]> Git Repo - J-linux.git/blob - kernel/locking/lockdep.c
Merge tag 'vfs-6.13-rc7.fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs
[J-linux.git] / kernel / locking / lockdep.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * kernel/lockdep.c
4  *
5  * Runtime locking correctness validator
6  *
7  * Started by Ingo Molnar:
8  *
9  *  Copyright (C) 2006,2007 Red Hat, Inc., Ingo Molnar <[email protected]>
10  *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
11  *
12  * this code maps all the lock dependencies as they occur in a live kernel
13  * and will warn about the following classes of locking bugs:
14  *
15  * - lock inversion scenarios
16  * - circular lock dependencies
17  * - hardirq/softirq safe/unsafe locking bugs
18  *
19  * Bugs are reported even if the current locking scenario does not cause
20  * any deadlock at this point.
21  *
22  * I.e. if anytime in the past two locks were taken in a different order,
23  * even if it happened for another task, even if those were different
24  * locks (but of the same class as this lock), this code will detect it.
25  *
26  * Thanks to Arjan van de Ven for coming up with the initial idea of
27  * mapping lock dependencies runtime.
28  */
29 #define DISABLE_BRANCH_PROFILING
30 #include <linux/mutex.h>
31 #include <linux/sched.h>
32 #include <linux/sched/clock.h>
33 #include <linux/sched/task.h>
34 #include <linux/sched/mm.h>
35 #include <linux/delay.h>
36 #include <linux/module.h>
37 #include <linux/proc_fs.h>
38 #include <linux/seq_file.h>
39 #include <linux/spinlock.h>
40 #include <linux/kallsyms.h>
41 #include <linux/interrupt.h>
42 #include <linux/stacktrace.h>
43 #include <linux/debug_locks.h>
44 #include <linux/irqflags.h>
45 #include <linux/utsname.h>
46 #include <linux/hash.h>
47 #include <linux/ftrace.h>
48 #include <linux/stringify.h>
49 #include <linux/bitmap.h>
50 #include <linux/bitops.h>
51 #include <linux/gfp.h>
52 #include <linux/random.h>
53 #include <linux/jhash.h>
54 #include <linux/nmi.h>
55 #include <linux/rcupdate.h>
56 #include <linux/kprobes.h>
57 #include <linux/lockdep.h>
58 #include <linux/context_tracking.h>
59 #include <linux/console.h>
60
61 #include <asm/sections.h>
62
63 #include "lockdep_internals.h"
64
65 #include <trace/events/lock.h>
66
67 #ifdef CONFIG_PROVE_LOCKING
68 static int prove_locking = 1;
69 module_param(prove_locking, int, 0644);
70 #else
71 #define prove_locking 0
72 #endif
73
74 #ifdef CONFIG_LOCK_STAT
75 static int lock_stat = 1;
76 module_param(lock_stat, int, 0644);
77 #else
78 #define lock_stat 0
79 #endif
80
81 #ifdef CONFIG_SYSCTL
82 static struct ctl_table kern_lockdep_table[] = {
83 #ifdef CONFIG_PROVE_LOCKING
84         {
85                 .procname       = "prove_locking",
86                 .data           = &prove_locking,
87                 .maxlen         = sizeof(int),
88                 .mode           = 0644,
89                 .proc_handler   = proc_dointvec,
90         },
91 #endif /* CONFIG_PROVE_LOCKING */
92 #ifdef CONFIG_LOCK_STAT
93         {
94                 .procname       = "lock_stat",
95                 .data           = &lock_stat,
96                 .maxlen         = sizeof(int),
97                 .mode           = 0644,
98                 .proc_handler   = proc_dointvec,
99         },
100 #endif /* CONFIG_LOCK_STAT */
101 };
102
103 static __init int kernel_lockdep_sysctls_init(void)
104 {
105         register_sysctl_init("kernel", kern_lockdep_table);
106         return 0;
107 }
108 late_initcall(kernel_lockdep_sysctls_init);
109 #endif /* CONFIG_SYSCTL */
110
111 DEFINE_PER_CPU(unsigned int, lockdep_recursion);
112 EXPORT_PER_CPU_SYMBOL_GPL(lockdep_recursion);
113
114 static __always_inline bool lockdep_enabled(void)
115 {
116         if (!debug_locks)
117                 return false;
118
119         if (this_cpu_read(lockdep_recursion))
120                 return false;
121
122         if (current->lockdep_recursion)
123                 return false;
124
125         return true;
126 }
127
128 /*
129  * lockdep_lock: protects the lockdep graph, the hashes and the
130  *               class/list/hash allocators.
131  *
132  * This is one of the rare exceptions where it's justified
133  * to use a raw spinlock - we really dont want the spinlock
134  * code to recurse back into the lockdep code...
135  */
136 static arch_spinlock_t __lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
137 static struct task_struct *__owner;
138
139 static inline void lockdep_lock(void)
140 {
141         DEBUG_LOCKS_WARN_ON(!irqs_disabled());
142
143         __this_cpu_inc(lockdep_recursion);
144         arch_spin_lock(&__lock);
145         __owner = current;
146 }
147
148 static inline void lockdep_unlock(void)
149 {
150         DEBUG_LOCKS_WARN_ON(!irqs_disabled());
151
152         if (debug_locks && DEBUG_LOCKS_WARN_ON(__owner != current))
153                 return;
154
155         __owner = NULL;
156         arch_spin_unlock(&__lock);
157         __this_cpu_dec(lockdep_recursion);
158 }
159
160 static inline bool lockdep_assert_locked(void)
161 {
162         return DEBUG_LOCKS_WARN_ON(__owner != current);
163 }
164
165 static struct task_struct *lockdep_selftest_task_struct;
166
167
168 static int graph_lock(void)
169 {
170         lockdep_lock();
171         /*
172          * Make sure that if another CPU detected a bug while
173          * walking the graph we dont change it (while the other
174          * CPU is busy printing out stuff with the graph lock
175          * dropped already)
176          */
177         if (!debug_locks) {
178                 lockdep_unlock();
179                 return 0;
180         }
181         return 1;
182 }
183
184 static inline void graph_unlock(void)
185 {
186         lockdep_unlock();
187 }
188
189 /*
190  * Turn lock debugging off and return with 0 if it was off already,
191  * and also release the graph lock:
192  */
193 static inline int debug_locks_off_graph_unlock(void)
194 {
195         int ret = debug_locks_off();
196
197         lockdep_unlock();
198
199         return ret;
200 }
201
202 unsigned long nr_list_entries;
203 static struct lock_list list_entries[MAX_LOCKDEP_ENTRIES];
204 static DECLARE_BITMAP(list_entries_in_use, MAX_LOCKDEP_ENTRIES);
205
206 /*
207  * All data structures here are protected by the global debug_lock.
208  *
209  * nr_lock_classes is the number of elements of lock_classes[] that is
210  * in use.
211  */
212 #define KEYHASH_BITS            (MAX_LOCKDEP_KEYS_BITS - 1)
213 #define KEYHASH_SIZE            (1UL << KEYHASH_BITS)
214 static struct hlist_head lock_keys_hash[KEYHASH_SIZE];
215 unsigned long nr_lock_classes;
216 unsigned long nr_zapped_classes;
217 unsigned long max_lock_class_idx;
218 struct lock_class lock_classes[MAX_LOCKDEP_KEYS];
219 DECLARE_BITMAP(lock_classes_in_use, MAX_LOCKDEP_KEYS);
220
221 static inline struct lock_class *hlock_class(struct held_lock *hlock)
222 {
223         unsigned int class_idx = hlock->class_idx;
224
225         /* Don't re-read hlock->class_idx, can't use READ_ONCE() on bitfield */
226         barrier();
227
228         if (!test_bit(class_idx, lock_classes_in_use)) {
229                 /*
230                  * Someone passed in garbage, we give up.
231                  */
232                 DEBUG_LOCKS_WARN_ON(1);
233                 return NULL;
234         }
235
236         /*
237          * At this point, if the passed hlock->class_idx is still garbage,
238          * we just have to live with it
239          */
240         return lock_classes + class_idx;
241 }
242
243 #ifdef CONFIG_LOCK_STAT
244 static DEFINE_PER_CPU(struct lock_class_stats[MAX_LOCKDEP_KEYS], cpu_lock_stats);
245
246 static inline u64 lockstat_clock(void)
247 {
248         return local_clock();
249 }
250
251 static int lock_point(unsigned long points[], unsigned long ip)
252 {
253         int i;
254
255         for (i = 0; i < LOCKSTAT_POINTS; i++) {
256                 if (points[i] == 0) {
257                         points[i] = ip;
258                         break;
259                 }
260                 if (points[i] == ip)
261                         break;
262         }
263
264         return i;
265 }
266
267 static void lock_time_inc(struct lock_time *lt, u64 time)
268 {
269         if (time > lt->max)
270                 lt->max = time;
271
272         if (time < lt->min || !lt->nr)
273                 lt->min = time;
274
275         lt->total += time;
276         lt->nr++;
277 }
278
279 static inline void lock_time_add(struct lock_time *src, struct lock_time *dst)
280 {
281         if (!src->nr)
282                 return;
283
284         if (src->max > dst->max)
285                 dst->max = src->max;
286
287         if (src->min < dst->min || !dst->nr)
288                 dst->min = src->min;
289
290         dst->total += src->total;
291         dst->nr += src->nr;
292 }
293
294 struct lock_class_stats lock_stats(struct lock_class *class)
295 {
296         struct lock_class_stats stats;
297         int cpu, i;
298
299         memset(&stats, 0, sizeof(struct lock_class_stats));
300         for_each_possible_cpu(cpu) {
301                 struct lock_class_stats *pcs =
302                         &per_cpu(cpu_lock_stats, cpu)[class - lock_classes];
303
304                 for (i = 0; i < ARRAY_SIZE(stats.contention_point); i++)
305                         stats.contention_point[i] += pcs->contention_point[i];
306
307                 for (i = 0; i < ARRAY_SIZE(stats.contending_point); i++)
308                         stats.contending_point[i] += pcs->contending_point[i];
309
310                 lock_time_add(&pcs->read_waittime, &stats.read_waittime);
311                 lock_time_add(&pcs->write_waittime, &stats.write_waittime);
312
313                 lock_time_add(&pcs->read_holdtime, &stats.read_holdtime);
314                 lock_time_add(&pcs->write_holdtime, &stats.write_holdtime);
315
316                 for (i = 0; i < ARRAY_SIZE(stats.bounces); i++)
317                         stats.bounces[i] += pcs->bounces[i];
318         }
319
320         return stats;
321 }
322
323 void clear_lock_stats(struct lock_class *class)
324 {
325         int cpu;
326
327         for_each_possible_cpu(cpu) {
328                 struct lock_class_stats *cpu_stats =
329                         &per_cpu(cpu_lock_stats, cpu)[class - lock_classes];
330
331                 memset(cpu_stats, 0, sizeof(struct lock_class_stats));
332         }
333         memset(class->contention_point, 0, sizeof(class->contention_point));
334         memset(class->contending_point, 0, sizeof(class->contending_point));
335 }
336
337 static struct lock_class_stats *get_lock_stats(struct lock_class *class)
338 {
339         return &this_cpu_ptr(cpu_lock_stats)[class - lock_classes];
340 }
341
342 static void lock_release_holdtime(struct held_lock *hlock)
343 {
344         struct lock_class_stats *stats;
345         u64 holdtime;
346
347         if (!lock_stat)
348                 return;
349
350         holdtime = lockstat_clock() - hlock->holdtime_stamp;
351
352         stats = get_lock_stats(hlock_class(hlock));
353         if (hlock->read)
354                 lock_time_inc(&stats->read_holdtime, holdtime);
355         else
356                 lock_time_inc(&stats->write_holdtime, holdtime);
357 }
358 #else
359 static inline void lock_release_holdtime(struct held_lock *hlock)
360 {
361 }
362 #endif
363
364 /*
365  * We keep a global list of all lock classes. The list is only accessed with
366  * the lockdep spinlock lock held. free_lock_classes is a list with free
367  * elements. These elements are linked together by the lock_entry member in
368  * struct lock_class.
369  */
370 static LIST_HEAD(all_lock_classes);
371 static LIST_HEAD(free_lock_classes);
372
373 /**
374  * struct pending_free - information about data structures about to be freed
375  * @zapped: Head of a list with struct lock_class elements.
376  * @lock_chains_being_freed: Bitmap that indicates which lock_chains[] elements
377  *      are about to be freed.
378  */
379 struct pending_free {
380         struct list_head zapped;
381         DECLARE_BITMAP(lock_chains_being_freed, MAX_LOCKDEP_CHAINS);
382 };
383
384 /**
385  * struct delayed_free - data structures used for delayed freeing
386  *
387  * A data structure for delayed freeing of data structures that may be
388  * accessed by RCU readers at the time these were freed.
389  *
390  * @rcu_head:  Used to schedule an RCU callback for freeing data structures.
391  * @index:     Index of @pf to which freed data structures are added.
392  * @scheduled: Whether or not an RCU callback has been scheduled.
393  * @pf:        Array with information about data structures about to be freed.
394  */
395 static struct delayed_free {
396         struct rcu_head         rcu_head;
397         int                     index;
398         int                     scheduled;
399         struct pending_free     pf[2];
400 } delayed_free;
401
402 /*
403  * The lockdep classes are in a hash-table as well, for fast lookup:
404  */
405 #define CLASSHASH_BITS          (MAX_LOCKDEP_KEYS_BITS - 1)
406 #define CLASSHASH_SIZE          (1UL << CLASSHASH_BITS)
407 #define __classhashfn(key)      hash_long((unsigned long)key, CLASSHASH_BITS)
408 #define classhashentry(key)     (classhash_table + __classhashfn((key)))
409
410 static struct hlist_head classhash_table[CLASSHASH_SIZE];
411
412 /*
413  * We put the lock dependency chains into a hash-table as well, to cache
414  * their existence:
415  */
416 #define CHAINHASH_BITS          (MAX_LOCKDEP_CHAINS_BITS-1)
417 #define CHAINHASH_SIZE          (1UL << CHAINHASH_BITS)
418 #define __chainhashfn(chain)    hash_long(chain, CHAINHASH_BITS)
419 #define chainhashentry(chain)   (chainhash_table + __chainhashfn((chain)))
420
421 static struct hlist_head chainhash_table[CHAINHASH_SIZE];
422
423 /*
424  * the id of held_lock
425  */
426 static inline u16 hlock_id(struct held_lock *hlock)
427 {
428         BUILD_BUG_ON(MAX_LOCKDEP_KEYS_BITS + 2 > 16);
429
430         return (hlock->class_idx | (hlock->read << MAX_LOCKDEP_KEYS_BITS));
431 }
432
433 static inline unsigned int chain_hlock_class_idx(u16 hlock_id)
434 {
435         return hlock_id & (MAX_LOCKDEP_KEYS - 1);
436 }
437
438 /*
439  * The hash key of the lock dependency chains is a hash itself too:
440  * it's a hash of all locks taken up to that lock, including that lock.
441  * It's a 64-bit hash, because it's important for the keys to be
442  * unique.
443  */
444 static inline u64 iterate_chain_key(u64 key, u32 idx)
445 {
446         u32 k0 = key, k1 = key >> 32;
447
448         __jhash_mix(idx, k0, k1); /* Macro that modifies arguments! */
449
450         return k0 | (u64)k1 << 32;
451 }
452
453 void lockdep_init_task(struct task_struct *task)
454 {
455         task->lockdep_depth = 0; /* no locks held yet */
456         task->curr_chain_key = INITIAL_CHAIN_KEY;
457         task->lockdep_recursion = 0;
458 }
459
460 static __always_inline void lockdep_recursion_inc(void)
461 {
462         __this_cpu_inc(lockdep_recursion);
463 }
464
465 static __always_inline void lockdep_recursion_finish(void)
466 {
467         if (WARN_ON_ONCE(__this_cpu_dec_return(lockdep_recursion)))
468                 __this_cpu_write(lockdep_recursion, 0);
469 }
470
471 void lockdep_set_selftest_task(struct task_struct *task)
472 {
473         lockdep_selftest_task_struct = task;
474 }
475
476 /*
477  * Debugging switches:
478  */
479
480 #define VERBOSE                 0
481 #define VERY_VERBOSE            0
482
483 #if VERBOSE
484 # define HARDIRQ_VERBOSE        1
485 # define SOFTIRQ_VERBOSE        1
486 #else
487 # define HARDIRQ_VERBOSE        0
488 # define SOFTIRQ_VERBOSE        0
489 #endif
490
491 #if VERBOSE || HARDIRQ_VERBOSE || SOFTIRQ_VERBOSE
492 /*
493  * Quick filtering for interesting events:
494  */
495 static int class_filter(struct lock_class *class)
496 {
497 #if 0
498         /* Example */
499         if (class->name_version == 1 &&
500                         !strcmp(class->name, "lockname"))
501                 return 1;
502         if (class->name_version == 1 &&
503                         !strcmp(class->name, "&struct->lockfield"))
504                 return 1;
505 #endif
506         /* Filter everything else. 1 would be to allow everything else */
507         return 0;
508 }
509 #endif
510
511 static int verbose(struct lock_class *class)
512 {
513 #if VERBOSE
514         return class_filter(class);
515 #endif
516         return 0;
517 }
518
519 static void print_lockdep_off(const char *bug_msg)
520 {
521         printk(KERN_DEBUG "%s\n", bug_msg);
522         printk(KERN_DEBUG "turning off the locking correctness validator.\n");
523 #ifdef CONFIG_LOCK_STAT
524         printk(KERN_DEBUG "Please attach the output of /proc/lock_stat to the bug report\n");
525 #endif
526 }
527
528 unsigned long nr_stack_trace_entries;
529
530 #ifdef CONFIG_PROVE_LOCKING
531 /**
532  * struct lock_trace - single stack backtrace
533  * @hash_entry: Entry in a stack_trace_hash[] list.
534  * @hash:       jhash() of @entries.
535  * @nr_entries: Number of entries in @entries.
536  * @entries:    Actual stack backtrace.
537  */
538 struct lock_trace {
539         struct hlist_node       hash_entry;
540         u32                     hash;
541         u32                     nr_entries;
542         unsigned long           entries[] __aligned(sizeof(unsigned long));
543 };
544 #define LOCK_TRACE_SIZE_IN_LONGS                                \
545         (sizeof(struct lock_trace) / sizeof(unsigned long))
546 /*
547  * Stack-trace: sequence of lock_trace structures. Protected by the graph_lock.
548  */
549 static unsigned long stack_trace[MAX_STACK_TRACE_ENTRIES];
550 static struct hlist_head stack_trace_hash[STACK_TRACE_HASH_SIZE];
551
552 static bool traces_identical(struct lock_trace *t1, struct lock_trace *t2)
553 {
554         return t1->hash == t2->hash && t1->nr_entries == t2->nr_entries &&
555                 memcmp(t1->entries, t2->entries,
556                        t1->nr_entries * sizeof(t1->entries[0])) == 0;
557 }
558
559 static struct lock_trace *save_trace(void)
560 {
561         struct lock_trace *trace, *t2;
562         struct hlist_head *hash_head;
563         u32 hash;
564         int max_entries;
565
566         BUILD_BUG_ON_NOT_POWER_OF_2(STACK_TRACE_HASH_SIZE);
567         BUILD_BUG_ON(LOCK_TRACE_SIZE_IN_LONGS >= MAX_STACK_TRACE_ENTRIES);
568
569         trace = (struct lock_trace *)(stack_trace + nr_stack_trace_entries);
570         max_entries = MAX_STACK_TRACE_ENTRIES - nr_stack_trace_entries -
571                 LOCK_TRACE_SIZE_IN_LONGS;
572
573         if (max_entries <= 0) {
574                 if (!debug_locks_off_graph_unlock())
575                         return NULL;
576
577                 nbcon_cpu_emergency_enter();
578                 print_lockdep_off("BUG: MAX_STACK_TRACE_ENTRIES too low!");
579                 dump_stack();
580                 nbcon_cpu_emergency_exit();
581
582                 return NULL;
583         }
584         trace->nr_entries = stack_trace_save(trace->entries, max_entries, 3);
585
586         hash = jhash(trace->entries, trace->nr_entries *
587                      sizeof(trace->entries[0]), 0);
588         trace->hash = hash;
589         hash_head = stack_trace_hash + (hash & (STACK_TRACE_HASH_SIZE - 1));
590         hlist_for_each_entry(t2, hash_head, hash_entry) {
591                 if (traces_identical(trace, t2))
592                         return t2;
593         }
594         nr_stack_trace_entries += LOCK_TRACE_SIZE_IN_LONGS + trace->nr_entries;
595         hlist_add_head(&trace->hash_entry, hash_head);
596
597         return trace;
598 }
599
600 /* Return the number of stack traces in the stack_trace[] array. */
601 u64 lockdep_stack_trace_count(void)
602 {
603         struct lock_trace *trace;
604         u64 c = 0;
605         int i;
606
607         for (i = 0; i < ARRAY_SIZE(stack_trace_hash); i++) {
608                 hlist_for_each_entry(trace, &stack_trace_hash[i], hash_entry) {
609                         c++;
610                 }
611         }
612
613         return c;
614 }
615
616 /* Return the number of stack hash chains that have at least one stack trace. */
617 u64 lockdep_stack_hash_count(void)
618 {
619         u64 c = 0;
620         int i;
621
622         for (i = 0; i < ARRAY_SIZE(stack_trace_hash); i++)
623                 if (!hlist_empty(&stack_trace_hash[i]))
624                         c++;
625
626         return c;
627 }
628 #endif
629
630 unsigned int nr_hardirq_chains;
631 unsigned int nr_softirq_chains;
632 unsigned int nr_process_chains;
633 unsigned int max_lockdep_depth;
634
635 #ifdef CONFIG_DEBUG_LOCKDEP
636 /*
637  * Various lockdep statistics:
638  */
639 DEFINE_PER_CPU(struct lockdep_stats, lockdep_stats);
640 #endif
641
642 #ifdef CONFIG_PROVE_LOCKING
643 /*
644  * Locking printouts:
645  */
646
647 #define __USAGE(__STATE)                                                \
648         [LOCK_USED_IN_##__STATE] = "IN-"__stringify(__STATE)"-W",       \
649         [LOCK_ENABLED_##__STATE] = __stringify(__STATE)"-ON-W",         \
650         [LOCK_USED_IN_##__STATE##_READ] = "IN-"__stringify(__STATE)"-R",\
651         [LOCK_ENABLED_##__STATE##_READ] = __stringify(__STATE)"-ON-R",
652
653 static const char *usage_str[] =
654 {
655 #define LOCKDEP_STATE(__STATE) __USAGE(__STATE)
656 #include "lockdep_states.h"
657 #undef LOCKDEP_STATE
658         [LOCK_USED] = "INITIAL USE",
659         [LOCK_USED_READ] = "INITIAL READ USE",
660         /* abused as string storage for verify_lock_unused() */
661         [LOCK_USAGE_STATES] = "IN-NMI",
662 };
663 #endif
664
665 const char *__get_key_name(const struct lockdep_subclass_key *key, char *str)
666 {
667         return kallsyms_lookup((unsigned long)key, NULL, NULL, NULL, str);
668 }
669
670 static inline unsigned long lock_flag(enum lock_usage_bit bit)
671 {
672         return 1UL << bit;
673 }
674
675 static char get_usage_char(struct lock_class *class, enum lock_usage_bit bit)
676 {
677         /*
678          * The usage character defaults to '.' (i.e., irqs disabled and not in
679          * irq context), which is the safest usage category.
680          */
681         char c = '.';
682
683         /*
684          * The order of the following usage checks matters, which will
685          * result in the outcome character as follows:
686          *
687          * - '+': irq is enabled and not in irq context
688          * - '-': in irq context and irq is disabled
689          * - '?': in irq context and irq is enabled
690          */
691         if (class->usage_mask & lock_flag(bit + LOCK_USAGE_DIR_MASK)) {
692                 c = '+';
693                 if (class->usage_mask & lock_flag(bit))
694                         c = '?';
695         } else if (class->usage_mask & lock_flag(bit))
696                 c = '-';
697
698         return c;
699 }
700
701 void get_usage_chars(struct lock_class *class, char usage[LOCK_USAGE_CHARS])
702 {
703         int i = 0;
704
705 #define LOCKDEP_STATE(__STATE)                                          \
706         usage[i++] = get_usage_char(class, LOCK_USED_IN_##__STATE);     \
707         usage[i++] = get_usage_char(class, LOCK_USED_IN_##__STATE##_READ);
708 #include "lockdep_states.h"
709 #undef LOCKDEP_STATE
710
711         usage[i] = '\0';
712 }
713
714 static void __print_lock_name(struct held_lock *hlock, struct lock_class *class)
715 {
716         char str[KSYM_NAME_LEN];
717         const char *name;
718
719         name = class->name;
720         if (!name) {
721                 name = __get_key_name(class->key, str);
722                 printk(KERN_CONT "%s", name);
723         } else {
724                 printk(KERN_CONT "%s", name);
725                 if (class->name_version > 1)
726                         printk(KERN_CONT "#%d", class->name_version);
727                 if (class->subclass)
728                         printk(KERN_CONT "/%d", class->subclass);
729                 if (hlock && class->print_fn)
730                         class->print_fn(hlock->instance);
731         }
732 }
733
734 static void print_lock_name(struct held_lock *hlock, struct lock_class *class)
735 {
736         char usage[LOCK_USAGE_CHARS];
737
738         get_usage_chars(class, usage);
739
740         printk(KERN_CONT " (");
741         __print_lock_name(hlock, class);
742         printk(KERN_CONT "){%s}-{%d:%d}", usage,
743                         class->wait_type_outer ?: class->wait_type_inner,
744                         class->wait_type_inner);
745 }
746
747 static void print_lockdep_cache(struct lockdep_map *lock)
748 {
749         const char *name;
750         char str[KSYM_NAME_LEN];
751
752         name = lock->name;
753         if (!name)
754                 name = __get_key_name(lock->key->subkeys, str);
755
756         printk(KERN_CONT "%s", name);
757 }
758
759 static void print_lock(struct held_lock *hlock)
760 {
761         /*
762          * We can be called locklessly through debug_show_all_locks() so be
763          * extra careful, the hlock might have been released and cleared.
764          *
765          * If this indeed happens, lets pretend it does not hurt to continue
766          * to print the lock unless the hlock class_idx does not point to a
767          * registered class. The rationale here is: since we don't attempt
768          * to distinguish whether we are in this situation, if it just
769          * happened we can't count on class_idx to tell either.
770          */
771         struct lock_class *lock = hlock_class(hlock);
772
773         if (!lock) {
774                 printk(KERN_CONT "<RELEASED>\n");
775                 return;
776         }
777
778         printk(KERN_CONT "%px", hlock->instance);
779         print_lock_name(hlock, lock);
780         printk(KERN_CONT ", at: %pS\n", (void *)hlock->acquire_ip);
781 }
782
783 static void lockdep_print_held_locks(struct task_struct *p)
784 {
785         int i, depth = READ_ONCE(p->lockdep_depth);
786
787         if (!depth)
788                 printk("no locks held by %s/%d.\n", p->comm, task_pid_nr(p));
789         else
790                 printk("%d lock%s held by %s/%d:\n", depth,
791                        str_plural(depth), p->comm, task_pid_nr(p));
792         /*
793          * It's not reliable to print a task's held locks if it's not sleeping
794          * and it's not the current task.
795          */
796         if (p != current && task_is_running(p))
797                 return;
798         for (i = 0; i < depth; i++) {
799                 printk(" #%d: ", i);
800                 print_lock(p->held_locks + i);
801         }
802 }
803
804 static void print_kernel_ident(void)
805 {
806         printk("%s %.*s %s\n", init_utsname()->release,
807                 (int)strcspn(init_utsname()->version, " "),
808                 init_utsname()->version,
809                 print_tainted());
810 }
811
812 static int very_verbose(struct lock_class *class)
813 {
814 #if VERY_VERBOSE
815         return class_filter(class);
816 #endif
817         return 0;
818 }
819
820 /*
821  * Is this the address of a static object:
822  */
823 #ifdef __KERNEL__
824 static int static_obj(const void *obj)
825 {
826         unsigned long addr = (unsigned long) obj;
827
828         if (is_kernel_core_data(addr))
829                 return 1;
830
831         /*
832          * keys are allowed in the __ro_after_init section.
833          */
834         if (is_kernel_rodata(addr))
835                 return 1;
836
837         /*
838          * in initdata section and used during bootup only?
839          * NOTE: On some platforms the initdata section is
840          * outside of the _stext ... _end range.
841          */
842         if (system_state < SYSTEM_FREEING_INITMEM &&
843                 init_section_contains((void *)addr, 1))
844                 return 1;
845
846         /*
847          * in-kernel percpu var?
848          */
849         if (is_kernel_percpu_address(addr))
850                 return 1;
851
852         /*
853          * module static or percpu var?
854          */
855         return is_module_address(addr) || is_module_percpu_address(addr);
856 }
857 #endif
858
859 /*
860  * To make lock name printouts unique, we calculate a unique
861  * class->name_version generation counter. The caller must hold the graph
862  * lock.
863  */
864 static int count_matching_names(struct lock_class *new_class)
865 {
866         struct lock_class *class;
867         int count = 0;
868
869         if (!new_class->name)
870                 return 0;
871
872         list_for_each_entry(class, &all_lock_classes, lock_entry) {
873                 if (new_class->key - new_class->subclass == class->key)
874                         return class->name_version;
875                 if (class->name && !strcmp(class->name, new_class->name))
876                         count = max(count, class->name_version);
877         }
878
879         return count + 1;
880 }
881
882 /* used from NMI context -- must be lockless */
883 static noinstr struct lock_class *
884 look_up_lock_class(const struct lockdep_map *lock, unsigned int subclass)
885 {
886         struct lockdep_subclass_key *key;
887         struct hlist_head *hash_head;
888         struct lock_class *class;
889
890         if (unlikely(subclass >= MAX_LOCKDEP_SUBCLASSES)) {
891                 instrumentation_begin();
892                 debug_locks_off();
893                 nbcon_cpu_emergency_enter();
894                 printk(KERN_ERR
895                         "BUG: looking up invalid subclass: %u\n", subclass);
896                 printk(KERN_ERR
897                         "turning off the locking correctness validator.\n");
898                 dump_stack();
899                 nbcon_cpu_emergency_exit();
900                 instrumentation_end();
901                 return NULL;
902         }
903
904         /*
905          * If it is not initialised then it has never been locked,
906          * so it won't be present in the hash table.
