]> Git Repo - J-linux.git/blob - kernel/sched/cpufreq_schedutil.c
Merge tag 'vfs-6.13-rc7.fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs
[J-linux.git] / kernel / sched / cpufreq_schedutil.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * CPUFreq governor based on scheduler-provided CPU utilization data.
4  *
5  * Copyright (C) 2016, Intel Corporation
6  * Author: Rafael J. Wysocki <[email protected]>
7  */
8
9 #define IOWAIT_BOOST_MIN        (SCHED_CAPACITY_SCALE / 8)
10
11 struct sugov_tunables {
12         struct gov_attr_set     attr_set;
13         unsigned int            rate_limit_us;
14 };
15
16 struct sugov_policy {
17         struct cpufreq_policy   *policy;
18
19         struct sugov_tunables   *tunables;
20         struct list_head        tunables_hook;
21
22         raw_spinlock_t          update_lock;
23         u64                     last_freq_update_time;
24         s64                     freq_update_delay_ns;
25         unsigned int            next_freq;
26         unsigned int            cached_raw_freq;
27
28         /* The next fields are only needed if fast switch cannot be used: */
29         struct                  irq_work irq_work;
30         struct                  kthread_work work;
31         struct                  mutex work_lock;
32         struct                  kthread_worker worker;
33         struct task_struct      *thread;
34         bool                    work_in_progress;
35
36         bool                    limits_changed;
37         bool                    need_freq_update;
38 };
39
40 struct sugov_cpu {
41         struct update_util_data update_util;
42         struct sugov_policy     *sg_policy;
43         unsigned int            cpu;
44
45         bool                    iowait_boost_pending;
46         unsigned int            iowait_boost;
47         u64                     last_update;
48
49         unsigned long           util;
50         unsigned long           bw_min;
51
52         /* The field below is for single-CPU policies only: */
53 #ifdef CONFIG_NO_HZ_COMMON
54         unsigned long           saved_idle_calls;
55 #endif
56 };
57
58 static DEFINE_PER_CPU(struct sugov_cpu, sugov_cpu);
59
60 /************************ Governor internals ***********************/
61
62 static bool sugov_should_update_freq(struct sugov_policy *sg_policy, u64 time)
63 {
64         s64 delta_ns;
65
66         /*
67          * Since cpufreq_update_util() is called with rq->lock held for
68          * the @target_cpu, our per-CPU data is fully serialized.
69          *
70          * However, drivers cannot in general deal with cross-CPU
71          * requests, so while get_next_freq() will work, our
72          * sugov_update_commit() call may not for the fast switching platforms.
73          *
74          * Hence stop here for remote requests if they aren't supported
75          * by the hardware, as calculating the frequency is pointless if
76          * we cannot in fact act on it.
77          *
78          * This is needed on the slow switching platforms too to prevent CPUs
79          * going offline from leaving stale IRQ work items behind.
80          */
81         if (!cpufreq_this_cpu_can_update(sg_policy->policy))
82                 return false;
83
84         if (unlikely(sg_policy->limits_changed)) {
85                 sg_policy->limits_changed = false;
86                 sg_policy->need_freq_update = true;
87                 return true;
88         }
89
90         delta_ns = time - sg_policy->last_freq_update_time;
91
92         return delta_ns >= sg_policy->freq_update_delay_ns;
93 }
94
95 static bool sugov_update_next_freq(struct sugov_policy *sg_policy, u64 time,
96                                    unsigned int next_freq)
97 {
98         if (sg_policy->need_freq_update)
99                 sg_policy->need_freq_update = cpufreq_driver_test_flags(CPUFREQ_NEED_UPDATE_LIMITS);
100         else if (sg_policy->next_freq == next_freq)
101                 return false;
102
103         sg_policy->next_freq = next_freq;
104         sg_policy->last_freq_update_time = time;
105
106         return true;
107 }
108
109 static void sugov_deferred_update(struct sugov_policy *sg_policy)
110 {
111         if (!sg_policy->work_in_progress) {
112                 sg_policy->work_in_progress = true;
113                 irq_work_queue(&sg_policy->irq_work);
114         }
115 }
116
117 /**
118  * get_capacity_ref_freq - get the reference frequency that has been used to
119  * correlate frequency and compute capacity for a given cpufreq policy. We use
120  * the CPU managing it for the arch_scale_freq_ref() call in the function.
