcu_dereference(tsk->numa_group);
3049 my_grp = deref_curr_numa_group(p);
3054 * Only join the other group if its bigger; if we're the bigger group,
3055 * the other task will join us.
3057 if (my_grp->nr_tasks > grp->nr_tasks)
3061 * Tie-break on the grp address.
3063 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
3066 /* Always join threads in the same process. */
3067 if (tsk->mm == current->mm)
3070 /* Simple filter to avoid false positives due to PID collisions */
3071 if (flags & TNF_SHARED)
3074 /* Update priv based on whether false sharing was detected */
3077 if (join && !get_numa_group(grp))
3085 WARN_ON_ONCE(irqs_disabled());
3086 double_lock_irq(&my_grp->lock, &grp->lock);
3088 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
3089 my_grp->faults[i] -= p->numa_faults[i];
3090 grp->faults[i] += p->numa_faults[i];
3092 my_grp->total_faults -= p->total_numa_faults;
3093 grp->total_faults += p->total_numa_faults;
3098 spin_unlock(&my_grp->lock);
3099 spin_unlock_irq(&grp->lock);
3101 rcu_assign_pointer(p->numa_group, grp);
3103 put_numa_group(my_grp);
3112 * Get rid of NUMA statistics associated with a task (either current or dead).
3113 * If @final is set, the task is dead and has reached refcount zero, so we can
3114 * safely free all relevant data structures. Otherwise, there might be
3115 * concurrent reads from places like load balancing and procfs, and we should
3116 * reset the data back to default state without freeing ->numa_faults.
3118 void task_numa_free(struct task_struct *p, bool final)
3120 /* safe: p either is current or is being freed by current */
3121 struct numa_group *grp = rcu_dereference_raw(p->numa_group);
3122 unsigned long *numa_faults = p->numa_faults;
3123 unsigned long flags;
3130 spin_lock_irqsave(&grp->lock, flags);
3131 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
3132 grp->faults[i] -= p->numa_faults[i];
3133 grp->total_faults -= p->total_numa_faults;
3136 spin_unlock_irqrestore(&grp->lock, flags);
3137 RCU_INIT_POINTER(p->numa_group, NULL);
3138 put_numa_group(grp);
3142 p->numa_faults = NULL;
3145 p->total_numa_faults = 0;
3146 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
3152 * Got a PROT_NONE fault for a page on @node.
3154 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
3156 struct task_struct *p = current;
3157 bool migrated = flags & TNF_MIGRATED;
3158 int cpu_node = task_node(current);
3159 int local = !!(flags & TNF_FAULT_LOCAL);
3160 struct numa_group *ng;
3163 if (!static_branch_likely(&sched_numa_balancing))
3166 /* for example, ksmd faulting in a user's mm */
3171 * NUMA faults statistics are unnecessary for the slow memory
3172 * node for memory tiering mode.
3174 if (!node_is_toptier(mem_node) &&
3175 (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING ||
3176 !cpupid_valid(last_cpupid)))
3179 /* Allocate buffer to track faults on a per-node basis */
3180 if (unlikely(!p->numa_faults)) {
3181 int size = sizeof(*p->numa_faults) *
3182 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
3184 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
3185 if (!p->numa_faults)
3188 p->total_numa_faults = 0;
3189 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
3193 * First accesses are treated as private, otherwise consider accesses
3194 * to be private if the accessing pid has not changed
3196 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
3199 priv = cpupid_match_pid(p, last_cpupid);
3200 if (!priv && !(flags & TNF_NO_GROUP))
3201 task_numa_group(p, last_cpupid, flags, &priv);
3205 * If a workload spans multiple NUMA nodes, a shared fault that
3206 * occurs wholly within the set of nodes that the workload is
3207 * actively using should be counted as local. This allows the
3208 * scan rate to slow down when a workload has settled down.
3210 ng = deref_curr_numa_group(p);
3211 if (!priv && !local && ng && ng->active_nodes > 1 &&
3212 numa_is_active_node(cpu_node, ng) &&
3213 numa_is_active_node(mem_node, ng))
3217 * Retry to migrate task to preferred node periodically, in case it
3218 * previously failed, or the scheduler moved us.
3220 if (time_after(jiffies, p->numa_migrate_retry)) {
3221 task_numa_placement(p);
3222 numa_migrate_preferred(p);
3226 p->numa_pages_migrated += pages;
3227 if (flags & TNF_MIGRATE_FAIL)
3228 p->numa_faults_locality[2] += pages;
3230 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
3231 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
3232 p->numa_faults_locality[local] += pages;
3235 static void reset_ptenuma_scan(struct task_struct *p)
3238 * We only did a read acquisition of the mmap sem, so
3239 * p->mm->numa_scan_seq is written to without exclusive access
3240 * and the update is not guaranteed to be atomic. That's not
3241 * much of an issue though, since this is just used for
3242 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
3243 * expensive, to avoid any form of compiler optimizations:
3245 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
3246 p->mm->numa_scan_offset = 0;
3249 static bool vma_is_accessed(struct mm_struct *mm, struct vm_area_struct *vma)
3253 * Allow unconditional access first two times, so that all the (pages)
3254 * of VMAs get prot_none fault introduced irrespective of accesses.
3255 * This is also done to avoid any side effect of task scanning
3256 * amplifying the unfairness of disjoint set of VMAs' access.
3258 if ((READ_ONCE(current->mm->numa_scan_seq) - vma->numab_state->start_scan_seq) < 2)
3261 pids = vma->numab_state->pids_active[0] | vma->numab_state->pids_active[1];
3262 if (test_bit(hash_32(current->pid, ilog2(BITS_PER_LONG)), &pids))
3266 * Complete a scan that has already started regardless of PID access, or
3267 * some VMAs may never be scanned in multi-threaded applications:
3269 if (mm->numa_scan_offset > vma->vm_start) {
3270 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_IGNORE_PID);
3275 * This vma has not been accessed for a while, and if the number
3276 * the threads in the same process is low, which means no other
3277 * threads can help scan this vma, force a vma scan.
3279 if (READ_ONCE(mm->numa_scan_seq) >
3280 (vma->numab_state->prev_scan_seq + get_nr_threads(current)))
3286 #define VMA_PID_RESET_PERIOD (4 * sysctl_numa_balancing_scan_delay)
3289 * The expensive part of numa migration is done from task_work context.
3290 * Triggered from task_tick_numa().
3292 static void task_numa_work(struct callback_head *work)
3294 unsigned long migrate, next_scan, now = jiffies;
3295 struct task_struct *p = current;
3296 struct mm_struct *mm = p->mm;
3297 u64 runtime = p->se.sum_exec_runtime;
3298 struct vm_area_struct *vma;
3299 unsigned long start, end;
3300 unsigned long nr_pte_updates = 0;
3301 long pages, virtpages;
3302 struct vma_iterator vmi;
3303 bool vma_pids_skipped;
3304 bool vma_pids_forced = false;
3306 SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
3310 * Who cares about NUMA placement when they're dying.
3312 * NOTE: make sure not to dereference p->mm before this check,
3313 * exit_task_work() happens _after_ exit_mm() so we could be called
3314 * without p->mm even though we still had it when we enqueued this
3317 if (p->flags & PF_EXITING)
3320 if (!mm->numa_next_scan) {
3321 mm->numa_next_scan = now +
3322 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
3326 * Enforce maximal scan/migration frequency..
3328 migrate = mm->numa_next_scan;
3329 if (time_before(now, migrate))
3332 if (p->numa_scan_period == 0) {
3333 p->numa_scan_period_max = task_scan_max(p);
3334 p->numa_scan_period = task_scan_start(p);
3337 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
3338 if (!try_cmpxchg(&mm->numa_next_scan, &migrate, next_scan))
3342 * Delay this task enough that another task of this mm will likely win
3343 * the next time around.
3345 p->node_stamp += 2 * TICK_NSEC;
3347 pages = sysctl_numa_balancing_scan_size;
3348 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
3349 virtpages = pages * 8; /* Scan up to this much virtual space */
3354 if (!mmap_read_trylock(mm))
3358 * VMAs are skipped if the current PID has not trapped a fault within
3359 * the VMA recently. Allow scanning to be forced if there is no
3360 * suitable VMA remaining.
3362 vma_pids_skipped = false;
3365 start = mm->numa_scan_offset;
3366 vma_iter_init(&vmi, mm, start);
3367 vma = vma_next(&vmi);
3369 reset_ptenuma_scan(p);
3371 vma_iter_set(&vmi, start);
3372 vma = vma_next(&vmi);
3375 for (; vma; vma = vma_next(&vmi)) {
3376 if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
3377 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
3378 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_UNSUITABLE);
3383 * Shared library pages mapped by multiple processes are not
3384 * migrated as it is expected they are cache replicated. Avoid
3385 * hinting faults in read-only file-backed mappings or the vDSO
3386 * as migrating the pages will be of marginal benefit.
3389 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ))) {
3390 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SHARED_RO);
3395 * Skip inaccessible VMAs to avoid any confusion between
3396 * PROT_NONE and NUMA hinting PTEs
3398 if (!vma_is_accessible(vma)) {
3399 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_INACCESSIBLE);
3403 /* Initialise new per-VMA NUMAB state. */
3404 if (!vma->numab_state) {
3405 struct vma_numab_state *ptr;
3407 ptr = kzalloc(sizeof(*ptr), GFP_KERNEL);
3411 if (cmpxchg(&vma->numab_state, NULL, ptr)) {
3416 vma->numab_state->start_scan_seq = mm->numa_scan_seq;
3418 vma->numab_state->next_scan = now +
3419 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
3421 /* Reset happens after 4 times scan delay of scan start */
3422 vma->numab_state->pids_active_reset = vma->numab_state->next_scan +
3423 msecs_to_jiffies(VMA_PID_RESET_PERIOD);
3426 * Ensure prev_scan_seq does not match numa_scan_seq,
3427 * to prevent VMAs being skipped prematurely on the
3430 vma->numab_state->prev_scan_seq = mm->numa_scan_seq - 1;
3434 * Scanning the VMAs of short lived tasks add more overhead. So
3435 * delay the scan for new VMAs.
3437 if (mm->numa_scan_seq && time_before(jiffies,
3438 vma->numab_state->next_scan)) {
3439 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SCAN_DELAY);
3443 /* RESET access PIDs regularly for old VMAs. */
3444 if (mm->numa_scan_seq &&
3445 time_after(jiffies, vma->numab_state->pids_active_reset)) {
3446 vma->numab_state->pids_active_reset = vma->numab_state->pids_active_reset +
3447 msecs_to_jiffies(VMA_PID_RESET_PERIOD);
3448 vma->numab_state->pids_active[0] = READ_ONCE(vma->numab_state->pids_active[1]);
3449 vma->numab_state->pids_active[1] = 0;
3452 /* Do not rescan VMAs twice within the same sequence. */
3453 if (vma->numab_state->prev_scan_seq == mm->numa_scan_seq) {
3454 mm->numa_scan_offset = vma->vm_end;
3455 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SEQ_COMPLETED);
3460 * Do not scan the VMA if task has not accessed it, unless no other
3461 * VMA candidate exists.
3463 if (!vma_pids_forced && !vma_is_accessed(mm, vma)) {
3464 vma_pids_skipped = true;
3465 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_PID_INACTIVE);
3470 start = max(start, vma->vm_start);
3471 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
3472 end = min(end, vma->vm_end);
3473 nr_pte_updates = change_prot_numa(vma, start, end);
3476 * Try to scan sysctl_numa_balancing_size worth of
3477 * hpages that have at least one present PTE that
3478 * is not already PTE-numa. If the VMA contains
3479 * areas that are unused or already full of prot_numa
3480 * PTEs, scan up to virtpages, to skip through those
3484 pages -= (end - start) >> PAGE_SHIFT;
3485 virtpages -= (end - start) >> PAGE_SHIFT;
3488 if (pages <= 0 || virtpages <= 0)
3492 } while (end != vma->vm_end);
3494 /* VMA scan is complete, do not scan until next sequence. */
3495 vma->numab_state->prev_scan_seq = mm->numa_scan_seq;
3498 * Only force scan within one VMA at a time, to limit the
3499 * cost of scanning a potentially uninteresting VMA.
3501 if (vma_pids_forced)
3506 * If no VMAs are remaining and VMAs were skipped due to the PID
3507 * not accessing the VMA previously, then force a scan to ensure
3510 if (!vma && !vma_pids_forced && vma_pids_skipped) {
3511 vma_pids_forced = true;
3517 * It is possible to reach the end of the VMA list but the last few
3518 * VMAs are not guaranteed to the vma_migratable. If they are not, we
3519 * would find the !migratable VMA on the next scan but not reset the
3520 * scanner to the start so check it now.
3523 mm->numa_scan_offset = start;
3525 reset_ptenuma_scan(p);
3526 mmap_read_unlock(mm);
3529 * Make sure tasks use at least 32x as much time to run other code
3530 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
3531 * Usually update_task_scan_period slows down scanning enough; on an
3532 * overloaded system we need to limit overhead on a per task basis.
3534 if (unlikely(p->se.sum_exec_runtime != runtime)) {
3535 u64 diff = p->se.sum_exec_runtime - runtime;
3536 p->node_stamp += 32 * diff;
3540 void init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
3543 struct mm_struct *mm = p->mm;
3546 mm_users = atomic_read(&mm->mm_users);
3547 if (mm_users == 1) {
3548 mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
3549 mm->numa_scan_seq = 0;
3553 p->numa_scan_seq = mm ? mm->numa_scan_seq : 0;
3554 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
3555 p->numa_migrate_retry = 0;
3556 /* Protect against double add, see task_tick_numa and task_numa_work */
3557 p->numa_work.next = &p->numa_work;
3558 p->numa_faults = NULL;
3559 p->numa_pages_migrated = 0;
3560 p->total_numa_faults = 0;
3561 RCU_INIT_POINTER(p->numa_group, NULL);
3562 p->last_task_numa_placement = 0;
3563 p->last_sum_exec_runtime = 0;
3565 init_task_work(&p->numa_work, task_numa_work);
3567 /* New address space, reset the preferred nid */
3568 if (!(clone_flags & CLONE_VM)) {
3569 p->numa_preferred_nid = NUMA_NO_NODE;
3574 * New thread, keep existing numa_preferred_nid which should be copied
3575 * already by arch_dup_task_struct but stagger when scans start.
3580 delay = min_t(unsigned int, task_scan_max(current),
3581 current->numa_scan_period * mm_users * NSEC_PER_MSEC);
3582 delay += 2 * TICK_NSEC;
3583 p->node_stamp = delay;
3588 * Drive the periodic memory faults..
3590 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
3592 struct callback_head *work = &curr->numa_work;
3596 * We don't care about NUMA placement if we don't have memory.
3598 if (!curr->mm || (curr->flags & (PF_EXITING | PF_KTHREAD)) || work->next != work)
3602 * Using runtime rather than walltime has the dual advantage that
3603 * we (mostly) drive the selection from busy threads and that the
3604 * task needs to have done some actual work before we bother with
3607 now = curr->se.sum_exec_runtime;
3608 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
3610 if (now > curr->node_stamp + period) {
3611 if (!curr->node_stamp)
3612 curr->numa_scan_period = task_scan_start(curr);
3613 curr->node_stamp += period;
3615 if (!time_before(jiffies, curr->mm->numa_next_scan))
3616 task_work_add(curr, work, TWA_RESUME);
3620 static void update_scan_period(struct task_struct *p, int new_cpu)
3622 int src_nid = cpu_to_node(task_cpu(p));
3623 int dst_nid = cpu_to_node(new_cpu);
3625 if (!static_branch_likely(&sched_numa_balancing))
3628 if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING))
3631 if (src_nid == dst_nid)
3635 * Allow resets if faults have been trapped before one scan
3636 * has completed. This is most likely due to a new task that
3637 * is pulled cross-node due to wakeups or load balancing.
3639 if (p->numa_scan_seq) {
3641 * Avoid scan adjustments if moving to the preferred
3642 * node or if the task was not previously running on
3643 * the preferred node.
3645 if (dst_nid == p->numa_preferred_nid ||
3646 (p->numa_preferred_nid != NUMA_NO_NODE &&
3647 src_nid != p->numa_preferred_nid))
3651 p->numa_scan_period = task_scan_start(p);
3655 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
3659 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
3663 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
3667 static inline void update_scan_period(struct task_struct *p, int new_cpu)
3671 #endif /* CONFIG_NUMA_BALANCING */
3674 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
3676 update_load_add(&cfs_rq->load, se->load.weight);
3678 if (entity_is_task(se)) {
3679 struct rq *rq = rq_of(cfs_rq);
3681 account_numa_enqueue(rq, task_of(se));
3682 list_add(&se->group_node, &rq->cfs_tasks);
3685 cfs_rq->nr_running++;
3687 cfs_rq->idle_nr_running++;
3691 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
3693 update_load_sub(&cfs_rq->load, se->load.weight);
3695 if (entity_is_task(se)) {
3696 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
3697 list_del_init(&se->group_node);
3700 cfs_rq->nr_running--;
3702 cfs_rq->idle_nr_running--;
3706 * Signed add and clamp on underflow.
3708 * Explicitly do a load-store to ensure the intermediate value never hits
3709 * memory. This allows lockless observations without ever seeing the negative
3712 #define add_positive(_ptr, _val) do { \
3713 typeof(_ptr) ptr = (_ptr); \
3714 typeof(_val) val = (_val); \
3715 typeof(*ptr) res, var = READ_ONCE(*ptr); \
3719 if (val < 0 && res > var) \
3722 WRITE_ONCE(*ptr, res); \
3726 * Unsigned subtract and clamp on underflow.
3728 * Explicitly do a load-store to ensure the intermediate value never hits
3729 * memory. This allows lockless observations without ever seeing the negative
3732 #define sub_positive(_ptr, _val) do { \
3733 typeof(_ptr) ptr = (_ptr); \
3734 typeof(*ptr) val = (_val); \
3735 typeof(*ptr) res, var = READ_ONCE(*ptr); \
3739 WRITE_ONCE(*ptr, res); \
3743 * Remove and clamp on negative, from a local variable.
3745 * A variant of sub_positive(), which does not use explicit load-store
3746 * and is thus optimized for local variable updates.
3748 #define lsub_positive(_ptr, _val) do { \
3749 typeof(_ptr) ptr = (_ptr); \
3750 *ptr -= min_t(typeof(*ptr), *ptr, _val); \
3755 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3757 cfs_rq->avg.load_avg += se->avg.load_avg;
3758 cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum;
3762 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3764 sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
3765 sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum);
3766 /* See update_cfs_rq_load_avg() */
3767 cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum,
3768 cfs_rq->avg.load_avg * PELT_MIN_DIVIDER);
3772 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
3774 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
3777 static void reweight_eevdf(struct sched_entity *se, u64 avruntime,
3778 unsigned long weight)
3780 unsigned long old_weight = se->load.weight;
3787 * COROLLARY #1: The virtual runtime of the entity needs to be
3788 * adjusted if re-weight at !0-lag point.
3790 * Proof: For contradiction assume this is not true, so we can
3791 * re-weight without changing vruntime at !0-lag point.
3793 * Weight VRuntime Avg-VRuntime
3797 * Since lag needs to be preserved through re-weight:
3799 * lag = (V - v)*w = (V'- v')*w', where v = v'
3800 * ==> V' = (V - v)*w/w' + v (1)
3802 * Let W be the total weight of the entities before reweight,
3803 * since V' is the new weighted average of entities:
3805 * V' = (WV + w'v - wv) / (W + w' - w) (2)
3807 * by using (1) & (2) we obtain:
3809 * (WV + w'v - wv) / (W + w' - w) = (V - v)*w/w' + v
3810 * ==> (WV-Wv+Wv+w'v-wv)/(W+w'-w) = (V - v)*w/w' + v
3811 * ==> (WV - Wv)/(W + w' - w) + v = (V - v)*w/w' + v
3812 * ==> (V - v)*W/(W + w' - w) = (V - v)*w/w' (3)
3814 * Since we are doing at !0-lag point which means V != v, we
3817 * ==> W / (W + w' - w) = w / w'
3818 * ==> Ww' = Ww + ww' - ww
3819 * ==> W * (w' - w) = w * (w' - w)
3820 * ==> W = w (re-weight indicates w' != w)
3822 * So the cfs_rq contains only one entity, hence vruntime of
3823 * the entity @v should always equal to the cfs_rq's weighted
3824 * average vruntime @V, which means we will always re-weight
3825 * at 0-lag point, thus breach assumption. Proof completed.
3828 * COROLLARY #2: Re-weight does NOT affect weighted average
3829 * vruntime of all the entities.
3831 * Proof: According to corollary #1, Eq. (1) should be:
3833 * (V - v)*w = (V' - v')*w'
3834 * ==> v' = V' - (V - v)*w/w' (4)
3836 * According to the weighted average formula, we have:
3838 * V' = (WV - wv + w'v') / (W - w + w')
3839 * = (WV - wv + w'(V' - (V - v)w/w')) / (W - w + w')
3840 * = (WV - wv + w'V' - Vw + wv) / (W - w + w')
3841 * = (WV + w'V' - Vw) / (W - w + w')
3843 * ==> V'*(W - w + w') = WV + w'V' - Vw
3844 * ==> V' * (W - w) = (W - w) * V (5)
3846 * If the entity is the only one in the cfs_rq, then reweight
3847 * always occurs at 0-lag point, so V won't change. Or else
3848 * there are other entities, hence W != w, then Eq. (5) turns
3849 * into V' = V. So V won't change in either case, proof done.
3852 * So according to corollary #1 & #2, the effect of re-weight
3853 * on vruntime should be:
3855 * v' = V' - (V - v) * w / w' (4)
3856 * = V - (V - v) * w / w'
3860 if (avruntime != se->vruntime) {
3861 vlag = entity_lag(avruntime, se);
3862 vlag = div_s64(vlag * old_weight, weight);
3863 se->vruntime = avruntime - vlag;
3870 * When the weight changes, the virtual time slope changes and
3871 * we should adjust the relative virtual deadline accordingly.
3873 * d' = v' + (d - v)*w/w'
3874 * = V' - (V - v)*w/w' + (d - v)*w/w'
3875 * = V - (V - v)*w/w' + (d - v)*w/w'
3876 * = V + (d - V)*w/w'
3878 vslice = (s64)(se->deadline - avruntime);
3879 vslice = div_s64(vslice * old_weight, weight);
3880 se->deadline = avruntime + vslice;
3883 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
3884 unsigned long weight)
3886 bool curr = cfs_rq->curr == se;
3890 /* commit outstanding execution time */
3891 update_curr(cfs_rq);
3892 avruntime = avg_vruntime(cfs_rq);
3894 __dequeue_entity(cfs_rq, se);
3895 update_load_sub(&cfs_rq->load, se->load.weight);
3897 dequeue_load_avg(cfs_rq, se);
3900 reweight_eevdf(se, avruntime, weight);
3903 * Because we keep se->vlag = V - v_i, while: lag_i = w_i*(V - v_i),
3904 * we need to scale se->vlag when w_i changes.
3906 se->vlag = div_s64(se->vlag * se->load.weight, weight);
3909 update_load_set(&se->load, weight);
3913 u32 divider = get_pelt_divider(&se->avg);
3915 se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider);
3919 enqueue_load_avg(cfs_rq, se);
3921 update_load_add(&cfs_rq->load, se->load.weight);
3923 __enqueue_entity(cfs_rq, se);
3926 * The entity's vruntime has been adjusted, so let's check
3927 * whether the rq-wide min_vruntime needs updated too. Since
3928 * the calculations above require stable min_vruntime rather
3929 * than up-to-date one, we do the update at the end of the
3932 update_min_vruntime(cfs_rq);
3936 static void reweight_task_fair(struct rq *rq, struct task_struct *p,
3937 const struct load_weight *lw)
3939 struct sched_entity *se = &p->se;
3940 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3941 struct load_weight *load = &se->load;
3943 reweight_entity(cfs_rq, se, lw->weight);
3944 load->inv_weight = lw->inv_weight;
3947 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
3949 #ifdef CONFIG_FAIR_GROUP_SCHED
3952 * All this does is approximate the hierarchical proportion which includes that
3953 * global sum we all love to hate.
3955 * That is, the weight of a group entity, is the proportional share of the
3956 * group weight based on the group runqueue weights. That is:
3958 * tg->weight * grq->load.weight
3959 * ge->load.weight = ----------------------------- (1)
3960 * \Sum grq->load.weight
3962 * Now, because computing that sum is prohibitively expensive to compute (been
3963 * there, done that) we approximate it with this average stuff. The average
3964 * moves slower and therefore the approximation is cheaper and more stable.
3966 * So instead of the above, we substitute:
3968 * grq->load.weight -> grq->avg.load_avg (2)
3970 * which yields the following:
3972 * tg->weight * grq->avg.load_avg
3973 * ge->load.weight = ------------------------------ (3)
3976 * Where: tg->load_avg ~= \Sum grq->avg.load_avg
3978 * That is shares_avg, and it is right (given the approximation (2)).
3980 * The problem with it is that because the average is slow -- it was designed
3981 * to be exactly that of course -- this leads to transients in boundary
3982 * conditions. In specific, the case where the group was idle and we start the
3983 * one task. It takes time for our CPU's grq->avg.load_avg to build up,
3984 * yielding bad latency etc..
3986 * Now, in that special case (1) reduces to:
3988 * tg->weight * grq->load.weight
3989 * ge->load.weight = ----------------------------- = tg->weight (4)
3992 * That is, the sum collapses because all other CPUs are idle; the UP scenario.
3994 * So what we do is modify our approximation (3) to approach (4) in the (near)
3999 * tg->weight * grq->load.weight
4000 * --------------------------------------------------- (5)
4001 * tg->load_avg - grq->avg.load_avg + grq->load.weight
4003 * But because grq->load.weight can drop to 0, resulting in a divide by zero,
4004 * we need to use grq->avg.load_avg as its lower bound, which then gives:
4007 * tg->weight * grq->load.weight
4008 * ge->load.weight = ----------------------------- (6)
4013 * tg_load_avg' = tg->load_avg - grq->avg.load_avg +
4014 * max(grq->load.weight, grq->avg.load_avg)
4016 * And that is shares_weight and is icky. In the (near) UP case it approaches
4017 * (4) while in the normal case it approaches (3). It consistently
4018 * overestimates the ge->load.weight and therefore:
4020 * \Sum ge->load.weight >= tg->weight
4024 static long calc_group_shares(struct cfs_rq *cfs_rq)
4026 long tg_weight, tg_shares, load, shares;
4027 struct task_group *tg = cfs_rq->tg;
4029 tg_shares = READ_ONCE(tg->shares);
4031 load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg);
4033 tg_weight = atomic_long_read(&tg->load_avg);
4035 /* Ensure tg_weight >= load */
4036 tg_weight -= cfs_rq->tg_load_avg_contrib;
4039 shares = (tg_shares * load);
4041 shares /= tg_weight;
4044 * MIN_SHARES has to be unscaled here to support per-CPU partitioning
4045 * of a group with small tg->shares value. It is a floor value which is
4046 * assigned as a minimum load.weight to the sched_entity representing
4047 * the group on a CPU.
4049 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
4050 * on an 8-core system with 8 tasks each runnable on one CPU shares has
4051 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
4052 * case no task is runnable on a CPU MIN_SHARES=2 should be returned
4055 return clamp_t(long, shares, MIN_SHARES, tg_shares);
4057 #endif /* CONFIG_SMP */
4060 * Recomputes the group entity based on the current state of its group
4063 static void update_cfs_group(struct sched_entity *se)
4065 struct cfs_rq *gcfs_rq = group_cfs_rq(se);
4071 if (throttled_hierarchy(gcfs_rq))
4075 shares = READ_ONCE(gcfs_rq->tg->shares);
4077 shares = calc_group_shares(gcfs_rq);
4079 if (unlikely(se->load.weight != shares))
4080 reweight_entity(cfs_rq_of(se), se, shares);
4083 #else /* CONFIG_FAIR_GROUP_SCHED */
4084 static inline void update_cfs_group(struct sched_entity *se)
4087 #endif /* CONFIG_FAIR_GROUP_SCHED */
4089 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags)
4091 struct rq *rq = rq_of(cfs_rq);
4093 if (&rq->cfs == cfs_rq) {
4095 * There are a few boundary cases this might miss but it should
4096 * get called often enough that that should (hopefully) not be
4099 * It will not get called when we go idle, because the idle
4100 * thread is a different class (!fair), nor will the utilization
4101 * number include things like RT tasks.
4103 * As is, the util number is not freq-invariant (we'd have to
4104 * implement arch_scale_freq_capacity() for that).
4106 * See cpu_util_cfs().
4108 cpufreq_update_util(rq, flags);
4113 static inline bool load_avg_is_decayed(struct sched_avg *sa)
4121 if (sa->runnable_sum)
4125 * _avg must be null when _sum are null because _avg = _sum / divider
4126 * Make sure that rounding and/or propagation of PELT values never
4129 SCHED_WARN_ON(sa->load_avg ||
4136 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
4138 return u64_u32_load_copy(cfs_rq->avg.last_update_time,
4139 cfs_rq->last_update_time_copy);
4141 #ifdef CONFIG_FAIR_GROUP_SCHED
4143 * Because list_add_leaf_cfs_rq always places a child cfs_rq on the list
4144 * immediately before a parent cfs_rq, and cfs_rqs are removed from the list
4145 * bottom-up, we only have to test whether the cfs_rq before us on the list
4147 * If cfs_rq is not on the list, test whether a child needs its to be added to
4148 * connect a branch to the tree * (see list_add_leaf_cfs_rq() for details).
4150 static inline bool child_cfs_rq_on_list(struct cfs_rq *cfs_rq)
4152 struct cfs_rq *prev_cfs_rq;
4153 struct list_head *prev;
4155 if (cfs_rq->on_list) {
4156 prev = cfs_rq->leaf_cfs_rq_list.prev;
4158 struct rq *rq = rq_of(cfs_rq);
4160 prev = rq->tmp_alone_branch;
4163 prev_cfs_rq = container_of(prev, struct cfs_rq, leaf_cfs_rq_list);
4165 return (prev_cfs_rq->tg->parent == cfs_rq->tg);
4168 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
4170 if (cfs_rq->load.weight)
4173 if (!load_avg_is_decayed(&cfs_rq->avg))
4176 if (child_cfs_rq_on_list(cfs_rq))
4183 * update_tg_load_avg - update the tg's load avg
4184 * @cfs_rq: the cfs_rq whose avg changed
4186 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
4187 * However, because tg->load_avg is a global value there are performance
4190 * In order to avoid having to look at the other cfs_rq's, we use a
4191 * differential update where we store the last value we propagated. This in
4192 * turn allows skipping updates if the differential is 'small'.
4194 * Updating tg's load_avg is necessary before update_cfs_share().
4196 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq)
4202 * No need to update load_avg for root_task_group as it is not used.
4204 if (cfs_rq->tg == &root_task_group)
4207 /* rq has been offline and doesn't contribute to the share anymore: */
4208 if (!cpu_active(cpu_of(rq_of(cfs_rq))))
4212 * For migration heavy workloads, access to tg->load_avg can be
4213 * unbound. Limit the update rate to at most once per ms.
4215 now = sched_clock_cpu(cpu_of(rq_of(cfs_rq)));
4216 if (now - cfs_rq->last_update_tg_load_avg < NSEC_PER_MSEC)
4219 delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
4220 if (abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
4221 atomic_long_add(delta, &cfs_rq->tg->load_avg);
4222 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
4223 cfs_rq->last_update_tg_load_avg = now;
4227 static inline void clear_tg_load_avg(struct cfs_rq *cfs_rq)
4233 * No need to update load_avg for root_task_group, as it is not used.
4235 if (cfs_rq->tg == &root_task_group)
4238 now = sched_clock_cpu(cpu_of(rq_of(cfs_rq)));
4239 delta = 0 - cfs_rq->tg_load_avg_contrib;
4240 atomic_long_add(delta, &cfs_rq->tg->load_avg);
4241 cfs_rq->tg_load_avg_contrib = 0;
4242 cfs_rq->last_update_tg_load_avg = now;
4245 /* CPU offline callback: */
4246 static void __maybe_unused clear_tg_offline_cfs_rqs(struct rq *rq)
4248 struct task_group *tg;
4250 lockdep_assert_rq_held(rq);
4253 * The rq clock has already been updated in
4254 * set_rq_offline(), so we should skip updating
4255 * the rq clock again in unthrottle_cfs_rq().
4257 rq_clock_start_loop_update(rq);
4260 list_for_each_entry_rcu(tg, &task_groups, list) {
4261 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4263 clear_tg_load_avg(cfs_rq);
4267 rq_clock_stop_loop_update(rq);
4271 * Called within set_task_rq() right before setting a task's CPU. The
4272 * caller only guarantees p->pi_lock is held; no other assumptions,
4273 * including the state of rq->lock, should be made.
4275 void set_task_rq_fair(struct sched_entity *se,
4276 struct cfs_rq *prev, struct cfs_rq *next)
4278 u64 p_last_update_time;
4279 u64 n_last_update_time;
4281 if (!sched_feat(ATTACH_AGE_LOAD))
4285 * We are supposed to update the task to "current" time, then its up to
4286 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
4287 * getting what current time is, so simply throw away the out-of-date
4288 * time. This will result in the wakee task is less decayed, but giving
4289 * the wakee more load sounds not bad.
4291 if (!(se->avg.last_update_time && prev))
4294 p_last_update_time = cfs_rq_last_update_time(prev);
4295 n_last_update_time = cfs_rq_last_update_time(next);
4297 __update_load_avg_blocked_se(p_last_update_time, se);
4298 se->avg.last_update_time = n_last_update_time;
4302 * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to
4303 * propagate its contribution. The key to this propagation is the invariant
4304 * that for each group:
4306 * ge->avg == grq->avg (1)
4308 * _IFF_ we look at the pure running and runnable sums. Because they
4309 * represent the very same entity, just at different points in the hierarchy.
4311 * Per the above update_tg_cfs_util() and update_tg_cfs_runnable() are trivial
4312 * and simply copies the running/runnable sum over (but still wrong, because
4313 * the group entity and group rq do not have their PELT windows aligned).
4315 * However, update_tg_cfs_load() is more complex. So we have:
4317 * ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg (2)
4319 * And since, like util, the runnable part should be directly transferable,
4320 * the following would _appear_ to be the straight forward approach:
4322 * grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg (3)
4324 * And per (1) we have:
4326 * ge->avg.runnable_avg == grq->avg.runnable_avg
4330 * ge->load.weight * grq->avg.load_avg
4331 * ge->avg.load_avg = ----------------------------------- (4)
4334 * Except that is wrong!
4336 * Because while for entities historical weight is not important and we
4337 * really only care about our future and therefore can consider a pure
4338 * runnable sum, runqueues can NOT do this.
4340 * We specifically want runqueues to have a load_avg that includes
4341 * historical weights. Those represent the blocked load, the load we expect
4342 * to (shortly) return to us. This only works by keeping the weights as
4343 * integral part of the sum. We therefore cannot decompose as per (3).
4345 * Another reason this doesn't work is that runnable isn't a 0-sum entity.
4346 * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the
4347 * rq itself is runnable anywhere between 2/3 and 1 depending on how the
4348 * runnable section of these tasks overlap (or not). If they were to perfectly
4349 * align the rq as a whole would be runnable 2/3 of the time. If however we
4350 * always have at least 1 runnable task, the rq as a whole is always runnable.
4352 * So we'll have to approximate.. :/
4354 * Given the constraint:
4356 * ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX
4358 * We can construct a rule that adds runnable to a rq by assuming minimal
4361 * On removal, we'll assume each task is equally runnable; which yields:
4363 * grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight
4365 * XXX: only do this for the part of runnable > running ?
4369 update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
4371 long delta_sum, delta_avg = gcfs_rq->avg.util_avg - se->avg.util_avg;
4372 u32 new_sum, divider;
4374 /* Nothing to update */
4379 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
4380 * See ___update_load_avg() for details.
4382 divider = get_pelt_divider(&cfs_rq->avg);
4385 /* Set new sched_entity's utilization */
4386 se->avg.util_avg = gcfs_rq->avg.util_avg;
4387 new_sum = se->avg.util_avg * divider;
4388 delta_sum = (long)new_sum - (long)se->avg.util_sum;
4389 se->avg.util_sum = new_sum;
4391 /* Update parent cfs_rq utilization */
4392 add_positive(&cfs_rq->avg.util_avg, delta_avg);
4393 add_positive(&cfs_rq->avg.util_sum, delta_sum);
4395 /* See update_cfs_rq_load_avg() */
4396 cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum,
4397 cfs_rq->avg.util_avg * PELT_MIN_DIVIDER);
4401 update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
4403 long delta_sum, delta_avg = gcfs_rq->avg.runnable_avg - se->avg.runnable_avg;
4404 u32 new_sum, divider;
4406 /* Nothing to update */
4411 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
4412 * See ___update_load_avg() for details.
