]> Git Repo - J-linux.git/blob - kernel/locking/rwsem.c
Merge tag 'vfs-6.13-rc7.fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs
[J-linux.git] / kernel / locking / rwsem.c
1 // SPDX-License-Identifier: GPL-2.0
2 /* kernel/rwsem.c: R/W semaphores, public implementation
3  *
4  * Written by David Howells ([email protected]).
5  * Derived from asm-i386/semaphore.h
6  *
7  * Writer lock-stealing by Alex Shi <[email protected]>
8  * and Michel Lespinasse <[email protected]>
9  *
10  * Optimistic spinning by Tim Chen <[email protected]>
11  * and Davidlohr Bueso <[email protected]>. Based on mutexes.
12  *
13  * Rwsem count bit fields re-definition and rwsem rearchitecture by
14  * Waiman Long <[email protected]> and
15  * Peter Zijlstra <[email protected]>.
16  */
17
18 #include <linux/types.h>
19 #include <linux/kernel.h>
20 #include <linux/sched.h>
21 #include <linux/sched/rt.h>
22 #include <linux/sched/task.h>
23 #include <linux/sched/debug.h>
24 #include <linux/sched/wake_q.h>
25 #include <linux/sched/signal.h>
26 #include <linux/sched/clock.h>
27 #include <linux/export.h>
28 #include <linux/rwsem.h>
29 #include <linux/atomic.h>
30 #include <trace/events/lock.h>
31
32 #ifndef CONFIG_PREEMPT_RT
33 #include "lock_events.h"
34
35 /*
36  * The least significant 2 bits of the owner value has the following
37  * meanings when set.
38  *  - Bit 0: RWSEM_READER_OWNED - rwsem may be owned by readers (just a hint)
39  *  - Bit 1: RWSEM_NONSPINNABLE - Cannot spin on a reader-owned lock
40  *
41  * When the rwsem is reader-owned and a spinning writer has timed out,
42  * the nonspinnable bit will be set to disable optimistic spinning.
43
44  * When a writer acquires a rwsem, it puts its task_struct pointer
45  * into the owner field. It is cleared after an unlock.
46  *
47  * When a reader acquires a rwsem, it will also puts its task_struct
48  * pointer into the owner field with the RWSEM_READER_OWNED bit set.
49  * On unlock, the owner field will largely be left untouched. So
50  * for a free or reader-owned rwsem, the owner value may contain
51  * information about the last reader that acquires the rwsem.
52  *
53  * That information may be helpful in debugging cases where the system
54  * seems to hang on a reader owned rwsem especially if only one reader
55  * is involved. Ideally we would like to track all the readers that own
56  * a rwsem, but the overhead is simply too big.
57  *
58  * A fast path reader optimistic lock stealing is supported when the rwsem
59  * is previously owned by a writer and the following conditions are met:
60  *  - rwsem is not currently writer owned
61  *  - the handoff isn't set.
62  */
63 #define RWSEM_READER_OWNED      (1UL << 0)
64 #define RWSEM_NONSPINNABLE      (1UL << 1)
65 #define RWSEM_OWNER_FLAGS_MASK  (RWSEM_READER_OWNED | RWSEM_NONSPINNABLE)
66
67 #ifdef CONFIG_DEBUG_RWSEMS
68 # define DEBUG_RWSEMS_WARN_ON(c, sem)   do {                    \
69         if (!debug_locks_silent &&                              \
70             WARN_ONCE(c, "DEBUG_RWSEMS_WARN_ON(%s): count = 0x%lx, magic = 0x%lx, owner = 0x%lx, curr 0x%lx, list %sempty\n",\
71                 #c, atomic_long_read(&(sem)->count),            \
72                 (unsigned long) sem->magic,                     \
73                 atomic_long_read(&(sem)->owner), (long)current, \
74                 list_empty(&(sem)->wait_list) ? "" : "not "))   \
75                         debug_locks_off();                      \
76         } while (0)
77 #else
78 # define DEBUG_RWSEMS_WARN_ON(c, sem)
79 #endif
80
81 /*
82  * On 64-bit architectures, the bit definitions of the count are:
83  *
84  * Bit  0    - writer locked bit
85  * Bit  1    - waiters present bit
86  * Bit  2    - lock handoff bit
87  * Bits 3-7  - reserved
88  * Bits 8-62 - 55-bit reader count
89  * Bit  63   - read fail bit
90  *
91  * On 32-bit architectures, the bit definitions of the count are:
92  *
93  * Bit  0    - writer locked bit
94  * Bit  1    - waiters present bit
95  * Bit  2    - lock handoff bit
96  * Bits 3-7  - reserved
97  * Bits 8-30 - 23-bit reader count
98  * Bit  31   - read fail bit
99  *
100  * It is not likely that the most significant bit (read fail bit) will ever
101  * be set. This guard bit is still checked anyway in the down_read() fastpath
102  * just in case we need to use up more of the reader bits for other purpose
103  * in the future.
104  *
105  * atomic_long_fetch_add() is used to obtain reader lock, whereas
106  * atomic_long_cmpxchg() will be used to obtain writer lock.
107  *
108  * There are three places where the lock handoff bit may be set or cleared.
109  * 1) rwsem_mark_wake() for readers             -- set, clear
110  * 2) rwsem_try_write_lock() for writers        -- set, clear
111  * 3) rwsem_del_waiter()                        -- clear
112  *
113  * For all the above cases, wait_lock will be held. A writer must also
114  * be the first one in the wait_list to be eligible for setting the handoff
115  * bit. So concurrent setting/clearing of handoff bit is not possible.
116  */
117 #define RWSEM_WRITER_LOCKED     (1UL << 0)
118 #define RWSEM_FLAG_WAITERS      (1UL << 1)
119 #define RWSEM_FLAG_HANDOFF      (1UL << 2)
120 #define RWSEM_FLAG_READFAIL     (1UL << (BITS_PER_LONG - 1))
121
122 #define RWSEM_READER_SHIFT      8
123 #define RWSEM_READER_BIAS       (1UL << RWSEM_READER_SHIFT)
124 #define RWSEM_READER_MASK       (~(RWSEM_READER_BIAS - 1))
125 #define RWSEM_WRITER_MASK       RWSEM_WRITER_LOCKED
126 #define RWSEM_LOCK_MASK         (RWSEM_WRITER_MASK|RWSEM_READER_MASK)
127 #define RWSEM_READ_FAILED_MASK  (RWSEM_WRITER_MASK|RWSEM_FLAG_WAITERS|\
128                                  RWSEM_FLAG_HANDOFF|RWSEM_FLAG_READFAIL)
129
130 /*
131  * All writes to owner are protected by WRITE_ONCE() to make sure that
132  * store tearing can't happen as optimistic spinners may read and use
133  * the owner value concurrently without lock. Read from owner, however,
134  * may not need READ_ONCE() as long as the pointer value is only used
135  * for comparison and isn't being dereferenced.
136  *
137  * Both rwsem_{set,clear}_owner() functions should be in the same
138  * preempt disable section as the atomic op that changes sem->count.
139  */
140 static inline void rwsem_set_owner(struct rw_semaphore *sem)
141 {
142         lockdep_assert_preemption_disabled();
143         atomic_long_set(&sem->owner, (long)current);
144 }
145
146 static inline void rwsem_clear_owner(struct rw_semaphore *sem)
147 {
148         lockdep_assert_preemption_disabled();
149         atomic_long_set(&sem->owner, 0);
150 }
151
152 /*
153  * Test the flags in the owner field.
154  */
155 static inline bool rwsem_test_oflags(struct rw_semaphore *sem, long flags)
156 {
157         return atomic_long_read(&sem->owner) & flags;
158 }
159
160 /*
161  * The task_struct pointer of the last owning reader will be left in
162  * the owner field.
163  *
164  * Note that the owner value just indicates the task has owned the rwsem
165  * previously, it may not be the real owner or one of the real owners
166  * anymore when that field is examined, so take it with a grain of salt.
167  *
168  * The reader non-spinnable bit is preserved.
