]> Git Repo - J-linux.git/blob - kernel/rcu/tasks.h
Merge tag 'vfs-6.13-rc7.fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs
[J-linux.git] / kernel / rcu / tasks.h
1 /* SPDX-License-Identifier: GPL-2.0+ */
2 /*
3  * Task-based RCU implementations.
4  *
5  * Copyright (C) 2020 Paul E. McKenney
6  */
7
8 #ifdef CONFIG_TASKS_RCU_GENERIC
9 #include "rcu_segcblist.h"
10
11 ////////////////////////////////////////////////////////////////////////
12 //
13 // Generic data structures.
14
15 struct rcu_tasks;
16 typedef void (*rcu_tasks_gp_func_t)(struct rcu_tasks *rtp);
17 typedef void (*pregp_func_t)(struct list_head *hop);
18 typedef void (*pertask_func_t)(struct task_struct *t, struct list_head *hop);
19 typedef void (*postscan_func_t)(struct list_head *hop);
20 typedef void (*holdouts_func_t)(struct list_head *hop, bool ndrpt, bool *frptp);
21 typedef void (*postgp_func_t)(struct rcu_tasks *rtp);
22
23 /**
24  * struct rcu_tasks_percpu - Per-CPU component of definition for a Tasks-RCU-like mechanism.
25  * @cblist: Callback list.
26  * @lock: Lock protecting per-CPU callback list.
27  * @rtp_jiffies: Jiffies counter value for statistics.
28  * @lazy_timer: Timer to unlazify callbacks.
29  * @urgent_gp: Number of additional non-lazy grace periods.
30  * @rtp_n_lock_retries: Rough lock-contention statistic.
31  * @rtp_work: Work queue for invoking callbacks.
32  * @rtp_irq_work: IRQ work queue for deferred wakeups.
33  * @barrier_q_head: RCU callback for barrier operation.
34  * @rtp_blkd_tasks: List of tasks blocked as readers.
35  * @rtp_exit_list: List of tasks in the latter portion of do_exit().
36  * @cpu: CPU number corresponding to this entry.
37  * @index: Index of this CPU in rtpcp_array of the rcu_tasks structure.
38  * @rtpp: Pointer to the rcu_tasks structure.
39  */
40 struct rcu_tasks_percpu {
41         struct rcu_segcblist cblist;
42         raw_spinlock_t __private lock;
43         unsigned long rtp_jiffies;
44         unsigned long rtp_n_lock_retries;
45         struct timer_list lazy_timer;
46         unsigned int urgent_gp;
47         struct work_struct rtp_work;
48         struct irq_work rtp_irq_work;
49         struct rcu_head barrier_q_head;
50         struct list_head rtp_blkd_tasks;
51         struct list_head rtp_exit_list;
52         int cpu;
53         int index;
54         struct rcu_tasks *rtpp;
55 };
56
57 /**
58  * struct rcu_tasks - Definition for a Tasks-RCU-like mechanism.
59  * @cbs_wait: RCU wait allowing a new callback to get kthread's attention.
60  * @cbs_gbl_lock: Lock protecting callback list.
61  * @tasks_gp_mutex: Mutex protecting grace period, needed during mid-boot dead zone.
62  * @gp_func: This flavor's grace-period-wait function.
63  * @gp_state: Grace period's most recent state transition (debugging).
64  * @gp_sleep: Per-grace-period sleep to prevent CPU-bound looping.
65  * @init_fract: Initial backoff sleep interval.
66  * @gp_jiffies: Time of last @gp_state transition.
67  * @gp_start: Most recent grace-period start in jiffies.
68  * @tasks_gp_seq: Number of grace periods completed since boot in upper bits.
69  * @n_ipis: Number of IPIs sent to encourage grace periods to end.
70  * @n_ipis_fails: Number of IPI-send failures.
71  * @kthread_ptr: This flavor's grace-period/callback-invocation kthread.
72  * @lazy_jiffies: Number of jiffies to allow callbacks to be lazy.
73  * @pregp_func: This flavor's pre-grace-period function (optional).
74  * @pertask_func: This flavor's per-task scan function (optional).
75  * @postscan_func: This flavor's post-task scan function (optional).
76  * @holdouts_func: This flavor's holdout-list scan function (optional).
77  * @postgp_func: This flavor's post-grace-period function (optional).
78  * @call_func: This flavor's call_rcu()-equivalent function.
79  * @wait_state: Task state for synchronous grace-period waits (default TASK_UNINTERRUPTIBLE).
80  * @rtpcpu: This flavor's rcu_tasks_percpu structure.
81  * @rtpcp_array: Array of pointers to rcu_tasks_percpu structure of CPUs in cpu_possible_mask.
82  * @percpu_enqueue_shift: Shift down CPU ID this much when enqueuing callbacks.
83  * @percpu_enqueue_lim: Number of per-CPU callback queues in use for enqueuing.
84  * @percpu_dequeue_lim: Number of per-CPU callback queues in use for dequeuing.
85  * @percpu_dequeue_gpseq: RCU grace-period number to propagate enqueue limit to dequeuers.
86  * @barrier_q_mutex: Serialize barrier operations.
87  * @barrier_q_count: Number of queues being waited on.
88  * @barrier_q_completion: Barrier wait/wakeup mechanism.
89  * @barrier_q_seq: Sequence number for barrier operations.
90  * @barrier_q_start: Most recent barrier start in jiffies.
91  * @name: This flavor's textual name.
92  * @kname: This flavor's kthread name.
93  */
94 struct rcu_tasks {
95         struct rcuwait cbs_wait;
96         raw_spinlock_t cbs_gbl_lock;
97         struct mutex tasks_gp_mutex;
98         int gp_state;
99         int gp_sleep;
100         int init_fract;
101         unsigned long gp_jiffies;
102         unsigned long gp_start;
103         unsigned long tasks_gp_seq;
104         unsigned long n_ipis;
105         unsigned long n_ipis_fails;
106         struct task_struct *kthread_ptr;
107         unsigned long lazy_jiffies;
108         rcu_tasks_gp_func_t gp_func;
109         pregp_func_t pregp_func;
110         pertask_func_t pertask_func;
111         postscan_func_t postscan_func;
112         holdouts_func_t holdouts_func;
113         postgp_func_t postgp_func;
114         call_rcu_func_t call_func;
115         unsigned int wait_state;
116         struct rcu_tasks_percpu __percpu *rtpcpu;
117         struct rcu_tasks_percpu **rtpcp_array;
118         int percpu_enqueue_shift;
119         int percpu_enqueue_lim;
120         int percpu_dequeue_lim;
121         unsigned long percpu_dequeue_gpseq;
122         struct mutex barrier_q_mutex;
123         atomic_t barrier_q_count;
124         struct completion barrier_q_completion;
125         unsigned long barrier_q_seq;
126         unsigned long barrier_q_start;
127         char *name;
128         char *kname;
129 };
130
131 static void call_rcu_tasks_iw_wakeup(struct irq_work *iwp);
132
133 #define DEFINE_RCU_TASKS(rt_name, gp, call, n)                                          \
134 static DEFINE_PER_CPU(struct rcu_tasks_percpu, rt_name ## __percpu) = {                 \
135         .lock = __RAW_SPIN_LOCK_UNLOCKED(rt_name ## __percpu.cbs_pcpu_lock),            \
136         .rtp_irq_work = IRQ_WORK_INIT_HARD(call_rcu_tasks_iw_wakeup),                   \
137 };                                                                                      \
138 static struct rcu_tasks rt_name =                                                       \
139 {                                                                                       \
140         .cbs_wait = __RCUWAIT_INITIALIZER(rt_name.wait),                                \
141         .cbs_gbl_lock = __RAW_SPIN_LOCK_UNLOCKED(rt_name.cbs_gbl_lock),                 \
142         .tasks_gp_mutex = __MUTEX_INITIALIZER(rt_name.tasks_gp_mutex),                  \
143         .gp_func = gp,                                                                  \
144         .call_func = call,                                                              \
145         .wait_state = TASK_UNINTERRUPTIBLE,                                             \
146         .rtpcpu = &rt_name ## __percpu,                                                 \
147         .lazy_jiffies = DIV_ROUND_UP(HZ, 4),                                            \
148         .name = n,                                                                      \
149         .percpu_enqueue_shift = order_base_2(CONFIG_NR_CPUS),                           \
150         .percpu_enqueue_lim = 1,                                                        \
151         .percpu_dequeue_lim = 1,                                                        \
152         .barrier_q_mutex = __MUTEX_INITIALIZER(rt_name.barrier_q_mutex),                \
153         .barrier_q_seq = (0UL - 50UL) << RCU_SEQ_CTR_SHIFT,                             \
154         .kname = #rt_name,                                                              \
155 }
156
157 #ifdef CONFIG_TASKS_RCU
158
159 /* Report delay of scan exiting tasklist in rcu_tasks_postscan(). */
160 static void tasks_rcu_exit_srcu_stall(struct timer_list *unused);
161 static DEFINE_TIMER(tasks_rcu_exit_srcu_stall_timer, tasks_rcu_exit_srcu_stall);
162 #endif
163
164 /* Avoid IPIing CPUs early in the grace period. */
165 #define RCU_TASK_IPI_DELAY (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB) ? HZ / 2 : 0)
166 static int rcu_task_ipi_delay __read_mostly = RCU_TASK_IPI_DELAY;
167 module_param(rcu_task_ipi_delay, int, 0644);
168
169 /* Control stall timeouts.  Disable with <= 0, otherwise jiffies till stall. */
170 #define RCU_TASK_BOOT_STALL_TIMEOUT (HZ * 30)
171 #define RCU_TASK_STALL_TIMEOUT (HZ * 60 * 10)
172 static int rcu_task_stall_timeout __read_mostly = RCU_TASK_STALL_TIMEOUT;
173 module_param(rcu_task_stall_timeout, int, 0644);
174 #define RCU_TASK_STALL_INFO (HZ * 10)
175 static int rcu_task_stall_info __read_mostly = RCU_TASK_STALL_INFO;
176 module_param(rcu_task_stall_info, int, 0644);
177 static int rcu_task_stall_info_mult __read_mostly = 3;
178 module_param(rcu_task_stall_info_mult, int, 0444);
179
180 static int rcu_task_enqueue_lim __read_mostly = -1;
181 module_param(rcu_task_enqueue_lim, int, 0444);
182
183 static bool rcu_task_cb_adjust;
184 static int rcu_task_contend_lim __read_mostly = 100;
185 module_param(rcu_task_contend_lim, int, 0444);
186 static int rcu_task_collapse_lim __read_mostly = 10;
187 module_param(rcu_task_collapse_lim, int, 0444);
188 static int rcu_task_lazy_lim __read_mostly = 32;
189 module_param(rcu_task_lazy_lim, int, 0444);
190
191 static int rcu_task_cpu_ids;
192
193 /* RCU tasks grace-period state for debugging. */
194 #define RTGS_INIT                0
195 #define RTGS_WAIT_WAIT_CBS       1
196 #define RTGS_WAIT_GP             2
197 #define RTGS_PRE_WAIT_GP         3
198 #define RTGS_SCAN_TASKLIST       4
199 #define RTGS_POST_SCAN_TASKLIST  5
200 #define RTGS_WAIT_SCAN_HOLDOUTS  6
201 #define RTGS_SCAN_HOLDOUTS       7
202 #define RTGS_POST_GP             8
203 #define RTGS_WAIT_READERS        9
204 #define RTGS_INVOKE_CBS         10
205 #define RTGS_WAIT_CBS           11
206 #ifndef CONFIG_TINY_RCU
207 static const char * const rcu_tasks_gp_state_names[] = {
208         "RTGS_INIT",
209         "RTGS_WAIT_WAIT_CBS",
210         "RTGS_WAIT_GP",
211         "RTGS_PRE_WAIT_GP",
212         "RTGS_SCAN_TASKLIST",
213         "RTGS_POST_SCAN_TASKLIST",
214         "RTGS_WAIT_SCAN_HOLDOUTS",
215         "RTGS_SCAN_HOLDOUTS",
216         "RTGS_POST_GP",
217         "RTGS_WAIT_READERS",
218         "RTGS_INVOKE_CBS",
219         "RTGS_WAIT_CBS",
220 };
221 #endif /* #ifndef CONFIG_TINY_RCU */
222
223 ////////////////////////////////////////////////////////////////////////
224 //
225 // Generic code.
226
227 static void rcu_tasks_invoke_cbs_wq(struct work_struct *wp);
228
229 /* Record grace-period phase and time. */
230 static void set_tasks_gp_state(struct rcu_tasks *rtp, int newstate)
231 {
232         rtp->gp_state = newstate;
233         rtp->gp_jiffies = jiffies;
234 }
235
236 #ifndef CONFIG_TINY_RCU
237 /* Return state name. */
238 static const char *tasks_gp_state_getname(struct rcu_tasks *rtp)
239 {
240         int i = data_race(rtp->gp_state); // Let KCSAN detect update races
241         int j = READ_ONCE(i); // Prevent the compiler from reading twice
242
243         if (j >= ARRAY_SIZE(rcu_tasks_gp_state_names))
244                 return "???";
245         return rcu_tasks_gp_state_names[j];
246 }
247 #endif /* #ifndef CONFIG_TINY_RCU */
248
249 // Initialize per-CPU callback lists for the specified flavor of
250 // Tasks RCU.  Do not enqueue callbacks before this function is invoked.