121  * @policy: the cpufreq policy of the CPU in question.
122  *
123  * Return: the reference CPU frequency to compute a capacity.
124  */
125 static __always_inline
126 unsigned long get_capacity_ref_freq(struct cpufreq_policy *policy)
127 {
128         unsigned int freq = arch_scale_freq_ref(policy->cpu);
129
130         if (freq)
131                 return freq;
132
133         if (arch_scale_freq_invariant())
134                 return policy->cpuinfo.max_freq;
135
136         /*
137          * Apply a 25% margin so that we select a higher frequency than
138          * the current one before the CPU is fully busy:
139          */
140         return policy->cur + (policy->cur >> 2);
141 }
142
143 /**
144  * get_next_freq - Compute a new frequency for a given cpufreq policy.
145  * @sg_policy: schedutil policy object to compute the new frequency for.
146  * @util: Current CPU utilization.
147  * @max: CPU capacity.
148  *
149  * If the utilization is frequency-invariant, choose the new frequency to be
150  * proportional to it, that is
151  *
152  * next_freq = C * max_freq * util / max
153  *
154  * Otherwise, approximate the would-be frequency-invariant utilization by
155  * util_raw * (curr_freq / max_freq) which leads to
156  *
157  * next_freq = C * curr_freq * util_raw / max
158  *
159  * Take C = 1.25 for the frequency tipping point at (util / max) = 0.8.
160  *
161  * The lowest driver-supported frequency which is equal or greater than the raw
162  * next_freq (as calculated above) is returned, subject to policy min/max and
163  * cpufreq driver limitations.
164  */
165 static unsigned int get_next_freq(struct sugov_policy *sg_policy,
166                                   unsigned long util, unsigned long max)
167 {
168         struct cpufreq_policy *policy = sg_policy->policy;
169         unsigned int freq;
170
171         freq = get_capacity_ref_freq(policy);
172         freq = map_util_freq(util, freq, max);
173
174         if (freq == sg_policy->cached_raw_freq && !sg_policy->need_freq_update)
175                 return sg_policy->next_freq;
176
177         sg_policy->cached_raw_freq = freq;
178         return cpufreq_driver_resolve_freq(policy, freq);
179 }
180
181 unsigned long sugov_effective_cpu_perf(int cpu, unsigned long actual,
182                                  unsigned long min,
183                                  unsigned long max)
184 {
185         /* Add dvfs headroom to actual utilization */
186         actual = map_util_perf(actual);
187         /* Actually we don't need to target the max performance */
188         if (actual < max)
189                 max = actual;
190
191         /*
192          * Ensure at least minimum performance while providing more compute
193          * capacity when possible.
194          */
195         return max(min, max);
196 }
197
198 static void sugov_get_util(struct sugov_cpu *sg_cpu, unsigned long boost)
199 {
200         unsigned long min, max, util = scx_cpuperf_target(sg_cpu->cpu);
201
202         if (!scx_switched_all())
203                 util += cpu_util_cfs_boost(sg_cpu->cpu);
204         util = effective_cpu_util(sg_cpu->cpu, util, &min, &max);
205         util = max(util, boost);
206         sg_cpu->bw_min = min;
207         sg_cpu->util = sugov_effective_cpu_perf(sg_cpu->cpu, util, min, max);
208 }
209
210 /**
211  * sugov_iowait_reset() - Reset the IO boost status of a CPU.
212  * @sg_cpu: the sugov data for the CPU to boost
213  * @time: the update time from the caller
214  * @set_iowait_boost: true if an IO boost has been requested
215  *
216  * The IO wait boost of a task is disabled after a tick since the last update
217  * of a CPU. If a new IO wait boost is requested after more then a tick, then
218  * we enable the boost starting from IOWAIT_BOOST_MIN, which improves energy
219  * efficiency by ignoring sporadic wakeups from IO.
220  */
221 static bool sugov_iowait_reset(struct sugov_cpu *sg_cpu, u64 time,
222                                bool set_iowait_boost)
223 {
224         s64 delta_ns = time - sg_cpu->last_update;
225
226         /* Reset boost only if a tick has elapsed since last request */
227         if (delta_ns <= TICK_NSEC)
228                 return false;
229
230         sg_cpu->iowait_boost = set_iowait_boost ? IOWAIT_BOOST_MIN : 0;
231         sg_cpu->iowait_boost_pending = set_iowait_boost;
232
233         return true;
234 }
235
236 /**
237  * sugov_iowait_boost() - Updates the IO boost status of a CPU.