907          */
908         if (unlikely(!lock->key))
909                 return NULL;
910
911         /*
912          * NOTE: the class-key must be unique. For dynamic locks, a static
913          * lock_class_key variable is passed in through the mutex_init()
914          * (or spin_lock_init()) call - which acts as the key. For static
915          * locks we use the lock object itself as the key.
916          */
917         BUILD_BUG_ON(sizeof(struct lock_class_key) >
918                         sizeof(struct lockdep_map));
919
920         key = lock->key->subkeys + subclass;
921
922         hash_head = classhashentry(key);
923
924         /*
925          * We do an RCU walk of the hash, see lockdep_free_key_range().
926          */
927         if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
928                 return NULL;
929
930         hlist_for_each_entry_rcu_notrace(class, hash_head, hash_entry) {
931                 if (class->key == key) {
932                         /*
933                          * Huh! same key, different name? Did someone trample
934                          * on some memory? We're most confused.
935                          */
936                         WARN_ONCE(class->name != lock->name &&
937                                   lock->key != &__lockdep_no_validate__,
938                                   "Looking for class \"%s\" with key %ps, but found a different class \"%s\" with the same key\n",
939                                   lock->name, lock->key, class->name);
940                         return class;
941                 }
942         }
943
944         return NULL;
945 }
946
947 /*
948  * Static locks do not have their class-keys yet - for them the key is
949  * the lock object itself. If the lock is in the per cpu area, the
950  * canonical address of the lock (per cpu offset removed) is used.
951  */
952 static bool assign_lock_key(struct lockdep_map *lock)
953 {
954         unsigned long can_addr, addr = (unsigned long)lock;
955
956 #ifdef __KERNEL__
957         /*
958          * lockdep_free_key_range() assumes that struct lock_class_key
959          * objects do not overlap. Since we use the address of lock
960          * objects as class key for static objects, check whether the
961          * size of lock_class_key objects does not exceed the size of
962          * the smallest lock object.
963          */
964         BUILD_BUG_ON(sizeof(struct lock_class_key) > sizeof(raw_spinlock_t));
965 #endif
966
967         if (__is_kernel_percpu_address(addr, &can_addr))
968                 lock->key = (void *)can_addr;
969         else if (__is_module_percpu_address(addr, &can_addr))
970                 lock->key = (void *)can_addr;
971         else if (static_obj(lock))
972                 lock->key = (void *)lock;
973         else {
974                 /* Debug-check: all keys must be persistent! */
975                 debug_locks_off();
976                 nbcon_cpu_emergency_enter();
977                 pr_err("INFO: trying to register non-static key.\n");
978                 pr_err("The code is fine but needs lockdep annotation, or maybe\n");
979                 pr_err("you didn't initialize this object before use?\n");
980                 pr_err("turning off the locking correctness validator.\n");
981                 dump_stack();
982                 nbcon_cpu_emergency_exit();
983                 return false;
984         }
985
986         return true;
987 }
988
989 #ifdef CONFIG_DEBUG_LOCKDEP
990
991 /* Check whether element @e occurs in list @h */
992 static bool in_list(struct list_head *e, struct list_head *h)
993 {
994         struct list_head *f;
995
996         list_for_each(f, h) {
997                 if (e == f)
998                         return true;
999         }
1000
1001         return false;
1002 }
1003
1004 /*
1005  * Check whether entry @e occurs in any of the locks_after or locks_before
1006  * lists.
1007  */
1008 static bool in_any_class_list(struct list_head *e)
1009 {
1010         struct lock_class *class;
1011         int i;
1012
1013         for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
1014                 class = &lock_classes[i];
1015                 if (in_list(e, &class->locks_after) ||
1016                     in_list(e, &class->locks_before))
1017                         return true;
1018         }
1019         return false;
1020 }
1021
1022 static bool class_lock_list_valid(struct lock_class *c, struct list_head *h)
1023 {
1024         struct lock_list *e;
1025
1026         list_for_each_entry(e, h, entry) {
1027                 if (e->links_to != c) {
1028                         printk(KERN_INFO "class %s: mismatch for lock entry %ld; class %s <> %s",
1029                                c->name ? : "(?)",
1030                                (unsigned long)(e - list_entries),
1031                                e->links_to && e->links_to->name ?
1032                                e->links_to->name : "(?)",
1033                                e->class && e->class->name ? e->class->name :
1034                                "(?)");
1035                         return false;
1036                 }
1037         }
1038         return true;
1039 }
1040
1041 #ifdef CONFIG_PROVE_LOCKING
1042 static u16 chain_hlocks[MAX_LOCKDEP_CHAIN_HLOCKS];
1043 #endif
1044
1045 static bool check_lock_chain_key(struct lock_chain *chain)
1046 {
1047 #ifdef CONFIG_PROVE_LOCKING
1048         u64 chain_key = INITIAL_CHAIN_KEY;
1049         int i;
1050
1051         for (i = chain->base; i < chain->base + chain->depth; i++)
1052                 chain_key = iterate_chain_key(chain_key, chain_hlocks[i]);
1053         /*
1054          * The 'unsigned long long' casts avoid that a compiler warning
1055          * is reported when building tools/lib/lockdep.
1056          */
1057         if (chain->chain_key != chain_key) {
1058                 printk(KERN_INFO "chain %lld: key %#llx <> %#llx\n",
1059                        (unsigned long long)(chain - lock_chains),
1060                        (unsigned long long)chain->chain_key,
1061                        (unsigned long long)chain_key);
1062                 return false;
1063         }
1064 #endif
1065         return true;
1066 }
1067
1068 static bool in_any_zapped_class_list(struct lock_class *class)
1069 {
1070         struct pending_free *pf;
1071         int i;
1072
1073         for (i = 0, pf = delayed_free.pf; i < ARRAY_SIZE(delayed_free.pf); i++, pf++) {
1074                 if (in_list(&class->lock_entry, &pf->zapped))
1075                         return true;
1076         }
1077
1078         return false;
1079 }
1080
1081 static bool __check_data_structures(void)
1082 {
1083         struct lock_class *class;
1084         struct lock_chain *chain;
1085         struct hlist_head *head;
1086         struct lock_list *e;
1087         int i;
1088
1089         /* Check whether all classes occur in a lock list. */
1090         for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
1091                 class = &lock_classes[i];
1092                 if (!in_list(&class->lock_entry, &all_lock_classes) &&
1093                     !in_list(&class->lock_entry, &free_lock_classes) &&
1094                     !in_any_zapped_class_list(class)) {
1095                         printk(KERN_INFO "class %px/%s is not in any class list\n",
1096                                class, class->name ? : "(?)");
1097                         return false;
1098                 }
1099         }
1100
1101         /* Check whether all classes have valid lock lists. */
1102         for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
1103                 class = &lock_classes[i];
1104                 if (!class_lock_list_valid(class, &class->locks_before))
1105                         return false;
1106                 if (!class_lock_list_valid(class, &class->locks_after))
1107                         return false;
1108         }
1109
1110         /* Check the chain_key of all lock chains. */
1111         for (i = 0; i < ARRAY_SIZE(chainhash_table); i++) {
1112                 head = chainhash_table + i;
1113                 hlist_for_each_entry_rcu(chain, head, entry) {
1114                         if (!check_lock_chain_key(chain))
1115                                 return false;
1116                 }
1117         }
1118
1119         /*
1120          * Check whether all list entries that are in use occur in a class
1121          * lock list.
1122          */
1123         for_each_set_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) {
1124                 e = list_entries + i;
1125                 if (!in_any_class_list(&e->entry)) {
1126                         printk(KERN_INFO "list entry %d is not in any class list; class %s <> %s\n",
1127                                (unsigned int)(e - list_entries),
1128                                e->class->name ? : "(?)",
1129                                e->links_to->name ? : "(?)");
1130                         return false;
1131                 }
1132         }
1133
1134         /*
1135          * Check whether all list entries that are not in use do not occur in
1136          * a class lock list.
1137          */
1138         for_each_clear_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) {
1139                 e = list_entries + i;
1140                 if (in_any_class_list(&e->entry)) {
1141                         printk(KERN_INFO "list entry %d occurs in a class list; class %s <> %s\n",
1142                                (unsigned int)(e - list_entries),
1143                                e->class && e->class->name ? e->class->name :
1144                                "(?)",
1145                                e->links_to && e->links_to->name ?
1146                                e->links_to->name : "(?)");
1147                         return false;
1148                 }
1149         }
1150
1151         return true;
1152 }
1153
1154 int check_consistency = 0;
1155 module_param(check_consistency, int, 0644);
1156
1157 static void check_data_structures(void)
1158 {
1159         static bool once = false;
1160
1161         if (check_consistency && !once) {
1162                 if (!__check_data_structures()) {
1163                         once = true;
1164                         WARN_ON(once);
1165                 }
1166         }
1167 }
1168
1169 #else /* CONFIG_DEBUG_LOCKDEP */
1170
1171 static inline void check_data_structures(void) { }
1172
1173 #endif /* CONFIG_DEBUG_LOCKDEP */
1174
1175 static void init_chain_block_buckets(void);
1176
1177 /*
1178  * Initialize the lock_classes[] array elements, the free_lock_classes list
1179  * and also the delayed_free structure.
1180  */
1181 static void init_data_structures_once(void)
1182 {
1183         static bool __read_mostly ds_initialized, rcu_head_initialized;
1184         int i;
1185
1186         if (likely(rcu_head_initialized))
1187                 return;
1188
1189         if (system_state >= SYSTEM_SCHEDULING) {
1190                 init_rcu_head(&delayed_free.rcu_head);
1191                 rcu_head_initialized = true;
1192         }
1193
1194         if (ds_initialized)
1195                 return;
1196
1197         ds_initialized = true;
1198
1199         INIT_LIST_HEAD(&delayed_free.pf[0].zapped);
1200         INIT_LIST_HEAD(&delayed_free.pf[1].zapped);
1201
1202         for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
1203                 list_add_tail(&lock_classes[i].lock_entry, &free_lock_classes);
1204                 INIT_LIST_HEAD(&lock_classes[i].locks_after);
1205                 INIT_LIST_HEAD(&lock_classes[i].locks_before);
1206         }
1207         init_chain_block_buckets();
1208 }
1209
1210 static inline struct hlist_head *keyhashentry(const struct lock_class_key *key)
1211 {
1212         unsigned long hash = hash_long((uintptr_t)key, KEYHASH_BITS);
1213
1214         return lock_keys_hash + hash;
1215 }
1216
1217 /* Register a dynamically allocated key. */
1218 void lockdep_register_key(struct lock_class_key *key)
1219 {
1220         struct hlist_head *hash_head;
1221         struct lock_class_key *k;
1222         unsigned long flags;
1223
1224         if (WARN_ON_ONCE(static_obj(key)))
1225                 return;
1226         hash_head = keyhashentry(key);
1227
1228         raw_local_irq_save(flags);
1229         if (!graph_lock())
1230                 goto restore_irqs;
1231         hlist_for_each_entry_rcu(k, hash_head, hash_entry) {
1232                 if (WARN_ON_ONCE(k == key))
1233                         goto out_unlock;
1234         }
1235         hlist_add_head_rcu(&key->hash_entry, hash_head);
1236 out_unlock:
1237         graph_unlock();
1238 restore_irqs:
1239         raw_local_irq_restore(flags);
1240 }
1241 EXPORT_SYMBOL_GPL(lockdep_register_key);
1242
1243 /* Check whether a key has been registered as a dynamic key. */
1244 static bool is_dynamic_key(const struct lock_class_key *key)
1245 {
1246         struct hlist_head *hash_head;
1247         struct lock_class_key *k;
1248         bool found = false;
1249
1250         if (WARN_ON_ONCE(static_obj(key)))
1251                 return false;
1252
1253         /*
1254          * If lock debugging is disabled lock_keys_hash[] may contain
1255          * pointers to memory that has already been freed. Avoid triggering
1256          * a use-after-free in that case by returning early.
1257          */
1258         if (!debug_locks)
1259                 return true;
1260
1261         hash_head = keyhashentry(key);
1262
1263         rcu_read_lock();
1264         hlist_for_each_entry_rcu(k, hash_head, hash_entry) {
1265                 if (k == key) {
1266                         found = true;
1267                         break;
1268                 }
1269         }
1270         rcu_read_unlock();
1271
1272         return found;
1273 }
1274
1275 /*
1276  * Register a lock's class in the hash-table, if the class is not present
1277  * yet. Otherwise we look it up. We cache the result in the lock object
1278  * itself, so actual lookup of the hash should be once per lock object.
1279  */
1280 static struct lock_class *
1281 register_lock_class(struct lockdep_map *lock, unsigned int subclass, int force)
1282 {
1283         struct lockdep_subclass_key *key;
1284         struct hlist_head *hash_head;
1285         struct lock_class *class;
1286         int idx;
1287
1288         DEBUG_LOCKS_WARN_ON(!irqs_disabled());
1289
1290         class = look_up_lock_class(lock, subclass);
1291         if (likely(class))
1292                 goto out_set_class_cache;
1293
1294         if (!lock->key) {
1295                 if (!assign_lock_key(lock))
1296                         return NULL;
1297         } else if (!static_obj(lock->key) && !is_dynamic_key(lock->key)) {
1298                 return NULL;
1299         }
1300
1301         key = lock->key->subkeys + subclass;
1302         hash_head = classhashentry(key);
1303
1304         if (!graph_lock()) {
1305                 return NULL;
1306         }
1307         /*
1308          * We have to do the hash-walk again, to avoid races
1309          * with another CPU:
1310          */
1311         hlist_for_each_entry_rcu(class, hash_head, hash_entry) {
1312                 if (class->key == key)
1313                         goto out_unlock_set;
1314         }
1315
1316         init_data_structures_once();
1317
1318         /* Allocate a new lock class and add it to the hash. */
1319         class = list_first_entry_or_null(&free_lock_classes, typeof(*class),
1320                                          lock_entry);
1321         if (!class) {
1322                 if (!debug_locks_off_graph_unlock()) {
1323                         return NULL;
1324                 }
1325
1326                 nbcon_cpu_emergency_enter();
1327                 print_lockdep_off("BUG: MAX_LOCKDEP_KEYS too low!");
1328                 dump_stack();
1329                 nbcon_cpu_emergency_exit();
1330                 return NULL;
1331         }
1332         nr_lock_classes++;
1333         __set_bit(class - lock_classes, lock_classes_in_use);
1334         debug_atomic_inc(nr_unused_locks);
1335         class->key = key;
1336         class->name = lock->name;
1337         class->subclass = subclass;
1338         WARN_ON_ONCE(!list_empty(&class->locks_before));
1339         WARN_ON_ONCE(!list_empty(&class->locks_after));
1340         class->name_version = count_matching_names(class);
1341         class->wait_type_inner = lock->wait_type_inner;
1342         class->wait_type_outer = lock->wait_type_outer;
1343         class->lock_type = lock->lock_type;
1344         /*
1345          * We use RCU's safe list-add method to make
1346          * parallel walking of the hash-list safe:
1347          */
1348         hlist_add_head_rcu(&class->hash_entry, hash_head);
1349         /*
1350          * Remove the class from the free list and add it to the global list
1351          * of classes.
1352          */
1353         list_move_tail(&class->lock_entry, &all_lock_classes);
1354         idx = class - lock_classes;
1355         if (idx > max_lock_class_idx)
1356                 max_lock_class_idx = idx;
1357
1358         if (verbose(class)) {
1359                 graph_unlock();
1360
1361                 nbcon_cpu_emergency_enter();
1362                 printk("\nnew class %px: %s", class->key, class->name);
1363                 if (class->name_version > 1)
1364                         printk(KERN_CONT "#%d", class->name_version);
1365                 printk(KERN_CONT "\n");
1366                 dump_stack();
1367                 nbcon_cpu_emergency_exit();
1368
1369                 if (!graph_lock()) {
1370                         return NULL;
1371                 }
1372         }
1373 out_unlock_set:
1374         graph_unlock();
1375
1376 out_set_class_cache:
1377         if (!subclass || force)
1378                 lock->class_cache[0] = class;
1379         else if (subclass < NR_LOCKDEP_CACHING_CLASSES)
1380                 lock->class_cache[subclass] = class;
1381
1382         /*
1383          * Hash collision, did we smoke some? We found a class with a matching
1384          * hash but the subclass -- which is hashed in -- didn't match.
1385          */
1386         if (DEBUG_LOCKS_WARN_ON(class->subclass != subclass))
1387                 return NULL;
1388
1389         return class;
1390 }
1391
1392 #ifdef CONFIG_PROVE_LOCKING
1393 /*
1394  * Allocate a lockdep entry. (assumes the graph_lock held, returns
1395  * with NULL on failure)
1396  */
1397 static struct lock_list *alloc_list_entry(void)
1398 {
1399         int idx = find_first_zero_bit(list_entries_in_use,
1400                                       ARRAY_SIZE(list_entries));
1401
1402         if (idx >= ARRAY_SIZE(list_entries)) {
1403                 if (!debug_locks_off_graph_unlock())
1404                         return NULL;
1405
1406                 nbcon_cpu_emergency_enter();
1407                 print_lockdep_off("BUG: MAX_LOCKDEP_ENTRIES too low!");
1408                 dump_stack();
1409                 nbcon_cpu_emergency_exit();
1410                 return NULL;
1411         }
1412         nr_list_entries++;
1413         __set_bit(idx, list_entries_in_use);
1414         return list_entries + idx;
1415 }
1416
1417 /*
1418  * Add a new dependency to the head of the list:
1419  */
1420 static int add_lock_to_list(struct lock_class *this,
1421                             struct lock_class *links_to, struct list_head *head,
1422                             u16 distance, u8 dep,
1423                             const struct lock_trace *trace)
1424 {
1425         struct lock_list *entry;
1426         /*
1427          * Lock not present yet - get a new dependency struct and
1428          * add it to the list:
1429          */
1430         entry = alloc_list_entry();
1431         if (!entry)
1432                 return 0;
1433
1434         entry->class = this;
1435         entry->links_to = links_to;
1436         entry->dep = dep;
1437         entry->distance = distance;
1438         entry->trace = trace;
1439         /*
1440          * Both allocation and removal are done under the graph lock; but
1441          * iteration is under RCU-sched; see look_up_lock_class() and
1442          * lockdep_free_key_range().
1443          */
1444         list_add_tail_rcu(&entry->entry, head);
1445
1446         return 1;
1447 }
1448
1449 /*
1450  * For good efficiency of modular, we use power of 2
1451  */
1452 #define MAX_CIRCULAR_QUEUE_SIZE         (1UL << CONFIG_LOCKDEP_CIRCULAR_QUEUE_BITS)
1453 #define CQ_MASK                         (MAX_CIRCULAR_QUEUE_SIZE-1)
1454
1455 /*
1456  * The circular_queue and helpers are used to implement graph
1457  * breadth-first search (BFS) algorithm, by which we can determine
1458  * whether there is a path from a lock to another. In deadlock checks,
1459  * a path from the next lock to be acquired to a previous held lock
1460  * indicates that adding the <prev> -> <next> lock dependency will
1461  * produce a circle in the graph. Breadth-first search instead of
1462  * depth-first search is used in order to find the shortest (circular)
1463  * path.
1464  */
1465 struct circular_queue {
1466         struct lock_list *element[MAX_CIRCULAR_QUEUE_SIZE];
1467         unsigned int  front, rear;
1468 };
1469
1470 static struct circular_queue lock_cq;
1471
1472 unsigned int max_bfs_queue_depth;
1473
1474 static unsigned int lockdep_dependency_gen_id;
1475
1476 static inline void __cq_init(struct circular_queue *cq)
1477 {
1478         cq->front = cq->rear = 0;
1479         lockdep_dependency_gen_id++;
1480 }
1481
1482 static inline int __cq_empty(struct circular_queue *cq)
1483 {
1484         return (cq->front == cq->rear);
1485 }
1486
1487 static inline int __cq_full(struct circular_queue *cq)
1488 {
1489         return ((cq->rear + 1) & CQ_MASK) == cq->front;
1490 }
1491
1492 static inline int __cq_enqueue(struct circular_queue *cq, struct lock_list *elem)
1493 {
1494         if (__cq_full(cq))
1495                 return -1;
1496
1497         cq->element[cq->rear] = elem;
1498         cq->rear = (cq->rear + 1) & CQ_MASK;
1499         return 0;
1500 }
1501
1502 /*
1503  * Dequeue an element from the circular_queue, return a lock_list if
1504  * the queue is not empty, or NULL if otherwise.
1505  */
1506 static inline struct lock_list * __cq_dequeue(struct circular_queue *cq)
1507 {
1508         struct lock_list * lock;
1509
1510         if (__cq_empty(cq))
1511                 return NULL;
1512
1513         lock = cq->element[cq->front];
1514         cq->front = (cq->front + 1) & CQ_MASK;
1515
1516         return lock;
1517 }
1518
1519 static inline unsigned int  __cq_get_elem_count(struct circular_queue *cq)
1520 {
1521         return (cq->rear - cq->front) & CQ_MASK;
1522 }
1523
1524 static inline void mark_lock_accessed(struct lock_list *lock)
1525 {
1526         lock->class->dep_gen_id = lockdep_dependency_gen_id;
1527 }
1528
1529 static inline void visit_lock_entry(struct lock_list *lock,
1530                                     struct lock_list *parent)
1531 {
1532         lock->parent = parent;
1533 }
1534
1535 static inline unsigned long lock_accessed(struct lock_list *lock)
1536 {
1537         return lock->class->dep_gen_id == lockdep_dependency_gen_id;
1538 }
1539
1540 static inline struct lock_list *get_lock_parent(struct lock_list *child)
1541 {
1542         return child->parent;
1543 }
1544
1545 static inline int get_lock_depth(struct lock_list *child)
1546 {
1547         int depth = 0;
1548         struct lock_list *parent;
1549
1550         while ((parent = get_lock_parent(child))) {
1551                 child = parent;
1552                 depth++;
1553         }
1554         return depth;
1555 }
1556
1557 /*
1558  * Return the forward or backward dependency list.
1559  *
1560  * @lock:   the lock_list to get its class's dependency list
1561  * @offset: the offset to struct lock_class to determine whether it is
1562  *          locks_after or locks_before
1563  */
1564 static inline struct list_head *get_dep_list(struct lock_list *lock, int offset)
1565 {
1566         void *lock_class = lock->class;
1567
1568         return lock_class + offset;
1569 }
1570 /*
1571  * Return values of a bfs search:
1572  *
1573  * BFS_E* indicates an error
1574  * BFS_R* indicates a result (match or not)
1575  *
1576  * BFS_EINVALIDNODE: Find a invalid node in the graph.
1577  *
1578  * BFS_EQUEUEFULL: The queue is full while doing the bfs.
1579  *
1580  * BFS_RMATCH: Find the matched node in the graph, and put that node into
1581  *             *@target_entry.
1582  *
1583  * BFS_RNOMATCH: Haven't found the matched node and keep *@target_entry
1584  *               _unchanged_.
1585  */
1586 enum bfs_result {
1587         BFS_EINVALIDNODE = -2,
1588         BFS_EQUEUEFULL = -1,
1589         BFS_RMATCH = 0,
1590         BFS_RNOMATCH = 1,
1591 };
1592
1593 /*
1594  * bfs_result < 0 means error
1595  */
1596 static inline bool bfs_error(enum bfs_result res)
1597 {
1598         return res < 0;
1599 }
1600
1601 /*
1602  * DEP_*_BIT in lock_list::dep
1603  *
1604  * For dependency @prev -> @next:
1605  *
1606  *   SR: @prev is shared reader (->read != 0) and @next is recursive reader
1607  *       (->read == 2)
1608  *   ER: @prev is exclusive locker (->read == 0) and @next is recursive reader
1609  *   SN: @prev is shared reader and @next is non-recursive locker (->read != 2)
1610  *   EN: @prev is exclusive locker and @next is non-recursive locker
1611  *
1612  * Note that we define the value of DEP_*_BITs so that:
1613  *   bit0 is prev->read == 0
1614  *   bit1 is next->read != 2
1615  */
1616 #define DEP_SR_BIT (0 + (0 << 1)) /* 0 */
1617 #define DEP_ER_BIT (1 + (0 << 1)) /* 1 */
1618 #define DEP_SN_BIT (0 + (1 << 1)) /* 2 */
1619 #define DEP_EN_BIT (1 + (1 << 1)) /* 3 */
1620
1621 #define DEP_SR_MASK (1U << (DEP_SR_BIT))
1622 #define DEP_ER_MASK (1U << (DEP_ER_BIT))
1623 #define DEP_SN_MASK (1U << (DEP_SN_BIT))
1624 #define DEP_EN_MASK (1U << (DEP_EN_BIT))
1625
1626 static inline unsigned int
1627 __calc_dep_bit(struct held_lock *prev, struct held_lock *next)
1628 {
1629         return (prev->read == 0) + ((next->read != 2) << 1);
1630 }
1631
1632 static inline u8 calc_dep(struct held_lock *prev, struct held_lock *next)
1633 {
1634         return 1U << __calc_dep_bit(prev, next);
1635 }
1636
1637 /*
1638  * calculate the dep_bit for backwards edges. We care about whether @prev is
1639  * shared and whether @next is recursive.
1640  */
1641 static inline unsigned int
1642 __calc_dep_bitb(struct held_lock *prev, struct held_lock *next)
1643 {
1644         return (next->read != 2) + ((prev->read == 0) << 1);
1645 }
1646
1647 static inline u8 calc_depb(struct held_lock *prev, struct held_lock *next)
1648 {
1649         return 1U << __calc_dep_bitb(prev, next);
1650 }
1651
1652 /*
1653  * Initialize a lock_list entry @lock belonging to @class as the root for a BFS
1654  * search.
1655  */
1656 static inline void __bfs_init_root(struct lock_list *lock,
1657                                    struct lock_class *class)
1658 {
1659         lock->class = class;
1660         lock->parent = NULL;
1661         lock->only_xr = 0;
1662 }
1663
1664 /*
1665  * Initialize a lock_list entry @lock based on a lock acquisition @hlock as the
1666  * root for a BFS search.
1667  *
1668  * ->only_xr of the initial lock node is set to @hlock->read == 2, to make sure
1669  * that <prev> -> @hlock and @hlock -> <whatever __bfs() found> is not -(*R)->
1670  * and -(S*)->.
1671  */
1672 static inline void bfs_init_root(struct lock_list *lock,
1673                                  struct held_lock *hlock)
1674 {
1675         __bfs_init_root(lock, hlock_class(hlock));
1676         lock->only_xr = (hlock->read == 2);
1677 }
1678
1679 /*
1680  * Similar to bfs_init_root() but initialize the root for backwards BFS.
1681  *
1682  * ->only_xr of the initial lock node is set to @hlock->read != 0, to make sure
1683  * that <next> -> @hlock and @hlock -> <whatever backwards BFS found> is not
1684  * -(*S)-> and -(R*)-> (reverse order of -(*R)-> and -(S*)->).
1685  */
1686 static inline void bfs_init_rootb(struct lock_list *lock,
1687                                   struct held_lock *hlock)
1688 {
1689         __bfs_init_root(lock, hlock_class(hlock));
1690         lock->only_xr = (hlock->read != 0);
1691 }
1692
1693 static inline struct lock_list *__bfs_next(struct lock_list *lock, int offset)
1694 {
1695         if (!lock || !lock->parent)
1696                 return NULL;
1697
1698         return list_next_or_null_rcu(get_dep_list(lock->parent, offset),
1699                                      &lock->entry, struct lock_list, entry);
1700 }
1701
1702 /*
1703  * Breadth-First Search to find a strong path in the dependency graph.
1704  *
1705  * @source_entry: the source of the path we are searching for.
1706  * @data: data used for the second parameter of @match function
1707  * @match: match function for the search
1708  * @target_entry: pointer to the target of a matched path
1709  * @offset: the offset to struct lock_class to determine whether it is
1710  *          locks_after or locks_before
1711  *
1712  * We may have multiple edges (considering different kinds of dependencies,
1713  * e.g. ER and SN) between two nodes in the dependency graph. But
1714  * only the strong dependency path in the graph is relevant to deadlocks. A
1715  * strong dependency path is a dependency path that doesn't have two adjacent
1716  * dependencies as -(*R)-> -(S*)->, please see:
1717  *
1718  *         Documentation/locking/lockdep-design.rst
1719  *
1720  * for more explanation of the definition of strong dependency paths
1721  *
1722  * In __bfs(), we only traverse in the strong dependency path:
1723  *
1724  *     In lock_list::only_xr, we record whether the previous dependency only
1725  *     has -(*R)-> in the search, and if it does (prev only has -(*R)->), we
1726  *     filter out any -(S*)-> in the current dependency and after that, the
1727  *     ->only_xr is set according to whether we only have -(*R)-> left.
1728  */
1729 static enum bfs_result __bfs(struct lock_list *source_entry,
1730                              void *data,
1731                              bool (*match)(struct lock_list *entry, void *data),
1732                              bool (*skip)(struct lock_list *entry, void *data),
1733                              struct lock_list **target_entry,
1734                              int offset)
1735 {
1736         struct circular_queue *cq = &lock_cq;
1737         struct lock_list *lock = NULL;
1738         struct lock_list *entry;
1739         struct list_head *head;
1740         unsigned int cq_depth;
1741         bool first;
1742
1743         lockdep_assert_locked();
1744
1745         __cq_init(cq);
1746         __cq_enqueue(cq, source_entry);
1747
1748         while ((lock = __bfs_next(lock, offset)) || (lock = __cq_dequeue(cq))) {
1749                 if (!lock->class)
1750                         return BFS_EINVALIDNODE;
1751
1752                 /*
1753                  * Step 1: check whether we already finish on this one.
1754                  *
1755                  * If we have visited all the dependencies from this @lock to
1756                  * others (iow, if we have visited all lock_list entries in
1757                  * @lock->class->locks_{after,before}) we skip, otherwise go
1758                  * and visit all the dependencies in the list and mark this
1759                  * list accessed.
1760                  */
1761                 if (lock_accessed(lock))
1762                         continue;
1763                 else
1764                         mark_lock_accessed(lock);
1765
1766                 /*
1767                  * Step 2: check whether prev dependency and this form a strong
1768                  *         dependency path.
1769                  */
1770                 if (lock->parent) { /* Parent exists, check prev dependency */
1771                         u8 dep = lock->dep;
1772                         bool prev_only_xr = lock->parent->only_xr;
1773
1774                         /*
1775                          * Mask out all -(S*)-> if we only have *R in previous
1776                          * step, because -(*R)-> -(S*)-> don't make up a strong
1777                          * dependency.
