]> Git Repo - J-linux.git/blob - kernel/pid_namespace.c
Merge tag 'vfs-6.13-rc7.fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs
[J-linux.git] / kernel / pid_namespace.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Pid namespaces
4  *
5  * Authors:
6  *    (C) 2007 Pavel Emelyanov <[email protected]>, OpenVZ, SWsoft Inc.
7  *    (C) 2007 Sukadev Bhattiprolu <[email protected]>, IBM
8  *     Many thanks to Oleg Nesterov for comments and help
9  *
10  */
11
12 #include <linux/pid.h>
13 #include <linux/pid_namespace.h>
14 #include <linux/user_namespace.h>
15 #include <linux/syscalls.h>
16 #include <linux/cred.h>
17 #include <linux/err.h>
18 #include <linux/acct.h>
19 #include <linux/slab.h>
20 #include <linux/proc_ns.h>
21 #include <linux/reboot.h>
22 #include <linux/export.h>
23 #include <linux/sched/task.h>
24 #include <linux/sched/signal.h>
25 #include <linux/idr.h>
26 #include <uapi/linux/wait.h>
27 #include "pid_sysctl.h"
28
29 static DEFINE_MUTEX(pid_caches_mutex);
30 static struct kmem_cache *pid_ns_cachep;
31 /* Write once array, filled from the beginning. */
32 static struct kmem_cache *pid_cache[MAX_PID_NS_LEVEL];
33
34 /*
35  * creates the kmem cache to allocate pids from.
36  * @level: pid namespace level
37  */
38
39 static struct kmem_cache *create_pid_cachep(unsigned int level)
40 {
41         /* Level 0 is init_pid_ns.pid_cachep */
42         struct kmem_cache **pkc = &pid_cache[level - 1];
43         struct kmem_cache *kc;
44         char name[4 + 10 + 1];
45         unsigned int len;
46
47         kc = READ_ONCE(*pkc);
48         if (kc)
49                 return kc;
50
51         snprintf(name, sizeof(name), "pid_%u", level + 1);
52         len = struct_size_t(struct pid, numbers, level + 1);
53         mutex_lock(&pid_caches_mutex);
54         /* Name collision forces to do allocation under mutex. */
55         if (!*pkc)
56                 *pkc = kmem_cache_create(name, len, 0,
57                                          SLAB_HWCACHE_ALIGN | SLAB_ACCOUNT, NULL);
58         mutex_unlock(&pid_caches_mutex);
59         /* current can fail, but someone else can succeed. */
60         return READ_ONCE(*pkc);
61 }
62
63 static struct ucounts *inc_pid_namespaces(struct user_namespace *ns)
64 {
65         return inc_ucount(ns, current_euid(), UCOUNT_PID_NAMESPACES);
66 }
67
68 static void dec_pid_namespaces(struct ucounts *ucounts)
69 {
70         dec_ucount(ucounts, UCOUNT_PID_NAMESPACES);
71 }
72
73 static struct pid_namespace *create_pid_namespace(struct user_namespace *user_ns,
74         struct pid_namespace *parent_pid_ns)
75 {
76         struct pid_namespace *ns;
77         unsigned int level = parent_pid_ns->level + 1;
78         struct ucounts *ucounts;
79         int err;
80
81         err = -EINVAL;
82         if (!in_userns(parent_pid_ns->user_ns, user_ns))
83                 goto out;
84
85         err = -ENOSPC;
86         if (level > MAX_PID_NS_LEVEL)
87                 goto out;
88         ucounts = inc_pid_namespaces(user_ns);
89         if (!ucounts)
90                 goto out;
91
92         err = -ENOMEM;
93         ns = kmem_cache_zalloc(pid_ns_cachep, GFP_KERNEL);
94         if (ns == NULL)
95                 goto out_dec;
96
97         idr_init(&ns->idr);
98
99         ns->pid_cachep = create_pid_cachep(level);
100         if (ns->pid_cachep == NULL)
101                 goto out_free_idr;
102
103         err = ns_alloc_inum(&ns->ns);
104         if (err)
105                 goto out_free_idr;
106         ns->ns.ops = &pidns_operations;
107
108         refcount_set(&ns->ns.count, 1);
109         ns->level = level;
110         ns->parent = get_pid_ns(parent_pid_ns);
111         ns->user_ns = get_user_ns(user_ns);
112         ns->ucounts = ucounts;
113         ns->pid_allocated = PIDNS_ADDING;