238  * @sg_cpu: the sugov data for the CPU to boost
239  * @time: the update time from the caller
240  * @flags: SCHED_CPUFREQ_IOWAIT if the task is waking up after an IO wait
241  *
242  * Each time a task wakes up after an IO operation, the CPU utilization can be
243  * boosted to a certain utilization which doubles at each "frequent and
244  * successive" wakeup from IO, ranging from IOWAIT_BOOST_MIN to the utilization
245  * of the maximum OPP.
246  *
247  * To keep doubling, an IO boost has to be requested at least once per tick,
248  * otherwise we restart from the utilization of the minimum OPP.
249  */
250 static void sugov_iowait_boost(struct sugov_cpu *sg_cpu, u64 time,
251                                unsigned int flags)
252 {
253         bool set_iowait_boost = flags & SCHED_CPUFREQ_IOWAIT;
254
255         /* Reset boost if the CPU appears to have been idle enough */
256         if (sg_cpu->iowait_boost &&
257             sugov_iowait_reset(sg_cpu, time, set_iowait_boost))
258                 return;
259
260         /* Boost only tasks waking up after IO */
261         if (!set_iowait_boost)
262                 return;
263
264         /* Ensure boost doubles only one time at each request */
265         if (sg_cpu->iowait_boost_pending)
266                 return;
267         sg_cpu->iowait_boost_pending = true;
268
269         /* Double the boost at each request */
270         if (sg_cpu->iowait_boost) {
271                 sg_cpu->iowait_boost =
272                         min_t(unsigned int, sg_cpu->iowait_boost << 1, SCHED_CAPACITY_SCALE);
273                 return;
274         }
275
276         /* First wakeup after IO: start with minimum boost */
277         sg_cpu->iowait_boost = IOWAIT_BOOST_MIN;
278 }
279
280 /**
281  * sugov_iowait_apply() - Apply the IO boost to a CPU.
282  * @sg_cpu: the sugov data for the cpu to boost
283  * @time: the update time from the caller
284  * @max_cap: the max CPU capacity
285  *
286  * A CPU running a task which woken up after an IO operation can have its
287  * utilization boosted to speed up the completion of those IO operations.
288  * The IO boost value is increased each time a task wakes up from IO, in
289  * sugov_iowait_apply(), and it's instead decreased by this function,
290  * each time an increase has not been requested (!iowait_boost_pending).
291  *
292  * A CPU which also appears to have been idle for at least one tick has also
293  * its IO boost utilization reset.
294  *
295  * This mechanism is designed to boost high frequently IO waiting tasks, while
296  * being more conservative on tasks which does sporadic IO operations.
297  */
298 static unsigned long sugov_iowait_apply(struct sugov_cpu *sg_cpu, u64 time,
299                                unsigned long max_cap)
300 {
301         /* No boost currently required */
302         if (!sg_cpu->iowait_boost)
303                 return 0;
304
305         /* Reset boost if the CPU appears to have been idle enough */
306         if (sugov_iowait_reset(sg_cpu, time, false))
307                 return 0;
308
309         if (!sg_cpu->iowait_boost_pending) {
310                 /*
311                  * No boost pending; reduce the boost value.
312                  */
313                 sg_cpu->iowait_boost >>= 1;
314                 if (sg_cpu->iowait_boost < IOWAIT_BOOST_MIN) {
315                         sg_cpu->iowait_boost = 0;
316                         return 0;
317                 }
318         }
319
320         sg_cpu->iowait_boost_pending = false;
321
322         /*
323          * sg_cpu->util is already in capacity scale; convert iowait_boost
324          * into the same scale so we can compare.
325          */
326         return (sg_cpu->iowait_boost * max_cap) >> SCHED_CAPACITY_SHIFT;
327 }
328
329 #ifdef CONFIG_NO_HZ_COMMON
330 static bool sugov_hold_freq(struct sugov_cpu *sg_cpu)
331 {
332         unsigned long idle_calls;
333         bool ret;
334
335         /*
336          * The heuristics in this function is for the fair class. For SCX, the
337          * performance target comes directly from the BPF scheduler. Let's just
338          * follow it.