1778                          */
1779                         if (prev_only_xr)
1780                                 dep &= ~(DEP_SR_MASK | DEP_SN_MASK);
1781
1782                         /* If nothing left, we skip */
1783                         if (!dep)
1784                                 continue;
1785
1786                         /* If there are only -(*R)-> left, set that for the next step */
1787                         lock->only_xr = !(dep & (DEP_SN_MASK | DEP_EN_MASK));
1788                 }
1789
1790                 /*
1791                  * Step 3: we haven't visited this and there is a strong
1792                  *         dependency path to this, so check with @match.
1793                  *         If @skip is provide and returns true, we skip this
1794                  *         lock (and any path this lock is in).
1795                  */
1796                 if (skip && skip(lock, data))
1797                         continue;
1798
1799                 if (match(lock, data)) {
1800                         *target_entry = lock;
1801                         return BFS_RMATCH;
1802                 }
1803
1804                 /*
1805                  * Step 4: if not match, expand the path by adding the
1806                  *         forward or backwards dependencies in the search
1807                  *
1808                  */
1809                 first = true;
1810                 head = get_dep_list(lock, offset);
1811                 list_for_each_entry_rcu(entry, head, entry) {
1812                         visit_lock_entry(entry, lock);
1813
1814                         /*
1815                          * Note we only enqueue the first of the list into the
1816                          * queue, because we can always find a sibling
1817                          * dependency from one (see __bfs_next()), as a result
1818                          * the space of queue is saved.
1819                          */
1820                         if (!first)
1821                                 continue;
1822
1823                         first = false;
1824
1825                         if (__cq_enqueue(cq, entry))
1826                                 return BFS_EQUEUEFULL;
1827
1828                         cq_depth = __cq_get_elem_count(cq);
1829                         if (max_bfs_queue_depth < cq_depth)
1830                                 max_bfs_queue_depth = cq_depth;
1831                 }
1832         }
1833
1834         return BFS_RNOMATCH;
1835 }
1836
1837 static inline enum bfs_result
1838 __bfs_forwards(struct lock_list *src_entry,
1839                void *data,
1840                bool (*match)(struct lock_list *entry, void *data),
1841                bool (*skip)(struct lock_list *entry, void *data),
1842                struct lock_list **target_entry)
1843 {
1844         return __bfs(src_entry, data, match, skip, target_entry,
1845                      offsetof(struct lock_class, locks_after));
1846
1847 }
1848
1849 static inline enum bfs_result
1850 __bfs_backwards(struct lock_list *src_entry,
1851                 void *data,
1852                 bool (*match)(struct lock_list *entry, void *data),
1853                bool (*skip)(struct lock_list *entry, void *data),
1854                 struct lock_list **target_entry)
1855 {
1856         return __bfs(src_entry, data, match, skip, target_entry,
1857                      offsetof(struct lock_class, locks_before));
1858
1859 }
1860
1861 static void print_lock_trace(const struct lock_trace *trace,
1862                              unsigned int spaces)
1863 {
1864         stack_trace_print(trace->entries, trace->nr_entries, spaces);
1865 }
1866
1867 /*
1868  * Print a dependency chain entry (this is only done when a deadlock
1869  * has been detected):
1870  */
1871 static noinline void
1872 print_circular_bug_entry(struct lock_list *target, int depth)
1873 {
1874         if (debug_locks_silent)
1875                 return;
1876         printk("\n-> #%u", depth);
1877         print_lock_name(NULL, target->class);
1878         printk(KERN_CONT ":\n");
1879         print_lock_trace(target->trace, 6);
1880 }
1881
1882 static void
1883 print_circular_lock_scenario(struct held_lock *src,
1884                              struct held_lock *tgt,
1885                              struct lock_list *prt)
1886 {
1887         struct lock_class *source = hlock_class(src);
1888         struct lock_class *target = hlock_class(tgt);
1889         struct lock_class *parent = prt->class;
1890         int src_read = src->read;
1891         int tgt_read = tgt->read;
1892
1893         /*
1894          * A direct locking problem where unsafe_class lock is taken
1895          * directly by safe_class lock, then all we need to show
1896          * is the deadlock scenario, as it is obvious that the
1897          * unsafe lock is taken under the safe lock.
1898          *
1899          * But if there is a chain instead, where the safe lock takes
1900          * an intermediate lock (middle_class) where this lock is
1901          * not the same as the safe lock, then the lock chain is
1902          * used to describe the problem. Otherwise we would need
1903          * to show a different CPU case for each link in the chain
1904          * from the safe_class lock to the unsafe_class lock.
1905          */
1906         if (parent != source) {
1907                 printk("Chain exists of:\n  ");
1908                 __print_lock_name(src, source);
1909                 printk(KERN_CONT " --> ");
1910                 __print_lock_name(NULL, parent);
1911                 printk(KERN_CONT " --> ");
1912                 __print_lock_name(tgt, target);
1913                 printk(KERN_CONT "\n\n");
1914         }
1915
1916         printk(" Possible unsafe locking scenario:\n\n");
1917         printk("       CPU0                    CPU1\n");
1918         printk("       ----                    ----\n");
1919         if (tgt_read != 0)
1920                 printk("  rlock(");
1921         else
1922                 printk("  lock(");
1923         __print_lock_name(tgt, target);
1924         printk(KERN_CONT ");\n");
1925         printk("                               lock(");
1926         __print_lock_name(NULL, parent);
1927         printk(KERN_CONT ");\n");
1928         printk("                               lock(");
1929         __print_lock_name(tgt, target);
1930         printk(KERN_CONT ");\n");
1931         if (src_read != 0)
1932                 printk("  rlock(");
1933         else if (src->sync)
1934                 printk("  sync(");
1935         else
1936                 printk("  lock(");
1937         __print_lock_name(src, source);
1938         printk(KERN_CONT ");\n");
1939         printk("\n *** DEADLOCK ***\n\n");
1940 }
1941
1942 /*
1943  * When a circular dependency is detected, print the
1944  * header first:
1945  */
1946 static noinline void
1947 print_circular_bug_header(struct lock_list *entry, unsigned int depth,
1948                         struct held_lock *check_src,
1949                         struct held_lock *check_tgt)
1950 {
1951         struct task_struct *curr = current;
1952
1953         if (debug_locks_silent)
1954                 return;
1955
1956         pr_warn("\n");
1957         pr_warn("======================================================\n");
1958         pr_warn("WARNING: possible circular locking dependency detected\n");
1959         print_kernel_ident();
1960         pr_warn("------------------------------------------------------\n");
1961         pr_warn("%s/%d is trying to acquire lock:\n",
1962                 curr->comm, task_pid_nr(curr));
1963         print_lock(check_src);
1964
1965         pr_warn("\nbut task is already holding lock:\n");
1966
1967         print_lock(check_tgt);
1968         pr_warn("\nwhich lock already depends on the new lock.\n\n");
1969         pr_warn("\nthe existing dependency chain (in reverse order) is:\n");
1970
1971         print_circular_bug_entry(entry, depth);
1972 }
1973
1974 /*
1975  * We are about to add A -> B into the dependency graph, and in __bfs() a
1976  * strong dependency path A -> .. -> B is found: hlock_class equals
1977  * entry->class.
1978  *
1979  * If A -> .. -> B can replace A -> B in any __bfs() search (means the former
1980  * is _stronger_ than or equal to the latter), we consider A -> B as redundant.
1981  * For example if A -> .. -> B is -(EN)-> (i.e. A -(E*)-> .. -(*N)-> B), and A
1982  * -> B is -(ER)-> or -(EN)->, then we don't need to add A -> B into the
1983  * dependency graph, as any strong path ..-> A -> B ->.. we can get with
1984  * having dependency A -> B, we could already get a equivalent path ..-> A ->
1985  * .. -> B -> .. with A -> .. -> B. Therefore A -> B is redundant.
1986  *
1987  * We need to make sure both the start and the end of A -> .. -> B is not
1988  * weaker than A -> B. For the start part, please see the comment in
1989  * check_redundant(). For the end part, we need:
1990  *
1991  * Either
1992  *
1993  *     a) A -> B is -(*R)-> (everything is not weaker than that)
1994  *
1995  * or
1996  *
1997  *     b) A -> .. -> B is -(*N)-> (nothing is stronger than this)
1998  *
1999  */
2000 static inline bool hlock_equal(struct lock_list *entry, void *data)
2001 {
2002         struct held_lock *hlock = (struct held_lock *)data;
2003
2004         return hlock_class(hlock) == entry->class && /* Found A -> .. -> B */
2005                (hlock->read == 2 ||  /* A -> B is -(*R)-> */
2006                 !entry->only_xr); /* A -> .. -> B is -(*N)-> */
2007 }
2008
2009 /*
2010  * We are about to add B -> A into the dependency graph, and in __bfs() a
2011  * strong dependency path A -> .. -> B is found: hlock_class equals
2012  * entry->class.
2013  *
2014  * We will have a deadlock case (conflict) if A -> .. -> B -> A is a strong
2015  * dependency cycle, that means:
2016  *
2017  * Either
2018  *
2019  *     a) B -> A is -(E*)->
2020  *
2021  * or
2022  *
2023  *     b) A -> .. -> B is -(*N)-> (i.e. A -> .. -(*N)-> B)
2024  *
2025  * as then we don't have -(*R)-> -(S*)-> in the cycle.
2026  */
2027 static inline bool hlock_conflict(struct lock_list *entry, void *data)
2028 {
2029         struct held_lock *hlock = (struct held_lock *)data;
2030
2031         return hlock_class(hlock) == entry->class && /* Found A -> .. -> B */
2032                (hlock->read == 0 || /* B -> A is -(E*)-> */
2033                 !entry->only_xr); /* A -> .. -> B is -(*N)-> */
2034 }
2035
2036 static noinline void print_circular_bug(struct lock_list *this,
2037                                 struct lock_list *target,
2038                                 struct held_lock *check_src,
2039                                 struct held_lock *check_tgt)
2040 {
2041         struct task_struct *curr = current;
2042         struct lock_list *parent;
2043         struct lock_list *first_parent;
2044         int depth;
2045
2046         if (!debug_locks_off_graph_unlock() || debug_locks_silent)
2047                 return;
2048
2049         this->trace = save_trace();
2050         if (!this->trace)
2051                 return;
2052
2053         depth = get_lock_depth(target);
2054
2055         nbcon_cpu_emergency_enter();
2056
2057         print_circular_bug_header(target, depth, check_src, check_tgt);
2058
2059         parent = get_lock_parent(target);
2060         first_parent = parent;
2061
2062         while (parent) {
2063                 print_circular_bug_entry(parent, --depth);
2064                 parent = get_lock_parent(parent);
2065         }
2066
2067         printk("\nother info that might help us debug this:\n\n");
2068         print_circular_lock_scenario(check_src, check_tgt,
2069                                      first_parent);
2070
2071         lockdep_print_held_locks(curr);
2072
2073         printk("\nstack backtrace:\n");
2074         dump_stack();
2075
2076         nbcon_cpu_emergency_exit();
2077 }
2078
2079 static noinline void print_bfs_bug(int ret)
2080 {
2081         if (!debug_locks_off_graph_unlock())
2082                 return;
2083
2084         /*
2085          * Breadth-first-search failed, graph got corrupted?
2086          */
2087         if (ret == BFS_EQUEUEFULL)
2088                 pr_warn("Increase LOCKDEP_CIRCULAR_QUEUE_BITS to avoid this warning:\n");
2089
2090         WARN(1, "lockdep bfs error:%d\n", ret);
2091 }
2092
2093 static bool noop_count(struct lock_list *entry, void *data)
2094 {
2095         (*(unsigned long *)data)++;
2096         return false;
2097 }
2098
2099 static unsigned long __lockdep_count_forward_deps(struct lock_list *this)
2100 {
2101         unsigned long  count = 0;
2102         struct lock_list *target_entry;
2103
2104         __bfs_forwards(this, (void *)&count, noop_count, NULL, &target_entry);
2105
2106         return count;
2107 }
2108 unsigned long lockdep_count_forward_deps(struct lock_class *class)
2109 {
2110         unsigned long ret, flags;
2111         struct lock_list this;
2112
2113         __bfs_init_root(&this, class);
2114
2115         raw_local_irq_save(flags);
2116         lockdep_lock();
2117         ret = __lockdep_count_forward_deps(&this);
2118         lockdep_unlock();
2119         raw_local_irq_restore(flags);
2120
2121         return ret;
2122 }
2123
2124 static unsigned long __lockdep_count_backward_deps(struct lock_list *this)
2125 {
2126         unsigned long  count = 0;
2127         struct lock_list *target_entry;
2128
2129         __bfs_backwards(this, (void *)&count, noop_count, NULL, &target_entry);
2130
2131         return count;
2132 }
2133
2134 unsigned long lockdep_count_backward_deps(struct lock_class *class)
2135 {
2136         unsigned long ret, flags;
2137         struct lock_list this;
2138
2139         __bfs_init_root(&this, class);
2140
2141         raw_local_irq_save(flags);
2142         lockdep_lock();
2143         ret = __lockdep_count_backward_deps(&this);
2144         lockdep_unlock();
2145         raw_local_irq_restore(flags);
2146
2147         return ret;
2148 }
2149
2150 /*
2151  * Check that the dependency graph starting at <src> can lead to
2152  * <target> or not.
2153  */
2154 static noinline enum bfs_result
2155 check_path(struct held_lock *target, struct lock_list *src_entry,
2156            bool (*match)(struct lock_list *entry, void *data),
2157            bool (*skip)(struct lock_list *entry, void *data),
2158            struct lock_list **target_entry)
2159 {
2160         enum bfs_result ret;
2161
2162         ret = __bfs_forwards(src_entry, target, match, skip, target_entry);
2163
2164         if (unlikely(bfs_error(ret)))
2165                 print_bfs_bug(ret);
2166
2167         return ret;
2168 }
2169
2170 static void print_deadlock_bug(struct task_struct *, struct held_lock *, struct held_lock *);
2171
2172 /*
2173  * Prove that the dependency graph starting at <src> can not
2174  * lead to <target>. If it can, there is a circle when adding
2175  * <target> -> <src> dependency.
2176  *
2177  * Print an error and return BFS_RMATCH if it does.
2178  */
2179 static noinline enum bfs_result
2180 check_noncircular(struct held_lock *src, struct held_lock *target,
2181                   struct lock_trace **const trace)
2182 {
2183         enum bfs_result ret;
2184         struct lock_list *target_entry;
2185         struct lock_list src_entry;
2186
2187         bfs_init_root(&src_entry, src);
2188
2189         debug_atomic_inc(nr_cyclic_checks);
2190
2191         ret = check_path(target, &src_entry, hlock_conflict, NULL, &target_entry);
2192
2193         if (unlikely(ret == BFS_RMATCH)) {
2194                 if (!*trace) {
2195                         /*
2196                          * If save_trace fails here, the printing might
2197                          * trigger a WARN but because of the !nr_entries it
2198                          * should not do bad things.
2199                          */
2200                         *trace = save_trace();
2201                 }
2202
2203                 if (src->class_idx == target->class_idx)
2204                         print_deadlock_bug(current, src, target);
2205                 else
2206                         print_circular_bug(&src_entry, target_entry, src, target);
2207         }
2208
2209         return ret;
2210 }
2211
2212 #ifdef CONFIG_TRACE_IRQFLAGS
2213
2214 /*
2215  * Forwards and backwards subgraph searching, for the purposes of
2216  * proving that two subgraphs can be connected by a new dependency
2217  * without creating any illegal irq-safe -> irq-unsafe lock dependency.
2218  *
2219  * A irq safe->unsafe deadlock happens with the following conditions:
2220  *
2221  * 1) We have a strong dependency path A -> ... -> B
2222  *
2223  * 2) and we have ENABLED_IRQ usage of B and USED_IN_IRQ usage of A, therefore
2224  *    irq can create a new dependency B -> A (consider the case that a holder
2225  *    of B gets interrupted by an irq whose handler will try to acquire A).
2226  *
2227  * 3) the dependency circle A -> ... -> B -> A we get from 1) and 2) is a
2228  *    strong circle:
2229  *
2230  *      For the usage bits of B:
2231  *        a) if A -> B is -(*N)->, then B -> A could be any type, so any
2232  *           ENABLED_IRQ usage suffices.
2233  *        b) if A -> B is -(*R)->, then B -> A must be -(E*)->, so only
2234  *           ENABLED_IRQ_*_READ usage suffices.
2235  *
2236  *      For the usage bits of A:
2237  *        c) if A -> B is -(E*)->, then B -> A could be any type, so any
2238  *           USED_IN_IRQ usage suffices.
2239  *        d) if A -> B is -(S*)->, then B -> A must be -(*N)->, so only
2240  *           USED_IN_IRQ_*_READ usage suffices.
2241  */
2242
2243 /*
2244  * There is a strong dependency path in the dependency graph: A -> B, and now
2245  * we need to decide which usage bit of A should be accumulated to detect
2246  * safe->unsafe bugs.
2247  *
2248  * Note that usage_accumulate() is used in backwards search, so ->only_xr
2249  * stands for whether A -> B only has -(S*)-> (in this case ->only_xr is true).
2250  *
2251  * As above, if only_xr is false, which means A -> B has -(E*)-> dependency
2252  * path, any usage of A should be considered. Otherwise, we should only
2253  * consider _READ usage.
2254  */
2255 static inline bool usage_accumulate(struct lock_list *entry, void *mask)
2256 {
2257         if (!entry->only_xr)
2258                 *(unsigned long *)mask |= entry->class->usage_mask;
2259         else /* Mask out _READ usage bits */
2260                 *(unsigned long *)mask |= (entry->class->usage_mask & LOCKF_IRQ);
2261
2262         return false;
2263 }
2264
2265 /*
2266  * There is a strong dependency path in the dependency graph: A -> B, and now
2267  * we need to decide which usage bit of B conflicts with the usage bits of A,
2268  * i.e. which usage bit of B may introduce safe->unsafe deadlocks.
2269  *
2270  * As above, if only_xr is false, which means A -> B has -(*N)-> dependency
2271  * path, any usage of B should be considered. Otherwise, we should only
2272  * consider _READ usage.
2273  */
2274 static inline bool usage_match(struct lock_list *entry, void *mask)
2275 {
2276         if (!entry->only_xr)
2277                 return !!(entry->class->usage_mask & *(unsigned long *)mask);
2278         else /* Mask out _READ usage bits */
2279                 return !!((entry->class->usage_mask & LOCKF_IRQ) & *(unsigned long *)mask);
2280 }
2281
2282 static inline bool usage_skip(struct lock_list *entry, void *mask)
2283 {
2284         if (entry->class->lock_type == LD_LOCK_NORMAL)
2285                 return false;
2286
2287         /*
2288          * Skip local_lock() for irq inversion detection.
2289          *
2290          * For !RT, local_lock() is not a real lock, so it won't carry any
2291          * dependency.
2292          *
2293          * For RT, an irq inversion happens when we have lock A and B, and on
2294          * some CPU we can have:
2295          *
2296          *      lock(A);
2297          *      <interrupted>
2298          *        lock(B);
2299          *
2300          * where lock(B) cannot sleep, and we have a dependency B -> ... -> A.
2301          *
2302          * Now we prove local_lock() cannot exist in that dependency. First we
2303          * have the observation for any lock chain L1 -> ... -> Ln, for any
2304          * 1 <= i <= n, Li.inner_wait_type <= L1.inner_wait_type, otherwise
2305          * wait context check will complain. And since B is not a sleep lock,
2306          * therefore B.inner_wait_type >= 2, and since the inner_wait_type of
2307          * local_lock() is 3, which is greater than 2, therefore there is no
2308          * way the local_lock() exists in the dependency B -> ... -> A.
2309          *
2310          * As a result, we will skip local_lock(), when we search for irq
2311          * inversion bugs.
2312          */
2313         if (entry->class->lock_type == LD_LOCK_PERCPU &&
2314             DEBUG_LOCKS_WARN_ON(entry->class->wait_type_inner < LD_WAIT_CONFIG))
2315                 return false;
2316
2317         /*
2318          * Skip WAIT_OVERRIDE for irq inversion detection -- it's not actually
2319          * a lock and only used to override the wait_type.
2320          */
2321
2322         return true;
2323 }
2324
2325 /*
2326  * Find a node in the forwards-direction dependency sub-graph starting
2327  * at @root->class that matches @bit.
2328  *
2329  * Return BFS_MATCH if such a node exists in the subgraph, and put that node
2330  * into *@target_entry.
2331  */
2332 static enum bfs_result
2333 find_usage_forwards(struct lock_list *root, unsigned long usage_mask,
2334                         struct lock_list **target_entry)
2335 {
2336         enum bfs_result result;
2337
2338         debug_atomic_inc(nr_find_usage_forwards_checks);
2339
2340         result = __bfs_forwards(root, &usage_mask, usage_match, usage_skip, target_entry);
2341
2342         return result;
2343 }
2344
2345 /*
2346  * Find a node in the backwards-direction dependency sub-graph starting
2347  * at @root->class that matches @bit.
2348  */
2349 static enum bfs_result
2350 find_usage_backwards(struct lock_list *root, unsigned long usage_mask,
2351                         struct lock_list **target_entry)
2352 {
2353         enum bfs_result result;
2354
2355         debug_atomic_inc(nr_find_usage_backwards_checks);
2356
2357         result = __bfs_backwards(root, &usage_mask, usage_match, usage_skip, target_entry);
2358
2359         return result;
2360 }
2361
2362 static void print_lock_class_header(struct lock_class *class, int depth)
2363 {
2364         int bit;
2365
2366         printk("%*s->", depth, "");
2367         print_lock_name(NULL, class);
2368 #ifdef CONFIG_DEBUG_LOCKDEP
2369         printk(KERN_CONT " ops: %lu", debug_class_ops_read(class));
2370 #endif
2371         printk(KERN_CONT " {\n");
2372
2373         for (bit = 0; bit < LOCK_TRACE_STATES; bit++) {
2374                 if (class->usage_mask & (1 << bit)) {
2375                         int len = depth;
2376
2377                         len += printk("%*s   %s", depth, "", usage_str[bit]);
2378                         len += printk(KERN_CONT " at:\n");
2379                         print_lock_trace(class->usage_traces[bit], len);
2380                 }
2381         }
2382         printk("%*s }\n", depth, "");
2383
2384         printk("%*s ... key      at: [<%px>] %pS\n",
2385                 depth, "", class->key, class->key);
2386 }
2387
2388 /*
2389  * Dependency path printing:
2390  *
2391  * After BFS we get a lock dependency path (linked via ->parent of lock_list),
2392  * printing out each lock in the dependency path will help on understanding how
2393  * the deadlock could happen. Here are some details about dependency path
2394  * printing:
2395  *
2396  * 1)   A lock_list can be either forwards or backwards for a lock dependency,
2397  *      for a lock dependency A -> B, there are two lock_lists:
2398  *
2399  *      a)      lock_list in the ->locks_after list of A, whose ->class is B and
2400  *              ->links_to is A. In this case, we can say the lock_list is
2401  *              "A -> B" (forwards case).
2402  *
2403  *      b)      lock_list in the ->locks_before list of B, whose ->class is A
2404  *              and ->links_to is B. In this case, we can say the lock_list is
2405  *              "B <- A" (bacwards case).
2406  *
2407  *      The ->trace of both a) and b) point to the call trace where B was
2408  *      acquired with A held.
2409  *
2410  * 2)   A "helper" lock_list is introduced during BFS, this lock_list doesn't
2411  *      represent a certain lock dependency, it only provides an initial entry
2412  *      for BFS. For example, BFS may introduce a "helper" lock_list whose
2413  *      ->class is A, as a result BFS will search all dependencies starting with
2414  *      A, e.g. A -> B or A -> C.
2415  *
2416  *      The notation of a forwards helper lock_list is like "-> A", which means
2417  *      we should search the forwards dependencies starting with "A", e.g A -> B
2418  *      or A -> C.
2419  *
2420  *      The notation of a bacwards helper lock_list is like "<- B", which means
2421  *      we should search the backwards dependencies ending with "B", e.g.
2422  *      B <- A or B <- C.
2423  */
2424
2425 /*
2426  * printk the shortest lock dependencies from @root to @leaf in reverse order.
2427  *
2428  * We have a lock dependency path as follow:
2429  *
2430  *    @root                                                                 @leaf
2431  *      |                                                                     |
2432  *      V                                                                     V
2433  *                ->parent                                   ->parent
2434  * | lock_list | <--------- | lock_list | ... | lock_list  | <--------- | lock_list |
2435  * |    -> L1  |            | L1 -> L2  | ... |Ln-2 -> Ln-1|            | Ln-1 -> Ln|
2436  *
2437  * , so it's natural that we start from @leaf and print every ->class and
2438  * ->trace until we reach the @root.
2439  */
2440 static void __used
2441 print_shortest_lock_dependencies(struct lock_list *leaf,
2442                                  struct lock_list *root)
2443 {
2444         struct lock_list *entry = leaf;
2445         int depth;
2446
2447         /*compute depth from generated tree by BFS*/
2448         depth = get_lock_depth(leaf);
2449
2450         do {
2451                 print_lock_class_header(entry->class, depth);
2452                 printk("%*s ... acquired at:\n", depth, "");
2453                 print_lock_trace(entry->trace, 2);
2454                 printk("\n");
2455
2456                 if (depth == 0 && (entry != root)) {
2457                         printk("lockdep:%s bad path found in chain graph\n", __func__);
2458                         break;
2459                 }
2460
2461                 entry = get_lock_parent(entry);
2462                 depth--;
2463         } while (entry && (depth >= 0));
2464 }
2465
2466 /*
2467  * printk the shortest lock dependencies from @leaf to @root.
2468  *
2469  * We have a lock dependency path (from a backwards search) as follow:
2470  *
2471  *    @leaf                                                                 @root
2472  *      |                                                                     |
2473  *      V                                                                     V
2474  *                ->parent                                   ->parent
2475  * | lock_list | ---------> | lock_list | ... | lock_list  | ---------> | lock_list |
2476  * | L2 <- L1  |            | L3 <- L2  | ... | Ln <- Ln-1 |            |    <- Ln  |
2477  *
2478  * , so when we iterate from @leaf to @root, we actually print the lock
2479  * dependency path L1 -> L2 -> .. -> Ln in the non-reverse order.
2480  *
2481  * Another thing to notice here is that ->class of L2 <- L1 is L1, while the
2482  * ->trace of L2 <- L1 is the call trace of L2, in fact we don't have the call
2483  * trace of L1 in the dependency path, which is alright, because most of the
2484  * time we can figure out where L1 is held from the call trace of L2.
2485  */
2486 static void __used
2487 print_shortest_lock_dependencies_backwards(struct lock_list *leaf,
2488                                            struct lock_list *root)
2489 {
2490         struct lock_list *entry = leaf;
2491         const struct lock_trace *trace = NULL;
2492         int depth;
2493
2494         /*compute depth from generated tree by BFS*/
2495         depth = get_lock_depth(leaf);
2496
2497         do {
2498                 print_lock_class_header(entry->class, depth);
2499                 if (trace) {
2500                         printk("%*s ... acquired at:\n", depth, "");
2501                         print_lock_trace(trace, 2);
2502                         printk("\n");
2503                 }
2504
2505                 /*
2506                  * Record the pointer to the trace for the next lock_list
2507                  * entry, see the comments for the function.
2508                  */
2509                 trace = entry->trace;
2510
2511                 if (depth == 0 && (entry != root)) {
2512                         printk("lockdep:%s bad path found in chain graph\n", __func__);
2513                         break;
2514                 }
2515
2516                 entry = get_lock_parent(entry);
2517                 depth--;
2518         } while (entry && (depth >= 0));
2519 }
2520
2521 static void
2522 print_irq_lock_scenario(struct lock_list *safe_entry,
2523                         struct lock_list *unsafe_entry,
2524                         struct lock_class *prev_class,
2525                         struct lock_class *next_class)
2526 {
2527         struct lock_class *safe_class = safe_entry->class;
2528         struct lock_class *unsafe_class = unsafe_entry->class;
2529         struct lock_class *middle_class = prev_class;
2530
2531         if (middle_class == safe_class)
2532                 middle_class = next_class;
2533
2534         /*
2535          * A direct locking problem where unsafe_class lock is taken
2536          * directly by safe_class lock, then all we need to show
2537          * is the deadlock scenario, as it is obvious that the
2538          * unsafe lock is taken under the safe lock.
2539          *
2540          * But if there is a chain instead, where the safe lock takes
2541          * an intermediate lock (middle_class) where this lock is
2542          * not the same as the safe lock, then the lock chain is
2543          * used to describe the problem. Otherwise we would need
2544          * to show a different CPU case for each link in the chain
2545          * from the safe_class lock to the unsafe_class lock.