251 static void cblist_init_generic(struct rcu_tasks *rtp)
252 {
253         int cpu;
254         int lim;
255         int shift;
256         int maxcpu;
257         int index = 0;
258
259         if (rcu_task_enqueue_lim < 0) {
260                 rcu_task_enqueue_lim = 1;
261                 rcu_task_cb_adjust = true;
262         } else if (rcu_task_enqueue_lim == 0) {
263                 rcu_task_enqueue_lim = 1;
264         }
265         lim = rcu_task_enqueue_lim;
266
267         rtp->rtpcp_array = kcalloc(num_possible_cpus(), sizeof(struct rcu_tasks_percpu *), GFP_KERNEL);
268         BUG_ON(!rtp->rtpcp_array);
269
270         for_each_possible_cpu(cpu) {
271                 struct rcu_tasks_percpu *rtpcp = per_cpu_ptr(rtp->rtpcpu, cpu);
272
273                 WARN_ON_ONCE(!rtpcp);
274                 if (cpu)
275                         raw_spin_lock_init(&ACCESS_PRIVATE(rtpcp, lock));
276                 if (rcu_segcblist_empty(&rtpcp->cblist))
277                         rcu_segcblist_init(&rtpcp->cblist);
278                 INIT_WORK(&rtpcp->rtp_work, rcu_tasks_invoke_cbs_wq);
279                 rtpcp->cpu = cpu;
280                 rtpcp->rtpp = rtp;
281                 rtpcp->index = index;
282                 rtp->rtpcp_array[index] = rtpcp;
283                 index++;
284                 if (!rtpcp->rtp_blkd_tasks.next)
285                         INIT_LIST_HEAD(&rtpcp->rtp_blkd_tasks);
286                 if (!rtpcp->rtp_exit_list.next)
287                         INIT_LIST_HEAD(&rtpcp->rtp_exit_list);
288                 rtpcp->barrier_q_head.next = &rtpcp->barrier_q_head;
289                 maxcpu = cpu;
290         }
291
292         rcu_task_cpu_ids = maxcpu + 1;
293         if (lim > rcu_task_cpu_ids)
294                 lim = rcu_task_cpu_ids;
295         shift = ilog2(rcu_task_cpu_ids / lim);
296         if (((rcu_task_cpu_ids - 1) >> shift) >= lim)
297                 shift++;
298         WRITE_ONCE(rtp->percpu_enqueue_shift, shift);
299         WRITE_ONCE(rtp->percpu_dequeue_lim, lim);
300         smp_store_release(&rtp->percpu_enqueue_lim, lim);
301
302         pr_info("%s: Setting shift to %d and lim to %d rcu_task_cb_adjust=%d rcu_task_cpu_ids=%d.\n",
303                         rtp->name, data_race(rtp->percpu_enqueue_shift), data_race(rtp->percpu_enqueue_lim),
304                         rcu_task_cb_adjust, rcu_task_cpu_ids);
305 }
306
307 // Compute wakeup time for lazy callback timer.
308 static unsigned long rcu_tasks_lazy_time(struct rcu_tasks *rtp)
309 {
310         return jiffies + rtp->lazy_jiffies;
311 }
312
313 // Timer handler that unlazifies lazy callbacks.
314 static void call_rcu_tasks_generic_timer(struct timer_list *tlp)
315 {
316         unsigned long flags;
317         bool needwake = false;
318         struct rcu_tasks *rtp;
319         struct rcu_tasks_percpu *rtpcp = from_timer(rtpcp, tlp, lazy_timer);
320
321         rtp = rtpcp->rtpp;
322         raw_spin_lock_irqsave_rcu_node(rtpcp, flags);
323         if (!rcu_segcblist_empty(&rtpcp->cblist) && rtp->lazy_jiffies) {
324                 if (!rtpcp->urgent_gp)
325                         rtpcp->urgent_gp = 1;
326                 needwake = true;
327                 mod_timer(&rtpcp->lazy_timer, rcu_tasks_lazy_time(rtp));
328         }
329         raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags);
330         if (needwake)
331                 rcuwait_wake_up(&rtp->cbs_wait);
332 }
333
334 // IRQ-work handler that does deferred wakeup for call_rcu_tasks_generic().
335 static void call_rcu_tasks_iw_wakeup(struct irq_work *iwp)
336 {
337         struct rcu_tasks *rtp;
338         struct rcu_tasks_percpu *rtpcp = container_of(iwp, struct rcu_tasks_percpu, rtp_irq_work);
339
340         rtp = rtpcp->rtpp;
341         rcuwait_wake_up(&rtp->cbs_wait);
342 }
343
344 // Enqueue a callback for the specified flavor of Tasks RCU.
345 static void call_rcu_tasks_generic(struct rcu_head *rhp, rcu_callback_t func,
346                                    struct rcu_tasks *rtp)
347 {
348         int chosen_cpu;
349         unsigned long flags;
350         bool havekthread = smp_load_acquire(&rtp->kthread_ptr);
351         int ideal_cpu;
352         unsigned long j;
353         bool needadjust = false;
354         bool needwake;
355         struct rcu_tasks_percpu *rtpcp;
356
357         rhp->next = NULL;
358         rhp->func = func;
359         local_irq_save(flags);
360         rcu_read_lock();
361         ideal_cpu = smp_processor_id() >> READ_ONCE(rtp->percpu_enqueue_shift);
362         chosen_cpu = cpumask_next(ideal_cpu - 1, cpu_possible_mask);
363         WARN_ON_ONCE(chosen_cpu >= rcu_task_cpu_ids);
364         rtpcp = per_cpu_ptr(rtp->rtpcpu, chosen_cpu);
365         if (!raw_spin_trylock_rcu_node(rtpcp)) { // irqs already disabled.
366                 raw_spin_lock_rcu_node(rtpcp); // irqs already disabled.
367                 j = jiffies;
368                 if (rtpcp->rtp_jiffies != j) {
369                         rtpcp->rtp_jiffies = j;
370                         rtpcp->rtp_n_lock_retries = 0;
371                 }
372                 if (rcu_task_cb_adjust && ++rtpcp->rtp_n_lock_retries > rcu_task_contend_lim &&
373                     READ_ONCE(rtp->percpu_enqueue_lim) != rcu_task_cpu_ids)
374                         needadjust = true;  // Defer adjustment to avoid deadlock.
375         }
376         // Queuing callbacks before initialization not yet supported.
377         if (WARN_ON_ONCE(!rcu_segcblist_is_enabled(&rtpcp->cblist)))
378                 rcu_segcblist_init(&rtpcp->cblist);
379         needwake = (func == wakeme_after_rcu) ||
380                    (rcu_segcblist_n_cbs(&rtpcp->cblist) == rcu_task_lazy_lim);
381         if (havekthread && !needwake && !timer_pending(&rtpcp->lazy_timer)) {
382                 if (rtp->lazy_jiffies)
383                         mod_timer(&rtpcp->lazy_timer, rcu_tasks_lazy_time(rtp));
384                 else
385                         needwake = rcu_segcblist_empty(&rtpcp->cblist);
386         }
387         if (needwake)
388                 rtpcp->urgent_gp = 3;
389         rcu_segcblist_enqueue(&rtpcp->cblist, rhp);
390         raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags);
391         if (unlikely(needadjust)) {
392                 raw_spin_lock_irqsave(&rtp->cbs_gbl_lock, flags);
393                 if (rtp->percpu_enqueue_lim != rcu_task_cpu_ids) {
394                         WRITE_ONCE(rtp->percpu_enqueue_shift, 0);
395                         WRITE_ONCE(rtp->percpu_dequeue_lim, rcu_task_cpu_ids);
396                         smp_store_release(&rtp->percpu_enqueue_lim, rcu_task_cpu_ids);
397                         pr_info("Switching %s to per-CPU callback queuing.\n", rtp->name);
398                 }
399                 raw_spin_unlock_irqrestore(&rtp->cbs_gbl_lock, flags);
400         }
401         rcu_read_unlock();
402         /* We can't create the thread unless interrupts are enabled. */
403         if (needwake && READ_ONCE(rtp->kthread_ptr))
404                 irq_work_queue(&rtpcp->rtp_irq_work);
405 }
406
407 // RCU callback function for rcu_barrier_tasks_generic().
408 static void rcu_barrier_tasks_generic_cb(struct rcu_head *rhp)
409 {
410         struct rcu_tasks *rtp;
411         struct rcu_tasks_percpu *rtpcp;
412
413         rhp->next = rhp; // Mark the callback as having been invoked.
414         rtpcp = container_of(rhp, struct rcu_tasks_percpu, barrier_q_head);
415         rtp = rtpcp->rtpp;
416         if (atomic_dec_and_test(&rtp->barrier_q_count))
417                 complete(&rtp->barrier_q_completion);
418 }
419
420 // Wait for all in-flight callbacks for the specified RCU Tasks flavor.
421 // Operates in a manner similar to rcu_barrier().
422 static void __maybe_unused rcu_barrier_tasks_generic(struct rcu_tasks *rtp)
423 {
424         int cpu;
425         unsigned long flags;
426         struct rcu_tasks_percpu *rtpcp;
427         unsigned long s = rcu_seq_snap(&rtp->barrier_q_seq);
428
429         mutex_lock(&rtp->barrier_q_mutex);
430         if (rcu_seq_done(&rtp->barrier_q_seq, s)) {
431                 smp_mb();
432                 mutex_unlock(&rtp->barrier_q_mutex);
433                 return;
434         }
435         rtp->barrier_q_start = jiffies;
436         rcu_seq_start(&rtp->barrier_q_seq);
437         init_completion(&rtp->barrier_q_completion);
438         atomic_set(&rtp->barrier_q_count, 2);
439         for_each_possible_cpu(cpu) {
440                 if (cpu >= smp_load_acquire(&rtp->percpu_dequeue_lim))
441                         break;
442                 rtpcp = per_cpu_ptr(rtp->rtpcpu, cpu);
443                 rtpcp->barrier_q_head.func = rcu_barrier_tasks_generic_cb;
444                 raw_spin_lock_irqsave_rcu_node(rtpcp, flags);
445                 if (rcu_segcblist_entrain(&rtpcp->cblist, &rtpcp->barrier_q_head))
446                         atomic_inc(&rtp->barrier_q_count);
447                 raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags);
448         }
449         if (atomic_sub_and_test(2, &rtp->barrier_q_count))
450                 complete(&rtp->barrier_q_completion);
451         wait_for_completion(&rtp->barrier_q_completion);
452         rcu_seq_end(&rtp->barrier_q_seq);
453         mutex_unlock(&rtp->barrier_q_mutex);
454 }
455
456 // Advance callbacks and indicate whether either a grace period or
457 // callback invocation is needed.
458 static int rcu_tasks_need_gpcb(struct rcu_tasks *rtp)
459 {
460         int cpu;
461         int dequeue_limit;
462         unsigned long flags;
463         bool gpdone = poll_state_synchronize_rcu(rtp->percpu_dequeue_gpseq);
464         long n;
465         long ncbs = 0;
466         long ncbsnz = 0;
467         int needgpcb = 0;
468
469         dequeue_limit = smp_load_acquire(&rtp->percpu_dequeue_lim);
470         for (cpu = 0; cpu < dequeue_limit; cpu++) {
471                 if (!cpu_possible(cpu))
472                         continue;
473                 struct rcu_tasks_percpu *rtpcp = per_cpu_ptr(rtp->rtpcpu, cpu);
474
475                 /* Advance and accelerate any new callbacks. */
476                 if (!rcu_segcblist_n_cbs(&rtpcp->cblist))
477                         continue;
478                 raw_spin_lock_irqsave_rcu_node(rtpcp, flags);
479                 // Should we shrink down to a single callback queue?
480                 n = rcu_segcblist_n_cbs(&rtpcp->cblist);
481                 if (n) {
482                         ncbs += n;
483                         if (cpu > 0)
484                                 ncbsnz += n;
485                 }
486                 rcu_segcblist_advance(&rtpcp->cblist, rcu_seq_current(&rtp->tasks_gp_seq));
487                 (void)rcu_segcblist_accelerate(&rtpcp->cblist, rcu_seq_snap(&rtp->tasks_gp_seq));
488                 if (rtpcp->urgent_gp > 0 && rcu_segcblist_pend_cbs(&rtpcp->cblist)) {
489                         if (rtp->lazy_jiffies)
490                                 rtpcp->urgent_gp--;
491                         needgpcb |= 0x3;
492                 } else if (rcu_segcblist_empty(&rtpcp->cblist)) {
493                         rtpcp->urgent_gp = 0;
494                 }
495                 if (rcu_segcblist_ready_cbs(&rtpcp->cblist))
496                         needgpcb |= 0x1;
497                 raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags);
498         }
499
500         // Shrink down to a single callback queue if appropriate.
501         // This is done in two stages: (1) If there are no more than
502         // rcu_task_collapse_lim callbacks on CPU 0 and none on any other
503         // CPU, limit enqueueing to CPU 0.  (2) After an RCU grace period,
504         // if there has not been an increase in callbacks, limit dequeuing
505         // to CPU 0.  Note the matching RCU read-side critical section in
506         // call_rcu_tasks_generic().
507         if (rcu_task_cb_adjust && ncbs <= rcu_task_collapse_lim) {
508                 raw_spin_lock_irqsave(&rtp->cbs_gbl_lock, flags);
509                 if (rtp->percpu_enqueue_lim > 1) {
510                         WRITE_ONCE(rtp->percpu_enqueue_shift, order_base_2(rcu_task_cpu_ids));
511                         smp_store_release(&rtp->percpu_enqueue_lim, 1);
512                         rtp->percpu_dequeue_gpseq = get_state_synchronize_rcu();
513                         gpdone = false;
514                         pr_info("Starting switch %s to CPU-0 callback queuing.\n", rtp->name);
515                 }
516                 raw_spin_unlock_irqrestore(&rtp->cbs_gbl_lock, flags);
517         }
518         if (rcu_task_cb_adjust && !ncbsnz && gpdone) {
519                 raw_spin_lock_irqsave(&rtp->cbs_gbl_lock, flags);
520                 if (rtp->percpu_enqueue_lim < rtp->percpu_dequeue_lim) {
521                         WRITE_ONCE(rtp->percpu_dequeue_lim, 1);
522                         pr_info("Completing switch %s to CPU-0 callback queuing.\n", rtp->name);
523                 }
524                 if (rtp->percpu_dequeue_lim == 1) {
525                         for (cpu = rtp->percpu_dequeue_lim; cpu < rcu_task_cpu_ids; cpu++) {
526                                 if (!cpu_possible(cpu))
527                                         continue;
528                                 struct rcu_tasks_percpu *rtpcp = per_cpu_ptr(rtp->rtpcpu, cpu);
529
530                                 WARN_ON_ONCE(rcu_segcblist_n_cbs(&rtpcp->cblist));
531                         }
532                 }
533                 raw_spin_unlock_irqrestore(&rtp->cbs_gbl_lock, flags);
534         }
535
536         return needgpcb;
537 }
538
539 // Advance callbacks and invoke any that are ready.