4414 divider = get_pelt_divider(&cfs_rq->avg);
4416 /* Set new sched_entity's runnable */
4417 se->avg.runnable_avg = gcfs_rq->avg.runnable_avg;
4418 new_sum = se->avg.runnable_avg * divider;
4419 delta_sum = (long)new_sum - (long)se->avg.runnable_sum;
4420 se->avg.runnable_sum = new_sum;
4422 /* Update parent cfs_rq runnable */
4423 add_positive(&cfs_rq->avg.runnable_avg, delta_avg);
4424 add_positive(&cfs_rq->avg.runnable_sum, delta_sum);
4425 /* See update_cfs_rq_load_avg() */
4426 cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum,
4427 cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER);
4431 update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
4433 long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum;
4434 unsigned long load_avg;
4442 gcfs_rq->prop_runnable_sum = 0;
4445 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
4446 * See ___update_load_avg() for details.
4448 divider = get_pelt_divider(&cfs_rq->avg);
4450 if (runnable_sum >= 0) {
4452 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until
4453 * the CPU is saturated running == runnable.
4455 runnable_sum += se->avg.load_sum;
4456 runnable_sum = min_t(long, runnable_sum, divider);
4459 * Estimate the new unweighted runnable_sum of the gcfs_rq by
4460 * assuming all tasks are equally runnable.
4462 if (scale_load_down(gcfs_rq->load.weight)) {
4463 load_sum = div_u64(gcfs_rq->avg.load_sum,
4464 scale_load_down(gcfs_rq->load.weight));
4467 /* But make sure to not inflate se's runnable */
4468 runnable_sum = min(se->avg.load_sum, load_sum);
4472 * runnable_sum can't be lower than running_sum
4473 * Rescale running sum to be in the same range as runnable sum
4474 * running_sum is in [0 : LOAD_AVG_MAX << SCHED_CAPACITY_SHIFT]
4475 * runnable_sum is in [0 : LOAD_AVG_MAX]
4477 running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT;
4478 runnable_sum = max(runnable_sum, running_sum);
4480 load_sum = se_weight(se) * runnable_sum;
4481 load_avg = div_u64(load_sum, divider);
4483 delta_avg = load_avg - se->avg.load_avg;
4487 delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum;
4489 se->avg.load_sum = runnable_sum;
4490 se->avg.load_avg = load_avg;
4491 add_positive(&cfs_rq->avg.load_avg, delta_avg);
4492 add_positive(&cfs_rq->avg.load_sum, delta_sum);
4493 /* See update_cfs_rq_load_avg() */
4494 cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum,
4495 cfs_rq->avg.load_avg * PELT_MIN_DIVIDER);
4498 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum)
4500 cfs_rq->propagate = 1;
4501 cfs_rq->prop_runnable_sum += runnable_sum;
4504 /* Update task and its cfs_rq load average */
4505 static inline int propagate_entity_load_avg(struct sched_entity *se)
4507 struct cfs_rq *cfs_rq, *gcfs_rq;
4509 if (entity_is_task(se))
4512 gcfs_rq = group_cfs_rq(se);
4513 if (!gcfs_rq->propagate)
4516 gcfs_rq->propagate = 0;
4518 cfs_rq = cfs_rq_of(se);
4520 add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum);
4522 update_tg_cfs_util(cfs_rq, se, gcfs_rq);
4523 update_tg_cfs_runnable(cfs_rq, se, gcfs_rq);
4524 update_tg_cfs_load(cfs_rq, se, gcfs_rq);
4526 trace_pelt_cfs_tp(cfs_rq);
4527 trace_pelt_se_tp(se);
4533 * Check if we need to update the load and the utilization of a blocked
4536 static inline bool skip_blocked_update(struct sched_entity *se)
4538 struct cfs_rq *gcfs_rq = group_cfs_rq(se);
4541 * If sched_entity still have not zero load or utilization, we have to
4544 if (se->avg.load_avg || se->avg.util_avg)
4548 * If there is a pending propagation, we have to update the load and
4549 * the utilization of the sched_entity:
4551 if (gcfs_rq->propagate)
4555 * Otherwise, the load and the utilization of the sched_entity is
4556 * already zero and there is no pending propagation, so it will be a
4557 * waste of time to try to decay it:
4562 #else /* CONFIG_FAIR_GROUP_SCHED */
4564 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) {}
4566 static inline void clear_tg_offline_cfs_rqs(struct rq *rq) {}
4568 static inline int propagate_entity_load_avg(struct sched_entity *se)
4573 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {}
4575 #endif /* CONFIG_FAIR_GROUP_SCHED */
4577 #ifdef CONFIG_NO_HZ_COMMON
4578 static inline void migrate_se_pelt_lag(struct sched_entity *se)
4580 u64 throttled = 0, now, lut;
4581 struct cfs_rq *cfs_rq;
4585 if (load_avg_is_decayed(&se->avg))
4588 cfs_rq = cfs_rq_of(se);
4592 is_idle = is_idle_task(rcu_dereference(rq->curr));
4596 * The lag estimation comes with a cost we don't want to pay all the
4597 * time. Hence, limiting to the case where the source CPU is idle and
4598 * we know we are at the greatest risk to have an outdated clock.
4604 * Estimated "now" is: last_update_time + cfs_idle_lag + rq_idle_lag, where:
4606 * last_update_time (the cfs_rq's last_update_time)
4607 * = cfs_rq_clock_pelt()@cfs_rq_idle
4608 * = rq_clock_pelt()@cfs_rq_idle
4609 * - cfs->throttled_clock_pelt_time@cfs_rq_idle
4611 * cfs_idle_lag (delta between rq's update and cfs_rq's update)
4612 * = rq_clock_pelt()@rq_idle - rq_clock_pelt()@cfs_rq_idle
4614 * rq_idle_lag (delta between now and rq's update)
4615 * = sched_clock_cpu() - rq_clock()@rq_idle
4617 * We can then write:
4619 * now = rq_clock_pelt()@rq_idle - cfs->throttled_clock_pelt_time +
4620 * sched_clock_cpu() - rq_clock()@rq_idle
4622 * rq_clock_pelt()@rq_idle is rq->clock_pelt_idle
4623 * rq_clock()@rq_idle is rq->clock_idle
4624 * cfs->throttled_clock_pelt_time@cfs_rq_idle
4625 * is cfs_rq->throttled_pelt_idle
4628 #ifdef CONFIG_CFS_BANDWIDTH
4629 throttled = u64_u32_load(cfs_rq->throttled_pelt_idle);
4630 /* The clock has been stopped for throttling */
4631 if (throttled == U64_MAX)
4634 now = u64_u32_load(rq->clock_pelt_idle);
4636 * Paired with _update_idle_rq_clock_pelt(). It ensures at the worst case
4637 * is observed the old clock_pelt_idle value and the new clock_idle,
4638 * which lead to an underestimation. The opposite would lead to an
4642 lut = cfs_rq_last_update_time(cfs_rq);
4647 * cfs_rq->avg.last_update_time is more recent than our
4648 * estimation, let's use it.
4652 now += sched_clock_cpu(cpu_of(rq)) - u64_u32_load(rq->clock_idle);
4654 __update_load_avg_blocked_se(now, se);
4657 static void migrate_se_pelt_lag(struct sched_entity *se) {}
4661 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
4662 * @now: current time, as per cfs_rq_clock_pelt()
4663 * @cfs_rq: cfs_rq to update
4665 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
4666 * avg. The immediate corollary is that all (fair) tasks must be attached.
4668 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
4670 * Return: true if the load decayed or we removed load.
4672 * Since both these conditions indicate a changed cfs_rq->avg.load we should
4673 * call update_tg_load_avg() when this function returns true.
4676 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
4678 unsigned long removed_load = 0, removed_util = 0, removed_runnable = 0;
4679 struct sched_avg *sa = &cfs_rq->avg;
4682 if (cfs_rq->removed.nr) {
4684 u32 divider = get_pelt_divider(&cfs_rq->avg);
4686 raw_spin_lock(&cfs_rq->removed.lock);
4687 swap(cfs_rq->removed.util_avg, removed_util);
4688 swap(cfs_rq->removed.load_avg, removed_load);
4689 swap(cfs_rq->removed.runnable_avg, removed_runnable);
4690 cfs_rq->removed.nr = 0;
4691 raw_spin_unlock(&cfs_rq->removed.lock);
4694 sub_positive(&sa->load_avg, r);
4695 sub_positive(&sa->load_sum, r * divider);
4696 /* See sa->util_sum below */
4697 sa->load_sum = max_t(u32, sa->load_sum, sa->load_avg * PELT_MIN_DIVIDER);
4700 sub_positive(&sa->util_avg, r);
4701 sub_positive(&sa->util_sum, r * divider);
4703 * Because of rounding, se->util_sum might ends up being +1 more than
4704 * cfs->util_sum. Although this is not a problem by itself, detaching
4705 * a lot of tasks with the rounding problem between 2 updates of
4706 * util_avg (~1ms) can make cfs->util_sum becoming null whereas
4707 * cfs_util_avg is not.
4708 * Check that util_sum is still above its lower bound for the new
4709 * util_avg. Given that period_contrib might have moved since the last
4710 * sync, we are only sure that util_sum must be above or equal to
4711 * util_avg * minimum possible divider
4713 sa->util_sum = max_t(u32, sa->util_sum, sa->util_avg * PELT_MIN_DIVIDER);
4715 r = removed_runnable;
4716 sub_positive(&sa->runnable_avg, r);
4717 sub_positive(&sa->runnable_sum, r * divider);
4718 /* See sa->util_sum above */
4719 sa->runnable_sum = max_t(u32, sa->runnable_sum,
4720 sa->runnable_avg * PELT_MIN_DIVIDER);
4723 * removed_runnable is the unweighted version of removed_load so we
4724 * can use it to estimate removed_load_sum.
4726 add_tg_cfs_propagate(cfs_rq,
4727 -(long)(removed_runnable * divider) >> SCHED_CAPACITY_SHIFT);
4732 decayed |= __update_load_avg_cfs_rq(now, cfs_rq);
4733 u64_u32_store_copy(sa->last_update_time,
4734 cfs_rq->last_update_time_copy,
4735 sa->last_update_time);
4740 * attach_entity_load_avg - attach this entity to its cfs_rq load avg
4741 * @cfs_rq: cfs_rq to attach to
4742 * @se: sched_entity to attach
4744 * Must call update_cfs_rq_load_avg() before this, since we rely on
4745 * cfs_rq->avg.last_update_time being current.
4747 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
4750 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
4751 * See ___update_load_avg() for details.
4753 u32 divider = get_pelt_divider(&cfs_rq->avg);
4756 * When we attach the @se to the @cfs_rq, we must align the decay
4757 * window because without that, really weird and wonderful things can
4762 se->avg.last_update_time = cfs_rq->avg.last_update_time;
4763 se->avg.period_contrib = cfs_rq->avg.period_contrib;
4766 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new
4767 * period_contrib. This isn't strictly correct, but since we're
4768 * entirely outside of the PELT hierarchy, nobody cares if we truncate
4771 se->avg.util_sum = se->avg.util_avg * divider;
4773 se->avg.runnable_sum = se->avg.runnable_avg * divider;
4775 se->avg.load_sum = se->avg.load_avg * divider;
4776 if (se_weight(se) < se->avg.load_sum)
4777 se->avg.load_sum = div_u64(se->avg.load_sum, se_weight(se));
4779 se->avg.load_sum = 1;
4781 enqueue_load_avg(cfs_rq, se);
4782 cfs_rq->avg.util_avg += se->avg.util_avg;
4783 cfs_rq->avg.util_sum += se->avg.util_sum;
4784 cfs_rq->avg.runnable_avg += se->avg.runnable_avg;
4785 cfs_rq->avg.runnable_sum += se->avg.runnable_sum;
4787 add_tg_cfs_propagate(cfs_rq, se->avg.load_sum);
4789 cfs_rq_util_change(cfs_rq, 0);
4791 trace_pelt_cfs_tp(cfs_rq);
4795 * detach_entity_load_avg - detach this entity from its cfs_rq load avg
4796 * @cfs_rq: cfs_rq to detach from
4797 * @se: sched_entity to detach
4799 * Must call update_cfs_rq_load_avg() before this, since we rely on
4800 * cfs_rq->avg.last_update_time being current.
4802 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
4804 dequeue_load_avg(cfs_rq, se);
4805 sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
4806 sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
4807 /* See update_cfs_rq_load_avg() */
4808 cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum,
4809 cfs_rq->avg.util_avg * PELT_MIN_DIVIDER);
4811 sub_positive(&cfs_rq->avg.runnable_avg, se->avg.runnable_avg);
4812 sub_positive(&cfs_rq->avg.runnable_sum, se->avg.runnable_sum);
4813 /* See update_cfs_rq_load_avg() */
4814 cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum,
4815 cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER);
4817 add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum);
4819 cfs_rq_util_change(cfs_rq, 0);
4821 trace_pelt_cfs_tp(cfs_rq);
4825 * Optional action to be done while updating the load average
4827 #define UPDATE_TG 0x1
4828 #define SKIP_AGE_LOAD 0x2
4829 #define DO_ATTACH 0x4
4830 #define DO_DETACH 0x8
4832 /* Update task and its cfs_rq load average */
4833 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
4835 u64 now = cfs_rq_clock_pelt(cfs_rq);
4839 * Track task load average for carrying it to new CPU after migrated, and
4840 * track group sched_entity load average for task_h_load calculation in migration
4842 if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD))
4843 __update_load_avg_se(now, cfs_rq, se);
4845 decayed = update_cfs_rq_load_avg(now, cfs_rq);
4846 decayed |= propagate_entity_load_avg(se);
4848 if (!se->avg.last_update_time && (flags & DO_ATTACH)) {
4851 * DO_ATTACH means we're here from enqueue_entity().
4852 * !last_update_time means we've passed through
4853 * migrate_task_rq_fair() indicating we migrated.
4855 * IOW we're enqueueing a task on a new CPU.
4857 attach_entity_load_avg(cfs_rq, se);
4858 update_tg_load_avg(cfs_rq);
4860 } else if (flags & DO_DETACH) {
4862 * DO_DETACH means we're here from dequeue_entity()
4863 * and we are migrating task out of the CPU.
4865 detach_entity_load_avg(cfs_rq, se);
4866 update_tg_load_avg(cfs_rq);
4867 } else if (decayed) {
4868 cfs_rq_util_change(cfs_rq, 0);
4870 if (flags & UPDATE_TG)
4871 update_tg_load_avg(cfs_rq);
4876 * Synchronize entity load avg of dequeued entity without locking
4879 static void sync_entity_load_avg(struct sched_entity *se)
4881 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4882 u64 last_update_time;
4884 last_update_time = cfs_rq_last_update_time(cfs_rq);
4885 __update_load_avg_blocked_se(last_update_time, se);
4889 * Task first catches up with cfs_rq, and then subtract
4890 * itself from the cfs_rq (task must be off the queue now).
4892 static void remove_entity_load_avg(struct sched_entity *se)
4894 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4895 unsigned long flags;
4898 * tasks cannot exit without having gone through wake_up_new_task() ->
4899 * enqueue_task_fair() which will have added things to the cfs_rq,
4900 * so we can remove unconditionally.
4903 sync_entity_load_avg(se);
4905 raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags);
4906 ++cfs_rq->removed.nr;
4907 cfs_rq->removed.util_avg += se->avg.util_avg;
4908 cfs_rq->removed.load_avg += se->avg.load_avg;
4909 cfs_rq->removed.runnable_avg += se->avg.runnable_avg;
4910 raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags);
4913 static inline unsigned long cfs_rq_runnable_avg(struct cfs_rq *cfs_rq)
4915 return cfs_rq->avg.runnable_avg;
4918 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
4920 return cfs_rq->avg.load_avg;
4923 static int sched_balance_newidle(struct rq *this_rq, struct rq_flags *rf);
4925 static inline unsigned long task_util(struct task_struct *p)
4927 return READ_ONCE(p->se.avg.util_avg);
4930 static inline unsigned long task_runnable(struct task_struct *p)
4932 return READ_ONCE(p->se.avg.runnable_avg);
4935 static inline unsigned long _task_util_est(struct task_struct *p)
4937 return READ_ONCE(p->se.avg.util_est) & ~UTIL_AVG_UNCHANGED;
4940 static inline unsigned long task_util_est(struct task_struct *p)
4942 return max(task_util(p), _task_util_est(p));
4945 static inline void util_est_enqueue(struct cfs_rq *cfs_rq,
4946 struct task_struct *p)
4948 unsigned int enqueued;
4950 if (!sched_feat(UTIL_EST))
4953 /* Update root cfs_rq's estimated utilization */
4954 enqueued = cfs_rq->avg.util_est;
4955 enqueued += _task_util_est(p);
4956 WRITE_ONCE(cfs_rq->avg.util_est, enqueued);
4958 trace_sched_util_est_cfs_tp(cfs_rq);
4961 static inline void util_est_dequeue(struct cfs_rq *cfs_rq,
4962 struct task_struct *p)
4964 unsigned int enqueued;
4966 if (!sched_feat(UTIL_EST))
4969 /* Update root cfs_rq's estimated utilization */
4970 enqueued = cfs_rq->avg.util_est;
4971 enqueued -= min_t(unsigned int, enqueued, _task_util_est(p));
4972 WRITE_ONCE(cfs_rq->avg.util_est, enqueued);
4974 trace_sched_util_est_cfs_tp(cfs_rq);
4977 #define UTIL_EST_MARGIN (SCHED_CAPACITY_SCALE / 100)
4979 static inline void util_est_update(struct cfs_rq *cfs_rq,
4980 struct task_struct *p,
4983 unsigned int ewma, dequeued, last_ewma_diff;
4985 if (!sched_feat(UTIL_EST))
4989 * Skip update of task's estimated utilization when the task has not
4990 * yet completed an activation, e.g. being migrated.
4995 /* Get current estimate of utilization */
4996 ewma = READ_ONCE(p->se.avg.util_est);
4999 * If the PELT values haven't changed since enqueue time,
5000 * skip the util_est update.
5002 if (ewma & UTIL_AVG_UNCHANGED)
5005 /* Get utilization at dequeue */
5006 dequeued = task_util(p);
5009 * Reset EWMA on utilization increases, the moving average is used only
5010 * to smooth utilization decreases.
5012 if (ewma <= dequeued) {
5018 * Skip update of task's estimated utilization when its members are
5019 * already ~1% close to its last activation value.
5021 last_ewma_diff = ewma - dequeued;
5022 if (last_ewma_diff < UTIL_EST_MARGIN)
5026 * To avoid overestimation of actual task utilization, skip updates if
5027 * we cannot grant there is idle time in this CPU.
5029 if (dequeued > arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq))))
5033 * To avoid underestimate of task utilization, skip updates of EWMA if
5034 * we cannot grant that thread got all CPU time it wanted.
5036 if ((dequeued + UTIL_EST_MARGIN) < task_runnable(p))
5041 * Update Task's estimated utilization
5043 * When *p completes an activation we can consolidate another sample
5044 * of the task size. This is done by using this value to update the
5045 * Exponential Weighted Moving Average (EWMA):
5047 * ewma(t) = w * task_util(p) + (1-w) * ewma(t-1)
5048 * = w * task_util(p) + ewma(t-1) - w * ewma(t-1)
5049 * = w * (task_util(p) - ewma(t-1)) + ewma(t-1)
5050 * = w * ( -last_ewma_diff ) + ewma(t-1)
5051 * = w * (-last_ewma_diff + ewma(t-1) / w)
5053 * Where 'w' is the weight of new samples, which is configured to be
5054 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT)
5056 ewma <<= UTIL_EST_WEIGHT_SHIFT;
5057 ewma -= last_ewma_diff;
5058 ewma >>= UTIL_EST_WEIGHT_SHIFT;
5060 ewma |= UTIL_AVG_UNCHANGED;
5061 WRITE_ONCE(p->se.avg.util_est, ewma);
5063 trace_sched_util_est_se_tp(&p->se);
5066 static inline unsigned long get_actual_cpu_capacity(int cpu)
5068 unsigned long capacity = arch_scale_cpu_capacity(cpu);
5070 capacity -= max(hw_load_avg(cpu_rq(cpu)), cpufreq_get_pressure(cpu));
5075 static inline int util_fits_cpu(unsigned long util,
5076 unsigned long uclamp_min,
5077 unsigned long uclamp_max,
5080 unsigned long capacity = capacity_of(cpu);
5081 unsigned long capacity_orig;
5082 bool fits, uclamp_max_fits;
5085 * Check if the real util fits without any uclamp boost/cap applied.
5087 fits = fits_capacity(util, capacity);
5089 if (!uclamp_is_used())
5093 * We must use arch_scale_cpu_capacity() for comparing against uclamp_min and
5094 * uclamp_max. We only care about capacity pressure (by using
5095 * capacity_of()) for comparing against the real util.
5097 * If a task is boosted to 1024 for example, we don't want a tiny
5098 * pressure to skew the check whether it fits a CPU or not.
5100 * Similarly if a task is capped to arch_scale_cpu_capacity(little_cpu), it
5101 * should fit a little cpu even if there's some pressure.
5103 * Only exception is for HW or cpufreq pressure since it has a direct impact
5104 * on available OPP of the system.
5106 * We honour it for uclamp_min only as a drop in performance level
5107 * could result in not getting the requested minimum performance level.
5109 * For uclamp_max, we can tolerate a drop in performance level as the
5110 * goal is to cap the task. So it's okay if it's getting less.
5112 capacity_orig = arch_scale_cpu_capacity(cpu);
5115 * We want to force a task to fit a cpu as implied by uclamp_max.
5116 * But we do have some corner cases to cater for..
5122 * |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _ uclamp_max
5125 * | | | | | | | (util somewhere in this region)
5128 * +----------------------------------------
5131 * In the above example if a task is capped to a specific performance
5132 * point, y, then when:
5134 * * util = 80% of x then it does not fit on CPU0 and should migrate
5136 * * util = 80% of y then it is forced to fit on CPU1 to honour
5137 * uclamp_max request.
5139 * which is what we're enforcing here. A task always fits if
5140 * uclamp_max <= capacity_orig. But when uclamp_max > capacity_orig,
5141 * the normal upmigration rules should withhold still.
5143 * Only exception is when we are on max capacity, then we need to be
5144 * careful not to block overutilized state. This is so because:
5146 * 1. There's no concept of capping at max_capacity! We can't go
5147 * beyond this performance level anyway.
5148 * 2. The system is being saturated when we're operating near
5149 * max capacity, it doesn't make sense to block overutilized.
5151 uclamp_max_fits = (capacity_orig == SCHED_CAPACITY_SCALE) && (uclamp_max == SCHED_CAPACITY_SCALE);
5152 uclamp_max_fits = !uclamp_max_fits && (uclamp_max <= capacity_orig);
5153 fits = fits || uclamp_max_fits;
5158 * | ___ (region a, capped, util >= uclamp_max)
5160 * |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _ uclamp_max
5162 * | ___ | | | | (region b, uclamp_min <= util <= uclamp_max)
5163 * |_ _ _|_ _|_ _ _ _| _ | _ _ _| _ | _ _ _ _ _ uclamp_min
5165 * | | | | | | | (region c, boosted, util < uclamp_min)
5166 * +----------------------------------------
5169 * a) If util > uclamp_max, then we're capped, we don't care about
5170 * actual fitness value here. We only care if uclamp_max fits
5171 * capacity without taking margin/pressure into account.
5172 * See comment above.
5174 * b) If uclamp_min <= util <= uclamp_max, then the normal
5175 * fits_capacity() rules apply. Except we need to ensure that we
5176 * enforce we remain within uclamp_max, see comment above.
5178 * c) If util < uclamp_min, then we are boosted. Same as (b) but we
5179 * need to take into account the boosted value fits the CPU without
5180 * taking margin/pressure into account.
5182 * Cases (a) and (b) are handled in the 'fits' variable already. We
5183 * just need to consider an extra check for case (c) after ensuring we
5184 * handle the case uclamp_min > uclamp_max.
5186 uclamp_min = min(uclamp_min, uclamp_max);
5187 if (fits && (util < uclamp_min) &&
5188 (uclamp_min > get_actual_cpu_capacity(cpu)))
5194 static inline int task_fits_cpu(struct task_struct *p, int cpu)
5196 unsigned long uclamp_min = uclamp_eff_value(p, UCLAMP_MIN);
5197 unsigned long uclamp_max = uclamp_eff_value(p, UCLAMP_MAX);
5198 unsigned long util = task_util_est(p);
5200 * Return true only if the cpu fully fits the task requirements, which
5201 * include the utilization but also the performance hints.
5203 return (util_fits_cpu(util, uclamp_min, uclamp_max, cpu) > 0);
5206 static inline void update_misfit_status(struct task_struct *p, struct rq *rq)
5208 int cpu = cpu_of(rq);
5210 if (!sched_asym_cpucap_active())
5214 * Affinity allows us to go somewhere higher? Or are we on biggest
5215 * available CPU already? Or do we fit into this CPU ?
5217 if (!p || (p->nr_cpus_allowed == 1) ||
5218 (arch_scale_cpu_capacity(cpu) == p->max_allowed_capacity) ||
5219 task_fits_cpu(p, cpu)) {
5221 rq->misfit_task_load = 0;
5226 * Make sure that misfit_task_load will not be null even if
5227 * task_h_load() returns 0.
5229 rq->misfit_task_load = max_t(unsigned long, task_h_load(p), 1);
5232 #else /* CONFIG_SMP */
5234 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
5236 return !cfs_rq->nr_running;
5239 #define UPDATE_TG 0x0
5240 #define SKIP_AGE_LOAD 0x0
5241 #define DO_ATTACH 0x0
5242 #define DO_DETACH 0x0
5244 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1)
5246 cfs_rq_util_change(cfs_rq, 0);
5249 static inline void remove_entity_load_avg(struct sched_entity *se) {}
5252 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
5254 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
5256 static inline int sched_balance_newidle(struct rq *rq, struct rq_flags *rf)
5262 util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
5265 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
5268 util_est_update(struct cfs_rq *cfs_rq, struct task_struct *p,
5270 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {}
5272 #endif /* CONFIG_SMP */
5275 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
5277 u64 vslice, vruntime = avg_vruntime(cfs_rq);
5280 if (!se->custom_slice)
5281 se->slice = sysctl_sched_base_slice;
5282 vslice = calc_delta_fair(se->slice, se);
5285 * Due to how V is constructed as the weighted average of entities,
5286 * adding tasks with positive lag, or removing tasks with negative lag
5287 * will move 'time' backwards, this can screw around with the lag of
5290 * EEVDF: placement strategy #1 / #2
5292 if (sched_feat(PLACE_LAG) && cfs_rq->nr_running && se->vlag) {
5293 struct sched_entity *curr = cfs_rq->curr;
5299 * If we want to place a task and preserve lag, we have to
5300 * consider the effect of the new entity on the weighted
5301 * average and compensate for this, otherwise lag can quickly
5304 * Lag is defined as:
5306 * lag_i = S - s_i = w_i * (V - v_i)
5308 * To avoid the 'w_i' term all over the place, we only track
5311 * vl_i = V - v_i <=> v_i = V - vl_i
5313 * And we take V to be the weighted average of all v:
5315 * V = (\Sum w_j*v_j) / W
5317 * Where W is: \Sum w_j
5319 * Then, the weighted average after adding an entity with lag
5322 * V' = (\Sum w_j*v_j + w_i*v_i) / (W + w_i)
5323 * = (W*V + w_i*(V - vl_i)) / (W + w_i)
5324 * = (W*V + w_i*V - w_i*vl_i) / (W + w_i)
5325 * = (V*(W + w_i) - w_i*l) / (W + w_i)
5326 * = V - w_i*vl_i / (W + w_i)
5328 * And the actual lag after adding an entity with vl_i is:
5331 * = V - w_i*vl_i / (W + w_i) - (V - vl_i)
5332 * = vl_i - w_i*vl_i / (W + w_i)
5334 * Which is strictly less than vl_i. So in order to preserve lag
5335 * we should inflate the lag before placement such that the
5336 * effective lag after placement comes out right.
5338 * As such, invert the above relation for vl'_i to get the vl_i
5339 * we need to use such that the lag after placement is the lag
5340 * we computed before dequeue.
5342 * vl'_i = vl_i - w_i*vl_i / (W + w_i)
5343 * = ((W + w_i)*vl_i - w_i*vl_i) / (W + w_i)
5345 * (W + w_i)*vl'_i = (W + w_i)*vl_i - w_i*vl_i
5348 * vl_i = (W + w_i)*vl'_i / W
5350 load = cfs_rq->avg_load;
5351 if (curr && curr->on_rq)
5352 load += scale_load_down(curr->load.weight);
5354 lag *= load + scale_load_down(se->load.weight);
5355 if (WARN_ON_ONCE(!load))
5357 lag = div_s64(lag, load);
5360 se->vruntime = vruntime - lag;
5362 if (sched_feat(PLACE_REL_DEADLINE) && se->rel_deadline) {
5363 se->deadline += se->vruntime;
5364 se->rel_deadline = 0;
5369 * When joining the competition; the existing tasks will be,
5370 * on average, halfway through their slice, as such start tasks
5371 * off with half a slice to ease into the competition.
5373 if (sched_feat(PLACE_DEADLINE_INITIAL) && (flags & ENQUEUE_INITIAL))
5377 * EEVDF: vd_i = ve_i + r_i/w_i
5379 se->deadline = se->vruntime + vslice;
5382 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
5383 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq);
5385 static inline bool cfs_bandwidth_used(void);
5388 requeue_delayed_entity(struct sched_entity *se);
5391 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
5393 bool curr = cfs_rq->curr == se;
5396 * If we're the current task, we must renormalise before calling
5400 place_entity(cfs_rq, se, flags);
5402 update_curr(cfs_rq);
5405 * When enqueuing a sched_entity, we must:
5406 * - Update loads to have both entity and cfs_rq synced with now.
5407 * - For group_entity, update its runnable_weight to reflect the new
5408 * h_nr_running of its group cfs_rq.
5409 * - For group_entity, update its weight to reflect the new share of
5411 * - Add its new weight to cfs_rq->load.weight
5413 update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH);
5414 se_update_runnable(se);
5416 * XXX update_load_avg() above will have attached us to the pelt sum;
5417 * but update_cfs_group() here will re-adjust the weight and have to
5418 * undo/redo all that. Seems wasteful.
5420 update_cfs_group(se);
5423 * XXX now that the entity has been re-weighted, and it's lag adjusted,
5424 * we can place the entity.
5427 place_entity(cfs_rq, se, flags);
5429 account_entity_enqueue(cfs_rq, se);
5431 /* Entity has migrated, no longer consider this task hot */
5432 if (flags & ENQUEUE_MIGRATED)
5435 check_schedstat_required();
5436 update_stats_enqueue_fair(cfs_rq, se, flags);
5438 __enqueue_entity(cfs_rq, se);
5441 if (cfs_rq->nr_running == 1) {
5442 check_enqueue_throttle(cfs_rq);
5443 if (!throttled_hierarchy(cfs_rq)) {
5444 list_add_leaf_cfs_rq(cfs_rq);
5446 #ifdef CONFIG_CFS_BANDWIDTH
5447 struct rq *rq = rq_of(cfs_rq);
5449 if (cfs_rq_throttled(cfs_rq) && !cfs_rq->throttled_clock)
5450 cfs_rq->throttled_clock = rq_clock(rq);
5451 if (!cfs_rq->throttled_clock_self)
5452 cfs_rq->throttled_clock_self = rq_clock(rq);
5458 static void __clear_buddies_next(struct sched_entity *se)
5460 for_each_sched_entity(se) {
5461 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5462 if (cfs_rq->next != se)
5465 cfs_rq->next = NULL;
5469 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
5471 if (cfs_rq->next == se)
5472 __clear_buddies_next(se);
5475 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
5477 static void set_delayed(struct sched_entity *se)
5479 se->sched_delayed = 1;
5480 for_each_sched_entity(se) {
5481 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5483 cfs_rq->h_nr_delayed++;
5484 if (cfs_rq_throttled(cfs_rq))
5489 static void clear_delayed(struct sched_entity *se)
5491 se->sched_delayed = 0;
5492 for_each_sched_entity(se) {
5493 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5495 cfs_rq->h_nr_delayed--;
5496 if (cfs_rq_throttled(cfs_rq))
5501 static inline void finish_delayed_dequeue_entity(struct sched_entity *se)
5504 if (sched_feat(DELAY_ZERO) && se->vlag > 0)
5509 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
5511 bool sleep = flags & DEQUEUE_SLEEP;
5513 update_curr(cfs_rq);
5514 clear_buddies(cfs_rq, se);
5516 if (flags & DEQUEUE_DELAYED) {
5517 SCHED_WARN_ON(!se->sched_delayed);
5521 * DELAY_DEQUEUE relies on spurious wakeups, special task
5522 * states must not suffer spurious wakeups, excempt them.
5524 if (flags & DEQUEUE_SPECIAL)
5527 SCHED_WARN_ON(delay && se->sched_delayed);
5529 if (sched_feat(DELAY_DEQUEUE) && delay &&
5530 !entity_eligible(cfs_rq, se)) {
5531 update_load_avg(cfs_rq, se, 0);
5537 int action = UPDATE_TG;
5538 if (entity_is_task(se) && task_on_rq_migrating(task_of(se)))
5539 action |= DO_DETACH;
5542 * When dequeuing a sched_entity, we must:
5543 * - Update loads to have both entity and cfs_rq synced with now.
5544 * - For group_entity, update its runnable_weight to reflect the new
5545 * h_nr_running of its group cfs_rq.
5546 * - Subtract its previous weight from cfs_rq->load.weight.
5547 * - For group entity, update its weight to reflect the new share
5548 * of its group cfs_rq.
5550 update_load_avg(cfs_rq, se, action);
5551 se_update_runnable(se);
5553 update_stats_dequeue_fair(cfs_rq, se, flags);
5555 update_entity_lag(cfs_rq, se);
5556 if (sched_feat(PLACE_REL_DEADLINE) && !sleep) {
5557 se->deadline -= se->vruntime;
5558 se->rel_deadline = 1;
5561 if (se != cfs_rq->curr)
5562 __dequeue_entity(cfs_rq, se);
5564 account_entity_dequeue(cfs_rq, se);
5566 /* return excess runtime on last dequeue */
5567 return_cfs_rq_runtime(cfs_rq);
5569 update_cfs_group(se);
5572 * Now advance min_vruntime if @se was the entity holding it back,
5573 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
5574 * put back on, and if we advance min_vruntime, we'll be placed back
5575 * further than we started -- i.e. we'll be penalized.
5577 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE)
5578 update_min_vruntime(cfs_rq);
5580 if (flags & DEQUEUE_DELAYED)
5581 finish_delayed_dequeue_entity(se);
5583 if (cfs_rq->nr_running == 0)
5584 update_idle_cfs_rq_clock_pelt(cfs_rq);
5590 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
5592 clear_buddies(cfs_rq, se);
5594 /* 'current' is not kept within the tree. */
5597 * Any task has to be enqueued before it get to execute on
5598 * a CPU. So account for the time it spent waiting on the
5601 update_stats_wait_end_fair(cfs_rq, se);
5602 __dequeue_entity(cfs_rq, se);
5603 update_load_avg(cfs_rq, se, UPDATE_TG);
5605 * HACK, stash a copy of deadline at the point of pick in vlag,
5606 * which isn't used until dequeue.
5608 se->vlag = se->deadline;
5611 update_stats_curr_start(cfs_rq, se);
5612 SCHED_WARN_ON(cfs_rq->curr);
5616 * Track our maximum slice length, if the CPU's load is at
5617 * least twice that of our own weight (i.e. don't track it
5618 * when there are only lesser-weight tasks around):
5620 if (schedstat_enabled() &&
5621 rq_of(cfs_rq)->cfs.load.weight >= 2*se->load.weight) {
5622 struct sched_statistics *stats;
5624 stats = __schedstats_from_se(se);
5625 __schedstat_set(stats->slice_max,
5626 max((u64)stats->slice_max,
5627 se->sum_exec_runtime - se->prev_sum_exec_runtime));
5630 se->prev_sum_exec_runtime = se->sum_exec_runtime;
5633 static int dequeue_entities(struct rq *rq, struct sched_entity *se, int flags);
5636 * Pick the next process, keeping these things in mind, in this order:
5637 * 1) keep things fair between processes/task groups
5638 * 2) pick the "next" process, since someone really wants that to run
5639 * 3) pick the "last" process, for cache locality
5640 * 4) do not run the "skip" process, if something else is available
5642 static struct sched_entity *
5643 pick_next_entity(struct rq *rq, struct cfs_rq *cfs_rq)
5646 * Enabling NEXT_BUDDY will affect latency but not fairness.