169  */
170 static inline void __rwsem_set_reader_owned(struct rw_semaphore *sem,
171                                             struct task_struct *owner)
172 {
173         unsigned long val = (unsigned long)owner | RWSEM_READER_OWNED |
174                 (atomic_long_read(&sem->owner) & RWSEM_NONSPINNABLE);
175
176         atomic_long_set(&sem->owner, val);
177 }
178
179 static inline void rwsem_set_reader_owned(struct rw_semaphore *sem)
180 {
181         __rwsem_set_reader_owned(sem, current);
182 }
183
184 #ifdef CONFIG_DEBUG_RWSEMS
185 /*
186  * Return just the real task structure pointer of the owner
187  */
188 static inline struct task_struct *rwsem_owner(struct rw_semaphore *sem)
189 {
190         return (struct task_struct *)
191                 (atomic_long_read(&sem->owner) & ~RWSEM_OWNER_FLAGS_MASK);
192 }
193
194 /*
195  * Return true if the rwsem is owned by a reader.
196  */
197 static inline bool is_rwsem_reader_owned(struct rw_semaphore *sem)
198 {
199         /*
200          * Check the count to see if it is write-locked.
201          */
202         long count = atomic_long_read(&sem->count);
203
204         if (count & RWSEM_WRITER_MASK)
205                 return false;
206         return rwsem_test_oflags(sem, RWSEM_READER_OWNED);
207 }
208
209 /*
210  * With CONFIG_DEBUG_RWSEMS configured, it will make sure that if there
211  * is a task pointer in owner of a reader-owned rwsem, it will be the
212  * real owner or one of the real owners. The only exception is when the
213  * unlock is done by up_read_non_owner().
214  */
215 static inline void rwsem_clear_reader_owned(struct rw_semaphore *sem)
216 {
217         unsigned long val = atomic_long_read(&sem->owner);
218
219         while ((val & ~RWSEM_OWNER_FLAGS_MASK) == (unsigned long)current) {
220                 if (atomic_long_try_cmpxchg(&sem->owner, &val,
221                                             val & RWSEM_OWNER_FLAGS_MASK))
222                         return;
223         }
224 }
225 #else
226 static inline void rwsem_clear_reader_owned(struct rw_semaphore *sem)
227 {
228 }
229 #endif
230
231 /*
232  * Set the RWSEM_NONSPINNABLE bits if the RWSEM_READER_OWNED flag
233  * remains set. Otherwise, the operation will be aborted.
234  */
235 static inline void rwsem_set_nonspinnable(struct rw_semaphore *sem)
236 {
237         unsigned long owner = atomic_long_read(&sem->owner);
238
239         do {
240                 if (!(owner & RWSEM_READER_OWNED))
241                         break;
242                 if (owner & RWSEM_NONSPINNABLE)
243                         break;
244         } while (!atomic_long_try_cmpxchg(&sem->owner, &owner,
245                                           owner | RWSEM_NONSPINNABLE));
246 }
247
248 static inline bool rwsem_read_trylock(struct rw_semaphore *sem, long *cntp)
249 {
250         *cntp = atomic_long_add_return_acquire(RWSEM_READER_BIAS, &sem->count);
251
252         if (WARN_ON_ONCE(*cntp < 0))
253                 rwsem_set_nonspinnable(sem);
254
255         if (!(*cntp & RWSEM_READ_FAILED_MASK)) {
256                 rwsem_set_reader_owned(sem);
257                 return true;
258         }
259
260         return false;
261 }
262
263 static inline bool rwsem_write_trylock(struct rw_semaphore *sem)
264 {
265         long tmp = RWSEM_UNLOCKED_VALUE;
266
267         if (atomic_long_try_cmpxchg_acquire(&sem->count, &tmp, RWSEM_WRITER_LOCKED)) {
268                 rwsem_set_owner(sem);
269                 return true;
270         }
271
272         return false;
273 }
274
275 /*
276  * Return the real task structure pointer of the owner and the embedded
277  * flags in the owner. pflags must be non-NULL.
278  */
279 static inline struct task_struct *
280 rwsem_owner_flags(struct rw_semaphore *sem, unsigned long *pflags)
281 {
282         unsigned long owner = atomic_long_read(&sem->owner);
283
284         *pflags = owner & RWSEM_OWNER_FLAGS_MASK;
285         return (struct task_struct *)(owner & ~RWSEM_OWNER_FLAGS_MASK);
286 }
287
288 /*
289  * Guide to the rw_semaphore's count field.
290  *
291  * When the RWSEM_WRITER_LOCKED bit in count is set, the lock is owned
292  * by a writer.
293  *
294  * The lock is owned by readers when
295  * (1) the RWSEM_WRITER_LOCKED isn't set in count,
296  * (2) some of the reader bits are set in count, and
297  * (3) the owner field has RWSEM_READ_OWNED bit set.
298  *
299  * Having some reader bits set is not enough to guarantee a readers owned
300  * lock as the readers may be in the process of backing out from the count
301  * and a writer has just released the lock. So another writer may steal
302  * the lock immediately after that.
303  */
304
305 /*
306  * Initialize an rwsem:
307  */
308 void __init_rwsem(struct rw_semaphore *sem, const char *name,
309                   struct lock_class_key *key)
310 {
311 #ifdef CONFIG_DEBUG_LOCK_ALLOC
312         /*
313          * Make sure we are not reinitializing a held semaphore:
314          */
315         debug_check_no_locks_freed((void *)sem, sizeof(*sem));
316         lockdep_init_map_wait(&sem->dep_map, name, key, 0, LD_WAIT_SLEEP);
317 #endif
318 #ifdef CONFIG_DEBUG_RWSEMS
319         sem->magic = sem;
320 #endif
321         atomic_long_set(&sem->count, RWSEM_UNLOCKED_VALUE);
322         raw_spin_lock_init(&sem->wait_lock);
323         INIT_LIST_HEAD(&sem->wait_list);
324         atomic_long_set(&sem->owner, 0L);
325 #ifdef CONFIG_RWSEM_SPIN_ON_OWNER
326         osq_lock_init(&sem->osq);
327 #endif
328 }
329 EXPORT_SYMBOL(__init_rwsem);
330
331 enum rwsem_waiter_type {
332         RWSEM_WAITING_FOR_WRITE,
333         RWSEM_WAITING_FOR_READ
334 };
335
336 struct rwsem_waiter {
337         struct list_head list;
338         struct task_struct *task;
339         enum rwsem_waiter_type type;
340         unsigned long timeout;
341         bool handoff_set;
342 };
343 #define rwsem_first_waiter(sem) \
344         list_first_entry(&sem->wait_list, struct rwsem_waiter, list)
345
346 enum rwsem_wake_type {
347         RWSEM_WAKE_ANY,         /* Wake whatever's at head of wait list */
348         RWSEM_WAKE_READERS,     /* Wake readers only */
349         RWSEM_WAKE_READ_OWNED   /* Waker thread holds the read lock */
350 };
351
352 /*
353  * The typical HZ value is either 250 or 1000. So set the minimum waiting
354  * time to at least 4ms or 1 jiffy (if it is higher than 4ms) in the wait
355  * queue before initiating the handoff protocol.
356  */
357 #define RWSEM_WAIT_TIMEOUT      DIV_ROUND_UP(HZ, 250)
358
359 /*
360  * Magic number to batch-wakeup waiting readers, even when writers are
361  * also present in the queue. This both limits the amount of work the
362  * waking thread must do and also prevents any potential counter overflow,
363  * however unlikely.
364  */
365 #define MAX_READERS_WAKEUP      0x100
366
367 static inline void
368 rwsem_add_waiter(struct rw_semaphore *sem, struct rwsem_waiter *waiter)
369 {
370         lockdep_assert_held(&sem->wait_lock);
371         list_add_tail(&waiter->list, &sem->wait_list);
372         /* caller will set RWSEM_FLAG_WAITERS */
373 }
374
375 /*
376  * Remove a waiter from the wait_list and clear flags.
377  *
378  * Both rwsem_mark_wake() and rwsem_try_write_lock() contain a full 'copy' of
379  * this function. Modify with care.
380  *
381  * Return: true if wait_list isn't empty and false otherwise
382  */
383 static inline bool
384 rwsem_del_waiter(struct rw_semaphore *sem, struct rwsem_waiter *waiter)
385 {
386         lockdep_assert_held(&sem->wait_lock);
387         list_del(&waiter->list);
388         if (likely(!list_empty(&sem->wait_list)))
389                 return true;
390
391         atomic_long_andnot(RWSEM_FLAG_HANDOFF | RWSEM_FLAG_WAITERS, &sem->count);
392         return false;
393 }
394
395 /*
396  * handle the lock release when processes blocked on it that can now run
397  * - if we come here from up_xxxx(), then the RWSEM_FLAG_WAITERS bit must
398  *   have been set.