114 #if defined(CONFIG_SYSCTL) && defined(CONFIG_MEMFD_CREATE)
115         ns->memfd_noexec_scope = pidns_memfd_noexec_scope(parent_pid_ns);
116 #endif
117         return ns;
118
119 out_free_idr:
120         idr_destroy(&ns->idr);
121         kmem_cache_free(pid_ns_cachep, ns);
122 out_dec:
123         dec_pid_namespaces(ucounts);
124 out:
125         return ERR_PTR(err);
126 }
127
128 static void delayed_free_pidns(struct rcu_head *p)
129 {
130         struct pid_namespace *ns = container_of(p, struct pid_namespace, rcu);
131
132         dec_pid_namespaces(ns->ucounts);
133         put_user_ns(ns->user_ns);
134
135         kmem_cache_free(pid_ns_cachep, ns);
136 }
137
138 static void destroy_pid_namespace(struct pid_namespace *ns)
139 {
140         ns_free_inum(&ns->ns);
141
142         idr_destroy(&ns->idr);
143         call_rcu(&ns->rcu, delayed_free_pidns);
144 }
145
146 struct pid_namespace *copy_pid_ns(unsigned long flags,
147         struct user_namespace *user_ns, struct pid_namespace *old_ns)
148 {
149         if (!(flags & CLONE_NEWPID))
150                 return get_pid_ns(old_ns);
151         if (task_active_pid_ns(current) != old_ns)
152                 return ERR_PTR(-EINVAL);
153         return create_pid_namespace(user_ns, old_ns);
154 }
155
156 void put_pid_ns(struct pid_namespace *ns)
157 {
158         struct pid_namespace *parent;
159
160         while (ns != &init_pid_ns) {
161                 parent = ns->parent;
162                 if (!refcount_dec_and_test(&ns->ns.count))
163                         break;
164                 destroy_pid_namespace(ns);
165                 ns = parent;
166         }
167 }
168 EXPORT_SYMBOL_GPL(put_pid_ns);
169
170 void zap_pid_ns_processes(struct pid_namespace *pid_ns)
171 {
172         int nr;
173         int rc;
174         struct task_struct *task, *me = current;
175         int init_pids = thread_group_leader(me) ? 1 : 2;
176         struct pid *pid;
177
178         /* Don't allow any more processes into the pid namespace */
179         disable_pid_allocation(pid_ns);
180
181         /*
182          * Ignore SIGCHLD causing any terminated children to autoreap.
183          * This speeds up the namespace shutdown, plus see the comment
184          * below.
185          */
186         spin_lock_irq(&me->sighand->siglock);
187         me->sighand->action[SIGCHLD - 1].sa.sa_handler = SIG_IGN;
188         spin_unlock_irq(&me->sighand->siglock);
189
190         /*
191          * The last thread in the cgroup-init thread group is terminating.
192          * Find remaining pid_ts in the namespace, signal and wait for them
193          * to exit.
194          *
195          * Note:  This signals each threads in the namespace - even those that
196          *        belong to the same thread group, To avoid this, we would have
197          *        to walk the entire tasklist looking a processes in this
198          *        namespace, but that could be unnecessarily expensive if the
199          *        pid namespace has just a few processes. Or we need to
200          *        maintain a tasklist for each pid namespace.
201          *
202          */
203         rcu_read_lock();
204         read_lock(&tasklist_lock);
205         nr = 2;
206         idr_for_each_entry_continue(&pid_ns->idr, pid, nr) {
207                 task = pid_task(pid, PIDTYPE_PID);
208                 if (task && !__fatal_signal_pending(task))
209                         group_send_sig_info(SIGKILL, SEND_SIG_PRIV, task, PIDTYPE_MAX);
210         }
211         read_unlock(&tasklist_lock);
212         rcu_read_unlock();
213
214         /*
215          * Reap the EXIT_ZOMBIE children we had before we ignored SIGCHLD.
216          * kernel_wait4() will also block until our children traced from the
217          * parent namespace are detached and become EXIT_DEAD.