5648 if (sched_feat(NEXT_BUDDY) &&
5649 cfs_rq->next && entity_eligible(cfs_rq, cfs_rq->next)) {
5650 /* ->next will never be delayed */
5651 SCHED_WARN_ON(cfs_rq->next->sched_delayed);
5652 return cfs_rq->next;
5655 struct sched_entity *se = pick_eevdf(cfs_rq);
5656 if (se->sched_delayed) {
5657 dequeue_entities(rq, se, DEQUEUE_SLEEP | DEQUEUE_DELAYED);
5659 * Must not reference @se again, see __block_task().
5666 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
5668 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
5671 * If still on the runqueue then deactivate_task()
5672 * was not called and update_curr() has to be done:
5675 update_curr(cfs_rq);
5677 /* throttle cfs_rqs exceeding runtime */
5678 check_cfs_rq_runtime(cfs_rq);
5681 update_stats_wait_start_fair(cfs_rq, prev);
5682 /* Put 'current' back into the tree. */
5683 __enqueue_entity(cfs_rq, prev);
5684 /* in !on_rq case, update occurred at dequeue */
5685 update_load_avg(cfs_rq, prev, 0);
5687 SCHED_WARN_ON(cfs_rq->curr != prev);
5688 cfs_rq->curr = NULL;
5692 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
5695 * Update run-time statistics of the 'current'.
5697 update_curr(cfs_rq);
5700 * Ensure that runnable average is periodically updated.
5702 update_load_avg(cfs_rq, curr, UPDATE_TG);
5703 update_cfs_group(curr);
5705 #ifdef CONFIG_SCHED_HRTICK
5707 * queued ticks are scheduled to match the slice, so don't bother
5708 * validating it and just reschedule.
5711 resched_curr_lazy(rq_of(cfs_rq));
5718 /**************************************************
5719 * CFS bandwidth control machinery
5722 #ifdef CONFIG_CFS_BANDWIDTH
5724 #ifdef CONFIG_JUMP_LABEL
5725 static struct static_key __cfs_bandwidth_used;
5727 static inline bool cfs_bandwidth_used(void)
5729 return static_key_false(&__cfs_bandwidth_used);
5732 void cfs_bandwidth_usage_inc(void)
5734 static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used);
5737 void cfs_bandwidth_usage_dec(void)
5739 static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used);
5741 #else /* CONFIG_JUMP_LABEL */
5742 static bool cfs_bandwidth_used(void)
5747 void cfs_bandwidth_usage_inc(void) {}
5748 void cfs_bandwidth_usage_dec(void) {}
5749 #endif /* CONFIG_JUMP_LABEL */
5752 * default period for cfs group bandwidth.
5753 * default: 0.1s, units: nanoseconds
5755 static inline u64 default_cfs_period(void)
5757 return 100000000ULL;
5760 static inline u64 sched_cfs_bandwidth_slice(void)
5762 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
5766 * Replenish runtime according to assigned quota. We use sched_clock_cpu
5767 * directly instead of rq->clock to avoid adding additional synchronization
5770 * requires cfs_b->lock
5772 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
5776 if (unlikely(cfs_b->quota == RUNTIME_INF))
5779 cfs_b->runtime += cfs_b->quota;
5780 runtime = cfs_b->runtime_snap - cfs_b->runtime;
5782 cfs_b->burst_time += runtime;
5786 cfs_b->runtime = min(cfs_b->runtime, cfs_b->quota + cfs_b->burst);
5787 cfs_b->runtime_snap = cfs_b->runtime;
5790 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
5792 return &tg->cfs_bandwidth;
5795 /* returns 0 on failure to allocate runtime */
5796 static int __assign_cfs_rq_runtime(struct cfs_bandwidth *cfs_b,
5797 struct cfs_rq *cfs_rq, u64 target_runtime)
5799 u64 min_amount, amount = 0;
5801 lockdep_assert_held(&cfs_b->lock);
5803 /* note: this is a positive sum as runtime_remaining <= 0 */
5804 min_amount = target_runtime - cfs_rq->runtime_remaining;
5806 if (cfs_b->quota == RUNTIME_INF)
5807 amount = min_amount;
5809 start_cfs_bandwidth(cfs_b);
5811 if (cfs_b->runtime > 0) {
5812 amount = min(cfs_b->runtime, min_amount);
5813 cfs_b->runtime -= amount;
5818 cfs_rq->runtime_remaining += amount;
5820 return cfs_rq->runtime_remaining > 0;
5823 /* returns 0 on failure to allocate runtime */
5824 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5826 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5829 raw_spin_lock(&cfs_b->lock);
5830 ret = __assign_cfs_rq_runtime(cfs_b, cfs_rq, sched_cfs_bandwidth_slice());
5831 raw_spin_unlock(&cfs_b->lock);
5836 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
5838 /* dock delta_exec before expiring quota (as it could span periods) */
5839 cfs_rq->runtime_remaining -= delta_exec;
5841 if (likely(cfs_rq->runtime_remaining > 0))
5844 if (cfs_rq->throttled)
5847 * if we're unable to extend our runtime we resched so that the active
5848 * hierarchy can be throttled
5850 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
5851 resched_curr(rq_of(cfs_rq));
5854 static __always_inline
5855 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
5857 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
5860 __account_cfs_rq_runtime(cfs_rq, delta_exec);
5863 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
5865 return cfs_bandwidth_used() && cfs_rq->throttled;
5868 /* check whether cfs_rq, or any parent, is throttled */
5869 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
5871 return cfs_bandwidth_used() && cfs_rq->throttle_count;
5875 * Ensure that neither of the group entities corresponding to src_cpu or
5876 * dest_cpu are members of a throttled hierarchy when performing group
5877 * load-balance operations.
5879 static inline int throttled_lb_pair(struct task_group *tg,
5880 int src_cpu, int dest_cpu)
5882 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
5884 src_cfs_rq = tg->cfs_rq[src_cpu];
5885 dest_cfs_rq = tg->cfs_rq[dest_cpu];
5887 return throttled_hierarchy(src_cfs_rq) ||
5888 throttled_hierarchy(dest_cfs_rq);
5891 static int tg_unthrottle_up(struct task_group *tg, void *data)
5893 struct rq *rq = data;
5894 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5896 cfs_rq->throttle_count--;
5897 if (!cfs_rq->throttle_count) {
5898 cfs_rq->throttled_clock_pelt_time += rq_clock_pelt(rq) -
5899 cfs_rq->throttled_clock_pelt;
5901 /* Add cfs_rq with load or one or more already running entities to the list */
5902 if (!cfs_rq_is_decayed(cfs_rq))
5903 list_add_leaf_cfs_rq(cfs_rq);
5905 if (cfs_rq->throttled_clock_self) {
5906 u64 delta = rq_clock(rq) - cfs_rq->throttled_clock_self;
5908 cfs_rq->throttled_clock_self = 0;
5910 if (SCHED_WARN_ON((s64)delta < 0))
5913 cfs_rq->throttled_clock_self_time += delta;
5920 static int tg_throttle_down(struct task_group *tg, void *data)
5922 struct rq *rq = data;
5923 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5925 /* group is entering throttled state, stop time */
5926 if (!cfs_rq->throttle_count) {
5927 cfs_rq->throttled_clock_pelt = rq_clock_pelt(rq);
5928 list_del_leaf_cfs_rq(cfs_rq);
5930 SCHED_WARN_ON(cfs_rq->throttled_clock_self);
5931 if (cfs_rq->nr_running)
5932 cfs_rq->throttled_clock_self = rq_clock(rq);
5934 cfs_rq->throttle_count++;
5939 static bool throttle_cfs_rq(struct cfs_rq *cfs_rq)
5941 struct rq *rq = rq_of(cfs_rq);
5942 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5943 struct sched_entity *se;
5944 long task_delta, idle_task_delta, delayed_delta, dequeue = 1;
5945 long rq_h_nr_running = rq->cfs.h_nr_running;
5947 raw_spin_lock(&cfs_b->lock);
5948 /* This will start the period timer if necessary */
5949 if (__assign_cfs_rq_runtime(cfs_b, cfs_rq, 1)) {
5951 * We have raced with bandwidth becoming available, and if we
5952 * actually throttled the timer might not unthrottle us for an
5953 * entire period. We additionally needed to make sure that any
5954 * subsequent check_cfs_rq_runtime calls agree not to throttle
5955 * us, as we may commit to do cfs put_prev+pick_next, so we ask
5956 * for 1ns of runtime rather than just check cfs_b.
5960 list_add_tail_rcu(&cfs_rq->throttled_list,
5961 &cfs_b->throttled_cfs_rq);
5963 raw_spin_unlock(&cfs_b->lock);
5966 return false; /* Throttle no longer required. */
5968 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
5970 /* freeze hierarchy runnable averages while throttled */
5972 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
5975 task_delta = cfs_rq->h_nr_running;
5976 idle_task_delta = cfs_rq->idle_h_nr_running;
5977 delayed_delta = cfs_rq->h_nr_delayed;
5978 for_each_sched_entity(se) {
5979 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
5982 /* throttled entity or throttle-on-deactivate */
5987 * Abuse SPECIAL to avoid delayed dequeue in this instance.
5988 * This avoids teaching dequeue_entities() about throttled
5989 * entities and keeps things relatively simple.
5991 flags = DEQUEUE_SLEEP | DEQUEUE_SPECIAL;
5992 if (se->sched_delayed)
5993 flags |= DEQUEUE_DELAYED;
5994 dequeue_entity(qcfs_rq, se, flags);
5996 if (cfs_rq_is_idle(group_cfs_rq(se)))
5997 idle_task_delta = cfs_rq->h_nr_running;
5999 qcfs_rq->h_nr_running -= task_delta;
6000 qcfs_rq->idle_h_nr_running -= idle_task_delta;
6001 qcfs_rq->h_nr_delayed -= delayed_delta;
6003 if (qcfs_rq->load.weight) {
6004 /* Avoid re-evaluating load for this entity: */
6005 se = parent_entity(se);
6010 for_each_sched_entity(se) {
6011 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
6012 /* throttled entity or throttle-on-deactivate */
6016 update_load_avg(qcfs_rq, se, 0);
6017 se_update_runnable(se);
6019 if (cfs_rq_is_idle(group_cfs_rq(se)))
6020 idle_task_delta = cfs_rq->h_nr_running;
6022 qcfs_rq->h_nr_running -= task_delta;
6023 qcfs_rq->idle_h_nr_running -= idle_task_delta;
6024 qcfs_rq->h_nr_delayed -= delayed_delta;
6027 /* At this point se is NULL and we are at root level*/
6028 sub_nr_running(rq, task_delta);
6030 /* Stop the fair server if throttling resulted in no runnable tasks */
6031 if (rq_h_nr_running && !rq->cfs.h_nr_running)
6032 dl_server_stop(&rq->fair_server);
6035 * Note: distribution will already see us throttled via the
6036 * throttled-list. rq->lock protects completion.
6038 cfs_rq->throttled = 1;
6039 SCHED_WARN_ON(cfs_rq->throttled_clock);
6040 if (cfs_rq->nr_running)
6041 cfs_rq->throttled_clock = rq_clock(rq);
6045 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
6047 struct rq *rq = rq_of(cfs_rq);
6048 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
6049 struct sched_entity *se;
6050 long task_delta, idle_task_delta, delayed_delta;
6051 long rq_h_nr_running = rq->cfs.h_nr_running;
6053 se = cfs_rq->tg->se[cpu_of(rq)];
6055 cfs_rq->throttled = 0;
6057 update_rq_clock(rq);
6059 raw_spin_lock(&cfs_b->lock);
6060 if (cfs_rq->throttled_clock) {
6061 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
6062 cfs_rq->throttled_clock = 0;
6064 list_del_rcu(&cfs_rq->throttled_list);
6065 raw_spin_unlock(&cfs_b->lock);
6067 /* update hierarchical throttle state */
6068 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
6070 if (!cfs_rq->load.weight) {
6071 if (!cfs_rq->on_list)
6074 * Nothing to run but something to decay (on_list)?
6075 * Complete the branch.
6077 for_each_sched_entity(se) {
6078 if (list_add_leaf_cfs_rq(cfs_rq_of(se)))
6081 goto unthrottle_throttle;
6084 task_delta = cfs_rq->h_nr_running;
6085 idle_task_delta = cfs_rq->idle_h_nr_running;
6086 delayed_delta = cfs_rq->h_nr_delayed;
6087 for_each_sched_entity(se) {
6088 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
6090 /* Handle any unfinished DELAY_DEQUEUE business first. */
6091 if (se->sched_delayed) {
6092 int flags = DEQUEUE_SLEEP | DEQUEUE_DELAYED;
6094 dequeue_entity(qcfs_rq, se, flags);
6095 } else if (se->on_rq)
6097 enqueue_entity(qcfs_rq, se, ENQUEUE_WAKEUP);
6099 if (cfs_rq_is_idle(group_cfs_rq(se)))
6100 idle_task_delta = cfs_rq->h_nr_running;
6102 qcfs_rq->h_nr_running += task_delta;
6103 qcfs_rq->idle_h_nr_running += idle_task_delta;
6104 qcfs_rq->h_nr_delayed += delayed_delta;
6106 /* end evaluation on encountering a throttled cfs_rq */
6107 if (cfs_rq_throttled(qcfs_rq))
6108 goto unthrottle_throttle;
6111 for_each_sched_entity(se) {
6112 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
6114 update_load_avg(qcfs_rq, se, UPDATE_TG);
6115 se_update_runnable(se);
6117 if (cfs_rq_is_idle(group_cfs_rq(se)))
6118 idle_task_delta = cfs_rq->h_nr_running;
6120 qcfs_rq->h_nr_running += task_delta;
6121 qcfs_rq->idle_h_nr_running += idle_task_delta;
6122 qcfs_rq->h_nr_delayed += delayed_delta;
6124 /* end evaluation on encountering a throttled cfs_rq */
6125 if (cfs_rq_throttled(qcfs_rq))
6126 goto unthrottle_throttle;
6129 /* Start the fair server if un-throttling resulted in new runnable tasks */
6130 if (!rq_h_nr_running && rq->cfs.h_nr_running)
6131 dl_server_start(&rq->fair_server);
6133 /* At this point se is NULL and we are at root level*/
6134 add_nr_running(rq, task_delta);
6136 unthrottle_throttle:
6137 assert_list_leaf_cfs_rq(rq);
6139 /* Determine whether we need to wake up potentially idle CPU: */
6140 if (rq->curr == rq->idle && rq->cfs.nr_running)
6145 static void __cfsb_csd_unthrottle(void *arg)
6147 struct cfs_rq *cursor, *tmp;
6148 struct rq *rq = arg;
6154 * Iterating over the list can trigger several call to
6155 * update_rq_clock() in unthrottle_cfs_rq().
6156 * Do it once and skip the potential next ones.
6158 update_rq_clock(rq);
6159 rq_clock_start_loop_update(rq);
6162 * Since we hold rq lock we're safe from concurrent manipulation of
6163 * the CSD list. However, this RCU critical section annotates the
6164 * fact that we pair with sched_free_group_rcu(), so that we cannot
6165 * race with group being freed in the window between removing it
6166 * from the list and advancing to the next entry in the list.
6170 list_for_each_entry_safe(cursor, tmp, &rq->cfsb_csd_list,
6171 throttled_csd_list) {
6172 list_del_init(&cursor->throttled_csd_list);
6174 if (cfs_rq_throttled(cursor))
6175 unthrottle_cfs_rq(cursor);
6180 rq_clock_stop_loop_update(rq);
6184 static inline void __unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq)
6186 struct rq *rq = rq_of(cfs_rq);
6189 if (rq == this_rq()) {
6190 unthrottle_cfs_rq(cfs_rq);
6194 /* Already enqueued */
6195 if (SCHED_WARN_ON(!list_empty(&cfs_rq->throttled_csd_list)))
6198 first = list_empty(&rq->cfsb_csd_list);
6199 list_add_tail(&cfs_rq->throttled_csd_list, &rq->cfsb_csd_list);
6201 smp_call_function_single_async(cpu_of(rq), &rq->cfsb_csd);
6204 static inline void __unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq)
6206 unthrottle_cfs_rq(cfs_rq);
6210 static void unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq)
6212 lockdep_assert_rq_held(rq_of(cfs_rq));
6214 if (SCHED_WARN_ON(!cfs_rq_throttled(cfs_rq) ||
6215 cfs_rq->runtime_remaining <= 0))
6218 __unthrottle_cfs_rq_async(cfs_rq);
6221 static bool distribute_cfs_runtime(struct cfs_bandwidth *cfs_b)
6223 int this_cpu = smp_processor_id();
6224 u64 runtime, remaining = 1;
6225 bool throttled = false;
6226 struct cfs_rq *cfs_rq, *tmp;
6229 LIST_HEAD(local_unthrottle);
6232 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
6241 rq_lock_irqsave(rq, &rf);
6242 if (!cfs_rq_throttled(cfs_rq))
6245 /* Already queued for async unthrottle */
6246 if (!list_empty(&cfs_rq->throttled_csd_list))
6249 /* By the above checks, this should never be true */
6250 SCHED_WARN_ON(cfs_rq->runtime_remaining > 0);
6252 raw_spin_lock(&cfs_b->lock);
6253 runtime = -cfs_rq->runtime_remaining + 1;
6254 if (runtime > cfs_b->runtime)
6255 runtime = cfs_b->runtime;
6256 cfs_b->runtime -= runtime;
6257 remaining = cfs_b->runtime;
6258 raw_spin_unlock(&cfs_b->lock);
6260 cfs_rq->runtime_remaining += runtime;
6262 /* we check whether we're throttled above */
6263 if (cfs_rq->runtime_remaining > 0) {
6264 if (cpu_of(rq) != this_cpu) {
6265 unthrottle_cfs_rq_async(cfs_rq);
6268 * We currently only expect to be unthrottling
6269 * a single cfs_rq locally.
6271 SCHED_WARN_ON(!list_empty(&local_unthrottle));
6272 list_add_tail(&cfs_rq->throttled_csd_list,
6280 rq_unlock_irqrestore(rq, &rf);
6283 list_for_each_entry_safe(cfs_rq, tmp, &local_unthrottle,
6284 throttled_csd_list) {
6285 struct rq *rq = rq_of(cfs_rq);
6287 rq_lock_irqsave(rq, &rf);
6289 list_del_init(&cfs_rq->throttled_csd_list);
6291 if (cfs_rq_throttled(cfs_rq))
6292 unthrottle_cfs_rq(cfs_rq);
6294 rq_unlock_irqrestore(rq, &rf);
6296 SCHED_WARN_ON(!list_empty(&local_unthrottle));
6304 * Responsible for refilling a task_group's bandwidth and unthrottling its
6305 * cfs_rqs as appropriate. If there has been no activity within the last
6306 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
6307 * used to track this state.
6309 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags)
6313 /* no need to continue the timer with no bandwidth constraint */
6314 if (cfs_b->quota == RUNTIME_INF)
6315 goto out_deactivate;
6317 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
6318 cfs_b->nr_periods += overrun;
6320 /* Refill extra burst quota even if cfs_b->idle */
6321 __refill_cfs_bandwidth_runtime(cfs_b);
6324 * idle depends on !throttled (for the case of a large deficit), and if
6325 * we're going inactive then everything else can be deferred
6327 if (cfs_b->idle && !throttled)
6328 goto out_deactivate;
6331 /* mark as potentially idle for the upcoming period */
6336 /* account preceding periods in which throttling occurred */
6337 cfs_b->nr_throttled += overrun;
6340 * This check is repeated as we release cfs_b->lock while we unthrottle.
6342 while (throttled && cfs_b->runtime > 0) {
6343 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
6344 /* we can't nest cfs_b->lock while distributing bandwidth */
6345 throttled = distribute_cfs_runtime(cfs_b);
6346 raw_spin_lock_irqsave(&cfs_b->lock, flags);
6350 * While we are ensured activity in the period following an
6351 * unthrottle, this also covers the case in which the new bandwidth is
6352 * insufficient to cover the existing bandwidth deficit. (Forcing the
6353 * timer to remain active while there are any throttled entities.)
6363 /* a cfs_rq won't donate quota below this amount */
6364 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
6365 /* minimum remaining period time to redistribute slack quota */
6366 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
6367 /* how long we wait to gather additional slack before distributing */
6368 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
6371 * Are we near the end of the current quota period?
6373 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
6374 * hrtimer base being cleared by hrtimer_start. In the case of
6375 * migrate_hrtimers, base is never cleared, so we are fine.
6377 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
6379 struct hrtimer *refresh_timer = &cfs_b->period_timer;
6382 /* if the call-back is running a quota refresh is already occurring */
6383 if (hrtimer_callback_running(refresh_timer))
6386 /* is a quota refresh about to occur? */
6387 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
6388 if (remaining < (s64)min_expire)
6394 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
6396 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
6398 /* if there's a quota refresh soon don't bother with slack */
6399 if (runtime_refresh_within(cfs_b, min_left))
6402 /* don't push forwards an existing deferred unthrottle */
6403 if (cfs_b->slack_started)
6405 cfs_b->slack_started = true;
6407 hrtimer_start(&cfs_b->slack_timer,
6408 ns_to_ktime(cfs_bandwidth_slack_period),
6412 /* we know any runtime found here is valid as update_curr() precedes return */
6413 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
6415 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
6416 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
6418 if (slack_runtime <= 0)
6421 raw_spin_lock(&cfs_b->lock);
6422 if (cfs_b->quota != RUNTIME_INF) {
6423 cfs_b->runtime += slack_runtime;
6425 /* we are under rq->lock, defer unthrottling using a timer */
6426 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
6427 !list_empty(&cfs_b->throttled_cfs_rq))
6428 start_cfs_slack_bandwidth(cfs_b);
6430 raw_spin_unlock(&cfs_b->lock);
6432 /* even if it's not valid for return we don't want to try again */
6433 cfs_rq->runtime_remaining -= slack_runtime;
6436 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
6438 if (!cfs_bandwidth_used())
6441 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
6444 __return_cfs_rq_runtime(cfs_rq);
6448 * This is done with a timer (instead of inline with bandwidth return) since
6449 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
6451 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
6453 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
6454 unsigned long flags;
6456 /* confirm we're still not at a refresh boundary */
6457 raw_spin_lock_irqsave(&cfs_b->lock, flags);
6458 cfs_b->slack_started = false;
6460 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
6461 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
6465 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
6466 runtime = cfs_b->runtime;
6468 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
6473 distribute_cfs_runtime(cfs_b);
6477 * When a group wakes up we want to make sure that its quota is not already
6478 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
6479 * runtime as update_curr() throttling can not trigger until it's on-rq.
6481 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
6483 if (!cfs_bandwidth_used())
6486 /* an active group must be handled by the update_curr()->put() path */
6487 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
6490 /* ensure the group is not already throttled */
6491 if (cfs_rq_throttled(cfs_rq))
6494 /* update runtime allocation */
6495 account_cfs_rq_runtime(cfs_rq, 0);
6496 if (cfs_rq->runtime_remaining <= 0)
6497 throttle_cfs_rq(cfs_rq);
6500 static void sync_throttle(struct task_group *tg, int cpu)
6502 struct cfs_rq *pcfs_rq, *cfs_rq;
6504 if (!cfs_bandwidth_used())
6510 cfs_rq = tg->cfs_rq[cpu];
6511 pcfs_rq = tg->parent->cfs_rq[cpu];
6513 cfs_rq->throttle_count = pcfs_rq->throttle_count;
6514 cfs_rq->throttled_clock_pelt = rq_clock_pelt(cpu_rq(cpu));
6517 /* conditionally throttle active cfs_rq's from put_prev_entity() */
6518 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
6520 if (!cfs_bandwidth_used())
6523 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
6527 * it's possible for a throttled entity to be forced into a running
6528 * state (e.g. set_curr_task), in this case we're finished.
6530 if (cfs_rq_throttled(cfs_rq))
6533 return throttle_cfs_rq(cfs_rq);
6536 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
6538 struct cfs_bandwidth *cfs_b =
6539 container_of(timer, struct cfs_bandwidth, slack_timer);
6541 do_sched_cfs_slack_timer(cfs_b);
6543 return HRTIMER_NORESTART;
6546 extern const u64 max_cfs_quota_period;
6548 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
6550 struct cfs_bandwidth *cfs_b =
6551 container_of(timer, struct cfs_bandwidth, period_timer);
6552 unsigned long flags;
6557 raw_spin_lock_irqsave(&cfs_b->lock, flags);
6559 overrun = hrtimer_forward_now(timer, cfs_b->period);
6563 idle = do_sched_cfs_period_timer(cfs_b, overrun, flags);
6566 u64 new, old = ktime_to_ns(cfs_b->period);
6569 * Grow period by a factor of 2 to avoid losing precision.
6570 * Precision loss in the quota/period ratio can cause __cfs_schedulable
6574 if (new < max_cfs_quota_period) {
6575 cfs_b->period = ns_to_ktime(new);
6579 pr_warn_ratelimited(
6580 "cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us = %lld, cfs_quota_us = %lld)\n",
6582 div_u64(new, NSEC_PER_USEC),
6583 div_u64(cfs_b->quota, NSEC_PER_USEC));
6585 pr_warn_ratelimited(
6586 "cfs_period_timer[cpu%d]: period too short, but cannot scale up without losing precision (cfs_period_us = %lld, cfs_quota_us = %lld)\n",
6588 div_u64(old, NSEC_PER_USEC),
6589 div_u64(cfs_b->quota, NSEC_PER_USEC));
6592 /* reset count so we don't come right back in here */
6597 cfs_b->period_active = 0;
6598 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
6600 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
6603 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent)
6605 raw_spin_lock_init(&cfs_b->lock);
6607 cfs_b->quota = RUNTIME_INF;
6608 cfs_b->period = ns_to_ktime(default_cfs_period());
6610 cfs_b->hierarchical_quota = parent ? parent->hierarchical_quota : RUNTIME_INF;
6612 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
6613 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
6614 cfs_b->period_timer.function = sched_cfs_period_timer;
6616 /* Add a random offset so that timers interleave */
6617 hrtimer_set_expires(&cfs_b->period_timer,
6618 get_random_u32_below(cfs_b->period));
6619 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
6620 cfs_b->slack_timer.function = sched_cfs_slack_timer;
6621 cfs_b->slack_started = false;
6624 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
6626 cfs_rq->runtime_enabled = 0;
6627 INIT_LIST_HEAD(&cfs_rq->throttled_list);
6628 INIT_LIST_HEAD(&cfs_rq->throttled_csd_list);
6631 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
6633 lockdep_assert_held(&cfs_b->lock);
6635 if (cfs_b->period_active)
6638 cfs_b->period_active = 1;
6639 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
6640 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
6643 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
6645 int __maybe_unused i;
6647 /* init_cfs_bandwidth() was not called */
6648 if (!cfs_b->throttled_cfs_rq.next)
6651 hrtimer_cancel(&cfs_b->period_timer);
6652 hrtimer_cancel(&cfs_b->slack_timer);
6655 * It is possible that we still have some cfs_rq's pending on a CSD
6656 * list, though this race is very rare. In order for this to occur, we
6657 * must have raced with the last task leaving the group while there
6658 * exist throttled cfs_rq(s), and the period_timer must have queued the
6659 * CSD item but the remote cpu has not yet processed it. To handle this,
6660 * we can simply flush all pending CSD work inline here. We're
6661 * guaranteed at this point that no additional cfs_rq of this group can
6665 for_each_possible_cpu(i) {
6666 struct rq *rq = cpu_rq(i);
6667 unsigned long flags;
6669 if (list_empty(&rq->cfsb_csd_list))
6672 local_irq_save(flags);
6673 __cfsb_csd_unthrottle(rq);
6674 local_irq_restore(flags);
6680 * Both these CPU hotplug callbacks race against unregister_fair_sched_group()
6682 * The race is harmless, since modifying bandwidth settings of unhooked group
6683 * bits doesn't do much.
6686 /* cpu online callback */
6687 static void __maybe_unused update_runtime_enabled(struct rq *rq)
6689 struct task_group *tg;
6691 lockdep_assert_rq_held(rq);
6694 list_for_each_entry_rcu(tg, &task_groups, list) {
6695 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
6696 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
6698 raw_spin_lock(&cfs_b->lock);
6699 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
6700 raw_spin_unlock(&cfs_b->lock);
6705 /* cpu offline callback */
6706 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
6708 struct task_group *tg;
6710 lockdep_assert_rq_held(rq);
6713 * The rq clock has already been updated in the
6714 * set_rq_offline(), so we should skip updating
6715 * the rq clock again in unthrottle_cfs_rq().
6717 rq_clock_start_loop_update(rq);
6720 list_for_each_entry_rcu(tg, &task_groups, list) {
6721 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
6723 if (!cfs_rq->runtime_enabled)
6727 * clock_task is not advancing so we just need to make sure
6728 * there's some valid quota amount
6730 cfs_rq->runtime_remaining = 1;
6732 * Offline rq is schedulable till CPU is completely disabled
6733 * in take_cpu_down(), so we prevent new cfs throttling here.
6735 cfs_rq->runtime_enabled = 0;
6737 if (cfs_rq_throttled(cfs_rq))
6738 unthrottle_cfs_rq(cfs_rq);
6742 rq_clock_stop_loop_update(rq);
6745 bool cfs_task_bw_constrained(struct task_struct *p)
6747 struct cfs_rq *cfs_rq = task_cfs_rq(p);
6749 if (!cfs_bandwidth_used())
6752 if (cfs_rq->runtime_enabled ||
6753 tg_cfs_bandwidth(cfs_rq->tg)->hierarchical_quota != RUNTIME_INF)
6759 #ifdef CONFIG_NO_HZ_FULL
6760 /* called from pick_next_task_fair() */
6761 static void sched_fair_update_stop_tick(struct rq *rq, struct task_struct *p)
6763 int cpu = cpu_of(rq);
6765 if (!cfs_bandwidth_used())
6768 if (!tick_nohz_full_cpu(cpu))
6771 if (rq->nr_running != 1)
6775 * We know there is only one task runnable and we've just picked it. The
6776 * normal enqueue path will have cleared TICK_DEP_BIT_SCHED if we will
6777 * be otherwise able to stop the tick. Just need to check if we are using
6778 * bandwidth control.
6780 if (cfs_task_bw_constrained(p))
6781 tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED);
6785 #else /* CONFIG_CFS_BANDWIDTH */
6787 static inline bool cfs_bandwidth_used(void)
6792 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
6793 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
6794 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
6795 static inline void sync_throttle(struct task_group *tg, int cpu) {}
6796 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
6798 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
6803 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
6808 static inline int throttled_lb_pair(struct task_group *tg,
6809 int src_cpu, int dest_cpu)
6814 #ifdef CONFIG_FAIR_GROUP_SCHED
6815 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent) {}
6816 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
6819 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
6823 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
6824 static inline void update_runtime_enabled(struct rq *rq) {}
6825 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
6826 #ifdef CONFIG_CGROUP_SCHED
6827 bool cfs_task_bw_constrained(struct task_struct *p)
6832 #endif /* CONFIG_CFS_BANDWIDTH */
6834 #if !defined(CONFIG_CFS_BANDWIDTH) || !defined(CONFIG_NO_HZ_FULL)
6835 static inline void sched_fair_update_stop_tick(struct rq *rq, struct task_struct *p) {}
6838 /**************************************************
6839 * CFS operations on tasks:
6842 #ifdef CONFIG_SCHED_HRTICK
6843 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
6845 struct sched_entity *se = &p->se;
6847 SCHED_WARN_ON(task_rq(p) != rq);
6849 if (rq->cfs.h_nr_running > 1) {
6850 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
6851 u64 slice = se->slice;
6852 s64 delta = slice - ran;
6855 if (task_current_donor(rq, p))
6859 hrtick_start(rq, delta);
6864 * called from enqueue/dequeue and updates the hrtick when the
6865 * current task is from our class and nr_running is low enough
6868 static void hrtick_update(struct rq *rq)
6870 struct task_struct *donor = rq->donor;
6872 if (!hrtick_enabled_fair(rq) || donor->sched_class != &fair_sched_class)
6875 hrtick_start_fair(rq, donor);
6877 #else /* !CONFIG_SCHED_HRTICK */
6879 hrtick_start_fair(struct rq *rq, struct task_struct *p)
6883 static inline void hrtick_update(struct rq *rq)
6889 static inline bool cpu_overutilized(int cpu)
6891 unsigned long rq_util_min, rq_util_max;
6893 if (!sched_energy_enabled())
6896 rq_util_min = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MIN);
6897 rq_util_max = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MAX);
6899 /* Return true only if the utilization doesn't fit CPU's capacity */
6900 return !util_fits_cpu(cpu_util_cfs(cpu), rq_util_min, rq_util_max, cpu);
6904 * overutilized value make sense only if EAS is enabled
6906 static inline bool is_rd_overutilized(struct root_domain *rd)
6908 return !sched_energy_enabled() || READ_ONCE(rd->overutilized);
6911 static inline void set_rd_overutilized(struct root_domain *rd, bool flag)
6913 if (!sched_energy_enabled())
6916 WRITE_ONCE(rd->overutilized, flag);
6917 trace_sched_overutilized_tp(rd, flag);
6920 static inline void check_update_overutilized_status(struct rq *rq)
6923 * overutilized field is used for load balancing decisions only
6924 * if energy aware scheduler is being used
6927 if (!is_rd_overutilized(rq->rd) && cpu_overutilized(rq->cpu))
6928 set_rd_overutilized(rq->rd, 1);
6931 static inline void check_update_overutilized_status(struct rq *rq) { }
6934 /* Runqueue only has SCHED_IDLE tasks enqueued */
6935 static int sched_idle_rq(struct rq *rq)
6937 return unlikely(rq->nr_running == rq->cfs.idle_h_nr_running &&
6942 static int sched_idle_cpu(int cpu)
6944 return sched_idle_rq(cpu_rq(cpu));
6949 requeue_delayed_entity(struct sched_entity *se)
6951 struct cfs_rq *cfs_rq = cfs_rq_of(se);
6954 * se->sched_delayed should imply: se->on_rq == 1.
6955 * Because a delayed entity is one that is still on
6956 * the runqueue competing until elegibility.
6958 SCHED_WARN_ON(!se->sched_delayed);
6959 SCHED_WARN_ON(!se->on_rq);
6961 if (sched_feat(DELAY_ZERO)) {
6962 update_entity_lag(cfs_rq, se);
6964 cfs_rq->nr_running--;
6965 if (se != cfs_rq->curr)
6966 __dequeue_entity(cfs_rq, se);
6968 place_entity(cfs_rq, se, 0);
6969 if (se != cfs_rq->curr)
6970 __enqueue_entity(cfs_rq, se);
6971 cfs_rq->nr_running++;
6975 update_load_avg(cfs_rq, se, 0);
6980 * The enqueue_task method is called before nr_running is
6981 * increased. Here we update the fair scheduling stats and
6982 * then put the task into the rbtree:
6985 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
6987 struct cfs_rq *cfs_rq;
6988 struct sched_entity *se = &p->se;
6989 int idle_h_nr_running = task_has_idle_policy(p);
6990 int h_nr_delayed = 0;
6991 int task_new = !(flags & ENQUEUE_WAKEUP);
6992 int rq_h_nr_running = rq->cfs.h_nr_running;
6996 * The code below (indirectly) updates schedutil which looks at
6997 * the cfs_rq utilization to select a frequency.
6998 * Let's add the task's estimated utilization to the cfs_rq's
6999 * estimated utilization, before we update schedutil.
7001 if (!(p->se.sched_delayed && (task_on_rq_migrating(p) || (flags & ENQUEUE_RESTORE))))
7002 util_est_enqueue(&rq->cfs, p);
7004 if (flags & ENQUEUE_DELAYED) {
7005 requeue_delayed_entity(se);
7010 * If in_iowait is set, the code below may not trigger any cpufreq
7011 * utilization updates, so do it here explicitly with the IOWAIT flag
7015 cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT);
7018 h_nr_delayed = !!se->sched_delayed;
7020 for_each_sched_entity(se) {
7022 if (se->sched_delayed)
7023 requeue_delayed_entity(se);
7026 cfs_rq = cfs_rq_of(se);
7029 * Basically set the slice of group entries to the min_slice of
7030 * their respective cfs_rq. This ensures the group can service
7031 * its entities in the desired time-frame.