399  * - there must be someone on the queue
400  * - the wait_lock must be held by the caller
401  * - tasks are marked for wakeup, the caller must later invoke wake_up_q()
402  *   to actually wakeup the blocked task(s) and drop the reference count,
403  *   preferably when the wait_lock is released
404  * - woken process blocks are discarded from the list after having task zeroed
405  * - writers are only marked woken if downgrading is false
406  *
407  * Implies rwsem_del_waiter() for all woken readers.
408  */
409 static void rwsem_mark_wake(struct rw_semaphore *sem,
410                             enum rwsem_wake_type wake_type,
411                             struct wake_q_head *wake_q)
412 {
413         struct rwsem_waiter *waiter, *tmp;
414         long oldcount, woken = 0, adjustment = 0;
415         struct list_head wlist;
416
417         lockdep_assert_held(&sem->wait_lock);
418
419         /*
420          * Take a peek at the queue head waiter such that we can determine
421          * the wakeup(s) to perform.
422          */
423         waiter = rwsem_first_waiter(sem);
424
425         if (waiter->type == RWSEM_WAITING_FOR_WRITE) {
426                 if (wake_type == RWSEM_WAKE_ANY) {
427                         /*
428                          * Mark writer at the front of the queue for wakeup.
429                          * Until the task is actually later awoken later by
430                          * the caller, other writers are able to steal it.
431                          * Readers, on the other hand, will block as they
432                          * will notice the queued writer.
433                          */
434                         wake_q_add(wake_q, waiter->task);
435                         lockevent_inc(rwsem_wake_writer);
436                 }
437
438                 return;
439         }
440
441         /*
442          * No reader wakeup if there are too many of them already.
443          */
444         if (unlikely(atomic_long_read(&sem->count) < 0))
445                 return;
446
447         /*
448          * Writers might steal the lock before we grant it to the next reader.
449          * We prefer to do the first reader grant before counting readers
450          * so we can bail out early if a writer stole the lock.
451          */
452         if (wake_type != RWSEM_WAKE_READ_OWNED) {
453                 struct task_struct *owner;
454
455                 adjustment = RWSEM_READER_BIAS;
456                 oldcount = atomic_long_fetch_add(adjustment, &sem->count);
457                 if (unlikely(oldcount & RWSEM_WRITER_MASK)) {
458                         /*
459                          * When we've been waiting "too" long (for writers
460                          * to give up the lock), request a HANDOFF to
461                          * force the issue.
462                          */
463                         if (time_after(jiffies, waiter->timeout)) {
464                                 if (!(oldcount & RWSEM_FLAG_HANDOFF)) {
465                                         adjustment -= RWSEM_FLAG_HANDOFF;
466                                         lockevent_inc(rwsem_rlock_handoff);
467                                 }
468                                 waiter->handoff_set = true;
469                         }
470
471                         atomic_long_add(-adjustment, &sem->count);
472                         return;
473                 }
474                 /*
475                  * Set it to reader-owned to give spinners an early
476                  * indication that readers now have the lock.
477                  * The reader nonspinnable bit seen at slowpath entry of
478                  * the reader is copied over.
479                  */
480                 owner = waiter->task;
481                 __rwsem_set_reader_owned(sem, owner);
482         }
483
484         /*
485          * Grant up to MAX_READERS_WAKEUP read locks to all the readers in the
486          * queue. We know that the woken will be at least 1 as we accounted
487          * for above. Note we increment the 'active part' of the count by the
488          * number of readers before waking any processes up.
489          *
490          * This is an adaptation of the phase-fair R/W locks where at the
491          * reader phase (first waiter is a reader), all readers are eligible
492          * to acquire the lock at the same time irrespective of their order
493          * in the queue. The writers acquire the lock according to their
494          * order in the queue.
495          *
496          * We have to do wakeup in 2 passes to prevent the possibility that
497          * the reader count may be decremented before it is incremented. It
498          * is because the to-be-woken waiter may not have slept yet. So it
499          * may see waiter->task got cleared, finish its critical section and
500          * do an unlock before the reader count increment.
501          *
502          * 1) Collect the read-waiters in a separate list, count them and
503          *    fully increment the reader count in rwsem.
504          * 2) For each waiters in the new list, clear waiter->task and
505          *    put them into wake_q to be woken up later.
506          */
507         INIT_LIST_HEAD(&wlist);
508         list_for_each_entry_safe(waiter, tmp, &sem->wait_list, list) {
509                 if (waiter->type == RWSEM_WAITING_FOR_WRITE)
510                         continue;
511
512                 woken++;
513                 list_move_tail(&waiter->list, &wlist);
514
515                 /*
516                  * Limit # of readers that can be woken up per wakeup call.
517                  */
518                 if (unlikely(woken >= MAX_READERS_WAKEUP))
519                         break;
520         }
521
522         adjustment = woken * RWSEM_READER_BIAS - adjustment;
523         lockevent_cond_inc(rwsem_wake_reader, woken);
524
525         oldcount = atomic_long_read(&sem->count);
526         if (list_empty(&sem->wait_list)) {
527                 /*
528                  * Combined with list_move_tail() above, this implies
529                  * rwsem_del_waiter().
530                  */
531                 adjustment -= RWSEM_FLAG_WAITERS;
532                 if (oldcount & RWSEM_FLAG_HANDOFF)
533                         adjustment -= RWSEM_FLAG_HANDOFF;
534         } else if (woken) {
535                 /*
536                  * When we've woken a reader, we no longer need to force
537                  * writers to give up the lock and we can clear HANDOFF.
538                  */
539                 if (oldcount & RWSEM_FLAG_HANDOFF)
540                         adjustment -= RWSEM_FLAG_HANDOFF;
541         }
542
543         if (adjustment)
544                 atomic_long_add(adjustment, &sem->count);
545
546         /* 2nd pass */
547         list_for_each_entry_safe(waiter, tmp, &wlist, list) {
548                 struct task_struct *tsk;
549
550                 tsk = waiter->task;
551                 get_task_struct(tsk);
552
553                 /*
554                  * Ensure calling get_task_struct() before setting the reader
555                  * waiter to nil such that rwsem_down_read_slowpath() cannot
556                  * race with do_exit() by always holding a reference count
557                  * to the task to wakeup.
558                  */
559                 smp_store_release(&waiter->task, NULL);
560                 /*
561                  * Ensure issuing the wakeup (either by us or someone else)
562                  * after setting the reader waiter to nil.
563                  */
564                 wake_q_add_safe(wake_q, tsk);
565         }
566 }
567
568 /*
569  * Remove a waiter and try to wake up other waiters in the wait queue
570  * This function is called from the out_nolock path of both the reader and
571  * writer slowpaths with wait_lock held. It releases the wait_lock and
572  * optionally wake up waiters before it returns.
573  */
574 static inline void
575 rwsem_del_wake_waiter(struct rw_semaphore *sem, struct rwsem_waiter *waiter,
576                       struct wake_q_head *wake_q)
577                       __releases(&sem->wait_lock)
578 {
579         bool first = rwsem_first_waiter(sem) == waiter;
580
581         wake_q_init(wake_q);
582
583         /*
584          * If the wait_list isn't empty and the waiter to be deleted is
585          * the first waiter, we wake up the remaining waiters as they may
586          * be eligible to acquire or spin on the lock.
587          */
588         if (rwsem_del_waiter(sem, waiter) && first)
589                 rwsem_mark_wake(sem, RWSEM_WAKE_ANY, wake_q);
590         raw_spin_unlock_irq(&sem->wait_lock);
591         if (!wake_q_empty(wake_q))
592                 wake_up_q(wake_q);
593 }
594
595 /*
596  * This function must be called with the sem->wait_lock held to prevent
597  * race conditions between checking the rwsem wait list and setting the
598  * sem->count accordingly.
599  *
600  * Implies rwsem_del_waiter() on success.