339          */
340         if (scx_switched_all())
341                 return false;
342
343         /* if capped by uclamp_max, always update to be in compliance */
344         if (uclamp_rq_is_capped(cpu_rq(sg_cpu->cpu)))
345                 return false;
346
347         /*
348          * Maintain the frequency if the CPU has not been idle recently, as
349          * reduction is likely to be premature.
350          */
351         idle_calls = tick_nohz_get_idle_calls_cpu(sg_cpu->cpu);
352         ret = idle_calls == sg_cpu->saved_idle_calls;
353
354         sg_cpu->saved_idle_calls = idle_calls;
355         return ret;
356 }
357 #else
358 static inline bool sugov_hold_freq(struct sugov_cpu *sg_cpu) { return false; }
359 #endif /* CONFIG_NO_HZ_COMMON */
360
361 /*
362  * Make sugov_should_update_freq() ignore the rate limit when DL
363  * has increased the utilization.
364  */
365 static inline void ignore_dl_rate_limit(struct sugov_cpu *sg_cpu)
366 {
367         if (cpu_bw_dl(cpu_rq(sg_cpu->cpu)) > sg_cpu->bw_min)
368                 sg_cpu->sg_policy->limits_changed = true;
369 }
370
371 static inline bool sugov_update_single_common(struct sugov_cpu *sg_cpu,
372                                               u64 time, unsigned long max_cap,
373                                               unsigned int flags)
374 {
375         unsigned long boost;
376
377         sugov_iowait_boost(sg_cpu, time, flags);
378         sg_cpu->last_update = time;
379
380         ignore_dl_rate_limit(sg_cpu);
381
382         if (!sugov_should_update_freq(sg_cpu->sg_policy, time))
383                 return false;
384
385         boost = sugov_iowait_apply(sg_cpu, time, max_cap);
386         sugov_get_util(sg_cpu, boost);
387
388         return true;
389 }
390
391 static void sugov_update_single_freq(struct update_util_data *hook, u64 time,
392                                      unsigned int flags)
393 {
394         struct sugov_cpu *sg_cpu = container_of(hook, struct sugov_cpu, update_util);
395         struct sugov_policy *sg_policy = sg_cpu->sg_policy;
396         unsigned int cached_freq = sg_policy->cached_raw_freq;
397         unsigned long max_cap;
398         unsigned int next_f;
399
400         max_cap = arch_scale_cpu_capacity(sg_cpu->cpu);
401
402         if (!sugov_update_single_common(sg_cpu, time, max_cap, flags))
403                 return;
404
405         next_f = get_next_freq(sg_policy, sg_cpu->util, max_cap);
406
407         if (sugov_hold_freq(sg_cpu) && next_f < sg_policy->next_freq &&
408             !sg_policy->need_freq_update) {
409                 next_f = sg_policy->next_freq;
410
411                 /* Restore cached freq as next_freq has changed */
412                 sg_policy->cached_raw_freq = cached_freq;
413         }
414
415         if (!sugov_update_next_freq(sg_policy, time, next_f))
416                 return;
417
418         /*
419          * This code runs under rq->lock for the target CPU, so it won't run
420          * concurrently on two different CPUs for the same target and it is not
421          * necessary to acquire the lock in the fast switch case.
422          */
423         if (sg_policy->policy->fast_switch_enabled) {
424                 cpufreq_driver_fast_switch(sg_policy->policy, next_f);
425         } else {
426                 raw_spin_lock(&sg_policy->update_lock);
427                 sugov_deferred_update(sg_policy);
428                 raw_spin_unlock(&sg_policy->update_lock);
429         }
430 }
431
432 static void sugov_update_single_perf(struct update_util_data *hook, u64 time,
433                                      unsigned int flags)
434 {
435         struct sugov_cpu *sg_cpu = container_of(hook, struct sugov_cpu, update_util);
436         unsigned long prev_util = sg_cpu->util;
437         unsigned long max_cap;
438
439         /*
440          * Fall back to the "frequency" path if frequency invariance is not
441          * supported, because the direct mapping between the utilization and
442          * the performance levels depends on the frequency invariance.