7035 se->custom_slice = 1;
7037 enqueue_entity(cfs_rq, se, flags);
7038 slice = cfs_rq_min_slice(cfs_rq);
7040 cfs_rq->h_nr_running++;
7041 cfs_rq->idle_h_nr_running += idle_h_nr_running;
7042 cfs_rq->h_nr_delayed += h_nr_delayed;
7044 if (cfs_rq_is_idle(cfs_rq))
7045 idle_h_nr_running = 1;
7047 /* end evaluation on encountering a throttled cfs_rq */
7048 if (cfs_rq_throttled(cfs_rq))
7049 goto enqueue_throttle;
7051 flags = ENQUEUE_WAKEUP;
7054 for_each_sched_entity(se) {
7055 cfs_rq = cfs_rq_of(se);
7057 update_load_avg(cfs_rq, se, UPDATE_TG);
7058 se_update_runnable(se);
7059 update_cfs_group(se);
7062 slice = cfs_rq_min_slice(cfs_rq);
7064 cfs_rq->h_nr_running++;
7065 cfs_rq->idle_h_nr_running += idle_h_nr_running;
7066 cfs_rq->h_nr_delayed += h_nr_delayed;
7068 if (cfs_rq_is_idle(cfs_rq))
7069 idle_h_nr_running = 1;
7071 /* end evaluation on encountering a throttled cfs_rq */
7072 if (cfs_rq_throttled(cfs_rq))
7073 goto enqueue_throttle;
7076 if (!rq_h_nr_running && rq->cfs.h_nr_running) {
7077 /* Account for idle runtime */
7078 if (!rq->nr_running)
7079 dl_server_update_idle_time(rq, rq->curr);
7080 dl_server_start(&rq->fair_server);
7083 /* At this point se is NULL and we are at root level*/
7084 add_nr_running(rq, 1);
7087 * Since new tasks are assigned an initial util_avg equal to
7088 * half of the spare capacity of their CPU, tiny tasks have the
7089 * ability to cross the overutilized threshold, which will
7090 * result in the load balancer ruining all the task placement
7091 * done by EAS. As a way to mitigate that effect, do not account
7092 * for the first enqueue operation of new tasks during the
7093 * overutilized flag detection.
7095 * A better way of solving this problem would be to wait for
7096 * the PELT signals of tasks to converge before taking them
7097 * into account, but that is not straightforward to implement,
7098 * and the following generally works well enough in practice.
7101 check_update_overutilized_status(rq);
7104 assert_list_leaf_cfs_rq(rq);
7109 static void set_next_buddy(struct sched_entity *se);
7112 * Basically dequeue_task_fair(), except it can deal with dequeue_entity()
7113 * failing half-way through and resume the dequeue later.
7116 * -1 - dequeue delayed
7117 * 0 - dequeue throttled
7118 * 1 - dequeue complete
7120 static int dequeue_entities(struct rq *rq, struct sched_entity *se, int flags)
7122 bool was_sched_idle = sched_idle_rq(rq);
7123 int rq_h_nr_running = rq->cfs.h_nr_running;
7124 bool task_sleep = flags & DEQUEUE_SLEEP;
7125 bool task_delayed = flags & DEQUEUE_DELAYED;
7126 struct task_struct *p = NULL;
7127 int idle_h_nr_running = 0;
7128 int h_nr_running = 0;
7129 int h_nr_delayed = 0;
7130 struct cfs_rq *cfs_rq;
7133 if (entity_is_task(se)) {
7136 idle_h_nr_running = task_has_idle_policy(p);
7137 if (!task_sleep && !task_delayed)
7138 h_nr_delayed = !!se->sched_delayed;
7140 cfs_rq = group_cfs_rq(se);
7141 slice = cfs_rq_min_slice(cfs_rq);
7144 for_each_sched_entity(se) {
7145 cfs_rq = cfs_rq_of(se);
7147 if (!dequeue_entity(cfs_rq, se, flags)) {
7148 if (p && &p->se == se)
7154 cfs_rq->h_nr_running -= h_nr_running;
7155 cfs_rq->idle_h_nr_running -= idle_h_nr_running;
7156 cfs_rq->h_nr_delayed -= h_nr_delayed;
7158 if (cfs_rq_is_idle(cfs_rq))
7159 idle_h_nr_running = h_nr_running;
7161 /* end evaluation on encountering a throttled cfs_rq */
7162 if (cfs_rq_throttled(cfs_rq))
7165 /* Don't dequeue parent if it has other entities besides us */
7166 if (cfs_rq->load.weight) {
7167 slice = cfs_rq_min_slice(cfs_rq);
7169 /* Avoid re-evaluating load for this entity: */
7170 se = parent_entity(se);
7172 * Bias pick_next to pick a task from this cfs_rq, as
7173 * p is sleeping when it is within its sched_slice.
7175 if (task_sleep && se && !throttled_hierarchy(cfs_rq))
7179 flags |= DEQUEUE_SLEEP;
7180 flags &= ~(DEQUEUE_DELAYED | DEQUEUE_SPECIAL);
7183 for_each_sched_entity(se) {
7184 cfs_rq = cfs_rq_of(se);
7186 update_load_avg(cfs_rq, se, UPDATE_TG);
7187 se_update_runnable(se);
7188 update_cfs_group(se);
7191 slice = cfs_rq_min_slice(cfs_rq);
7193 cfs_rq->h_nr_running -= h_nr_running;
7194 cfs_rq->idle_h_nr_running -= idle_h_nr_running;
7195 cfs_rq->h_nr_delayed -= h_nr_delayed;
7197 if (cfs_rq_is_idle(cfs_rq))
7198 idle_h_nr_running = h_nr_running;
7200 /* end evaluation on encountering a throttled cfs_rq */
7201 if (cfs_rq_throttled(cfs_rq))
7205 sub_nr_running(rq, h_nr_running);
7207 if (rq_h_nr_running && !rq->cfs.h_nr_running)
7208 dl_server_stop(&rq->fair_server);
7210 /* balance early to pull high priority tasks */
7211 if (unlikely(!was_sched_idle && sched_idle_rq(rq)))
7212 rq->next_balance = jiffies;
7214 if (p && task_delayed) {
7215 SCHED_WARN_ON(!task_sleep);
7216 SCHED_WARN_ON(p->on_rq != 1);
7218 /* Fix-up what dequeue_task_fair() skipped */
7222 * Fix-up what block_task() skipped.
7224 * Must be last, @p might not be valid after this.
7226 __block_task(rq, p);
7233 * The dequeue_task method is called before nr_running is
7234 * decreased. We remove the task from the rbtree and
7235 * update the fair scheduling stats:
7237 static bool dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
7239 if (!(p->se.sched_delayed && (task_on_rq_migrating(p) || (flags & DEQUEUE_SAVE))))
7240 util_est_dequeue(&rq->cfs, p);
7242 util_est_update(&rq->cfs, p, flags & DEQUEUE_SLEEP);
7243 if (dequeue_entities(rq, &p->se, flags) < 0)
7247 * Must not reference @p after dequeue_entities(DEQUEUE_DELAYED).
7256 /* Working cpumask for: sched_balance_rq(), sched_balance_newidle(). */
7257 static DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
7258 static DEFINE_PER_CPU(cpumask_var_t, select_rq_mask);
7259 static DEFINE_PER_CPU(cpumask_var_t, should_we_balance_tmpmask);
7261 #ifdef CONFIG_NO_HZ_COMMON
7264 cpumask_var_t idle_cpus_mask;
7266 int has_blocked; /* Idle CPUS has blocked load */
7267 int needs_update; /* Newly idle CPUs need their next_balance collated */
7268 unsigned long next_balance; /* in jiffy units */
7269 unsigned long next_blocked; /* Next update of blocked load in jiffies */
7270 } nohz ____cacheline_aligned;
7272 #endif /* CONFIG_NO_HZ_COMMON */
7274 static unsigned long cpu_load(struct rq *rq)
7276 return cfs_rq_load_avg(&rq->cfs);
7280 * cpu_load_without - compute CPU load without any contributions from *p
7281 * @cpu: the CPU which load is requested
7282 * @p: the task which load should be discounted
7284 * The load of a CPU is defined by the load of tasks currently enqueued on that
7285 * CPU as well as tasks which are currently sleeping after an execution on that
7288 * This method returns the load of the specified CPU by discounting the load of
7289 * the specified task, whenever the task is currently contributing to the CPU
7292 static unsigned long cpu_load_without(struct rq *rq, struct task_struct *p)
7294 struct cfs_rq *cfs_rq;
7297 /* Task has no contribution or is new */
7298 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
7299 return cpu_load(rq);
7302 load = READ_ONCE(cfs_rq->avg.load_avg);
7304 /* Discount task's util from CPU's util */
7305 lsub_positive(&load, task_h_load(p));
7310 static unsigned long cpu_runnable(struct rq *rq)
7312 return cfs_rq_runnable_avg(&rq->cfs);
7315 static unsigned long cpu_runnable_without(struct rq *rq, struct task_struct *p)
7317 struct cfs_rq *cfs_rq;
7318 unsigned int runnable;
7320 /* Task has no contribution or is new */
7321 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
7322 return cpu_runnable(rq);
7325 runnable = READ_ONCE(cfs_rq->avg.runnable_avg);
7327 /* Discount task's runnable from CPU's runnable */
7328 lsub_positive(&runnable, p->se.avg.runnable_avg);
7333 static unsigned long capacity_of(int cpu)
7335 return cpu_rq(cpu)->cpu_capacity;
7338 static void record_wakee(struct task_struct *p)
7341 * Only decay a single time; tasks that have less then 1 wakeup per
7342 * jiffy will not have built up many flips.
7344 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
7345 current->wakee_flips >>= 1;
7346 current->wakee_flip_decay_ts = jiffies;
7349 if (current->last_wakee != p) {
7350 current->last_wakee = p;
7351 current->wakee_flips++;
7356 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
7358 * A waker of many should wake a different task than the one last awakened
7359 * at a frequency roughly N times higher than one of its wakees.
7361 * In order to determine whether we should let the load spread vs consolidating
7362 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
7363 * partner, and a factor of lls_size higher frequency in the other.
7365 * With both conditions met, we can be relatively sure that the relationship is
7366 * non-monogamous, with partner count exceeding socket size.
7368 * Waker/wakee being client/server, worker/dispatcher, interrupt source or
7369 * whatever is irrelevant, spread criteria is apparent partner count exceeds
7372 static int wake_wide(struct task_struct *p)
7374 unsigned int master = current->wakee_flips;
7375 unsigned int slave = p->wakee_flips;
7376 int factor = __this_cpu_read(sd_llc_size);
7379 swap(master, slave);
7380 if (slave < factor || master < slave * factor)
7386 * The purpose of wake_affine() is to quickly determine on which CPU we can run
7387 * soonest. For the purpose of speed we only consider the waking and previous
7390 * wake_affine_idle() - only considers 'now', it check if the waking CPU is
7391 * cache-affine and is (or will be) idle.
7393 * wake_affine_weight() - considers the weight to reflect the average
7394 * scheduling latency of the CPUs. This seems to work
7395 * for the overloaded case.
7398 wake_affine_idle(int this_cpu, int prev_cpu, int sync)
7401 * If this_cpu is idle, it implies the wakeup is from interrupt
7402 * context. Only allow the move if cache is shared. Otherwise an
7403 * interrupt intensive workload could force all tasks onto one
7404 * node depending on the IO topology or IRQ affinity settings.
7406 * If the prev_cpu is idle and cache affine then avoid a migration.
7407 * There is no guarantee that the cache hot data from an interrupt
7408 * is more important than cache hot data on the prev_cpu and from
7409 * a cpufreq perspective, it's better to have higher utilisation
7412 if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu))
7413 return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu;
7415 if (sync && cpu_rq(this_cpu)->nr_running == 1)
7418 if (available_idle_cpu(prev_cpu))
7421 return nr_cpumask_bits;
7425 wake_affine_weight(struct sched_domain *sd, struct task_struct *p,
7426 int this_cpu, int prev_cpu, int sync)
7428 s64 this_eff_load, prev_eff_load;
7429 unsigned long task_load;
7431 this_eff_load = cpu_load(cpu_rq(this_cpu));
7434 unsigned long current_load = task_h_load(current);
7436 if (current_load > this_eff_load)
7439 this_eff_load -= current_load;
7442 task_load = task_h_load(p);
7444 this_eff_load += task_load;
7445 if (sched_feat(WA_BIAS))
7446 this_eff_load *= 100;
7447 this_eff_load *= capacity_of(prev_cpu);
7449 prev_eff_load = cpu_load(cpu_rq(prev_cpu));
7450 prev_eff_load -= task_load;
7451 if (sched_feat(WA_BIAS))
7452 prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2;
7453 prev_eff_load *= capacity_of(this_cpu);
7456 * If sync, adjust the weight of prev_eff_load such that if
7457 * prev_eff == this_eff that select_idle_sibling() will consider
7458 * stacking the wakee on top of the waker if no other CPU is
7464 return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits;
7467 static int wake_affine(struct sched_domain *sd, struct task_struct *p,
7468 int this_cpu, int prev_cpu, int sync)
7470 int target = nr_cpumask_bits;
7472 if (sched_feat(WA_IDLE))
7473 target = wake_affine_idle(this_cpu, prev_cpu, sync);
7475 if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits)
7476 target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync);
7478 schedstat_inc(p->stats.nr_wakeups_affine_attempts);
7479 if (target != this_cpu)
7482 schedstat_inc(sd->ttwu_move_affine);
7483 schedstat_inc(p->stats.nr_wakeups_affine);
7487 static struct sched_group *
7488 sched_balance_find_dst_group(struct sched_domain *sd, struct task_struct *p, int this_cpu);
7491 * sched_balance_find_dst_group_cpu - find the idlest CPU among the CPUs in the group.
7494 sched_balance_find_dst_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
7496 unsigned long load, min_load = ULONG_MAX;
7497 unsigned int min_exit_latency = UINT_MAX;
7498 u64 latest_idle_timestamp = 0;
7499 int least_loaded_cpu = this_cpu;
7500 int shallowest_idle_cpu = -1;
7503 /* Check if we have any choice: */
7504 if (group->group_weight == 1)
7505 return cpumask_first(sched_group_span(group));
7507 /* Traverse only the allowed CPUs */
7508 for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr) {
7509 struct rq *rq = cpu_rq(i);
7511 if (!sched_core_cookie_match(rq, p))
7514 if (sched_idle_cpu(i))
7517 if (available_idle_cpu(i)) {
7518 struct cpuidle_state *idle = idle_get_state(rq);
7519 if (idle && idle->exit_latency < min_exit_latency) {
7521 * We give priority to a CPU whose idle state
7522 * has the smallest exit latency irrespective
7523 * of any idle timestamp.
7525 min_exit_latency = idle->exit_latency;
7526 latest_idle_timestamp = rq->idle_stamp;
7527 shallowest_idle_cpu = i;
7528 } else if ((!idle || idle->exit_latency == min_exit_latency) &&
7529 rq->idle_stamp > latest_idle_timestamp) {
7531 * If equal or no active idle state, then
7532 * the most recently idled CPU might have
7535 latest_idle_timestamp = rq->idle_stamp;
7536 shallowest_idle_cpu = i;
7538 } else if (shallowest_idle_cpu == -1) {
7539 load = cpu_load(cpu_rq(i));
7540 if (load < min_load) {
7542 least_loaded_cpu = i;
7547 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
7550 static inline int sched_balance_find_dst_cpu(struct sched_domain *sd, struct task_struct *p,
7551 int cpu, int prev_cpu, int sd_flag)
7555 if (!cpumask_intersects(sched_domain_span(sd), p->cpus_ptr))
7559 * We need task's util for cpu_util_without, sync it up to
7560 * prev_cpu's last_update_time.
7562 if (!(sd_flag & SD_BALANCE_FORK))
7563 sync_entity_load_avg(&p->se);
7566 struct sched_group *group;
7567 struct sched_domain *tmp;
7570 if (!(sd->flags & sd_flag)) {
7575 group = sched_balance_find_dst_group(sd, p, cpu);
7581 new_cpu = sched_balance_find_dst_group_cpu(group, p, cpu);
7582 if (new_cpu == cpu) {
7583 /* Now try balancing at a lower domain level of 'cpu': */
7588 /* Now try balancing at a lower domain level of 'new_cpu': */
7590 weight = sd->span_weight;
7592 for_each_domain(cpu, tmp) {
7593 if (weight <= tmp->span_weight)
7595 if (tmp->flags & sd_flag)
7603 static inline int __select_idle_cpu(int cpu, struct task_struct *p)
7605 if ((available_idle_cpu(cpu) || sched_idle_cpu(cpu)) &&
7606 sched_cpu_cookie_match(cpu_rq(cpu), p))
7612 #ifdef CONFIG_SCHED_SMT
7613 DEFINE_STATIC_KEY_FALSE(sched_smt_present);
7614 EXPORT_SYMBOL_GPL(sched_smt_present);
7616 static inline void set_idle_cores(int cpu, int val)
7618 struct sched_domain_shared *sds;
7620 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
7622 WRITE_ONCE(sds->has_idle_cores, val);
7625 static inline bool test_idle_cores(int cpu)
7627 struct sched_domain_shared *sds;
7629 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
7631 return READ_ONCE(sds->has_idle_cores);
7637 * Scans the local SMT mask to see if the entire core is idle, and records this
7638 * information in sd_llc_shared->has_idle_cores.
7640 * Since SMT siblings share all cache levels, inspecting this limited remote
7641 * state should be fairly cheap.
7643 void __update_idle_core(struct rq *rq)
7645 int core = cpu_of(rq);
7649 if (test_idle_cores(core))
7652 for_each_cpu(cpu, cpu_smt_mask(core)) {
7656 if (!available_idle_cpu(cpu))
7660 set_idle_cores(core, 1);
7666 * Scan the entire LLC domain for idle cores; this dynamically switches off if
7667 * there are no idle cores left in the system; tracked through
7668 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
7670 static int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu)
7675 for_each_cpu(cpu, cpu_smt_mask(core)) {
7676 if (!available_idle_cpu(cpu)) {
7678 if (*idle_cpu == -1) {
7679 if (sched_idle_cpu(cpu) && cpumask_test_cpu(cpu, cpus)) {
7687 if (*idle_cpu == -1 && cpumask_test_cpu(cpu, cpus))
7694 cpumask_andnot(cpus, cpus, cpu_smt_mask(core));
7699 * Scan the local SMT mask for idle CPUs.
7701 static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
7705 for_each_cpu_and(cpu, cpu_smt_mask(target), p->cpus_ptr) {
7709 * Check if the CPU is in the LLC scheduling domain of @target.
7710 * Due to isolcpus, there is no guarantee that all the siblings are in the domain.
7712 if (!cpumask_test_cpu(cpu, sched_domain_span(sd)))
7714 if (available_idle_cpu(cpu) || sched_idle_cpu(cpu))
7721 #else /* CONFIG_SCHED_SMT */
7723 static inline void set_idle_cores(int cpu, int val)
7727 static inline bool test_idle_cores(int cpu)
7732 static inline int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu)
7734 return __select_idle_cpu(core, p);
7737 static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
7742 #endif /* CONFIG_SCHED_SMT */
7745 * Scan the LLC domain for idle CPUs; this is dynamically regulated by
7746 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
7747 * average idle time for this rq (as found in rq->avg_idle).
7749 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, bool has_idle_core, int target)
7751 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
7752 int i, cpu, idle_cpu = -1, nr = INT_MAX;
7753 struct sched_domain_shared *sd_share;
7755 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
7757 if (sched_feat(SIS_UTIL)) {
7758 sd_share = rcu_dereference(per_cpu(sd_llc_shared, target));
7760 /* because !--nr is the condition to stop scan */
7761 nr = READ_ONCE(sd_share->nr_idle_scan) + 1;
7762 /* overloaded LLC is unlikely to have idle cpu/core */
7768 if (static_branch_unlikely(&sched_cluster_active)) {
7769 struct sched_group *sg = sd->groups;
7771 if (sg->flags & SD_CLUSTER) {
7772 for_each_cpu_wrap(cpu, sched_group_span(sg), target + 1) {
7773 if (!cpumask_test_cpu(cpu, cpus))
7776 if (has_idle_core) {
7777 i = select_idle_core(p, cpu, cpus, &idle_cpu);
7778 if ((unsigned int)i < nr_cpumask_bits)
7783 idle_cpu = __select_idle_cpu(cpu, p);
7784 if ((unsigned int)idle_cpu < nr_cpumask_bits)
7788 cpumask_andnot(cpus, cpus, sched_group_span(sg));
7792 for_each_cpu_wrap(cpu, cpus, target + 1) {
7793 if (has_idle_core) {
7794 i = select_idle_core(p, cpu, cpus, &idle_cpu);
7795 if ((unsigned int)i < nr_cpumask_bits)
7801 idle_cpu = __select_idle_cpu(cpu, p);
7802 if ((unsigned int)idle_cpu < nr_cpumask_bits)
7808 set_idle_cores(target, false);
7814 * Scan the asym_capacity domain for idle CPUs; pick the first idle one on which
7815 * the task fits. If no CPU is big enough, but there are idle ones, try to
7816 * maximize capacity.
7819 select_idle_capacity(struct task_struct *p, struct sched_domain *sd, int target)
7821 unsigned long task_util, util_min, util_max, best_cap = 0;
7822 int fits, best_fits = 0;
7823 int cpu, best_cpu = -1;
7824 struct cpumask *cpus;
7826 cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
7827 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
7829 task_util = task_util_est(p);
7830 util_min = uclamp_eff_value(p, UCLAMP_MIN);
7831 util_max = uclamp_eff_value(p, UCLAMP_MAX);
7833 for_each_cpu_wrap(cpu, cpus, target) {
7834 unsigned long cpu_cap = capacity_of(cpu);
7836 if (!available_idle_cpu(cpu) && !sched_idle_cpu(cpu))
7839 fits = util_fits_cpu(task_util, util_min, util_max, cpu);
7841 /* This CPU fits with all requirements */
7845 * Only the min performance hint (i.e. uclamp_min) doesn't fit.
7846 * Look for the CPU with best capacity.
7849 cpu_cap = get_actual_cpu_capacity(cpu);
7852 * First, select CPU which fits better (-1 being better than 0).
7853 * Then, select the one with best capacity at same level.
7855 if ((fits < best_fits) ||
7856 ((fits == best_fits) && (cpu_cap > best_cap))) {
7866 static inline bool asym_fits_cpu(unsigned long util,
7867 unsigned long util_min,
7868 unsigned long util_max,
7871 if (sched_asym_cpucap_active())
7873 * Return true only if the cpu fully fits the task requirements
7874 * which include the utilization and the performance hints.
7876 return (util_fits_cpu(util, util_min, util_max, cpu) > 0);
7882 * Try and locate an idle core/thread in the LLC cache domain.
7884 static int select_idle_sibling(struct task_struct *p, int prev, int target)
7886 bool has_idle_core = false;
7887 struct sched_domain *sd;
7888 unsigned long task_util, util_min, util_max;
7889 int i, recent_used_cpu, prev_aff = -1;
7892 * On asymmetric system, update task utilization because we will check
7893 * that the task fits with CPU's capacity.
7895 if (sched_asym_cpucap_active()) {
7896 sync_entity_load_avg(&p->se);
7897 task_util = task_util_est(p);
7898 util_min = uclamp_eff_value(p, UCLAMP_MIN);
7899 util_max = uclamp_eff_value(p, UCLAMP_MAX);
7903 * per-cpu select_rq_mask usage
7905 lockdep_assert_irqs_disabled();
7907 if ((available_idle_cpu(target) || sched_idle_cpu(target)) &&
7908 asym_fits_cpu(task_util, util_min, util_max, target))
7912 * If the previous CPU is cache affine and idle, don't be stupid:
7914 if (prev != target && cpus_share_cache(prev, target) &&
7915 (available_idle_cpu(prev) || sched_idle_cpu(prev)) &&
7916 asym_fits_cpu(task_util, util_min, util_max, prev)) {
7918 if (!static_branch_unlikely(&sched_cluster_active) ||
7919 cpus_share_resources(prev, target))
7926 * Allow a per-cpu kthread to stack with the wakee if the
7927 * kworker thread and the tasks previous CPUs are the same.
7928 * The assumption is that the wakee queued work for the
7929 * per-cpu kthread that is now complete and the wakeup is
7930 * essentially a sync wakeup. An obvious example of this
7931 * pattern is IO completions.
7933 if (is_per_cpu_kthread(current) &&
7935 prev == smp_processor_id() &&
7936 this_rq()->nr_running <= 1 &&
7937 asym_fits_cpu(task_util, util_min, util_max, prev)) {
7941 /* Check a recently used CPU as a potential idle candidate: */
7942 recent_used_cpu = p->recent_used_cpu;
7943 p->recent_used_cpu = prev;
7944 if (recent_used_cpu != prev &&
7945 recent_used_cpu != target &&
7946 cpus_share_cache(recent_used_cpu, target) &&
7947 (available_idle_cpu(recent_used_cpu) || sched_idle_cpu(recent_used_cpu)) &&
7948 cpumask_test_cpu(recent_used_cpu, p->cpus_ptr) &&
7949 asym_fits_cpu(task_util, util_min, util_max, recent_used_cpu)) {
7951 if (!static_branch_unlikely(&sched_cluster_active) ||
7952 cpus_share_resources(recent_used_cpu, target))
7953 return recent_used_cpu;
7956 recent_used_cpu = -1;
7960 * For asymmetric CPU capacity systems, our domain of interest is
7961 * sd_asym_cpucapacity rather than sd_llc.
7963 if (sched_asym_cpucap_active()) {
7964 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, target));
7966 * On an asymmetric CPU capacity system where an exclusive
7967 * cpuset defines a symmetric island (i.e. one unique
7968 * capacity_orig value through the cpuset), the key will be set
7969 * but the CPUs within that cpuset will not have a domain with
7970 * SD_ASYM_CPUCAPACITY. These should follow the usual symmetric
7974 i = select_idle_capacity(p, sd, target);
7975 return ((unsigned)i < nr_cpumask_bits) ? i : target;
7979 sd = rcu_dereference(per_cpu(sd_llc, target));
7983 if (sched_smt_active()) {
7984 has_idle_core = test_idle_cores(target);
7986 if (!has_idle_core && cpus_share_cache(prev, target)) {
7987 i = select_idle_smt(p, sd, prev);
7988 if ((unsigned int)i < nr_cpumask_bits)
7993 i = select_idle_cpu(p, sd, has_idle_core, target);
7994 if ((unsigned)i < nr_cpumask_bits)
7998 * For cluster machines which have lower sharing cache like L2 or
7999 * LLC Tag, we tend to find an idle CPU in the target's cluster
8000 * first. But prev_cpu or recent_used_cpu may also be a good candidate,
8001 * use them if possible when no idle CPU found in select_idle_cpu().
8003 if ((unsigned int)prev_aff < nr_cpumask_bits)
8005 if ((unsigned int)recent_used_cpu < nr_cpumask_bits)
8006 return recent_used_cpu;
8012 * cpu_util() - Estimates the amount of CPU capacity used by CFS tasks.
8013 * @cpu: the CPU to get the utilization for
8014 * @p: task for which the CPU utilization should be predicted or NULL
8015 * @dst_cpu: CPU @p migrates to, -1 if @p moves from @cpu or @p == NULL
8016 * @boost: 1 to enable boosting, otherwise 0
8018 * The unit of the return value must be the same as the one of CPU capacity
8019 * so that CPU utilization can be compared with CPU capacity.
8021 * CPU utilization is the sum of running time of runnable tasks plus the
8022 * recent utilization of currently non-runnable tasks on that CPU.
8023 * It represents the amount of CPU capacity currently used by CFS tasks in
8024 * the range [0..max CPU capacity] with max CPU capacity being the CPU
8025 * capacity at f_max.
8027 * The estimated CPU utilization is defined as the maximum between CPU
8028 * utilization and sum of the estimated utilization of the currently
8029 * runnable tasks on that CPU. It preserves a utilization "snapshot" of
8030 * previously-executed tasks, which helps better deduce how busy a CPU will
8031 * be when a long-sleeping task wakes up. The contribution to CPU utilization
8032 * of such a task would be significantly decayed at this point of time.
8034 * Boosted CPU utilization is defined as max(CPU runnable, CPU utilization).
8035 * CPU contention for CFS tasks can be detected by CPU runnable > CPU
8036 * utilization. Boosting is implemented in cpu_util() so that internal
8037 * users (e.g. EAS) can use it next to external users (e.g. schedutil),
8038 * latter via cpu_util_cfs_boost().
8040 * CPU utilization can be higher than the current CPU capacity
8041 * (f_curr/f_max * max CPU capacity) or even the max CPU capacity because
8042 * of rounding errors as well as task migrations or wakeups of new tasks.
8043 * CPU utilization has to be capped to fit into the [0..max CPU capacity]
8044 * range. Otherwise a group of CPUs (CPU0 util = 121% + CPU1 util = 80%)
8045 * could be seen as over-utilized even though CPU1 has 20% of spare CPU
8046 * capacity. CPU utilization is allowed to overshoot current CPU capacity
8047 * though since this is useful for predicting the CPU capacity required
8048 * after task migrations (scheduler-driven DVFS).
8050 * Return: (Boosted) (estimated) utilization for the specified CPU.
8052 static unsigned long
8053 cpu_util(int cpu, struct task_struct *p, int dst_cpu, int boost)
8055 struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs;
8056 unsigned long util = READ_ONCE(cfs_rq->avg.util_avg);
8057 unsigned long runnable;
8060 runnable = READ_ONCE(cfs_rq->avg.runnable_avg);
8061 util = max(util, runnable);
8065 * If @dst_cpu is -1 or @p migrates from @cpu to @dst_cpu remove its
8066 * contribution. If @p migrates from another CPU to @cpu add its
8067 * contribution. In all the other cases @cpu is not impacted by the
8068 * migration so its util_avg is already correct.
8070 if (p && task_cpu(p) == cpu && dst_cpu != cpu)
8071 lsub_positive(&util, task_util(p));
8072 else if (p && task_cpu(p) != cpu && dst_cpu == cpu)
8073 util += task_util(p);
8075 if (sched_feat(UTIL_EST)) {
8076 unsigned long util_est;
8078 util_est = READ_ONCE(cfs_rq->avg.util_est);
8081 * During wake-up @p isn't enqueued yet and doesn't contribute
8082 * to any cpu_rq(cpu)->cfs.avg.util_est.
8083 * If @dst_cpu == @cpu add it to "simulate" cpu_util after @p
8084 * has been enqueued.
8086 * During exec (@dst_cpu = -1) @p is enqueued and does
8087 * contribute to cpu_rq(cpu)->cfs.util_est.
8088 * Remove it to "simulate" cpu_util without @p's contribution.
8090 * Despite the task_on_rq_queued(@p) check there is still a
8091 * small window for a possible race when an exec
8092 * select_task_rq_fair() races with LB's detach_task().
8096 * p->on_rq = TASK_ON_RQ_MIGRATING;
8097 * -------------------------------- A
8099 * dequeue_task_fair() + Race Time
8100 * util_est_dequeue() /
8101 * -------------------------------- B
8103 * The additional check "current == p" is required to further
8104 * reduce the race window.
8107 util_est += _task_util_est(p);
8108 else if (p && unlikely(task_on_rq_queued(p) || current == p))
8109 lsub_positive(&util_est, _task_util_est(p));
8111 util = max(util, util_est);
8114 return min(util, arch_scale_cpu_capacity(cpu));
8117 unsigned long cpu_util_cfs(int cpu)
8119 return cpu_util(cpu, NULL, -1, 0);
8122 unsigned long cpu_util_cfs_boost(int cpu)
8124 return cpu_util(cpu, NULL, -1, 1);
8128 * cpu_util_without: compute cpu utilization without any contributions from *p
8129 * @cpu: the CPU which utilization is requested
8130 * @p: the task which utilization should be discounted
8132 * The utilization of a CPU is defined by the utilization of tasks currently
8133 * enqueued on that CPU as well as tasks which are currently sleeping after an
8134 * execution on that CPU.
8136 * This method returns the utilization of the specified CPU by discounting the
8137 * utilization of the specified task, whenever the task is currently
8138 * contributing to the CPU utilization.
8140 static unsigned long cpu_util_without(int cpu, struct task_struct *p)
8142 /* Task has no contribution or is new */
8143 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
8146 return cpu_util(cpu, p, -1, 0);
8150 * This function computes an effective utilization for the given CPU, to be
8151 * used for frequency selection given the linear relation: f = u * f_max.
8153 * The scheduler tracks the following metrics:
8155 * cpu_util_{cfs,rt,dl,irq}()
8158 * Where the cfs,rt and dl util numbers are tracked with the same metric and
8159 * synchronized windows and are thus directly comparable.
8161 * The cfs,rt,dl utilization are the running times measured with rq->clock_task
8162 * which excludes things like IRQ and steal-time. These latter are then accrued
8163 * in the IRQ utilization.
8165 * The DL bandwidth number OTOH is not a measured metric but a value computed
8166 * based on the task model parameters and gives the minimal utilization
8167 * required to meet deadlines.
8169 unsigned long effective_cpu_util(int cpu, unsigned long util_cfs,
8173 unsigned long util, irq, scale;
8174 struct rq *rq = cpu_rq(cpu);
8176 scale = arch_scale_cpu_capacity(cpu);
8179 * Early check to see if IRQ/steal time saturates the CPU, can be
8180 * because of inaccuracies in how we track these -- see
8181 * update_irq_load_avg().
8183 irq = cpu_util_irq(rq);
8184 if (unlikely(irq >= scale)) {
8194 * The minimum utilization returns the highest level between:
8195 * - the computed DL bandwidth needed with the IRQ pressure which
8196 * steals time to the deadline task.
8197 * - The minimum performance requirement for CFS and/or RT.
8199 *min = max(irq + cpu_bw_dl(rq), uclamp_rq_get(rq, UCLAMP_MIN));
8202 * When an RT task is runnable and uclamp is not used, we must
8203 * ensure that the task will run at maximum compute capacity.
8205 if (!uclamp_is_used() && rt_rq_is_runnable(&rq->rt))
8206 *min = max(*min, scale);
8210 * Because the time spend on RT/DL tasks is visible as 'lost' time to
8211 * CFS tasks and we use the same metric to track the effective
8212 * utilization (PELT windows are synchronized) we can directly add them
8213 * to obtain the CPU's actual utilization.
8215 util = util_cfs + cpu_util_rt(rq);
8216 util += cpu_util_dl(rq);
8219 * The maximum hint is a soft bandwidth requirement, which can be lower
8220 * than the actual utilization because of uclamp_max requirements.
8223 *max = min(scale, uclamp_rq_get(rq, UCLAMP_MAX));
8229 * There is still idle time; further improve the number by using the
8230 * IRQ metric. Because IRQ/steal time is hidden from the task clock we
8231 * need to scale the task numbers:
8234 * U' = irq + --------- * U
8237 util = scale_irq_capacity(util, irq, scale);
8240 return min(scale, util);
8243 unsigned long sched_cpu_util(int cpu)
8245 return effective_cpu_util(cpu, cpu_util_cfs(cpu), NULL, NULL);
8249 * energy_env - Utilization landscape for energy estimation.
8250 * @task_busy_time: Utilization contribution by the task for which we test the
8251 * placement. Given by eenv_task_busy_time().
8252 * @pd_busy_time: Utilization of the whole perf domain without the task
8253 * contribution. Given by eenv_pd_busy_time().
8254 * @cpu_cap: Maximum CPU capacity for the perf domain.
8255 * @pd_cap: Entire perf domain capacity. (pd->nr_cpus * cpu_cap).
8258 unsigned long task_busy_time;
8259 unsigned long pd_busy_time;
8260 unsigned long cpu_cap;
8261 unsigned long pd_cap;
8265 * Compute the task busy time for compute_energy(). This time cannot be
8266 * injected directly into effective_cpu_util() because of the IRQ scaling.
8267 * The latter only makes sense with the most recent CPUs where the task has
8270 static inline void eenv_task_busy_time(struct energy_env *eenv,
8271 struct task_struct *p, int prev_cpu)
8273 unsigned long busy_time, max_cap = arch_scale_cpu_capacity(prev_cpu);
8274 unsigned long irq = cpu_util_irq(cpu_rq(prev_cpu));
8276 if (unlikely(irq >= max_cap))
8277 busy_time = max_cap;
8279 busy_time = scale_irq_capacity(task_util_est(p), irq, max_cap);
8281 eenv->task_busy_time = busy_time;
8285 * Compute the perf_domain (PD) busy time for compute_energy(). Based on the
8286 * utilization for each @pd_cpus, it however doesn't take into account
8287 * clamping since the ratio (utilization / cpu_capacity) is already enough to
8288 * scale the EM reported power consumption at the (eventually clamped)
8291 * The contribution of the task @p for which we want to estimate the
8292 * energy cost is removed (by cpu_util()) and must be calculated
8293 * separately (see eenv_task_busy_time). This ensures:
8295 * - A stable PD utilization, no matter which CPU of that PD we want to place
8298 * - A fair comparison between CPUs as the task contribution (task_util())
8299 * will always be the same no matter which CPU utilization we rely on
8300 * (util_avg or util_est).