601  */
602 static inline bool rwsem_try_write_lock(struct rw_semaphore *sem,
603                                         struct rwsem_waiter *waiter)
604 {
605         struct rwsem_waiter *first = rwsem_first_waiter(sem);
606         long count, new;
607
608         lockdep_assert_held(&sem->wait_lock);
609
610         count = atomic_long_read(&sem->count);
611         do {
612                 bool has_handoff = !!(count & RWSEM_FLAG_HANDOFF);
613
614                 if (has_handoff) {
615                         /*
616                          * Honor handoff bit and yield only when the first
617                          * waiter is the one that set it. Otherwisee, we
618                          * still try to acquire the rwsem.
619                          */
620                         if (first->handoff_set && (waiter != first))
621                                 return false;
622                 }
623
624                 new = count;
625
626                 if (count & RWSEM_LOCK_MASK) {
627                         /*
628                          * A waiter (first or not) can set the handoff bit
629                          * if it is an RT task or wait in the wait queue
630                          * for too long.
631                          */
632                         if (has_handoff || (!rt_or_dl_task(waiter->task) &&
633                                             !time_after(jiffies, waiter->timeout)))
634                                 return false;
635
636                         new |= RWSEM_FLAG_HANDOFF;
637                 } else {
638                         new |= RWSEM_WRITER_LOCKED;
639                         new &= ~RWSEM_FLAG_HANDOFF;
640
641                         if (list_is_singular(&sem->wait_list))
642                                 new &= ~RWSEM_FLAG_WAITERS;
643                 }
644         } while (!atomic_long_try_cmpxchg_acquire(&sem->count, &count, new));
645
646         /*
647          * We have either acquired the lock with handoff bit cleared or set
648          * the handoff bit. Only the first waiter can have its handoff_set
649          * set here to enable optimistic spinning in slowpath loop.
650          */
651         if (new & RWSEM_FLAG_HANDOFF) {
652                 first->handoff_set = true;
653                 lockevent_inc(rwsem_wlock_handoff);
654                 return false;
655         }
656
657         /*
658          * Have rwsem_try_write_lock() fully imply rwsem_del_waiter() on
659          * success.
660          */
661         list_del(&waiter->list);
662         rwsem_set_owner(sem);
663         return true;
664 }
665
666 /*
667  * The rwsem_spin_on_owner() function returns the following 4 values
668  * depending on the lock owner state.
669  *   OWNER_NULL  : owner is currently NULL
670  *   OWNER_WRITER: when owner changes and is a writer
671  *   OWNER_READER: when owner changes and the new owner may be a reader.
672  *   OWNER_NONSPINNABLE:
673  *                 when optimistic spinning has to stop because either the
674  *                 owner stops running, is unknown, or its timeslice has
675  *                 been used up.
676  */
677 enum owner_state {
678         OWNER_NULL              = 1 << 0,
679         OWNER_WRITER            = 1 << 1,
680         OWNER_READER            = 1 << 2,
681         OWNER_NONSPINNABLE      = 1 << 3,
682 };
683
684 #ifdef CONFIG_RWSEM_SPIN_ON_OWNER
685 /*
686  * Try to acquire write lock before the writer has been put on wait queue.
687  */
688 static inline bool rwsem_try_write_lock_unqueued(struct rw_semaphore *sem)
689 {
690         long count = atomic_long_read(&sem->count);
691
692         while (!(count & (RWSEM_LOCK_MASK|RWSEM_FLAG_HANDOFF))) {
693                 if (atomic_long_try_cmpxchg_acquire(&sem->count, &count,
694                                         count | RWSEM_WRITER_LOCKED)) {
695                         rwsem_set_owner(sem);
696                         lockevent_inc(rwsem_opt_lock);
697                         return true;
698                 }
699         }
700         return false;
701 }
702
703 static inline bool rwsem_can_spin_on_owner(struct rw_semaphore *sem)
704 {
705         struct task_struct *owner;
706         unsigned long flags;
707         bool ret = true;
708
709         if (need_resched()) {
710                 lockevent_inc(rwsem_opt_fail);
711                 return false;
712         }
713
714         /*
715          * Disable preemption is equal to the RCU read-side crital section,
716          * thus the task_strcut structure won't go away.
717          */
718         owner = rwsem_owner_flags(sem, &flags);
719         /*
720          * Don't check the read-owner as the entry may be stale.
721          */
722         if ((flags & RWSEM_NONSPINNABLE) ||
723             (owner && !(flags & RWSEM_READER_OWNED) && !owner_on_cpu(owner)))
724                 ret = false;
725
726         lockevent_cond_inc(rwsem_opt_fail, !ret);
727         return ret;
728 }
729
730 #define OWNER_SPINNABLE         (OWNER_NULL | OWNER_WRITER | OWNER_READER)
731
732 static inline enum owner_state
733 rwsem_owner_state(struct task_struct *owner, unsigned long flags)
734 {
735         if (flags & RWSEM_NONSPINNABLE)
736                 return OWNER_NONSPINNABLE;
737
738         if (flags & RWSEM_READER_OWNED)
739                 return OWNER_READER;
740
741         return owner ? OWNER_WRITER : OWNER_NULL;
742 }
743
744 static noinline enum owner_state
745 rwsem_spin_on_owner(struct rw_semaphore *sem)
746 {
747         struct task_struct *new, *owner;
748         unsigned long flags, new_flags;
749         enum owner_state state;
750
751         lockdep_assert_preemption_disabled();
752
753         owner = rwsem_owner_flags(sem, &flags);
754         state = rwsem_owner_state(owner, flags);
755         if (state != OWNER_WRITER)
756                 return state;
757
758         for (;;) {
759                 /*
760                  * When a waiting writer set the handoff flag, it may spin
761                  * on the owner as well. Once that writer acquires the lock,
762                  * we can spin on it. So we don't need to quit even when the
763                  * handoff bit is set.
764                  */
765                 new = rwsem_owner_flags(sem, &new_flags);
766                 if ((new != owner) || (new_flags != flags)) {
767                         state = rwsem_owner_state(new, new_flags);
768                         break;
769                 }
770
771                 /*
772                  * Ensure we emit the owner->on_cpu, dereference _after_
773                  * checking sem->owner still matches owner, if that fails,
774                  * owner might point to free()d memory, if it still matches,
775                  * our spinning context already disabled preemption which is
776                  * equal to RCU read-side crital section ensures the memory
777                  * stays valid.
778                  */
779                 barrier();
780
781                 if (need_resched() || !owner_on_cpu(owner)) {
782                         state = OWNER_NONSPINNABLE;
783                         break;
784                 }
785
786                 cpu_relax();
787         }
788
789         return state;
790 }
791
792 /*
793  * Calculate reader-owned rwsem spinning threshold for writer
794  *
795  * The more readers own the rwsem, the longer it will take for them to
796  * wind down and free the rwsem. So the empirical formula used to
797  * determine the actual spinning time limit here is:
798  *
799  *   Spinning threshold = (10 + nr_readers/2)us
800  *
801  * The limit is capped to a maximum of 25us (30 readers). This is just
802  * a heuristic and is subjected to change in the future.
803  */
804 static inline u64 rwsem_rspin_threshold(struct rw_semaphore *sem)
805 {
806         long count = atomic_long_read(&sem->count);
807         int readers = count >> RWSEM_READER_SHIFT;
808         u64 delta;
809
810         if (readers > 30)
811                 readers = 30;
812         delta = (20 + readers) * NSEC_PER_USEC / 2;
813
814         return sched_clock() + delta;
815 }
816
817 static bool rwsem_optimistic_spin(struct rw_semaphore *sem)
818 {
819         bool taken = false;
820         int prev_owner_state = OWNER_NULL;
821         int loop = 0;
822         u64 rspin_threshold = 0;
823
824         /* sem->wait_lock should not be held when doing optimistic spinning */
825         if (!osq_lock(&sem->osq))
826                 goto done;
827
828         /*
829          * Optimistically spin on the owner field and attempt to acquire the
830          * lock whenever the owner changes. Spinning will be stopped when:
831          *  1) the owning writer isn't running; or
832          *  2) readers own the lock and spinning time has exceeded limit.
833          */
834         for (;;) {
835                 enum owner_state owner_state;
836
837                 owner_state = rwsem_spin_on_owner(sem);
838                 if (!(owner_state & OWNER_SPINNABLE))
839                         break;
840
841                 /*
842                  * Try to acquire the lock
843                  */
844                 taken = rwsem_try_write_lock_unqueued(sem);
845
846                 if (taken)
847                         break;
848
849                 /*
850                  * Time-based reader-owned rwsem optimistic spinning
851                  */
852                 if (owner_state == OWNER_READER) {
853                         /*
854                          * Re-initialize rspin_threshold every time when
855                          * the owner state changes from non-reader to reader.