540 static void rcu_tasks_invoke_cbs(struct rcu_tasks *rtp, struct rcu_tasks_percpu *rtpcp)
541 {
542         int cpuwq;
543         unsigned long flags;
544         int len;
545         int index;
546         struct rcu_head *rhp;
547         struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl);
548         struct rcu_tasks_percpu *rtpcp_next;
549
550         index = rtpcp->index * 2 + 1;
551         if (index < num_possible_cpus()) {
552                 rtpcp_next = rtp->rtpcp_array[index];
553                 if (rtpcp_next->cpu < smp_load_acquire(&rtp->percpu_dequeue_lim)) {
554                         cpuwq = rcu_cpu_beenfullyonline(rtpcp_next->cpu) ? rtpcp_next->cpu : WORK_CPU_UNBOUND;
555                         queue_work_on(cpuwq, system_wq, &rtpcp_next->rtp_work);
556                         index++;
557                         if (index < num_possible_cpus()) {
558                                 rtpcp_next = rtp->rtpcp_array[index];
559                                 if (rtpcp_next->cpu < smp_load_acquire(&rtp->percpu_dequeue_lim)) {
560                                         cpuwq = rcu_cpu_beenfullyonline(rtpcp_next->cpu) ? rtpcp_next->cpu : WORK_CPU_UNBOUND;
561                                         queue_work_on(cpuwq, system_wq, &rtpcp_next->rtp_work);
562                                 }
563                         }
564                 }
565         }
566
567         if (rcu_segcblist_empty(&rtpcp->cblist))
568                 return;
569         raw_spin_lock_irqsave_rcu_node(rtpcp, flags);
570         rcu_segcblist_advance(&rtpcp->cblist, rcu_seq_current(&rtp->tasks_gp_seq));
571         rcu_segcblist_extract_done_cbs(&rtpcp->cblist, &rcl);
572         raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags);
573         len = rcl.len;
574         for (rhp = rcu_cblist_dequeue(&rcl); rhp; rhp = rcu_cblist_dequeue(&rcl)) {
575                 debug_rcu_head_callback(rhp);
576                 local_bh_disable();
577                 rhp->func(rhp);
578                 local_bh_enable();
579                 cond_resched();
580         }
581         raw_spin_lock_irqsave_rcu_node(rtpcp, flags);
582         rcu_segcblist_add_len(&rtpcp->cblist, -len);
583         (void)rcu_segcblist_accelerate(&rtpcp->cblist, rcu_seq_snap(&rtp->tasks_gp_seq));
584         raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags);
585 }
586
587 // Workqueue flood to advance callbacks and invoke any that are ready.
588 static void rcu_tasks_invoke_cbs_wq(struct work_struct *wp)
589 {
590         struct rcu_tasks *rtp;
591         struct rcu_tasks_percpu *rtpcp = container_of(wp, struct rcu_tasks_percpu, rtp_work);
592
593         rtp = rtpcp->rtpp;
594         rcu_tasks_invoke_cbs(rtp, rtpcp);
595 }
596
597 // Wait for one grace period.
598 static void rcu_tasks_one_gp(struct rcu_tasks *rtp, bool midboot)
599 {
600         int needgpcb;
601
602         mutex_lock(&rtp->tasks_gp_mutex);
603
604         // If there were none, wait a bit and start over.
605         if (unlikely(midboot)) {
606                 needgpcb = 0x2;
607         } else {
608                 mutex_unlock(&rtp->tasks_gp_mutex);
609                 set_tasks_gp_state(rtp, RTGS_WAIT_CBS);
610                 rcuwait_wait_event(&rtp->cbs_wait,
611                                    (needgpcb = rcu_tasks_need_gpcb(rtp)),
612                                    TASK_IDLE);
613                 mutex_lock(&rtp->tasks_gp_mutex);
614         }
615
616         if (needgpcb & 0x2) {
617                 // Wait for one grace period.
618                 set_tasks_gp_state(rtp, RTGS_WAIT_GP);
619                 rtp->gp_start = jiffies;
620                 rcu_seq_start(&rtp->tasks_gp_seq);
621                 rtp->gp_func(rtp);
622                 rcu_seq_end(&rtp->tasks_gp_seq);
623         }
624
625         // Invoke callbacks.
626         set_tasks_gp_state(rtp, RTGS_INVOKE_CBS);
627         rcu_tasks_invoke_cbs(rtp, per_cpu_ptr(rtp->rtpcpu, 0));
628         mutex_unlock(&rtp->tasks_gp_mutex);
629 }
630
631 // RCU-tasks kthread that detects grace periods and invokes callbacks.
632 static int __noreturn rcu_tasks_kthread(void *arg)
633 {
634         int cpu;
635         struct rcu_tasks *rtp = arg;
636
637         for_each_possible_cpu(cpu) {
638                 struct rcu_tasks_percpu *rtpcp = per_cpu_ptr(rtp->rtpcpu, cpu);
639
640                 timer_setup(&rtpcp->lazy_timer, call_rcu_tasks_generic_timer, 0);
641                 rtpcp->urgent_gp = 1;
642         }
643
644         /* Run on housekeeping CPUs by default.  Sysadm can move if desired. */
645         housekeeping_affine(current, HK_TYPE_RCU);
646         smp_store_release(&rtp->kthread_ptr, current); // Let GPs start!
647
648         /*
649          * Each pass through the following loop makes one check for
650          * newly arrived callbacks, and, if there are some, waits for
651          * one RCU-tasks grace period and then invokes the callbacks.
652          * This loop is terminated by the system going down.  ;-)
653          */
654         for (;;) {
655                 // Wait for one grace period and invoke any callbacks
656                 // that are ready.
657                 rcu_tasks_one_gp(rtp, false);
658
659                 // Paranoid sleep to keep this from entering a tight loop.
660                 schedule_timeout_idle(rtp->gp_sleep);
661         }
662 }
663
664 // Wait for a grace period for the specified flavor of Tasks RCU.
665 static void synchronize_rcu_tasks_generic(struct rcu_tasks *rtp)
666 {
667         /* Complain if the scheduler has not started.  */
668         if (WARN_ONCE(rcu_scheduler_active == RCU_SCHEDULER_INACTIVE,
669                          "synchronize_%s() called too soon", rtp->name))
670                 return;
671
672         // If the grace-period kthread is running, use it.
673         if (READ_ONCE(rtp->kthread_ptr)) {
674                 wait_rcu_gp_state(rtp->wait_state, rtp->call_func);
675                 return;
676         }
677         rcu_tasks_one_gp(rtp, true);
678 }
679
680 /* Spawn RCU-tasks grace-period kthread. */
681 static void __init rcu_spawn_tasks_kthread_generic(struct rcu_tasks *rtp)
682 {
683         struct task_struct *t;
684
685         t = kthread_run(rcu_tasks_kthread, rtp, "%s_kthread", rtp->kname);
686         if (WARN_ONCE(IS_ERR(t), "%s: Could not start %s grace-period kthread, OOM is now expected behavior\n", __func__, rtp->name))
687                 return;
688         smp_mb(); /* Ensure others see full kthread. */
689 }
690
691 #ifndef CONFIG_TINY_RCU
692
693 /*
694  * Print any non-default Tasks RCU settings.
695  */
696 static void __init rcu_tasks_bootup_oddness(void)
697 {
698 #if defined(CONFIG_TASKS_RCU) || defined(CONFIG_TASKS_TRACE_RCU)
699         int rtsimc;
700
701         if (rcu_task_stall_timeout != RCU_TASK_STALL_TIMEOUT)
702                 pr_info("\tTasks-RCU CPU stall warnings timeout set to %d (rcu_task_stall_timeout).\n", rcu_task_stall_timeout);
703         rtsimc = clamp(rcu_task_stall_info_mult, 1, 10);
704         if (rtsimc != rcu_task_stall_info_mult) {
705                 pr_info("\tTasks-RCU CPU stall info multiplier clamped to %d (rcu_task_stall_info_mult).\n", rtsimc);
706                 rcu_task_stall_info_mult = rtsimc;
707         }
708 #endif /* #ifdef CONFIG_TASKS_RCU */
709 #ifdef CONFIG_TASKS_RCU
710         pr_info("\tTrampoline variant of Tasks RCU enabled.\n");
711 #endif /* #ifdef CONFIG_TASKS_RCU */
712 #ifdef CONFIG_TASKS_RUDE_RCU
713         pr_info("\tRude variant of Tasks RCU enabled.\n");
714 #endif /* #ifdef CONFIG_TASKS_RUDE_RCU */
715 #ifdef CONFIG_TASKS_TRACE_RCU
716         pr_info("\tTracing variant of Tasks RCU enabled.\n");
717 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
718 }
719
720
721 /* Dump out rcutorture-relevant state common to all RCU-tasks flavors. */
722 static void show_rcu_tasks_generic_gp_kthread(struct rcu_tasks *rtp, char *s)
723 {
724         int cpu;
725         bool havecbs = false;
726         bool haveurgent = false;
727         bool haveurgentcbs = false;
728
729         for_each_possible_cpu(cpu) {
730                 struct rcu_tasks_percpu *rtpcp = per_cpu_ptr(rtp->rtpcpu, cpu);
731
732                 if (!data_race(rcu_segcblist_empty(&rtpcp->cblist)))
733                         havecbs = true;
734                 if (data_race(rtpcp->urgent_gp))
735                         haveurgent = true;
736                 if (!data_race(rcu_segcblist_empty(&rtpcp->cblist)) && data_race(rtpcp->urgent_gp))
737                         haveurgentcbs = true;
738                 if (havecbs && haveurgent && haveurgentcbs)
739                         break;
740         }
741         pr_info("%s: %s(%d) since %lu g:%lu i:%lu/%lu %c%c%c%c l:%lu %s\n",
742                 rtp->kname,
743                 tasks_gp_state_getname(rtp), data_race(rtp->gp_state),
744                 jiffies - data_race(rtp->gp_jiffies),
745                 data_race(rcu_seq_current(&rtp->tasks_gp_seq)),
746                 data_race(rtp->n_ipis_fails), data_race(rtp->n_ipis),
747                 ".k"[!!data_race(rtp->kthread_ptr)],
748                 ".C"[havecbs],
749                 ".u"[haveurgent],
750                 ".U"[haveurgentcbs],
751                 rtp->lazy_jiffies,
752                 s);
753 }
754
755 /* Dump out more rcutorture-relevant state common to all RCU-tasks flavors. */
756 static void rcu_tasks_torture_stats_print_generic(struct rcu_tasks *rtp, char *tt,
757                                                   char *tf, char *tst)
758 {
759         cpumask_var_t cm;
760         int cpu;
761         bool gotcb = false;
762         unsigned long j = jiffies;
763
764         pr_alert("%s%s Tasks%s RCU g%ld gp_start %lu gp_jiffies %lu gp_state %d (%s).\n",
765                  tt, tf, tst, data_race(rtp->tasks_gp_seq),
766                  j - data_race(rtp->gp_start), j - data_race(rtp->gp_jiffies),
767                  data_race(rtp->gp_state), tasks_gp_state_getname(rtp));
768         pr_alert("\tEnqueue shift %d limit %d Dequeue limit %d gpseq %lu.\n",
769                  data_race(rtp->percpu_enqueue_shift),
770                  data_race(rtp->percpu_enqueue_lim),
771                  data_race(rtp->percpu_dequeue_lim),
772                  data_race(rtp->percpu_dequeue_gpseq));
773         (void)zalloc_cpumask_var(&cm, GFP_KERNEL);
774         pr_alert("\tCallback counts:");
775         for_each_possible_cpu(cpu) {
776                 long n;
777                 struct rcu_tasks_percpu *rtpcp = per_cpu_ptr(rtp->rtpcpu, cpu);
778
779                 if (cpumask_available(cm) && !rcu_barrier_cb_is_done(&rtpcp->barrier_q_head))
780                         cpumask_set_cpu(cpu, cm);
781                 n = rcu_segcblist_n_cbs(&rtpcp->cblist);
782                 if (!n)
783                         continue;
784                 pr_cont(" %d:%ld", cpu, n);
785                 gotcb = true;
786         }
787         if (gotcb)
788                 pr_cont(".\n");
789         else
790                 pr_cont(" (none).\n");
791         pr_alert("\tBarrier seq %lu start %lu count %d holdout CPUs ",
792                  data_race(rtp->barrier_q_seq), j - data_race(rtp->barrier_q_start),
793                  atomic_read(&rtp->barrier_q_count));
794         if (cpumask_available(cm) && !cpumask_empty(cm))
795                 pr_cont(" %*pbl.\n", cpumask_pr_args(cm));
796         else
797                 pr_cont("(none).\n");
798         free_cpumask_var(cm);
799 }
800
801 #endif // #ifndef CONFIG_TINY_RCU
802
803 static void exit_tasks_rcu_finish_trace(struct task_struct *t);
804
805 #if defined(CONFIG_TASKS_RCU) || defined(CONFIG_TASKS_TRACE_RCU)
806
807 ////////////////////////////////////////////////////////////////////////
808 //
809 // Shared code between task-list-scanning variants of Tasks RCU.