8302 * Set @eenv busy time for the PD that spans @pd_cpus. This busy time can't
8303 * exceed @eenv->pd_cap.
8305 static inline void eenv_pd_busy_time(struct energy_env *eenv,
8306 struct cpumask *pd_cpus,
8307 struct task_struct *p)
8309 unsigned long busy_time = 0;
8312 for_each_cpu(cpu, pd_cpus) {
8313 unsigned long util = cpu_util(cpu, p, -1, 0);
8315 busy_time += effective_cpu_util(cpu, util, NULL, NULL);
8318 eenv->pd_busy_time = min(eenv->pd_cap, busy_time);
8322 * Compute the maximum utilization for compute_energy() when the task @p
8323 * is placed on the cpu @dst_cpu.
8325 * Returns the maximum utilization among @eenv->cpus. This utilization can't
8326 * exceed @eenv->cpu_cap.
8328 static inline unsigned long
8329 eenv_pd_max_util(struct energy_env *eenv, struct cpumask *pd_cpus,
8330 struct task_struct *p, int dst_cpu)
8332 unsigned long max_util = 0;
8335 for_each_cpu(cpu, pd_cpus) {
8336 struct task_struct *tsk = (cpu == dst_cpu) ? p : NULL;
8337 unsigned long util = cpu_util(cpu, p, dst_cpu, 1);
8338 unsigned long eff_util, min, max;
8341 * Performance domain frequency: utilization clamping
8342 * must be considered since it affects the selection
8343 * of the performance domain frequency.
8344 * NOTE: in case RT tasks are running, by default the min
8345 * utilization can be max OPP.
8347 eff_util = effective_cpu_util(cpu, util, &min, &max);
8349 /* Task's uclamp can modify min and max value */
8350 if (tsk && uclamp_is_used()) {
8351 min = max(min, uclamp_eff_value(p, UCLAMP_MIN));
8354 * If there is no active max uclamp constraint,
8355 * directly use task's one, otherwise keep max.
8357 if (uclamp_rq_is_idle(cpu_rq(cpu)))
8358 max = uclamp_eff_value(p, UCLAMP_MAX);
8360 max = max(max, uclamp_eff_value(p, UCLAMP_MAX));
8363 eff_util = sugov_effective_cpu_perf(cpu, eff_util, min, max);
8364 max_util = max(max_util, eff_util);
8367 return min(max_util, eenv->cpu_cap);
8371 * compute_energy(): Use the Energy Model to estimate the energy that @pd would
8372 * consume for a given utilization landscape @eenv. When @dst_cpu < 0, the task
8373 * contribution is ignored.
8375 static inline unsigned long
8376 compute_energy(struct energy_env *eenv, struct perf_domain *pd,
8377 struct cpumask *pd_cpus, struct task_struct *p, int dst_cpu)
8379 unsigned long max_util = eenv_pd_max_util(eenv, pd_cpus, p, dst_cpu);
8380 unsigned long busy_time = eenv->pd_busy_time;
8381 unsigned long energy;
8384 busy_time = min(eenv->pd_cap, busy_time + eenv->task_busy_time);
8386 energy = em_cpu_energy(pd->em_pd, max_util, busy_time, eenv->cpu_cap);
8388 trace_sched_compute_energy_tp(p, dst_cpu, energy, max_util, busy_time);
8394 * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the
8395 * waking task. find_energy_efficient_cpu() looks for the CPU with maximum
8396 * spare capacity in each performance domain and uses it as a potential
8397 * candidate to execute the task. Then, it uses the Energy Model to figure
8398 * out which of the CPU candidates is the most energy-efficient.
8400 * The rationale for this heuristic is as follows. In a performance domain,
8401 * all the most energy efficient CPU candidates (according to the Energy
8402 * Model) are those for which we'll request a low frequency. When there are
8403 * several CPUs for which the frequency request will be the same, we don't
8404 * have enough data to break the tie between them, because the Energy Model
8405 * only includes active power costs. With this model, if we assume that
8406 * frequency requests follow utilization (e.g. using schedutil), the CPU with
8407 * the maximum spare capacity in a performance domain is guaranteed to be among
8408 * the best candidates of the performance domain.
8410 * In practice, it could be preferable from an energy standpoint to pack
8411 * small tasks on a CPU in order to let other CPUs go in deeper idle states,
8412 * but that could also hurt our chances to go cluster idle, and we have no
8413 * ways to tell with the current Energy Model if this is actually a good
8414 * idea or not. So, find_energy_efficient_cpu() basically favors
8415 * cluster-packing, and spreading inside a cluster. That should at least be
8416 * a good thing for latency, and this is consistent with the idea that most
8417 * of the energy savings of EAS come from the asymmetry of the system, and
8418 * not so much from breaking the tie between identical CPUs. That's also the
8419 * reason why EAS is enabled in the topology code only for systems where
8420 * SD_ASYM_CPUCAPACITY is set.
8422 * NOTE: Forkees are not accepted in the energy-aware wake-up path because
8423 * they don't have any useful utilization data yet and it's not possible to
8424 * forecast their impact on energy consumption. Consequently, they will be
8425 * placed by sched_balance_find_dst_cpu() on the least loaded CPU, which might turn out
8426 * to be energy-inefficient in some use-cases. The alternative would be to
8427 * bias new tasks towards specific types of CPUs first, or to try to infer
8428 * their util_avg from the parent task, but those heuristics could hurt
8429 * other use-cases too. So, until someone finds a better way to solve this,
8430 * let's keep things simple by re-using the existing slow path.
8432 static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu)
8434 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
8435 unsigned long prev_delta = ULONG_MAX, best_delta = ULONG_MAX;
8436 unsigned long p_util_min = uclamp_is_used() ? uclamp_eff_value(p, UCLAMP_MIN) : 0;
8437 unsigned long p_util_max = uclamp_is_used() ? uclamp_eff_value(p, UCLAMP_MAX) : 1024;
8438 struct root_domain *rd = this_rq()->rd;
8439 int cpu, best_energy_cpu, target = -1;
8440 int prev_fits = -1, best_fits = -1;
8441 unsigned long best_actual_cap = 0;
8442 unsigned long prev_actual_cap = 0;
8443 struct sched_domain *sd;
8444 struct perf_domain *pd;
8445 struct energy_env eenv;
8448 pd = rcu_dereference(rd->pd);
8453 * Energy-aware wake-up happens on the lowest sched_domain starting
8454 * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu.
8456 sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity));
8457 while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
8464 sync_entity_load_avg(&p->se);
8465 if (!task_util_est(p) && p_util_min == 0)
8468 eenv_task_busy_time(&eenv, p, prev_cpu);
8470 for (; pd; pd = pd->next) {
8471 unsigned long util_min = p_util_min, util_max = p_util_max;
8472 unsigned long cpu_cap, cpu_actual_cap, util;
8473 long prev_spare_cap = -1, max_spare_cap = -1;
8474 unsigned long rq_util_min, rq_util_max;
8475 unsigned long cur_delta, base_energy;
8476 int max_spare_cap_cpu = -1;
8477 int fits, max_fits = -1;
8479 cpumask_and(cpus, perf_domain_span(pd), cpu_online_mask);
8481 if (cpumask_empty(cpus))
8484 /* Account external pressure for the energy estimation */
8485 cpu = cpumask_first(cpus);
8486 cpu_actual_cap = get_actual_cpu_capacity(cpu);
8488 eenv.cpu_cap = cpu_actual_cap;
8491 for_each_cpu(cpu, cpus) {
8492 struct rq *rq = cpu_rq(cpu);
8494 eenv.pd_cap += cpu_actual_cap;
8496 if (!cpumask_test_cpu(cpu, sched_domain_span(sd)))
8499 if (!cpumask_test_cpu(cpu, p->cpus_ptr))
8502 util = cpu_util(cpu, p, cpu, 0);
8503 cpu_cap = capacity_of(cpu);
8506 * Skip CPUs that cannot satisfy the capacity request.
8507 * IOW, placing the task there would make the CPU
8508 * overutilized. Take uclamp into account to see how
8509 * much capacity we can get out of the CPU; this is
8510 * aligned with sched_cpu_util().
8512 if (uclamp_is_used() && !uclamp_rq_is_idle(rq)) {
8514 * Open code uclamp_rq_util_with() except for
8515 * the clamp() part. I.e.: apply max aggregation
8516 * only. util_fits_cpu() logic requires to
8517 * operate on non clamped util but must use the
8518 * max-aggregated uclamp_{min, max}.
8520 rq_util_min = uclamp_rq_get(rq, UCLAMP_MIN);
8521 rq_util_max = uclamp_rq_get(rq, UCLAMP_MAX);
8523 util_min = max(rq_util_min, p_util_min);
8524 util_max = max(rq_util_max, p_util_max);
8527 fits = util_fits_cpu(util, util_min, util_max, cpu);
8531 lsub_positive(&cpu_cap, util);
8533 if (cpu == prev_cpu) {
8534 /* Always use prev_cpu as a candidate. */
8535 prev_spare_cap = cpu_cap;
8537 } else if ((fits > max_fits) ||
8538 ((fits == max_fits) && ((long)cpu_cap > max_spare_cap))) {
8540 * Find the CPU with the maximum spare capacity
8541 * among the remaining CPUs in the performance
8544 max_spare_cap = cpu_cap;
8545 max_spare_cap_cpu = cpu;
8550 if (max_spare_cap_cpu < 0 && prev_spare_cap < 0)
8553 eenv_pd_busy_time(&eenv, cpus, p);
8554 /* Compute the 'base' energy of the pd, without @p */
8555 base_energy = compute_energy(&eenv, pd, cpus, p, -1);
8557 /* Evaluate the energy impact of using prev_cpu. */
8558 if (prev_spare_cap > -1) {
8559 prev_delta = compute_energy(&eenv, pd, cpus, p,
8561 /* CPU utilization has changed */
8562 if (prev_delta < base_energy)
8564 prev_delta -= base_energy;
8565 prev_actual_cap = cpu_actual_cap;
8566 best_delta = min(best_delta, prev_delta);
8569 /* Evaluate the energy impact of using max_spare_cap_cpu. */
8570 if (max_spare_cap_cpu >= 0 && max_spare_cap > prev_spare_cap) {
8571 /* Current best energy cpu fits better */
8572 if (max_fits < best_fits)
8576 * Both don't fit performance hint (i.e. uclamp_min)
8577 * but best energy cpu has better capacity.
8579 if ((max_fits < 0) &&
8580 (cpu_actual_cap <= best_actual_cap))
8583 cur_delta = compute_energy(&eenv, pd, cpus, p,
8585 /* CPU utilization has changed */
8586 if (cur_delta < base_energy)
8588 cur_delta -= base_energy;
8591 * Both fit for the task but best energy cpu has lower
8594 if ((max_fits > 0) && (best_fits > 0) &&
8595 (cur_delta >= best_delta))
8598 best_delta = cur_delta;
8599 best_energy_cpu = max_spare_cap_cpu;
8600 best_fits = max_fits;
8601 best_actual_cap = cpu_actual_cap;
8606 if ((best_fits > prev_fits) ||
8607 ((best_fits > 0) && (best_delta < prev_delta)) ||
8608 ((best_fits < 0) && (best_actual_cap > prev_actual_cap)))
8609 target = best_energy_cpu;
8620 * select_task_rq_fair: Select target runqueue for the waking task in domains
8621 * that have the relevant SD flag set. In practice, this is SD_BALANCE_WAKE,
8622 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
8624 * Balances load by selecting the idlest CPU in the idlest group, or under
8625 * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set.
8627 * Returns the target CPU number.
8630 select_task_rq_fair(struct task_struct *p, int prev_cpu, int wake_flags)
8632 int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING);
8633 struct sched_domain *tmp, *sd = NULL;
8634 int cpu = smp_processor_id();
8635 int new_cpu = prev_cpu;
8636 int want_affine = 0;
8637 /* SD_flags and WF_flags share the first nibble */
8638 int sd_flag = wake_flags & 0xF;
8641 * required for stable ->cpus_allowed
8643 lockdep_assert_held(&p->pi_lock);
8644 if (wake_flags & WF_TTWU) {
8647 if ((wake_flags & WF_CURRENT_CPU) &&
8648 cpumask_test_cpu(cpu, p->cpus_ptr))
8651 if (!is_rd_overutilized(this_rq()->rd)) {
8652 new_cpu = find_energy_efficient_cpu(p, prev_cpu);
8658 want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, p->cpus_ptr);
8662 for_each_domain(cpu, tmp) {
8664 * If both 'cpu' and 'prev_cpu' are part of this domain,
8665 * cpu is a valid SD_WAKE_AFFINE target.
8667 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
8668 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
8669 if (cpu != prev_cpu)
8670 new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync);
8672 sd = NULL; /* Prefer wake_affine over balance flags */
8677 * Usually only true for WF_EXEC and WF_FORK, as sched_domains
8678 * usually do not have SD_BALANCE_WAKE set. That means wakeup
8679 * will usually go to the fast path.
8681 if (tmp->flags & sd_flag)
8683 else if (!want_affine)
8689 new_cpu = sched_balance_find_dst_cpu(sd, p, cpu, prev_cpu, sd_flag);
8690 } else if (wake_flags & WF_TTWU) { /* XXX always ? */
8692 new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
8700 * Called immediately before a task is migrated to a new CPU; task_cpu(p) and
8701 * cfs_rq_of(p) references at time of call are still valid and identify the
8702 * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
8704 static void migrate_task_rq_fair(struct task_struct *p, int new_cpu)
8706 struct sched_entity *se = &p->se;
8708 if (!task_on_rq_migrating(p)) {
8709 remove_entity_load_avg(se);
8712 * Here, the task's PELT values have been updated according to
8713 * the current rq's clock. But if that clock hasn't been
8714 * updated in a while, a substantial idle time will be missed,
8715 * leading to an inflation after wake-up on the new rq.
8717 * Estimate the missing time from the cfs_rq last_update_time
8718 * and update sched_avg to improve the PELT continuity after
8721 migrate_se_pelt_lag(se);
8724 /* Tell new CPU we are migrated */
8725 se->avg.last_update_time = 0;
8727 update_scan_period(p, new_cpu);
8730 static void task_dead_fair(struct task_struct *p)
8732 struct sched_entity *se = &p->se;
8734 if (se->sched_delayed) {
8738 rq = task_rq_lock(p, &rf);
8739 if (se->sched_delayed) {
8740 update_rq_clock(rq);
8741 dequeue_entities(rq, se, DEQUEUE_SLEEP | DEQUEUE_DELAYED);
8743 task_rq_unlock(rq, p, &rf);
8746 remove_entity_load_avg(se);
8750 * Set the max capacity the task is allowed to run at for misfit detection.
8752 static void set_task_max_allowed_capacity(struct task_struct *p)
8754 struct asym_cap_data *entry;
8756 if (!sched_asym_cpucap_active())
8760 list_for_each_entry_rcu(entry, &asym_cap_list, link) {
8763 cpumask = cpu_capacity_span(entry);
8764 if (!cpumask_intersects(p->cpus_ptr, cpumask))
8767 p->max_allowed_capacity = entry->capacity;
8773 static void set_cpus_allowed_fair(struct task_struct *p, struct affinity_context *ctx)
8775 set_cpus_allowed_common(p, ctx);
8776 set_task_max_allowed_capacity(p);
8780 balance_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
8782 if (sched_fair_runnable(rq))
8785 return sched_balance_newidle(rq, rf) != 0;
8788 static inline void set_task_max_allowed_capacity(struct task_struct *p) {}
8789 #endif /* CONFIG_SMP */
8791 static void set_next_buddy(struct sched_entity *se)
8793 for_each_sched_entity(se) {
8794 if (SCHED_WARN_ON(!se->on_rq))
8798 cfs_rq_of(se)->next = se;
8803 * Preempt the current task with a newly woken task if needed:
8805 static void check_preempt_wakeup_fair(struct rq *rq, struct task_struct *p, int wake_flags)
8807 struct task_struct *donor = rq->donor;
8808 struct sched_entity *se = &donor->se, *pse = &p->se;
8809 struct cfs_rq *cfs_rq = task_cfs_rq(donor);
8810 int cse_is_idle, pse_is_idle;
8812 if (unlikely(se == pse))
8816 * This is possible from callers such as attach_tasks(), in which we
8817 * unconditionally wakeup_preempt() after an enqueue (which may have
8818 * lead to a throttle). This both saves work and prevents false
8819 * next-buddy nomination below.
8821 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
8824 if (sched_feat(NEXT_BUDDY) && !(wake_flags & WF_FORK) && !pse->sched_delayed) {
8825 set_next_buddy(pse);
8829 * We can come here with TIF_NEED_RESCHED already set from new task
8832 * Note: this also catches the edge-case of curr being in a throttled
8833 * group (e.g. via set_curr_task), since update_curr() (in the
8834 * enqueue of curr) will have resulted in resched being set. This
8835 * prevents us from potentially nominating it as a false LAST_BUDDY
8838 if (test_tsk_need_resched(rq->curr))
8841 if (!sched_feat(WAKEUP_PREEMPTION))
8844 find_matching_se(&se, &pse);
8847 cse_is_idle = se_is_idle(se);
8848 pse_is_idle = se_is_idle(pse);
8851 * Preempt an idle entity in favor of a non-idle entity (and don't preempt
8852 * in the inverse case).
8854 if (cse_is_idle && !pse_is_idle)
8856 if (cse_is_idle != pse_is_idle)
8860 * BATCH and IDLE tasks do not preempt others.
8862 if (unlikely(!normal_policy(p->policy)))
8865 cfs_rq = cfs_rq_of(se);
8866 update_curr(cfs_rq);
8868 * If @p has a shorter slice than current and @p is eligible, override
8869 * current's slice protection in order to allow preemption.
8871 * Note that even if @p does not turn out to be the most eligible
8872 * task at this moment, current's slice protection will be lost.
8874 if (do_preempt_short(cfs_rq, pse, se) && se->vlag == se->deadline)
8875 se->vlag = se->deadline + 1;
8878 * If @p has become the most eligible task, force preemption.
8880 if (pick_eevdf(cfs_rq) == pse)
8886 resched_curr_lazy(rq);
8889 static struct task_struct *pick_task_fair(struct rq *rq)
8891 struct sched_entity *se;
8892 struct cfs_rq *cfs_rq;
8896 if (!cfs_rq->nr_running)
8900 /* Might not have done put_prev_entity() */
8901 if (cfs_rq->curr && cfs_rq->curr->on_rq)
8902 update_curr(cfs_rq);
8904 if (unlikely(check_cfs_rq_runtime(cfs_rq)))
8907 se = pick_next_entity(rq, cfs_rq);
8910 cfs_rq = group_cfs_rq(se);
8916 static void __set_next_task_fair(struct rq *rq, struct task_struct *p, bool first);
8917 static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first);
8919 struct task_struct *
8920 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
8922 struct sched_entity *se;
8923 struct task_struct *p;
8927 p = pick_task_fair(rq);
8932 #ifdef CONFIG_FAIR_GROUP_SCHED
8933 if (prev->sched_class != &fair_sched_class)
8936 __put_prev_set_next_dl_server(rq, prev, p);
8939 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
8940 * likely that a next task is from the same cgroup as the current.
8942 * Therefore attempt to avoid putting and setting the entire cgroup
8943 * hierarchy, only change the part that actually changes.
8945 * Since we haven't yet done put_prev_entity and if the selected task
8946 * is a different task than we started out with, try and touch the
8947 * least amount of cfs_rqs.
8950 struct sched_entity *pse = &prev->se;
8951 struct cfs_rq *cfs_rq;
8953 while (!(cfs_rq = is_same_group(se, pse))) {
8954 int se_depth = se->depth;
8955 int pse_depth = pse->depth;
8957 if (se_depth <= pse_depth) {
8958 put_prev_entity(cfs_rq_of(pse), pse);
8959 pse = parent_entity(pse);
8961 if (se_depth >= pse_depth) {
8962 set_next_entity(cfs_rq_of(se), se);
8963 se = parent_entity(se);
8967 put_prev_entity(cfs_rq, pse);
8968 set_next_entity(cfs_rq, se);
8970 __set_next_task_fair(rq, p, true);
8977 put_prev_set_next_task(rq, prev, p);
8984 new_tasks = sched_balance_newidle(rq, rf);
8987 * Because sched_balance_newidle() releases (and re-acquires) rq->lock, it is
8988 * possible for any higher priority task to appear. In that case we
8989 * must re-start the pick_next_entity() loop.
8998 * rq is about to be idle, check if we need to update the
8999 * lost_idle_time of clock_pelt
9001 update_idle_rq_clock_pelt(rq);
9006 static struct task_struct *__pick_next_task_fair(struct rq *rq, struct task_struct *prev)
9008 return pick_next_task_fair(rq, prev, NULL);
9011 static bool fair_server_has_tasks(struct sched_dl_entity *dl_se)
9013 return !!dl_se->rq->cfs.nr_running;
9016 static struct task_struct *fair_server_pick_task(struct sched_dl_entity *dl_se)
9018 return pick_task_fair(dl_se->rq);
9021 void fair_server_init(struct rq *rq)
9023 struct sched_dl_entity *dl_se = &rq->fair_server;
9025 init_dl_entity(dl_se);
9027 dl_server_init(dl_se, rq, fair_server_has_tasks, fair_server_pick_task);
9031 * Account for a descheduled task:
9033 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev, struct task_struct *next)
9035 struct sched_entity *se = &prev->se;
9036 struct cfs_rq *cfs_rq;
9038 for_each_sched_entity(se) {
9039 cfs_rq = cfs_rq_of(se);
9040 put_prev_entity(cfs_rq, se);
9045 * sched_yield() is very simple
9047 static void yield_task_fair(struct rq *rq)
9049 struct task_struct *curr = rq->curr;
9050 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
9051 struct sched_entity *se = &curr->se;
9054 * Are we the only task in the tree?
9056 if (unlikely(rq->nr_running == 1))
9059 clear_buddies(cfs_rq, se);
9061 update_rq_clock(rq);
9063 * Update run-time statistics of the 'current'.
9065 update_curr(cfs_rq);
9067 * Tell update_rq_clock() that we've just updated,
9068 * so we don't do microscopic update in schedule()
9069 * and double the fastpath cost.
9071 rq_clock_skip_update(rq);
9073 se->deadline += calc_delta_fair(se->slice, se);
9076 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p)
9078 struct sched_entity *se = &p->se;
9080 /* throttled hierarchies are not runnable */
9081 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
9084 /* Tell the scheduler that we'd really like se to run next. */
9087 yield_task_fair(rq);
9093 /**************************************************
9094 * Fair scheduling class load-balancing methods.
9098 * The purpose of load-balancing is to achieve the same basic fairness the
9099 * per-CPU scheduler provides, namely provide a proportional amount of compute
9100 * time to each task. This is expressed in the following equation:
9102 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
9104 * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight
9105 * W_i,0 is defined as:
9107 * W_i,0 = \Sum_j w_i,j (2)
9109 * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight
9110 * is derived from the nice value as per sched_prio_to_weight[].
9112 * The weight average is an exponential decay average of the instantaneous
9115 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
9117 * C_i is the compute capacity of CPU i, typically it is the
9118 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
9119 * can also include other factors [XXX].
9121 * To achieve this balance we define a measure of imbalance which follows
9122 * directly from (1):
9124 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
9126 * We them move tasks around to minimize the imbalance. In the continuous
9127 * function space it is obvious this converges, in the discrete case we get
9128 * a few fun cases generally called infeasible weight scenarios.
9131 * - infeasible weights;
9132 * - local vs global optima in the discrete case. ]
9137 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
9138 * for all i,j solution, we create a tree of CPUs that follows the hardware
9139 * topology where each level pairs two lower groups (or better). This results
9140 * in O(log n) layers. Furthermore we reduce the number of CPUs going up the
9141 * tree to only the first of the previous level and we decrease the frequency
9142 * of load-balance at each level inversely proportional to the number of CPUs in
9148 * \Sum { --- * --- * 2^i } = O(n) (5)
9150 * `- size of each group
9151 * | | `- number of CPUs doing load-balance
9153 * `- sum over all levels
9155 * Coupled with a limit on how many tasks we can migrate every balance pass,
9156 * this makes (5) the runtime complexity of the balancer.
9158 * An important property here is that each CPU is still (indirectly) connected
9159 * to every other CPU in at most O(log n) steps:
9161 * The adjacency matrix of the resulting graph is given by:
9164 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
9167 * And you'll find that:
9169 * A^(log_2 n)_i,j != 0 for all i,j (7)
9171 * Showing there's indeed a path between every CPU in at most O(log n) steps.
9172 * The task movement gives a factor of O(m), giving a convergence complexity
9175 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
9180 * In order to avoid CPUs going idle while there's still work to do, new idle
9181 * balancing is more aggressive and has the newly idle CPU iterate up the domain
9182 * tree itself instead of relying on other CPUs to bring it work.
9184 * This adds some complexity to both (5) and (8) but it reduces the total idle
9192 * Cgroups make a horror show out of (2), instead of a simple sum we get:
9195 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
9200 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
9202 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i.
9204 * The big problem is S_k, its a global sum needed to compute a local (W_i)
9207 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
9208 * rewrite all of this once again.]
9211 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
9213 enum fbq_type { regular, remote, all };
9216 * 'group_type' describes the group of CPUs at the moment of load balancing.
9218 * The enum is ordered by pulling priority, with the group with lowest priority
9219 * first so the group_type can simply be compared when selecting the busiest
9220 * group. See update_sd_pick_busiest().
9223 /* The group has spare capacity that can be used to run more tasks. */
9224 group_has_spare = 0,
9226 * The group is fully used and the tasks don't compete for more CPU
9227 * cycles. Nevertheless, some tasks might wait before running.
9231 * One task doesn't fit with CPU's capacity and must be migrated to a
9232 * more powerful CPU.
9236 * Balance SMT group that's fully busy. Can benefit from migration
9237 * a task on SMT with busy sibling to another CPU on idle core.
9241 * SD_ASYM_PACKING only: One local CPU with higher capacity is available,
9242 * and the task should be migrated to it instead of running on the
9247 * The tasks' affinity constraints previously prevented the scheduler
9248 * from balancing the load across the system.
9252 * The CPU is overloaded and can't provide expected CPU cycles to all
9258 enum migration_type {
9265 #define LBF_ALL_PINNED 0x01
9266 #define LBF_NEED_BREAK 0x02
9267 #define LBF_DST_PINNED 0x04
9268 #define LBF_SOME_PINNED 0x08
9269 #define LBF_ACTIVE_LB 0x10
9272 struct sched_domain *sd;
9280 struct cpumask *dst_grpmask;
9282 enum cpu_idle_type idle;
9284 /* The set of CPUs under consideration for load-balancing */
9285 struct cpumask *cpus;
9290 unsigned int loop_break;
9291 unsigned int loop_max;
9293 enum fbq_type fbq_type;
9294 enum migration_type migration_type;
9295 struct list_head tasks;
9299 * Is this task likely cache-hot:
9301 static int task_hot(struct task_struct *p, struct lb_env *env)
9305 lockdep_assert_rq_held(env->src_rq);
9307 if (p->sched_class != &fair_sched_class)
9310 if (unlikely(task_has_idle_policy(p)))
9313 /* SMT siblings share cache */
9314 if (env->sd->flags & SD_SHARE_CPUCAPACITY)
9318 * Buddy candidates are cache hot:
9320 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
9321 (&p->se == cfs_rq_of(&p->se)->next))
9324 if (sysctl_sched_migration_cost == -1)
9328 * Don't migrate task if the task's cookie does not match
9329 * with the destination CPU's core cookie.
9331 if (!sched_core_cookie_match(cpu_rq(env->dst_cpu), p))
9334 if (sysctl_sched_migration_cost == 0)
9337 delta = rq_clock_task(env->src_rq) - p->se.exec_start;
9339 return delta < (s64)sysctl_sched_migration_cost;
9342 #ifdef CONFIG_NUMA_BALANCING
9344 * Returns 1, if task migration degrades locality
9345 * Returns 0, if task migration improves locality i.e migration preferred.
9346 * Returns -1, if task migration is not affected by locality.
9348 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
9350 struct numa_group *numa_group = rcu_dereference(p->numa_group);
9351 unsigned long src_weight, dst_weight;
9352 int src_nid, dst_nid, dist;
9354 if (!static_branch_likely(&sched_numa_balancing))
9357 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
9360 src_nid = cpu_to_node(env->src_cpu);
9361 dst_nid = cpu_to_node(env->dst_cpu);
9363 if (src_nid == dst_nid)
9366 /* Migrating away from the preferred node is always bad. */
9367 if (src_nid == p->numa_preferred_nid) {
9368 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
9374 /* Encourage migration to the preferred node. */
9375 if (dst_nid == p->numa_preferred_nid)
9378 /* Leaving a core idle is often worse than degrading locality. */
9379 if (env->idle == CPU_IDLE)
9382 dist = node_distance(src_nid, dst_nid);
9384 src_weight = group_weight(p, src_nid, dist);
9385 dst_weight = group_weight(p, dst_nid, dist);
9387 src_weight = task_weight(p, src_nid, dist);
9388 dst_weight = task_weight(p, dst_nid, dist);
9391 return dst_weight < src_weight;
9395 static inline int migrate_degrades_locality(struct task_struct *p,
9403 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
9406 int can_migrate_task(struct task_struct *p, struct lb_env *env)
9410 lockdep_assert_rq_held(env->src_rq);
9413 * We do not migrate tasks that are:
9414 * 1) throttled_lb_pair, or
9415 * 2) cannot be migrated to this CPU due to cpus_ptr, or
9416 * 3) running (obviously), or
9417 * 4) are cache-hot on their current CPU.
9419 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
9422 /* Disregard percpu kthreads; they are where they need to be. */
9423 if (kthread_is_per_cpu(p))
9426 if (!cpumask_test_cpu(env->dst_cpu, p->cpus_ptr)) {
9429 schedstat_inc(p->stats.nr_failed_migrations_affine);
9431 env->flags |= LBF_SOME_PINNED;
9434 * Remember if this task can be migrated to any other CPU in
9435 * our sched_group. We may want to revisit it if we couldn't
9436 * meet load balance goals by pulling other tasks on src_cpu.
9438 * Avoid computing new_dst_cpu
9440 * - if we have already computed one in current iteration
9441 * - if it's an active balance
9443 if (env->idle == CPU_NEWLY_IDLE ||
9444 env->flags & (LBF_DST_PINNED | LBF_ACTIVE_LB))
9447 /* Prevent to re-select dst_cpu via env's CPUs: */
9448 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
9449 if (cpumask_test_cpu(cpu, p->cpus_ptr)) {
9450 env->flags |= LBF_DST_PINNED;
9451 env->new_dst_cpu = cpu;
9459 /* Record that we found at least one task that could run on dst_cpu */
9460 env->flags &= ~LBF_ALL_PINNED;
9462 if (task_on_cpu(env->src_rq, p)) {
9463 schedstat_inc(p->stats.nr_failed_migrations_running);
9468 * Aggressive migration if:
9470 * 2) destination numa is preferred
9471 * 3) task is cache cold, or
9472 * 4) too many balance attempts have failed.
9474 if (env->flags & LBF_ACTIVE_LB)
9477 tsk_cache_hot = migrate_degrades_locality(p, env);
9478 if (tsk_cache_hot == -1)
9479 tsk_cache_hot = task_hot(p, env);
9481 if (tsk_cache_hot <= 0 ||
9482 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
9483 if (tsk_cache_hot == 1) {
9484 schedstat_inc(env->sd->lb_hot_gained[env->idle]);
9485 schedstat_inc(p->stats.nr_forced_migrations);
9490 schedstat_inc(p->stats.nr_failed_migrations_hot);
9495 * detach_task() -- detach the task for the migration specified in env
9497 static void detach_task(struct task_struct *p, struct lb_env *env)
9499 lockdep_assert_rq_held(env->src_rq);
9501 deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK);
9502 set_task_cpu(p, env->dst_cpu);
9506 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
9507 * part of active balancing operations within "domain".
9509 * Returns a task if successful and NULL otherwise.
9511 static struct task_struct *detach_one_task(struct lb_env *env)
9513 struct task_struct *p;
9515 lockdep_assert_rq_held(env->src_rq);
9517 list_for_each_entry_reverse(p,
9518 &env->src_rq->cfs_tasks, se.group_node) {
9519 if (!can_migrate_task(p, env))
9522 detach_task(p, env);
9525 * Right now, this is only the second place where
9526 * lb_gained[env->idle] is updated (other is detach_tasks)
9527 * so we can safely collect stats here rather than
9528 * inside detach_tasks().
9530 schedstat_inc(env->sd->lb_gained[env->idle]);
9537 * detach_tasks() -- tries to detach up to imbalance load/util/tasks from
9538 * busiest_rq, as part of a balancing operation within domain "sd".
9540 * Returns number of detached tasks if successful and 0 otherwise.
9542 static int detach_tasks(struct lb_env *env)
9544 struct list_head *tasks = &env->src_rq->cfs_tasks;
9545 unsigned long util, load;
9546 struct task_struct *p;
9549 lockdep_assert_rq_held(env->src_rq);
9552 * Source run queue has been emptied by another CPU, clear
9553 * LBF_ALL_PINNED flag as we will not test any task.
9555 if (env->src_rq->nr_running <= 1) {
9556 env->flags &= ~LBF_ALL_PINNED;
9560 if (env->imbalance <= 0)
9563 while (!list_empty(tasks)) {
9565 * We don't want to steal all, otherwise we may be treated likewise,
9566 * which could at worst lead to a livelock crash.
9568 if (env->idle && env->src_rq->nr_running <= 1)
9572 /* We've more or less seen every task there is, call it quits */
9573 if (env->loop > env->loop_max)
9576 /* take a breather every nr_migrate tasks */
9577 if (env->loop > env->loop_break) {
9578 env->loop_break += SCHED_NR_MIGRATE_BREAK;
9579 env->flags |= LBF_NEED_BREAK;
9583 p = list_last_entry(tasks, struct task_struct, se.group_node);
9585 if (!can_migrate_task(p, env))
9588 switch (env->migration_type) {
9591 * Depending of the number of CPUs and tasks and the
9592 * cgroup hierarchy, task_h_load() can return a null
9593 * value. Make sure that env->imbalance decreases
9594 * otherwise detach_tasks() will stop only after
9595 * detaching up to loop_max tasks.
9597 load = max_t(unsigned long, task_h_load(p), 1);
9599 if (sched_feat(LB_MIN) &&
9600 load < 16 && !env->sd->nr_balance_failed)
9604 * Make sure that we don't migrate too much load.
9605 * Nevertheless, let relax the constraint if
9606 * scheduler fails to find a good waiting task to
9609 if (shr_bound(load, env->sd->nr_balance_failed) > env->imbalance)
9612 env->imbalance -= load;
9616 util = task_util_est(p);
9618 if (shr_bound(util, env->sd->nr_balance_failed) > env->imbalance)
9621 env->imbalance -= util;
9628 case migrate_misfit:
9629 /* This is not a misfit task */
9630 if (task_fits_cpu(p, env->src_cpu))
9637 detach_task(p, env);
9638 list_add(&p->se.group_node, &env->tasks);
9642 #ifdef CONFIG_PREEMPTION
9644 * NEWIDLE balancing is a source of latency, so preemptible
9645 * kernels will stop after the first task is detached to minimize
9646 * the critical section.
9648 if (env->idle == CPU_NEWLY_IDLE)
9653 * We only want to steal up to the prescribed amount of
9656 if (env->imbalance <= 0)
9661 list_move(&p->se.group_node, tasks);
9665 * Right now, this is one of only two places we collect this stat
9666 * so we can safely collect detach_one_task() stats here rather
9667 * than inside detach_one_task().
9669 schedstat_add(env->sd->lb_gained[env->idle], detached);
9675 * attach_task() -- attach the task detached by detach_task() to its new rq.