856                          * This allows a writer to steal the lock in between
857                          * 2 reader phases and have the threshold reset at
858                          * the beginning of the 2nd reader phase.
859                          */
860                         if (prev_owner_state != OWNER_READER) {
861                                 if (rwsem_test_oflags(sem, RWSEM_NONSPINNABLE))
862                                         break;
863                                 rspin_threshold = rwsem_rspin_threshold(sem);
864                                 loop = 0;
865                         }
866
867                         /*
868                          * Check time threshold once every 16 iterations to
869                          * avoid calling sched_clock() too frequently so
870                          * as to reduce the average latency between the times
871                          * when the lock becomes free and when the spinner
872                          * is ready to do a trylock.
873                          */
874                         else if (!(++loop & 0xf) && (sched_clock() > rspin_threshold)) {
875                                 rwsem_set_nonspinnable(sem);
876                                 lockevent_inc(rwsem_opt_nospin);
877                                 break;
878                         }
879                 }
880
881                 /*
882                  * An RT task cannot do optimistic spinning if it cannot
883                  * be sure the lock holder is running or live-lock may
884                  * happen if the current task and the lock holder happen
885                  * to run in the same CPU. However, aborting optimistic
886                  * spinning while a NULL owner is detected may miss some
887                  * opportunity where spinning can continue without causing
888                  * problem.
889                  *
890                  * There are 2 possible cases where an RT task may be able
891                  * to continue spinning.
892                  *
893                  * 1) The lock owner is in the process of releasing the
894                  *    lock, sem->owner is cleared but the lock has not
895                  *    been released yet.
896                  * 2) The lock was free and owner cleared, but another
897                  *    task just comes in and acquire the lock before
898                  *    we try to get it. The new owner may be a spinnable
899                  *    writer.
900                  *
901                  * To take advantage of two scenarios listed above, the RT
902                  * task is made to retry one more time to see if it can
903                  * acquire the lock or continue spinning on the new owning
904                  * writer. Of course, if the time lag is long enough or the
905                  * new owner is not a writer or spinnable, the RT task will
906                  * quit spinning.
907                  *
908                  * If the owner is a writer, the need_resched() check is
909                  * done inside rwsem_spin_on_owner(). If the owner is not
910                  * a writer, need_resched() check needs to be done here.
911                  */
912                 if (owner_state != OWNER_WRITER) {
913                         if (need_resched())
914                                 break;
915                         if (rt_or_dl_task(current) &&
916                            (prev_owner_state != OWNER_WRITER))
917                                 break;
918                 }
919                 prev_owner_state = owner_state;
920
921                 /*
922                  * The cpu_relax() call is a compiler barrier which forces
923                  * everything in this loop to be re-loaded. We don't need
924                  * memory barriers as we'll eventually observe the right
925                  * values at the cost of a few extra spins.
926                  */
927                 cpu_relax();
928         }
929         osq_unlock(&sem->osq);
930 done:
931         lockevent_cond_inc(rwsem_opt_fail, !taken);
932         return taken;
933 }
934
935 /*
936  * Clear the owner's RWSEM_NONSPINNABLE bit if it is set. This should
937  * only be called when the reader count reaches 0.
938  */
939 static inline void clear_nonspinnable(struct rw_semaphore *sem)
940 {
941         if (unlikely(rwsem_test_oflags(sem, RWSEM_NONSPINNABLE)))
942                 atomic_long_andnot(RWSEM_NONSPINNABLE, &sem->owner);
943 }
944
945 #else
946 static inline bool rwsem_can_spin_on_owner(struct rw_semaphore *sem)
947 {
948         return false;
949 }
950
951 static inline bool rwsem_optimistic_spin(struct rw_semaphore *sem)
952 {
953         return false;
954 }
955
956 static inline void clear_nonspinnable(struct rw_semaphore *sem) { }
957
958 static inline enum owner_state
959 rwsem_spin_on_owner(struct rw_semaphore *sem)
960 {
961         return OWNER_NONSPINNABLE;
962 }
963 #endif
964
965 /*
966  * Prepare to wake up waiter(s) in the wait queue by putting them into the
967  * given wake_q if the rwsem lock owner isn't a writer. If rwsem is likely
968  * reader-owned, wake up read lock waiters in queue front or wake up any
969  * front waiter otherwise.
970
971  * This is being called from both reader and writer slow paths.
972  */
973 static inline void rwsem_cond_wake_waiter(struct rw_semaphore *sem, long count,
974                                           struct wake_q_head *wake_q)
975 {
976         enum rwsem_wake_type wake_type;
977
978         if (count & RWSEM_WRITER_MASK)
979                 return;
980
981         if (count & RWSEM_READER_MASK) {
982                 wake_type = RWSEM_WAKE_READERS;
983         } else {
984                 wake_type = RWSEM_WAKE_ANY;
985                 clear_nonspinnable(sem);
986         }
987         rwsem_mark_wake(sem, wake_type, wake_q);
988 }
989
990 /*
991  * Wait for the read lock to be granted
992  */
993 static struct rw_semaphore __sched *
994 rwsem_down_read_slowpath(struct rw_semaphore *sem, long count, unsigned int state)
995 {
996         long adjustment = -RWSEM_READER_BIAS;
997         long rcnt = (count >> RWSEM_READER_SHIFT);
998         struct rwsem_waiter waiter;
999         DEFINE_WAKE_Q(wake_q);
1000
1001         /*
1002          * To prevent a constant stream of readers from starving a sleeping
1003          * writer, don't attempt optimistic lock stealing if the lock is
1004          * very likely owned by readers.
1005          */
1006         if ((atomic_long_read(&sem->owner) & RWSEM_READER_OWNED) &&
1007             (rcnt > 1) && !(count & RWSEM_WRITER_LOCKED))
1008                 goto queue;
1009
1010         /*
1011          * Reader optimistic lock stealing.
1012          */
1013         if (!(count & (RWSEM_WRITER_LOCKED | RWSEM_FLAG_HANDOFF))) {
1014                 rwsem_set_reader_owned(sem);
1015                 lockevent_inc(rwsem_rlock_steal);
1016
1017                 /*
1018                  * Wake up other readers in the wait queue if it is
1019                  * the first reader.
1020                  */
1021                 if ((rcnt == 1) && (count & RWSEM_FLAG_WAITERS)) {
1022                         raw_spin_lock_irq(&sem->wait_lock);
1023                         if (!list_empty(&sem->wait_list))
1024                                 rwsem_mark_wake(sem, RWSEM_WAKE_READ_OWNED,
1025                                                 &wake_q);
1026                         raw_spin_unlock_irq(&sem->wait_lock);
1027                         wake_up_q(&wake_q);
1028                 }
1029                 return sem;
1030         }
1031
1032 queue:
1033         waiter.task = current;
1034         waiter.type = RWSEM_WAITING_FOR_READ;
1035         waiter.timeout = jiffies + RWSEM_WAIT_TIMEOUT;
1036         waiter.handoff_set = false;
1037
1038         raw_spin_lock_irq(&sem->wait_lock);
1039         if (list_empty(&sem->wait_list)) {
1040                 /*
1041                  * In case the wait queue is empty and the lock isn't owned
1042                  * by a writer, this reader can exit the slowpath and return
1043                  * immediately as its RWSEM_READER_BIAS has already been set
1044                  * in the count.