443          */
444         if (!arch_scale_freq_invariant()) {
445                 sugov_update_single_freq(hook, time, flags);
446                 return;
447         }
448
449         max_cap = arch_scale_cpu_capacity(sg_cpu->cpu);
450
451         if (!sugov_update_single_common(sg_cpu, time, max_cap, flags))
452                 return;
453
454         if (sugov_hold_freq(sg_cpu) && sg_cpu->util < prev_util)
455                 sg_cpu->util = prev_util;
456
457         cpufreq_driver_adjust_perf(sg_cpu->cpu, sg_cpu->bw_min,
458                                    sg_cpu->util, max_cap);
459
460         sg_cpu->sg_policy->last_freq_update_time = time;
461 }
462
463 static unsigned int sugov_next_freq_shared(struct sugov_cpu *sg_cpu, u64 time)
464 {
465         struct sugov_policy *sg_policy = sg_cpu->sg_policy;
466         struct cpufreq_policy *policy = sg_policy->policy;
467         unsigned long util = 0, max_cap;
468         unsigned int j;
469
470         max_cap = arch_scale_cpu_capacity(sg_cpu->cpu);
471
472         for_each_cpu(j, policy->cpus) {
473                 struct sugov_cpu *j_sg_cpu = &per_cpu(sugov_cpu, j);
474                 unsigned long boost;
475
476                 boost = sugov_iowait_apply(j_sg_cpu, time, max_cap);
477                 sugov_get_util(j_sg_cpu, boost);
478
479                 util = max(j_sg_cpu->util, util);
480         }
481
482         return get_next_freq(sg_policy, util, max_cap);
483 }
484
485 static void
486 sugov_update_shared(struct update_util_data *hook, u64 time, unsigned int flags)
487 {
488         struct sugov_cpu *sg_cpu = container_of(hook, struct sugov_cpu, update_util);
489         struct sugov_policy *sg_policy = sg_cpu->sg_policy;
490         unsigned int next_f;
491
492         raw_spin_lock(&sg_policy->update_lock);
493
494         sugov_iowait_boost(sg_cpu, time, flags);
495         sg_cpu->last_update = time;
496
497         ignore_dl_rate_limit(sg_cpu);
498
499         if (sugov_should_update_freq(sg_policy, time)) {
500                 next_f = sugov_next_freq_shared(sg_cpu, time);
501
502                 if (!sugov_update_next_freq(sg_policy, time, next_f))
503                         goto unlock;
504
505                 if (sg_policy->policy->fast_switch_enabled)
506                         cpufreq_driver_fast_switch(sg_policy->policy, next_f);
507                 else
508                         sugov_deferred_update(sg_policy);
509         }
510 unlock:
511         raw_spin_unlock(&sg_policy->update_lock);
512 }
513
514 static void sugov_work(struct kthread_work *work)
515 {
516         struct sugov_policy *sg_policy = container_of(work, struct sugov_policy, work);
517         unsigned int freq;
518         unsigned long flags;
519
520         /*
521          * Hold sg_policy->update_lock shortly to handle the case where:
522          * in case sg_policy->next_freq is read here, and then updated by
523          * sugov_deferred_update() just before work_in_progress is set to false
524          * here, we may miss queueing the new update.
525          *
526          * Note: If a work was queued after the update_lock is released,
527          * sugov_work() will just be called again by kthread_work code; and the
528          * request will be proceed before the sugov thread sleeps.