9677 static void attach_task(struct rq *rq, struct task_struct *p)
9679 lockdep_assert_rq_held(rq);
9681 WARN_ON_ONCE(task_rq(p) != rq);
9682 activate_task(rq, p, ENQUEUE_NOCLOCK);
9683 wakeup_preempt(rq, p, 0);
9687 * attach_one_task() -- attaches the task returned from detach_one_task() to
9690 static void attach_one_task(struct rq *rq, struct task_struct *p)
9695 update_rq_clock(rq);
9701 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
9704 static void attach_tasks(struct lb_env *env)
9706 struct list_head *tasks = &env->tasks;
9707 struct task_struct *p;
9710 rq_lock(env->dst_rq, &rf);
9711 update_rq_clock(env->dst_rq);
9713 while (!list_empty(tasks)) {
9714 p = list_first_entry(tasks, struct task_struct, se.group_node);
9715 list_del_init(&p->se.group_node);
9717 attach_task(env->dst_rq, p);
9720 rq_unlock(env->dst_rq, &rf);
9723 #ifdef CONFIG_NO_HZ_COMMON
9724 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq)
9726 if (cfs_rq->avg.load_avg)
9729 if (cfs_rq->avg.util_avg)
9735 static inline bool others_have_blocked(struct rq *rq)
9737 if (cpu_util_rt(rq))
9740 if (cpu_util_dl(rq))
9743 if (hw_load_avg(rq))
9746 if (cpu_util_irq(rq))
9752 static inline void update_blocked_load_tick(struct rq *rq)
9754 WRITE_ONCE(rq->last_blocked_load_update_tick, jiffies);
9757 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked)
9760 rq->has_blocked_load = 0;
9763 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) { return false; }
9764 static inline bool others_have_blocked(struct rq *rq) { return false; }
9765 static inline void update_blocked_load_tick(struct rq *rq) {}
9766 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) {}
9769 static bool __update_blocked_others(struct rq *rq, bool *done)
9774 * update_load_avg() can call cpufreq_update_util(). Make sure that RT,
9775 * DL and IRQ signals have been updated before updating CFS.
9777 updated = update_other_load_avgs(rq);
9779 if (others_have_blocked(rq))
9785 #ifdef CONFIG_FAIR_GROUP_SCHED
9787 static bool __update_blocked_fair(struct rq *rq, bool *done)
9789 struct cfs_rq *cfs_rq, *pos;
9790 bool decayed = false;
9791 int cpu = cpu_of(rq);
9794 * Iterates the task_group tree in a bottom up fashion, see
9795 * list_add_leaf_cfs_rq() for details.
9797 for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) {
9798 struct sched_entity *se;
9800 if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq)) {
9801 update_tg_load_avg(cfs_rq);
9803 if (cfs_rq->nr_running == 0)
9804 update_idle_cfs_rq_clock_pelt(cfs_rq);
9806 if (cfs_rq == &rq->cfs)
9810 /* Propagate pending load changes to the parent, if any: */
9811 se = cfs_rq->tg->se[cpu];
9812 if (se && !skip_blocked_update(se))
9813 update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
9816 * There can be a lot of idle CPU cgroups. Don't let fully
9817 * decayed cfs_rqs linger on the list.
9819 if (cfs_rq_is_decayed(cfs_rq))
9820 list_del_leaf_cfs_rq(cfs_rq);
9822 /* Don't need periodic decay once load/util_avg are null */
9823 if (cfs_rq_has_blocked(cfs_rq))
9831 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
9832 * This needs to be done in a top-down fashion because the load of a child
9833 * group is a fraction of its parents load.
9835 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
9837 struct rq *rq = rq_of(cfs_rq);
9838 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
9839 unsigned long now = jiffies;
9842 if (cfs_rq->last_h_load_update == now)
9845 WRITE_ONCE(cfs_rq->h_load_next, NULL);
9846 for_each_sched_entity(se) {
9847 cfs_rq = cfs_rq_of(se);
9848 WRITE_ONCE(cfs_rq->h_load_next, se);
9849 if (cfs_rq->last_h_load_update == now)
9854 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
9855 cfs_rq->last_h_load_update = now;
9858 while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) {
9859 load = cfs_rq->h_load;
9860 load = div64_ul(load * se->avg.load_avg,
9861 cfs_rq_load_avg(cfs_rq) + 1);
9862 cfs_rq = group_cfs_rq(se);
9863 cfs_rq->h_load = load;
9864 cfs_rq->last_h_load_update = now;
9868 static unsigned long task_h_load(struct task_struct *p)
9870 struct cfs_rq *cfs_rq = task_cfs_rq(p);
9872 update_cfs_rq_h_load(cfs_rq);
9873 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
9874 cfs_rq_load_avg(cfs_rq) + 1);
9877 static bool __update_blocked_fair(struct rq *rq, bool *done)
9879 struct cfs_rq *cfs_rq = &rq->cfs;
9882 decayed = update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq);
9883 if (cfs_rq_has_blocked(cfs_rq))
9889 static unsigned long task_h_load(struct task_struct *p)
9891 return p->se.avg.load_avg;
9895 static void sched_balance_update_blocked_averages(int cpu)
9897 bool decayed = false, done = true;
9898 struct rq *rq = cpu_rq(cpu);
9901 rq_lock_irqsave(rq, &rf);
9902 update_blocked_load_tick(rq);
9903 update_rq_clock(rq);
9905 decayed |= __update_blocked_others(rq, &done);
9906 decayed |= __update_blocked_fair(rq, &done);
9908 update_blocked_load_status(rq, !done);
9910 cpufreq_update_util(rq, 0);
9911 rq_unlock_irqrestore(rq, &rf);
9914 /********** Helpers for sched_balance_find_src_group ************************/
9917 * sg_lb_stats - stats of a sched_group required for load-balancing:
9919 struct sg_lb_stats {
9920 unsigned long avg_load; /* Avg load over the CPUs of the group */
9921 unsigned long group_load; /* Total load over the CPUs of the group */
9922 unsigned long group_capacity; /* Capacity over the CPUs of the group */
9923 unsigned long group_util; /* Total utilization over the CPUs of the group */
9924 unsigned long group_runnable; /* Total runnable time over the CPUs of the group */
9925 unsigned int sum_nr_running; /* Nr of all tasks running in the group */
9926 unsigned int sum_h_nr_running; /* Nr of CFS tasks running in the group */
9927 unsigned int idle_cpus; /* Nr of idle CPUs in the group */
9928 unsigned int group_weight;
9929 enum group_type group_type;
9930 unsigned int group_asym_packing; /* Tasks should be moved to preferred CPU */
9931 unsigned int group_smt_balance; /* Task on busy SMT be moved */
9932 unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */
9933 #ifdef CONFIG_NUMA_BALANCING
9934 unsigned int nr_numa_running;
9935 unsigned int nr_preferred_running;
9940 * sd_lb_stats - stats of a sched_domain required for load-balancing:
9942 struct sd_lb_stats {
9943 struct sched_group *busiest; /* Busiest group in this sd */
9944 struct sched_group *local; /* Local group in this sd */
9945 unsigned long total_load; /* Total load of all groups in sd */
9946 unsigned long total_capacity; /* Total capacity of all groups in sd */
9947 unsigned long avg_load; /* Average load across all groups in sd */
9948 unsigned int prefer_sibling; /* Tasks should go to sibling first */
9950 struct sg_lb_stats busiest_stat; /* Statistics of the busiest group */
9951 struct sg_lb_stats local_stat; /* Statistics of the local group */
9954 static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
9957 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
9958 * local_stat because update_sg_lb_stats() does a full clear/assignment.
9959 * We must however set busiest_stat::group_type and
9960 * busiest_stat::idle_cpus to the worst busiest group because
9961 * update_sd_pick_busiest() reads these before assignment.
9963 *sds = (struct sd_lb_stats){
9967 .total_capacity = 0UL,
9969 .idle_cpus = UINT_MAX,
9970 .group_type = group_has_spare,
9975 static unsigned long scale_rt_capacity(int cpu)
9977 unsigned long max = get_actual_cpu_capacity(cpu);
9978 struct rq *rq = cpu_rq(cpu);
9979 unsigned long used, free;
9982 irq = cpu_util_irq(rq);
9984 if (unlikely(irq >= max))
9988 * avg_rt.util_avg and avg_dl.util_avg track binary signals
9989 * (running and not running) with weights 0 and 1024 respectively.
9991 used = cpu_util_rt(rq);
9992 used += cpu_util_dl(rq);
9994 if (unlikely(used >= max))
9999 return scale_irq_capacity(free, irq, max);
10002 static void update_cpu_capacity(struct sched_domain *sd, int cpu)
10004 unsigned long capacity = scale_rt_capacity(cpu);
10005 struct sched_group *sdg = sd->groups;
10010 cpu_rq(cpu)->cpu_capacity = capacity;
10011 trace_sched_cpu_capacity_tp(cpu_rq(cpu));
10013 sdg->sgc->capacity = capacity;
10014 sdg->sgc->min_capacity = capacity;
10015 sdg->sgc->max_capacity = capacity;
10018 void update_group_capacity(struct sched_domain *sd, int cpu)
10020 struct sched_domain *child = sd->child;
10021 struct sched_group *group, *sdg = sd->groups;
10022 unsigned long capacity, min_capacity, max_capacity;
10023 unsigned long interval;
10025 interval = msecs_to_jiffies(sd->balance_interval);
10026 interval = clamp(interval, 1UL, max_load_balance_interval);
10027 sdg->sgc->next_update = jiffies + interval;
10030 update_cpu_capacity(sd, cpu);
10035 min_capacity = ULONG_MAX;
10038 if (child->flags & SD_OVERLAP) {
10040 * SD_OVERLAP domains cannot assume that child groups
10041 * span the current group.
10044 for_each_cpu(cpu, sched_group_span(sdg)) {
10045 unsigned long cpu_cap = capacity_of(cpu);
10047 capacity += cpu_cap;
10048 min_capacity = min(cpu_cap, min_capacity);
10049 max_capacity = max(cpu_cap, max_capacity);
10053 * !SD_OVERLAP domains can assume that child groups
10054 * span the current group.
10057 group = child->groups;
10059 struct sched_group_capacity *sgc = group->sgc;
10061 capacity += sgc->capacity;
10062 min_capacity = min(sgc->min_capacity, min_capacity);
10063 max_capacity = max(sgc->max_capacity, max_capacity);
10064 group = group->next;
10065 } while (group != child->groups);
10068 sdg->sgc->capacity = capacity;
10069 sdg->sgc->min_capacity = min_capacity;
10070 sdg->sgc->max_capacity = max_capacity;
10074 * Check whether the capacity of the rq has been noticeably reduced by side
10075 * activity. The imbalance_pct is used for the threshold.
10076 * Return true is the capacity is reduced
10079 check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
10081 return ((rq->cpu_capacity * sd->imbalance_pct) <
10082 (arch_scale_cpu_capacity(cpu_of(rq)) * 100));
10085 /* Check if the rq has a misfit task */
10086 static inline bool check_misfit_status(struct rq *rq)
10088 return rq->misfit_task_load;
10092 * Group imbalance indicates (and tries to solve) the problem where balancing
10093 * groups is inadequate due to ->cpus_ptr constraints.
10095 * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a
10096 * cpumask covering 1 CPU of the first group and 3 CPUs of the second group.
10099 * { 0 1 2 3 } { 4 5 6 7 }
10102 * If we were to balance group-wise we'd place two tasks in the first group and
10103 * two tasks in the second group. Clearly this is undesired as it will overload
10104 * cpu 3 and leave one of the CPUs in the second group unused.
10106 * The current solution to this issue is detecting the skew in the first group
10107 * by noticing the lower domain failed to reach balance and had difficulty
10108 * moving tasks due to affinity constraints.
10110 * When this is so detected; this group becomes a candidate for busiest; see
10111 * update_sd_pick_busiest(). And calculate_imbalance() and
10112 * sched_balance_find_src_group() avoid some of the usual balance conditions to allow it
10113 * to create an effective group imbalance.
10115 * This is a somewhat tricky proposition since the next run might not find the
10116 * group imbalance and decide the groups need to be balanced again. A most
10117 * subtle and fragile situation.
10120 static inline int sg_imbalanced(struct sched_group *group)
10122 return group->sgc->imbalance;
10126 * group_has_capacity returns true if the group has spare capacity that could
10127 * be used by some tasks.
10128 * We consider that a group has spare capacity if the number of task is
10129 * smaller than the number of CPUs or if the utilization is lower than the
10130 * available capacity for CFS tasks.
10131 * For the latter, we use a threshold to stabilize the state, to take into
10132 * account the variance of the tasks' load and to return true if the available
10133 * capacity in meaningful for the load balancer.
10134 * As an example, an available capacity of 1% can appear but it doesn't make
10135 * any benefit for the load balance.
10138 group_has_capacity(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
10140 if (sgs->sum_nr_running < sgs->group_weight)
10143 if ((sgs->group_capacity * imbalance_pct) <
10144 (sgs->group_runnable * 100))
10147 if ((sgs->group_capacity * 100) >
10148 (sgs->group_util * imbalance_pct))
10155 * group_is_overloaded returns true if the group has more tasks than it can
10157 * group_is_overloaded is not equals to !group_has_capacity because a group
10158 * with the exact right number of tasks, has no more spare capacity but is not
10159 * overloaded so both group_has_capacity and group_is_overloaded return
10163 group_is_overloaded(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
10165 if (sgs->sum_nr_running <= sgs->group_weight)
10168 if ((sgs->group_capacity * 100) <
10169 (sgs->group_util * imbalance_pct))
10172 if ((sgs->group_capacity * imbalance_pct) <
10173 (sgs->group_runnable * 100))
10180 group_type group_classify(unsigned int imbalance_pct,
10181 struct sched_group *group,
10182 struct sg_lb_stats *sgs)
10184 if (group_is_overloaded(imbalance_pct, sgs))
10185 return group_overloaded;
10187 if (sg_imbalanced(group))
10188 return group_imbalanced;
10190 if (sgs->group_asym_packing)
10191 return group_asym_packing;
10193 if (sgs->group_smt_balance)
10194 return group_smt_balance;
10196 if (sgs->group_misfit_task_load)
10197 return group_misfit_task;
10199 if (!group_has_capacity(imbalance_pct, sgs))
10200 return group_fully_busy;
10202 return group_has_spare;
10206 * sched_use_asym_prio - Check whether asym_packing priority must be used
10207 * @sd: The scheduling domain of the load balancing
10210 * Always use CPU priority when balancing load between SMT siblings. When
10211 * balancing load between cores, it is not sufficient that @cpu is idle. Only
10212 * use CPU priority if the whole core is idle.
10214 * Returns: True if the priority of @cpu must be followed. False otherwise.
10216 static bool sched_use_asym_prio(struct sched_domain *sd, int cpu)
10218 if (!(sd->flags & SD_ASYM_PACKING))
10221 if (!sched_smt_active())
10224 return sd->flags & SD_SHARE_CPUCAPACITY || is_core_idle(cpu);
10227 static inline bool sched_asym(struct sched_domain *sd, int dst_cpu, int src_cpu)
10230 * First check if @dst_cpu can do asym_packing load balance. Only do it
10231 * if it has higher priority than @src_cpu.
10233 return sched_use_asym_prio(sd, dst_cpu) &&
10234 sched_asym_prefer(dst_cpu, src_cpu);
10238 * sched_group_asym - Check if the destination CPU can do asym_packing balance
10239 * @env: The load balancing environment
10240 * @sgs: Load-balancing statistics of the candidate busiest group
10241 * @group: The candidate busiest group
10243 * @env::dst_cpu can do asym_packing if it has higher priority than the
10244 * preferred CPU of @group.
10246 * Return: true if @env::dst_cpu can do with asym_packing load balance. False
10250 sched_group_asym(struct lb_env *env, struct sg_lb_stats *sgs, struct sched_group *group)
10253 * CPU priorities do not make sense for SMT cores with more than one
10256 if ((group->flags & SD_SHARE_CPUCAPACITY) &&
10257 (sgs->group_weight - sgs->idle_cpus != 1))
10260 return sched_asym(env->sd, env->dst_cpu, group->asym_prefer_cpu);
10263 /* One group has more than one SMT CPU while the other group does not */
10264 static inline bool smt_vs_nonsmt_groups(struct sched_group *sg1,
10265 struct sched_group *sg2)
10270 return (sg1->flags & SD_SHARE_CPUCAPACITY) !=
10271 (sg2->flags & SD_SHARE_CPUCAPACITY);
10274 static inline bool smt_balance(struct lb_env *env, struct sg_lb_stats *sgs,
10275 struct sched_group *group)
10281 * For SMT source group, it is better to move a task
10282 * to a CPU that doesn't have multiple tasks sharing its CPU capacity.
10283 * Note that if a group has a single SMT, SD_SHARE_CPUCAPACITY
10286 if (group->flags & SD_SHARE_CPUCAPACITY &&
10287 sgs->sum_h_nr_running > 1)
10293 static inline long sibling_imbalance(struct lb_env *env,
10294 struct sd_lb_stats *sds,
10295 struct sg_lb_stats *busiest,
10296 struct sg_lb_stats *local)
10298 int ncores_busiest, ncores_local;
10301 if (!env->idle || !busiest->sum_nr_running)
10304 ncores_busiest = sds->busiest->cores;
10305 ncores_local = sds->local->cores;
10307 if (ncores_busiest == ncores_local) {
10308 imbalance = busiest->sum_nr_running;
10309 lsub_positive(&imbalance, local->sum_nr_running);
10313 /* Balance such that nr_running/ncores ratio are same on both groups */
10314 imbalance = ncores_local * busiest->sum_nr_running;
10315 lsub_positive(&imbalance, ncores_busiest * local->sum_nr_running);
10316 /* Normalize imbalance and do rounding on normalization */
10317 imbalance = 2 * imbalance + ncores_local + ncores_busiest;
10318 imbalance /= ncores_local + ncores_busiest;
10320 /* Take advantage of resource in an empty sched group */
10321 if (imbalance <= 1 && local->sum_nr_running == 0 &&
10322 busiest->sum_nr_running > 1)
10329 sched_reduced_capacity(struct rq *rq, struct sched_domain *sd)
10332 * When there is more than 1 task, the group_overloaded case already
10333 * takes care of cpu with reduced capacity
10335 if (rq->cfs.h_nr_running != 1)
10338 return check_cpu_capacity(rq, sd);
10342 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
10343 * @env: The load balancing environment.
10344 * @sds: Load-balancing data with statistics of the local group.
10345 * @group: sched_group whose statistics are to be updated.
10346 * @sgs: variable to hold the statistics for this group.
10347 * @sg_overloaded: sched_group is overloaded
10348 * @sg_overutilized: sched_group is overutilized
10350 static inline void update_sg_lb_stats(struct lb_env *env,
10351 struct sd_lb_stats *sds,
10352 struct sched_group *group,
10353 struct sg_lb_stats *sgs,
10354 bool *sg_overloaded,
10355 bool *sg_overutilized)
10357 int i, nr_running, local_group;
10359 memset(sgs, 0, sizeof(*sgs));
10361 local_group = group == sds->local;
10363 for_each_cpu_and(i, sched_group_span(group), env->cpus) {
10364 struct rq *rq = cpu_rq(i);
10365 unsigned long load = cpu_load(rq);
10367 sgs->group_load += load;
10368 sgs->group_util += cpu_util_cfs(i);
10369 sgs->group_runnable += cpu_runnable(rq);
10370 sgs->sum_h_nr_running += rq->cfs.h_nr_running;
10372 nr_running = rq->nr_running;
10373 sgs->sum_nr_running += nr_running;
10375 if (nr_running > 1)
10376 *sg_overloaded = 1;
10378 if (cpu_overutilized(i))
10379 *sg_overutilized = 1;
10381 #ifdef CONFIG_NUMA_BALANCING
10382 sgs->nr_numa_running += rq->nr_numa_running;
10383 sgs->nr_preferred_running += rq->nr_preferred_running;
10386 * No need to call idle_cpu() if nr_running is not 0
10388 if (!nr_running && idle_cpu(i)) {
10390 /* Idle cpu can't have misfit task */
10397 if (env->sd->flags & SD_ASYM_CPUCAPACITY) {
10398 /* Check for a misfit task on the cpu */
10399 if (sgs->group_misfit_task_load < rq->misfit_task_load) {
10400 sgs->group_misfit_task_load = rq->misfit_task_load;
10401 *sg_overloaded = 1;
10403 } else if (env->idle && sched_reduced_capacity(rq, env->sd)) {
10404 /* Check for a task running on a CPU with reduced capacity */
10405 if (sgs->group_misfit_task_load < load)
10406 sgs->group_misfit_task_load = load;
10410 sgs->group_capacity = group->sgc->capacity;
10412 sgs->group_weight = group->group_weight;
10414 /* Check if dst CPU is idle and preferred to this group */
10415 if (!local_group && env->idle && sgs->sum_h_nr_running &&
10416 sched_group_asym(env, sgs, group))
10417 sgs->group_asym_packing = 1;
10419 /* Check for loaded SMT group to be balanced to dst CPU */
10420 if (!local_group && smt_balance(env, sgs, group))
10421 sgs->group_smt_balance = 1;
10423 sgs->group_type = group_classify(env->sd->imbalance_pct, group, sgs);
10425 /* Computing avg_load makes sense only when group is overloaded */
10426 if (sgs->group_type == group_overloaded)
10427 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
10428 sgs->group_capacity;
10432 * update_sd_pick_busiest - return 1 on busiest group
10433 * @env: The load balancing environment.
10434 * @sds: sched_domain statistics
10435 * @sg: sched_group candidate to be checked for being the busiest
10436 * @sgs: sched_group statistics
10438 * Determine if @sg is a busier group than the previously selected
10441 * Return: %true if @sg is a busier group than the previously selected
10442 * busiest group. %false otherwise.
10444 static bool update_sd_pick_busiest(struct lb_env *env,
10445 struct sd_lb_stats *sds,
10446 struct sched_group *sg,
10447 struct sg_lb_stats *sgs)
10449 struct sg_lb_stats *busiest = &sds->busiest_stat;
10451 /* Make sure that there is at least one task to pull */
10452 if (!sgs->sum_h_nr_running)
10456 * Don't try to pull misfit tasks we can't help.
10457 * We can use max_capacity here as reduction in capacity on some
10458 * CPUs in the group should either be possible to resolve
10459 * internally or be covered by avg_load imbalance (eventually).
10461 if ((env->sd->flags & SD_ASYM_CPUCAPACITY) &&
10462 (sgs->group_type == group_misfit_task) &&
10463 (!capacity_greater(capacity_of(env->dst_cpu), sg->sgc->max_capacity) ||
10464 sds->local_stat.group_type != group_has_spare))
10467 if (sgs->group_type > busiest->group_type)
10470 if (sgs->group_type < busiest->group_type)
10474 * The candidate and the current busiest group are the same type of
10475 * group. Let check which one is the busiest according to the type.
10478 switch (sgs->group_type) {
10479 case group_overloaded:
10480 /* Select the overloaded group with highest avg_load. */
10481 return sgs->avg_load > busiest->avg_load;
10483 case group_imbalanced:
10485 * Select the 1st imbalanced group as we don't have any way to
10486 * choose one more than another.
10490 case group_asym_packing:
10491 /* Prefer to move from lowest priority CPU's work */
10492 return sched_asym_prefer(sds->busiest->asym_prefer_cpu, sg->asym_prefer_cpu);
10494 case group_misfit_task:
10496 * If we have more than one misfit sg go with the biggest
10499 return sgs->group_misfit_task_load > busiest->group_misfit_task_load;
10501 case group_smt_balance:
10503 * Check if we have spare CPUs on either SMT group to
10504 * choose has spare or fully busy handling.
10506 if (sgs->idle_cpus != 0 || busiest->idle_cpus != 0)
10511 case group_fully_busy:
10513 * Select the fully busy group with highest avg_load. In
10514 * theory, there is no need to pull task from such kind of
10515 * group because tasks have all compute capacity that they need
10516 * but we can still improve the overall throughput by reducing
10517 * contention when accessing shared HW resources.
10519 * XXX for now avg_load is not computed and always 0 so we
10520 * select the 1st one, except if @sg is composed of SMT
10524 if (sgs->avg_load < busiest->avg_load)
10527 if (sgs->avg_load == busiest->avg_load) {
10529 * SMT sched groups need more help than non-SMT groups.
10530 * If @sg happens to also be SMT, either choice is good.
10532 if (sds->busiest->flags & SD_SHARE_CPUCAPACITY)
10538 case group_has_spare:
10540 * Do not pick sg with SMT CPUs over sg with pure CPUs,
10541 * as we do not want to pull task off SMT core with one task
10542 * and make the core idle.
10544 if (smt_vs_nonsmt_groups(sds->busiest, sg)) {
10545 if (sg->flags & SD_SHARE_CPUCAPACITY && sgs->sum_h_nr_running <= 1)
10553 * Select not overloaded group with lowest number of idle CPUs
10554 * and highest number of running tasks. We could also compare
10555 * the spare capacity which is more stable but it can end up
10556 * that the group has less spare capacity but finally more idle
10557 * CPUs which means less opportunity to pull tasks.
10559 if (sgs->idle_cpus > busiest->idle_cpus)
10561 else if ((sgs->idle_cpus == busiest->idle_cpus) &&
10562 (sgs->sum_nr_running <= busiest->sum_nr_running))
10569 * Candidate sg has no more than one task per CPU and has higher
10570 * per-CPU capacity. Migrating tasks to less capable CPUs may harm
10571 * throughput. Maximize throughput, power/energy consequences are not
10574 if ((env->sd->flags & SD_ASYM_CPUCAPACITY) &&
10575 (sgs->group_type <= group_fully_busy) &&
10576 (capacity_greater(sg->sgc->min_capacity, capacity_of(env->dst_cpu))))
10582 #ifdef CONFIG_NUMA_BALANCING
10583 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
10585 if (sgs->sum_h_nr_running > sgs->nr_numa_running)
10587 if (sgs->sum_h_nr_running > sgs->nr_preferred_running)
10592 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
10594 if (rq->nr_running > rq->nr_numa_running)
10596 if (rq->nr_running > rq->nr_preferred_running)
10601 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
10606 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
10610 #endif /* CONFIG_NUMA_BALANCING */
10613 struct sg_lb_stats;
10616 * task_running_on_cpu - return 1 if @p is running on @cpu.
10619 static unsigned int task_running_on_cpu(int cpu, struct task_struct *p)
10621 /* Task has no contribution or is new */
10622 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
10625 if (task_on_rq_queued(p))
10632 * idle_cpu_without - would a given CPU be idle without p ?
10633 * @cpu: the processor on which idleness is tested.
10634 * @p: task which should be ignored.
10636 * Return: 1 if the CPU would be idle. 0 otherwise.
10638 static int idle_cpu_without(int cpu, struct task_struct *p)
10640 struct rq *rq = cpu_rq(cpu);
10642 if (rq->curr != rq->idle && rq->curr != p)
10646 * rq->nr_running can't be used but an updated version without the
10647 * impact of p on cpu must be used instead. The updated nr_running
10648 * be computed and tested before calling idle_cpu_without().
10651 if (rq->ttwu_pending)
10658 * update_sg_wakeup_stats - Update sched_group's statistics for wakeup.
10659 * @sd: The sched_domain level to look for idlest group.
10660 * @group: sched_group whose statistics are to be updated.
10661 * @sgs: variable to hold the statistics for this group.
10662 * @p: The task for which we look for the idlest group/CPU.
10664 static inline void update_sg_wakeup_stats(struct sched_domain *sd,
10665 struct sched_group *group,
10666 struct sg_lb_stats *sgs,
10667 struct task_struct *p)
10671 memset(sgs, 0, sizeof(*sgs));
10673 /* Assume that task can't fit any CPU of the group */
10674 if (sd->flags & SD_ASYM_CPUCAPACITY)
10675 sgs->group_misfit_task_load = 1;
10677 for_each_cpu(i, sched_group_span(group)) {
10678 struct rq *rq = cpu_rq(i);
10679 unsigned int local;
10681 sgs->group_load += cpu_load_without(rq, p);
10682 sgs->group_util += cpu_util_without(i, p);
10683 sgs->group_runnable += cpu_runnable_without(rq, p);
10684 local = task_running_on_cpu(i, p);
10685 sgs->sum_h_nr_running += rq->cfs.h_nr_running - local;
10687 nr_running = rq->nr_running - local;
10688 sgs->sum_nr_running += nr_running;
10691 * No need to call idle_cpu_without() if nr_running is not 0
10693 if (!nr_running && idle_cpu_without(i, p))
10696 /* Check if task fits in the CPU */
10697 if (sd->flags & SD_ASYM_CPUCAPACITY &&
10698 sgs->group_misfit_task_load &&
10699 task_fits_cpu(p, i))
10700 sgs->group_misfit_task_load = 0;
10704 sgs->group_capacity = group->sgc->capacity;
10706 sgs->group_weight = group->group_weight;
10708 sgs->group_type = group_classify(sd->imbalance_pct, group, sgs);
10711 * Computing avg_load makes sense only when group is fully busy or
10714 if (sgs->group_type == group_fully_busy ||
10715 sgs->group_type == group_overloaded)
10716 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
10717 sgs->group_capacity;
10720 static bool update_pick_idlest(struct sched_group *idlest,
10721 struct sg_lb_stats *idlest_sgs,
10722 struct sched_group *group,
10723 struct sg_lb_stats *sgs)
10725 if (sgs->group_type < idlest_sgs->group_type)
10728 if (sgs->group_type > idlest_sgs->group_type)
10732 * The candidate and the current idlest group are the same type of
10733 * group. Let check which one is the idlest according to the type.
10736 switch (sgs->group_type) {
10737 case group_overloaded:
10738 case group_fully_busy:
10739 /* Select the group with lowest avg_load. */
10740 if (idlest_sgs->avg_load <= sgs->avg_load)
10744 case group_imbalanced:
10745 case group_asym_packing:
10746 case group_smt_balance:
10747 /* Those types are not used in the slow wakeup path */
10750 case group_misfit_task:
10751 /* Select group with the highest max capacity */
10752 if (idlest->sgc->max_capacity >= group->sgc->max_capacity)
10756 case group_has_spare:
10757 /* Select group with most idle CPUs */
10758 if (idlest_sgs->idle_cpus > sgs->idle_cpus)
10761 /* Select group with lowest group_util */
10762 if (idlest_sgs->idle_cpus == sgs->idle_cpus &&
10763 idlest_sgs->group_util <= sgs->group_util)
10773 * sched_balance_find_dst_group() finds and returns the least busy CPU group within the
10776 * Assumes p is allowed on at least one CPU in sd.
10778 static struct sched_group *
10779 sched_balance_find_dst_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
10781 struct sched_group *idlest = NULL, *local = NULL, *group = sd->groups;
10782 struct sg_lb_stats local_sgs, tmp_sgs;
10783 struct sg_lb_stats *sgs;
10784 unsigned long imbalance;
10785 struct sg_lb_stats idlest_sgs = {
10786 .avg_load = UINT_MAX,
10787 .group_type = group_overloaded,
10793 /* Skip over this group if it has no CPUs allowed */
10794 if (!cpumask_intersects(sched_group_span(group),
10798 /* Skip over this group if no cookie matched */
10799 if (!sched_group_cookie_match(cpu_rq(this_cpu), p, group))
10802 local_group = cpumask_test_cpu(this_cpu,
10803 sched_group_span(group));
10812 update_sg_wakeup_stats(sd, group, sgs, p);
10814 if (!local_group && update_pick_idlest(idlest, &idlest_sgs, group, sgs)) {
10819 } while (group = group->next, group != sd->groups);
10822 /* There is no idlest group to push tasks to */
10826 /* The local group has been skipped because of CPU affinity */
10831 * If the local group is idler than the selected idlest group
10832 * don't try and push the task.
10834 if (local_sgs.group_type < idlest_sgs.group_type)
10838 * If the local group is busier than the selected idlest group
10839 * try and push the task.
10841 if (local_sgs.group_type > idlest_sgs.group_type)
10844 switch (local_sgs.group_type) {
10845 case group_overloaded:
10846 case group_fully_busy:
10848 /* Calculate allowed imbalance based on load */
10849 imbalance = scale_load_down(NICE_0_LOAD) *
10850 (sd->imbalance_pct-100) / 100;
10853 * When comparing groups across NUMA domains, it's possible for
10854 * the local domain to be very lightly loaded relative to the
10855 * remote domains but "imbalance" skews the comparison making
10856 * remote CPUs look much more favourable. When considering
10857 * cross-domain, add imbalance to the load on the remote node
10858 * and consider staying local.
10861 if ((sd->flags & SD_NUMA) &&
10862 ((idlest_sgs.avg_load + imbalance) >= local_sgs.avg_load))
10866 * If the local group is less loaded than the selected
10867 * idlest group don't try and push any tasks.
10869 if (idlest_sgs.avg_load >= (local_sgs.avg_load + imbalance))
10872 if (100 * local_sgs.avg_load <= sd->imbalance_pct * idlest_sgs.avg_load)
10876 case group_imbalanced:
10877 case group_asym_packing:
10878 case group_smt_balance:
10879 /* Those type are not used in the slow wakeup path */
10882 case group_misfit_task:
10883 /* Select group with the highest max capacity */
10884 if (local->sgc->max_capacity >= idlest->sgc->max_capacity)
10888 case group_has_spare:
10890 if (sd->flags & SD_NUMA) {
10891 int imb_numa_nr = sd->imb_numa_nr;
10892 #ifdef CONFIG_NUMA_BALANCING
10895 * If there is spare capacity at NUMA, try to select
10896 * the preferred node
10898 if (cpu_to_node(this_cpu) == p->numa_preferred_nid)
10901 idlest_cpu = cpumask_first(sched_group_span(idlest));
10902 if (cpu_to_node(idlest_cpu) == p->numa_preferred_nid)
10904 #endif /* CONFIG_NUMA_BALANCING */
10906 * Otherwise, keep the task close to the wakeup source
10907 * and improve locality if the number of running tasks
10908 * would remain below threshold where an imbalance is
10909 * allowed while accounting for the possibility the
10910 * task is pinned to a subset of CPUs. If there is a
10911 * real need of migration, periodic load balance will
10914 if (p->nr_cpus_allowed != NR_CPUS) {
10915 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
10917 cpumask_and(cpus, sched_group_span(local), p->cpus_ptr);
10918 imb_numa_nr = min(cpumask_weight(cpus), sd->imb_numa_nr);
10921 imbalance = abs(local_sgs.idle_cpus - idlest_sgs.idle_cpus);
10922 if (!adjust_numa_imbalance(imbalance,
10923 local_sgs.sum_nr_running + 1,
10928 #endif /* CONFIG_NUMA */
10931 * Select group with highest number of idle CPUs. We could also
10932 * compare the utilization which is more stable but it can end
10933 * up that the group has less spare capacity but finally more
10934 * idle CPUs which means more opportunity to run task.
10936 if (local_sgs.idle_cpus >= idlest_sgs.idle_cpus)
10944 static void update_idle_cpu_scan(struct lb_env *env,
10945 unsigned long sum_util)
10947 struct sched_domain_shared *sd_share;
10948 int llc_weight, pct;
10951 * Update the number of CPUs to scan in LLC domain, which could
10952 * be used as a hint in select_idle_cpu(). The update of sd_share
10953 * could be expensive because it is within a shared cache line.
10954 * So the write of this hint only occurs during periodic load
10955 * balancing, rather than CPU_NEWLY_IDLE, because the latter
10956 * can fire way more frequently than the former.
10958 if (!sched_feat(SIS_UTIL) || env->idle == CPU_NEWLY_IDLE)
10961 llc_weight = per_cpu(sd_llc_size, env->dst_cpu);
10962 if (env->sd->span_weight != llc_weight)
10965 sd_share = rcu_dereference(per_cpu(sd_llc_shared, env->dst_cpu));
10970 * The number of CPUs to search drops as sum_util increases, when
10971 * sum_util hits 85% or above, the scan stops.
10972 * The reason to choose 85% as the threshold is because this is the
10973 * imbalance_pct(117) when a LLC sched group is overloaded.
10975 * let y = SCHED_CAPACITY_SCALE - p * x^2 [1]
10976 * and y'= y / SCHED_CAPACITY_SCALE
10978 * x is the ratio of sum_util compared to the CPU capacity:
10979 * x = sum_util / (llc_weight * SCHED_CAPACITY_SCALE)
10980 * y' is the ratio of CPUs to be scanned in the LLC domain,
10981 * and the number of CPUs to scan is calculated by:
10983 * nr_scan = llc_weight * y' [2]
10985 * When x hits the threshold of overloaded, AKA, when
10986 * x = 100 / pct, y drops to 0. According to [1],
10987 * p should be SCHED_CAPACITY_SCALE * pct^2 / 10000
10989 * Scale x by SCHED_CAPACITY_SCALE:
10990 * x' = sum_util / llc_weight; [3]
10992 * and finally [1] becomes:
10993 * y = SCHED_CAPACITY_SCALE -
10994 * x'^2 * pct^2 / (10000 * SCHED_CAPACITY_SCALE) [4]
10999 do_div(x, llc_weight);
11002 pct = env->sd->imbalance_pct;
11003 tmp = x * x * pct * pct;
11004 do_div(tmp, 10000 * SCHED_CAPACITY_SCALE);
11005 tmp = min_t(long, tmp, SCHED_CAPACITY_SCALE);
11006 y = SCHED_CAPACITY_SCALE - tmp;
11010 do_div(y, SCHED_CAPACITY_SCALE);
11011 if ((int)y != sd_share->nr_idle_scan)
11012 WRITE_ONCE(sd_share->nr_idle_scan, (int)y);
11016 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
11017 * @env: The load balancing environment.