2546          */
2547         if (middle_class != unsafe_class) {
2548                 printk("Chain exists of:\n  ");
2549                 __print_lock_name(NULL, safe_class);
2550                 printk(KERN_CONT " --> ");
2551                 __print_lock_name(NULL, middle_class);
2552                 printk(KERN_CONT " --> ");
2553                 __print_lock_name(NULL, unsafe_class);
2554                 printk(KERN_CONT "\n\n");
2555         }
2556
2557         printk(" Possible interrupt unsafe locking scenario:\n\n");
2558         printk("       CPU0                    CPU1\n");
2559         printk("       ----                    ----\n");
2560         printk("  lock(");
2561         __print_lock_name(NULL, unsafe_class);
2562         printk(KERN_CONT ");\n");
2563         printk("                               local_irq_disable();\n");
2564         printk("                               lock(");
2565         __print_lock_name(NULL, safe_class);
2566         printk(KERN_CONT ");\n");
2567         printk("                               lock(");
2568         __print_lock_name(NULL, middle_class);
2569         printk(KERN_CONT ");\n");
2570         printk("  <Interrupt>\n");
2571         printk("    lock(");
2572         __print_lock_name(NULL, safe_class);
2573         printk(KERN_CONT ");\n");
2574         printk("\n *** DEADLOCK ***\n\n");
2575 }
2576
2577 static void
2578 print_bad_irq_dependency(struct task_struct *curr,
2579                          struct lock_list *prev_root,
2580                          struct lock_list *next_root,
2581                          struct lock_list *backwards_entry,
2582                          struct lock_list *forwards_entry,
2583                          struct held_lock *prev,
2584                          struct held_lock *next,
2585                          enum lock_usage_bit bit1,
2586                          enum lock_usage_bit bit2,
2587                          const char *irqclass)
2588 {
2589         if (!debug_locks_off_graph_unlock() || debug_locks_silent)
2590                 return;
2591
2592         nbcon_cpu_emergency_enter();
2593
2594         pr_warn("\n");
2595         pr_warn("=====================================================\n");
2596         pr_warn("WARNING: %s-safe -> %s-unsafe lock order detected\n",
2597                 irqclass, irqclass);
2598         print_kernel_ident();
2599         pr_warn("-----------------------------------------------------\n");
2600         pr_warn("%s/%d [HC%u[%lu]:SC%u[%lu]:HE%u:SE%u] is trying to acquire:\n",
2601                 curr->comm, task_pid_nr(curr),
2602                 lockdep_hardirq_context(), hardirq_count() >> HARDIRQ_SHIFT,
2603                 curr->softirq_context, softirq_count() >> SOFTIRQ_SHIFT,
2604                 lockdep_hardirqs_enabled(),
2605                 curr->softirqs_enabled);
2606         print_lock(next);
2607
2608         pr_warn("\nand this task is already holding:\n");
2609         print_lock(prev);
2610         pr_warn("which would create a new lock dependency:\n");
2611         print_lock_name(prev, hlock_class(prev));
2612         pr_cont(" ->");
2613         print_lock_name(next, hlock_class(next));
2614         pr_cont("\n");
2615
2616         pr_warn("\nbut this new dependency connects a %s-irq-safe lock:\n",
2617                 irqclass);
2618         print_lock_name(NULL, backwards_entry->class);
2619         pr_warn("\n... which became %s-irq-safe at:\n", irqclass);
2620
2621         print_lock_trace(backwards_entry->class->usage_traces[bit1], 1);
2622
2623         pr_warn("\nto a %s-irq-unsafe lock:\n", irqclass);
2624         print_lock_name(NULL, forwards_entry->class);
2625         pr_warn("\n... which became %s-irq-unsafe at:\n", irqclass);
2626         pr_warn("...");
2627
2628         print_lock_trace(forwards_entry->class->usage_traces[bit2], 1);
2629
2630         pr_warn("\nother info that might help us debug this:\n\n");
2631         print_irq_lock_scenario(backwards_entry, forwards_entry,
2632                                 hlock_class(prev), hlock_class(next));
2633
2634         lockdep_print_held_locks(curr);
2635
2636         pr_warn("\nthe dependencies between %s-irq-safe lock and the holding lock:\n", irqclass);
2637         print_shortest_lock_dependencies_backwards(backwards_entry, prev_root);
2638
2639         pr_warn("\nthe dependencies between the lock to be acquired");
2640         pr_warn(" and %s-irq-unsafe lock:\n", irqclass);
2641         next_root->trace = save_trace();
2642         if (!next_root->trace)
2643                 goto out;
2644         print_shortest_lock_dependencies(forwards_entry, next_root);
2645
2646         pr_warn("\nstack backtrace:\n");
2647         dump_stack();
2648 out:
2649         nbcon_cpu_emergency_exit();
2650 }
2651
2652 static const char *state_names[] = {
2653 #define LOCKDEP_STATE(__STATE) \
2654         __stringify(__STATE),
2655 #include "lockdep_states.h"
2656 #undef LOCKDEP_STATE
2657 };
2658
2659 static const char *state_rnames[] = {
2660 #define LOCKDEP_STATE(__STATE) \
2661         __stringify(__STATE)"-READ",
2662 #include "lockdep_states.h"
2663 #undef LOCKDEP_STATE
2664 };
2665
2666 static inline const char *state_name(enum lock_usage_bit bit)
2667 {
2668         if (bit & LOCK_USAGE_READ_MASK)
2669                 return state_rnames[bit >> LOCK_USAGE_DIR_MASK];
2670         else
2671                 return state_names[bit >> LOCK_USAGE_DIR_MASK];
2672 }
2673
2674 /*
2675  * The bit number is encoded like:
2676  *
2677  *  bit0: 0 exclusive, 1 read lock
2678  *  bit1: 0 used in irq, 1 irq enabled
2679  *  bit2-n: state
2680  */
2681 static int exclusive_bit(int new_bit)
2682 {
2683         int state = new_bit & LOCK_USAGE_STATE_MASK;
2684         int dir = new_bit & LOCK_USAGE_DIR_MASK;
2685
2686         /*
2687          * keep state, bit flip the direction and strip read.
2688          */
2689         return state | (dir ^ LOCK_USAGE_DIR_MASK);
2690 }
2691
2692 /*
2693  * Observe that when given a bitmask where each bitnr is encoded as above, a
2694  * right shift of the mask transforms the individual bitnrs as -1 and
2695  * conversely, a left shift transforms into +1 for the individual bitnrs.
2696  *
2697  * So for all bits whose number have LOCK_ENABLED_* set (bitnr1 == 1), we can
2698  * create the mask with those bit numbers using LOCK_USED_IN_* (bitnr1 == 0)
2699  * instead by subtracting the bit number by 2, or shifting the mask right by 2.
2700  *
2701  * Similarly, bitnr1 == 0 becomes bitnr1 == 1 by adding 2, or shifting left 2.
2702  *
2703  * So split the mask (note that LOCKF_ENABLED_IRQ_ALL|LOCKF_USED_IN_IRQ_ALL is
2704  * all bits set) and recompose with bitnr1 flipped.
2705  */
2706 static unsigned long invert_dir_mask(unsigned long mask)
2707 {
2708         unsigned long excl = 0;
2709
2710         /* Invert dir */
2711         excl |= (mask & LOCKF_ENABLED_IRQ_ALL) >> LOCK_USAGE_DIR_MASK;
2712         excl |= (mask & LOCKF_USED_IN_IRQ_ALL) << LOCK_USAGE_DIR_MASK;
2713
2714         return excl;
2715 }
2716
2717 /*
2718  * Note that a LOCK_ENABLED_IRQ_*_READ usage and a LOCK_USED_IN_IRQ_*_READ
2719  * usage may cause deadlock too, for example:
2720  *
2721  * P1                           P2
2722  * <irq disabled>
2723  * write_lock(l1);              <irq enabled>
2724  *                              read_lock(l2);
2725  * write_lock(l2);
2726  *                              <in irq>
2727  *                              read_lock(l1);
2728  *
2729  * , in above case, l1 will be marked as LOCK_USED_IN_IRQ_HARDIRQ_READ and l2
2730  * will marked as LOCK_ENABLE_IRQ_HARDIRQ_READ, and this is a possible
2731  * deadlock.
2732  *
2733  * In fact, all of the following cases may cause deadlocks:
2734  *
2735  *       LOCK_USED_IN_IRQ_* -> LOCK_ENABLED_IRQ_*
2736  *       LOCK_USED_IN_IRQ_*_READ -> LOCK_ENABLED_IRQ_*
2737  *       LOCK_USED_IN_IRQ_* -> LOCK_ENABLED_IRQ_*_READ
2738  *       LOCK_USED_IN_IRQ_*_READ -> LOCK_ENABLED_IRQ_*_READ
2739  *
2740  * As a result, to calculate the "exclusive mask", first we invert the
2741  * direction (USED_IN/ENABLED) of the original mask, and 1) for all bits with
2742  * bitnr0 set (LOCK_*_READ), add those with bitnr0 cleared (LOCK_*). 2) for all
2743  * bits with bitnr0 cleared (LOCK_*_READ), add those with bitnr0 set (LOCK_*).
2744  */
2745 static unsigned long exclusive_mask(unsigned long mask)
2746 {
2747         unsigned long excl = invert_dir_mask(mask);
2748
2749         excl |= (excl & LOCKF_IRQ_READ) >> LOCK_USAGE_READ_MASK;
2750         excl |= (excl & LOCKF_IRQ) << LOCK_USAGE_READ_MASK;
2751
2752         return excl;
2753 }
2754
2755 /*
2756  * Retrieve the _possible_ original mask to which @mask is
2757  * exclusive. Ie: this is the opposite of exclusive_mask().
2758  * Note that 2 possible original bits can match an exclusive
2759  * bit: one has LOCK_USAGE_READ_MASK set, the other has it
2760  * cleared. So both are returned for each exclusive bit.
2761  */
2762 static unsigned long original_mask(unsigned long mask)
2763 {
2764         unsigned long excl = invert_dir_mask(mask);
2765
2766         /* Include read in existing usages */
2767         excl |= (excl & LOCKF_IRQ_READ) >> LOCK_USAGE_READ_MASK;
2768         excl |= (excl & LOCKF_IRQ) << LOCK_USAGE_READ_MASK;
2769
2770         return excl;
2771 }
2772
2773 /*
2774  * Find the first pair of bit match between an original
2775  * usage mask and an exclusive usage mask.
2776  */
2777 static int find_exclusive_match(unsigned long mask,
2778                                 unsigned long excl_mask,
2779                                 enum lock_usage_bit *bitp,
2780                                 enum lock_usage_bit *excl_bitp)
2781 {
2782         int bit, excl, excl_read;
2783
2784         for_each_set_bit(bit, &mask, LOCK_USED) {
2785                 /*
2786                  * exclusive_bit() strips the read bit, however,
2787                  * LOCK_ENABLED_IRQ_*_READ may cause deadlocks too, so we need
2788                  * to search excl | LOCK_USAGE_READ_MASK as well.
2789                  */
2790                 excl = exclusive_bit(bit);
2791                 excl_read = excl | LOCK_USAGE_READ_MASK;
2792                 if (excl_mask & lock_flag(excl)) {
2793                         *bitp = bit;
2794                         *excl_bitp = excl;
2795                         return 0;
2796                 } else if (excl_mask & lock_flag(excl_read)) {
2797                         *bitp = bit;
2798                         *excl_bitp = excl_read;
2799                         return 0;
2800                 }
2801         }
2802         return -1;
2803 }
2804
2805 /*
2806  * Prove that the new dependency does not connect a hardirq-safe(-read)
2807  * lock with a hardirq-unsafe lock - to achieve this we search
2808  * the backwards-subgraph starting at <prev>, and the
2809  * forwards-subgraph starting at <next>:
2810  */
2811 static int check_irq_usage(struct task_struct *curr, struct held_lock *prev,
2812                            struct held_lock *next)
2813 {
2814         unsigned long usage_mask = 0, forward_mask, backward_mask;
2815         enum lock_usage_bit forward_bit = 0, backward_bit = 0;
2816         struct lock_list *target_entry1;
2817         struct lock_list *target_entry;
2818         struct lock_list this, that;
2819         enum bfs_result ret;
2820
2821         /*
2822          * Step 1: gather all hard/soft IRQs usages backward in an
2823          * accumulated usage mask.
2824          */
2825         bfs_init_rootb(&this, prev);
2826
2827         ret = __bfs_backwards(&this, &usage_mask, usage_accumulate, usage_skip, NULL);
2828         if (bfs_error(ret)) {
2829                 print_bfs_bug(ret);
2830                 return 0;
2831         }
2832
2833         usage_mask &= LOCKF_USED_IN_IRQ_ALL;
2834         if (!usage_mask)
2835                 return 1;
2836
2837         /*
2838          * Step 2: find exclusive uses forward that match the previous
2839          * backward accumulated mask.
2840          */
2841         forward_mask = exclusive_mask(usage_mask);
2842
2843         bfs_init_root(&that, next);
2844
2845         ret = find_usage_forwards(&that, forward_mask, &target_entry1);
2846         if (bfs_error(ret)) {
2847                 print_bfs_bug(ret);
2848                 return 0;
2849         }
2850         if (ret == BFS_RNOMATCH)
2851                 return 1;
2852
2853         /*
2854          * Step 3: we found a bad match! Now retrieve a lock from the backward
2855          * list whose usage mask matches the exclusive usage mask from the
2856          * lock found on the forward list.
2857          *
2858          * Note, we should only keep the LOCKF_ENABLED_IRQ_ALL bits, considering
2859          * the follow case:
2860          *
2861          * When trying to add A -> B to the graph, we find that there is a
2862          * hardirq-safe L, that L -> ... -> A, and another hardirq-unsafe M,
2863          * that B -> ... -> M. However M is **softirq-safe**, if we use exact
2864          * invert bits of M's usage_mask, we will find another lock N that is
2865          * **softirq-unsafe** and N -> ... -> A, however N -> .. -> M will not
2866          * cause a inversion deadlock.
2867          */
2868         backward_mask = original_mask(target_entry1->class->usage_mask & LOCKF_ENABLED_IRQ_ALL);
2869
2870         ret = find_usage_backwards(&this, backward_mask, &target_entry);
2871         if (bfs_error(ret)) {
2872                 print_bfs_bug(ret);
2873                 return 0;
2874         }
2875         if (DEBUG_LOCKS_WARN_ON(ret == BFS_RNOMATCH))
2876                 return 1;
2877
2878         /*
2879          * Step 4: narrow down to a pair of incompatible usage bits
2880          * and report it.
2881          */
2882         ret = find_exclusive_match(target_entry->class->usage_mask,
2883                                    target_entry1->class->usage_mask,
2884                                    &backward_bit, &forward_bit);
2885         if (DEBUG_LOCKS_WARN_ON(ret == -1))
2886                 return 1;
2887
2888         print_bad_irq_dependency(curr, &this, &that,
2889                                  target_entry, target_entry1,
2890                                  prev, next,
2891                                  backward_bit, forward_bit,
2892                                  state_name(backward_bit));
2893
2894         return 0;
2895 }
2896
2897 #else
2898
2899 static inline int check_irq_usage(struct task_struct *curr,
2900                                   struct held_lock *prev, struct held_lock *next)
2901 {
2902         return 1;
2903 }
2904
2905 static inline bool usage_skip(struct lock_list *entry, void *mask)
2906 {
2907         return false;
2908 }
2909
2910 #endif /* CONFIG_TRACE_IRQFLAGS */
2911
2912 #ifdef CONFIG_LOCKDEP_SMALL
2913 /*
2914  * Check that the dependency graph starting at <src> can lead to
2915  * <target> or not. If it can, <src> -> <target> dependency is already
2916  * in the graph.
2917  *
2918  * Return BFS_RMATCH if it does, or BFS_RNOMATCH if it does not, return BFS_E* if
2919  * any error appears in the bfs search.
2920  */
2921 static noinline enum bfs_result
2922 check_redundant(struct held_lock *src, struct held_lock *target)
2923 {
2924         enum bfs_result ret;
2925         struct lock_list *target_entry;
2926         struct lock_list src_entry;
2927
2928         bfs_init_root(&src_entry, src);
2929         /*
2930          * Special setup for check_redundant().
2931          *
2932          * To report redundant, we need to find a strong dependency path that
2933          * is equal to or stronger than <src> -> <target>. So if <src> is E,
2934          * we need to let __bfs() only search for a path starting at a -(E*)->,
2935          * we achieve this by setting the initial node's ->only_xr to true in
2936          * that case. And if <prev> is S, we set initial ->only_xr to false
2937          * because both -(S*)-> (equal) and -(E*)-> (stronger) are redundant.
2938          */
2939         src_entry.only_xr = src->read == 0;
2940
2941         debug_atomic_inc(nr_redundant_checks);
2942
2943         /*
2944          * Note: we skip local_lock() for redundant check, because as the
2945          * comment in usage_skip(), A -> local_lock() -> B and A -> B are not
2946          * the same.
2947          */
2948         ret = check_path(target, &src_entry, hlock_equal, usage_skip, &target_entry);
2949
2950         if (ret == BFS_RMATCH)
2951                 debug_atomic_inc(nr_redundant);
2952
2953         return ret;
2954 }
2955
2956 #else
2957
2958 static inline enum bfs_result
2959 check_redundant(struct held_lock *src, struct held_lock *target)
2960 {
2961         return BFS_RNOMATCH;
2962 }
2963
2964 #endif
2965
2966 static void inc_chains(int irq_context)
2967 {
2968         if (irq_context & LOCK_CHAIN_HARDIRQ_CONTEXT)
2969                 nr_hardirq_chains++;
2970         else if (irq_context & LOCK_CHAIN_SOFTIRQ_CONTEXT)
2971                 nr_softirq_chains++;
2972         else
2973                 nr_process_chains++;
2974 }
2975
2976 static void dec_chains(int irq_context)
2977 {
2978         if (irq_context & LOCK_CHAIN_HARDIRQ_CONTEXT)
2979                 nr_hardirq_chains--;
2980         else if (irq_context & LOCK_CHAIN_SOFTIRQ_CONTEXT)
2981                 nr_softirq_chains--;
2982         else
2983                 nr_process_chains--;
2984 }
2985
2986 static void
2987 print_deadlock_scenario(struct held_lock *nxt, struct held_lock *prv)
2988 {
2989         struct lock_class *next = hlock_class(nxt);
2990         struct lock_class *prev = hlock_class(prv);
2991
2992         printk(" Possible unsafe locking scenario:\n\n");
2993         printk("       CPU0\n");
2994         printk("       ----\n");
2995         printk("  lock(");
2996         __print_lock_name(prv, prev);
2997         printk(KERN_CONT ");\n");
2998         printk("  lock(");
2999         __print_lock_name(nxt, next);
3000         printk(KERN_CONT ");\n");
3001         printk("\n *** DEADLOCK ***\n\n");
3002         printk(" May be due to missing lock nesting notation\n\n");
3003 }
3004
3005 static void
3006 print_deadlock_bug(struct task_struct *curr, struct held_lock *prev,
3007                    struct held_lock *next)
3008 {
3009         struct lock_class *class = hlock_class(prev);
3010
3011         if (!debug_locks_off_graph_unlock() || debug_locks_silent)
3012                 return;
3013
3014         nbcon_cpu_emergency_enter();
3015
3016         pr_warn("\n");
3017         pr_warn("============================================\n");
3018         pr_warn("WARNING: possible recursive locking detected\n");
3019         print_kernel_ident();
3020         pr_warn("--------------------------------------------\n");
3021         pr_warn("%s/%d is trying to acquire lock:\n",
3022                 curr->comm, task_pid_nr(curr));
3023         print_lock(next);
3024         pr_warn("\nbut task is already holding lock:\n");
3025         print_lock(prev);
3026
3027         if (class->cmp_fn) {
3028                 pr_warn("and the lock comparison function returns %i:\n",
3029                         class->cmp_fn(prev->instance, next->instance));
3030         }
3031
3032         pr_warn("\nother info that might help us debug this:\n");
3033         print_deadlock_scenario(next, prev);
3034         lockdep_print_held_locks(curr);
3035
3036         pr_warn("\nstack backtrace:\n");
3037         dump_stack();
3038
3039         nbcon_cpu_emergency_exit();
3040 }
3041
3042 /*
3043  * Check whether we are holding such a class already.
3044  *
3045  * (Note that this has to be done separately, because the graph cannot
3046  * detect such classes of deadlocks.)
3047  *
3048  * Returns: 0 on deadlock detected, 1 on OK, 2 if another lock with the same
3049  * lock class is held but nest_lock is also held, i.e. we rely on the
3050  * nest_lock to avoid the deadlock.
3051  */
3052 static int
3053 check_deadlock(struct task_struct *curr, struct held_lock *next)
3054 {
3055         struct lock_class *class;
3056         struct held_lock *prev;
3057         struct held_lock *nest = NULL;
3058         int i;
3059
3060         for (i = 0; i < curr->lockdep_depth; i++) {
3061                 prev = curr->held_locks + i;
3062
3063                 if (prev->instance == next->nest_lock)
3064                         nest = prev;
3065
3066                 if (hlock_class(prev) != hlock_class(next))
3067                         continue;
3068
3069                 /*
3070                  * Allow read-after-read recursion of the same
3071                  * lock class (i.e. read_lock(lock)+read_lock(lock)):
3072                  */
3073                 if ((next->read == 2) && prev->read)
3074                         continue;
3075
3076                 class = hlock_class(prev);
3077
3078                 if (class->cmp_fn &&
3079                     class->cmp_fn(prev->instance, next->instance) < 0)
3080                         continue;
3081
3082                 /*
3083                  * We're holding the nest_lock, which serializes this lock's
3084                  * nesting behaviour.
3085                  */
3086                 if (nest)
3087                         return 2;
3088
3089                 print_deadlock_bug(curr, prev, next);
3090                 return 0;
3091         }
3092         return 1;
3093 }
3094
3095 /*
3096  * There was a chain-cache miss, and we are about to add a new dependency
3097  * to a previous lock. We validate the following rules:
3098  *
3099  *  - would the adding of the <prev> -> <next> dependency create a
3100  *    circular dependency in the graph? [== circular deadlock]
3101  *
3102  *  - does the new prev->next dependency connect any hardirq-safe lock
3103  *    (in the full backwards-subgraph starting at <prev>) with any
3104  *    hardirq-unsafe lock (in the full forwards-subgraph starting at
3105  *    <next>)? [== illegal lock inversion with hardirq contexts]
3106  *
3107  *  - does the new prev->next dependency connect any softirq-safe lock
3108  *    (in the full backwards-subgraph starting at <prev>) with any
3109  *    softirq-unsafe lock (in the full forwards-subgraph starting at
3110  *    <next>)? [== illegal lock inversion with softirq contexts]
3111  *
3112  * any of these scenarios could lead to a deadlock.
3113  *
3114  * Then if all the validations pass, we add the forwards and backwards
3115  * dependency.
3116  */
3117 static int
3118 check_prev_add(struct task_struct *curr, struct held_lock *prev,
3119                struct held_lock *next, u16 distance,
3120                struct lock_trace **const trace)
3121 {
3122         struct lock_list *entry;
3123         enum bfs_result ret;
3124
3125         if (!hlock_class(prev)->key || !hlock_class(next)->key) {
3126                 /*
3127                  * The warning statements below may trigger a use-after-free
3128                  * of the class name. It is better to trigger a use-after free
3129                  * and to have the class name most of the time instead of not
3130                  * having the class name available.
3131                  */
3132                 WARN_ONCE(!debug_locks_silent && !hlock_class(prev)->key,
3133                           "Detected use-after-free of lock class %px/%s\n",
3134                           hlock_class(prev),
3135                           hlock_class(prev)->name);
3136                 WARN_ONCE(!debug_locks_silent && !hlock_class(next)->key,
3137                           "Detected use-after-free of lock class %px/%s\n",
3138                           hlock_class(next),
3139                           hlock_class(next)->name);
3140                 return 2;
3141         }
3142
3143         if (prev->class_idx == next->class_idx) {
3144                 struct lock_class *class = hlock_class(prev);
3145
3146                 if (class->cmp_fn &&
3147                     class->cmp_fn(prev->instance, next->instance) < 0)
3148                         return 2;
3149         }
3150
3151         /*
3152          * Prove that the new <prev> -> <next> dependency would not
3153          * create a circular dependency in the graph. (We do this by
3154          * a breadth-first search into the graph starting at <next>,
3155          * and check whether we can reach <prev>.)
3156          *
3157          * The search is limited by the size of the circular queue (i.e.,
3158          * MAX_CIRCULAR_QUEUE_SIZE) which keeps track of a breadth of nodes
3159          * in the graph whose neighbours are to be checked.
3160          */
3161         ret = check_noncircular(next, prev, trace);
3162         if (unlikely(bfs_error(ret) || ret == BFS_RMATCH))
3163                 return 0;
3164
3165         if (!check_irq_usage(curr, prev, next))
3166                 return 0;
3167
3168         /*
3169          * Is the <prev> -> <next> dependency already present?
3170          *
3171          * (this may occur even though this is a new chain: consider
3172          *  e.g. the L1 -> L2 -> L3 -> L4 and the L5 -> L1 -> L2 -> L3
3173          *  chains - the second one will be new, but L1 already has
3174          *  L2 added to its dependency list, due to the first chain.)
3175          */
3176         list_for_each_entry(entry, &hlock_class(prev)->locks_after, entry) {
3177                 if (entry->class == hlock_class(next)) {
3178                         if (distance == 1)
3179                                 entry->distance = 1;
3180                         entry->dep |= calc_dep(prev, next);
3181
3182                         /*
3183                          * Also, update the reverse dependency in @next's
3184                          * ->locks_before list.
3185                          *
3186                          *  Here we reuse @entry as the cursor, which is fine
3187                          *  because we won't go to the next iteration of the
3188                          *  outer loop:
3189                          *
3190                          *  For normal cases, we return in the inner loop.
3191                          *
3192                          *  If we fail to return, we have inconsistency, i.e.
3193                          *  <prev>::locks_after contains <next> while
3194                          *  <next>::locks_before doesn't contain <prev>. In
3195                          *  that case, we return after the inner and indicate
3196                          *  something is wrong.
3197                          */
3198                         list_for_each_entry(entry, &hlock_class(next)->locks_before, entry) {
3199                                 if (entry->class == hlock_class(prev)) {
3200                                         if (distance == 1)
3201                                                 entry->distance = 1;
3202                                         entry->dep |= calc_depb(prev, next);
3203                                         return 1;
3204                                 }
3205                         }
3206
3207                         /* <prev> is not found in <next>::locks_before */
3208                         return 0;
3209                 }
3210         }
3211
3212         /*
3213          * Is the <prev> -> <next> link redundant?
3214          */
3215         ret = check_redundant(prev, next);
3216         if (bfs_error(ret))
3217                 return 0;
3218         else if (ret == BFS_RMATCH)
3219                 return 2;
3220
3221         if (!*trace) {
3222                 *trace = save_trace();
3223                 if (!*trace)
3224                         return 0;
3225         }
3226
3227         /*
3228          * Ok, all validations passed, add the new lock
3229          * to the previous lock's dependency list:
3230          */
3231         ret = add_lock_to_list(hlock_class(next), hlock_class(prev),
3232                                &hlock_class(prev)->locks_after, distance,
3233                                calc_dep(prev, next), *trace);
3234
3235         if (!ret)
3236                 return 0;
3237
3238         ret = add_lock_to_list(hlock_class(prev), hlock_class(next),
3239                                &hlock_class(next)->locks_before, distance,
3240                                calc_depb(prev, next), *trace);
3241         if (!ret)
3242                 return 0;
3243
3244         return 2;
3245 }
3246
3247 /*
3248  * Add the dependency to all directly-previous locks that are 'relevant'.
3249  * The ones that are relevant are (in increasing distance from curr):
3250  * all consecutive trylock entries and the final non-trylock entry - or
3251  * the end of this context's lock-chain - whichever comes first.
3252  */
3253 static int
3254 check_prevs_add(struct task_struct *curr, struct held_lock *next)
3255 {
3256         struct lock_trace *trace = NULL;
3257         int depth = curr->lockdep_depth;
3258         struct held_lock *hlock;
3259
3260         /*
3261          * Debugging checks.
3262          *
3263          * Depth must not be zero for a non-head lock:
3264          */
3265         if (!depth)
3266                 goto out_bug;
3267         /*
3268          * At least two relevant locks must exist for this
3269          * to be a head:
3270          */
3271         if (curr->held_locks[depth].irq_context !=
3272                         curr->held_locks[depth-1].irq_context)
3273                 goto out_bug;
3274
3275         for (;;) {
3276                 u16 distance = curr->lockdep_depth - depth + 1;
3277                 hlock = curr->held_locks + depth - 1;
3278
3279                 if (hlock->check) {
3280                         int ret = check_prev_add(curr, hlock, next, distance, &trace);
3281                         if (!ret)
3282                                 return 0;
3283
3284                         /*
3285                          * Stop after the first non-trylock entry,
3286                          * as non-trylock entries have added their
3287                          * own direct dependencies already, so this
3288                          * lock is connected to them indirectly:
3289                          */
3290                         if (!hlock->trylock)
3291                                 break;
3292                 }
3293
3294                 depth--;
3295                 /*
3296                  * End of lock-stack?
3297                  */
3298                 if (!depth)
3299                         break;
3300                 /*
3301                  * Stop the search if we cross into another context:
3302                  */
3303                 if (curr->held_locks[depth].irq_context !=
3304                                 curr->held_locks[depth-1].irq_context)
3305                         break;
3306         }
3307         return 1;
3308 out_bug:
3309         if (!debug_locks_off_graph_unlock())
3310                 return 0;
3311
3312         /*
3313          * Clearly we all shouldn't be here, but since we made it we
3314          * can reliable say we messed up our state. See the above two
3315          * gotos for reasons why we could possibly end up here.
3316          */
3317         WARN_ON(1);
3318
3319         return 0;
3320 }
3321
3322 struct lock_chain lock_chains[MAX_LOCKDEP_CHAINS];
3323 static DECLARE_BITMAP(lock_chains_in_use, MAX_LOCKDEP_CHAINS);
3324 static u16 chain_hlocks[MAX_LOCKDEP_CHAIN_HLOCKS];
3325 unsigned long nr_zapped_lock_chains;
3326 unsigned int nr_free_chain_hlocks;      /* Free chain_hlocks in buckets */
3327 unsigned int nr_lost_chain_hlocks;      /* Lost chain_hlocks */
3328 unsigned int nr_large_chain_blocks;     /* size > MAX_CHAIN_BUCKETS */
3329
3330 /*
3331  * The first 2 chain_hlocks entries in the chain block in the bucket
3332  * list contains the following meta data:
3333  *
3334  *   entry[0]:
3335  *     Bit    15 - always set to 1 (it is not a class index)
3336  *     Bits 0-14 - upper 15 bits of the next block index
3337  *   entry[1]    - lower 16 bits of next block index
3338  *
3339  * A next block index of all 1 bits means it is the end of the list.
3340  *
3341  * On the unsized bucket (bucket-0), the 3rd and 4th entries contain
3342  * the chain block size:
3343  *
3344  *   entry[2] - upper 16 bits of the chain block size
3345  *   entry[3] - lower 16 bits of the chain block size
3346  */
3347 #define MAX_CHAIN_BUCKETS       16
3348 #define CHAIN_BLK_FLAG          (1U << 15)
3349 #define CHAIN_BLK_LIST_END      0xFFFFU
3350
3351 static int chain_block_buckets[MAX_CHAIN_BUCKETS];
3352
3353 static inline int size_to_bucket(int size)
3354 {
3355         if (size > MAX_CHAIN_BUCKETS)
3356                 return 0;
3357
3358         return size - 1;
3359 }
3360
3361 /*
3362  * Iterate all the chain blocks in a bucket.