810
811 /* Wait for one RCU-tasks grace period. */
812 static void rcu_tasks_wait_gp(struct rcu_tasks *rtp)
813 {
814         struct task_struct *g;
815         int fract;
816         LIST_HEAD(holdouts);
817         unsigned long j;
818         unsigned long lastinfo;
819         unsigned long lastreport;
820         bool reported = false;
821         int rtsi;
822         struct task_struct *t;
823
824         set_tasks_gp_state(rtp, RTGS_PRE_WAIT_GP);
825         rtp->pregp_func(&holdouts);
826
827         /*
828          * There were callbacks, so we need to wait for an RCU-tasks
829          * grace period.  Start off by scanning the task list for tasks
830          * that are not already voluntarily blocked.  Mark these tasks
831          * and make a list of them in holdouts.
832          */
833         set_tasks_gp_state(rtp, RTGS_SCAN_TASKLIST);
834         if (rtp->pertask_func) {
835                 rcu_read_lock();
836                 for_each_process_thread(g, t)
837                         rtp->pertask_func(t, &holdouts);
838                 rcu_read_unlock();
839         }
840
841         set_tasks_gp_state(rtp, RTGS_POST_SCAN_TASKLIST);
842         rtp->postscan_func(&holdouts);
843
844         /*
845          * Each pass through the following loop scans the list of holdout
846          * tasks, removing any that are no longer holdouts.  When the list
847          * is empty, we are done.
848          */
849         lastreport = jiffies;
850         lastinfo = lastreport;
851         rtsi = READ_ONCE(rcu_task_stall_info);
852
853         // Start off with initial wait and slowly back off to 1 HZ wait.
854         fract = rtp->init_fract;
855
856         while (!list_empty(&holdouts)) {
857                 ktime_t exp;
858                 bool firstreport;
859                 bool needreport;
860                 int rtst;
861
862                 // Slowly back off waiting for holdouts
863                 set_tasks_gp_state(rtp, RTGS_WAIT_SCAN_HOLDOUTS);
864                 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) {
865                         schedule_timeout_idle(fract);
866                 } else {
867                         exp = jiffies_to_nsecs(fract);
868                         __set_current_state(TASK_IDLE);
869                         schedule_hrtimeout_range(&exp, jiffies_to_nsecs(HZ / 2), HRTIMER_MODE_REL_HARD);
870                 }
871
872                 if (fract < HZ)
873                         fract++;
874
875                 rtst = READ_ONCE(rcu_task_stall_timeout);
876                 needreport = rtst > 0 && time_after(jiffies, lastreport + rtst);
877                 if (needreport) {
878                         lastreport = jiffies;
879                         reported = true;
880                 }
881                 firstreport = true;
882                 WARN_ON(signal_pending(current));
883                 set_tasks_gp_state(rtp, RTGS_SCAN_HOLDOUTS);
884                 rtp->holdouts_func(&holdouts, needreport, &firstreport);
885
886                 // Print pre-stall informational messages if needed.
887                 j = jiffies;
888                 if (rtsi > 0 && !reported && time_after(j, lastinfo + rtsi)) {
889                         lastinfo = j;
890                         rtsi = rtsi * rcu_task_stall_info_mult;
891                         pr_info("%s: %s grace period number %lu (since boot) is %lu jiffies old.\n",
892                                 __func__, rtp->kname, rtp->tasks_gp_seq, j - rtp->gp_start);
893                 }
894         }
895
896         set_tasks_gp_state(rtp, RTGS_POST_GP);
897         rtp->postgp_func(rtp);
898 }
899
900 #endif /* #if defined(CONFIG_TASKS_RCU) || defined(CONFIG_TASKS_TRACE_RCU) */
901
902 #ifdef CONFIG_TASKS_RCU
903
904 ////////////////////////////////////////////////////////////////////////
905 //
906 // Simple variant of RCU whose quiescent states are voluntary context
907 // switch, cond_resched_tasks_rcu_qs(), user-space execution, and idle.
908 // As such, grace periods can take one good long time.  There are no
909 // read-side primitives similar to rcu_read_lock() and rcu_read_unlock()
910 // because this implementation is intended to get the system into a safe
911 // state for some of the manipulations involved in tracing and the like.
912 // Finally, this implementation does not support high call_rcu_tasks()
913 // rates from multiple CPUs.  If this is required, per-CPU callback lists
914 // will be needed.
915 //
916 // The implementation uses rcu_tasks_wait_gp(), which relies on function
917 // pointers in the rcu_tasks structure.  The rcu_spawn_tasks_kthread()
918 // function sets these function pointers up so that rcu_tasks_wait_gp()
919 // invokes these functions in this order:
920 //
921 // rcu_tasks_pregp_step():
922 //      Invokes synchronize_rcu() in order to wait for all in-flight
923 //      t->on_rq and t->nvcsw transitions to complete.  This works because
924 //      all such transitions are carried out with interrupts disabled.
925 // rcu_tasks_pertask(), invoked on every non-idle task:
926 //      For every runnable non-idle task other than the current one, use
927 //      get_task_struct() to pin down that task, snapshot that task's
928 //      number of voluntary context switches, and add that task to the
929 //      holdout list.
930 // rcu_tasks_postscan():
931 //      Gather per-CPU lists of tasks in do_exit() to ensure that all
932 //      tasks that were in the process of exiting (and which thus might
933 //      not know to synchronize with this RCU Tasks grace period) have
934 //      completed exiting.  The synchronize_rcu() in rcu_tasks_postgp()
935 //      will take care of any tasks stuck in the non-preemptible region
936 //      of do_exit() following its call to exit_tasks_rcu_finish().
937 // check_all_holdout_tasks(), repeatedly until holdout list is empty:
938 //      Scans the holdout list, attempting to identify a quiescent state
939 //      for each task on the list.  If there is a quiescent state, the
940 //      corresponding task is removed from the holdout list.
941 // rcu_tasks_postgp():
942 //      Invokes synchronize_rcu() in order to ensure that all prior
943 //      t->on_rq and t->nvcsw transitions are seen by all CPUs and tasks
944 //      to have happened before the end of this RCU Tasks grace period.
945 //      Again, this works because all such transitions are carried out
946 //      with interrupts disabled.
947 //
948 // For each exiting task, the exit_tasks_rcu_start() and
949 // exit_tasks_rcu_finish() functions add and remove, respectively, the
950 // current task to a per-CPU list of tasks that rcu_tasks_postscan() must
951 // wait on.  This is necessary because rcu_tasks_postscan() must wait on
952 // tasks that have already been removed from the global list of tasks.
953 //
954 // Pre-grace-period update-side code is ordered before the grace
955 // via the raw_spin_lock.*rcu_node().  Pre-grace-period read-side code
956 // is ordered before the grace period via synchronize_rcu() call in
957 // rcu_tasks_pregp_step() and by the scheduler's locks and interrupt
958 // disabling.
959
960 /* Pre-grace-period preparation. */
961 static void rcu_tasks_pregp_step(struct list_head *hop)
962 {
963         /*
964          * Wait for all pre-existing t->on_rq and t->nvcsw transitions
965          * to complete.  Invoking synchronize_rcu() suffices because all
966          * these transitions occur with interrupts disabled.  Without this
967          * synchronize_rcu(), a read-side critical section that started
968          * before the grace period might be incorrectly seen as having
969          * started after the grace period.
970          *
971          * This synchronize_rcu() also dispenses with the need for a
972          * memory barrier on the first store to t->rcu_tasks_holdout,
973          * as it forces the store to happen after the beginning of the
974          * grace period.
975          */
976         synchronize_rcu();
977 }
978
979 /* Check for quiescent states since the pregp's synchronize_rcu() */
980 static bool rcu_tasks_is_holdout(struct task_struct *t)
981 {
982         int cpu;
983
984         /* Has the task been seen voluntarily sleeping? */
985         if (!READ_ONCE(t->on_rq))
986                 return false;
987
988         /*
989          * t->on_rq && !t->se.sched_delayed *could* be considered sleeping but
990          * since it is a spurious state (it will transition into the
991          * traditional blocked state or get woken up without outside
992          * dependencies), not considering it such should only affect timing.
993          *
994          * Be conservative for now and not include it.
995          */
996
997         /*
998          * Idle tasks (or idle injection) within the idle loop are RCU-tasks
999          * quiescent states. But CPU boot code performed by the idle task
1000          * isn't a quiescent state.
1001          */
1002         if (is_idle_task(t))
1003                 return false;
1004
1005         cpu = task_cpu(t);
1006
1007         /* Idle tasks on offline CPUs are RCU-tasks quiescent states. */
1008         if (t == idle_task(cpu) && !rcu_cpu_online(cpu))
1009                 return false;
1010
1011         return true;
1012 }
1013
1014 /* Per-task initial processing. */
1015 static void rcu_tasks_pertask(struct task_struct *t, struct list_head *hop)
1016 {
1017         if (t != current && rcu_tasks_is_holdout(t)) {
1018                 get_task_struct(t);
1019                 t->rcu_tasks_nvcsw = READ_ONCE(t->nvcsw);
1020                 WRITE_ONCE(t->rcu_tasks_holdout, true);
1021                 list_add(&t->rcu_tasks_holdout_list, hop);
1022         }
1023 }
1024
1025 void call_rcu_tasks(struct rcu_head *rhp, rcu_callback_t func);
1026 DEFINE_RCU_TASKS(rcu_tasks, rcu_tasks_wait_gp, call_rcu_tasks, "RCU Tasks");
1027
1028 /* Processing between scanning taskslist and draining the holdout list. */
1029 static void rcu_tasks_postscan(struct list_head *hop)
1030 {
1031         int cpu;
1032         int rtsi = READ_ONCE(rcu_task_stall_info);
1033
1034         if (!IS_ENABLED(CONFIG_TINY_RCU)) {
1035                 tasks_rcu_exit_srcu_stall_timer.expires = jiffies + rtsi;
1036                 add_timer(&tasks_rcu_exit_srcu_stall_timer);
1037         }
1038
1039         /*
1040          * Exiting tasks may escape the tasklist scan. Those are vulnerable
1041          * until their final schedule() with TASK_DEAD state. To cope with
1042          * this, divide the fragile exit path part in two intersecting
1043          * read side critical sections:
1044          *
1045          * 1) A task_struct list addition before calling exit_notify(),
1046          *    which may remove the task from the tasklist, with the
1047          *    removal after the final preempt_disable() call in do_exit().
1048          *
1049          * 2) An _RCU_ read side starting with the final preempt_disable()
1050          *    call in do_exit() and ending with the final call to schedule()
1051          *    with TASK_DEAD state.
1052          *
1053          * This handles the part 1). And postgp will handle part 2) with a
1054          * call to synchronize_rcu().
1055          */
1056
1057         for_each_possible_cpu(cpu) {
1058                 unsigned long j = jiffies + 1;
1059                 struct rcu_tasks_percpu *rtpcp = per_cpu_ptr(rcu_tasks.rtpcpu, cpu);
1060                 struct task_struct *t;
1061                 struct task_struct *t1;
1062                 struct list_head tmp;
1063
1064                 raw_spin_lock_irq_rcu_node(rtpcp);
1065                 list_for_each_entry_safe(t, t1, &rtpcp->rtp_exit_list, rcu_tasks_exit_list) {
1066                         if (list_empty(&t->rcu_tasks_holdout_list))
1067                                 rcu_tasks_pertask(t, hop);
1068
1069                         // RT kernels need frequent pauses, otherwise
1070                         // pause at least once per pair of jiffies.
1071                         if (!IS_ENABLED(CONFIG_PREEMPT_RT) && time_before(jiffies, j))
1072                                 continue;
1073
1074                         // Keep our place in the list while pausing.
1075                         // Nothing else traverses this list, so adding a
1076                         // bare list_head is OK.
1077                         list_add(&tmp, &t->rcu_tasks_exit_list);
1078                         raw_spin_unlock_irq_rcu_node(rtpcp);
1079                         cond_resched(); // For CONFIG_PREEMPT=n kernels
1080                         raw_spin_lock_irq_rcu_node(rtpcp);
1081                         t1 = list_entry(tmp.next, struct task_struct, rcu_tasks_exit_list);
1082                         list_del(&tmp);
1083                         j = jiffies + 1;
1084                 }
1085                 raw_spin_unlock_irq_rcu_node(rtpcp);
1086         }
1087
1088         if (!IS_ENABLED(CONFIG_TINY_RCU))
1089                 del_timer_sync(&tasks_rcu_exit_srcu_stall_timer);
1090 }
1091
1092 /* See if tasks are still holding out, complain if so. */
1093 static void check_holdout_task(struct task_struct *t,
1094                                bool needreport, bool *firstreport)
1095 {
1096         int cpu;
1097
1098         if (!READ_ONCE(t->rcu_tasks_holdout) ||
1099             t->rcu_tasks_nvcsw != READ_ONCE(t->nvcsw) ||
1100             !rcu_tasks_is_holdout(t) ||
1101             (IS_ENABLED(CONFIG_NO_HZ_FULL) &&
1102              !is_idle_task(t) && READ_ONCE(t->rcu_tasks_idle_cpu) >= 0)) {
1103                 WRITE_ONCE(t->rcu_tasks_holdout, false);
1104                 list_del_init(&t->rcu_tasks_holdout_list);
1105                 put_task_struct(t);
1106                 return;
1107         }
1108         rcu_request_urgent_qs_task(t);
1109         if (!needreport)
1110                 return;
1111         if (*firstreport) {
1112                 pr_err("INFO: rcu_tasks detected stalls on tasks:\n");
1113                 *firstreport = false;
1114         }
1115         cpu = task_cpu(t);
1116         pr_alert("%p: %c%c nvcsw: %lu/%lu holdout: %d idle_cpu: %d/%d\n",
1117                  t, ".I"[is_idle_task(t)],
1118                  "N."[cpu < 0 || !tick_nohz_full_cpu(cpu)],
1119                  t->rcu_tasks_nvcsw, t->nvcsw, t->rcu_tasks_holdout,
1120                  data_race(t->rcu_tasks_idle_cpu), cpu);
1121         sched_show_task(t);
1122 }
1123
1124 /* Scan the holdout lists for tasks no longer holding out. */
1125 static void check_all_holdout_tasks(struct list_head *hop,
1126                                     bool needreport, bool *firstreport)
1127 {
1128         struct task_struct *t, *t1;
1129
1130         list_for_each_entry_safe(t, t1, hop, rcu_tasks_holdout_list) {
1131                 check_holdout_task(t, needreport, firstreport);
1132                 cond_resched();
1133         }
1134 }
1135
1136 /* Finish off the Tasks-RCU grace period. */
1137 static void rcu_tasks_postgp(struct rcu_tasks *rtp)
1138 {
1139         /*
1140          * Because ->on_rq and ->nvcsw are not guaranteed to have a full
1141          * memory barriers prior to them in the schedule() path, memory
1142          * reordering on other CPUs could cause their RCU-tasks read-side
1143          * critical sections to extend past the end of the grace period.