11018 * @sds: variable to hold the statistics for this sched_domain.
11021 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
11023 struct sched_group *sg = env->sd->groups;
11024 struct sg_lb_stats *local = &sds->local_stat;
11025 struct sg_lb_stats tmp_sgs;
11026 unsigned long sum_util = 0;
11027 bool sg_overloaded = 0, sg_overutilized = 0;
11030 struct sg_lb_stats *sgs = &tmp_sgs;
11033 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg));
11038 if (env->idle != CPU_NEWLY_IDLE ||
11039 time_after_eq(jiffies, sg->sgc->next_update))
11040 update_group_capacity(env->sd, env->dst_cpu);
11043 update_sg_lb_stats(env, sds, sg, sgs, &sg_overloaded, &sg_overutilized);
11045 if (!local_group && update_sd_pick_busiest(env, sds, sg, sgs)) {
11047 sds->busiest_stat = *sgs;
11050 /* Now, start updating sd_lb_stats */
11051 sds->total_load += sgs->group_load;
11052 sds->total_capacity += sgs->group_capacity;
11054 sum_util += sgs->group_util;
11056 } while (sg != env->sd->groups);
11059 * Indicate that the child domain of the busiest group prefers tasks
11060 * go to a child's sibling domains first. NB the flags of a sched group
11061 * are those of the child domain.
11064 sds->prefer_sibling = !!(sds->busiest->flags & SD_PREFER_SIBLING);
11067 if (env->sd->flags & SD_NUMA)
11068 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
11070 if (!env->sd->parent) {
11071 /* update overload indicator if we are at root domain */
11072 set_rd_overloaded(env->dst_rq->rd, sg_overloaded);
11074 /* Update over-utilization (tipping point, U >= 0) indicator */
11075 set_rd_overutilized(env->dst_rq->rd, sg_overutilized);
11076 } else if (sg_overutilized) {
11077 set_rd_overutilized(env->dst_rq->rd, sg_overutilized);
11080 update_idle_cpu_scan(env, sum_util);
11084 * calculate_imbalance - Calculate the amount of imbalance present within the
11085 * groups of a given sched_domain during load balance.
11086 * @env: load balance environment
11087 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
11089 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
11091 struct sg_lb_stats *local, *busiest;
11093 local = &sds->local_stat;
11094 busiest = &sds->busiest_stat;
11096 if (busiest->group_type == group_misfit_task) {
11097 if (env->sd->flags & SD_ASYM_CPUCAPACITY) {
11098 /* Set imbalance to allow misfit tasks to be balanced. */
11099 env->migration_type = migrate_misfit;
11100 env->imbalance = 1;
11103 * Set load imbalance to allow moving task from cpu
11104 * with reduced capacity.
11106 env->migration_type = migrate_load;
11107 env->imbalance = busiest->group_misfit_task_load;
11112 if (busiest->group_type == group_asym_packing) {
11114 * In case of asym capacity, we will try to migrate all load to
11115 * the preferred CPU.
11117 env->migration_type = migrate_task;
11118 env->imbalance = busiest->sum_h_nr_running;
11122 if (busiest->group_type == group_smt_balance) {
11123 /* Reduce number of tasks sharing CPU capacity */
11124 env->migration_type = migrate_task;
11125 env->imbalance = 1;
11129 if (busiest->group_type == group_imbalanced) {
11131 * In the group_imb case we cannot rely on group-wide averages
11132 * to ensure CPU-load equilibrium, try to move any task to fix
11133 * the imbalance. The next load balance will take care of
11134 * balancing back the system.
11136 env->migration_type = migrate_task;
11137 env->imbalance = 1;
11142 * Try to use spare capacity of local group without overloading it or
11143 * emptying busiest.
11145 if (local->group_type == group_has_spare) {
11146 if ((busiest->group_type > group_fully_busy) &&
11147 !(env->sd->flags & SD_SHARE_LLC)) {
11149 * If busiest is overloaded, try to fill spare
11150 * capacity. This might end up creating spare capacity
11151 * in busiest or busiest still being overloaded but
11152 * there is no simple way to directly compute the
11153 * amount of load to migrate in order to balance the
11156 env->migration_type = migrate_util;
11157 env->imbalance = max(local->group_capacity, local->group_util) -
11161 * In some cases, the group's utilization is max or even
11162 * higher than capacity because of migrations but the
11163 * local CPU is (newly) idle. There is at least one
11164 * waiting task in this overloaded busiest group. Let's
11167 if (env->idle && env->imbalance == 0) {
11168 env->migration_type = migrate_task;
11169 env->imbalance = 1;
11175 if (busiest->group_weight == 1 || sds->prefer_sibling) {
11177 * When prefer sibling, evenly spread running tasks on
11180 env->migration_type = migrate_task;
11181 env->imbalance = sibling_imbalance(env, sds, busiest, local);
11185 * If there is no overload, we just want to even the number of
11188 env->migration_type = migrate_task;
11189 env->imbalance = max_t(long, 0,
11190 (local->idle_cpus - busiest->idle_cpus));
11194 /* Consider allowing a small imbalance between NUMA groups */
11195 if (env->sd->flags & SD_NUMA) {
11196 env->imbalance = adjust_numa_imbalance(env->imbalance,
11197 local->sum_nr_running + 1,
11198 env->sd->imb_numa_nr);
11202 /* Number of tasks to move to restore balance */
11203 env->imbalance >>= 1;
11209 * Local is fully busy but has to take more load to relieve the
11212 if (local->group_type < group_overloaded) {
11214 * Local will become overloaded so the avg_load metrics are
11218 local->avg_load = (local->group_load * SCHED_CAPACITY_SCALE) /
11219 local->group_capacity;
11222 * If the local group is more loaded than the selected
11223 * busiest group don't try to pull any tasks.
11225 if (local->avg_load >= busiest->avg_load) {
11226 env->imbalance = 0;
11230 sds->avg_load = (sds->total_load * SCHED_CAPACITY_SCALE) /
11231 sds->total_capacity;
11234 * If the local group is more loaded than the average system
11235 * load, don't try to pull any tasks.
11237 if (local->avg_load >= sds->avg_load) {
11238 env->imbalance = 0;
11245 * Both group are or will become overloaded and we're trying to get all
11246 * the CPUs to the average_load, so we don't want to push ourselves
11247 * above the average load, nor do we wish to reduce the max loaded CPU
11248 * below the average load. At the same time, we also don't want to
11249 * reduce the group load below the group capacity. Thus we look for
11250 * the minimum possible imbalance.
11252 env->migration_type = migrate_load;
11253 env->imbalance = min(
11254 (busiest->avg_load - sds->avg_load) * busiest->group_capacity,
11255 (sds->avg_load - local->avg_load) * local->group_capacity
11256 ) / SCHED_CAPACITY_SCALE;
11259 /******* sched_balance_find_src_group() helpers end here *********************/
11262 * Decision matrix according to the local and busiest group type:
11264 * busiest \ local has_spare fully_busy misfit asym imbalanced overloaded
11265 * has_spare nr_idle balanced N/A N/A balanced balanced
11266 * fully_busy nr_idle nr_idle N/A N/A balanced balanced
11267 * misfit_task force N/A N/A N/A N/A N/A
11268 * asym_packing force force N/A N/A force force
11269 * imbalanced force force N/A N/A force force
11270 * overloaded force force N/A N/A force avg_load
11272 * N/A : Not Applicable because already filtered while updating
11274 * balanced : The system is balanced for these 2 groups.
11275 * force : Calculate the imbalance as load migration is probably needed.
11276 * avg_load : Only if imbalance is significant enough.
11277 * nr_idle : dst_cpu is not busy and the number of idle CPUs is quite
11278 * different in groups.
11282 * sched_balance_find_src_group - Returns the busiest group within the sched_domain
11283 * if there is an imbalance.
11284 * @env: The load balancing environment.
11286 * Also calculates the amount of runnable load which should be moved
11287 * to restore balance.
11289 * Return: - The busiest group if imbalance exists.
11291 static struct sched_group *sched_balance_find_src_group(struct lb_env *env)
11293 struct sg_lb_stats *local, *busiest;
11294 struct sd_lb_stats sds;
11296 init_sd_lb_stats(&sds);
11299 * Compute the various statistics relevant for load balancing at
11302 update_sd_lb_stats(env, &sds);
11304 /* There is no busy sibling group to pull tasks from */
11308 busiest = &sds.busiest_stat;
11310 /* Misfit tasks should be dealt with regardless of the avg load */
11311 if (busiest->group_type == group_misfit_task)
11312 goto force_balance;
11314 if (!is_rd_overutilized(env->dst_rq->rd) &&
11315 rcu_dereference(env->dst_rq->rd->pd))
11318 /* ASYM feature bypasses nice load balance check */
11319 if (busiest->group_type == group_asym_packing)
11320 goto force_balance;
11323 * If the busiest group is imbalanced the below checks don't
11324 * work because they assume all things are equal, which typically
11325 * isn't true due to cpus_ptr constraints and the like.
11327 if (busiest->group_type == group_imbalanced)
11328 goto force_balance;
11330 local = &sds.local_stat;
11332 * If the local group is busier than the selected busiest group
11333 * don't try and pull any tasks.
11335 if (local->group_type > busiest->group_type)
11339 * When groups are overloaded, use the avg_load to ensure fairness
11342 if (local->group_type == group_overloaded) {
11344 * If the local group is more loaded than the selected
11345 * busiest group don't try to pull any tasks.
11347 if (local->avg_load >= busiest->avg_load)
11350 /* XXX broken for overlapping NUMA groups */
11351 sds.avg_load = (sds.total_load * SCHED_CAPACITY_SCALE) /
11352 sds.total_capacity;
11355 * Don't pull any tasks if this group is already above the
11356 * domain average load.
11358 if (local->avg_load >= sds.avg_load)
11362 * If the busiest group is more loaded, use imbalance_pct to be
11365 if (100 * busiest->avg_load <=
11366 env->sd->imbalance_pct * local->avg_load)
11371 * Try to move all excess tasks to a sibling domain of the busiest
11372 * group's child domain.
11374 if (sds.prefer_sibling && local->group_type == group_has_spare &&
11375 sibling_imbalance(env, &sds, busiest, local) > 1)
11376 goto force_balance;
11378 if (busiest->group_type != group_overloaded) {
11381 * If the busiest group is not overloaded (and as a
11382 * result the local one too) but this CPU is already
11383 * busy, let another idle CPU try to pull task.
11388 if (busiest->group_type == group_smt_balance &&
11389 smt_vs_nonsmt_groups(sds.local, sds.busiest)) {
11390 /* Let non SMT CPU pull from SMT CPU sharing with sibling */
11391 goto force_balance;
11394 if (busiest->group_weight > 1 &&
11395 local->idle_cpus <= (busiest->idle_cpus + 1)) {
11397 * If the busiest group is not overloaded
11398 * and there is no imbalance between this and busiest
11399 * group wrt idle CPUs, it is balanced. The imbalance
11400 * becomes significant if the diff is greater than 1
11401 * otherwise we might end up to just move the imbalance
11402 * on another group. Of course this applies only if
11403 * there is more than 1 CPU per group.
11408 if (busiest->sum_h_nr_running == 1) {
11410 * busiest doesn't have any tasks waiting to run
11417 /* Looks like there is an imbalance. Compute it */
11418 calculate_imbalance(env, &sds);
11419 return env->imbalance ? sds.busiest : NULL;
11422 env->imbalance = 0;
11427 * sched_balance_find_src_rq - find the busiest runqueue among the CPUs in the group.
11429 static struct rq *sched_balance_find_src_rq(struct lb_env *env,
11430 struct sched_group *group)
11432 struct rq *busiest = NULL, *rq;
11433 unsigned long busiest_util = 0, busiest_load = 0, busiest_capacity = 1;
11434 unsigned int busiest_nr = 0;
11437 for_each_cpu_and(i, sched_group_span(group), env->cpus) {
11438 unsigned long capacity, load, util;
11439 unsigned int nr_running;
11443 rt = fbq_classify_rq(rq);
11446 * We classify groups/runqueues into three groups:
11447 * - regular: there are !numa tasks
11448 * - remote: there are numa tasks that run on the 'wrong' node
11449 * - all: there is no distinction
11451 * In order to avoid migrating ideally placed numa tasks,
11452 * ignore those when there's better options.
11454 * If we ignore the actual busiest queue to migrate another
11455 * task, the next balance pass can still reduce the busiest
11456 * queue by moving tasks around inside the node.
11458 * If we cannot move enough load due to this classification
11459 * the next pass will adjust the group classification and
11460 * allow migration of more tasks.
11462 * Both cases only affect the total convergence complexity.
11464 if (rt > env->fbq_type)
11467 nr_running = rq->cfs.h_nr_running;
11471 capacity = capacity_of(i);
11474 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could
11475 * eventually lead to active_balancing high->low capacity.
11476 * Higher per-CPU capacity is considered better than balancing
11479 if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
11480 !capacity_greater(capacity_of(env->dst_cpu), capacity) &&
11485 * Make sure we only pull tasks from a CPU of lower priority
11486 * when balancing between SMT siblings.
11488 * If balancing between cores, let lower priority CPUs help
11489 * SMT cores with more than one busy sibling.
11491 if (sched_asym(env->sd, i, env->dst_cpu) && nr_running == 1)
11494 switch (env->migration_type) {
11497 * When comparing with load imbalance, use cpu_load()
11498 * which is not scaled with the CPU capacity.
11500 load = cpu_load(rq);
11502 if (nr_running == 1 && load > env->imbalance &&
11503 !check_cpu_capacity(rq, env->sd))
11507 * For the load comparisons with the other CPUs,
11508 * consider the cpu_load() scaled with the CPU
11509 * capacity, so that the load can be moved away
11510 * from the CPU that is potentially running at a
11513 * Thus we're looking for max(load_i / capacity_i),
11514 * crosswise multiplication to rid ourselves of the
11515 * division works out to:
11516 * load_i * capacity_j > load_j * capacity_i;
11517 * where j is our previous maximum.
11519 if (load * busiest_capacity > busiest_load * capacity) {
11520 busiest_load = load;
11521 busiest_capacity = capacity;
11527 util = cpu_util_cfs_boost(i);
11530 * Don't try to pull utilization from a CPU with one
11531 * running task. Whatever its utilization, we will fail
11534 if (nr_running <= 1)
11537 if (busiest_util < util) {
11538 busiest_util = util;
11544 if (busiest_nr < nr_running) {
11545 busiest_nr = nr_running;
11550 case migrate_misfit:
11552 * For ASYM_CPUCAPACITY domains with misfit tasks we
11553 * simply seek the "biggest" misfit task.
11555 if (rq->misfit_task_load > busiest_load) {
11556 busiest_load = rq->misfit_task_load;
11569 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
11570 * so long as it is large enough.
11572 #define MAX_PINNED_INTERVAL 512
11575 asym_active_balance(struct lb_env *env)
11578 * ASYM_PACKING needs to force migrate tasks from busy but lower
11579 * priority CPUs in order to pack all tasks in the highest priority
11580 * CPUs. When done between cores, do it only if the whole core if the
11581 * whole core is idle.
11583 * If @env::src_cpu is an SMT core with busy siblings, let
11584 * the lower priority @env::dst_cpu help it. Do not follow
11587 return env->idle && sched_use_asym_prio(env->sd, env->dst_cpu) &&
11588 (sched_asym_prefer(env->dst_cpu, env->src_cpu) ||
11589 !sched_use_asym_prio(env->sd, env->src_cpu));
11593 imbalanced_active_balance(struct lb_env *env)
11595 struct sched_domain *sd = env->sd;
11598 * The imbalanced case includes the case of pinned tasks preventing a fair
11599 * distribution of the load on the system but also the even distribution of the
11600 * threads on a system with spare capacity
11602 if ((env->migration_type == migrate_task) &&
11603 (sd->nr_balance_failed > sd->cache_nice_tries+2))
11609 static int need_active_balance(struct lb_env *env)
11611 struct sched_domain *sd = env->sd;
11613 if (asym_active_balance(env))
11616 if (imbalanced_active_balance(env))
11620 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
11621 * It's worth migrating the task if the src_cpu's capacity is reduced
11622 * because of other sched_class or IRQs if more capacity stays
11623 * available on dst_cpu.
11626 (env->src_rq->cfs.h_nr_running == 1)) {
11627 if ((check_cpu_capacity(env->src_rq, sd)) &&
11628 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
11632 if (env->migration_type == migrate_misfit)
11638 static int active_load_balance_cpu_stop(void *data);
11640 static int should_we_balance(struct lb_env *env)
11642 struct cpumask *swb_cpus = this_cpu_cpumask_var_ptr(should_we_balance_tmpmask);
11643 struct sched_group *sg = env->sd->groups;
11644 int cpu, idle_smt = -1;
11647 * Ensure the balancing environment is consistent; can happen
11648 * when the softirq triggers 'during' hotplug.
11650 if (!cpumask_test_cpu(env->dst_cpu, env->cpus))
11654 * In the newly idle case, we will allow all the CPUs
11655 * to do the newly idle load balance.
11657 * However, we bail out if we already have tasks or a wakeup pending,
11658 * to optimize wakeup latency.
11660 if (env->idle == CPU_NEWLY_IDLE) {
11661 if (env->dst_rq->nr_running > 0 || env->dst_rq->ttwu_pending)
11666 cpumask_copy(swb_cpus, group_balance_mask(sg));
11667 /* Try to find first idle CPU */
11668 for_each_cpu_and(cpu, swb_cpus, env->cpus) {
11669 if (!idle_cpu(cpu))
11673 * Don't balance to idle SMT in busy core right away when
11674 * balancing cores, but remember the first idle SMT CPU for
11675 * later consideration. Find CPU on an idle core first.
11677 if (!(env->sd->flags & SD_SHARE_CPUCAPACITY) && !is_core_idle(cpu)) {
11678 if (idle_smt == -1)
11681 * If the core is not idle, and first SMT sibling which is
11682 * idle has been found, then its not needed to check other
11683 * SMT siblings for idleness:
11685 #ifdef CONFIG_SCHED_SMT
11686 cpumask_andnot(swb_cpus, swb_cpus, cpu_smt_mask(cpu));
11692 * Are we the first idle core in a non-SMT domain or higher,
11693 * or the first idle CPU in a SMT domain?
11695 return cpu == env->dst_cpu;
11698 /* Are we the first idle CPU with busy siblings? */
11699 if (idle_smt != -1)
11700 return idle_smt == env->dst_cpu;
11702 /* Are we the first CPU of this group ? */
11703 return group_balance_cpu(sg) == env->dst_cpu;
11707 * Check this_cpu to ensure it is balanced within domain. Attempt to move
11708 * tasks if there is an imbalance.
11710 static int sched_balance_rq(int this_cpu, struct rq *this_rq,
11711 struct sched_domain *sd, enum cpu_idle_type idle,
11712 int *continue_balancing)
11714 int ld_moved, cur_ld_moved, active_balance = 0;
11715 struct sched_domain *sd_parent = sd->parent;
11716 struct sched_group *group;
11717 struct rq *busiest;
11718 struct rq_flags rf;
11719 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
11720 struct lb_env env = {
11722 .dst_cpu = this_cpu,
11724 .dst_grpmask = group_balance_mask(sd->groups),
11726 .loop_break = SCHED_NR_MIGRATE_BREAK,
11729 .tasks = LIST_HEAD_INIT(env.tasks),
11732 cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask);
11734 schedstat_inc(sd->lb_count[idle]);
11737 if (!should_we_balance(&env)) {
11738 *continue_balancing = 0;
11742 group = sched_balance_find_src_group(&env);
11744 schedstat_inc(sd->lb_nobusyg[idle]);
11748 busiest = sched_balance_find_src_rq(&env, group);
11750 schedstat_inc(sd->lb_nobusyq[idle]);
11754 WARN_ON_ONCE(busiest == env.dst_rq);
11756 schedstat_add(sd->lb_imbalance[idle], env.imbalance);
11758 env.src_cpu = busiest->cpu;
11759 env.src_rq = busiest;
11762 /* Clear this flag as soon as we find a pullable task */
11763 env.flags |= LBF_ALL_PINNED;
11764 if (busiest->nr_running > 1) {
11766 * Attempt to move tasks. If sched_balance_find_src_group has found
11767 * an imbalance but busiest->nr_running <= 1, the group is
11768 * still unbalanced. ld_moved simply stays zero, so it is
11769 * correctly treated as an imbalance.
11771 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
11774 rq_lock_irqsave(busiest, &rf);
11775 update_rq_clock(busiest);
11778 * cur_ld_moved - load moved in current iteration
11779 * ld_moved - cumulative load moved across iterations
11781 cur_ld_moved = detach_tasks(&env);
11784 * We've detached some tasks from busiest_rq. Every
11785 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
11786 * unlock busiest->lock, and we are able to be sure
11787 * that nobody can manipulate the tasks in parallel.
11788 * See task_rq_lock() family for the details.
11791 rq_unlock(busiest, &rf);
11793 if (cur_ld_moved) {
11794 attach_tasks(&env);
11795 ld_moved += cur_ld_moved;
11798 local_irq_restore(rf.flags);
11800 if (env.flags & LBF_NEED_BREAK) {
11801 env.flags &= ~LBF_NEED_BREAK;
11806 * Revisit (affine) tasks on src_cpu that couldn't be moved to
11807 * us and move them to an alternate dst_cpu in our sched_group
11808 * where they can run. The upper limit on how many times we
11809 * iterate on same src_cpu is dependent on number of CPUs in our
11812 * This changes load balance semantics a bit on who can move
11813 * load to a given_cpu. In addition to the given_cpu itself
11814 * (or a ilb_cpu acting on its behalf where given_cpu is
11815 * nohz-idle), we now have balance_cpu in a position to move
11816 * load to given_cpu. In rare situations, this may cause
11817 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
11818 * _independently_ and at _same_ time to move some load to
11819 * given_cpu) causing excess load to be moved to given_cpu.
11820 * This however should not happen so much in practice and
11821 * moreover subsequent load balance cycles should correct the
11822 * excess load moved.
11824 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
11826 /* Prevent to re-select dst_cpu via env's CPUs */
11827 __cpumask_clear_cpu(env.dst_cpu, env.cpus);
11829 env.dst_rq = cpu_rq(env.new_dst_cpu);
11830 env.dst_cpu = env.new_dst_cpu;
11831 env.flags &= ~LBF_DST_PINNED;
11833 env.loop_break = SCHED_NR_MIGRATE_BREAK;
11836 * Go back to "more_balance" rather than "redo" since we
11837 * need to continue with same src_cpu.
11843 * We failed to reach balance because of affinity.
11846 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
11848 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
11849 *group_imbalance = 1;
11852 /* All tasks on this runqueue were pinned by CPU affinity */
11853 if (unlikely(env.flags & LBF_ALL_PINNED)) {
11854 __cpumask_clear_cpu(cpu_of(busiest), cpus);
11856 * Attempting to continue load balancing at the current
11857 * sched_domain level only makes sense if there are
11858 * active CPUs remaining as possible busiest CPUs to
11859 * pull load from which are not contained within the
11860 * destination group that is receiving any migrated
11863 if (!cpumask_subset(cpus, env.dst_grpmask)) {
11865 env.loop_break = SCHED_NR_MIGRATE_BREAK;
11868 goto out_all_pinned;
11873 schedstat_inc(sd->lb_failed[idle]);
11875 * Increment the failure counter only on periodic balance.
11876 * We do not want newidle balance, which can be very
11877 * frequent, pollute the failure counter causing
11878 * excessive cache_hot migrations and active balances.
11880 * Similarly for migration_misfit which is not related to
11881 * load/util migration, don't pollute nr_balance_failed.
11883 if (idle != CPU_NEWLY_IDLE &&
11884 env.migration_type != migrate_misfit)
11885 sd->nr_balance_failed++;
11887 if (need_active_balance(&env)) {
11888 unsigned long flags;
11890 raw_spin_rq_lock_irqsave(busiest, flags);
11893 * Don't kick the active_load_balance_cpu_stop,
11894 * if the curr task on busiest CPU can't be
11895 * moved to this_cpu:
11897 if (!cpumask_test_cpu(this_cpu, busiest->curr->cpus_ptr)) {
11898 raw_spin_rq_unlock_irqrestore(busiest, flags);
11899 goto out_one_pinned;
11902 /* Record that we found at least one task that could run on this_cpu */
11903 env.flags &= ~LBF_ALL_PINNED;
11906 * ->active_balance synchronizes accesses to
11907 * ->active_balance_work. Once set, it's cleared
11908 * only after active load balance is finished.
11910 if (!busiest->active_balance) {
11911 busiest->active_balance = 1;
11912 busiest->push_cpu = this_cpu;
11913 active_balance = 1;
11917 raw_spin_rq_unlock_irqrestore(busiest, flags);
11918 if (active_balance) {
11919 stop_one_cpu_nowait(cpu_of(busiest),
11920 active_load_balance_cpu_stop, busiest,
11921 &busiest->active_balance_work);
11926 sd->nr_balance_failed = 0;
11929 if (likely(!active_balance) || need_active_balance(&env)) {
11930 /* We were unbalanced, so reset the balancing interval */
11931 sd->balance_interval = sd->min_interval;
11938 * We reach balance although we may have faced some affinity
11939 * constraints. Clear the imbalance flag only if other tasks got
11940 * a chance to move and fix the imbalance.
11942 if (sd_parent && !(env.flags & LBF_ALL_PINNED)) {
11943 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
11945 if (*group_imbalance)
11946 *group_imbalance = 0;
11951 * We reach balance because all tasks are pinned at this level so
11952 * we can't migrate them. Let the imbalance flag set so parent level
11953 * can try to migrate them.
11955 schedstat_inc(sd->lb_balanced[idle]);
11957 sd->nr_balance_failed = 0;
11963 * sched_balance_newidle() disregards balance intervals, so we could
11964 * repeatedly reach this code, which would lead to balance_interval
11965 * skyrocketing in a short amount of time. Skip the balance_interval
11966 * increase logic to avoid that.
11968 * Similarly misfit migration which is not necessarily an indication of
11969 * the system being busy and requires lb to backoff to let it settle
11972 if (env.idle == CPU_NEWLY_IDLE ||
11973 env.migration_type == migrate_misfit)
11976 /* tune up the balancing interval */
11977 if ((env.flags & LBF_ALL_PINNED &&
11978 sd->balance_interval < MAX_PINNED_INTERVAL) ||
11979 sd->balance_interval < sd->max_interval)
11980 sd->balance_interval *= 2;
11985 static inline unsigned long
11986 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
11988 unsigned long interval = sd->balance_interval;
11991 interval *= sd->busy_factor;
11993 /* scale ms to jiffies */
11994 interval = msecs_to_jiffies(interval);
11997 * Reduce likelihood of busy balancing at higher domains racing with
11998 * balancing at lower domains by preventing their balancing periods
11999 * from being multiples of each other.
12004 interval = clamp(interval, 1UL, max_load_balance_interval);
12010 update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
12012 unsigned long interval, next;
12014 /* used by idle balance, so cpu_busy = 0 */
12015 interval = get_sd_balance_interval(sd, 0);
12016 next = sd->last_balance + interval;
12018 if (time_after(*next_balance, next))
12019 *next_balance = next;
12023 * active_load_balance_cpu_stop is run by the CPU stopper. It pushes
12024 * running tasks off the busiest CPU onto idle CPUs. It requires at
12025 * least 1 task to be running on each physical CPU where possible, and
12026 * avoids physical / logical imbalances.
12028 static int active_load_balance_cpu_stop(void *data)
12030 struct rq *busiest_rq = data;
12031 int busiest_cpu = cpu_of(busiest_rq);
12032 int target_cpu = busiest_rq->push_cpu;
12033 struct rq *target_rq = cpu_rq(target_cpu);
12034 struct sched_domain *sd;
12035 struct task_struct *p = NULL;
12036 struct rq_flags rf;
12038 rq_lock_irq(busiest_rq, &rf);
12040 * Between queueing the stop-work and running it is a hole in which
12041 * CPUs can become inactive. We should not move tasks from or to
12044 if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu))
12047 /* Make sure the requested CPU hasn't gone down in the meantime: */
12048 if (unlikely(busiest_cpu != smp_processor_id() ||
12049 !busiest_rq->active_balance))
12052 /* Is there any task to move? */
12053 if (busiest_rq->nr_running <= 1)
12057 * This condition is "impossible", if it occurs
12058 * we need to fix it. Originally reported by
12059 * Bjorn Helgaas on a 128-CPU setup.
12061 WARN_ON_ONCE(busiest_rq == target_rq);
12063 /* Search for an sd spanning us and the target CPU. */
12065 for_each_domain(target_cpu, sd) {
12066 if (cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
12071 struct lb_env env = {
12073 .dst_cpu = target_cpu,
12074 .dst_rq = target_rq,
12075 .src_cpu = busiest_rq->cpu,
12076 .src_rq = busiest_rq,
12078 .flags = LBF_ACTIVE_LB,
12081 schedstat_inc(sd->alb_count);
12082 update_rq_clock(busiest_rq);
12084 p = detach_one_task(&env);
12086 schedstat_inc(sd->alb_pushed);
12087 /* Active balancing done, reset the failure counter. */
12088 sd->nr_balance_failed = 0;
12090 schedstat_inc(sd->alb_failed);
12095 busiest_rq->active_balance = 0;
12096 rq_unlock(busiest_rq, &rf);
12099 attach_one_task(target_rq, p);
12101 local_irq_enable();
12107 * This flag serializes load-balancing passes over large domains
12108 * (above the NODE topology level) - only one load-balancing instance
12109 * may run at a time, to reduce overhead on very large systems with
12110 * lots of CPUs and large NUMA distances.
12112 * - Note that load-balancing passes triggered while another one
12113 * is executing are skipped and not re-tried.
12115 * - Also note that this does not serialize rebalance_domains()
12116 * execution, as non-SD_SERIALIZE domains will still be
12117 * load-balanced in parallel.
12119 static atomic_t sched_balance_running = ATOMIC_INIT(0);
12122 * Scale the max sched_balance_rq interval with the number of CPUs in the system.
12123 * This trades load-balance latency on larger machines for less cross talk.
12125 void update_max_interval(void)
12127 max_load_balance_interval = HZ*num_online_cpus()/10;
12130 static inline bool update_newidle_cost(struct sched_domain *sd, u64 cost)
12132 if (cost > sd->max_newidle_lb_cost) {
12134 * Track max cost of a domain to make sure to not delay the
12135 * next wakeup on the CPU.
12137 sd->max_newidle_lb_cost = cost;
12138 sd->last_decay_max_lb_cost = jiffies;
12139 } else if (time_after(jiffies, sd->last_decay_max_lb_cost + HZ)) {
12141 * Decay the newidle max times by ~1% per second to ensure that
12142 * it is not outdated and the current max cost is actually
12145 sd->max_newidle_lb_cost = (sd->max_newidle_lb_cost * 253) / 256;
12146 sd->last_decay_max_lb_cost = jiffies;
12155 * It checks each scheduling domain to see if it is due to be balanced,
12156 * and initiates a balancing operation if so.
12158 * Balancing parameters are set up in init_sched_domains.
12160 static void sched_balance_domains(struct rq *rq, enum cpu_idle_type idle)
12162 int continue_balancing = 1;
12164 int busy = idle != CPU_IDLE && !sched_idle_cpu(cpu);
12165 unsigned long interval;
12166 struct sched_domain *sd;
12167 /* Earliest time when we have to do rebalance again */
12168 unsigned long next_balance = jiffies + 60*HZ;
12169 int update_next_balance = 0;
12170 int need_serialize, need_decay = 0;
12174 for_each_domain(cpu, sd) {
12176 * Decay the newidle max times here because this is a regular
12177 * visit to all the domains.
12179 need_decay = update_newidle_cost(sd, 0);
12180 max_cost += sd->max_newidle_lb_cost;
12183 * Stop the load balance at this level. There is another
12184 * CPU in our sched group which is doing load balancing more
12187 if (!continue_balancing) {
12193 interval = get_sd_balance_interval(sd, busy);
12195 need_serialize = sd->flags & SD_SERIALIZE;
12196 if (need_serialize) {
12197 if (atomic_cmpxchg_acquire(&sched_balance_running, 0, 1))
12201 if (time_after_eq(jiffies, sd->last_balance + interval)) {
12202 if (sched_balance_rq(cpu, rq, sd, idle, &continue_balancing)) {
12204 * The LBF_DST_PINNED logic could have changed
12205 * env->dst_cpu, so we can't know our idle
12206 * state even if we migrated tasks. Update it.
12208 idle = idle_cpu(cpu);
12209 busy = !idle && !sched_idle_cpu(cpu);
12211 sd->last_balance = jiffies;
12212 interval = get_sd_balance_interval(sd, busy);
12214 if (need_serialize)
12215 atomic_set_release(&sched_balance_running, 0);
12217 if (time_after(next_balance, sd->last_balance + interval)) {
12218 next_balance = sd->last_balance + interval;
12219 update_next_balance = 1;
12224 * Ensure the rq-wide value also decays but keep it at a
12225 * reasonable floor to avoid funnies with rq->avg_idle.
12227 rq->max_idle_balance_cost =
12228 max((u64)sysctl_sched_migration_cost, max_cost);
12233 * next_balance will be updated only when there is a need.
12234 * When the cpu is attached to null domain for ex, it will not be
12237 if (likely(update_next_balance))
12238 rq->next_balance = next_balance;
12242 static inline int on_null_domain(struct rq *rq)
12244 return unlikely(!rcu_dereference_sched(rq->sd));
12247 #ifdef CONFIG_NO_HZ_COMMON
12249 * NOHZ idle load balancing (ILB) details:
12251 * - When one of the busy CPUs notices that there may be an idle rebalancing
12252 * needed, they will kick the idle load balancer, which then does idle
12253 * load balancing for all the idle CPUs.
12255 * - HK_TYPE_MISC CPUs are used for this task, because HK_TYPE_SCHED is not set
12258 static inline int find_new_ilb(void)
12260 const struct cpumask *hk_mask;
12263 hk_mask = housekeeping_cpumask(HK_TYPE_MISC);
12265 for_each_cpu_and(ilb_cpu, nohz.idle_cpus_mask, hk_mask) {
12267 if (ilb_cpu == smp_processor_id())
12270 if (idle_cpu(ilb_cpu))
12278 * Kick a CPU to do the NOHZ balancing, if it is time for it, via a cross-CPU
12279 * SMP function call (IPI).
12281 * We pick the first idle CPU in the HK_TYPE_MISC housekeeping set (if there is one).
12283 static void kick_ilb(unsigned int flags)
12288 * Increase nohz.next_balance only when if full ilb is triggered but
12289 * not if we only update stats.
12291 if (flags & NOHZ_BALANCE_KICK)
12292 nohz.next_balance = jiffies+1;
12294 ilb_cpu = find_new_ilb();
12299 * Don't bother if no new NOHZ balance work items for ilb_cpu,
12300 * i.e. all bits in flags are already set in ilb_cpu.
12302 if ((atomic_read(nohz_flags(ilb_cpu)) & flags) == flags)
12306 * Access to rq::nohz_csd is serialized by NOHZ_KICK_MASK; he who sets
12307 * the first flag owns it; cleared by nohz_csd_func().
12309 flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu));
12310 if (flags & NOHZ_KICK_MASK)
12314 * This way we generate an IPI on the target CPU which
12315 * is idle, and the softirq performing NOHZ idle load balancing
12316 * will be run before returning from the IPI.
12318 smp_call_function_single_async(ilb_cpu, &cpu_rq(ilb_cpu)->nohz_csd);
12322 * Current decision point for kicking the idle load balancer in the presence
12323 * of idle CPUs in the system.
12325 static void nohz_balancer_kick(struct rq *rq)
12327 unsigned long now = jiffies;
12328 struct sched_domain_shared *sds;
12329 struct sched_domain *sd;
12330 int nr_busy, i, cpu = rq->cpu;
12331 unsigned int flags = 0;
12333 if (unlikely(rq->idle_balance))
12337 * We may be recently in ticked or tickless idle mode. At the first
12338 * busy tick after returning from idle, we will update the busy stats.