3363  */
3364 #define for_each_chain_block(bucket, prev, curr)                \
3365         for ((prev) = -1, (curr) = chain_block_buckets[bucket]; \
3366              (curr) >= 0;                                       \
3367              (prev) = (curr), (curr) = chain_block_next(curr))
3368
3369 /*
3370  * next block or -1
3371  */
3372 static inline int chain_block_next(int offset)
3373 {
3374         int next = chain_hlocks[offset];
3375
3376         WARN_ON_ONCE(!(next & CHAIN_BLK_FLAG));
3377
3378         if (next == CHAIN_BLK_LIST_END)
3379                 return -1;
3380
3381         next &= ~CHAIN_BLK_FLAG;
3382         next <<= 16;
3383         next |= chain_hlocks[offset + 1];
3384
3385         return next;
3386 }
3387
3388 /*
3389  * bucket-0 only
3390  */
3391 static inline int chain_block_size(int offset)
3392 {
3393         return (chain_hlocks[offset + 2] << 16) | chain_hlocks[offset + 3];
3394 }
3395
3396 static inline void init_chain_block(int offset, int next, int bucket, int size)
3397 {
3398         chain_hlocks[offset] = (next >> 16) | CHAIN_BLK_FLAG;
3399         chain_hlocks[offset + 1] = (u16)next;
3400
3401         if (size && !bucket) {
3402                 chain_hlocks[offset + 2] = size >> 16;
3403                 chain_hlocks[offset + 3] = (u16)size;
3404         }
3405 }
3406
3407 static inline void add_chain_block(int offset, int size)
3408 {
3409         int bucket = size_to_bucket(size);
3410         int next = chain_block_buckets[bucket];
3411         int prev, curr;
3412
3413         if (unlikely(size < 2)) {
3414                 /*
3415                  * We can't store single entries on the freelist. Leak them.
3416                  *
3417                  * One possible way out would be to uniquely mark them, other
3418                  * than with CHAIN_BLK_FLAG, such that we can recover them when
3419                  * the block before it is re-added.
3420                  */
3421                 if (size)
3422                         nr_lost_chain_hlocks++;
3423                 return;
3424         }
3425
3426         nr_free_chain_hlocks += size;
3427         if (!bucket) {
3428                 nr_large_chain_blocks++;
3429
3430                 /*
3431                  * Variable sized, sort large to small.
3432                  */
3433                 for_each_chain_block(0, prev, curr) {
3434                         if (size >= chain_block_size(curr))
3435                                 break;
3436                 }
3437                 init_chain_block(offset, curr, 0, size);
3438                 if (prev < 0)
3439                         chain_block_buckets[0] = offset;
3440                 else
3441                         init_chain_block(prev, offset, 0, 0);
3442                 return;
3443         }
3444         /*
3445          * Fixed size, add to head.
3446          */
3447         init_chain_block(offset, next, bucket, size);
3448         chain_block_buckets[bucket] = offset;
3449 }
3450
3451 /*
3452  * Only the first block in the list can be deleted.
3453  *
3454  * For the variable size bucket[0], the first block (the largest one) is
3455  * returned, broken up and put back into the pool. So if a chain block of
3456  * length > MAX_CHAIN_BUCKETS is ever used and zapped, it will just be
3457  * queued up after the primordial chain block and never be used until the
3458  * hlock entries in the primordial chain block is almost used up. That
3459  * causes fragmentation and reduce allocation efficiency. That can be
3460  * monitored by looking at the "large chain blocks" number in lockdep_stats.
3461  */
3462 static inline void del_chain_block(int bucket, int size, int next)
3463 {
3464         nr_free_chain_hlocks -= size;
3465         chain_block_buckets[bucket] = next;
3466
3467         if (!bucket)
3468                 nr_large_chain_blocks--;
3469 }
3470
3471 static void init_chain_block_buckets(void)
3472 {
3473         int i;
3474
3475         for (i = 0; i < MAX_CHAIN_BUCKETS; i++)
3476                 chain_block_buckets[i] = -1;
3477
3478         add_chain_block(0, ARRAY_SIZE(chain_hlocks));
3479 }
3480
3481 /*
3482  * Return offset of a chain block of the right size or -1 if not found.
3483  *
3484  * Fairly simple worst-fit allocator with the addition of a number of size
3485  * specific free lists.
3486  */
3487 static int alloc_chain_hlocks(int req)
3488 {
3489         int bucket, curr, size;
3490
3491         /*
3492          * We rely on the MSB to act as an escape bit to denote freelist
3493          * pointers. Make sure this bit isn't set in 'normal' class_idx usage.
3494          */
3495         BUILD_BUG_ON((MAX_LOCKDEP_KEYS-1) & CHAIN_BLK_FLAG);
3496
3497         init_data_structures_once();
3498
3499         if (nr_free_chain_hlocks < req)
3500                 return -1;
3501
3502         /*
3503          * We require a minimum of 2 (u16) entries to encode a freelist
3504          * 'pointer'.
3505          */
3506         req = max(req, 2);
3507         bucket = size_to_bucket(req);
3508         curr = chain_block_buckets[bucket];
3509
3510         if (bucket) {
3511                 if (curr >= 0) {
3512                         del_chain_block(bucket, req, chain_block_next(curr));
3513                         return curr;
3514                 }
3515                 /* Try bucket 0 */
3516                 curr = chain_block_buckets[0];
3517         }
3518
3519         /*
3520          * The variable sized freelist is sorted by size; the first entry is
3521          * the largest. Use it if it fits.
3522          */
3523         if (curr >= 0) {
3524                 size = chain_block_size(curr);
3525                 if (likely(size >= req)) {
3526                         del_chain_block(0, size, chain_block_next(curr));
3527                         if (size > req)
3528                                 add_chain_block(curr + req, size - req);
3529                         return curr;
3530                 }
3531         }
3532
3533         /*
3534          * Last resort, split a block in a larger sized bucket.
3535          */
3536         for (size = MAX_CHAIN_BUCKETS; size > req; size--) {
3537                 bucket = size_to_bucket(size);
3538                 curr = chain_block_buckets[bucket];
3539                 if (curr < 0)
3540                         continue;
3541
3542                 del_chain_block(bucket, size, chain_block_next(curr));
3543                 add_chain_block(curr + req, size - req);
3544                 return curr;
3545         }
3546
3547         return -1;
3548 }
3549
3550 static inline void free_chain_hlocks(int base, int size)
3551 {
3552         add_chain_block(base, max(size, 2));
3553 }
3554
3555 struct lock_class *lock_chain_get_class(struct lock_chain *chain, int i)
3556 {
3557         u16 chain_hlock = chain_hlocks[chain->base + i];
3558         unsigned int class_idx = chain_hlock_class_idx(chain_hlock);
3559
3560         return lock_classes + class_idx;
3561 }
3562
3563 /*
3564  * Returns the index of the first held_lock of the current chain
3565  */
3566 static inline int get_first_held_lock(struct task_struct *curr,
3567                                         struct held_lock *hlock)
3568 {
3569         int i;
3570         struct held_lock *hlock_curr;
3571
3572         for (i = curr->lockdep_depth - 1; i >= 0; i--) {
3573                 hlock_curr = curr->held_locks + i;
3574                 if (hlock_curr->irq_context != hlock->irq_context)
3575                         break;
3576
3577         }
3578
3579         return ++i;
3580 }
3581
3582 #ifdef CONFIG_DEBUG_LOCKDEP
3583 /*
3584  * Returns the next chain_key iteration
3585  */
3586 static u64 print_chain_key_iteration(u16 hlock_id, u64 chain_key)
3587 {
3588         u64 new_chain_key = iterate_chain_key(chain_key, hlock_id);
3589
3590         printk(" hlock_id:%d -> chain_key:%016Lx",
3591                 (unsigned int)hlock_id,
3592                 (unsigned long long)new_chain_key);
3593         return new_chain_key;
3594 }
3595
3596 static void
3597 print_chain_keys_held_locks(struct task_struct *curr, struct held_lock *hlock_next)
3598 {
3599         struct held_lock *hlock;
3600         u64 chain_key = INITIAL_CHAIN_KEY;
3601         int depth = curr->lockdep_depth;
3602         int i = get_first_held_lock(curr, hlock_next);
3603
3604         printk("depth: %u (irq_context %u)\n", depth - i + 1,
3605                 hlock_next->irq_context);
3606         for (; i < depth; i++) {
3607                 hlock = curr->held_locks + i;
3608                 chain_key = print_chain_key_iteration(hlock_id(hlock), chain_key);
3609
3610                 print_lock(hlock);
3611         }
3612
3613         print_chain_key_iteration(hlock_id(hlock_next), chain_key);
3614         print_lock(hlock_next);
3615 }
3616
3617 static void print_chain_keys_chain(struct lock_chain *chain)
3618 {
3619         int i;
3620         u64 chain_key = INITIAL_CHAIN_KEY;
3621         u16 hlock_id;
3622
3623         printk("depth: %u\n", chain->depth);
3624         for (i = 0; i < chain->depth; i++) {
3625                 hlock_id = chain_hlocks[chain->base + i];
3626                 chain_key = print_chain_key_iteration(hlock_id, chain_key);
3627
3628                 print_lock_name(NULL, lock_classes + chain_hlock_class_idx(hlock_id));
3629                 printk("\n");
3630         }
3631 }
3632
3633 static void print_collision(struct task_struct *curr,
3634                         struct held_lock *hlock_next,
3635                         struct lock_chain *chain)
3636 {
3637         nbcon_cpu_emergency_enter();
3638
3639         pr_warn("\n");
3640         pr_warn("============================\n");
3641         pr_warn("WARNING: chain_key collision\n");
3642         print_kernel_ident();
3643         pr_warn("----------------------------\n");
3644         pr_warn("%s/%d: ", current->comm, task_pid_nr(current));
3645         pr_warn("Hash chain already cached but the contents don't match!\n");
3646
3647         pr_warn("Held locks:");
3648         print_chain_keys_held_locks(curr, hlock_next);
3649
3650         pr_warn("Locks in cached chain:");
3651         print_chain_keys_chain(chain);
3652
3653         pr_warn("\nstack backtrace:\n");
3654         dump_stack();
3655
3656         nbcon_cpu_emergency_exit();
3657 }
3658 #endif
3659
3660 /*
3661  * Checks whether the chain and the current held locks are consistent
3662  * in depth and also in content. If they are not it most likely means
3663  * that there was a collision during the calculation of the chain_key.
3664  * Returns: 0 not passed, 1 passed
3665  */
3666 static int check_no_collision(struct task_struct *curr,
3667                         struct held_lock *hlock,
3668                         struct lock_chain *chain)
3669 {
3670 #ifdef CONFIG_DEBUG_LOCKDEP
3671         int i, j, id;
3672
3673         i = get_first_held_lock(curr, hlock);
3674
3675         if (DEBUG_LOCKS_WARN_ON(chain->depth != curr->lockdep_depth - (i - 1))) {
3676                 print_collision(curr, hlock, chain);
3677                 return 0;
3678         }
3679
3680         for (j = 0; j < chain->depth - 1; j++, i++) {
3681                 id = hlock_id(&curr->held_locks[i]);
3682
3683                 if (DEBUG_LOCKS_WARN_ON(chain_hlocks[chain->base + j] != id)) {
3684                         print_collision(curr, hlock, chain);
3685                         return 0;
3686                 }
3687         }
3688 #endif
3689         return 1;
3690 }
3691
3692 /*
3693  * Given an index that is >= -1, return the index of the next lock chain.
3694  * Return -2 if there is no next lock chain.
3695  */
3696 long lockdep_next_lockchain(long i)
3697 {
3698         i = find_next_bit(lock_chains_in_use, ARRAY_SIZE(lock_chains), i + 1);
3699         return i < ARRAY_SIZE(lock_chains) ? i : -2;
3700 }
3701
3702 unsigned long lock_chain_count(void)
3703 {
3704         return bitmap_weight(lock_chains_in_use, ARRAY_SIZE(lock_chains));
3705 }
3706
3707 /* Must be called with the graph lock held. */
3708 static struct lock_chain *alloc_lock_chain(void)
3709 {
3710         int idx = find_first_zero_bit(lock_chains_in_use,
3711                                       ARRAY_SIZE(lock_chains));
3712
3713         if (unlikely(idx >= ARRAY_SIZE(lock_chains)))
3714                 return NULL;
3715         __set_bit(idx, lock_chains_in_use);
3716         return lock_chains + idx;
3717 }
3718
3719 /*
3720  * Adds a dependency chain into chain hashtable. And must be called with
3721  * graph_lock held.
3722  *
3723  * Return 0 if fail, and graph_lock is released.
3724  * Return 1 if succeed, with graph_lock held.
3725  */
3726 static inline int add_chain_cache(struct task_struct *curr,
3727                                   struct held_lock *hlock,
3728                                   u64 chain_key)
3729 {
3730         struct hlist_head *hash_head = chainhashentry(chain_key);
3731         struct lock_chain *chain;
3732         int i, j;
3733
3734         /*
3735          * The caller must hold the graph lock, ensure we've got IRQs
3736          * disabled to make this an IRQ-safe lock.. for recursion reasons
3737          * lockdep won't complain about its own locking errors.
3738          */
3739         if (lockdep_assert_locked())
3740                 return 0;
3741
3742         chain = alloc_lock_chain();
3743         if (!chain) {
3744                 if (!debug_locks_off_graph_unlock())
3745                         return 0;
3746
3747                 nbcon_cpu_emergency_enter();
3748                 print_lockdep_off("BUG: MAX_LOCKDEP_CHAINS too low!");
3749                 dump_stack();
3750                 nbcon_cpu_emergency_exit();
3751                 return 0;
3752         }
3753         chain->chain_key = chain_key;
3754         chain->irq_context = hlock->irq_context;
3755         i = get_first_held_lock(curr, hlock);
3756         chain->depth = curr->lockdep_depth + 1 - i;
3757
3758         BUILD_BUG_ON((1UL << 24) <= ARRAY_SIZE(chain_hlocks));
3759         BUILD_BUG_ON((1UL << 6)  <= ARRAY_SIZE(curr->held_locks));
3760         BUILD_BUG_ON((1UL << 8*sizeof(chain_hlocks[0])) <= ARRAY_SIZE(lock_classes));
3761
3762         j = alloc_chain_hlocks(chain->depth);
3763         if (j < 0) {
3764                 if (!debug_locks_off_graph_unlock())
3765                         return 0;
3766
3767                 nbcon_cpu_emergency_enter();
3768                 print_lockdep_off("BUG: MAX_LOCKDEP_CHAIN_HLOCKS too low!");
3769                 dump_stack();
3770                 nbcon_cpu_emergency_exit();
3771                 return 0;
3772         }
3773
3774         chain->base = j;
3775         for (j = 0; j < chain->depth - 1; j++, i++) {
3776                 int lock_id = hlock_id(curr->held_locks + i);
3777
3778                 chain_hlocks[chain->base + j] = lock_id;
3779         }
3780         chain_hlocks[chain->base + j] = hlock_id(hlock);
3781         hlist_add_head_rcu(&chain->entry, hash_head);
3782         debug_atomic_inc(chain_lookup_misses);
3783         inc_chains(chain->irq_context);
3784
3785         return 1;
3786 }
3787
3788 /*
3789  * Look up a dependency chain. Must be called with either the graph lock or
3790  * the RCU read lock held.
3791  */
3792 static inline struct lock_chain *lookup_chain_cache(u64 chain_key)
3793 {
3794         struct hlist_head *hash_head = chainhashentry(chain_key);
3795         struct lock_chain *chain;
3796
3797         hlist_for_each_entry_rcu(chain, hash_head, entry) {
3798                 if (READ_ONCE(chain->chain_key) == chain_key) {
3799                         debug_atomic_inc(chain_lookup_hits);
3800                         return chain;
3801                 }
3802         }
3803         return NULL;
3804 }
3805
3806 /*
3807  * If the key is not present yet in dependency chain cache then
3808  * add it and return 1 - in this case the new dependency chain is
3809  * validated. If the key is already hashed, return 0.
3810  * (On return with 1 graph_lock is held.)
3811  */
3812 static inline int lookup_chain_cache_add(struct task_struct *curr,
3813                                          struct held_lock *hlock,
3814                                          u64 chain_key)
3815 {
3816         struct lock_class *class = hlock_class(hlock);
3817         struct lock_chain *chain = lookup_chain_cache(chain_key);
3818
3819         if (chain) {
3820 cache_hit:
3821                 if (!check_no_collision(curr, hlock, chain))
3822                         return 0;
3823
3824                 if (very_verbose(class)) {
3825                         printk("\nhash chain already cached, key: "
3826                                         "%016Lx tail class: [%px] %s\n",
3827                                         (unsigned long long)chain_key,
3828                                         class->key, class->name);
3829                 }
3830
3831                 return 0;
3832         }
3833
3834         if (very_verbose(class)) {
3835                 printk("\nnew hash chain, key: %016Lx tail class: [%px] %s\n",
3836                         (unsigned long long)chain_key, class->key, class->name);
3837         }
3838
3839         if (!graph_lock())
3840                 return 0;
3841
3842         /*
3843          * We have to walk the chain again locked - to avoid duplicates:
3844          */
3845         chain = lookup_chain_cache(chain_key);
3846         if (chain) {
3847                 graph_unlock();
3848                 goto cache_hit;
3849         }
3850
3851         if (!add_chain_cache(curr, hlock, chain_key))
3852                 return 0;
3853
3854         return 1;
3855 }
3856
3857 static int validate_chain(struct task_struct *curr,
3858                           struct held_lock *hlock,
3859                           int chain_head, u64 chain_key)
3860 {
3861         /*
3862          * Trylock needs to maintain the stack of held locks, but it
3863          * does not add new dependencies, because trylock can be done
3864          * in any order.
3865          *
3866          * We look up the chain_key and do the O(N^2) check and update of
3867          * the dependencies only if this is a new dependency chain.
3868          * (If lookup_chain_cache_add() return with 1 it acquires
3869          * graph_lock for us)
3870          */
3871         if (!hlock->trylock && hlock->check &&
3872             lookup_chain_cache_add(curr, hlock, chain_key)) {
3873                 /*
3874                  * Check whether last held lock:
3875                  *
3876                  * - is irq-safe, if this lock is irq-unsafe
3877                  * - is softirq-safe, if this lock is hardirq-unsafe
3878                  *
3879                  * And check whether the new lock's dependency graph
3880                  * could lead back to the previous lock:
3881                  *
3882                  * - within the current held-lock stack
3883                  * - across our accumulated lock dependency records
3884                  *
3885                  * any of these scenarios could lead to a deadlock.
3886                  */
3887                 /*
3888                  * The simple case: does the current hold the same lock
3889                  * already?
3890                  */
3891                 int ret = check_deadlock(curr, hlock);
3892
3893                 if (!ret)
3894                         return 0;
3895                 /*
3896                  * Add dependency only if this lock is not the head
3897                  * of the chain, and if the new lock introduces no more
3898                  * lock dependency (because we already hold a lock with the
3899                  * same lock class) nor deadlock (because the nest_lock
3900                  * serializes nesting locks), see the comments for
3901                  * check_deadlock().
3902                  */
3903                 if (!chain_head && ret != 2) {
3904                         if (!check_prevs_add(curr, hlock))
3905                                 return 0;
3906                 }
3907
3908                 graph_unlock();
3909         } else {
3910                 /* after lookup_chain_cache_add(): */
3911                 if (unlikely(!debug_locks))
3912                         return 0;
3913         }
3914
3915         return 1;
3916 }
3917 #else
3918 static inline int validate_chain(struct task_struct *curr,
3919                                  struct held_lock *hlock,
3920                                  int chain_head, u64 chain_key)
3921 {
3922         return 1;
3923 }
3924
3925 static void init_chain_block_buckets(void)      { }
3926 #endif /* CONFIG_PROVE_LOCKING */
3927
3928 /*
3929  * We are building curr_chain_key incrementally, so double-check
3930  * it from scratch, to make sure that it's done correctly:
3931  */
3932 static void check_chain_key(struct task_struct *curr)
3933 {
3934 #ifdef CONFIG_DEBUG_LOCKDEP
3935         struct held_lock *hlock, *prev_hlock = NULL;
3936         unsigned int i;
3937         u64 chain_key = INITIAL_CHAIN_KEY;
3938
3939         for (i = 0; i < curr->lockdep_depth; i++) {
3940                 hlock = curr->held_locks + i;
3941                 if (chain_key != hlock->prev_chain_key) {
3942                         debug_locks_off();
3943                         /*
3944                          * We got mighty confused, our chain keys don't match
3945                          * with what we expect, someone trample on our task state?
3946                          */
3947                         WARN(1, "hm#1, depth: %u [%u], %016Lx != %016Lx\n",
3948                                 curr->lockdep_depth, i,
3949                                 (unsigned long long)chain_key,
3950                                 (unsigned long long)hlock->prev_chain_key);
3951                         return;
3952                 }
3953
3954                 /*
3955                  * hlock->class_idx can't go beyond MAX_LOCKDEP_KEYS, but is
3956                  * it registered lock class index?
3957                  */
3958                 if (DEBUG_LOCKS_WARN_ON(!test_bit(hlock->class_idx, lock_classes_in_use)))
3959                         return;
3960
3961                 if (prev_hlock && (prev_hlock->irq_context !=
3962                                                         hlock->irq_context))
3963                         chain_key = INITIAL_CHAIN_KEY;
3964                 chain_key = iterate_chain_key(chain_key, hlock_id(hlock));
3965                 prev_hlock = hlock;
3966         }
3967         if (chain_key != curr->curr_chain_key) {
3968                 debug_locks_off();
3969                 /*
3970                  * More smoking hash instead of calculating it, damn see these
3971                  * numbers float.. I bet that a pink elephant stepped on my memory.
3972                  */
3973                 WARN(1, "hm#2, depth: %u [%u], %016Lx != %016Lx\n",
3974                         curr->lockdep_depth, i,
3975                         (unsigned long long)chain_key,
3976                         (unsigned long long)curr->curr_chain_key);
3977         }
3978 #endif
3979 }
3980
3981 #ifdef CONFIG_PROVE_LOCKING
3982 static int mark_lock(struct task_struct *curr, struct held_lock *this,
3983                      enum lock_usage_bit new_bit);
3984
3985 static void print_usage_bug_scenario(struct held_lock *lock)
3986 {
3987         struct lock_class *class = hlock_class(lock);
3988
3989         printk(" Possible unsafe locking scenario:\n\n");
3990         printk("       CPU0\n");
3991         printk("       ----\n");
3992         printk("  lock(");
3993         __print_lock_name(lock, class);
3994         printk(KERN_CONT ");\n");
3995         printk("  <Interrupt>\n");
3996         printk("    lock(");
3997         __print_lock_name(lock, class);
3998         printk(KERN_CONT ");\n");
3999         printk("\n *** DEADLOCK ***\n\n");
4000 }
4001
4002 static void
4003 print_usage_bug(struct task_struct *curr, struct held_lock *this,
4004                 enum lock_usage_bit prev_bit, enum lock_usage_bit new_bit)
4005 {
4006         if (!debug_locks_off() || debug_locks_silent)
4007                 return;
4008
4009         nbcon_cpu_emergency_enter();
4010
4011         pr_warn("\n");
4012         pr_warn("================================\n");
4013         pr_warn("WARNING: inconsistent lock state\n");
4014         print_kernel_ident();
4015         pr_warn("--------------------------------\n");
4016
4017         pr_warn("inconsistent {%s} -> {%s} usage.\n",
4018                 usage_str[prev_bit], usage_str[new_bit]);
4019
4020         pr_warn("%s/%d [HC%u[%lu]:SC%u[%lu]:HE%u:SE%u] takes:\n",
4021                 curr->comm, task_pid_nr(curr),
4022                 lockdep_hardirq_context(), hardirq_count() >> HARDIRQ_SHIFT,
4023                 lockdep_softirq_context(curr), softirq_count() >> SOFTIRQ_SHIFT,
4024                 lockdep_hardirqs_enabled(),
4025                 lockdep_softirqs_enabled(curr));
4026         print_lock(this);
4027
4028         pr_warn("{%s} state was registered at:\n", usage_str[prev_bit]);
4029         print_lock_trace(hlock_class(this)->usage_traces[prev_bit], 1);
4030
4031         print_irqtrace_events(curr);
4032         pr_warn("\nother info that might help us debug this:\n");
4033         print_usage_bug_scenario(this);
4034
4035         lockdep_print_held_locks(curr);
4036
4037         pr_warn("\nstack backtrace:\n");
4038         dump_stack();
4039
4040         nbcon_cpu_emergency_exit();
4041 }
4042
4043 /*
4044  * Print out an error if an invalid bit is set:
4045  */
4046 static inline int
4047 valid_state(struct task_struct *curr, struct held_lock *this,
4048             enum lock_usage_bit new_bit, enum lock_usage_bit bad_bit)
4049 {
4050         if (unlikely(hlock_class(this)->usage_mask & (1 << bad_bit))) {
4051                 graph_unlock();
4052                 print_usage_bug(curr, this, bad_bit, new_bit);
4053                 return 0;
4054         }
4055         return 1;
4056 }
4057
4058
4059 /*
4060  * print irq inversion bug:
4061  */
4062 static void
4063 print_irq_inversion_bug(struct task_struct *curr,
4064                         struct lock_list *root, struct lock_list *other,
4065                         struct held_lock *this, int forwards,
4066                         const char *irqclass)
4067 {
4068         struct lock_list *entry = other;
4069         struct lock_list *middle = NULL;
4070         int depth;
4071
4072         if (!debug_locks_off_graph_unlock() || debug_locks_silent)
4073                 return;
4074
4075         nbcon_cpu_emergency_enter();
4076
4077         pr_warn("\n");
4078         pr_warn("========================================================\n");
4079         pr_warn("WARNING: possible irq lock inversion dependency detected\n");
4080         print_kernel_ident();
4081         pr_warn("--------------------------------------------------------\n");
4082         pr_warn("%s/%d just changed the state of lock:\n",
4083                 curr->comm, task_pid_nr(curr));
4084         print_lock(this);
4085         if (forwards)
4086                 pr_warn("but this lock took another, %s-unsafe lock in the past:\n", irqclass);
4087         else
4088                 pr_warn("but this lock was taken by another, %s-safe lock in the past:\n", irqclass);
4089         print_lock_name(NULL, other->class);
4090         pr_warn("\n\nand interrupts could create inverse lock ordering between them.\n\n");
4091
4092         pr_warn("\nother info that might help us debug this:\n");
4093
4094         /* Find a middle lock (if one exists) */
4095         depth = get_lock_depth(other);
4096         do {
4097                 if (depth == 0 && (entry != root)) {
4098                         pr_warn("lockdep:%s bad path found in chain graph\n", __func__);
4099                         break;
4100                 }
4101                 middle = entry;
4102                 entry = get_lock_parent(entry);
4103                 depth--;
4104         } while (entry && entry != root && (depth >= 0));
4105         if (forwards)
4106                 print_irq_lock_scenario(root, other,
4107                         middle ? middle->class : root->class, other->class);
4108         else
4109                 print_irq_lock_scenario(other, root,
4110                         middle ? middle->class : other->class, root->class);
4111
4112         lockdep_print_held_locks(curr);
4113
4114         pr_warn("\nthe shortest dependencies between 2nd lock and 1st lock:\n");
4115         root->trace = save_trace();
4116         if (!root->trace)
4117                 goto out;
4118         print_shortest_lock_dependencies(other, root);
4119
4120         pr_warn("\nstack backtrace:\n");
4121         dump_stack();
4122 out:
4123         nbcon_cpu_emergency_exit();
4124 }
4125
4126 /*
4127  * Prove that in the forwards-direction subgraph starting at <this>
4128  * there is no lock matching <mask>:
4129  */
4130 static int
4131 check_usage_forwards(struct task_struct *curr, struct held_lock *this,
4132                      enum lock_usage_bit bit)
4133 {
4134         enum bfs_result ret;
4135         struct lock_list root;
4136         struct lock_list *target_entry;
4137         enum lock_usage_bit read_bit = bit + LOCK_USAGE_READ_MASK;
4138         unsigned usage_mask = lock_flag(bit) | lock_flag(read_bit);
4139
4140         bfs_init_root(&root, this);
4141         ret = find_usage_forwards(&root, usage_mask, &target_entry);
4142         if (bfs_error(ret)) {
4143                 print_bfs_bug(ret);
4144                 return 0;
4145         }
4146         if (ret == BFS_RNOMATCH)
4147                 return 1;
4148
4149         /* Check whether write or read usage is the match */
4150         if (target_entry->class->usage_mask & lock_flag(bit)) {
4151                 print_irq_inversion_bug(curr, &root, target_entry,
4152                                         this, 1, state_name(bit));
4153         } else {
4154                 print_irq_inversion_bug(curr, &root, target_entry,
4155                                         this, 1, state_name(read_bit));
4156         }
4157
4158         return 0;
4159 }
4160
4161 /*
4162  * Prove that in the backwards-direction subgraph starting at <this>
4163  * there is no lock matching <mask>:
4164  */
4165 static int
4166 check_usage_backwards(struct task_struct *curr, struct held_lock *this,
4167                       enum lock_usage_bit bit)
4168 {
4169         enum bfs_result ret;
4170         struct lock_list root;
4171         struct lock_list *target_entry;
4172         enum lock_usage_bit read_bit = bit + LOCK_USAGE_READ_MASK;
4173         unsigned usage_mask = lock_flag(bit) | lock_flag(read_bit);
4174
4175         bfs_init_rootb(&root, this);
4176         ret = find_usage_backwards(&root, usage_mask, &target_entry);
4177         if (bfs_error(ret)) {
4178                 print_bfs_bug(ret);
4179                 return 0;
4180         }
4181         if (ret == BFS_RNOMATCH)
4182                 return 1;
4183
4184         /* Check whether write or read usage is the match */
4185         if (target_entry->class->usage_mask & lock_flag(bit)) {
4186                 print_irq_inversion_bug(curr, &root, target_entry,
4187                                         this, 0, state_name(bit));
4188         } else {
4189                 print_irq_inversion_bug(curr, &root, target_entry,
4190                                         this, 0, state_name(read_bit));
4191         }
4192
4193         return 0;
4194 }
4195
4196 void print_irqtrace_events(struct task_struct *curr)
4197 {
4198         const struct irqtrace_events *trace = &curr->irqtrace;
4199
4200         nbcon_cpu_emergency_enter();
4201
4202         printk("irq event stamp: %u\n", trace->irq_events);
4203         printk("hardirqs last  enabled at (%u): [<%px>] %pS\n",
4204                 trace->hardirq_enable_event, (void *)trace->hardirq_enable_ip,
4205                 (void *)trace->hardirq_enable_ip);
4206         printk("hardirqs last disabled at (%u): [<%px>] %pS\n",
4207                 trace->hardirq_disable_event, (void *)trace->hardirq_disable_ip,
4208                 (void *)trace->hardirq_disable_ip);
4209         printk("softirqs last  enabled at (%u): [<%px>] %pS\n",
4210                 trace->softirq_enable_event, (void *)trace->softirq_enable_ip,
4211                 (void *)trace->softirq_enable_ip);
4212         printk("softirqs last disabled at (%u): [<%px>] %pS\n",
4213                 trace->softirq_disable_event, (void *)trace->softirq_disable_ip,
4214                 (void *)trace->softirq_disable_ip);
4215
4216         nbcon_cpu_emergency_exit();
4217 }
4218
4219 static int HARDIRQ_verbose(struct lock_class *class)
4220 {
4221 #if HARDIRQ_VERBOSE
4222         return class_filter(class);
4223 #endif
4224         return 0;
4225 }
4226
4227 static int SOFTIRQ_verbose(struct lock_class *class)
4228 {
4229 #if SOFTIRQ_VERBOSE
4230         return class_filter(class);
4231 #endif
4232         return 0;
4233 }
4234
4235 static int (*state_verbose_f[])(struct lock_class *class) = {
4236 #define LOCKDEP_STATE(__STATE) \
4237         __STATE##_verbose,
4238 #include "lockdep_states.h"
4239 #undef LOCKDEP_STATE
4240 };
4241
4242 static inline int state_verbose(enum lock_usage_bit bit,
4243                                 struct lock_class *class)
4244 {
4245         return state_verbose_f[bit >> LOCK_USAGE_DIR_MASK](class);
4246 }
4247
4248 typedef int (*check_usage_f)(struct task_struct *, struct held_lock *,
4249                              enum lock_usage_bit bit, const char *name);
4250
4251 static int
4252 mark_lock_irq(struct task_struct *curr, struct held_lock *this,
4253                 enum lock_usage_bit new_bit)
4254 {
4255         int excl_bit = exclusive_bit(new_bit);
4256         int read = new_bit & LOCK_USAGE_READ_MASK;
4257         int dir = new_bit & LOCK_USAGE_DIR_MASK;
4258
4259         /*
4260          * Validate that this particular lock does not have conflicting
4261          * usage states.
