]> Git Repo - J-linux.git/blob - kernel/events/core.c
Merge tag 'vfs-6.13-rc7.fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs
[J-linux.git] / kernel / events / core.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Performance events core code:
4  *
5  *  Copyright (C) 2008 Thomas Gleixner <[email protected]>
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
7  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
8  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <[email protected]>
9  */
10
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/cpu.h>
14 #include <linux/smp.h>
15 #include <linux/idr.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/hash.h>
20 #include <linux/tick.h>
21 #include <linux/sysfs.h>
22 #include <linux/dcache.h>
23 #include <linux/percpu.h>
24 #include <linux/ptrace.h>
25 #include <linux/reboot.h>
26 #include <linux/vmstat.h>
27 #include <linux/device.h>
28 #include <linux/export.h>
29 #include <linux/vmalloc.h>
30 #include <linux/hardirq.h>
31 #include <linux/hugetlb.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49 #include <linux/sched/clock.h>
50 #include <linux/sched/mm.h>
51 #include <linux/proc_ns.h>
52 #include <linux/mount.h>
53 #include <linux/min_heap.h>
54 #include <linux/highmem.h>
55 #include <linux/pgtable.h>
56 #include <linux/buildid.h>
57 #include <linux/task_work.h>
58
59 #include "internal.h"
60
61 #include <asm/irq_regs.h>
62
63 typedef int (*remote_function_f)(void *);
64
65 struct remote_function_call {
66         struct task_struct      *p;
67         remote_function_f       func;
68         void                    *info;
69         int                     ret;
70 };
71
72 static void remote_function(void *data)
73 {
74         struct remote_function_call *tfc = data;
75         struct task_struct *p = tfc->p;
76
77         if (p) {
78                 /* -EAGAIN */
79                 if (task_cpu(p) != smp_processor_id())
80                         return;
81
82                 /*
83                  * Now that we're on right CPU with IRQs disabled, we can test
84                  * if we hit the right task without races.
85                  */
86
87                 tfc->ret = -ESRCH; /* No such (running) process */
88                 if (p != current)
89                         return;
90         }
91
92         tfc->ret = tfc->func(tfc->info);
93 }
94
95 /**
96  * task_function_call - call a function on the cpu on which a task runs
97  * @p:          the task to evaluate
98  * @func:       the function to be called
99  * @info:       the function call argument
100  *
101  * Calls the function @func when the task is currently running. This might
102  * be on the current CPU, which just calls the function directly.  This will
103  * retry due to any failures in smp_call_function_single(), such as if the
104  * task_cpu() goes offline concurrently.
105  *
106  * returns @func return value or -ESRCH or -ENXIO when the process isn't running
107  */
108 static int
109 task_function_call(struct task_struct *p, remote_function_f func, void *info)
110 {
111         struct remote_function_call data = {
112                 .p      = p,
113                 .func   = func,
114                 .info   = info,
115                 .ret    = -EAGAIN,
116         };
117         int ret;
118
119         for (;;) {
120                 ret = smp_call_function_single(task_cpu(p), remote_function,
121                                                &data, 1);
122                 if (!ret)
123                         ret = data.ret;
124
125                 if (ret != -EAGAIN)
126                         break;
127
128                 cond_resched();
129         }
130
131         return ret;
132 }
133
134 /**
135  * cpu_function_call - call a function on the cpu
136  * @cpu:        target cpu to queue this function
137  * @func:       the function to be called
138  * @info:       the function call argument
139  *
140  * Calls the function @func on the remote cpu.
141  *
142  * returns: @func return value or -ENXIO when the cpu is offline
143  */
144 static int cpu_function_call(int cpu, remote_function_f func, void *info)
145 {
146         struct remote_function_call data = {
147                 .p      = NULL,
148                 .func   = func,
149                 .info   = info,
150                 .ret    = -ENXIO, /* No such CPU */
151         };
152
153         smp_call_function_single(cpu, remote_function, &data, 1);
154
155         return data.ret;
156 }
157
158 enum event_type_t {
159         EVENT_FLEXIBLE  = 0x01,
160         EVENT_PINNED    = 0x02,
161         EVENT_TIME      = 0x04,
162         EVENT_FROZEN    = 0x08,
163         /* see ctx_resched() for details */
164         EVENT_CPU       = 0x10,
165         EVENT_CGROUP    = 0x20,
166
167         /* compound helpers */
168         EVENT_ALL         = EVENT_FLEXIBLE | EVENT_PINNED,
169         EVENT_TIME_FROZEN = EVENT_TIME | EVENT_FROZEN,
170 };
171
172 static inline void __perf_ctx_lock(struct perf_event_context *ctx)
173 {
174         raw_spin_lock(&ctx->lock);
175         WARN_ON_ONCE(ctx->is_active & EVENT_FROZEN);
176 }
177
178 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
179                           struct perf_event_context *ctx)
180 {
181         __perf_ctx_lock(&cpuctx->ctx);
182         if (ctx)
183                 __perf_ctx_lock(ctx);
184 }
185
186 static inline void __perf_ctx_unlock(struct perf_event_context *ctx)
187 {
188         /*
189          * If ctx_sched_in() didn't again set any ALL flags, clean up
190          * after ctx_sched_out() by clearing is_active.