1144          * However, because these ->nvcsw updates are carried out with
1145          * interrupts disabled, we can use synchronize_rcu() to force the
1146          * needed ordering on all such CPUs.
1147          *
1148          * This synchronize_rcu() also confines all ->rcu_tasks_holdout
1149          * accesses to be within the grace period, avoiding the need for
1150          * memory barriers for ->rcu_tasks_holdout accesses.
1151          *
1152          * In addition, this synchronize_rcu() waits for exiting tasks
1153          * to complete their final preempt_disable() region of execution,
1154          * enforcing the whole region before tasklist removal until
1155          * the final schedule() with TASK_DEAD state to be an RCU TASKS
1156          * read side critical section.
1157          */
1158         synchronize_rcu();
1159 }
1160
1161 static void tasks_rcu_exit_srcu_stall(struct timer_list *unused)
1162 {
1163 #ifndef CONFIG_TINY_RCU
1164         int rtsi;
1165
1166         rtsi = READ_ONCE(rcu_task_stall_info);
1167         pr_info("%s: %s grace period number %lu (since boot) gp_state: %s is %lu jiffies old.\n",
1168                 __func__, rcu_tasks.kname, rcu_tasks.tasks_gp_seq,
1169                 tasks_gp_state_getname(&rcu_tasks), jiffies - rcu_tasks.gp_jiffies);
1170         pr_info("Please check any exiting tasks stuck between calls to exit_tasks_rcu_start() and exit_tasks_rcu_finish()\n");
1171         tasks_rcu_exit_srcu_stall_timer.expires = jiffies + rtsi;
1172         add_timer(&tasks_rcu_exit_srcu_stall_timer);
1173 #endif // #ifndef CONFIG_TINY_RCU
1174 }
1175
1176 /**
1177  * call_rcu_tasks() - Queue an RCU for invocation task-based grace period
1178  * @rhp: structure to be used for queueing the RCU updates.
1179  * @func: actual callback function to be invoked after the grace period
1180  *
1181  * The callback function will be invoked some time after a full grace
1182  * period elapses, in other words after all currently executing RCU
1183  * read-side critical sections have completed. call_rcu_tasks() assumes
1184  * that the read-side critical sections end at a voluntary context
1185  * switch (not a preemption!), cond_resched_tasks_rcu_qs(), entry into idle,
1186  * or transition to usermode execution.  As such, there are no read-side
1187  * primitives analogous to rcu_read_lock() and rcu_read_unlock() because
1188  * this primitive is intended to determine that all tasks have passed
1189  * through a safe state, not so much for data-structure synchronization.
1190  *
1191  * See the description of call_rcu() for more detailed information on
1192  * memory ordering guarantees.
1193  */
1194 void call_rcu_tasks(struct rcu_head *rhp, rcu_callback_t func)
1195 {
1196         call_rcu_tasks_generic(rhp, func, &rcu_tasks);
1197 }
1198 EXPORT_SYMBOL_GPL(call_rcu_tasks);
1199
1200 /**
1201  * synchronize_rcu_tasks - wait until an rcu-tasks grace period has elapsed.
1202  *
1203  * Control will return to the caller some time after a full rcu-tasks
1204  * grace period has elapsed, in other words after all currently
1205  * executing rcu-tasks read-side critical sections have elapsed.  These
1206  * read-side critical sections are delimited by calls to schedule(),
1207  * cond_resched_tasks_rcu_qs(), idle execution, userspace execution, calls
1208  * to synchronize_rcu_tasks(), and (in theory, anyway) cond_resched().
1209  *
1210  * This is a very specialized primitive, intended only for a few uses in
1211  * tracing and other situations requiring manipulation of function
1212  * preambles and profiling hooks.  The synchronize_rcu_tasks() function
1213  * is not (yet) intended for heavy use from multiple CPUs.
1214  *
1215  * See the description of synchronize_rcu() for more detailed information
1216  * on memory ordering guarantees.
1217  */
1218 void synchronize_rcu_tasks(void)
1219 {
1220         synchronize_rcu_tasks_generic(&rcu_tasks);
1221 }
1222 EXPORT_SYMBOL_GPL(synchronize_rcu_tasks);
1223
1224 /**
1225  * rcu_barrier_tasks - Wait for in-flight call_rcu_tasks() callbacks.
1226  *
1227  * Although the current implementation is guaranteed to wait, it is not
1228  * obligated to, for example, if there are no pending callbacks.
1229  */
1230 void rcu_barrier_tasks(void)
1231 {
1232         rcu_barrier_tasks_generic(&rcu_tasks);
1233 }
1234 EXPORT_SYMBOL_GPL(rcu_barrier_tasks);
1235
1236 static int rcu_tasks_lazy_ms = -1;
1237 module_param(rcu_tasks_lazy_ms, int, 0444);
1238
1239 static int __init rcu_spawn_tasks_kthread(void)
1240 {
1241         rcu_tasks.gp_sleep = HZ / 10;
1242         rcu_tasks.init_fract = HZ / 10;
1243         if (rcu_tasks_lazy_ms >= 0)
1244                 rcu_tasks.lazy_jiffies = msecs_to_jiffies(rcu_tasks_lazy_ms);
1245         rcu_tasks.pregp_func = rcu_tasks_pregp_step;
1246         rcu_tasks.pertask_func = rcu_tasks_pertask;
1247         rcu_tasks.postscan_func = rcu_tasks_postscan;
1248         rcu_tasks.holdouts_func = check_all_holdout_tasks;
1249         rcu_tasks.postgp_func = rcu_tasks_postgp;
1250         rcu_tasks.wait_state = TASK_IDLE;
1251         rcu_spawn_tasks_kthread_generic(&rcu_tasks);
1252         return 0;
1253 }
1254
1255 #if !defined(CONFIG_TINY_RCU)
1256 void show_rcu_tasks_classic_gp_kthread(void)
1257 {
1258         show_rcu_tasks_generic_gp_kthread(&rcu_tasks, "");
1259 }
1260 EXPORT_SYMBOL_GPL(show_rcu_tasks_classic_gp_kthread);
1261
1262 void rcu_tasks_torture_stats_print(char *tt, char *tf)
1263 {
1264         rcu_tasks_torture_stats_print_generic(&rcu_tasks, tt, tf, "");
1265 }
1266 EXPORT_SYMBOL_GPL(rcu_tasks_torture_stats_print);
1267 #endif // !defined(CONFIG_TINY_RCU)
1268
1269 struct task_struct *get_rcu_tasks_gp_kthread(void)
1270 {
1271         return rcu_tasks.kthread_ptr;
1272 }
1273 EXPORT_SYMBOL_GPL(get_rcu_tasks_gp_kthread);
1274
1275 void rcu_tasks_get_gp_data(int *flags, unsigned long *gp_seq)
1276 {
1277         *flags = 0;
1278         *gp_seq = rcu_seq_current(&rcu_tasks.tasks_gp_seq);
1279 }
1280 EXPORT_SYMBOL_GPL(rcu_tasks_get_gp_data);
1281
1282 /*
1283  * Protect against tasklist scan blind spot while the task is exiting and
1284  * may be removed from the tasklist.  Do this by adding the task to yet
1285  * another list.
1286  *
1287  * Note that the task will remove itself from this list, so there is no
1288  * need for get_task_struct(), except in the case where rcu_tasks_pertask()
1289  * adds it to the holdout list, in which case rcu_tasks_pertask() supplies
1290  * the needed get_task_struct().
1291  */
1292 void exit_tasks_rcu_start(void)
1293 {
1294         unsigned long flags;
1295         struct rcu_tasks_percpu *rtpcp;
1296         struct task_struct *t = current;
1297
1298         WARN_ON_ONCE(!list_empty(&t->rcu_tasks_exit_list));
1299         preempt_disable();
1300         rtpcp = this_cpu_ptr(rcu_tasks.rtpcpu);
1301         t->rcu_tasks_exit_cpu = smp_processor_id();
1302         raw_spin_lock_irqsave_rcu_node(rtpcp, flags);
1303         WARN_ON_ONCE(!rtpcp->rtp_exit_list.next);
1304         list_add(&t->rcu_tasks_exit_list, &rtpcp->rtp_exit_list);
1305         raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags);
1306         preempt_enable();
1307 }
1308
1309 /*
1310  * Remove the task from the "yet another list" because do_exit() is now
1311  * non-preemptible, allowing synchronize_rcu() to wait beyond this point.
1312  */
1313 void exit_tasks_rcu_finish(void)
1314 {
1315         unsigned long flags;
1316         struct rcu_tasks_percpu *rtpcp;
1317         struct task_struct *t = current;
1318
1319         WARN_ON_ONCE(list_empty(&t->rcu_tasks_exit_list));
1320         rtpcp = per_cpu_ptr(rcu_tasks.rtpcpu, t->rcu_tasks_exit_cpu);
1321         raw_spin_lock_irqsave_rcu_node(rtpcp, flags);
1322         list_del_init(&t->rcu_tasks_exit_list);
1323         raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags);
1324
1325         exit_tasks_rcu_finish_trace(t);
1326 }
1327
1328 #else /* #ifdef CONFIG_TASKS_RCU */
1329 void exit_tasks_rcu_start(void) { }
1330 void exit_tasks_rcu_finish(void) { exit_tasks_rcu_finish_trace(current); }
1331 #endif /* #else #ifdef CONFIG_TASKS_RCU */
1332
1333 #ifdef CONFIG_TASKS_RUDE_RCU
1334
1335 ////////////////////////////////////////////////////////////////////////
1336 //
1337 // "Rude" variant of Tasks RCU, inspired by Steve Rostedt's
1338 // trick of passing an empty function to schedule_on_each_cpu().
1339 // This approach provides batching of concurrent calls to the synchronous
1340 // synchronize_rcu_tasks_rude() API.  This invokes schedule_on_each_cpu()
1341 // in order to send IPIs far and wide and induces otherwise unnecessary
1342 // context switches on all online CPUs, whether idle or not.
1343 //
1344 // Callback handling is provided by the rcu_tasks_kthread() function.
1345 //
1346 // Ordering is provided by the scheduler's context-switch code.
1347
1348 // Empty function to allow workqueues to force a context switch.
1349 static void rcu_tasks_be_rude(struct work_struct *work)
1350 {
1351 }
1352
1353 // Wait for one rude RCU-tasks grace period.
1354 static void rcu_tasks_rude_wait_gp(struct rcu_tasks *rtp)
1355 {
1356         rtp->n_ipis += cpumask_weight(cpu_online_mask);
1357         schedule_on_each_cpu(rcu_tasks_be_rude);
1358 }
1359
1360 static void call_rcu_tasks_rude(struct rcu_head *rhp, rcu_callback_t func);
1361 DEFINE_RCU_TASKS(rcu_tasks_rude, rcu_tasks_rude_wait_gp, call_rcu_tasks_rude,
1362                  "RCU Tasks Rude");
1363
1364 /*
1365  * call_rcu_tasks_rude() - Queue a callback rude task-based grace period
1366  * @rhp: structure to be used for queueing the RCU updates.
1367  * @func: actual callback function to be invoked after the grace period
1368  *
1369  * The callback function will be invoked some time after a full grace
1370  * period elapses, in other words after all currently executing RCU
1371  * read-side critical sections have completed. call_rcu_tasks_rude()
1372  * assumes that the read-side critical sections end at context switch,
1373  * cond_resched_tasks_rcu_qs(), or transition to usermode execution (as
1374  * usermode execution is schedulable). As such, there are no read-side
1375  * primitives analogous to rcu_read_lock() and rcu_read_unlock() because
1376  * this primitive is intended to determine that all tasks have passed
1377  * through a safe state, not so much for data-structure synchronization.
1378  *
1379  * See the description of call_rcu() for more detailed information on
1380  * memory ordering guarantees.
1381  *
1382  * This is no longer exported, and is instead reserved for use by
1383  * synchronize_rcu_tasks_rude().
1384  */
1385 static void call_rcu_tasks_rude(struct rcu_head *rhp, rcu_callback_t func)
1386 {
1387         call_rcu_tasks_generic(rhp, func, &rcu_tasks_rude);
1388 }
1389
1390 /**
1391  * synchronize_rcu_tasks_rude - wait for a rude rcu-tasks grace period
1392  *
1393  * Control will return to the caller some time after a rude rcu-tasks
1394  * grace period has elapsed, in other words after all currently
1395  * executing rcu-tasks read-side critical sections have elapsed.  These
1396  * read-side critical sections are delimited by calls to schedule(),
1397  * cond_resched_tasks_rcu_qs(), userspace execution (which is a schedulable
1398  * context), and (in theory, anyway) cond_resched().