529          */
530         raw_spin_lock_irqsave(&sg_policy->update_lock, flags);
531         freq = sg_policy->next_freq;
532         sg_policy->work_in_progress = false;
533         raw_spin_unlock_irqrestore(&sg_policy->update_lock, flags);
534
535         mutex_lock(&sg_policy->work_lock);
536         __cpufreq_driver_target(sg_policy->policy, freq, CPUFREQ_RELATION_L);
537         mutex_unlock(&sg_policy->work_lock);
538 }
539
540 static void sugov_irq_work(struct irq_work *irq_work)
541 {
542         struct sugov_policy *sg_policy;
543
544         sg_policy = container_of(irq_work, struct sugov_policy, irq_work);
545
546         kthread_queue_work(&sg_policy->worker, &sg_policy->work);
547 }
548
549 /************************** sysfs interface ************************/
550
551 static struct sugov_tunables *global_tunables;
552 static DEFINE_MUTEX(global_tunables_lock);
553
554 static inline struct sugov_tunables *to_sugov_tunables(struct gov_attr_set *attr_set)
555 {
556         return container_of(attr_set, struct sugov_tunables, attr_set);
557 }
558
559 static ssize_t rate_limit_us_show(struct gov_attr_set *attr_set, char *buf)
560 {
561         struct sugov_tunables *tunables = to_sugov_tunables(attr_set);
562
563         return sprintf(buf, "%u\n", tunables->rate_limit_us);
564 }
565
566 static ssize_t
567 rate_limit_us_store(struct gov_attr_set *attr_set, const char *buf, size_t count)
568 {
569         struct sugov_tunables *tunables = to_sugov_tunables(attr_set);
570         struct sugov_policy *sg_policy;
571         unsigned int rate_limit_us;
572
573         if (kstrtouint(buf, 10, &rate_limit_us))
574                 return -EINVAL;
575
576         tunables->rate_limit_us = rate_limit_us;
577
578         list_for_each_entry(sg_policy, &attr_set->policy_list, tunables_hook)
579                 sg_policy->freq_update_delay_ns = rate_limit_us * NSEC_PER_USEC;
580
581         return count;
582 }
583
584 static struct governor_attr rate_limit_us = __ATTR_RW(rate_limit_us);
585
586 static struct attribute *sugov_attrs[] = {
587         &rate_limit_us.attr,
588         NULL
589 };
590 ATTRIBUTE_GROUPS(sugov);
591
592 static void sugov_tunables_free(struct kobject *kobj)
593 {
594         struct gov_attr_set *attr_set = to_gov_attr_set(kobj);
595
596         kfree(to_sugov_tunables(attr_set));
597 }
598
599 static const struct kobj_type sugov_tunables_ktype = {
600         .default_groups = sugov_groups,
601         .sysfs_ops = &governor_sysfs_ops,
602         .release = &sugov_tunables_free,
603 };
604
605 /********************** cpufreq governor interface *********************/
606
607 #ifdef CONFIG_ENERGY_MODEL
608 static void rebuild_sd_workfn(struct work_struct *work)
609 {
610         rebuild_sched_domains_energy();
611 }
612
613 static DECLARE_WORK(rebuild_sd_work, rebuild_sd_workfn);
614
615 /*
616  * EAS shouldn't be attempted without sugov, so rebuild the sched_domains
617  * on governor changes to make sure the scheduler knows about it.
618  */
619 static void sugov_eas_rebuild_sd(void)
620 {
621         /*
622          * When called from the cpufreq_register_driver() path, the
623          * cpu_hotplug_lock is already held, so use a work item to
624          * avoid nested locking in rebuild_sched_domains().
625          */
626         schedule_work(&rebuild_sd_work);
627 }
628 #else
629 static inline void sugov_eas_rebuild_sd(void) { };
630 #endif
631
632 struct cpufreq_governor schedutil_gov;
633
634 static struct sugov_policy *sugov_policy_alloc(struct cpufreq_policy *policy)
635 {
636         struct sugov_policy *sg_policy;
637
638         sg_policy = kzalloc(sizeof(*sg_policy), GFP_KERNEL);
639         if (!sg_policy)
640                 return NULL;
641
642         sg_policy->policy = policy;
643         raw_spin_lock_init(&sg_policy->update_lock);
644         return sg_policy;
645 }
646
647 static void sugov_policy_free(struct sugov_policy *sg_policy)
648 {
649         kfree(sg_policy);
650 }
651
652 static int sugov_kthread_create(struct sugov_policy *sg_policy)
653 {
654         struct task_struct *thread;
655         struct sched_attr attr = {
656                 .size           = sizeof(struct sched_attr),
657                 .sched_policy   = SCHED_DEADLINE,
658                 .sched_flags    = SCHED_FLAG_SUGOV,
659                 .sched_nice     = 0,
660                 .sched_priority = 0,
661                 /*
662                  * Fake (unused) bandwidth; workaround to "fix"
663                  * priority inheritance.