218          */
219         do {
220                 clear_thread_flag(TIF_SIGPENDING);
221                 clear_thread_flag(TIF_NOTIFY_SIGNAL);
222                 rc = kernel_wait4(-1, NULL, __WALL, NULL);
223         } while (rc != -ECHILD);
224
225         /*
226          * kernel_wait4() misses EXIT_DEAD children, and EXIT_ZOMBIE
227          * process whose parents processes are outside of the pid
228          * namespace.  Such processes are created with setns()+fork().
229          *
230          * If those EXIT_ZOMBIE processes are not reaped by their
231          * parents before their parents exit, they will be reparented
232          * to pid_ns->child_reaper.  Thus pidns->child_reaper needs to
233          * stay valid until they all go away.
234          *
235          * The code relies on the pid_ns->child_reaper ignoring
236          * SIGCHILD to cause those EXIT_ZOMBIE processes to be
237          * autoreaped if reparented.
238          *
239          * Semantically it is also desirable to wait for EXIT_ZOMBIE
240          * processes before allowing the child_reaper to be reaped, as
241          * that gives the invariant that when the init process of a
242          * pid namespace is reaped all of the processes in the pid
243          * namespace are gone.
244          *
245          * Once all of the other tasks are gone from the pid_namespace
246          * free_pid() will awaken this task.
247          */
248         for (;;) {
249                 set_current_state(TASK_INTERRUPTIBLE);
250                 if (pid_ns->pid_allocated == init_pids)
251                         break;
252                 schedule();
253         }
254         __set_current_state(TASK_RUNNING);
255
256         if (pid_ns->reboot)
257                 current->signal->group_exit_code = pid_ns->reboot;
258
259         acct_exit_ns(pid_ns);
260         return;
261 }
262
263 #ifdef CONFIG_CHECKPOINT_RESTORE
264 static int pid_ns_ctl_handler(const struct ctl_table *table, int write,
265                 void *buffer, size_t *lenp, loff_t *ppos)
266 {
267         struct pid_namespace *pid_ns = task_active_pid_ns(current);
268         struct ctl_table tmp = *table;
269         int ret, next;
270
271         if (write && !checkpoint_restore_ns_capable(pid_ns->user_ns))
272                 return -EPERM;
273
274         next = idr_get_cursor(&pid_ns->idr) - 1;
275
276         tmp.data = &next;
277         ret = proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos);
278         if (!ret && write)
279                 idr_set_cursor(&pid_ns->idr, next + 1);
280
281         return ret;
282 }
283
284 extern int pid_max;
285 static struct ctl_table pid_ns_ctl_table[] = {
286         {
287                 .procname = "ns_last_pid",
288                 .maxlen = sizeof(int),
289                 .mode = 0666, /* permissions are checked in the handler */
290                 .proc_handler = pid_ns_ctl_handler,
291                 .extra1 = SYSCTL_ZERO,
292                 .extra2 = &pid_max,
293         },
294 };
295 #endif  /* CONFIG_CHECKPOINT_RESTORE */
296
297 int reboot_pid_ns(struct pid_namespace *pid_ns, int cmd)
298 {
299         if (pid_ns == &init_pid_ns)
300                 return 0;
301
302         switch (cmd) {
303         case LINUX_REBOOT_CMD_RESTART2:
304         case LINUX_REBOOT_CMD_RESTART:
305                 pid_ns->reboot = SIGHUP;
306                 break;
307
308         case LINUX_REBOOT_CMD_POWER_OFF:
309         case LINUX_REBOOT_CMD_HALT:
310                 pid_ns->reboot = SIGINT;
311                 break;
312         default:
313                 return -EINVAL;
314         }
315
316         read_lock(&tasklist_lock);
317         send_sig(SIGKILL, pid_ns->child_reaper, 1);
318         read_unlock(&tasklist_lock);
319
320         do_exit(0);
321
322         /* Not reached */
323         return 0;
324 }
325
326 static inline struct pid_namespace *to_pid_ns(struct ns_common *ns)
327 {
328         return container_of(ns, struct pid_namespace, ns);
329 }
330
331 static struct ns_common *pidns_get(struct task_struct *task)
332 {
333         struct pid_namespace *ns;
334
335         rcu_read_lock();