1399  *
1400  * This is a very specialized primitive, intended only for a few uses in
1401  * tracing and other situations requiring manipulation of function preambles
1402  * and profiling hooks.  The synchronize_rcu_tasks_rude() function is not
1403  * (yet) intended for heavy use from multiple CPUs.
1404  *
1405  * See the description of synchronize_rcu() for more detailed information
1406  * on memory ordering guarantees.
1407  */
1408 void synchronize_rcu_tasks_rude(void)
1409 {
1410         if (!IS_ENABLED(CONFIG_ARCH_WANTS_NO_INSTR) || IS_ENABLED(CONFIG_FORCE_TASKS_RUDE_RCU))
1411                 synchronize_rcu_tasks_generic(&rcu_tasks_rude);
1412 }
1413 EXPORT_SYMBOL_GPL(synchronize_rcu_tasks_rude);
1414
1415 static int __init rcu_spawn_tasks_rude_kthread(void)
1416 {
1417         rcu_tasks_rude.gp_sleep = HZ / 10;
1418         rcu_spawn_tasks_kthread_generic(&rcu_tasks_rude);
1419         return 0;
1420 }
1421
1422 #if !defined(CONFIG_TINY_RCU)
1423 void show_rcu_tasks_rude_gp_kthread(void)
1424 {
1425         show_rcu_tasks_generic_gp_kthread(&rcu_tasks_rude, "");
1426 }
1427 EXPORT_SYMBOL_GPL(show_rcu_tasks_rude_gp_kthread);
1428
1429 void rcu_tasks_rude_torture_stats_print(char *tt, char *tf)
1430 {
1431         rcu_tasks_torture_stats_print_generic(&rcu_tasks_rude, tt, tf, "");
1432 }
1433 EXPORT_SYMBOL_GPL(rcu_tasks_rude_torture_stats_print);
1434 #endif // !defined(CONFIG_TINY_RCU)
1435
1436 struct task_struct *get_rcu_tasks_rude_gp_kthread(void)
1437 {
1438         return rcu_tasks_rude.kthread_ptr;
1439 }
1440 EXPORT_SYMBOL_GPL(get_rcu_tasks_rude_gp_kthread);
1441
1442 void rcu_tasks_rude_get_gp_data(int *flags, unsigned long *gp_seq)
1443 {
1444         *flags = 0;
1445         *gp_seq = rcu_seq_current(&rcu_tasks_rude.tasks_gp_seq);
1446 }
1447 EXPORT_SYMBOL_GPL(rcu_tasks_rude_get_gp_data);
1448
1449 #endif /* #ifdef CONFIG_TASKS_RUDE_RCU */
1450
1451 ////////////////////////////////////////////////////////////////////////
1452 //
1453 // Tracing variant of Tasks RCU.  This variant is designed to be used
1454 // to protect tracing hooks, including those of BPF.  This variant
1455 // therefore:
1456 //
1457 // 1.   Has explicit read-side markers to allow finite grace periods
1458 //      in the face of in-kernel loops for PREEMPT=n builds.
1459 //
1460 // 2.   Protects code in the idle loop, exception entry/exit, and
1461 //      CPU-hotplug code paths, similar to the capabilities of SRCU.
1462 //
1463 // 3.   Avoids expensive read-side instructions, having overhead similar
1464 //      to that of Preemptible RCU.
1465 //
1466 // There are of course downsides.  For example, the grace-period code
1467 // can send IPIs to CPUs, even when those CPUs are in the idle loop or
1468 // in nohz_full userspace.  If needed, these downsides can be at least
1469 // partially remedied.
1470 //
1471 // Perhaps most important, this variant of RCU does not affect the vanilla
1472 // flavors, rcu_preempt and rcu_sched.  The fact that RCU Tasks Trace
1473 // readers can operate from idle, offline, and exception entry/exit in no
1474 // way allows rcu_preempt and rcu_sched readers to also do so.
1475 //
1476 // The implementation uses rcu_tasks_wait_gp(), which relies on function
1477 // pointers in the rcu_tasks structure.  The rcu_spawn_tasks_trace_kthread()
1478 // function sets these function pointers up so that rcu_tasks_wait_gp()
1479 // invokes these functions in this order:
1480 //
1481 // rcu_tasks_trace_pregp_step():
1482 //      Disables CPU hotplug, adds all currently executing tasks to the
1483 //      holdout list, then checks the state of all tasks that blocked
1484 //      or were preempted within their current RCU Tasks Trace read-side
1485 //      critical section, adding them to the holdout list if appropriate.
1486 //      Finally, this function re-enables CPU hotplug.
1487 // The ->pertask_func() pointer is NULL, so there is no per-task processing.
1488 // rcu_tasks_trace_postscan():
1489 //      Invokes synchronize_rcu() to wait for late-stage exiting tasks
1490 //      to finish exiting.
1491 // check_all_holdout_tasks_trace(), repeatedly until holdout list is empty:
1492 //      Scans the holdout list, attempting to identify a quiescent state
1493 //      for each task on the list.  If there is a quiescent state, the
1494 //      corresponding task is removed from the holdout list.  Once this
1495 //      list is empty, the grace period has completed.
1496 // rcu_tasks_trace_postgp():
1497 //      Provides the needed full memory barrier and does debug checks.
1498 //
1499 // The exit_tasks_rcu_finish_trace() synchronizes with exiting tasks.
1500 //
1501 // Pre-grace-period update-side code is ordered before the grace period
1502 // via the ->cbs_lock and barriers in rcu_tasks_kthread().  Pre-grace-period
1503 // read-side code is ordered before the grace period by atomic operations
1504 // on .b.need_qs flag of each task involved in this process, or by scheduler
1505 // context-switch ordering (for locked-down non-running readers).
1506
1507 // The lockdep state must be outside of #ifdef to be useful.
1508 #ifdef CONFIG_DEBUG_LOCK_ALLOC
1509 static struct lock_class_key rcu_lock_trace_key;
1510 struct lockdep_map rcu_trace_lock_map =
1511         STATIC_LOCKDEP_MAP_INIT("rcu_read_lock_trace", &rcu_lock_trace_key);
1512 EXPORT_SYMBOL_GPL(rcu_trace_lock_map);
1513 #endif /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
1514
1515 #ifdef CONFIG_TASKS_TRACE_RCU
1516
1517 // Record outstanding IPIs to each CPU.  No point in sending two...
1518 static DEFINE_PER_CPU(bool, trc_ipi_to_cpu);
1519
1520 // The number of detections of task quiescent state relying on
1521 // heavyweight readers executing explicit memory barriers.
1522 static unsigned long n_heavy_reader_attempts;
1523 static unsigned long n_heavy_reader_updates;
1524 static unsigned long n_heavy_reader_ofl_updates;
1525 static unsigned long n_trc_holdouts;
1526
1527 void call_rcu_tasks_trace(struct rcu_head *rhp, rcu_callback_t func);
1528 DEFINE_RCU_TASKS(rcu_tasks_trace, rcu_tasks_wait_gp, call_rcu_tasks_trace,
1529                  "RCU Tasks Trace");
1530
1531 /* Load from ->trc_reader_special.b.need_qs with proper ordering. */
1532 static u8 rcu_ld_need_qs(struct task_struct *t)
1533 {
1534         smp_mb(); // Enforce full grace-period ordering.
1535         return smp_load_acquire(&t->trc_reader_special.b.need_qs);
1536 }
1537
1538 /* Store to ->trc_reader_special.b.need_qs with proper ordering. */
1539 static void rcu_st_need_qs(struct task_struct *t, u8 v)
1540 {
1541         smp_store_release(&t->trc_reader_special.b.need_qs, v);
1542         smp_mb(); // Enforce full grace-period ordering.
1543 }
1544
1545 /*
1546  * Do a cmpxchg() on ->trc_reader_special.b.need_qs, allowing for
1547  * the four-byte operand-size restriction of some platforms.
1548  *
1549  * Returns the old value, which is often ignored.
1550  */
1551 u8 rcu_trc_cmpxchg_need_qs(struct task_struct *t, u8 old, u8 new)
1552 {
1553         return cmpxchg(&t->trc_reader_special.b.need_qs, old, new);
1554 }
1555 EXPORT_SYMBOL_GPL(rcu_trc_cmpxchg_need_qs);
1556
1557 /*
1558  * If we are the last reader, signal the grace-period kthread.
1559  * Also remove from the per-CPU list of blocked tasks.
1560  */
1561 void rcu_read_unlock_trace_special(struct task_struct *t)
1562 {
1563         unsigned long flags;
1564         struct rcu_tasks_percpu *rtpcp;
1565         union rcu_special trs;
1566
1567         // Open-coded full-word version of rcu_ld_need_qs().
1568         smp_mb(); // Enforce full grace-period ordering.
1569         trs = smp_load_acquire(&t->trc_reader_special);
1570
1571         if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB) && t->trc_reader_special.b.need_mb)
1572                 smp_mb(); // Pairs with update-side barriers.
1573         // Update .need_qs before ->trc_reader_nesting for irq/NMI handlers.
1574         if (trs.b.need_qs == (TRC_NEED_QS_CHECKED | TRC_NEED_QS)) {
1575                 u8 result = rcu_trc_cmpxchg_need_qs(t, TRC_NEED_QS_CHECKED | TRC_NEED_QS,
1576                                                        TRC_NEED_QS_CHECKED);
1577
1578                 WARN_ONCE(result != trs.b.need_qs, "%s: result = %d", __func__, result);
1579         }
1580         if (trs.b.blocked) {
1581                 rtpcp = per_cpu_ptr(rcu_tasks_trace.rtpcpu, t->trc_blkd_cpu);
1582                 raw_spin_lock_irqsave_rcu_node(rtpcp, flags);
1583                 list_del_init(&t->trc_blkd_node);
1584                 WRITE_ONCE(t->trc_reader_special.b.blocked, false);
1585                 raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags);
1586         }
1587         WRITE_ONCE(t->trc_reader_nesting, 0);
1588 }
1589 EXPORT_SYMBOL_GPL(rcu_read_unlock_trace_special);
1590
1591 /* Add a newly blocked reader task to its CPU's list. */
1592 void rcu_tasks_trace_qs_blkd(struct task_struct *t)
1593 {
1594         unsigned long flags;
1595         struct rcu_tasks_percpu *rtpcp;
1596
1597         local_irq_save(flags);
1598         rtpcp = this_cpu_ptr(rcu_tasks_trace.rtpcpu);
1599         raw_spin_lock_rcu_node(rtpcp); // irqs already disabled
1600         t->trc_blkd_cpu = smp_processor_id();
1601         if (!rtpcp->rtp_blkd_tasks.next)
1602                 INIT_LIST_HEAD(&rtpcp->rtp_blkd_tasks);
1603         list_add(&t->trc_blkd_node, &rtpcp->rtp_blkd_tasks);
1604         WRITE_ONCE(t->trc_reader_special.b.blocked, true);
1605         raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags);
1606 }
1607 EXPORT_SYMBOL_GPL(rcu_tasks_trace_qs_blkd);
1608
1609 /* Add a task to the holdout list, if it is not already on the list. */
1610 static void trc_add_holdout(struct task_struct *t, struct list_head *bhp)
1611 {
1612         if (list_empty(&t->trc_holdout_list)) {
1613                 get_task_struct(t);
1614                 list_add(&t->trc_holdout_list, bhp);
1615                 n_trc_holdouts++;
1616         }
1617 }
1618
1619 /* Remove a task from the holdout list, if it is in fact present. */
1620 static void trc_del_holdout(struct task_struct *t)
1621 {
1622         if (!list_empty(&t->trc_holdout_list)) {
1623                 list_del_init(&t->trc_holdout_list);
1624                 put_task_struct(t);
1625                 n_trc_holdouts--;
1626         }
1627 }
1628
1629 /* IPI handler to check task state. */
1630 static void trc_read_check_handler(void *t_in)
1631 {
1632         int nesting;
1633         struct task_struct *t = current;
1634         struct task_struct *texp = t_in;
1635
1636         // If the task is no longer running on this CPU, leave.
1637         if (unlikely(texp != t))
1638                 goto reset_ipi; // Already on holdout list, so will check later.
1639
1640         // If the task is not in a read-side critical section, and
1641         // if this is the last reader, awaken the grace-period kthread.
1642         nesting = READ_ONCE(t->trc_reader_nesting);
1643         if (likely(!nesting)) {
1644                 rcu_trc_cmpxchg_need_qs(t, 0, TRC_NEED_QS_CHECKED);
1645                 goto reset_ipi;
1646         }
1647         // If we are racing with an rcu_read_unlock_trace(), try again later.
1648         if (unlikely(nesting < 0))
1649                 goto reset_ipi;
1650
1651         // Get here if the task is in a read-side critical section.
1652         // Set its state so that it will update state for the grace-period
1653         // kthread upon exit from that critical section.
1654         rcu_trc_cmpxchg_need_qs(t, 0, TRC_NEED_QS | TRC_NEED_QS_CHECKED);
1655
1656 reset_ipi:
1657         // Allow future IPIs to be sent on CPU and for task.
1658         // Also order this IPI handler against any later manipulations of
1659         // the intended task.
1660         smp_store_release(per_cpu_ptr(&trc_ipi_to_cpu, smp_processor_id()), false); // ^^^
1661         smp_store_release(&texp->trc_ipi_to_cpu, -1); // ^^^
1662 }
1663
1664 /* Callback function for scheduler to check locked-down task.  */
1665 static int trc_inspect_reader(struct task_struct *t, void *bhp_in)
1666 {
1667         struct list_head *bhp = bhp_in;
1668         int cpu = task_cpu(t);
1669         int nesting;
1670         bool ofl = cpu_is_offline(cpu);
1671
1672         if (task_curr(t) && !ofl) {
1673                 // If no chance of heavyweight readers, do it the hard way.