664                  */
665                 .sched_runtime  = NSEC_PER_MSEC,
666                 .sched_deadline = 10 * NSEC_PER_MSEC,
667                 .sched_period   = 10 * NSEC_PER_MSEC,
668         };
669         struct cpufreq_policy *policy = sg_policy->policy;
670         int ret;
671
672         /* kthread only required for slow path */
673         if (policy->fast_switch_enabled)
674                 return 0;
675
676         kthread_init_work(&sg_policy->work, sugov_work);
677         kthread_init_worker(&sg_policy->worker);
678         thread = kthread_create(kthread_worker_fn, &sg_policy->worker,
679                                 "sugov:%d",
680                                 cpumask_first(policy->related_cpus));
681         if (IS_ERR(thread)) {
682                 pr_err("failed to create sugov thread: %ld\n", PTR_ERR(thread));
683                 return PTR_ERR(thread);
684         }
685
686         ret = sched_setattr_nocheck(thread, &attr);
687         if (ret) {
688                 kthread_stop(thread);
689                 pr_warn("%s: failed to set SCHED_DEADLINE\n", __func__);
690                 return ret;
691         }
692
693         sg_policy->thread = thread;
694         kthread_bind_mask(thread, policy->related_cpus);
695         init_irq_work(&sg_policy->irq_work, sugov_irq_work);
696         mutex_init(&sg_policy->work_lock);
697
698         wake_up_process(thread);
699
700         return 0;
701 }
702
703 static void sugov_kthread_stop(struct sugov_policy *sg_policy)
704 {
705         /* kthread only required for slow path */
706         if (sg_policy->policy->fast_switch_enabled)
707                 return;
708
709         kthread_flush_worker(&sg_policy->worker);
710         kthread_stop(sg_policy->thread);
711         mutex_destroy(&sg_policy->work_lock);
712 }
713
714 static struct sugov_tunables *sugov_tunables_alloc(struct sugov_policy *sg_policy)
715 {
716         struct sugov_tunables *tunables;
717
718         tunables = kzalloc(sizeof(*tunables), GFP_KERNEL);
719         if (tunables) {
720                 gov_attr_set_init(&tunables->attr_set, &sg_policy->tunables_hook);
721                 if (!have_governor_per_policy())
722                         global_tunables = tunables;
723         }
724         return tunables;
725 }
726
727 static void sugov_clear_global_tunables(void)
728 {
729         if (!have_governor_per_policy())
730                 global_tunables = NULL;
731 }
732
733 static int sugov_init(struct cpufreq_policy *policy)
734 {
735         struct sugov_policy *sg_policy;
736         struct sugov_tunables *tunables;
737         int ret = 0;
738
739         /* State should be equivalent to EXIT */
740         if (policy->governor_data)
741                 return -EBUSY;
742
743         cpufreq_enable_fast_switch(policy);
744
745         sg_policy = sugov_policy_alloc(policy);
746         if (!sg_policy) {
747                 ret = -ENOMEM;
748                 goto disable_fast_switch;
749         }
750
751         ret = sugov_kthread_create(sg_policy);
752         if (ret)
753                 goto free_sg_policy;
754
755         mutex_lock(&global_tunables_lock);
756
757         if (global_tunables) {
758                 if (WARN_ON(have_governor_per_policy())) {
759                         ret = -EINVAL;
760                         goto stop_kthread;
761                 }
762                 policy->governor_data = sg_policy;
763                 sg_policy->tunables = global_tunables;
764
765                 gov_attr_set_get(&global_tunables->attr_set, &sg_policy->tunables_hook);
766                 goto out;
767         }
768
769         tunables = sugov_tunables_alloc(sg_policy);
770         if (!tunables) {
771                 ret = -ENOMEM;
772                 goto stop_kthread;
773         }
774
775         tunables->rate_limit_us = cpufreq_policy_transition_delay_us(policy);
776
777         policy->governor_data = sg_policy;
778         sg_policy->tunables = tunables;
779
780         ret = kobject_init_and_add(&tunables->attr_set.kobj, &sugov_tunables_ktype,
781                                    get_governor_parent_kobj(policy), "%s",
782                                    schedutil_gov.name);
783         if (ret)
784                 goto fail;
785
786 out:
787         sugov_eas_rebuild_sd();
788         mutex_unlock(&global_tunables_lock);