4262          */
4263         if (!valid_state(curr, this, new_bit, excl_bit))
4264                 return 0;
4265
4266         /*
4267          * Check for read in write conflicts
4268          */
4269         if (!read && !valid_state(curr, this, new_bit,
4270                                   excl_bit + LOCK_USAGE_READ_MASK))
4271                 return 0;
4272
4273
4274         /*
4275          * Validate that the lock dependencies don't have conflicting usage
4276          * states.
4277          */
4278         if (dir) {
4279                 /*
4280                  * mark ENABLED has to look backwards -- to ensure no dependee
4281                  * has USED_IN state, which, again, would allow  recursion deadlocks.
4282                  */
4283                 if (!check_usage_backwards(curr, this, excl_bit))
4284                         return 0;
4285         } else {
4286                 /*
4287                  * mark USED_IN has to look forwards -- to ensure no dependency
4288                  * has ENABLED state, which would allow recursion deadlocks.
4289                  */
4290                 if (!check_usage_forwards(curr, this, excl_bit))
4291                         return 0;
4292         }
4293
4294         if (state_verbose(new_bit, hlock_class(this)))
4295                 return 2;
4296
4297         return 1;
4298 }
4299
4300 /*
4301  * Mark all held locks with a usage bit:
4302  */
4303 static int
4304 mark_held_locks(struct task_struct *curr, enum lock_usage_bit base_bit)
4305 {
4306         struct held_lock *hlock;
4307         int i;
4308
4309         for (i = 0; i < curr->lockdep_depth; i++) {
4310                 enum lock_usage_bit hlock_bit = base_bit;
4311                 hlock = curr->held_locks + i;
4312
4313                 if (hlock->read)
4314                         hlock_bit += LOCK_USAGE_READ_MASK;
4315
4316                 BUG_ON(hlock_bit >= LOCK_USAGE_STATES);
4317
4318                 if (!hlock->check)
4319                         continue;
4320
4321                 if (!mark_lock(curr, hlock, hlock_bit))
4322                         return 0;
4323         }
4324
4325         return 1;
4326 }
4327
4328 /*
4329  * Hardirqs will be enabled:
4330  */
4331 static void __trace_hardirqs_on_caller(void)
4332 {
4333         struct task_struct *curr = current;
4334
4335         /*
4336          * We are going to turn hardirqs on, so set the
4337          * usage bit for all held locks:
4338          */
4339         if (!mark_held_locks(curr, LOCK_ENABLED_HARDIRQ))
4340                 return;
4341         /*
4342          * If we have softirqs enabled, then set the usage
4343          * bit for all held locks. (disabled hardirqs prevented
4344          * this bit from being set before)
4345          */
4346         if (curr->softirqs_enabled)
4347                 mark_held_locks(curr, LOCK_ENABLED_SOFTIRQ);
4348 }
4349
4350 /**
4351  * lockdep_hardirqs_on_prepare - Prepare for enabling interrupts
4352  *
4353  * Invoked before a possible transition to RCU idle from exit to user or
4354  * guest mode. This ensures that all RCU operations are done before RCU
4355  * stops watching. After the RCU transition lockdep_hardirqs_on() has to be
4356  * invoked to set the final state.
4357  */
4358 void lockdep_hardirqs_on_prepare(void)
4359 {
4360         if (unlikely(!debug_locks))
4361                 return;
4362
4363         /*
4364          * NMIs do not (and cannot) track lock dependencies, nothing to do.
4365          */
4366         if (unlikely(in_nmi()))
4367                 return;
4368
4369         if (unlikely(this_cpu_read(lockdep_recursion)))
4370                 return;
4371
4372         if (unlikely(lockdep_hardirqs_enabled())) {
4373                 /*
4374                  * Neither irq nor preemption are disabled here
4375                  * so this is racy by nature but losing one hit
4376                  * in a stat is not a big deal.
4377                  */
4378                 __debug_atomic_inc(redundant_hardirqs_on);
4379                 return;
4380         }
4381
4382         /*
4383          * We're enabling irqs and according to our state above irqs weren't
4384          * already enabled, yet we find the hardware thinks they are in fact
4385          * enabled.. someone messed up their IRQ state tracing.
4386          */
4387         if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4388                 return;
4389
4390         /*
4391          * See the fine text that goes along with this variable definition.
4392          */
4393         if (DEBUG_LOCKS_WARN_ON(early_boot_irqs_disabled))
4394                 return;
4395
4396         /*
4397          * Can't allow enabling interrupts while in an interrupt handler,
4398          * that's general bad form and such. Recursion, limited stack etc..
4399          */
4400         if (DEBUG_LOCKS_WARN_ON(lockdep_hardirq_context()))
4401                 return;
4402
4403         current->hardirq_chain_key = current->curr_chain_key;
4404
4405         lockdep_recursion_inc();
4406         __trace_hardirqs_on_caller();
4407         lockdep_recursion_finish();
4408 }
4409 EXPORT_SYMBOL_GPL(lockdep_hardirqs_on_prepare);
4410
4411 void noinstr lockdep_hardirqs_on(unsigned long ip)
4412 {
4413         struct irqtrace_events *trace = &current->irqtrace;
4414
4415         if (unlikely(!debug_locks))
4416                 return;
4417
4418         /*
4419          * NMIs can happen in the middle of local_irq_{en,dis}able() where the
4420          * tracking state and hardware state are out of sync.
4421          *
4422          * NMIs must save lockdep_hardirqs_enabled() to restore IRQ state from,
4423          * and not rely on hardware state like normal interrupts.
4424          */
4425         if (unlikely(in_nmi())) {
4426                 if (!IS_ENABLED(CONFIG_TRACE_IRQFLAGS_NMI))
4427                         return;
4428
4429                 /*
4430                  * Skip:
4431                  *  - recursion check, because NMI can hit lockdep;
4432                  *  - hardware state check, because above;
4433                  *  - chain_key check, see lockdep_hardirqs_on_prepare().
4434                  */
4435                 goto skip_checks;
4436         }
4437
4438         if (unlikely(this_cpu_read(lockdep_recursion)))
4439                 return;
4440
4441         if (lockdep_hardirqs_enabled()) {
4442                 /*
4443                  * Neither irq nor preemption are disabled here
4444                  * so this is racy by nature but losing one hit
4445                  * in a stat is not a big deal.
4446                  */
4447                 __debug_atomic_inc(redundant_hardirqs_on);
4448                 return;
4449         }
4450
4451         /*
4452          * We're enabling irqs and according to our state above irqs weren't
4453          * already enabled, yet we find the hardware thinks they are in fact
4454          * enabled.. someone messed up their IRQ state tracing.
4455          */
4456         if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4457                 return;
4458
4459         /*
4460          * Ensure the lock stack remained unchanged between
4461          * lockdep_hardirqs_on_prepare() and lockdep_hardirqs_on().
4462          */
4463         DEBUG_LOCKS_WARN_ON(current->hardirq_chain_key !=
4464                             current->curr_chain_key);
4465
4466 skip_checks:
4467         /* we'll do an OFF -> ON transition: */
4468         __this_cpu_write(hardirqs_enabled, 1);
4469         trace->hardirq_enable_ip = ip;
4470         trace->hardirq_enable_event = ++trace->irq_events;
4471         debug_atomic_inc(hardirqs_on_events);
4472 }
4473 EXPORT_SYMBOL_GPL(lockdep_hardirqs_on);
4474
4475 /*
4476  * Hardirqs were disabled:
4477  */
4478 void noinstr lockdep_hardirqs_off(unsigned long ip)
4479 {
4480         if (unlikely(!debug_locks))
4481                 return;
4482
4483         /*
4484          * Matching lockdep_hardirqs_on(), allow NMIs in the middle of lockdep;
4485          * they will restore the software state. This ensures the software
4486          * state is consistent inside NMIs as well.
4487          */
4488         if (in_nmi()) {
4489                 if (!IS_ENABLED(CONFIG_TRACE_IRQFLAGS_NMI))
4490                         return;
4491         } else if (__this_cpu_read(lockdep_recursion))
4492                 return;
4493
4494         /*
4495          * So we're supposed to get called after you mask local IRQs, but for
4496          * some reason the hardware doesn't quite think you did a proper job.
4497          */
4498         if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4499                 return;
4500
4501         if (lockdep_hardirqs_enabled()) {
4502                 struct irqtrace_events *trace = &current->irqtrace;
4503
4504                 /*
4505                  * We have done an ON -> OFF transition:
4506                  */
4507                 __this_cpu_write(hardirqs_enabled, 0);
4508                 trace->hardirq_disable_ip = ip;
4509                 trace->hardirq_disable_event = ++trace->irq_events;
4510                 debug_atomic_inc(hardirqs_off_events);
4511         } else {
4512                 debug_atomic_inc(redundant_hardirqs_off);
4513         }
4514 }
4515 EXPORT_SYMBOL_GPL(lockdep_hardirqs_off);
4516
4517 /*
4518  * Softirqs will be enabled:
4519  */
4520 void lockdep_softirqs_on(unsigned long ip)
4521 {
4522         struct irqtrace_events *trace = &current->irqtrace;
4523
4524         if (unlikely(!lockdep_enabled()))
4525                 return;
4526
4527         /*
4528          * We fancy IRQs being disabled here, see softirq.c, avoids
4529          * funny state and nesting things.
4530          */
4531         if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4532                 return;
4533
4534         if (current->softirqs_enabled) {
4535                 debug_atomic_inc(redundant_softirqs_on);
4536                 return;
4537         }
4538
4539         lockdep_recursion_inc();
4540         /*
4541          * We'll do an OFF -> ON transition:
4542          */
4543         current->softirqs_enabled = 1;
4544         trace->softirq_enable_ip = ip;
4545         trace->softirq_enable_event = ++trace->irq_events;
4546         debug_atomic_inc(softirqs_on_events);
4547         /*
4548          * We are going to turn softirqs on, so set the
4549          * usage bit for all held locks, if hardirqs are
4550          * enabled too:
4551          */
4552         if (lockdep_hardirqs_enabled())
4553                 mark_held_locks(current, LOCK_ENABLED_SOFTIRQ);
4554         lockdep_recursion_finish();
4555 }
4556
4557 /*
4558  * Softirqs were disabled:
4559  */
4560 void lockdep_softirqs_off(unsigned long ip)
4561 {
4562         if (unlikely(!lockdep_enabled()))
4563                 return;
4564
4565         /*
4566          * We fancy IRQs being disabled here, see softirq.c
4567          */
4568         if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4569                 return;
4570
4571         if (current->softirqs_enabled) {
4572                 struct irqtrace_events *trace = &current->irqtrace;
4573
4574                 /*
4575                  * We have done an ON -> OFF transition:
4576                  */
4577                 current->softirqs_enabled = 0;
4578                 trace->softirq_disable_ip = ip;
4579                 trace->softirq_disable_event = ++trace->irq_events;
4580                 debug_atomic_inc(softirqs_off_events);
4581                 /*
4582                  * Whoops, we wanted softirqs off, so why aren't they?
4583                  */
4584                 DEBUG_LOCKS_WARN_ON(!softirq_count());
4585         } else
4586                 debug_atomic_inc(redundant_softirqs_off);
4587 }
4588
4589 /**
4590  * lockdep_cleanup_dead_cpu - Ensure CPU lockdep state is cleanly stopped
4591  *
4592  * @cpu: index of offlined CPU
4593  * @idle: task pointer for offlined CPU's idle thread
4594  *
4595  * Invoked after the CPU is dead. Ensures that the tracing infrastructure
4596  * is left in a suitable state for the CPU to be subsequently brought
4597  * online again.
4598  */
4599 void lockdep_cleanup_dead_cpu(unsigned int cpu, struct task_struct *idle)
4600 {
4601         if (unlikely(!debug_locks))
4602                 return;
4603
4604         if (unlikely(per_cpu(hardirqs_enabled, cpu))) {
4605                 pr_warn("CPU %u left hardirqs enabled!", cpu);
4606                 if (idle)
4607                         print_irqtrace_events(idle);
4608                 /* Clean it up for when the CPU comes online again. */
4609                 per_cpu(hardirqs_enabled, cpu) = 0;
4610         }
4611 }
4612
4613 static int
4614 mark_usage(struct task_struct *curr, struct held_lock *hlock, int check)
4615 {
4616         if (!check)
4617                 goto lock_used;
4618
4619         /*
4620          * If non-trylock use in a hardirq or softirq context, then
4621          * mark the lock as used in these contexts:
4622          */
4623         if (!hlock->trylock) {
4624                 if (hlock->read) {
4625                         if (lockdep_hardirq_context())
4626                                 if (!mark_lock(curr, hlock,
4627                                                 LOCK_USED_IN_HARDIRQ_READ))
4628                                         return 0;
4629                         if (curr->softirq_context)
4630                                 if (!mark_lock(curr, hlock,
4631                                                 LOCK_USED_IN_SOFTIRQ_READ))
4632                                         return 0;
4633                 } else {
4634                         if (lockdep_hardirq_context())
4635                                 if (!mark_lock(curr, hlock, LOCK_USED_IN_HARDIRQ))
4636                                         return 0;
4637                         if (curr->softirq_context)
4638                                 if (!mark_lock(curr, hlock, LOCK_USED_IN_SOFTIRQ))
4639                                         return 0;
4640                 }
4641         }
4642
4643         /*
4644          * For lock_sync(), don't mark the ENABLED usage, since lock_sync()
4645          * creates no critical section and no extra dependency can be introduced
4646          * by interrupts
4647          */
4648         if (!hlock->hardirqs_off && !hlock->sync) {
4649                 if (hlock->read) {
4650                         if (!mark_lock(curr, hlock,
4651                                         LOCK_ENABLED_HARDIRQ_READ))
4652                                 return 0;
4653                         if (curr->softirqs_enabled)
4654                                 if (!mark_lock(curr, hlock,
4655                                                 LOCK_ENABLED_SOFTIRQ_READ))
4656                                         return 0;
4657                 } else {
4658                         if (!mark_lock(curr, hlock,
4659                                         LOCK_ENABLED_HARDIRQ))
4660                                 return 0;
4661                         if (curr->softirqs_enabled)
4662                                 if (!mark_lock(curr, hlock,
4663                                                 LOCK_ENABLED_SOFTIRQ))
4664                                         return 0;
4665                 }
4666         }
4667
4668 lock_used:
4669         /* mark it as used: */
4670         if (!mark_lock(curr, hlock, LOCK_USED))
4671                 return 0;
4672
4673         return 1;
4674 }
4675
4676 static inline unsigned int task_irq_context(struct task_struct *task)
4677 {
4678         return LOCK_CHAIN_HARDIRQ_CONTEXT * !!lockdep_hardirq_context() +
4679                LOCK_CHAIN_SOFTIRQ_CONTEXT * !!task->softirq_context;
4680 }
4681
4682 static int separate_irq_context(struct task_struct *curr,
4683                 struct held_lock *hlock)
4684 {
4685         unsigned int depth = curr->lockdep_depth;
4686
4687         /*
4688          * Keep track of points where we cross into an interrupt context:
4689          */
4690         if (depth) {
4691                 struct held_lock *prev_hlock;
4692
4693                 prev_hlock = curr->held_locks + depth-1;
4694                 /*
4695                  * If we cross into another context, reset the
4696                  * hash key (this also prevents the checking and the
4697                  * adding of the dependency to 'prev'):
4698                  */
4699                 if (prev_hlock->irq_context != hlock->irq_context)
4700                         return 1;
4701         }
4702         return 0;
4703 }
4704
4705 /*
4706  * Mark a lock with a usage bit, and validate the state transition:
4707  */
4708 static int mark_lock(struct task_struct *curr, struct held_lock *this,
4709                              enum lock_usage_bit new_bit)
4710 {
4711         unsigned int new_mask, ret = 1;
4712
4713         if (new_bit >= LOCK_USAGE_STATES) {
4714                 DEBUG_LOCKS_WARN_ON(1);
4715                 return 0;
4716         }
4717
4718         if (new_bit == LOCK_USED && this->read)
4719                 new_bit = LOCK_USED_READ;
4720
4721         new_mask = 1 << new_bit;
4722
4723         /*
4724          * If already set then do not dirty the cacheline,
4725          * nor do any checks:
4726          */
4727         if (likely(hlock_class(this)->usage_mask & new_mask))
4728                 return 1;
4729
4730         if (!graph_lock())
4731                 return 0;
4732         /*
4733          * Make sure we didn't race:
4734          */
4735         if (unlikely(hlock_class(this)->usage_mask & new_mask))
4736                 goto unlock;
4737
4738         if (!hlock_class(this)->usage_mask)
4739                 debug_atomic_dec(nr_unused_locks);
4740
4741         hlock_class(this)->usage_mask |= new_mask;
4742
4743         if (new_bit < LOCK_TRACE_STATES) {
4744                 if (!(hlock_class(this)->usage_traces[new_bit] = save_trace()))
4745                         return 0;
4746         }
4747
4748         if (new_bit < LOCK_USED) {
4749                 ret = mark_lock_irq(curr, this, new_bit);
4750                 if (!ret)
4751                         return 0;
4752         }
4753
4754 unlock:
4755         graph_unlock();
4756
4757         /*
4758          * We must printk outside of the graph_lock:
4759          */
4760         if (ret == 2) {
4761                 nbcon_cpu_emergency_enter();
4762                 printk("\nmarked lock as {%s}:\n", usage_str[new_bit]);
4763                 print_lock(this);
4764                 print_irqtrace_events(curr);
4765                 dump_stack();
4766                 nbcon_cpu_emergency_exit();
4767         }
4768
4769         return ret;
4770 }
4771
4772 static inline short task_wait_context(struct task_struct *curr)
4773 {
4774         /*
4775          * Set appropriate wait type for the context; for IRQs we have to take
4776          * into account force_irqthread as that is implied by PREEMPT_RT.
4777          */
4778         if (lockdep_hardirq_context()) {
4779                 /*
4780                  * Check if force_irqthreads will run us threaded.
4781                  */
4782                 if (curr->hardirq_threaded || curr->irq_config)
4783                         return LD_WAIT_CONFIG;
4784
4785                 return LD_WAIT_SPIN;
4786         } else if (curr->softirq_context) {
4787                 /*
4788                  * Softirqs are always threaded.
4789                  */
4790                 return LD_WAIT_CONFIG;
4791         }
4792
4793         return LD_WAIT_MAX;
4794 }
4795
4796 static int
4797 print_lock_invalid_wait_context(struct task_struct *curr,
4798                                 struct held_lock *hlock)
4799 {
4800         short curr_inner;
4801
4802         if (!debug_locks_off())
4803                 return 0;
4804         if (debug_locks_silent)
4805                 return 0;
4806
4807         nbcon_cpu_emergency_enter();
4808
4809         pr_warn("\n");
4810         pr_warn("=============================\n");
4811         pr_warn("[ BUG: Invalid wait context ]\n");
4812         print_kernel_ident();
4813         pr_warn("-----------------------------\n");
4814
4815         pr_warn("%s/%d is trying to lock:\n", curr->comm, task_pid_nr(curr));
4816         print_lock(hlock);
4817
4818         pr_warn("other info that might help us debug this:\n");
4819
4820         curr_inner = task_wait_context(curr);
4821         pr_warn("context-{%d:%d}\n", curr_inner, curr_inner);
4822
4823         lockdep_print_held_locks(curr);
4824
4825         pr_warn("stack backtrace:\n");
4826         dump_stack();
4827
4828         nbcon_cpu_emergency_exit();
4829
4830         return 0;
4831 }
4832
4833 /*
4834  * Verify the wait_type context.
4835  *
4836  * This check validates we take locks in the right wait-type order; that is it
4837  * ensures that we do not take mutexes inside spinlocks and do not attempt to
4838  * acquire spinlocks inside raw_spinlocks and the sort.
4839  *
4840  * The entire thing is slightly more complex because of RCU, RCU is a lock that
4841  * can be taken from (pretty much) any context but also has constraints.
4842  * However when taken in a stricter environment the RCU lock does not loosen
4843  * the constraints.
4844  *
4845  * Therefore we must look for the strictest environment in the lock stack and
4846  * compare that to the lock we're trying to acquire.
4847  */
4848 static int check_wait_context(struct task_struct *curr, struct held_lock *next)
4849 {
4850         u8 next_inner = hlock_class(next)->wait_type_inner;
4851         u8 next_outer = hlock_class(next)->wait_type_outer;
4852         u8 curr_inner;
4853         int depth;
4854
4855         if (!next_inner || next->trylock)
4856                 return 0;
4857
4858         if (!next_outer)
4859                 next_outer = next_inner;
4860
4861         /*
4862          * Find start of current irq_context..
4863          */
4864         for (depth = curr->lockdep_depth - 1; depth >= 0; depth--) {
4865                 struct held_lock *prev = curr->held_locks + depth;
4866                 if (prev->irq_context != next->irq_context)
4867                         break;
4868         }
4869         depth++;
4870
4871         curr_inner = task_wait_context(curr);
4872
4873         for (; depth < curr->lockdep_depth; depth++) {
4874                 struct held_lock *prev = curr->held_locks + depth;
4875                 struct lock_class *class = hlock_class(prev);
4876                 u8 prev_inner = class->wait_type_inner;
4877
4878                 if (prev_inner) {
4879                         /*
4880                          * We can have a bigger inner than a previous one
4881                          * when outer is smaller than inner, as with RCU.
4882                          *
4883                          * Also due to trylocks.
4884                          */
4885                         curr_inner = min(curr_inner, prev_inner);
4886
4887                         /*
4888                          * Allow override for annotations -- this is typically
4889                          * only valid/needed for code that only exists when
4890                          * CONFIG_PREEMPT_RT=n.
4891                          */
4892                         if (unlikely(class->lock_type == LD_LOCK_WAIT_OVERRIDE))
4893                                 curr_inner = prev_inner;
4894                 }
4895         }
4896
4897         if (next_outer > curr_inner)
4898                 return print_lock_invalid_wait_context(curr, next);
4899
4900         return 0;
4901 }
4902
4903 #else /* CONFIG_PROVE_LOCKING */
4904
4905 static inline int
4906 mark_usage(struct task_struct *curr, struct held_lock *hlock, int check)
4907 {
4908         return 1;
4909 }
4910
4911 static inline unsigned int task_irq_context(struct task_struct *task)
4912 {
4913         return 0;
4914 }
4915
4916 static inline int separate_irq_context(struct task_struct *curr,
4917                 struct held_lock *hlock)
4918 {
4919         return 0;
4920 }
4921
4922 static inline int check_wait_context(struct task_struct *curr,
4923                                      struct held_lock *next)
4924 {
4925         return 0;
4926 }
4927
4928 #endif /* CONFIG_PROVE_LOCKING */
4929
4930 /*
4931  * Initialize a lock instance's lock-class mapping info:
4932  */
4933 void lockdep_init_map_type(struct lockdep_map *lock, const char *name,
4934                             struct lock_class_key *key, int subclass,
4935                             u8 inner, u8 outer, u8 lock_type)
4936 {
4937         int i;
4938
4939         for (i = 0; i < NR_LOCKDEP_CACHING_CLASSES; i++)
4940                 lock->class_cache[i] = NULL;
4941
4942 #ifdef CONFIG_LOCK_STAT
4943         lock->cpu = raw_smp_processor_id();
4944 #endif
4945
4946         /*
4947          * Can't be having no nameless bastards around this place!
4948          */
4949         if (DEBUG_LOCKS_WARN_ON(!name)) {
4950                 lock->name = "NULL";
4951                 return;
4952         }
4953
4954         lock->name = name;
4955
4956         lock->wait_type_outer = outer;
4957         lock->wait_type_inner = inner;
4958         lock->lock_type = lock_type;
4959
4960         /*
4961          * No key, no joy, we need to hash something.
4962          */
4963         if (DEBUG_LOCKS_WARN_ON(!key))
4964                 return;
4965         /*
4966          * Sanity check, the lock-class key must either have been allocated
4967          * statically or must have been registered as a dynamic key.
4968          */
4969         if (!static_obj(key) && !is_dynamic_key(key)) {
4970                 if (debug_locks)
4971                         printk(KERN_ERR "BUG: key %px has not been registered!\n", key);
4972                 DEBUG_LOCKS_WARN_ON(1);
4973                 return;
4974         }
4975         lock->key = key;
4976
4977         if (unlikely(!debug_locks))
4978                 return;
4979
4980         if (subclass) {
4981                 unsigned long flags;
4982
4983                 if (DEBUG_LOCKS_WARN_ON(!lockdep_enabled()))
4984                         return;
4985
4986                 raw_local_irq_save(flags);
4987                 lockdep_recursion_inc();
4988                 register_lock_class(lock, subclass, 1);
4989                 lockdep_recursion_finish();
4990                 raw_local_irq_restore(flags);
4991         }
4992 }
4993 EXPORT_SYMBOL_GPL(lockdep_init_map_type);
4994
4995 struct lock_class_key __lockdep_no_validate__;
4996 EXPORT_SYMBOL_GPL(__lockdep_no_validate__);
4997
4998 struct lock_class_key __lockdep_no_track__;
4999 EXPORT_SYMBOL_GPL(__lockdep_no_track__);
5000
5001 #ifdef CONFIG_PROVE_LOCKING
5002 void lockdep_set_lock_cmp_fn(struct lockdep_map *lock, lock_cmp_fn cmp_fn,
5003                              lock_print_fn print_fn)
5004 {
5005         struct lock_class *class = lock->class_cache[0];
5006         unsigned long flags;
5007
5008         raw_local_irq_save(flags);
5009         lockdep_recursion_inc();
5010
5011         if (!class)
5012                 class = register_lock_class(lock, 0, 0);
5013
5014         if (class) {
5015                 WARN_ON(class->cmp_fn   && class->cmp_fn != cmp_fn);
5016                 WARN_ON(class->print_fn && class->print_fn != print_fn);
5017
5018                 class->cmp_fn   = cmp_fn;
5019                 class->print_fn = print_fn;
5020         }
5021
5022         lockdep_recursion_finish();
5023         raw_local_irq_restore(flags);
5024 }
5025 EXPORT_SYMBOL_GPL(lockdep_set_lock_cmp_fn);
5026 #endif
5027
5028 static void
5029 print_lock_nested_lock_not_held(struct task_struct *curr,
5030                                 struct held_lock *hlock)
5031 {
5032         if (!debug_locks_off())
5033                 return;
5034         if (debug_locks_silent)
5035                 return;
5036
5037         nbcon_cpu_emergency_enter();
5038
5039         pr_warn("\n");
5040         pr_warn("==================================\n");
5041         pr_warn("WARNING: Nested lock was not taken\n");
5042         print_kernel_ident();
5043         pr_warn("----------------------------------\n");
5044
5045         pr_warn("%s/%d is trying to lock:\n", curr->comm, task_pid_nr(curr));
5046         print_lock(hlock);
5047
5048         pr_warn("\nbut this task is not holding:\n");
5049         pr_warn("%s\n", hlock->nest_lock->name);
5050
5051         pr_warn("\nstack backtrace:\n");
5052         dump_stack();
5053
5054         pr_warn("\nother info that might help us debug this:\n");
5055         lockdep_print_held_locks(curr);
5056
5057         pr_warn("\nstack backtrace:\n");
5058         dump_stack();
5059
5060         nbcon_cpu_emergency_exit();
5061 }
5062
5063 static int __lock_is_held(const struct lockdep_map *lock, int read);
5064
5065 /*
5066  * This gets called for every mutex_lock*()/spin_lock*() operation.
5067  * We maintain the dependency maps and validate the locking attempt:
5068  *
5069  * The callers must make sure that IRQs are disabled before calling it,
5070  * otherwise we could get an interrupt which would want to take locks,
5071  * which would end up in lockdep again.
5072  */
5073 static int __lock_acquire(struct lockdep_map *lock, unsigned int subclass,
5074                           int trylock, int read, int check, int hardirqs_off,
5075                           struct lockdep_map *nest_lock, unsigned long ip,
5076                           int references, int pin_count, int sync)
5077 {
5078         struct task_struct *curr = current;
5079         struct lock_class *class = NULL;
5080         struct held_lock *hlock;
5081         unsigned int depth;
5082         int chain_head = 0;
5083         int class_idx;
5084         u64 chain_key;
5085
5086         if (unlikely(!debug_locks))
5087                 return 0;
5088
5089         if (unlikely(lock->key == &__lockdep_no_track__))
5090                 return 0;
5091
5092         if (!prove_locking || lock->key == &__lockdep_no_validate__)
5093                 check = 0;
5094
5095         if (subclass < NR_LOCKDEP_CACHING_CLASSES)
5096                 class = lock->class_cache[subclass];
5097         /*
5098          * Not cached?