1045                  */
1046                 if (!(atomic_long_read(&sem->count) & RWSEM_WRITER_MASK)) {
1047                         /* Provide lock ACQUIRE */
1048                         smp_acquire__after_ctrl_dep();
1049                         raw_spin_unlock_irq(&sem->wait_lock);
1050                         rwsem_set_reader_owned(sem);
1051                         lockevent_inc(rwsem_rlock_fast);
1052                         return sem;
1053                 }
1054                 adjustment += RWSEM_FLAG_WAITERS;
1055         }
1056         rwsem_add_waiter(sem, &waiter);
1057
1058         /* we're now waiting on the lock, but no longer actively locking */
1059         count = atomic_long_add_return(adjustment, &sem->count);
1060
1061         rwsem_cond_wake_waiter(sem, count, &wake_q);
1062         raw_spin_unlock_irq(&sem->wait_lock);
1063
1064         if (!wake_q_empty(&wake_q))
1065                 wake_up_q(&wake_q);
1066
1067         trace_contention_begin(sem, LCB_F_READ);
1068
1069         /* wait to be given the lock */
1070         for (;;) {
1071                 set_current_state(state);
1072                 if (!smp_load_acquire(&waiter.task)) {
1073                         /* Matches rwsem_mark_wake()'s smp_store_release(). */
1074                         break;
1075                 }
1076                 if (signal_pending_state(state, current)) {
1077                         raw_spin_lock_irq(&sem->wait_lock);
1078                         if (waiter.task)
1079                                 goto out_nolock;
1080                         raw_spin_unlock_irq(&sem->wait_lock);
1081                         /* Ordered by sem->wait_lock against rwsem_mark_wake(). */
1082                         break;
1083                 }
1084                 schedule_preempt_disabled();
1085                 lockevent_inc(rwsem_sleep_reader);
1086         }
1087
1088         __set_current_state(TASK_RUNNING);
1089         lockevent_inc(rwsem_rlock);
1090         trace_contention_end(sem, 0);
1091         return sem;
1092
1093 out_nolock:
1094         rwsem_del_wake_waiter(sem, &waiter, &wake_q);
1095         __set_current_state(TASK_RUNNING);
1096         lockevent_inc(rwsem_rlock_fail);
1097         trace_contention_end(sem, -EINTR);
1098         return ERR_PTR(-EINTR);
1099 }
1100
1101 /*
1102  * Wait until we successfully acquire the write lock
1103  */
1104 static struct rw_semaphore __sched *
1105 rwsem_down_write_slowpath(struct rw_semaphore *sem, int state)
1106 {
1107         struct rwsem_waiter waiter;
1108         DEFINE_WAKE_Q(wake_q);
1109
1110         /* do optimistic spinning and steal lock if possible */
1111         if (rwsem_can_spin_on_owner(sem) && rwsem_optimistic_spin(sem)) {
1112                 /* rwsem_optimistic_spin() implies ACQUIRE on success */
1113                 return sem;
1114         }
1115
1116         /*
1117          * Optimistic spinning failed, proceed to the slowpath
1118          * and block until we can acquire the sem.
1119          */
1120         waiter.task = current;
1121         waiter.type = RWSEM_WAITING_FOR_WRITE;
1122         waiter.timeout = jiffies + RWSEM_WAIT_TIMEOUT;
1123         waiter.handoff_set = false;
1124
1125         raw_spin_lock_irq(&sem->wait_lock);
1126         rwsem_add_waiter(sem, &waiter);
1127
1128         /* we're now waiting on the lock */
1129         if (rwsem_first_waiter(sem) != &waiter) {
1130                 rwsem_cond_wake_waiter(sem, atomic_long_read(&sem->count),
1131                                        &wake_q);
1132                 if (!wake_q_empty(&wake_q)) {
1133                         /*
1134                          * We want to minimize wait_lock hold time especially
1135                          * when a large number of readers are to be woken up.
1136                          */
1137                         raw_spin_unlock_irq(&sem->wait_lock);
1138                         wake_up_q(&wake_q);
1139                         raw_spin_lock_irq(&sem->wait_lock);
1140                 }
1141         } else {
1142                 atomic_long_or(RWSEM_FLAG_WAITERS, &sem->count);
1143         }
1144
1145         /* wait until we successfully acquire the lock */
1146         set_current_state(state);
1147         trace_contention_begin(sem, LCB_F_WRITE);
1148
1149         for (;;) {
1150                 if (rwsem_try_write_lock(sem, &waiter)) {
1151                         /* rwsem_try_write_lock() implies ACQUIRE on success */
1152                         break;
1153                 }
1154
1155                 raw_spin_unlock_irq(&sem->wait_lock);
1156
1157                 if (signal_pending_state(state, current))
1158                         goto out_nolock;
1159
1160                 /*
1161                  * After setting the handoff bit and failing to acquire
1162                  * the lock, attempt to spin on owner to accelerate lock
1163                  * transfer. If the previous owner is a on-cpu writer and it
1164                  * has just released the lock, OWNER_NULL will be returned.
1165                  * In this case, we attempt to acquire the lock again
1166                  * without sleeping.
1167                  */
1168                 if (waiter.handoff_set) {
1169                         enum owner_state owner_state;
1170
1171                         owner_state = rwsem_spin_on_owner(sem);
1172                         if (owner_state == OWNER_NULL)
1173                                 goto trylock_again;
1174                 }
1175
1176                 schedule_preempt_disabled();
1177                 lockevent_inc(rwsem_sleep_writer);
1178                 set_current_state(state);
1179 trylock_again:
1180                 raw_spin_lock_irq(&sem->wait_lock);
1181         }
1182         __set_current_state(TASK_RUNNING);
1183         raw_spin_unlock_irq(&sem->wait_lock);
1184         lockevent_inc(rwsem_wlock);
1185         trace_contention_end(sem, 0);
1186         return sem;
1187
1188 out_nolock:
1189         __set_current_state(TASK_RUNNING);
1190         raw_spin_lock_irq(&sem->wait_lock);
1191         rwsem_del_wake_waiter(sem, &waiter, &wake_q);
1192         lockevent_inc(rwsem_wlock_fail);
1193         trace_contention_end(sem, -EINTR);
1194         return ERR_PTR(-EINTR);
1195 }
1196
1197 /*
1198  * handle waking up a waiter on the semaphore
1199  * - up_read/up_write has decremented the active part of count if we come here
1200  */
1201 static struct rw_semaphore *rwsem_wake(struct rw_semaphore *sem)
1202 {
1203         unsigned long flags;
1204         DEFINE_WAKE_Q(wake_q);
1205
1206         raw_spin_lock_irqsave(&sem->wait_lock, flags);
1207
1208         if (!list_empty(&sem->wait_list))
1209                 rwsem_mark_wake(sem, RWSEM_WAKE_ANY, &wake_q);
1210
1211         raw_spin_unlock_irqrestore(&sem->wait_lock, flags);
1212         wake_up_q(&wake_q);
1213
1214         return sem;
1215 }
1216
1217 /*
1218  * downgrade a write lock into a read lock
1219  * - caller incremented waiting part of count and discovered it still negative
1220  * - just wake up any readers at the front of the queue
1221  */
1222 static struct rw_semaphore *rwsem_downgrade_wake(struct rw_semaphore *sem)
1223 {
1224         unsigned long flags;
1225         DEFINE_WAKE_Q(wake_q);
1226
1227         raw_spin_lock_irqsave(&sem->wait_lock, flags);
1228
1229         if (!list_empty(&sem->wait_list))
1230                 rwsem_mark_wake(sem, RWSEM_WAKE_READ_OWNED, &wake_q);
1231
1232         raw_spin_unlock_irqrestore(&sem->wait_lock, flags);
1233         wake_up_q(&wake_q);
1234
1235         return sem;
1236 }
1237
1238 /*