12340 nohz_balance_exit_idle(rq);
12343 * None are in tickless mode and hence no need for NOHZ idle load
12346 if (likely(!atomic_read(&nohz.nr_cpus)))
12349 if (READ_ONCE(nohz.has_blocked) &&
12350 time_after(now, READ_ONCE(nohz.next_blocked)))
12351 flags = NOHZ_STATS_KICK;
12353 if (time_before(now, nohz.next_balance))
12356 if (rq->nr_running >= 2) {
12357 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
12363 sd = rcu_dereference(rq->sd);
12366 * If there's a runnable CFS task and the current CPU has reduced
12367 * capacity, kick the ILB to see if there's a better CPU to run on:
12369 if (rq->cfs.h_nr_running >= 1 && check_cpu_capacity(rq, sd)) {
12370 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
12375 sd = rcu_dereference(per_cpu(sd_asym_packing, cpu));
12378 * When ASYM_PACKING; see if there's a more preferred CPU
12379 * currently idle; in which case, kick the ILB to move tasks
12382 * When balancing between cores, all the SMT siblings of the
12383 * preferred CPU must be idle.
12385 for_each_cpu_and(i, sched_domain_span(sd), nohz.idle_cpus_mask) {
12386 if (sched_asym(sd, i, cpu)) {
12387 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
12393 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu));
12396 * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU
12397 * to run the misfit task on.
12399 if (check_misfit_status(rq)) {
12400 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
12405 * For asymmetric systems, we do not want to nicely balance
12406 * cache use, instead we want to embrace asymmetry and only
12407 * ensure tasks have enough CPU capacity.
12409 * Skip the LLC logic because it's not relevant in that case.
12414 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
12417 * If there is an imbalance between LLC domains (IOW we could
12418 * increase the overall cache utilization), we need a less-loaded LLC
12419 * domain to pull some load from. Likewise, we may need to spread
12420 * load within the current LLC domain (e.g. packed SMT cores but
12421 * other CPUs are idle). We can't really know from here how busy
12422 * the others are - so just get a NOHZ balance going if it looks
12423 * like this LLC domain has tasks we could move.
12425 nr_busy = atomic_read(&sds->nr_busy_cpus);
12427 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
12434 if (READ_ONCE(nohz.needs_update))
12435 flags |= NOHZ_NEXT_KICK;
12441 static void set_cpu_sd_state_busy(int cpu)
12443 struct sched_domain *sd;
12446 sd = rcu_dereference(per_cpu(sd_llc, cpu));
12448 if (!sd || !sd->nohz_idle)
12452 atomic_inc(&sd->shared->nr_busy_cpus);
12457 void nohz_balance_exit_idle(struct rq *rq)
12459 SCHED_WARN_ON(rq != this_rq());
12461 if (likely(!rq->nohz_tick_stopped))
12464 rq->nohz_tick_stopped = 0;
12465 cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask);
12466 atomic_dec(&nohz.nr_cpus);
12468 set_cpu_sd_state_busy(rq->cpu);
12471 static void set_cpu_sd_state_idle(int cpu)
12473 struct sched_domain *sd;
12476 sd = rcu_dereference(per_cpu(sd_llc, cpu));
12478 if (!sd || sd->nohz_idle)
12482 atomic_dec(&sd->shared->nr_busy_cpus);
12488 * This routine will record that the CPU is going idle with tick stopped.
12489 * This info will be used in performing idle load balancing in the future.
12491 void nohz_balance_enter_idle(int cpu)
12493 struct rq *rq = cpu_rq(cpu);
12495 SCHED_WARN_ON(cpu != smp_processor_id());
12497 /* If this CPU is going down, then nothing needs to be done: */
12498 if (!cpu_active(cpu))
12501 /* Spare idle load balancing on CPUs that don't want to be disturbed: */
12502 if (!housekeeping_cpu(cpu, HK_TYPE_SCHED))
12506 * Can be set safely without rq->lock held
12507 * If a clear happens, it will have evaluated last additions because
12508 * rq->lock is held during the check and the clear
12510 rq->has_blocked_load = 1;
12513 * The tick is still stopped but load could have been added in the
12514 * meantime. We set the nohz.has_blocked flag to trig a check of the
12515 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear
12516 * of nohz.has_blocked can only happen after checking the new load
12518 if (rq->nohz_tick_stopped)
12521 /* If we're a completely isolated CPU, we don't play: */
12522 if (on_null_domain(rq))
12525 rq->nohz_tick_stopped = 1;
12527 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
12528 atomic_inc(&nohz.nr_cpus);
12531 * Ensures that if nohz_idle_balance() fails to observe our
12532 * @idle_cpus_mask store, it must observe the @has_blocked
12533 * and @needs_update stores.
12535 smp_mb__after_atomic();
12537 set_cpu_sd_state_idle(cpu);
12539 WRITE_ONCE(nohz.needs_update, 1);
12542 * Each time a cpu enter idle, we assume that it has blocked load and
12543 * enable the periodic update of the load of idle CPUs
12545 WRITE_ONCE(nohz.has_blocked, 1);
12548 static bool update_nohz_stats(struct rq *rq)
12550 unsigned int cpu = rq->cpu;
12552 if (!rq->has_blocked_load)
12555 if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
12558 if (!time_after(jiffies, READ_ONCE(rq->last_blocked_load_update_tick)))
12561 sched_balance_update_blocked_averages(cpu);
12563 return rq->has_blocked_load;
12567 * Internal function that runs load balance for all idle CPUs. The load balance
12568 * can be a simple update of blocked load or a complete load balance with
12569 * tasks movement depending of flags.
12571 static void _nohz_idle_balance(struct rq *this_rq, unsigned int flags)
12573 /* Earliest time when we have to do rebalance again */
12574 unsigned long now = jiffies;
12575 unsigned long next_balance = now + 60*HZ;
12576 bool has_blocked_load = false;
12577 int update_next_balance = 0;
12578 int this_cpu = this_rq->cpu;
12582 SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK);
12585 * We assume there will be no idle load after this update and clear
12586 * the has_blocked flag. If a cpu enters idle in the mean time, it will
12587 * set the has_blocked flag and trigger another update of idle load.
12588 * Because a cpu that becomes idle, is added to idle_cpus_mask before
12589 * setting the flag, we are sure to not clear the state and not
12590 * check the load of an idle cpu.
12592 * Same applies to idle_cpus_mask vs needs_update.
12594 if (flags & NOHZ_STATS_KICK)
12595 WRITE_ONCE(nohz.has_blocked, 0);
12596 if (flags & NOHZ_NEXT_KICK)
12597 WRITE_ONCE(nohz.needs_update, 0);
12600 * Ensures that if we miss the CPU, we must see the has_blocked
12601 * store from nohz_balance_enter_idle().
12606 * Start with the next CPU after this_cpu so we will end with this_cpu and let a
12607 * chance for other idle cpu to pull load.
12609 for_each_cpu_wrap(balance_cpu, nohz.idle_cpus_mask, this_cpu+1) {
12610 if (!idle_cpu(balance_cpu))
12614 * If this CPU gets work to do, stop the load balancing
12615 * work being done for other CPUs. Next load
12616 * balancing owner will pick it up.
12618 if (!idle_cpu(this_cpu) && need_resched()) {
12619 if (flags & NOHZ_STATS_KICK)
12620 has_blocked_load = true;
12621 if (flags & NOHZ_NEXT_KICK)
12622 WRITE_ONCE(nohz.needs_update, 1);
12626 rq = cpu_rq(balance_cpu);
12628 if (flags & NOHZ_STATS_KICK)
12629 has_blocked_load |= update_nohz_stats(rq);
12632 * If time for next balance is due,
12635 if (time_after_eq(jiffies, rq->next_balance)) {
12636 struct rq_flags rf;
12638 rq_lock_irqsave(rq, &rf);
12639 update_rq_clock(rq);
12640 rq_unlock_irqrestore(rq, &rf);
12642 if (flags & NOHZ_BALANCE_KICK)
12643 sched_balance_domains(rq, CPU_IDLE);
12646 if (time_after(next_balance, rq->next_balance)) {
12647 next_balance = rq->next_balance;
12648 update_next_balance = 1;
12653 * next_balance will be updated only when there is a need.
12654 * When the CPU is attached to null domain for ex, it will not be
12657 if (likely(update_next_balance))
12658 nohz.next_balance = next_balance;
12660 if (flags & NOHZ_STATS_KICK)
12661 WRITE_ONCE(nohz.next_blocked,
12662 now + msecs_to_jiffies(LOAD_AVG_PERIOD));
12665 /* There is still blocked load, enable periodic update */
12666 if (has_blocked_load)
12667 WRITE_ONCE(nohz.has_blocked, 1);
12671 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
12672 * rebalancing for all the CPUs for whom scheduler ticks are stopped.
12674 static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
12676 unsigned int flags = this_rq->nohz_idle_balance;
12681 this_rq->nohz_idle_balance = 0;
12683 if (idle != CPU_IDLE)
12686 _nohz_idle_balance(this_rq, flags);
12692 * Check if we need to directly run the ILB for updating blocked load before
12693 * entering idle state. Here we run ILB directly without issuing IPIs.
12695 * Note that when this function is called, the tick may not yet be stopped on
12696 * this CPU yet. nohz.idle_cpus_mask is updated only when tick is stopped and
12697 * cleared on the next busy tick. In other words, nohz.idle_cpus_mask updates
12698 * don't align with CPUs enter/exit idle to avoid bottlenecks due to high idle
12699 * entry/exit rate (usec). So it is possible that _nohz_idle_balance() is
12700 * called from this function on (this) CPU that's not yet in the mask. That's
12701 * OK because the goal of nohz_run_idle_balance() is to run ILB only for
12702 * updating the blocked load of already idle CPUs without waking up one of
12703 * those idle CPUs and outside the preempt disable / IRQ off phase of the local
12704 * cpu about to enter idle, because it can take a long time.
12706 void nohz_run_idle_balance(int cpu)
12708 unsigned int flags;
12710 flags = atomic_fetch_andnot(NOHZ_NEWILB_KICK, nohz_flags(cpu));
12713 * Update the blocked load only if no SCHED_SOFTIRQ is about to happen
12714 * (i.e. NOHZ_STATS_KICK set) and will do the same.
12716 if ((flags == NOHZ_NEWILB_KICK) && !need_resched())
12717 _nohz_idle_balance(cpu_rq(cpu), NOHZ_STATS_KICK);
12720 static void nohz_newidle_balance(struct rq *this_rq)
12722 int this_cpu = this_rq->cpu;
12725 * This CPU doesn't want to be disturbed by scheduler
12728 if (!housekeeping_cpu(this_cpu, HK_TYPE_SCHED))
12731 /* Will wake up very soon. No time for doing anything else*/
12732 if (this_rq->avg_idle < sysctl_sched_migration_cost)
12735 /* Don't need to update blocked load of idle CPUs*/
12736 if (!READ_ONCE(nohz.has_blocked) ||
12737 time_before(jiffies, READ_ONCE(nohz.next_blocked)))
12741 * Set the need to trigger ILB in order to update blocked load
12742 * before entering idle state.
12744 atomic_or(NOHZ_NEWILB_KICK, nohz_flags(this_cpu));
12747 #else /* !CONFIG_NO_HZ_COMMON */
12748 static inline void nohz_balancer_kick(struct rq *rq) { }
12750 static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
12755 static inline void nohz_newidle_balance(struct rq *this_rq) { }
12756 #endif /* CONFIG_NO_HZ_COMMON */
12759 * sched_balance_newidle is called by schedule() if this_cpu is about to become
12760 * idle. Attempts to pull tasks from other CPUs.
12763 * < 0 - we released the lock and there are !fair tasks present
12764 * 0 - failed, no new tasks
12765 * > 0 - success, new (fair) tasks present
12767 static int sched_balance_newidle(struct rq *this_rq, struct rq_flags *rf)
12769 unsigned long next_balance = jiffies + HZ;
12770 int this_cpu = this_rq->cpu;
12771 int continue_balancing = 1;
12772 u64 t0, t1, curr_cost = 0;
12773 struct sched_domain *sd;
12774 int pulled_task = 0;
12776 update_misfit_status(NULL, this_rq);
12779 * There is a task waiting to run. No need to search for one.
12780 * Return 0; the task will be enqueued when switching to idle.
12782 if (this_rq->ttwu_pending)
12786 * We must set idle_stamp _before_ calling sched_balance_rq()
12787 * for CPU_NEWLY_IDLE, such that we measure the this duration
12790 this_rq->idle_stamp = rq_clock(this_rq);
12793 * Do not pull tasks towards !active CPUs...
12795 if (!cpu_active(this_cpu))
12799 * This is OK, because current is on_cpu, which avoids it being picked
12800 * for load-balance and preemption/IRQs are still disabled avoiding
12801 * further scheduler activity on it and we're being very careful to
12802 * re-start the picking loop.
12804 rq_unpin_lock(this_rq, rf);
12807 sd = rcu_dereference_check_sched_domain(this_rq->sd);
12809 if (!get_rd_overloaded(this_rq->rd) ||
12810 (sd && this_rq->avg_idle < sd->max_newidle_lb_cost)) {
12813 update_next_balance(sd, &next_balance);
12820 raw_spin_rq_unlock(this_rq);
12822 t0 = sched_clock_cpu(this_cpu);
12823 sched_balance_update_blocked_averages(this_cpu);
12826 for_each_domain(this_cpu, sd) {
12829 update_next_balance(sd, &next_balance);
12831 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost)
12834 if (sd->flags & SD_BALANCE_NEWIDLE) {
12836 pulled_task = sched_balance_rq(this_cpu, this_rq,
12837 sd, CPU_NEWLY_IDLE,
12838 &continue_balancing);
12840 t1 = sched_clock_cpu(this_cpu);
12841 domain_cost = t1 - t0;
12842 update_newidle_cost(sd, domain_cost);
12844 curr_cost += domain_cost;
12849 * Stop searching for tasks to pull if there are
12850 * now runnable tasks on this rq.
12852 if (pulled_task || !continue_balancing)
12857 raw_spin_rq_lock(this_rq);
12859 if (curr_cost > this_rq->max_idle_balance_cost)
12860 this_rq->max_idle_balance_cost = curr_cost;
12863 * While browsing the domains, we released the rq lock, a task could
12864 * have been enqueued in the meantime. Since we're not going idle,
12865 * pretend we pulled a task.
12867 if (this_rq->cfs.h_nr_running && !pulled_task)
12870 /* Is there a task of a high priority class? */
12871 if (this_rq->nr_running != this_rq->cfs.h_nr_running)
12875 /* Move the next balance forward */
12876 if (time_after(this_rq->next_balance, next_balance))
12877 this_rq->next_balance = next_balance;
12880 this_rq->idle_stamp = 0;
12882 nohz_newidle_balance(this_rq);
12884 rq_repin_lock(this_rq, rf);
12886 return pulled_task;
12890 * This softirq handler is triggered via SCHED_SOFTIRQ from two places:
12892 * - directly from the local scheduler_tick() for periodic load balancing
12894 * - indirectly from a remote scheduler_tick() for NOHZ idle balancing
12895 * through the SMP cross-call nohz_csd_func()
12897 static __latent_entropy void sched_balance_softirq(void)
12899 struct rq *this_rq = this_rq();
12900 enum cpu_idle_type idle = this_rq->idle_balance;
12902 * If this CPU has a pending NOHZ_BALANCE_KICK, then do the
12903 * balancing on behalf of the other idle CPUs whose ticks are
12904 * stopped. Do nohz_idle_balance *before* sched_balance_domains to
12905 * give the idle CPUs a chance to load balance. Else we may
12906 * load balance only within the local sched_domain hierarchy
12907 * and abort nohz_idle_balance altogether if we pull some load.
12909 if (nohz_idle_balance(this_rq, idle))
12912 /* normal load balance */
12913 sched_balance_update_blocked_averages(this_rq->cpu);
12914 sched_balance_domains(this_rq, idle);
12918 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
12920 void sched_balance_trigger(struct rq *rq)
12923 * Don't need to rebalance while attached to NULL domain or
12924 * runqueue CPU is not active
12926 if (unlikely(on_null_domain(rq) || !cpu_active(cpu_of(rq))))
12929 if (time_after_eq(jiffies, rq->next_balance))
12930 raise_softirq(SCHED_SOFTIRQ);
12932 nohz_balancer_kick(rq);
12935 static void rq_online_fair(struct rq *rq)
12939 update_runtime_enabled(rq);
12942 static void rq_offline_fair(struct rq *rq)
12946 /* Ensure any throttled groups are reachable by pick_next_task */
12947 unthrottle_offline_cfs_rqs(rq);
12949 /* Ensure that we remove rq contribution to group share: */
12950 clear_tg_offline_cfs_rqs(rq);
12953 #endif /* CONFIG_SMP */
12955 #ifdef CONFIG_SCHED_CORE
12957 __entity_slice_used(struct sched_entity *se, int min_nr_tasks)
12959 u64 rtime = se->sum_exec_runtime - se->prev_sum_exec_runtime;
12960 u64 slice = se->slice;
12962 return (rtime * min_nr_tasks > slice);
12965 #define MIN_NR_TASKS_DURING_FORCEIDLE 2
12966 static inline void task_tick_core(struct rq *rq, struct task_struct *curr)
12968 if (!sched_core_enabled(rq))
12972 * If runqueue has only one task which used up its slice and
12973 * if the sibling is forced idle, then trigger schedule to
12974 * give forced idle task a chance.
12976 * sched_slice() considers only this active rq and it gets the
12977 * whole slice. But during force idle, we have siblings acting
12978 * like a single runqueue and hence we need to consider runnable
12979 * tasks on this CPU and the forced idle CPU. Ideally, we should
12980 * go through the forced idle rq, but that would be a perf hit.
12981 * We can assume that the forced idle CPU has at least
12982 * MIN_NR_TASKS_DURING_FORCEIDLE - 1 tasks and use that to check
12983 * if we need to give up the CPU.
12985 if (rq->core->core_forceidle_count && rq->cfs.nr_running == 1 &&
12986 __entity_slice_used(&curr->se, MIN_NR_TASKS_DURING_FORCEIDLE))
12991 * se_fi_update - Update the cfs_rq->min_vruntime_fi in a CFS hierarchy if needed.
12993 static void se_fi_update(const struct sched_entity *se, unsigned int fi_seq,
12996 for_each_sched_entity(se) {
12997 struct cfs_rq *cfs_rq = cfs_rq_of(se);
13000 if (cfs_rq->forceidle_seq == fi_seq)
13002 cfs_rq->forceidle_seq = fi_seq;
13005 cfs_rq->min_vruntime_fi = cfs_rq->min_vruntime;
13009 void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi)
13011 struct sched_entity *se = &p->se;
13013 if (p->sched_class != &fair_sched_class)
13016 se_fi_update(se, rq->core->core_forceidle_seq, in_fi);
13019 bool cfs_prio_less(const struct task_struct *a, const struct task_struct *b,
13022 struct rq *rq = task_rq(a);
13023 const struct sched_entity *sea = &a->se;
13024 const struct sched_entity *seb = &b->se;
13025 struct cfs_rq *cfs_rqa;
13026 struct cfs_rq *cfs_rqb;
13029 SCHED_WARN_ON(task_rq(b)->core != rq->core);
13031 #ifdef CONFIG_FAIR_GROUP_SCHED
13033 * Find an se in the hierarchy for tasks a and b, such that the se's
13034 * are immediate siblings.
13036 while (sea->cfs_rq->tg != seb->cfs_rq->tg) {
13037 int sea_depth = sea->depth;
13038 int seb_depth = seb->depth;
13040 if (sea_depth >= seb_depth)
13041 sea = parent_entity(sea);
13042 if (sea_depth <= seb_depth)
13043 seb = parent_entity(seb);
13046 se_fi_update(sea, rq->core->core_forceidle_seq, in_fi);
13047 se_fi_update(seb, rq->core->core_forceidle_seq, in_fi);
13049 cfs_rqa = sea->cfs_rq;
13050 cfs_rqb = seb->cfs_rq;
13052 cfs_rqa = &task_rq(a)->cfs;
13053 cfs_rqb = &task_rq(b)->cfs;
13057 * Find delta after normalizing se's vruntime with its cfs_rq's
13058 * min_vruntime_fi, which would have been updated in prior calls
13059 * to se_fi_update().
13061 delta = (s64)(sea->vruntime - seb->vruntime) +
13062 (s64)(cfs_rqb->min_vruntime_fi - cfs_rqa->min_vruntime_fi);
13067 static int task_is_throttled_fair(struct task_struct *p, int cpu)
13069 struct cfs_rq *cfs_rq;
13071 #ifdef CONFIG_FAIR_GROUP_SCHED
13072 cfs_rq = task_group(p)->cfs_rq[cpu];
13074 cfs_rq = &cpu_rq(cpu)->cfs;
13076 return throttled_hierarchy(cfs_rq);
13079 static inline void task_tick_core(struct rq *rq, struct task_struct *curr) {}
13083 * scheduler tick hitting a task of our scheduling class.
13085 * NOTE: This function can be called remotely by the tick offload that
13086 * goes along full dynticks. Therefore no local assumption can be made
13087 * and everything must be accessed through the @rq and @curr passed in
13090 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
13092 struct cfs_rq *cfs_rq;
13093 struct sched_entity *se = &curr->se;
13095 for_each_sched_entity(se) {
13096 cfs_rq = cfs_rq_of(se);
13097 entity_tick(cfs_rq, se, queued);
13100 if (static_branch_unlikely(&sched_numa_balancing))
13101 task_tick_numa(rq, curr);
13103 update_misfit_status(curr, rq);
13104 check_update_overutilized_status(task_rq(curr));
13106 task_tick_core(rq, curr);
13110 * called on fork with the child task as argument from the parent's context
13111 * - child not yet on the tasklist
13112 * - preemption disabled
13114 static void task_fork_fair(struct task_struct *p)
13116 set_task_max_allowed_capacity(p);
13120 * Priority of the task has changed. Check to see if we preempt
13121 * the current task.
13124 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
13126 if (!task_on_rq_queued(p))
13129 if (rq->cfs.nr_running == 1)
13133 * Reschedule if we are currently running on this runqueue and
13134 * our priority decreased, or if we are not currently running on
13135 * this runqueue and our priority is higher than the current's
13137 if (task_current_donor(rq, p)) {
13138 if (p->prio > oldprio)
13141 wakeup_preempt(rq, p, 0);
13144 #ifdef CONFIG_FAIR_GROUP_SCHED
13146 * Propagate the changes of the sched_entity across the tg tree to make it
13147 * visible to the root
13149 static void propagate_entity_cfs_rq(struct sched_entity *se)
13151 struct cfs_rq *cfs_rq = cfs_rq_of(se);
13153 if (cfs_rq_throttled(cfs_rq))
13156 if (!throttled_hierarchy(cfs_rq))
13157 list_add_leaf_cfs_rq(cfs_rq);
13159 /* Start to propagate at parent */
13162 for_each_sched_entity(se) {
13163 cfs_rq = cfs_rq_of(se);
13165 update_load_avg(cfs_rq, se, UPDATE_TG);
13167 if (cfs_rq_throttled(cfs_rq))
13170 if (!throttled_hierarchy(cfs_rq))
13171 list_add_leaf_cfs_rq(cfs_rq);
13175 static void propagate_entity_cfs_rq(struct sched_entity *se) { }
13178 static void detach_entity_cfs_rq(struct sched_entity *se)
13180 struct cfs_rq *cfs_rq = cfs_rq_of(se);
13184 * In case the task sched_avg hasn't been attached:
13185 * - A forked task which hasn't been woken up by wake_up_new_task().
13186 * - A task which has been woken up by try_to_wake_up() but is
13187 * waiting for actually being woken up by sched_ttwu_pending().
13189 if (!se->avg.last_update_time)
13193 /* Catch up with the cfs_rq and remove our load when we leave */
13194 update_load_avg(cfs_rq, se, 0);
13195 detach_entity_load_avg(cfs_rq, se);
13196 update_tg_load_avg(cfs_rq);
13197 propagate_entity_cfs_rq(se);
13200 static void attach_entity_cfs_rq(struct sched_entity *se)
13202 struct cfs_rq *cfs_rq = cfs_rq_of(se);
13204 /* Synchronize entity with its cfs_rq */
13205 update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
13206 attach_entity_load_avg(cfs_rq, se);
13207 update_tg_load_avg(cfs_rq);
13208 propagate_entity_cfs_rq(se);
13211 static void detach_task_cfs_rq(struct task_struct *p)
13213 struct sched_entity *se = &p->se;
13215 detach_entity_cfs_rq(se);
13218 static void attach_task_cfs_rq(struct task_struct *p)
13220 struct sched_entity *se = &p->se;
13222 attach_entity_cfs_rq(se);
13225 static void switched_from_fair(struct rq *rq, struct task_struct *p)
13227 detach_task_cfs_rq(p);
13230 static void switched_to_fair(struct rq *rq, struct task_struct *p)
13232 SCHED_WARN_ON(p->se.sched_delayed);
13234 attach_task_cfs_rq(p);
13236 set_task_max_allowed_capacity(p);
13238 if (task_on_rq_queued(p)) {
13240 * We were most likely switched from sched_rt, so
13241 * kick off the schedule if running, otherwise just see
13242 * if we can still preempt the current task.
13244 if (task_current_donor(rq, p))
13247 wakeup_preempt(rq, p, 0);
13251 static void __set_next_task_fair(struct rq *rq, struct task_struct *p, bool first)
13253 struct sched_entity *se = &p->se;
13256 if (task_on_rq_queued(p)) {
13258 * Move the next running task to the front of the list, so our
13259 * cfs_tasks list becomes MRU one.
13261 list_move(&se->group_node, &rq->cfs_tasks);
13267 SCHED_WARN_ON(se->sched_delayed);
13269 if (hrtick_enabled_fair(rq))
13270 hrtick_start_fair(rq, p);
13272 update_misfit_status(p, rq);
13273 sched_fair_update_stop_tick(rq, p);
13277 * Account for a task changing its policy or group.
13279 * This routine is mostly called to set cfs_rq->curr field when a task
13280 * migrates between groups/classes.
13282 static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first)
13284 struct sched_entity *se = &p->se;
13286 for_each_sched_entity(se) {
13287 struct cfs_rq *cfs_rq = cfs_rq_of(se);
13289 set_next_entity(cfs_rq, se);
13290 /* ensure bandwidth has been allocated on our new cfs_rq */
13291 account_cfs_rq_runtime(cfs_rq, 0);
13294 __set_next_task_fair(rq, p, first);
13297 void init_cfs_rq(struct cfs_rq *cfs_rq)
13299 cfs_rq->tasks_timeline = RB_ROOT_CACHED;
13300 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
13302 raw_spin_lock_init(&cfs_rq->removed.lock);
13306 #ifdef CONFIG_FAIR_GROUP_SCHED
13307 static void task_change_group_fair(struct task_struct *p)
13310 * We couldn't detach or attach a forked task which
13311 * hasn't been woken up by wake_up_new_task().
13313 if (READ_ONCE(p->__state) == TASK_NEW)
13316 detach_task_cfs_rq(p);
13319 /* Tell se's cfs_rq has been changed -- migrated */
13320 p->se.avg.last_update_time = 0;
13322 set_task_rq(p, task_cpu(p));
13323 attach_task_cfs_rq(p);
13326 void free_fair_sched_group(struct task_group *tg)
13330 for_each_possible_cpu(i) {
13332 kfree(tg->cfs_rq[i]);
13341 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
13343 struct sched_entity *se;
13344 struct cfs_rq *cfs_rq;
13347 tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL);
13350 tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL);
13354 tg->shares = NICE_0_LOAD;
13356 init_cfs_bandwidth(tg_cfs_bandwidth(tg), tg_cfs_bandwidth(parent));
13358 for_each_possible_cpu(i) {
13359 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
13360 GFP_KERNEL, cpu_to_node(i));
13364 se = kzalloc_node(sizeof(struct sched_entity_stats),
13365 GFP_KERNEL, cpu_to_node(i));
13369 init_cfs_rq(cfs_rq);
13370 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
13371 init_entity_runnable_average(se);
13382 void online_fair_sched_group(struct task_group *tg)
13384 struct sched_entity *se;
13385 struct rq_flags rf;
13389 for_each_possible_cpu(i) {
13392 rq_lock_irq(rq, &rf);
13393 update_rq_clock(rq);
13394 attach_entity_cfs_rq(se);
13395 sync_throttle(tg, i);
13396 rq_unlock_irq(rq, &rf);
13400 void unregister_fair_sched_group(struct task_group *tg)
13404 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
13406 for_each_possible_cpu(cpu) {
13407 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
13408 struct sched_entity *se = tg->se[cpu];
13409 struct rq *rq = cpu_rq(cpu);
13412 if (se->sched_delayed) {
13413 guard(rq_lock_irqsave)(rq);
13414 if (se->sched_delayed) {
13415 update_rq_clock(rq);
13416 dequeue_entities(rq, se, DEQUEUE_SLEEP | DEQUEUE_DELAYED);
13418 list_del_leaf_cfs_rq(cfs_rq);
13420 remove_entity_load_avg(se);
13424 * Only empty task groups can be destroyed; so we can speculatively
13425 * check on_list without danger of it being re-added.
13427 if (cfs_rq->on_list) {
13428 guard(rq_lock_irqsave)(rq);
13429 list_del_leaf_cfs_rq(cfs_rq);
13434 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
13435 struct sched_entity *se, int cpu,
13436 struct sched_entity *parent)
13438 struct rq *rq = cpu_rq(cpu);
13442 init_cfs_rq_runtime(cfs_rq);
13444 tg->cfs_rq[cpu] = cfs_rq;
13447 /* se could be NULL for root_task_group */
13452 se->cfs_rq = &rq->cfs;
13455 se->cfs_rq = parent->my_q;
13456 se->depth = parent->depth + 1;
13460 /* guarantee group entities always have weight */
13461 update_load_set(&se->load, NICE_0_LOAD);
13462 se->parent = parent;
13465 static DEFINE_MUTEX(shares_mutex);
13467 static int __sched_group_set_shares(struct task_group *tg, unsigned long shares)
13471 lockdep_assert_held(&shares_mutex);
13474 * We can't change the weight of the root cgroup.
13479 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
13481 if (tg->shares == shares)
13484 tg->shares = shares;
13485 for_each_possible_cpu(i) {
13486 struct rq *rq = cpu_rq(i);
13487 struct sched_entity *se = tg->se[i];
13488 struct rq_flags rf;
13490 /* Propagate contribution to hierarchy */
13491 rq_lock_irqsave(rq, &rf);
13492 update_rq_clock(rq);
13493 for_each_sched_entity(se) {
13494 update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
13495 update_cfs_group(se);
13497 rq_unlock_irqrestore(rq, &rf);
13503 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
13507 mutex_lock(&shares_mutex);
13508 if (tg_is_idle(tg))
13511 ret = __sched_group_set_shares(tg, shares);
13512 mutex_unlock(&shares_mutex);
13517 int sched_group_set_idle(struct task_group *tg, long idle)
13521 if (tg == &root_task_group)
13524 if (idle < 0 || idle > 1)
13527 mutex_lock(&shares_mutex);
13529 if (tg->idle == idle) {
13530 mutex_unlock(&shares_mutex);
13536 for_each_possible_cpu(i) {
13537 struct rq *rq = cpu_rq(i);
13538 struct sched_entity *se = tg->se[i];
13539 struct cfs_rq *parent_cfs_rq, *grp_cfs_rq = tg->cfs_rq[i];
13540 bool was_idle = cfs_rq_is_idle(grp_cfs_rq);
13541 long idle_task_delta;
13542 struct rq_flags rf;
13544 rq_lock_irqsave(rq, &rf);
13546 grp_cfs_rq->idle = idle;
13547 if (WARN_ON_ONCE(was_idle == cfs_rq_is_idle(grp_cfs_rq)))
13551 parent_cfs_rq = cfs_rq_of(se);
13552 if (cfs_rq_is_idle(grp_cfs_rq))
13553 parent_cfs_rq->idle_nr_running++;
13555 parent_cfs_rq->idle_nr_running--;
13558 idle_task_delta = grp_cfs_rq->h_nr_running -
13559 grp_cfs_rq->idle_h_nr_running;
13560 if (!cfs_rq_is_idle(grp_cfs_rq))
13561 idle_task_delta *= -1;
13563 for_each_sched_entity(se) {
13564 struct cfs_rq *cfs_rq = cfs_rq_of(se);
13569 cfs_rq->idle_h_nr_running += idle_task_delta;
13571 /* Already accounted at parent level and above. */
13572 if (cfs_rq_is_idle(cfs_rq))
13577 rq_unlock_irqrestore(rq, &rf);
13580 /* Idle groups have minimum weight. */
13581 if (tg_is_idle(tg))
13582 __sched_group_set_shares(tg, scale_load(WEIGHT_IDLEPRIO));
13584 __sched_group_set_shares(tg, NICE_0_LOAD);
13586 mutex_unlock(&shares_mutex);
13590 #endif /* CONFIG_FAIR_GROUP_SCHED */
13593 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
13595 struct sched_entity *se = &task->se;
13596 unsigned int rr_interval = 0;
13599 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
13602 if (rq->cfs.load.weight)
13603 rr_interval = NS_TO_JIFFIES(se->slice);
13605 return rr_interval;
13609 * All the scheduling class methods:
13611 DEFINE_SCHED_CLASS(fair) = {
13613 .enqueue_task = enqueue_task_fair,
13614 .dequeue_task = dequeue_task_fair,
13615 .yield_task = yield_task_fair,
13616 .yield_to_task = yield_to_task_fair,
13618 .wakeup_preempt = check_preempt_wakeup_fair,
13620 .pick_task = pick_task_fair,
13621 .pick_next_task = __pick_next_task_fair,
13622 .put_prev_task = put_prev_task_fair,
13623 .set_next_task = set_next_task_fair,
13626 .balance = balance_fair,
13627 .select_task_rq = select_task_rq_fair,
13628 .migrate_task_rq = migrate_task_rq_fair,
13630 .rq_online = rq_online_fair,
13631 .rq_offline = rq_offline_fair,
13633 .task_dead = task_dead_fair,
13634 .set_cpus_allowed = set_cpus_allowed_fair,
13637 .task_tick = task_tick_fair,
13638 .task_fork = task_fork_fair,
13640 .reweight_task = reweight_task_fair,
13641 .prio_changed = prio_changed_fair,
13642 .switched_from = switched_from_fair,
13643 .switched_to = switched_to_fair,
13645 .get_rr_interval = get_rr_interval_fair,
13647 .update_curr = update_curr_fair,
13649 #ifdef CONFIG_FAIR_GROUP_SCHED
13650 .task_change_group = task_change_group_fair,
13653 #ifdef CONFIG_SCHED_CORE
13654 .task_is_throttled = task_is_throttled_fair,
13657 #ifdef CONFIG_UCLAMP_TASK
13658 .uclamp_enabled = 1,
13662 #ifdef CONFIG_SCHED_DEBUG
13663 void print_cfs_stats(struct seq_file *m, int cpu)
13665 struct cfs_rq *cfs_rq, *pos;
13668 for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos)
13669 print_cfs_rq(m, cpu, cfs_rq);
13673 #ifdef CONFIG_NUMA_BALANCING
13674 void show_numa_stats(struct task_struct *p, struct seq_file *m)
13677 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
13678 struct numa_group *ng;
13681 ng = rcu_dereference(p->numa_group);
13682 for_each_online_node(node) {
13683 if (p->numa_faults) {
13684 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
13685 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
13688 gsf = ng->faults[task_faults_idx(NUMA_MEM, node, 0)],
13689 gpf = ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
13691 print_numa_stats(m, node, tsf, tpf, gsf, gpf);
13695 #endif /* CONFIG_NUMA_BALANCING */
13696 #endif /* CONFIG_SCHED_DEBUG */
13698 __init void init_sched_fair_class(void)
13703 for_each_possible_cpu(i) {
13704 zalloc_cpumask_var_node(&per_cpu(load_balance_mask, i), GFP_KERNEL, cpu_to_node(i));
13705 zalloc_cpumask_var_node(&per_cpu(select_rq_mask, i), GFP_KERNEL, cpu_to_node(i));
13706 zalloc_cpumask_var_node(&per_cpu(should_we_balance_tmpmask, i),
13707 GFP_KERNEL, cpu_to_node(i));
13709 #ifdef CONFIG_CFS_BANDWIDTH
13710 INIT_CSD(&cpu_rq(i)->cfsb_csd, __cfsb_csd_unthrottle, cpu_rq(i));
13711 INIT_LIST_HEAD(&cpu_rq(i)->cfsb_csd_list);
13715 open_softirq(SCHED_SOFTIRQ, sched_balance_softirq);
13717 #ifdef CONFIG_NO_HZ_COMMON
13718 nohz.next_balance = jiffies;
13719 nohz.next_blocked = jiffies;
13720 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);