5099          */
5100         if (unlikely(!class)) {
5101                 class = register_lock_class(lock, subclass, 0);
5102                 if (!class)
5103                         return 0;
5104         }
5105
5106         debug_class_ops_inc(class);
5107
5108         if (very_verbose(class)) {
5109                 nbcon_cpu_emergency_enter();
5110                 printk("\nacquire class [%px] %s", class->key, class->name);
5111                 if (class->name_version > 1)
5112                         printk(KERN_CONT "#%d", class->name_version);
5113                 printk(KERN_CONT "\n");
5114                 dump_stack();
5115                 nbcon_cpu_emergency_exit();
5116         }
5117
5118         /*
5119          * Add the lock to the list of currently held locks.
5120          * (we dont increase the depth just yet, up until the
5121          * dependency checks are done)
5122          */
5123         depth = curr->lockdep_depth;
5124         /*
5125          * Ran out of static storage for our per-task lock stack again have we?
5126          */
5127         if (DEBUG_LOCKS_WARN_ON(depth >= MAX_LOCK_DEPTH))
5128                 return 0;
5129
5130         class_idx = class - lock_classes;
5131
5132         if (depth && !sync) {
5133                 /* we're holding locks and the new held lock is not a sync */
5134                 hlock = curr->held_locks + depth - 1;
5135                 if (hlock->class_idx == class_idx && nest_lock) {
5136                         if (!references)
5137                                 references++;
5138
5139                         if (!hlock->references)
5140                                 hlock->references++;
5141
5142                         hlock->references += references;
5143
5144                         /* Overflow */
5145                         if (DEBUG_LOCKS_WARN_ON(hlock->references < references))
5146                                 return 0;
5147
5148                         return 2;
5149                 }
5150         }
5151
5152         hlock = curr->held_locks + depth;
5153         /*
5154          * Plain impossible, we just registered it and checked it weren't no
5155          * NULL like.. I bet this mushroom I ate was good!
5156          */
5157         if (DEBUG_LOCKS_WARN_ON(!class))
5158                 return 0;
5159         hlock->class_idx = class_idx;
5160         hlock->acquire_ip = ip;
5161         hlock->instance = lock;
5162         hlock->nest_lock = nest_lock;
5163         hlock->irq_context = task_irq_context(curr);
5164         hlock->trylock = trylock;
5165         hlock->read = read;
5166         hlock->check = check;
5167         hlock->sync = !!sync;
5168         hlock->hardirqs_off = !!hardirqs_off;
5169         hlock->references = references;
5170 #ifdef CONFIG_LOCK_STAT
5171         hlock->waittime_stamp = 0;
5172         hlock->holdtime_stamp = lockstat_clock();
5173 #endif
5174         hlock->pin_count = pin_count;
5175
5176         if (check_wait_context(curr, hlock))
5177                 return 0;
5178
5179         /* Initialize the lock usage bit */
5180         if (!mark_usage(curr, hlock, check))
5181                 return 0;
5182
5183         /*
5184          * Calculate the chain hash: it's the combined hash of all the
5185          * lock keys along the dependency chain. We save the hash value
5186          * at every step so that we can get the current hash easily
5187          * after unlock. The chain hash is then used to cache dependency
5188          * results.
5189          *
5190          * The 'key ID' is what is the most compact key value to drive
5191          * the hash, not class->key.
5192          */
5193         /*
5194          * Whoops, we did it again.. class_idx is invalid.
5195          */
5196         if (DEBUG_LOCKS_WARN_ON(!test_bit(class_idx, lock_classes_in_use)))
5197                 return 0;
5198
5199         chain_key = curr->curr_chain_key;
5200         if (!depth) {
5201                 /*
5202                  * How can we have a chain hash when we ain't got no keys?!
5203                  */
5204                 if (DEBUG_LOCKS_WARN_ON(chain_key != INITIAL_CHAIN_KEY))
5205                         return 0;
5206                 chain_head = 1;
5207         }
5208
5209         hlock->prev_chain_key = chain_key;
5210         if (separate_irq_context(curr, hlock)) {
5211                 chain_key = INITIAL_CHAIN_KEY;
5212                 chain_head = 1;
5213         }
5214         chain_key = iterate_chain_key(chain_key, hlock_id(hlock));
5215
5216         if (nest_lock && !__lock_is_held(nest_lock, -1)) {
5217                 print_lock_nested_lock_not_held(curr, hlock);
5218                 return 0;
5219         }
5220
5221         if (!debug_locks_silent) {
5222                 WARN_ON_ONCE(depth && !hlock_class(hlock - 1)->key);
5223                 WARN_ON_ONCE(!hlock_class(hlock)->key);
5224         }
5225
5226         if (!validate_chain(curr, hlock, chain_head, chain_key))
5227                 return 0;
5228
5229         /* For lock_sync(), we are done here since no actual critical section */
5230         if (hlock->sync)
5231                 return 1;
5232
5233         curr->curr_chain_key = chain_key;
5234         curr->lockdep_depth++;
5235         check_chain_key(curr);
5236 #ifdef CONFIG_DEBUG_LOCKDEP
5237         if (unlikely(!debug_locks))
5238                 return 0;
5239 #endif
5240         if (unlikely(curr->lockdep_depth >= MAX_LOCK_DEPTH)) {
5241                 debug_locks_off();
5242                 nbcon_cpu_emergency_enter();
5243                 print_lockdep_off("BUG: MAX_LOCK_DEPTH too low!");
5244                 printk(KERN_DEBUG "depth: %i  max: %lu!\n",
5245                        curr->lockdep_depth, MAX_LOCK_DEPTH);
5246
5247                 lockdep_print_held_locks(current);
5248                 debug_show_all_locks();
5249                 dump_stack();
5250                 nbcon_cpu_emergency_exit();
5251
5252                 return 0;
5253         }
5254
5255         if (unlikely(curr->lockdep_depth > max_lockdep_depth))
5256                 max_lockdep_depth = curr->lockdep_depth;
5257
5258         return 1;
5259 }
5260
5261 static void print_unlock_imbalance_bug(struct task_struct *curr,
5262                                        struct lockdep_map *lock,
5263                                        unsigned long ip)
5264 {
5265         if (!debug_locks_off())
5266                 return;
5267         if (debug_locks_silent)
5268                 return;
5269
5270         nbcon_cpu_emergency_enter();
5271
5272         pr_warn("\n");
5273         pr_warn("=====================================\n");
5274         pr_warn("WARNING: bad unlock balance detected!\n");
5275         print_kernel_ident();
5276         pr_warn("-------------------------------------\n");
5277         pr_warn("%s/%d is trying to release lock (",
5278                 curr->comm, task_pid_nr(curr));
5279         print_lockdep_cache(lock);
5280         pr_cont(") at:\n");
5281         print_ip_sym(KERN_WARNING, ip);
5282         pr_warn("but there are no more locks to release!\n");
5283         pr_warn("\nother info that might help us debug this:\n");
5284         lockdep_print_held_locks(curr);
5285
5286         pr_warn("\nstack backtrace:\n");
5287         dump_stack();
5288
5289         nbcon_cpu_emergency_exit();
5290 }
5291
5292 static noinstr int match_held_lock(const struct held_lock *hlock,
5293                                    const struct lockdep_map *lock)
5294 {
5295         if (hlock->instance == lock)
5296                 return 1;
5297
5298         if (hlock->references) {
5299                 const struct lock_class *class = lock->class_cache[0];
5300
5301                 if (!class)
5302                         class = look_up_lock_class(lock, 0);
5303
5304                 /*
5305                  * If look_up_lock_class() failed to find a class, we're trying
5306                  * to test if we hold a lock that has never yet been acquired.
5307                  * Clearly if the lock hasn't been acquired _ever_, we're not
5308                  * holding it either, so report failure.
5309                  */
5310                 if (!class)
5311                         return 0;
5312
5313                 /*
5314                  * References, but not a lock we're actually ref-counting?
5315                  * State got messed up, follow the sites that change ->references
5316                  * and try to make sense of it.
5317                  */
5318                 if (DEBUG_LOCKS_WARN_ON(!hlock->nest_lock))
5319                         return 0;
5320
5321                 if (hlock->class_idx == class - lock_classes)
5322                         return 1;
5323         }
5324
5325         return 0;
5326 }
5327
5328 /* @depth must not be zero */
5329 static struct held_lock *find_held_lock(struct task_struct *curr,
5330                                         struct lockdep_map *lock,
5331                                         unsigned int depth, int *idx)
5332 {
5333         struct held_lock *ret, *hlock, *prev_hlock;
5334         int i;
5335
5336         i = depth - 1;
5337         hlock = curr->held_locks + i;
5338         ret = hlock;
5339         if (match_held_lock(hlock, lock))
5340                 goto out;
5341
5342         ret = NULL;
5343         for (i--, prev_hlock = hlock--;
5344              i >= 0;
5345              i--, prev_hlock = hlock--) {
5346                 /*
5347                  * We must not cross into another context:
5348                  */
5349                 if (prev_hlock->irq_context != hlock->irq_context) {
5350                         ret = NULL;
5351                         break;
5352                 }
5353                 if (match_held_lock(hlock, lock)) {
5354                         ret = hlock;
5355                         break;
5356                 }
5357         }
5358
5359 out:
5360         *idx = i;
5361         return ret;
5362 }
5363
5364 static int reacquire_held_locks(struct task_struct *curr, unsigned int depth,
5365                                 int idx, unsigned int *merged)
5366 {
5367         struct held_lock *hlock;
5368         int first_idx = idx;
5369
5370         if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
5371                 return 0;
5372
5373         for (hlock = curr->held_locks + idx; idx < depth; idx++, hlock++) {
5374                 switch (__lock_acquire(hlock->instance,
5375                                     hlock_class(hlock)->subclass,
5376                                     hlock->trylock,
5377                                     hlock->read, hlock->check,
5378                                     hlock->hardirqs_off,
5379                                     hlock->nest_lock, hlock->acquire_ip,
5380                                     hlock->references, hlock->pin_count, 0)) {
5381                 case 0:
5382                         return 1;
5383                 case 1:
5384                         break;
5385                 case 2:
5386                         *merged += (idx == first_idx);
5387                         break;
5388                 default:
5389                         WARN_ON(1);
5390                         return 0;
5391                 }
5392         }
5393         return 0;
5394 }
5395
5396 static int
5397 __lock_set_class(struct lockdep_map *lock, const char *name,
5398                  struct lock_class_key *key, unsigned int subclass,
5399                  unsigned long ip)
5400 {
5401         struct task_struct *curr = current;
5402         unsigned int depth, merged = 0;
5403         struct held_lock *hlock;
5404         struct lock_class *class;
5405         int i;
5406
5407         if (unlikely(!debug_locks))
5408                 return 0;
5409
5410         depth = curr->lockdep_depth;
5411         /*
5412          * This function is about (re)setting the class of a held lock,
5413          * yet we're not actually holding any locks. Naughty user!
5414          */
5415         if (DEBUG_LOCKS_WARN_ON(!depth))
5416                 return 0;
5417
5418         hlock = find_held_lock(curr, lock, depth, &i);
5419         if (!hlock) {
5420                 print_unlock_imbalance_bug(curr, lock, ip);
5421                 return 0;
5422         }
5423
5424         lockdep_init_map_type(lock, name, key, 0,
5425                               lock->wait_type_inner,
5426                               lock->wait_type_outer,
5427                               lock->lock_type);
5428         class = register_lock_class(lock, subclass, 0);
5429         hlock->class_idx = class - lock_classes;
5430
5431         curr->lockdep_depth = i;
5432         curr->curr_chain_key = hlock->prev_chain_key;
5433
5434         if (reacquire_held_locks(curr, depth, i, &merged))
5435                 return 0;
5436
5437         /*
5438          * I took it apart and put it back together again, except now I have
5439          * these 'spare' parts.. where shall I put them.
5440          */
5441         if (DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth - merged))
5442                 return 0;
5443         return 1;
5444 }
5445
5446 static int __lock_downgrade(struct lockdep_map *lock, unsigned long ip)
5447 {
5448         struct task_struct *curr = current;
5449         unsigned int depth, merged = 0;
5450         struct held_lock *hlock;
5451         int i;
5452
5453         if (unlikely(!debug_locks))
5454                 return 0;
5455
5456         depth = curr->lockdep_depth;
5457         /*
5458          * This function is about (re)setting the class of a held lock,
5459          * yet we're not actually holding any locks. Naughty user!
5460          */
5461         if (DEBUG_LOCKS_WARN_ON(!depth))
5462                 return 0;
5463
5464         hlock = find_held_lock(curr, lock, depth, &i);
5465         if (!hlock) {
5466                 print_unlock_imbalance_bug(curr, lock, ip);
5467                 return 0;
5468         }
5469
5470         curr->lockdep_depth = i;
5471         curr->curr_chain_key = hlock->prev_chain_key;
5472
5473         WARN(hlock->read, "downgrading a read lock");
5474         hlock->read = 1;
5475         hlock->acquire_ip = ip;
5476
5477         if (reacquire_held_locks(curr, depth, i, &merged))
5478                 return 0;
5479
5480         /* Merging can't happen with unchanged classes.. */
5481         if (DEBUG_LOCKS_WARN_ON(merged))
5482                 return 0;
5483
5484         /*
5485          * I took it apart and put it back together again, except now I have
5486          * these 'spare' parts.. where shall I put them.
5487          */
5488         if (DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth))
5489                 return 0;
5490
5491         return 1;
5492 }
5493
5494 /*
5495  * Remove the lock from the list of currently held locks - this gets
5496  * called on mutex_unlock()/spin_unlock*() (or on a failed
5497  * mutex_lock_interruptible()).
5498  */
5499 static int
5500 __lock_release(struct lockdep_map *lock, unsigned long ip)
5501 {
5502         struct task_struct *curr = current;
5503         unsigned int depth, merged = 1;
5504         struct held_lock *hlock;
5505         int i;
5506
5507         if (unlikely(!debug_locks))
5508                 return 0;
5509
5510         depth = curr->lockdep_depth;
5511         /*
5512          * So we're all set to release this lock.. wait what lock? We don't
5513          * own any locks, you've been drinking again?
5514          */
5515         if (depth <= 0) {
5516                 print_unlock_imbalance_bug(curr, lock, ip);
5517                 return 0;
5518         }
5519
5520         /*
5521          * Check whether the lock exists in the current stack
5522          * of held locks:
5523          */
5524         hlock = find_held_lock(curr, lock, depth, &i);
5525         if (!hlock) {
5526                 print_unlock_imbalance_bug(curr, lock, ip);
5527                 return 0;
5528         }
5529
5530         if (hlock->instance == lock)
5531                 lock_release_holdtime(hlock);
5532
5533         WARN(hlock->pin_count, "releasing a pinned lock\n");
5534
5535         if (hlock->references) {
5536                 hlock->references--;
5537                 if (hlock->references) {
5538                         /*
5539                          * We had, and after removing one, still have
5540                          * references, the current lock stack is still
5541                          * valid. We're done!
5542                          */
5543                         return 1;
5544                 }
5545         }
5546
5547         /*
5548          * We have the right lock to unlock, 'hlock' points to it.
5549          * Now we remove it from the stack, and add back the other
5550          * entries (if any), recalculating the hash along the way:
5551          */
5552
5553         curr->lockdep_depth = i;
5554         curr->curr_chain_key = hlock->prev_chain_key;
5555
5556         /*
5557          * The most likely case is when the unlock is on the innermost
5558          * lock. In this case, we are done!
5559          */
5560         if (i == depth-1)
5561                 return 1;
5562
5563         if (reacquire_held_locks(curr, depth, i + 1, &merged))
5564                 return 0;
5565
5566         /*
5567          * We had N bottles of beer on the wall, we drank one, but now
5568          * there's not N-1 bottles of beer left on the wall...
5569          * Pouring two of the bottles together is acceptable.
5570          */
5571         DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth - merged);
5572
5573         /*
5574          * Since reacquire_held_locks() would have called check_chain_key()
5575          * indirectly via __lock_acquire(), we don't need to do it again
5576          * on return.
5577          */
5578         return 0;
5579 }
5580
5581 static __always_inline
5582 int __lock_is_held(const struct lockdep_map *lock, int read)
5583 {
5584         struct task_struct *curr = current;
5585         int i;
5586
5587         for (i = 0; i < curr->lockdep_depth; i++) {
5588                 struct held_lock *hlock = curr->held_locks + i;
5589
5590                 if (match_held_lock(hlock, lock)) {
5591                         if (read == -1 || !!hlock->read == read)
5592                                 return LOCK_STATE_HELD;
5593
5594                         return LOCK_STATE_NOT_HELD;
5595                 }
5596         }
5597
5598         return LOCK_STATE_NOT_HELD;
5599 }
5600
5601 static struct pin_cookie __lock_pin_lock(struct lockdep_map *lock)
5602 {
5603         struct pin_cookie cookie = NIL_COOKIE;
5604         struct task_struct *curr = current;
5605         int i;
5606
5607         if (unlikely(!debug_locks))
5608                 return cookie;
5609
5610         for (i = 0; i < curr->lockdep_depth; i++) {
5611                 struct held_lock *hlock = curr->held_locks + i;
5612
5613                 if (match_held_lock(hlock, lock)) {
5614                         /*
5615                          * Grab 16bits of randomness; this is sufficient to not
5616                          * be guessable and still allows some pin nesting in
5617                          * our u32 pin_count.
5618                          */
5619                         cookie.val = 1 + (sched_clock() & 0xffff);
5620                         hlock->pin_count += cookie.val;
5621                         return cookie;
5622                 }
5623         }
5624
5625         WARN(1, "pinning an unheld lock\n");
5626         return cookie;
5627 }
5628
5629 static void __lock_repin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
5630 {
5631         struct task_struct *curr = current;
5632         int i;
5633
5634         if (unlikely(!debug_locks))
5635                 return;
5636
5637         for (i = 0; i < curr->lockdep_depth; i++) {
5638                 struct held_lock *hlock = curr->held_locks + i;
5639
5640                 if (match_held_lock(hlock, lock)) {
5641                         hlock->pin_count += cookie.val;
5642                         return;
5643                 }
5644         }
5645
5646         WARN(1, "pinning an unheld lock\n");
5647 }
5648
5649 static void __lock_unpin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
5650 {
5651         struct task_struct *curr = current;
5652         int i;
5653
5654         if (unlikely(!debug_locks))
5655                 return;
5656
5657         for (i = 0; i < curr->lockdep_depth; i++) {
5658                 struct held_lock *hlock = curr->held_locks + i;
5659
5660                 if (match_held_lock(hlock, lock)) {
5661                         if (WARN(!hlock->pin_count, "unpinning an unpinned lock\n"))
5662                                 return;
5663
5664                         hlock->pin_count -= cookie.val;
5665
5666                         if (WARN((int)hlock->pin_count < 0, "pin count corrupted\n"))
5667                                 hlock->pin_count = 0;
5668
5669                         return;
5670                 }
5671         }
5672
5673         WARN(1, "unpinning an unheld lock\n");
5674 }
5675
5676 /*
5677  * Check whether we follow the irq-flags state precisely:
5678  */
5679 static noinstr void check_flags(unsigned long flags)
5680 {
5681 #if defined(CONFIG_PROVE_LOCKING) && defined(CONFIG_DEBUG_LOCKDEP)
5682         if (!debug_locks)
5683                 return;
5684
5685         /* Get the warning out..  */
5686         instrumentation_begin();
5687
5688         if (irqs_disabled_flags(flags)) {
5689                 if (DEBUG_LOCKS_WARN_ON(lockdep_hardirqs_enabled())) {
5690                         printk("possible reason: unannotated irqs-off.\n");
5691                 }
5692         } else {
5693                 if (DEBUG_LOCKS_WARN_ON(!lockdep_hardirqs_enabled())) {
5694                         printk("possible reason: unannotated irqs-on.\n");
5695                 }
5696         }
5697
5698 #ifndef CONFIG_PREEMPT_RT
5699         /*
5700          * We dont accurately track softirq state in e.g.
5701          * hardirq contexts (such as on 4KSTACKS), so only
5702          * check if not in hardirq contexts:
5703          */
5704         if (!hardirq_count()) {
5705                 if (softirq_count()) {
5706                         /* like the above, but with softirqs */
5707                         DEBUG_LOCKS_WARN_ON(current->softirqs_enabled);
5708                 } else {
5709                         /* lick the above, does it taste good? */
5710                         DEBUG_LOCKS_WARN_ON(!current->softirqs_enabled);
5711                 }
5712         }
5713 #endif
5714
5715         if (!debug_locks)
5716                 print_irqtrace_events(current);
5717
5718         instrumentation_end();
5719 #endif
5720 }
5721
5722 void lock_set_class(struct lockdep_map *lock, const char *name,
5723                     struct lock_class_key *key, unsigned int subclass,
5724                     unsigned long ip)
5725 {
5726         unsigned long flags;
5727
5728         if (unlikely(!lockdep_enabled()))
5729                 return;
5730
5731         raw_local_irq_save(flags);
5732         lockdep_recursion_inc();
5733         check_flags(flags);
5734         if (__lock_set_class(lock, name, key, subclass, ip))
5735                 check_chain_key(current);
5736         lockdep_recursion_finish();
5737         raw_local_irq_restore(flags);
5738 }
5739 EXPORT_SYMBOL_GPL(lock_set_class);
5740
5741 void lock_downgrade(struct lockdep_map *lock, unsigned long ip)
5742 {
5743         unsigned long flags;
5744
5745         if (unlikely(!lockdep_enabled()))
5746                 return;
5747
5748         raw_local_irq_save(flags);
5749         lockdep_recursion_inc();
5750         check_flags(flags);
5751         if (__lock_downgrade(lock, ip))
5752                 check_chain_key(current);
5753         lockdep_recursion_finish();
5754         raw_local_irq_restore(flags);
5755 }
5756 EXPORT_SYMBOL_GPL(lock_downgrade);
5757
5758 /* NMI context !!! */
5759 static void verify_lock_unused(struct lockdep_map *lock, struct held_lock *hlock, int subclass)
5760 {
5761 #ifdef CONFIG_PROVE_LOCKING
5762         struct lock_class *class = look_up_lock_class(lock, subclass);
5763         unsigned long mask = LOCKF_USED;
5764
5765         /* if it doesn't have a class (yet), it certainly hasn't been used yet */
5766         if (!class)
5767                 return;
5768
5769         /*
5770          * READ locks only conflict with USED, such that if we only ever use
5771          * READ locks, there is no deadlock possible -- RCU.
5772          */
5773         if (!hlock->read)
5774                 mask |= LOCKF_USED_READ;
5775
5776         if (!(class->usage_mask & mask))
5777                 return;
5778
5779         hlock->class_idx = class - lock_classes;
5780
5781         print_usage_bug(current, hlock, LOCK_USED, LOCK_USAGE_STATES);
5782 #endif
5783 }
5784
5785 static bool lockdep_nmi(void)
5786 {
5787         if (raw_cpu_read(lockdep_recursion))
5788                 return false;
5789
5790         if (!in_nmi())
5791                 return false;
5792
5793         return true;
5794 }
5795
5796 /*
5797  * read_lock() is recursive if:
5798  * 1. We force lockdep think this way in selftests or
5799  * 2. The implementation is not queued read/write lock or
5800  * 3. The locker is at an in_interrupt() context.
5801  */
5802 bool read_lock_is_recursive(void)
5803 {
5804         return force_read_lock_recursive ||
5805                !IS_ENABLED(CONFIG_QUEUED_RWLOCKS) ||
5806                in_interrupt();
5807 }
5808 EXPORT_SYMBOL_GPL(read_lock_is_recursive);
5809
5810 /*
5811  * We are not always called with irqs disabled - do that here,
5812  * and also avoid lockdep recursion:
5813  */
5814 void lock_acquire(struct lockdep_map *lock, unsigned int subclass,
5815                           int trylock, int read, int check,
5816                           struct lockdep_map *nest_lock, unsigned long ip)
5817 {
5818         unsigned long flags;
5819
5820         trace_lock_acquire(lock, subclass, trylock, read, check, nest_lock, ip);
5821
5822         if (!debug_locks)
5823                 return;
5824
5825         if (unlikely(!lockdep_enabled())) {
5826                 /* XXX allow trylock from NMI ?!? */
5827                 if (lockdep_nmi() && !trylock) {
5828                         struct held_lock hlock;
5829
5830                         hlock.acquire_ip = ip;
5831                         hlock.instance = lock;
5832                         hlock.nest_lock = nest_lock;
5833                         hlock.irq_context = 2; // XXX
5834                         hlock.trylock = trylock;
5835                         hlock.read = read;
5836                         hlock.check = check;
5837                         hlock.hardirqs_off = true;
5838                         hlock.references = 0;
5839
5840                         verify_lock_unused(lock, &hlock, subclass);
5841                 }
5842                 return;
5843         }
5844
5845         raw_local_irq_save(flags);
5846         check_flags(flags);
5847
5848         lockdep_recursion_inc();
5849         __lock_acquire(lock, subclass, trylock, read, check,
5850                        irqs_disabled_flags(flags), nest_lock, ip, 0, 0, 0);
5851         lockdep_recursion_finish();
5852         raw_local_irq_restore(flags);
5853 }
5854 EXPORT_SYMBOL_GPL(lock_acquire);
5855
5856 void lock_release(struct lockdep_map *lock, unsigned long ip)
5857 {
5858         unsigned long flags;
5859
5860         trace_lock_release(lock, ip);
5861
5862         if (unlikely(!lockdep_enabled() ||
5863                      lock->key == &__lockdep_no_track__))
5864                 return;
5865
5866         raw_local_irq_save(flags);
5867         check_flags(flags);
5868
5869         lockdep_recursion_inc();
5870         if (__lock_release(lock, ip))
5871                 check_chain_key(current);
5872         lockdep_recursion_finish();
5873         raw_local_irq_restore(flags);
5874 }
5875 EXPORT_SYMBOL_GPL(lock_release);
5876
5877 /*
5878  * lock_sync() - A special annotation for synchronize_{s,}rcu()-like API.
5879  *
5880  * No actual critical section is created by the APIs annotated with this: these
5881  * APIs are used to wait for one or multiple critical sections (on other CPUs
5882  * or threads), and it means that calling these APIs inside these critical
5883  * sections is potential deadlock.
5884  */
5885 void lock_sync(struct lockdep_map *lock, unsigned subclass, int read,
5886                int check, struct lockdep_map *nest_lock, unsigned long ip)
5887 {
5888         unsigned long flags;
5889
5890         if (unlikely(!lockdep_enabled()))
5891                 return;
5892
5893         raw_local_irq_save(flags);
5894         check_flags(flags);
5895
5896         lockdep_recursion_inc();
5897         __lock_acquire(lock, subclass, 0, read, check,
5898                        irqs_disabled_flags(flags), nest_lock, ip, 0, 0, 1);
5899         check_chain_key(current);
5900         lockdep_recursion_finish();
5901         raw_local_irq_restore(flags);
5902 }
5903 EXPORT_SYMBOL_GPL(lock_sync);
5904
5905 noinstr int lock_is_held_type(const struct lockdep_map *lock, int read)
5906 {
5907         unsigned long flags;
5908         int ret = LOCK_STATE_NOT_HELD;
5909
5910         /*
5911          * Avoid false negative lockdep_assert_held() and
5912          * lockdep_assert_not_held().
5913          */
5914         if (unlikely(!lockdep_enabled()))
5915                 return LOCK_STATE_UNKNOWN;
5916
5917         raw_local_irq_save(flags);
5918         check_flags(flags);
5919
5920         lockdep_recursion_inc();
5921         ret = __lock_is_held(lock, read);
5922         lockdep_recursion_finish();
5923         raw_local_irq_restore(flags);
5924
5925         return ret;
5926 }
5927 EXPORT_SYMBOL_GPL(lock_is_held_type);
5928 NOKPROBE_SYMBOL(lock_is_held_type);
5929
5930 struct pin_cookie lock_pin_lock(struct lockdep_map *lock)
5931 {
5932         struct pin_cookie cookie = NIL_COOKIE;
5933         unsigned long flags;
5934
5935         if (unlikely(!lockdep_enabled()))
5936                 return cookie;
5937
5938         raw_local_irq_save(flags);
5939         check_flags(flags);
5940
5941         lockdep_recursion_inc();
5942         cookie = __lock_pin_lock(lock);
5943         lockdep_recursion_finish();
5944         raw_local_irq_restore(flags);
5945
5946         return cookie;
5947 }
5948 EXPORT_SYMBOL_GPL(lock_pin_lock);
5949
5950 void lock_repin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
5951 {
5952         unsigned long flags;
5953
5954         if (unlikely(!lockdep_enabled()))
5955                 return;
5956
5957         raw_local_irq_save(flags);
5958         check_flags(flags);
5959
5960         lockdep_recursion_inc();
5961         __lock_repin_lock(lock, cookie);
5962         lockdep_recursion_finish();
5963         raw_local_irq_restore(flags);
5964 }
5965 EXPORT_SYMBOL_GPL(lock_repin_lock);
5966
5967 void lock_unpin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
5968 {
5969         unsigned long flags;
5970
5971         if (unlikely(!lockdep_enabled()))
5972                 return;
5973
5974         raw_local_irq_save(flags);
5975         check_flags(flags);
5976
5977         lockdep_recursion_inc();
5978         __lock_unpin_lock(lock, cookie);
5979         lockdep_recursion_finish();
5980         raw_local_irq_restore(flags);
5981 }
5982 EXPORT_SYMBOL_GPL(lock_unpin_lock);
5983
5984 #ifdef CONFIG_LOCK_STAT
5985 static void print_lock_contention_bug(struct task_struct *curr,
5986                                       struct lockdep_map *lock,
5987                                       unsigned long ip)
5988 {
5989         if (!debug_locks_off())
5990                 return;
5991         if (debug_locks_silent)
5992                 return;
5993
5994         nbcon_cpu_emergency_enter();
5995
5996         pr_warn("\n");
5997         pr_warn("=================================\n");
5998         pr_warn("WARNING: bad contention detected!\n");
5999         print_kernel_ident();
6000         pr_warn("---------------------------------\n");
6001         pr_warn("%s/%d is trying to contend lock (",
6002                 curr->comm, task_pid_nr(curr));
6003         print_lockdep_cache(lock);
6004         pr_cont(") at:\n");
6005         print_ip_sym(KERN_WARNING, ip);
6006         pr_warn("but there are no locks held!\n");
6007         pr_warn("\nother info that might help us debug this:\n");
6008         lockdep_print_held_locks(curr);
6009
6010         pr_warn("\nstack backtrace:\n");
6011         dump_stack();
6012
6013         nbcon_cpu_emergency_exit();
6014 }
6015
6016 static void
6017 __lock_contended(struct lockdep_map *lock, unsigned long ip)
6018 {
6019         struct task_struct *curr = current;
6020         struct held_lock *hlock;
6021         struct lock_class_stats *stats;
6022         unsigned int depth;
6023         int i, contention_point, contending_point;
6024
6025         depth = curr->lockdep_depth;
6026         /*
6027          * Whee, we contended on this lock, except it seems we're not
6028          * actually trying to acquire anything much at all..