1674                 if (!IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB))
1675                         return -EINVAL;
1676
1677                 // If heavyweight readers are enabled on the remote task,
1678                 // we can inspect its state despite its currently running.
1679                 // However, we cannot safely change its state.
1680                 n_heavy_reader_attempts++;
1681                 // Check for "running" idle tasks on offline CPUs.
1682                 if (!rcu_watching_zero_in_eqs(cpu, &t->trc_reader_nesting))
1683                         return -EINVAL; // No quiescent state, do it the hard way.
1684                 n_heavy_reader_updates++;
1685                 nesting = 0;
1686         } else {
1687                 // The task is not running, so C-language access is safe.
1688                 nesting = t->trc_reader_nesting;
1689                 WARN_ON_ONCE(ofl && task_curr(t) && (t != idle_task(task_cpu(t))));
1690                 if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB) && ofl)
1691                         n_heavy_reader_ofl_updates++;
1692         }
1693
1694         // If not exiting a read-side critical section, mark as checked
1695         // so that the grace-period kthread will remove it from the
1696         // holdout list.
1697         if (!nesting) {
1698                 rcu_trc_cmpxchg_need_qs(t, 0, TRC_NEED_QS_CHECKED);
1699                 return 0;  // In QS, so done.
1700         }
1701         if (nesting < 0)
1702                 return -EINVAL; // Reader transitioning, try again later.
1703
1704         // The task is in a read-side critical section, so set up its
1705         // state so that it will update state upon exit from that critical
1706         // section.
1707         if (!rcu_trc_cmpxchg_need_qs(t, 0, TRC_NEED_QS | TRC_NEED_QS_CHECKED))
1708                 trc_add_holdout(t, bhp);
1709         return 0;
1710 }
1711
1712 /* Attempt to extract the state for the specified task. */
1713 static void trc_wait_for_one_reader(struct task_struct *t,
1714                                     struct list_head *bhp)
1715 {
1716         int cpu;
1717
1718         // If a previous IPI is still in flight, let it complete.
1719         if (smp_load_acquire(&t->trc_ipi_to_cpu) != -1) // Order IPI
1720                 return;
1721
1722         // The current task had better be in a quiescent state.
1723         if (t == current) {
1724                 rcu_trc_cmpxchg_need_qs(t, 0, TRC_NEED_QS_CHECKED);
1725                 WARN_ON_ONCE(READ_ONCE(t->trc_reader_nesting));
1726                 return;
1727         }
1728
1729         // Attempt to nail down the task for inspection.
1730         get_task_struct(t);
1731         if (!task_call_func(t, trc_inspect_reader, bhp)) {
1732                 put_task_struct(t);
1733                 return;
1734         }
1735         put_task_struct(t);
1736
1737         // If this task is not yet on the holdout list, then we are in
1738         // an RCU read-side critical section.  Otherwise, the invocation of
1739         // trc_add_holdout() that added it to the list did the necessary
1740         // get_task_struct().  Either way, the task cannot be freed out
1741         // from under this code.
1742
1743         // If currently running, send an IPI, either way, add to list.
1744         trc_add_holdout(t, bhp);
1745         if (task_curr(t) &&
1746             time_after(jiffies + 1, rcu_tasks_trace.gp_start + rcu_task_ipi_delay)) {
1747                 // The task is currently running, so try IPIing it.
1748                 cpu = task_cpu(t);
1749
1750                 // If there is already an IPI outstanding, let it happen.
1751                 if (per_cpu(trc_ipi_to_cpu, cpu) || t->trc_ipi_to_cpu >= 0)
1752                         return;
1753
1754                 per_cpu(trc_ipi_to_cpu, cpu) = true;
1755                 t->trc_ipi_to_cpu = cpu;
1756                 rcu_tasks_trace.n_ipis++;
1757                 if (smp_call_function_single(cpu, trc_read_check_handler, t, 0)) {
1758                         // Just in case there is some other reason for
1759                         // failure than the target CPU being offline.
1760                         WARN_ONCE(1, "%s():  smp_call_function_single() failed for CPU: %d\n",
1761                                   __func__, cpu);
1762                         rcu_tasks_trace.n_ipis_fails++;
1763                         per_cpu(trc_ipi_to_cpu, cpu) = false;
1764                         t->trc_ipi_to_cpu = -1;
1765                 }
1766         }
1767 }
1768
1769 /*
1770  * Initialize for first-round processing for the specified task.
1771  * Return false if task is NULL or already taken care of, true otherwise.
1772  */
1773 static bool rcu_tasks_trace_pertask_prep(struct task_struct *t, bool notself)
1774 {
1775         // During early boot when there is only the one boot CPU, there
1776         // is no idle task for the other CPUs.  Also, the grace-period
1777         // kthread is always in a quiescent state.  In addition, just return
1778         // if this task is already on the list.
1779         if (unlikely(t == NULL) || (t == current && notself) || !list_empty(&t->trc_holdout_list))
1780                 return false;
1781
1782         rcu_st_need_qs(t, 0);
1783         t->trc_ipi_to_cpu = -1;
1784         return true;
1785 }
1786
1787 /* Do first-round processing for the specified task. */
1788 static void rcu_tasks_trace_pertask(struct task_struct *t, struct list_head *hop)
1789 {
1790         if (rcu_tasks_trace_pertask_prep(t, true))
1791                 trc_wait_for_one_reader(t, hop);
1792 }
1793
1794 /* Initialize for a new RCU-tasks-trace grace period. */
1795 static void rcu_tasks_trace_pregp_step(struct list_head *hop)
1796 {
1797         LIST_HEAD(blkd_tasks);
1798         int cpu;
1799         unsigned long flags;
1800         struct rcu_tasks_percpu *rtpcp;
1801         struct task_struct *t;
1802
1803         // There shouldn't be any old IPIs, but...
1804         for_each_possible_cpu(cpu)
1805                 WARN_ON_ONCE(per_cpu(trc_ipi_to_cpu, cpu));
1806
1807         // Disable CPU hotplug across the CPU scan for the benefit of
1808         // any IPIs that might be needed.  This also waits for all readers
1809         // in CPU-hotplug code paths.
1810         cpus_read_lock();
1811
1812         // These rcu_tasks_trace_pertask_prep() calls are serialized to
1813         // allow safe access to the hop list.
1814         for_each_online_cpu(cpu) {
1815                 rcu_read_lock();
1816                 // Note that cpu_curr_snapshot() picks up the target
1817                 // CPU's current task while its runqueue is locked with
1818                 // an smp_mb__after_spinlock().  This ensures that either
1819                 // the grace-period kthread will see that task's read-side
1820                 // critical section or the task will see the updater's pre-GP
1821                 // accesses.  The trailing smp_mb() in cpu_curr_snapshot()
1822                 // does not currently play a role other than simplify
1823                 // that function's ordering semantics.  If these simplified
1824                 // ordering semantics continue to be redundant, that smp_mb()
1825                 // might be removed.
1826                 t = cpu_curr_snapshot(cpu);
1827                 if (rcu_tasks_trace_pertask_prep(t, true))
1828                         trc_add_holdout(t, hop);
1829                 rcu_read_unlock();
1830                 cond_resched_tasks_rcu_qs();
1831         }
1832
1833         // Only after all running tasks have been accounted for is it
1834         // safe to take care of the tasks that have blocked within their
1835         // current RCU tasks trace read-side critical section.
1836         for_each_possible_cpu(cpu) {
1837                 rtpcp = per_cpu_ptr(rcu_tasks_trace.rtpcpu, cpu);
1838                 raw_spin_lock_irqsave_rcu_node(rtpcp, flags);
1839                 list_splice_init(&rtpcp->rtp_blkd_tasks, &blkd_tasks);
1840                 while (!list_empty(&blkd_tasks)) {
1841                         rcu_read_lock();
1842                         t = list_first_entry(&blkd_tasks, struct task_struct, trc_blkd_node);
1843                         list_del_init(&t->trc_blkd_node);
1844                         list_add(&t->trc_blkd_node, &rtpcp->rtp_blkd_tasks);
1845                         raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags);
1846                         rcu_tasks_trace_pertask(t, hop);
1847                         rcu_read_unlock();
1848                         raw_spin_lock_irqsave_rcu_node(rtpcp, flags);
1849                 }
1850                 raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags);
1851                 cond_resched_tasks_rcu_qs();
1852         }
1853
1854         // Re-enable CPU hotplug now that the holdout list is populated.
1855         cpus_read_unlock();
1856 }
1857
1858 /*
1859  * Do intermediate processing between task and holdout scans.
1860  */
1861 static void rcu_tasks_trace_postscan(struct list_head *hop)
1862 {
1863         // Wait for late-stage exiting tasks to finish exiting.
1864         // These might have passed the call to exit_tasks_rcu_finish().
1865
1866         // If you remove the following line, update rcu_trace_implies_rcu_gp()!!!
1867         synchronize_rcu();
1868         // Any tasks that exit after this point will set
1869         // TRC_NEED_QS_CHECKED in ->trc_reader_special.b.need_qs.
1870 }
1871
1872 /* Communicate task state back to the RCU tasks trace stall warning request. */
1873 struct trc_stall_chk_rdr {
1874         int nesting;
1875         int ipi_to_cpu;
1876         u8 needqs;
1877 };
1878
1879 static int trc_check_slow_task(struct task_struct *t, void *arg)
1880 {
1881         struct trc_stall_chk_rdr *trc_rdrp = arg;
1882
1883         if (task_curr(t) && cpu_online(task_cpu(t)))
1884                 return false; // It is running, so decline to inspect it.
1885         trc_rdrp->nesting = READ_ONCE(t->trc_reader_nesting);
1886         trc_rdrp->ipi_to_cpu = READ_ONCE(t->trc_ipi_to_cpu);
1887         trc_rdrp->needqs = rcu_ld_need_qs(t);
1888         return true;
1889 }
1890
1891 /* Show the state of a task stalling the current RCU tasks trace GP. */
1892 static void show_stalled_task_trace(struct task_struct *t, bool *firstreport)
1893 {
1894         int cpu;
1895         struct trc_stall_chk_rdr trc_rdr;
1896         bool is_idle_tsk = is_idle_task(t);
1897
1898         if (*firstreport) {
1899                 pr_err("INFO: rcu_tasks_trace detected stalls on tasks:\n");
1900                 *firstreport = false;
1901         }
1902         cpu = task_cpu(t);
1903         if (!task_call_func(t, trc_check_slow_task, &trc_rdr))
1904                 pr_alert("P%d: %c%c\n",
1905                          t->pid,
1906                          ".I"[t->trc_ipi_to_cpu >= 0],
1907                          ".i"[is_idle_tsk]);
1908         else
1909                 pr_alert("P%d: %c%c%c%c nesting: %d%c%c cpu: %d%s\n",
1910                          t->pid,
1911                          ".I"[trc_rdr.ipi_to_cpu >= 0],
1912                          ".i"[is_idle_tsk],
1913                          ".N"[cpu >= 0 && tick_nohz_full_cpu(cpu)],
1914                          ".B"[!!data_race(t->trc_reader_special.b.blocked)],
1915                          trc_rdr.nesting,
1916                          " !CN"[trc_rdr.needqs & 0x3],
1917                          " ?"[trc_rdr.needqs > 0x3],
1918                          cpu, cpu_online(cpu) ? "" : "(offline)");
1919         sched_show_task(t);
1920 }
1921
1922 /* List stalled IPIs for RCU tasks trace. */
1923 static void show_stalled_ipi_trace(void)
1924 {
1925         int cpu;
1926
1927         for_each_possible_cpu(cpu)
1928                 if (per_cpu(trc_ipi_to_cpu, cpu))
1929                         pr_alert("\tIPI outstanding to CPU %d\n", cpu);
1930 }
1931
1932 /* Do one scan of the holdout list. */
1933 static void check_all_holdout_tasks_trace(struct list_head *hop,
1934                                           bool needreport, bool *firstreport)
1935 {
1936         struct task_struct *g, *t;
1937
1938         // Disable CPU hotplug across the holdout list scan for IPIs.
1939         cpus_read_lock();
1940
1941         list_for_each_entry_safe(t, g, hop, trc_holdout_list) {
1942                 // If safe and needed, try to check the current task.
1943                 if (READ_ONCE(t->trc_ipi_to_cpu) == -1 &&
1944                     !(rcu_ld_need_qs(t) & TRC_NEED_QS_CHECKED))
1945                         trc_wait_for_one_reader(t, hop);
1946
1947                 // If check succeeded, remove this task from the list.
1948                 if (smp_load_acquire(&t->trc_ipi_to_cpu) == -1 &&
1949                     rcu_ld_need_qs(t) == TRC_NEED_QS_CHECKED)
1950                         trc_del_holdout(t);
1951                 else if (needreport)
1952                         show_stalled_task_trace(t, firstreport);
1953                 cond_resched_tasks_rcu_qs();
1954         }
1955
1956         // Re-enable CPU hotplug now that the holdout list scan has completed.
1957         cpus_read_unlock();
1958
1959         if (needreport) {
1960                 if (*firstreport)
1961                         pr_err("INFO: rcu_tasks_trace detected stalls? (Late IPI?)\n");
1962                 show_stalled_ipi_trace();
1963         }
1964 }
1965
1966 static void rcu_tasks_trace_empty_fn(void *unused)
1967 {
1968 }
1969
1970 /* Wait for grace period to complete and provide ordering. */
1971 static void rcu_tasks_trace_postgp(struct rcu_tasks *rtp)
1972 {
1973         int cpu;
1974
1975         // Wait for any lingering IPI handlers to complete.  Note that
1976         // if a CPU has gone offline or transitioned to userspace in the
1977         // meantime, all IPI handlers should have been drained beforehand.
1978         // Yes, this assumes that CPUs process IPIs in order.  If that ever
1979         // changes, there will need to be a recheck and/or timed wait.