336         ns = task_active_pid_ns(task);
337         if (ns)
338                 get_pid_ns(ns);
339         rcu_read_unlock();
340
341         return ns ? &ns->ns : NULL;
342 }
343
344 static struct ns_common *pidns_for_children_get(struct task_struct *task)
345 {
346         struct pid_namespace *ns = NULL;
347
348         task_lock(task);
349         if (task->nsproxy) {
350                 ns = task->nsproxy->pid_ns_for_children;
351                 get_pid_ns(ns);
352         }
353         task_unlock(task);
354
355         if (ns) {
356                 read_lock(&tasklist_lock);
357                 if (!ns->child_reaper) {
358                         put_pid_ns(ns);
359                         ns = NULL;
360                 }
361                 read_unlock(&tasklist_lock);
362         }
363
364         return ns ? &ns->ns : NULL;
365 }
366
367 static void pidns_put(struct ns_common *ns)
368 {
369         put_pid_ns(to_pid_ns(ns));
370 }
371
372 static int pidns_install(struct nsset *nsset, struct ns_common *ns)
373 {
374         struct nsproxy *nsproxy = nsset->nsproxy;
375         struct pid_namespace *active = task_active_pid_ns(current);
376         struct pid_namespace *ancestor, *new = to_pid_ns(ns);
377
378         if (!ns_capable(new->user_ns, CAP_SYS_ADMIN) ||
379             !ns_capable(nsset->cred->user_ns, CAP_SYS_ADMIN))
380                 return -EPERM;
381
382         /*
383          * Only allow entering the current active pid namespace
384          * or a child of the current active pid namespace.
385          *
386          * This is required for fork to return a usable pid value and
387          * this maintains the property that processes and their
388          * children can not escape their current pid namespace.
389          */
390         if (new->level < active->level)
391                 return -EINVAL;
392
393         ancestor = new;
394         while (ancestor->level > active->level)
395                 ancestor = ancestor->parent;
396         if (ancestor != active)
397                 return -EINVAL;
398
399         put_pid_ns(nsproxy->pid_ns_for_children);
400         nsproxy->pid_ns_for_children = get_pid_ns(new);
401         return 0;
402 }
403
404 static struct ns_common *pidns_get_parent(struct ns_common *ns)
405 {
406         struct pid_namespace *active = task_active_pid_ns(current);
407         struct pid_namespace *pid_ns, *p;
408
409         /* See if the parent is in the current namespace */
410         pid_ns = p = to_pid_ns(ns)->parent;
411         for (;;) {
412                 if (!p)
413                         return ERR_PTR(-EPERM);
414                 if (p == active)
415                         break;
416                 p = p->parent;
417         }
418
419         return &get_pid_ns(pid_ns)->ns;
420 }
421
422 static struct user_namespace *pidns_owner(struct ns_common *ns)
423 {
424         return to_pid_ns(ns)->user_ns;
425 }
426
427 const struct proc_ns_operations pidns_operations = {
428         .name           = "pid",
429         .type           = CLONE_NEWPID,
430         .get            = pidns_get,
431         .put            = pidns_put,
432         .install        = pidns_install,
433         .owner          = pidns_owner,
434         .get_parent     = pidns_get_parent,
435 };
436
437 const struct proc_ns_operations pidns_for_children_operations = {
438         .name           = "pid_for_children",
439         .real_ns_name   = "pid",
440         .type           = CLONE_NEWPID,
441         .get            = pidns_for_children_get,
442         .put            = pidns_put,
443         .install        = pidns_install,
444         .owner          = pidns_owner,
445         .get_parent     = pidns_get_parent,
446 };
447
448 static __init int pid_namespaces_init(void)
449 {
450         pid_ns_cachep = KMEM_CACHE(pid_namespace, SLAB_PANIC | SLAB_ACCOUNT);
451
452 #ifdef CONFIG_CHECKPOINT_RESTORE
453         register_sysctl_init("kernel", pid_ns_ctl_table);
454 #endif
455
456         register_pid_ns_sysctl_table_vm();
457         return 0;
458 }
459
460 __initcall(pid_namespaces_init);
This page took 0.050305 seconds and 4 git commands to generate.