191          */
192         if (ctx->is_active & EVENT_FROZEN) {
193                 if (!(ctx->is_active & EVENT_ALL))
194                         ctx->is_active = 0;
195                 else
196                         ctx->is_active &= ~EVENT_FROZEN;
197         }
198         raw_spin_unlock(&ctx->lock);
199 }
200
201 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
202                             struct perf_event_context *ctx)
203 {
204         if (ctx)
205                 __perf_ctx_unlock(ctx);
206         __perf_ctx_unlock(&cpuctx->ctx);
207 }
208
209 #define TASK_TOMBSTONE ((void *)-1L)
210
211 static bool is_kernel_event(struct perf_event *event)
212 {
213         return READ_ONCE(event->owner) == TASK_TOMBSTONE;
214 }
215
216 static DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
217
218 struct perf_event_context *perf_cpu_task_ctx(void)
219 {
220         lockdep_assert_irqs_disabled();
221         return this_cpu_ptr(&perf_cpu_context)->task_ctx;
222 }
223
224 /*
225  * On task ctx scheduling...
226  *
227  * When !ctx->nr_events a task context will not be scheduled. This means
228  * we can disable the scheduler hooks (for performance) without leaving
229  * pending task ctx state.
230  *
231  * This however results in two special cases:
232  *
233  *  - removing the last event from a task ctx; this is relatively straight
234  *    forward and is done in __perf_remove_from_context.
235  *
236  *  - adding the first event to a task ctx; this is tricky because we cannot
237  *    rely on ctx->is_active and therefore cannot use event_function_call().
238  *    See perf_install_in_context().
239  *
240  * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
241  */
242
243 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
244                         struct perf_event_context *, void *);
245
246 struct event_function_struct {
247         struct perf_event *event;
248         event_f func;
249         void *data;
250 };
251
252 static int event_function(void *info)
253 {
254         struct event_function_struct *efs = info;
255         struct perf_event *event = efs->event;
256         struct perf_event_context *ctx = event->ctx;
257         struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
258         struct perf_event_context *task_ctx = cpuctx->task_ctx;
259         int ret = 0;
260
261         lockdep_assert_irqs_disabled();
262
263         perf_ctx_lock(cpuctx, task_ctx);
264         /*
265          * Since we do the IPI call without holding ctx->lock things can have
266          * changed, double check we hit the task we set out to hit.
267          */
268         if (ctx->task) {
269                 if (ctx->task != current) {
270                         ret = -ESRCH;
271                         goto unlock;
272                 }
273
274                 /*
275                  * We only use event_function_call() on established contexts,
276                  * and event_function() is only ever called when active (or
277                  * rather, we'll have bailed in task_function_call() or the
278                  * above ctx->task != current test), therefore we must have
279                  * ctx->is_active here.
280                  */
281                 WARN_ON_ONCE(!ctx->is_active);
282                 /*
283                  * And since we have ctx->is_active, cpuctx->task_ctx must
284                  * match.
285                  */
286                 WARN_ON_ONCE(task_ctx != ctx);
287         } else {
288                 WARN_ON_ONCE(&cpuctx->ctx != ctx);
289         }
290
291         efs->func(event, cpuctx, ctx, efs->data);
292 unlock:
293         perf_ctx_unlock(cpuctx, task_ctx);
294
295         return ret;
296 }
297
298 static void event_function_call(struct perf_event *event, event_f func, void *data)
299 {
300         struct perf_event_context *ctx = event->ctx;
301         struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
302         struct perf_cpu_context *cpuctx;
303         struct event_function_struct efs = {
304                 .event = event,
305                 .func = func,
306                 .data = data,
307         };
308
309         if (!event->parent) {
310                 /*
311                  * If this is a !child event, we must hold ctx::mutex to
312                  * stabilize the event->ctx relation. See
313                  * perf_event_ctx_lock().
314                  */
315                 lockdep_assert_held(&ctx->mutex);
316         }
317
318         if (!task) {
319                 cpu_function_call(event->cpu, event_function, &efs);
320                 return;
321         }
322
323         if (task == TASK_TOMBSTONE)
324                 return;
325
326 again:
327         if (!task_function_call(task, event_function, &efs))
328                 return;
329
330         local_irq_disable();
331         cpuctx = this_cpu_ptr(&perf_cpu_context);
332         perf_ctx_lock(cpuctx, ctx);
333         /*
334          * Reload the task pointer, it might have been changed by
335          * a concurrent perf_event_context_sched_out().