1980         for_each_online_cpu(cpu)
1981                 if (WARN_ON_ONCE(smp_load_acquire(per_cpu_ptr(&trc_ipi_to_cpu, cpu))))
1982                         smp_call_function_single(cpu, rcu_tasks_trace_empty_fn, NULL, 1);
1983
1984         smp_mb(); // Caller's code must be ordered after wakeup.
1985                   // Pairs with pretty much every ordering primitive.
1986 }
1987
1988 /* Report any needed quiescent state for this exiting task. */
1989 static void exit_tasks_rcu_finish_trace(struct task_struct *t)
1990 {
1991         union rcu_special trs = READ_ONCE(t->trc_reader_special);
1992
1993         rcu_trc_cmpxchg_need_qs(t, 0, TRC_NEED_QS_CHECKED);
1994         WARN_ON_ONCE(READ_ONCE(t->trc_reader_nesting));
1995         if (WARN_ON_ONCE(rcu_ld_need_qs(t) & TRC_NEED_QS || trs.b.blocked))
1996                 rcu_read_unlock_trace_special(t);
1997         else
1998                 WRITE_ONCE(t->trc_reader_nesting, 0);
1999 }
2000
2001 /**
2002  * call_rcu_tasks_trace() - Queue a callback trace task-based grace period
2003  * @rhp: structure to be used for queueing the RCU updates.
2004  * @func: actual callback function to be invoked after the grace period
2005  *
2006  * The callback function will be invoked some time after a trace rcu-tasks
2007  * grace period elapses, in other words after all currently executing
2008  * trace rcu-tasks read-side critical sections have completed. These
2009  * read-side critical sections are delimited by calls to rcu_read_lock_trace()
2010  * and rcu_read_unlock_trace().
2011  *
2012  * See the description of call_rcu() for more detailed information on
2013  * memory ordering guarantees.
2014  */
2015 void call_rcu_tasks_trace(struct rcu_head *rhp, rcu_callback_t func)
2016 {
2017         call_rcu_tasks_generic(rhp, func, &rcu_tasks_trace);
2018 }
2019 EXPORT_SYMBOL_GPL(call_rcu_tasks_trace);
2020
2021 /**
2022  * synchronize_rcu_tasks_trace - wait for a trace rcu-tasks grace period
2023  *
2024  * Control will return to the caller some time after a trace rcu-tasks
2025  * grace period has elapsed, in other words after all currently executing
2026  * trace rcu-tasks read-side critical sections have elapsed. These read-side
2027  * critical sections are delimited by calls to rcu_read_lock_trace()
2028  * and rcu_read_unlock_trace().
2029  *
2030  * This is a very specialized primitive, intended only for a few uses in
2031  * tracing and other situations requiring manipulation of function preambles
2032  * and profiling hooks.  The synchronize_rcu_tasks_trace() function is not
2033  * (yet) intended for heavy use from multiple CPUs.
2034  *
2035  * See the description of synchronize_rcu() for more detailed information
2036  * on memory ordering guarantees.
2037  */
2038 void synchronize_rcu_tasks_trace(void)
2039 {
2040         RCU_LOCKDEP_WARN(lock_is_held(&rcu_trace_lock_map), "Illegal synchronize_rcu_tasks_trace() in RCU Tasks Trace read-side critical section");
2041         synchronize_rcu_tasks_generic(&rcu_tasks_trace);
2042 }
2043 EXPORT_SYMBOL_GPL(synchronize_rcu_tasks_trace);
2044
2045 /**
2046  * rcu_barrier_tasks_trace - Wait for in-flight call_rcu_tasks_trace() callbacks.
2047  *
2048  * Although the current implementation is guaranteed to wait, it is not
2049  * obligated to, for example, if there are no pending callbacks.
2050  */
2051 void rcu_barrier_tasks_trace(void)
2052 {
2053         rcu_barrier_tasks_generic(&rcu_tasks_trace);
2054 }
2055 EXPORT_SYMBOL_GPL(rcu_barrier_tasks_trace);
2056
2057 int rcu_tasks_trace_lazy_ms = -1;
2058 module_param(rcu_tasks_trace_lazy_ms, int, 0444);
2059
2060 static int __init rcu_spawn_tasks_trace_kthread(void)
2061 {
2062         if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB)) {
2063                 rcu_tasks_trace.gp_sleep = HZ / 10;
2064                 rcu_tasks_trace.init_fract = HZ / 10;
2065         } else {
2066                 rcu_tasks_trace.gp_sleep = HZ / 200;
2067                 if (rcu_tasks_trace.gp_sleep <= 0)
2068                         rcu_tasks_trace.gp_sleep = 1;
2069                 rcu_tasks_trace.init_fract = HZ / 200;
2070                 if (rcu_tasks_trace.init_fract <= 0)
2071                         rcu_tasks_trace.init_fract = 1;
2072         }
2073         if (rcu_tasks_trace_lazy_ms >= 0)
2074                 rcu_tasks_trace.lazy_jiffies = msecs_to_jiffies(rcu_tasks_trace_lazy_ms);
2075         rcu_tasks_trace.pregp_func = rcu_tasks_trace_pregp_step;
2076         rcu_tasks_trace.postscan_func = rcu_tasks_trace_postscan;
2077         rcu_tasks_trace.holdouts_func = check_all_holdout_tasks_trace;
2078         rcu_tasks_trace.postgp_func = rcu_tasks_trace_postgp;
2079         rcu_spawn_tasks_kthread_generic(&rcu_tasks_trace);
2080         return 0;
2081 }
2082
2083 #if !defined(CONFIG_TINY_RCU)
2084 void show_rcu_tasks_trace_gp_kthread(void)
2085 {
2086         char buf[64];
2087
2088         snprintf(buf, sizeof(buf), "N%lu h:%lu/%lu/%lu",
2089                 data_race(n_trc_holdouts),
2090                 data_race(n_heavy_reader_ofl_updates),
2091                 data_race(n_heavy_reader_updates),
2092                 data_race(n_heavy_reader_attempts));
2093         show_rcu_tasks_generic_gp_kthread(&rcu_tasks_trace, buf);
2094 }
2095 EXPORT_SYMBOL_GPL(show_rcu_tasks_trace_gp_kthread);
2096
2097 void rcu_tasks_trace_torture_stats_print(char *tt, char *tf)
2098 {
2099         rcu_tasks_torture_stats_print_generic(&rcu_tasks_trace, tt, tf, "");
2100 }
2101 EXPORT_SYMBOL_GPL(rcu_tasks_trace_torture_stats_print);
2102 #endif // !defined(CONFIG_TINY_RCU)
2103
2104 struct task_struct *get_rcu_tasks_trace_gp_kthread(void)
2105 {
2106         return rcu_tasks_trace.kthread_ptr;
2107 }
2108 EXPORT_SYMBOL_GPL(get_rcu_tasks_trace_gp_kthread);
2109
2110 void rcu_tasks_trace_get_gp_data(int *flags, unsigned long *gp_seq)
2111 {
2112         *flags = 0;
2113         *gp_seq = rcu_seq_current(&rcu_tasks_trace.tasks_gp_seq);
2114 }
2115 EXPORT_SYMBOL_GPL(rcu_tasks_trace_get_gp_data);
2116
2117 #else /* #ifdef CONFIG_TASKS_TRACE_RCU */
2118 static void exit_tasks_rcu_finish_trace(struct task_struct *t) { }
2119 #endif /* #else #ifdef CONFIG_TASKS_TRACE_RCU */
2120
2121 #ifndef CONFIG_TINY_RCU
2122 void show_rcu_tasks_gp_kthreads(void)
2123 {
2124         show_rcu_tasks_classic_gp_kthread();
2125         show_rcu_tasks_rude_gp_kthread();
2126         show_rcu_tasks_trace_gp_kthread();
2127 }
2128 #endif /* #ifndef CONFIG_TINY_RCU */
2129
2130 #ifdef CONFIG_PROVE_RCU
2131 struct rcu_tasks_test_desc {
2132         struct rcu_head rh;
2133         const char *name;
2134         bool notrun;
2135         unsigned long runstart;
2136 };
2137
2138 static struct rcu_tasks_test_desc tests[] = {
2139         {
2140                 .name = "call_rcu_tasks()",
2141                 /* If not defined, the test is skipped. */
2142                 .notrun = IS_ENABLED(CONFIG_TASKS_RCU),
2143         },
2144         {
2145                 .name = "call_rcu_tasks_trace()",
2146                 /* If not defined, the test is skipped. */
2147                 .notrun = IS_ENABLED(CONFIG_TASKS_TRACE_RCU)
2148         }
2149 };
2150
2151 #if defined(CONFIG_TASKS_RCU) || defined(CONFIG_TASKS_TRACE_RCU)
2152 static void test_rcu_tasks_callback(struct rcu_head *rhp)
2153 {
2154         struct rcu_tasks_test_desc *rttd =
2155                 container_of(rhp, struct rcu_tasks_test_desc, rh);
2156
2157         pr_info("Callback from %s invoked.\n", rttd->name);
2158
2159         rttd->notrun = false;
2160 }
2161 #endif // #if defined(CONFIG_TASKS_RCU) || defined(CONFIG_TASKS_TRACE_RCU)
2162
2163 static void rcu_tasks_initiate_self_tests(void)
2164 {
2165 #ifdef CONFIG_TASKS_RCU
2166         pr_info("Running RCU Tasks wait API self tests\n");
2167         tests[0].runstart = jiffies;
2168         synchronize_rcu_tasks();
2169         call_rcu_tasks(&tests[0].rh, test_rcu_tasks_callback);
2170 #endif
2171
2172 #ifdef CONFIG_TASKS_RUDE_RCU
2173         pr_info("Running RCU Tasks Rude wait API self tests\n");
2174         synchronize_rcu_tasks_rude();
2175 #endif
2176
2177 #ifdef CONFIG_TASKS_TRACE_RCU
2178         pr_info("Running RCU Tasks Trace wait API self tests\n");
2179         tests[1].runstart = jiffies;
2180         synchronize_rcu_tasks_trace();
2181         call_rcu_tasks_trace(&tests[1].rh, test_rcu_tasks_callback);
2182 #endif
2183 }
2184
2185 /*
2186  * Return:  0 - test passed
2187  *          1 - test failed, but have not timed out yet
2188  *         -1 - test failed and timed out
2189  */
2190 static int rcu_tasks_verify_self_tests(void)
2191 {
2192         int ret = 0;
2193         int i;
2194         unsigned long bst = rcu_task_stall_timeout;
2195
2196         if (bst <= 0 || bst > RCU_TASK_BOOT_STALL_TIMEOUT)
2197                 bst = RCU_TASK_BOOT_STALL_TIMEOUT;
2198         for (i = 0; i < ARRAY_SIZE(tests); i++) {
2199                 while (tests[i].notrun) {               // still hanging.
2200                         if (time_after(jiffies, tests[i].runstart + bst)) {
2201                                 pr_err("%s has failed boot-time tests.\n", tests[i].name);
2202                                 ret = -1;
2203                                 break;
2204                         }
2205                         ret = 1;
2206                         break;
2207                 }
2208         }
2209         WARN_ON(ret < 0);
2210
2211         return ret;
2212 }
2213
2214 /*
2215  * Repeat the rcu_tasks_verify_self_tests() call once every second until the
2216  * test passes or has timed out.
2217  */
2218 static struct delayed_work rcu_tasks_verify_work;
2219 static void rcu_tasks_verify_work_fn(struct work_struct *work __maybe_unused)
2220 {
2221         int ret = rcu_tasks_verify_self_tests();
2222
2223         if (ret <= 0)
2224                 return;
2225
2226         /* Test fails but not timed out yet, reschedule another check */
2227         schedule_delayed_work(&rcu_tasks_verify_work, HZ);
2228 }
2229
2230 static int rcu_tasks_verify_schedule_work(void)
2231 {
2232         INIT_DELAYED_WORK(&rcu_tasks_verify_work, rcu_tasks_verify_work_fn);
2233         rcu_tasks_verify_work_fn(NULL);
2234         return 0;
2235 }
2236 late_initcall(rcu_tasks_verify_schedule_work);
2237 #else /* #ifdef CONFIG_PROVE_RCU */
2238 static void rcu_tasks_initiate_self_tests(void) { }
2239 #endif /* #else #ifdef CONFIG_PROVE_RCU */
2240
2241 void __init tasks_cblist_init_generic(void)
2242 {
2243         lockdep_assert_irqs_disabled();
2244         WARN_ON(num_online_cpus() > 1);
2245
2246 #ifdef CONFIG_TASKS_RCU
2247         cblist_init_generic(&rcu_tasks);
2248 #endif
2249
2250 #ifdef CONFIG_TASKS_RUDE_RCU
2251         cblist_init_generic(&rcu_tasks_rude);
2252 #endif
2253
2254 #ifdef CONFIG_TASKS_TRACE_RCU
2255         cblist_init_generic(&rcu_tasks_trace);
2256 #endif
2257 }
2258
2259 void __init rcu_init_tasks_generic(void)
2260 {
2261 #ifdef CONFIG_TASKS_RCU
2262         rcu_spawn_tasks_kthread();
2263 #endif
2264
2265 #ifdef CONFIG_TASKS_RUDE_RCU
2266         rcu_spawn_tasks_rude_kthread();
2267 #endif
2268
2269 #ifdef CONFIG_TASKS_TRACE_RCU
2270         rcu_spawn_tasks_trace_kthread();
2271 #endif
2272
2273         // Run the self-tests.
2274         rcu_tasks_initiate_self_tests();
2275 }
2276
2277 #else /* #ifdef CONFIG_TASKS_RCU_GENERIC */
2278 static inline void rcu_tasks_bootup_oddness(void) {}
2279 #endif /* #else #ifdef CONFIG_TASKS_RCU_GENERIC */
This page took 0.152126 seconds and 4 git commands to generate.