6029          */
6030         if (DEBUG_LOCKS_WARN_ON(!depth))
6031                 return;
6032
6033         if (unlikely(lock->key == &__lockdep_no_track__))
6034                 return;
6035
6036         hlock = find_held_lock(curr, lock, depth, &i);
6037         if (!hlock) {
6038                 print_lock_contention_bug(curr, lock, ip);
6039                 return;
6040         }
6041
6042         if (hlock->instance != lock)
6043                 return;
6044
6045         hlock->waittime_stamp = lockstat_clock();
6046
6047         contention_point = lock_point(hlock_class(hlock)->contention_point, ip);
6048         contending_point = lock_point(hlock_class(hlock)->contending_point,
6049                                       lock->ip);
6050
6051         stats = get_lock_stats(hlock_class(hlock));
6052         if (contention_point < LOCKSTAT_POINTS)
6053                 stats->contention_point[contention_point]++;
6054         if (contending_point < LOCKSTAT_POINTS)
6055                 stats->contending_point[contending_point]++;
6056         if (lock->cpu != smp_processor_id())
6057                 stats->bounces[bounce_contended + !!hlock->read]++;
6058 }
6059
6060 static void
6061 __lock_acquired(struct lockdep_map *lock, unsigned long ip)
6062 {
6063         struct task_struct *curr = current;
6064         struct held_lock *hlock;
6065         struct lock_class_stats *stats;
6066         unsigned int depth;
6067         u64 now, waittime = 0;
6068         int i, cpu;
6069
6070         depth = curr->lockdep_depth;
6071         /*
6072          * Yay, we acquired ownership of this lock we didn't try to
6073          * acquire, how the heck did that happen?
6074          */
6075         if (DEBUG_LOCKS_WARN_ON(!depth))
6076                 return;
6077
6078         if (unlikely(lock->key == &__lockdep_no_track__))
6079                 return;
6080
6081         hlock = find_held_lock(curr, lock, depth, &i);
6082         if (!hlock) {
6083                 print_lock_contention_bug(curr, lock, _RET_IP_);
6084                 return;
6085         }
6086
6087         if (hlock->instance != lock)
6088                 return;
6089
6090         cpu = smp_processor_id();
6091         if (hlock->waittime_stamp) {
6092                 now = lockstat_clock();
6093                 waittime = now - hlock->waittime_stamp;
6094                 hlock->holdtime_stamp = now;
6095         }
6096
6097         stats = get_lock_stats(hlock_class(hlock));
6098         if (waittime) {
6099                 if (hlock->read)
6100                         lock_time_inc(&stats->read_waittime, waittime);
6101                 else
6102                         lock_time_inc(&stats->write_waittime, waittime);
6103         }
6104         if (lock->cpu != cpu)
6105                 stats->bounces[bounce_acquired + !!hlock->read]++;
6106
6107         lock->cpu = cpu;
6108         lock->ip = ip;
6109 }
6110
6111 void lock_contended(struct lockdep_map *lock, unsigned long ip)
6112 {
6113         unsigned long flags;
6114
6115         trace_lock_contended(lock, ip);
6116
6117         if (unlikely(!lock_stat || !lockdep_enabled()))
6118                 return;
6119
6120         raw_local_irq_save(flags);
6121         check_flags(flags);
6122         lockdep_recursion_inc();
6123         __lock_contended(lock, ip);
6124         lockdep_recursion_finish();
6125         raw_local_irq_restore(flags);
6126 }
6127 EXPORT_SYMBOL_GPL(lock_contended);
6128
6129 void lock_acquired(struct lockdep_map *lock, unsigned long ip)
6130 {
6131         unsigned long flags;
6132
6133         trace_lock_acquired(lock, ip);
6134
6135         if (unlikely(!lock_stat || !lockdep_enabled()))
6136                 return;
6137
6138         raw_local_irq_save(flags);
6139         check_flags(flags);
6140         lockdep_recursion_inc();
6141         __lock_acquired(lock, ip);
6142         lockdep_recursion_finish();
6143         raw_local_irq_restore(flags);
6144 }
6145 EXPORT_SYMBOL_GPL(lock_acquired);
6146 #endif
6147
6148 /*
6149  * Used by the testsuite, sanitize the validator state
6150  * after a simulated failure:
6151  */
6152
6153 void lockdep_reset(void)
6154 {
6155         unsigned long flags;
6156         int i;
6157
6158         raw_local_irq_save(flags);
6159         lockdep_init_task(current);
6160         memset(current->held_locks, 0, MAX_LOCK_DEPTH*sizeof(struct held_lock));
6161         nr_hardirq_chains = 0;
6162         nr_softirq_chains = 0;
6163         nr_process_chains = 0;
6164         debug_locks = 1;
6165         for (i = 0; i < CHAINHASH_SIZE; i++)
6166                 INIT_HLIST_HEAD(chainhash_table + i);
6167         raw_local_irq_restore(flags);
6168 }
6169
6170 /* Remove a class from a lock chain. Must be called with the graph lock held. */
6171 static void remove_class_from_lock_chain(struct pending_free *pf,
6172                                          struct lock_chain *chain,
6173                                          struct lock_class *class)
6174 {
6175 #ifdef CONFIG_PROVE_LOCKING
6176         int i;
6177
6178         for (i = chain->base; i < chain->base + chain->depth; i++) {
6179                 if (chain_hlock_class_idx(chain_hlocks[i]) != class - lock_classes)
6180                         continue;
6181                 /*
6182                  * Each lock class occurs at most once in a lock chain so once
6183                  * we found a match we can break out of this loop.
6184                  */
6185                 goto free_lock_chain;
6186         }
6187         /* Since the chain has not been modified, return. */
6188         return;
6189
6190 free_lock_chain:
6191         free_chain_hlocks(chain->base, chain->depth);
6192         /* Overwrite the chain key for concurrent RCU readers. */
6193         WRITE_ONCE(chain->chain_key, INITIAL_CHAIN_KEY);
6194         dec_chains(chain->irq_context);
6195
6196         /*
6197          * Note: calling hlist_del_rcu() from inside a
6198          * hlist_for_each_entry_rcu() loop is safe.
6199          */
6200         hlist_del_rcu(&chain->entry);
6201         __set_bit(chain - lock_chains, pf->lock_chains_being_freed);
6202         nr_zapped_lock_chains++;
6203 #endif
6204 }
6205
6206 /* Must be called with the graph lock held. */
6207 static void remove_class_from_lock_chains(struct pending_free *pf,
6208                                           struct lock_class *class)
6209 {
6210         struct lock_chain *chain;
6211         struct hlist_head *head;
6212         int i;
6213
6214         for (i = 0; i < ARRAY_SIZE(chainhash_table); i++) {
6215                 head = chainhash_table + i;
6216                 hlist_for_each_entry_rcu(chain, head, entry) {
6217                         remove_class_from_lock_chain(pf, chain, class);
6218                 }
6219         }
6220 }
6221
6222 /*
6223  * Remove all references to a lock class. The caller must hold the graph lock.
6224  */
6225 static void zap_class(struct pending_free *pf, struct lock_class *class)
6226 {
6227         struct lock_list *entry;
6228         int i;
6229
6230         WARN_ON_ONCE(!class->key);
6231
6232         /*
6233          * Remove all dependencies this lock is
6234          * involved in:
6235          */
6236         for_each_set_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) {
6237                 entry = list_entries + i;
6238                 if (entry->class != class && entry->links_to != class)
6239                         continue;
6240                 __clear_bit(i, list_entries_in_use);
6241                 nr_list_entries--;
6242                 list_del_rcu(&entry->entry);
6243         }
6244         if (list_empty(&class->locks_after) &&
6245             list_empty(&class->locks_before)) {
6246                 list_move_tail(&class->lock_entry, &pf->zapped);
6247                 hlist_del_rcu(&class->hash_entry);
6248                 WRITE_ONCE(class->key, NULL);
6249                 WRITE_ONCE(class->name, NULL);
6250                 nr_lock_classes--;
6251                 __clear_bit(class - lock_classes, lock_classes_in_use);
6252                 if (class - lock_classes == max_lock_class_idx)
6253                         max_lock_class_idx--;
6254         } else {
6255                 WARN_ONCE(true, "%s() failed for class %s\n", __func__,
6256                           class->name);
6257         }
6258
6259         remove_class_from_lock_chains(pf, class);
6260         nr_zapped_classes++;
6261 }
6262
6263 static void reinit_class(struct lock_class *class)
6264 {
6265         WARN_ON_ONCE(!class->lock_entry.next);
6266         WARN_ON_ONCE(!list_empty(&class->locks_after));
6267         WARN_ON_ONCE(!list_empty(&class->locks_before));
6268         memset_startat(class, 0, key);
6269         WARN_ON_ONCE(!class->lock_entry.next);
6270         WARN_ON_ONCE(!list_empty(&class->locks_after));
6271         WARN_ON_ONCE(!list_empty(&class->locks_before));
6272 }
6273
6274 static inline int within(const void *addr, void *start, unsigned long size)
6275 {
6276         return addr >= start && addr < start + size;
6277 }
6278
6279 static bool inside_selftest(void)
6280 {
6281         return current == lockdep_selftest_task_struct;
6282 }
6283
6284 /* The caller must hold the graph lock. */
6285 static struct pending_free *get_pending_free(void)
6286 {
6287         return delayed_free.pf + delayed_free.index;
6288 }
6289
6290 static void free_zapped_rcu(struct rcu_head *cb);
6291
6292 /*
6293 * See if we need to queue an RCU callback, must called with
6294 * the lockdep lock held, returns false if either we don't have
6295 * any pending free or the callback is already scheduled.
6296 * Otherwise, a call_rcu() must follow this function call.
6297 */
6298 static bool prepare_call_rcu_zapped(struct pending_free *pf)
6299 {
6300         WARN_ON_ONCE(inside_selftest());
6301
6302         if (list_empty(&pf->zapped))
6303                 return false;
6304
6305         if (delayed_free.scheduled)
6306                 return false;
6307
6308         delayed_free.scheduled = true;
6309
6310         WARN_ON_ONCE(delayed_free.pf + delayed_free.index != pf);
6311         delayed_free.index ^= 1;
6312
6313         return true;
6314 }
6315
6316 /* The caller must hold the graph lock. May be called from RCU context. */
6317 static void __free_zapped_classes(struct pending_free *pf)
6318 {
6319         struct lock_class *class;
6320
6321         check_data_structures();
6322
6323         list_for_each_entry(class, &pf->zapped, lock_entry)
6324                 reinit_class(class);
6325
6326         list_splice_init(&pf->zapped, &free_lock_classes);
6327
6328 #ifdef CONFIG_PROVE_LOCKING
6329         bitmap_andnot(lock_chains_in_use, lock_chains_in_use,
6330                       pf->lock_chains_being_freed, ARRAY_SIZE(lock_chains));
6331         bitmap_clear(pf->lock_chains_being_freed, 0, ARRAY_SIZE(lock_chains));
6332 #endif
6333 }
6334
6335 static void free_zapped_rcu(struct rcu_head *ch)
6336 {
6337         struct pending_free *pf;
6338         unsigned long flags;
6339         bool need_callback;
6340
6341         if (WARN_ON_ONCE(ch != &delayed_free.rcu_head))
6342                 return;
6343
6344         raw_local_irq_save(flags);
6345         lockdep_lock();
6346
6347         /* closed head */
6348         pf = delayed_free.pf + (delayed_free.index ^ 1);
6349         __free_zapped_classes(pf);
6350         delayed_free.scheduled = false;
6351         need_callback =
6352                 prepare_call_rcu_zapped(delayed_free.pf + delayed_free.index);
6353         lockdep_unlock();
6354         raw_local_irq_restore(flags);
6355
6356         /*
6357         * If there's pending free and its callback has not been scheduled,
6358         * queue an RCU callback.
6359         */
6360         if (need_callback)
6361                 call_rcu(&delayed_free.rcu_head, free_zapped_rcu);
6362
6363 }
6364
6365 /*
6366  * Remove all lock classes from the class hash table and from the
6367  * all_lock_classes list whose key or name is in the address range [start,
6368  * start + size). Move these lock classes to the zapped_classes list. Must
6369  * be called with the graph lock held.
6370  */
6371 static void __lockdep_free_key_range(struct pending_free *pf, void *start,
6372                                      unsigned long size)
6373 {
6374         struct lock_class *class;
6375         struct hlist_head *head;
6376         int i;
6377
6378         /* Unhash all classes that were created by a module. */
6379         for (i = 0; i < CLASSHASH_SIZE; i++) {
6380                 head = classhash_table + i;
6381                 hlist_for_each_entry_rcu(class, head, hash_entry) {
6382                         if (!within(class->key, start, size) &&
6383                             !within(class->name, start, size))
6384                                 continue;
6385                         zap_class(pf, class);
6386                 }
6387         }
6388 }
6389
6390 /*
6391  * Used in module.c to remove lock classes from memory that is going to be
6392  * freed; and possibly re-used by other modules.
6393  *
6394  * We will have had one synchronize_rcu() before getting here, so we're
6395  * guaranteed nobody will look up these exact classes -- they're properly dead
6396  * but still allocated.
6397  */
6398 static void lockdep_free_key_range_reg(void *start, unsigned long size)
6399 {
6400         struct pending_free *pf;
6401         unsigned long flags;
6402         bool need_callback;
6403
6404         init_data_structures_once();
6405
6406         raw_local_irq_save(flags);
6407         lockdep_lock();
6408         pf = get_pending_free();
6409         __lockdep_free_key_range(pf, start, size);
6410         need_callback = prepare_call_rcu_zapped(pf);
6411         lockdep_unlock();
6412         raw_local_irq_restore(flags);
6413         if (need_callback)
6414                 call_rcu(&delayed_free.rcu_head, free_zapped_rcu);
6415         /*
6416          * Wait for any possible iterators from look_up_lock_class() to pass
6417          * before continuing to free the memory they refer to.
6418          */
6419         synchronize_rcu();
6420 }
6421
6422 /*
6423  * Free all lockdep keys in the range [start, start+size). Does not sleep.
6424  * Ignores debug_locks. Must only be used by the lockdep selftests.
6425  */
6426 static void lockdep_free_key_range_imm(void *start, unsigned long size)
6427 {
6428         struct pending_free *pf = delayed_free.pf;
6429         unsigned long flags;
6430
6431         init_data_structures_once();
6432
6433         raw_local_irq_save(flags);
6434         lockdep_lock();
6435         __lockdep_free_key_range(pf, start, size);
6436         __free_zapped_classes(pf);
6437         lockdep_unlock();
6438         raw_local_irq_restore(flags);
6439 }
6440
6441 void lockdep_free_key_range(void *start, unsigned long size)
6442 {
6443         init_data_structures_once();
6444
6445         if (inside_selftest())
6446                 lockdep_free_key_range_imm(start, size);
6447         else
6448                 lockdep_free_key_range_reg(start, size);
6449 }
6450
6451 /*
6452  * Check whether any element of the @lock->class_cache[] array refers to a
6453  * registered lock class. The caller must hold either the graph lock or the
6454  * RCU read lock.
6455  */
6456 static bool lock_class_cache_is_registered(struct lockdep_map *lock)
6457 {
6458         struct lock_class *class;
6459         struct hlist_head *head;
6460         int i, j;
6461
6462         for (i = 0; i < CLASSHASH_SIZE; i++) {
6463                 head = classhash_table + i;
6464                 hlist_for_each_entry_rcu(class, head, hash_entry) {
6465                         for (j = 0; j < NR_LOCKDEP_CACHING_CLASSES; j++)
6466                                 if (lock->class_cache[j] == class)
6467                                         return true;
6468                 }
6469         }
6470         return false;
6471 }
6472
6473 /* The caller must hold the graph lock. Does not sleep. */
6474 static void __lockdep_reset_lock(struct pending_free *pf,
6475                                  struct lockdep_map *lock)
6476 {
6477         struct lock_class *class;
6478         int j;
6479
6480         /*
6481          * Remove all classes this lock might have:
6482          */
6483         for (j = 0; j < MAX_LOCKDEP_SUBCLASSES; j++) {
6484                 /*
6485                  * If the class exists we look it up and zap it:
6486                  */
6487                 class = look_up_lock_class(lock, j);
6488                 if (class)
6489                         zap_class(pf, class);
6490         }
6491         /*
6492          * Debug check: in the end all mapped classes should
6493          * be gone.
6494          */
6495         if (WARN_ON_ONCE(lock_class_cache_is_registered(lock)))
6496                 debug_locks_off();
6497 }
6498
6499 /*
6500  * Remove all information lockdep has about a lock if debug_locks == 1. Free
6501  * released data structures from RCU context.
6502  */
6503 static void lockdep_reset_lock_reg(struct lockdep_map *lock)
6504 {
6505         struct pending_free *pf;
6506         unsigned long flags;
6507         int locked;
6508         bool need_callback = false;
6509
6510         raw_local_irq_save(flags);
6511         locked = graph_lock();
6512         if (!locked)
6513                 goto out_irq;
6514
6515         pf = get_pending_free();
6516         __lockdep_reset_lock(pf, lock);
6517         need_callback = prepare_call_rcu_zapped(pf);
6518
6519         graph_unlock();
6520 out_irq:
6521         raw_local_irq_restore(flags);
6522         if (need_callback)
6523                 call_rcu(&delayed_free.rcu_head, free_zapped_rcu);
6524 }
6525
6526 /*
6527  * Reset a lock. Does not sleep. Ignores debug_locks. Must only be used by the
6528  * lockdep selftests.
6529  */
6530 static void lockdep_reset_lock_imm(struct lockdep_map *lock)
6531 {
6532         struct pending_free *pf = delayed_free.pf;
6533         unsigned long flags;
6534
6535         raw_local_irq_save(flags);
6536         lockdep_lock();
6537         __lockdep_reset_lock(pf, lock);
6538         __free_zapped_classes(pf);
6539         lockdep_unlock();
6540         raw_local_irq_restore(flags);
6541 }
6542
6543 void lockdep_reset_lock(struct lockdep_map *lock)
6544 {
6545         init_data_structures_once();
6546
6547         if (inside_selftest())
6548                 lockdep_reset_lock_imm(lock);
6549         else
6550                 lockdep_reset_lock_reg(lock);
6551 }
6552
6553 /*
6554  * Unregister a dynamically allocated key.
6555  *
6556  * Unlike lockdep_register_key(), a search is always done to find a matching
6557  * key irrespective of debug_locks to avoid potential invalid access to freed
6558  * memory in lock_class entry.
6559  */
6560 void lockdep_unregister_key(struct lock_class_key *key)
6561 {
6562         struct hlist_head *hash_head = keyhashentry(key);
6563         struct lock_class_key *k;
6564         struct pending_free *pf;
6565         unsigned long flags;
6566         bool found = false;
6567         bool need_callback = false;
6568
6569         might_sleep();
6570
6571         if (WARN_ON_ONCE(static_obj(key)))
6572                 return;
6573
6574         raw_local_irq_save(flags);
6575         lockdep_lock();
6576
6577         hlist_for_each_entry_rcu(k, hash_head, hash_entry) {
6578                 if (k == key) {
6579                         hlist_del_rcu(&k->hash_entry);
6580                         found = true;
6581                         break;
6582                 }
6583         }
6584         WARN_ON_ONCE(!found && debug_locks);
6585         if (found) {
6586                 pf = get_pending_free();
6587                 __lockdep_free_key_range(pf, key, 1);
6588                 need_callback = prepare_call_rcu_zapped(pf);
6589         }
6590         lockdep_unlock();
6591         raw_local_irq_restore(flags);
6592
6593         if (need_callback)
6594                 call_rcu(&delayed_free.rcu_head, free_zapped_rcu);
6595
6596         /* Wait until is_dynamic_key() has finished accessing k->hash_entry. */
6597         synchronize_rcu();
6598 }
6599 EXPORT_SYMBOL_GPL(lockdep_unregister_key);
6600
6601 void __init lockdep_init(void)
6602 {
6603         pr_info("Lock dependency validator: Copyright (c) 2006 Red Hat, Inc., Ingo Molnar\n");
6604
6605         pr_info("... MAX_LOCKDEP_SUBCLASSES:  %lu\n", MAX_LOCKDEP_SUBCLASSES);
6606         pr_info("... MAX_LOCK_DEPTH:          %lu\n", MAX_LOCK_DEPTH);
6607         pr_info("... MAX_LOCKDEP_KEYS:        %lu\n", MAX_LOCKDEP_KEYS);
6608         pr_info("... CLASSHASH_SIZE:          %lu\n", CLASSHASH_SIZE);
6609         pr_info("... MAX_LOCKDEP_ENTRIES:     %lu\n", MAX_LOCKDEP_ENTRIES);
6610         pr_info("... MAX_LOCKDEP_CHAINS:      %lu\n", MAX_LOCKDEP_CHAINS);
6611         pr_info("... CHAINHASH_SIZE:          %lu\n", CHAINHASH_SIZE);
6612
6613         pr_info(" memory used by lock dependency info: %zu kB\n",
6614                (sizeof(lock_classes) +
6615                 sizeof(lock_classes_in_use) +
6616                 sizeof(classhash_table) +
6617                 sizeof(list_entries) +
6618                 sizeof(list_entries_in_use) +
6619                 sizeof(chainhash_table) +
6620                 sizeof(delayed_free)
6621 #ifdef CONFIG_PROVE_LOCKING
6622                 + sizeof(lock_cq)
6623                 + sizeof(lock_chains)
6624                 + sizeof(lock_chains_in_use)
6625                 + sizeof(chain_hlocks)
6626 #endif
6627                 ) / 1024
6628                 );
6629
6630 #if defined(CONFIG_TRACE_IRQFLAGS) && defined(CONFIG_PROVE_LOCKING)
6631         pr_info(" memory used for stack traces: %zu kB\n",
6632                (sizeof(stack_trace) + sizeof(stack_trace_hash)) / 1024
6633                );
6634 #endif
6635
6636         pr_info(" per task-struct memory footprint: %zu bytes\n",
6637                sizeof(((struct task_struct *)NULL)->held_locks));
6638 }
6639
6640 static void
6641 print_freed_lock_bug(struct task_struct *curr, const void *mem_from,
6642                      const void *mem_to, struct held_lock *hlock)
6643 {
6644         if (!debug_locks_off())
6645                 return;
6646         if (debug_locks_silent)
6647                 return;
6648
6649         nbcon_cpu_emergency_enter();
6650
6651         pr_warn("\n");
6652         pr_warn("=========================\n");
6653         pr_warn("WARNING: held lock freed!\n");
6654         print_kernel_ident();
6655         pr_warn("-------------------------\n");
6656         pr_warn("%s/%d is freeing memory %px-%px, with a lock still held there!\n",
6657                 curr->comm, task_pid_nr(curr), mem_from, mem_to-1);
6658         print_lock(hlock);
6659         lockdep_print_held_locks(curr);
6660
6661         pr_warn("\nstack backtrace:\n");
6662         dump_stack();
6663
6664         nbcon_cpu_emergency_exit();
6665 }
6666
6667 static inline int not_in_range(const void* mem_from, unsigned long mem_len,
6668                                 const void* lock_from, unsigned long lock_len)
6669 {
6670         return lock_from + lock_len <= mem_from ||
6671                 mem_from + mem_len <= lock_from;
6672 }
6673
6674 /*
6675  * Called when kernel memory is freed (or unmapped), or if a lock
6676  * is destroyed or reinitialized - this code checks whether there is
6677  * any held lock in the memory range of <from> to <to>:
6678  */
6679 void debug_check_no_locks_freed(const void *mem_from, unsigned long mem_len)
6680 {
6681         struct task_struct *curr = current;
6682         struct held_lock *hlock;
6683         unsigned long flags;
6684         int i;
6685
6686         if (unlikely(!debug_locks))
6687                 return;
6688
6689         raw_local_irq_save(flags);
6690         for (i = 0; i < curr->lockdep_depth; i++) {
6691                 hlock = curr->held_locks + i;
6692
6693                 if (not_in_range(mem_from, mem_len, hlock->instance,
6694                                         sizeof(*hlock->instance)))
6695                         continue;
6696
6697                 print_freed_lock_bug(curr, mem_from, mem_from + mem_len, hlock);
6698                 break;
6699         }
6700         raw_local_irq_restore(flags);
6701 }
6702 EXPORT_SYMBOL_GPL(debug_check_no_locks_freed);
6703
6704 static void print_held_locks_bug(void)
6705 {
6706         if (!debug_locks_off())
6707                 return;
6708         if (debug_locks_silent)
6709                 return;
6710
6711         nbcon_cpu_emergency_enter();
6712
6713         pr_warn("\n");
6714         pr_warn("====================================\n");
6715         pr_warn("WARNING: %s/%d still has locks held!\n",
6716                current->comm, task_pid_nr(current));
6717         print_kernel_ident();
6718         pr_warn("------------------------------------\n");
6719         lockdep_print_held_locks(current);
6720         pr_warn("\nstack backtrace:\n");
6721         dump_stack();
6722
6723         nbcon_cpu_emergency_exit();
6724 }
6725
6726 void debug_check_no_locks_held(void)
6727 {
6728         if (unlikely(current->lockdep_depth > 0))
6729                 print_held_locks_bug();
6730 }
6731 EXPORT_SYMBOL_GPL(debug_check_no_locks_held);
6732
6733 #ifdef __KERNEL__
6734 void debug_show_all_locks(void)
6735 {
6736         struct task_struct *g, *p;
6737
6738         if (unlikely(!debug_locks)) {
6739                 pr_warn("INFO: lockdep is turned off.\n");
6740                 return;
6741         }
6742         pr_warn("\nShowing all locks held in the system:\n");
6743
6744         rcu_read_lock();
6745         for_each_process_thread(g, p) {
6746                 if (!p->lockdep_depth)
6747                         continue;
6748                 lockdep_print_held_locks(p);
6749                 touch_nmi_watchdog();
6750                 touch_all_softlockup_watchdogs();
6751         }
6752         rcu_read_unlock();
6753
6754         pr_warn("\n");
6755         pr_warn("=============================================\n\n");
6756 }
6757 EXPORT_SYMBOL_GPL(debug_show_all_locks);
6758 #endif
6759
6760 /*
6761  * Careful: only use this function if you are sure that
6762  * the task cannot run in parallel!
6763  */
6764 void debug_show_held_locks(struct task_struct *task)
6765 {
6766         if (unlikely(!debug_locks)) {
6767                 printk("INFO: lockdep is turned off.\n");
6768                 return;
6769         }
6770         lockdep_print_held_locks(task);
6771 }
6772 EXPORT_SYMBOL_GPL(debug_show_held_locks);
6773
6774 asmlinkage __visible void lockdep_sys_exit(void)
6775 {
6776         struct task_struct *curr = current;
6777
6778         if (unlikely(curr->lockdep_depth)) {
6779                 if (!debug_locks_off())
6780                         return;
6781                 nbcon_cpu_emergency_enter();
6782                 pr_warn("\n");
6783                 pr_warn("================================================\n");
6784                 pr_warn("WARNING: lock held when returning to user space!\n");
6785                 print_kernel_ident();
6786                 pr_warn("------------------------------------------------\n");
6787                 pr_warn("%s/%d is leaving the kernel with locks still held!\n",
6788                                 curr->comm, curr->pid);
6789                 lockdep_print_held_locks(curr);
6790                 nbcon_cpu_emergency_exit();
6791         }
6792
6793         /*
6794          * The lock history for each syscall should be independent. So wipe the
6795          * slate clean on return to userspace.
6796          */
6797         lockdep_invariant_state(false);
6798 }
6799
6800 void lockdep_rcu_suspicious(const char *file, const int line, const char *s)
6801 {
6802         struct task_struct *curr = current;
6803         int dl = READ_ONCE(debug_locks);
6804         bool rcu = warn_rcu_enter();
6805
6806         /* Note: the following can be executed concurrently, so be careful. */
6807         nbcon_cpu_emergency_enter();
6808         pr_warn("\n");
6809         pr_warn("=============================\n");
6810         pr_warn("WARNING: suspicious RCU usage\n");
6811         print_kernel_ident();
6812         pr_warn("-----------------------------\n");
6813         pr_warn("%s:%d %s!\n", file, line, s);
6814         pr_warn("\nother info that might help us debug this:\n\n");
6815         pr_warn("\n%srcu_scheduler_active = %d, debug_locks = %d\n%s",
6816                !rcu_lockdep_current_cpu_online()
6817                         ? "RCU used illegally from offline CPU!\n"
6818                         : "",
6819                rcu_scheduler_active, dl,
6820                dl ? "" : "Possible false positive due to lockdep disabling via debug_locks = 0\n");
6821
6822         /*
6823          * If a CPU is in the RCU-free window in idle (ie: in the section
6824          * between ct_idle_enter() and ct_idle_exit(), then RCU
6825          * considers that CPU to be in an "extended quiescent state",
6826          * which means that RCU will be completely ignoring that CPU.
6827          * Therefore, rcu_read_lock() and friends have absolutely no
6828          * effect on a CPU running in that state. In other words, even if
6829          * such an RCU-idle CPU has called rcu_read_lock(), RCU might well
6830          * delete data structures out from under it.  RCU really has no
6831          * choice here: we need to keep an RCU-free window in idle where
6832          * the CPU may possibly enter into low power mode. This way we can
6833          * notice an extended quiescent state to other CPUs that started a grace
6834          * period. Otherwise we would delay any grace period as long as we run
6835          * in the idle task.
6836          *
6837          * So complain bitterly if someone does call rcu_read_lock(),
6838          * rcu_read_lock_bh() and so on from extended quiescent states.
6839          */
6840         if (!rcu_is_watching())
6841                 pr_warn("RCU used illegally from extended quiescent state!\n");
6842
6843         lockdep_print_held_locks(curr);
6844         pr_warn("\nstack backtrace:\n");
6845         dump_stack();
6846         nbcon_cpu_emergency_exit();
6847         warn_rcu_exit(rcu);
6848 }
6849 EXPORT_SYMBOL_GPL(lockdep_rcu_suspicious);
This page took 0.401186 seconds and 4 git commands to generate.