1239  * lock for reading
1240  */
1241 static __always_inline int __down_read_common(struct rw_semaphore *sem, int state)
1242 {
1243         int ret = 0;
1244         long count;
1245
1246         preempt_disable();
1247         if (!rwsem_read_trylock(sem, &count)) {
1248                 if (IS_ERR(rwsem_down_read_slowpath(sem, count, state))) {
1249                         ret = -EINTR;
1250                         goto out;
1251                 }
1252                 DEBUG_RWSEMS_WARN_ON(!is_rwsem_reader_owned(sem), sem);
1253         }
1254 out:
1255         preempt_enable();
1256         return ret;
1257 }
1258
1259 static __always_inline void __down_read(struct rw_semaphore *sem)
1260 {
1261         __down_read_common(sem, TASK_UNINTERRUPTIBLE);
1262 }
1263
1264 static __always_inline int __down_read_interruptible(struct rw_semaphore *sem)
1265 {
1266         return __down_read_common(sem, TASK_INTERRUPTIBLE);
1267 }
1268
1269 static __always_inline int __down_read_killable(struct rw_semaphore *sem)
1270 {
1271         return __down_read_common(sem, TASK_KILLABLE);
1272 }
1273
1274 static inline int __down_read_trylock(struct rw_semaphore *sem)
1275 {
1276         int ret = 0;
1277         long tmp;
1278
1279         DEBUG_RWSEMS_WARN_ON(sem->magic != sem, sem);
1280
1281         preempt_disable();
1282         tmp = atomic_long_read(&sem->count);
1283         while (!(tmp & RWSEM_READ_FAILED_MASK)) {
1284                 if (atomic_long_try_cmpxchg_acquire(&sem->count, &tmp,
1285                                                     tmp + RWSEM_READER_BIAS)) {
1286                         rwsem_set_reader_owned(sem);
1287                         ret = 1;
1288                         break;
1289                 }
1290         }
1291         preempt_enable();
1292         return ret;
1293 }
1294
1295 /*
1296  * lock for writing
1297  */
1298 static __always_inline int __down_write_common(struct rw_semaphore *sem, int state)
1299 {
1300         int ret = 0;
1301
1302         preempt_disable();
1303         if (unlikely(!rwsem_write_trylock(sem))) {
1304                 if (IS_ERR(rwsem_down_write_slowpath(sem, state)))
1305                         ret = -EINTR;
1306         }
1307         preempt_enable();
1308         return ret;
1309 }
1310
1311 static __always_inline void __down_write(struct rw_semaphore *sem)
1312 {
1313         __down_write_common(sem, TASK_UNINTERRUPTIBLE);
1314 }
1315
1316 static __always_inline int __down_write_killable(struct rw_semaphore *sem)
1317 {
1318         return __down_write_common(sem, TASK_KILLABLE);
1319 }
1320
1321 static inline int __down_write_trylock(struct rw_semaphore *sem)
1322 {
1323         int ret;
1324
1325         preempt_disable();
1326         DEBUG_RWSEMS_WARN_ON(sem->magic != sem, sem);
1327         ret = rwsem_write_trylock(sem);
1328         preempt_enable();
1329
1330         return ret;
1331 }
1332
1333 /*
1334  * unlock after reading
1335  */
1336 static inline void __up_read(struct rw_semaphore *sem)
1337 {
1338         long tmp;
1339
1340         DEBUG_RWSEMS_WARN_ON(sem->magic != sem, sem);
1341         DEBUG_RWSEMS_WARN_ON(!is_rwsem_reader_owned(sem), sem);
1342
1343         preempt_disable();
1344         rwsem_clear_reader_owned(sem);
1345         tmp = atomic_long_add_return_release(-RWSEM_READER_BIAS, &sem->count);
1346         DEBUG_RWSEMS_WARN_ON(tmp < 0, sem);
1347         if (unlikely((tmp & (RWSEM_LOCK_MASK|RWSEM_FLAG_WAITERS)) ==
1348                       RWSEM_FLAG_WAITERS)) {
1349                 clear_nonspinnable(sem);
1350                 rwsem_wake(sem);
1351         }
1352         preempt_enable();
1353 }
1354
1355 /*
1356  * unlock after writing
1357  */
1358 static inline void __up_write(struct rw_semaphore *sem)
1359 {
1360         long tmp;
1361
1362         DEBUG_RWSEMS_WARN_ON(sem->magic != sem, sem);
1363         /*
1364          * sem->owner may differ from current if the ownership is transferred
1365          * to an anonymous writer by setting the RWSEM_NONSPINNABLE bits.
1366          */
1367         DEBUG_RWSEMS_WARN_ON((rwsem_owner(sem) != current) &&
1368                             !rwsem_test_oflags(sem, RWSEM_NONSPINNABLE), sem);
1369
1370         preempt_disable();
1371         rwsem_clear_owner(sem);
1372         tmp = atomic_long_fetch_add_release(-RWSEM_WRITER_LOCKED, &sem->count);
1373         if (unlikely(tmp & RWSEM_FLAG_WAITERS))
1374                 rwsem_wake(sem);
1375         preempt_enable();
1376 }
1377
1378 /*
1379  * downgrade write lock to read lock
1380  */
1381 static inline void __downgrade_write(struct rw_semaphore *sem)
1382 {
1383         long tmp;
1384
1385         /*
1386          * When downgrading from exclusive to shared ownership,
1387          * anything inside the write-locked region cannot leak
1388          * into the read side. In contrast, anything in the
1389          * read-locked region is ok to be re-ordered into the
1390          * write side. As such, rely on RELEASE semantics.
1391          */
1392         DEBUG_RWSEMS_WARN_ON(rwsem_owner(sem) != current, sem);
1393         preempt_disable();
1394         tmp = atomic_long_fetch_add_release(
1395                 -RWSEM_WRITER_LOCKED+RWSEM_READER_BIAS, &sem->count);
1396         rwsem_set_reader_owned(sem);
1397         if (tmp & RWSEM_FLAG_WAITERS)
1398                 rwsem_downgrade_wake(sem);
1399         preempt_enable();
1400 }
1401
1402 #else /* !CONFIG_PREEMPT_RT */
1403
1404 #define RT_MUTEX_BUILD_MUTEX
1405 #include "rtmutex.c"
1406
1407 #define rwbase_set_and_save_current_state(state)        \
1408         set_current_state(state)
1409
1410 #define rwbase_restore_current_state()                  \
1411         __set_current_state(TASK_RUNNING)
1412
1413 #define rwbase_rtmutex_lock_state(rtm, state)           \
1414         __rt_mutex_lock(rtm, state)
1415
1416 #define rwbase_rtmutex_slowlock_locked(rtm, state, wq)  \
1417         __rt_mutex_slowlock_locked(rtm, NULL, state, wq)
1418
1419 #define rwbase_rtmutex_unlock(rtm)                      \
1420         __rt_mutex_unlock(rtm)
1421
1422 #define rwbase_rtmutex_trylock(rtm)                     \
1423         __rt_mutex_trylock(rtm)
1424
1425 #define rwbase_signal_pending_state(state, current)     \
1426         signal_pending_state(state, current)
1427
1428 #define rwbase_pre_schedule()                           \
1429         rt_mutex_pre_schedule()
1430
1431 #define rwbase_schedule()                               \
1432         rt_mutex_schedule()
1433
1434 #define rwbase_post_schedule()                          \
1435         rt_mutex_post_schedule()
1436
1437 #include "rwbase_rt.c"
1438
1439 void __init_rwsem(struct rw_semaphore *sem, const char *name,
1440                   struct lock_class_key *key)
1441 {
1442         init_rwbase_rt(&(sem)->rwbase);
1443
1444 #ifdef CONFIG_DEBUG_LOCK_ALLOC
1445         debug_check_no_locks_freed((void *)sem, sizeof(*sem));
1446         lockdep_init_map_wait(&sem->dep_map, name, key, 0, LD_WAIT_SLEEP);
1447 #endif
1448 }
1449 EXPORT_SYMBOL(__init_rwsem);
1450
1451 static inline void __down_read(struct rw_semaphore *sem)
1452 {
1453         rwbase_read_lock(&sem->rwbase, TASK_UNINTERRUPTIBLE);
1454 }
1455
1456 static inline int __down_read_interruptible(struct rw_semaphore *sem)
1457 {
1458         return rwbase_read_lock(&sem->rwbase, TASK_INTERRUPTIBLE);
1459 }
1460
1461 static inline int __down_read_killable(struct rw_semaphore *sem)
1462 {
1463         return rwbase_read_lock(&sem->rwbase, TASK_KILLABLE);
1464 }
1465
1466 static inline int __down_read_trylock(struct rw_semaphore *sem)
1467 {
1468         return rwbase_read_trylock(&sem->rwbase);