789         return 0;
790
791 fail:
792         kobject_put(&tunables->attr_set.kobj);
793         policy->governor_data = NULL;
794         sugov_clear_global_tunables();
795
796 stop_kthread:
797         sugov_kthread_stop(sg_policy);
798         mutex_unlock(&global_tunables_lock);
799
800 free_sg_policy:
801         sugov_policy_free(sg_policy);
802
803 disable_fast_switch:
804         cpufreq_disable_fast_switch(policy);
805
806         pr_err("initialization failed (error %d)\n", ret);
807         return ret;
808 }
809
810 static void sugov_exit(struct cpufreq_policy *policy)
811 {
812         struct sugov_policy *sg_policy = policy->governor_data;
813         struct sugov_tunables *tunables = sg_policy->tunables;
814         unsigned int count;
815
816         mutex_lock(&global_tunables_lock);
817
818         count = gov_attr_set_put(&tunables->attr_set, &sg_policy->tunables_hook);
819         policy->governor_data = NULL;
820         if (!count)
821                 sugov_clear_global_tunables();
822
823         mutex_unlock(&global_tunables_lock);
824
825         sugov_kthread_stop(sg_policy);
826         sugov_policy_free(sg_policy);
827         cpufreq_disable_fast_switch(policy);
828
829         sugov_eas_rebuild_sd();
830 }
831
832 static int sugov_start(struct cpufreq_policy *policy)
833 {
834         struct sugov_policy *sg_policy = policy->governor_data;
835         void (*uu)(struct update_util_data *data, u64 time, unsigned int flags);
836         unsigned int cpu;
837
838         sg_policy->freq_update_delay_ns = sg_policy->tunables->rate_limit_us * NSEC_PER_USEC;
839         sg_policy->last_freq_update_time        = 0;
840         sg_policy->next_freq                    = 0;
841         sg_policy->work_in_progress             = false;
842         sg_policy->limits_changed               = false;
843         sg_policy->cached_raw_freq              = 0;
844
845         sg_policy->need_freq_update = cpufreq_driver_test_flags(CPUFREQ_NEED_UPDATE_LIMITS);
846
847         if (policy_is_shared(policy))
848                 uu = sugov_update_shared;
849         else if (policy->fast_switch_enabled && cpufreq_driver_has_adjust_perf())
850                 uu = sugov_update_single_perf;
851         else
852                 uu = sugov_update_single_freq;
853
854         for_each_cpu(cpu, policy->cpus) {
855                 struct sugov_cpu *sg_cpu = &per_cpu(sugov_cpu, cpu);
856
857                 memset(sg_cpu, 0, sizeof(*sg_cpu));
858                 sg_cpu->cpu = cpu;
859                 sg_cpu->sg_policy = sg_policy;
860                 cpufreq_add_update_util_hook(cpu, &sg_cpu->update_util, uu);
861         }
862         return 0;
863 }
864
865 static void sugov_stop(struct cpufreq_policy *policy)
866 {
867         struct sugov_policy *sg_policy = policy->governor_data;
868         unsigned int cpu;
869
870         for_each_cpu(cpu, policy->cpus)
871                 cpufreq_remove_update_util_hook(cpu);
872
873         synchronize_rcu();
874
875         if (!policy->fast_switch_enabled) {
876                 irq_work_sync(&sg_policy->irq_work);
877                 kthread_cancel_work_sync(&sg_policy->work);
878         }
879 }
880
881 static void sugov_limits(struct cpufreq_policy *policy)
882 {
883         struct sugov_policy *sg_policy = policy->governor_data;
884
885         if (!policy->fast_switch_enabled) {
886                 mutex_lock(&sg_policy->work_lock);
887                 cpufreq_policy_apply_limits(policy);
888                 mutex_unlock(&sg_policy->work_lock);
889         }
890
891         sg_policy->limits_changed = true;
892 }
893
894 struct cpufreq_governor schedutil_gov = {
895         .name                   = "schedutil",
896         .owner                  = THIS_MODULE,
897         .flags                  = CPUFREQ_GOV_DYNAMIC_SWITCHING,
898         .init                   = sugov_init,
899         .exit                   = sugov_exit,
900         .start                  = sugov_start,
901         .stop                   = sugov_stop,
902         .limits                 = sugov_limits,
903 };
904
905 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_SCHEDUTIL
906 struct cpufreq_governor *cpufreq_default_governor(void)
907 {
908         return &schedutil_gov;
909 }
910 #endif
911
912 cpufreq_governor_init(schedutil_gov);
This page took 0.076627 seconds and 4 git commands to generate.