1469 }
1470
1471 static inline void __up_read(struct rw_semaphore *sem)
1472 {
1473         rwbase_read_unlock(&sem->rwbase, TASK_NORMAL);
1474 }
1475
1476 static inline void __sched __down_write(struct rw_semaphore *sem)
1477 {
1478         rwbase_write_lock(&sem->rwbase, TASK_UNINTERRUPTIBLE);
1479 }
1480
1481 static inline int __sched __down_write_killable(struct rw_semaphore *sem)
1482 {
1483         return rwbase_write_lock(&sem->rwbase, TASK_KILLABLE);
1484 }
1485
1486 static inline int __down_write_trylock(struct rw_semaphore *sem)
1487 {
1488         return rwbase_write_trylock(&sem->rwbase);
1489 }
1490
1491 static inline void __up_write(struct rw_semaphore *sem)
1492 {
1493         rwbase_write_unlock(&sem->rwbase);
1494 }
1495
1496 static inline void __downgrade_write(struct rw_semaphore *sem)
1497 {
1498         rwbase_write_downgrade(&sem->rwbase);
1499 }
1500
1501 /* Debug stubs for the common API */
1502 #define DEBUG_RWSEMS_WARN_ON(c, sem)
1503
1504 static inline void __rwsem_set_reader_owned(struct rw_semaphore *sem,
1505                                             struct task_struct *owner)
1506 {
1507 }
1508
1509 static inline bool is_rwsem_reader_owned(struct rw_semaphore *sem)
1510 {
1511         int count = atomic_read(&sem->rwbase.readers);
1512
1513         return count < 0 && count != READER_BIAS;
1514 }
1515
1516 #endif /* CONFIG_PREEMPT_RT */
1517
1518 /*
1519  * lock for reading
1520  */
1521 void __sched down_read(struct rw_semaphore *sem)
1522 {
1523         might_sleep();
1524         rwsem_acquire_read(&sem->dep_map, 0, 0, _RET_IP_);
1525
1526         LOCK_CONTENDED(sem, __down_read_trylock, __down_read);
1527 }
1528 EXPORT_SYMBOL(down_read);
1529
1530 int __sched down_read_interruptible(struct rw_semaphore *sem)
1531 {
1532         might_sleep();
1533         rwsem_acquire_read(&sem->dep_map, 0, 0, _RET_IP_);
1534
1535         if (LOCK_CONTENDED_RETURN(sem, __down_read_trylock, __down_read_interruptible)) {
1536                 rwsem_release(&sem->dep_map, _RET_IP_);
1537                 return -EINTR;
1538         }
1539
1540         return 0;
1541 }
1542 EXPORT_SYMBOL(down_read_interruptible);
1543
1544 int __sched down_read_killable(struct rw_semaphore *sem)
1545 {
1546         might_sleep();
1547         rwsem_acquire_read(&sem->dep_map, 0, 0, _RET_IP_);
1548
1549         if (LOCK_CONTENDED_RETURN(sem, __down_read_trylock, __down_read_killable)) {
1550                 rwsem_release(&sem->dep_map, _RET_IP_);
1551                 return -EINTR;
1552         }
1553
1554         return 0;
1555 }
1556 EXPORT_SYMBOL(down_read_killable);
1557
1558 /*
1559  * trylock for reading -- returns 1 if successful, 0 if contention
1560  */
1561 int down_read_trylock(struct rw_semaphore *sem)
1562 {
1563         int ret = __down_read_trylock(sem);
1564
1565         if (ret == 1)
1566                 rwsem_acquire_read(&sem->dep_map, 0, 1, _RET_IP_);
1567         return ret;
1568 }
1569 EXPORT_SYMBOL(down_read_trylock);
1570
1571 /*
1572  * lock for writing
1573  */
1574 void __sched down_write(struct rw_semaphore *sem)
1575 {
1576         might_sleep();
1577         rwsem_acquire(&sem->dep_map, 0, 0, _RET_IP_);
1578         LOCK_CONTENDED(sem, __down_write_trylock, __down_write);
1579 }
1580 EXPORT_SYMBOL(down_write);
1581
1582 /*
1583  * lock for writing
1584  */
1585 int __sched down_write_killable(struct rw_semaphore *sem)
1586 {
1587         might_sleep();
1588         rwsem_acquire(&sem->dep_map, 0, 0, _RET_IP_);
1589
1590         if (LOCK_CONTENDED_RETURN(sem, __down_write_trylock,
1591                                   __down_write_killable)) {
1592                 rwsem_release(&sem->dep_map, _RET_IP_);
1593                 return -EINTR;
1594         }
1595
1596         return 0;
1597 }
1598 EXPORT_SYMBOL(down_write_killable);
1599
1600 /*
1601  * trylock for writing -- returns 1 if successful, 0 if contention
1602  */
1603 int down_write_trylock(struct rw_semaphore *sem)
1604 {
1605         int ret = __down_write_trylock(sem);
1606
1607         if (ret == 1)
1608                 rwsem_acquire(&sem->dep_map, 0, 1, _RET_IP_);
1609
1610         return ret;
1611 }
1612 EXPORT_SYMBOL(down_write_trylock);
1613
1614 /*
1615  * release a read lock
1616  */
1617 void up_read(struct rw_semaphore *sem)
1618 {
1619         rwsem_release(&sem->dep_map, _RET_IP_);
1620         __up_read(sem);
1621 }
1622 EXPORT_SYMBOL(up_read);
1623
1624 /*
1625  * release a write lock
1626  */
1627 void up_write(struct rw_semaphore *sem)
1628 {
1629         rwsem_release(&sem->dep_map, _RET_IP_);
1630         __up_write(sem);
1631 }
1632 EXPORT_SYMBOL(up_write);
1633
1634 /*
1635  * downgrade write lock to read lock
1636  */
1637 void downgrade_write(struct rw_semaphore *sem)
1638 {
1639         lock_downgrade(&sem->dep_map, _RET_IP_);
1640         __downgrade_write(sem);
1641 }
1642 EXPORT_SYMBOL(downgrade_write);
1643
1644 #ifdef CONFIG_DEBUG_LOCK_ALLOC
1645
1646 void down_read_nested(struct rw_semaphore *sem, int subclass)
1647 {
1648         might_sleep();
1649         rwsem_acquire_read(&sem->dep_map, subclass, 0, _RET_IP_);
1650         LOCK_CONTENDED(sem, __down_read_trylock, __down_read);
1651 }
1652 EXPORT_SYMBOL(down_read_nested);
1653
1654 int down_read_killable_nested(struct rw_semaphore *sem, int subclass)
1655 {
1656         might_sleep();
1657         rwsem_acquire_read(&sem->dep_map, subclass, 0, _RET_IP_);
1658
1659         if (LOCK_CONTENDED_RETURN(sem, __down_read_trylock, __down_read_killable)) {
1660                 rwsem_release(&sem->dep_map, _RET_IP_);
1661                 return -EINTR;
1662         }
1663
1664         return 0;
1665 }
1666 EXPORT_SYMBOL(down_read_killable_nested);
1667
1668 void _down_write_nest_lock(struct rw_semaphore *sem, struct lockdep_map *nest)
1669 {
1670         might_sleep();
1671         rwsem_acquire_nest(&sem->dep_map, 0, 0, nest, _RET_IP_);
1672         LOCK_CONTENDED(sem, __down_write_trylock, __down_write);
1673 }
1674 EXPORT_SYMBOL(_down_write_nest_lock);
1675
1676 void down_read_non_owner(struct rw_semaphore *sem)
1677 {
1678         might_sleep();
1679         __down_read(sem);
1680         /*
1681          * The owner value for a reader-owned lock is mostly for debugging
1682          * purpose only and is not critical to the correct functioning of
1683          * rwsem. So it is perfectly fine to set it in a preempt-enabled
1684          * context here.
1685          */
1686         __rwsem_set_reader_owned(sem, NULL);
1687 }
1688 EXPORT_SYMBOL(down_read_non_owner);
1689
1690 void down_write_nested(struct rw_semaphore *sem, int subclass)
1691 {
1692         might_sleep();
1693         rwsem_acquire(&sem->dep_map, subclass, 0, _RET_IP_);
1694         LOCK_CONTENDED(sem, __down_write_trylock, __down_write);
1695 }
1696 EXPORT_SYMBOL(down_write_nested);
1697
1698 int __sched down_write_killable_nested(struct rw_semaphore *sem, int subclass)
1699 {
1700         might_sleep();
1701         rwsem_acquire(&sem->dep_map, subclass, 0, _RET_IP_);
1702
1703         if (LOCK_CONTENDED_RETURN(sem, __down_write_trylock,
1704                                   __down_write_killable)) {
1705                 rwsem_release(&sem->dep_map, _RET_IP_);
1706                 return -EINTR;
1707         }
1708
1709         return 0;
1710 }
1711 EXPORT_SYMBOL(down_write_killable_nested);
1712
1713 void up_read_non_owner(struct rw_semaphore *sem)
1714 {
1715         DEBUG_RWSEMS_WARN_ON(!is_rwsem_reader_owned(sem), sem);
1716         __up_read(sem);
1717 }
1718 EXPORT_SYMBOL(up_read_non_owner);
1719
1720 #endif
This page took 0.125788 seconds and 4 git commands to generate.