336          */
337         task = ctx->task;
338         if (task == TASK_TOMBSTONE)
339                 goto unlock;
340         if (ctx->is_active) {
341                 perf_ctx_unlock(cpuctx, ctx);
342                 local_irq_enable();
343                 goto again;
344         }
345         func(event, NULL, ctx, data);
346 unlock:
347         perf_ctx_unlock(cpuctx, ctx);
348         local_irq_enable();
349 }
350
351 /*
352  * Similar to event_function_call() + event_function(), but hard assumes IRQs
353  * are already disabled and we're on the right CPU.
354  */
355 static void event_function_local(struct perf_event *event, event_f func, void *data)
356 {
357         struct perf_event_context *ctx = event->ctx;
358         struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
359         struct task_struct *task = READ_ONCE(ctx->task);
360         struct perf_event_context *task_ctx = NULL;
361
362         lockdep_assert_irqs_disabled();
363
364         if (task) {
365                 if (task == TASK_TOMBSTONE)
366                         return;
367
368                 task_ctx = ctx;
369         }
370
371         perf_ctx_lock(cpuctx, task_ctx);
372
373         task = ctx->task;
374         if (task == TASK_TOMBSTONE)
375                 goto unlock;
376
377         if (task) {
378                 /*
379                  * We must be either inactive or active and the right task,
380                  * otherwise we're screwed, since we cannot IPI to somewhere
381                  * else.
382                  */
383                 if (ctx->is_active) {
384                         if (WARN_ON_ONCE(task != current))
385                                 goto unlock;
386
387                         if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
388                                 goto unlock;
389                 }
390         } else {
391                 WARN_ON_ONCE(&cpuctx->ctx != ctx);
392         }
393
394         func(event, cpuctx, ctx, data);
395 unlock:
396         perf_ctx_unlock(cpuctx, task_ctx);
397 }
398
399 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
400                        PERF_FLAG_FD_OUTPUT  |\
401                        PERF_FLAG_PID_CGROUP |\
402                        PERF_FLAG_FD_CLOEXEC)
403
404 /*
405  * branch priv levels that need permission checks
406  */
407 #define PERF_SAMPLE_BRANCH_PERM_PLM \
408         (PERF_SAMPLE_BRANCH_KERNEL |\
409          PERF_SAMPLE_BRANCH_HV)
410
411 /*
412  * perf_sched_events : >0 events exist
413  */
414
415 static void perf_sched_delayed(struct work_struct *work);
416 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
417 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
418 static DEFINE_MUTEX(perf_sched_mutex);
419 static atomic_t perf_sched_count;
420
421 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
422
423 static atomic_t nr_mmap_events __read_mostly;
424 static atomic_t nr_comm_events __read_mostly;
425 static atomic_t nr_namespaces_events __read_mostly;
426 static atomic_t nr_task_events __read_mostly;
427 static atomic_t nr_freq_events __read_mostly;
428 static atomic_t nr_switch_events __read_mostly;
429 static atomic_t nr_ksymbol_events __read_mostly;
430 static atomic_t nr_bpf_events __read_mostly;
431 static atomic_t nr_cgroup_events __read_mostly;
432 static atomic_t nr_text_poke_events __read_mostly;
433 static atomic_t nr_build_id_events __read_mostly;
434
435 static LIST_HEAD(pmus);
436 static DEFINE_MUTEX(pmus_lock);
437 static struct srcu_struct pmus_srcu;
438 static cpumask_var_t perf_online_mask;
439 static cpumask_var_t perf_online_core_mask;
440 static cpumask_var_t perf_online_die_mask;
441 static cpumask_var_t perf_online_cluster_mask;
442 static cpumask_var_t perf_online_pkg_mask;
443 static cpumask_var_t perf_online_sys_mask;
444 static struct kmem_cache *perf_event_cache;
445
446 /*
447  * perf event paranoia level:
448  *  -1 - not paranoid at all
449  *   0 - disallow raw tracepoint access for unpriv
450  *   1 - disallow cpu events for unpriv
451  *   2 - disallow kernel profiling for unpriv
452  */
453 int sysctl_perf_event_paranoid __read_mostly = 2;
454
455 /* Minimum for 512 kiB + 1 user control page */
456 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
457
458 /*
459  * max perf event sample rate
460  */
461 #define DEFAULT_MAX_SAMPLE_RATE         100000
462 #define DEFAULT_SAMPLE_PERIOD_NS        (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
463 #define DEFAULT_CPU_TIME_MAX_PERCENT    25
464
465 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
466
467 static int max_samples_per_tick __read_mostly   = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
468 static int perf_sample_period_ns __read_mostly  = DEFAULT_SAMPLE_PERIOD_NS;
469
470 static int perf_sample_allowed_ns __read_mostly =
471         DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
472
473 static void update_perf_cpu_limits(void)
474 {
475         u64 tmp = perf_sample_period_ns;
476
477         tmp *= sysctl_perf_cpu_time_max_percent;
478         tmp = div_u64(tmp, 100);
479         if (!tmp)
480                 tmp = 1;
481
482         WRITE_ONCE(perf_sample_allowed_ns, tmp);
483 }
484
485 static bool perf_rotate_context(struct perf_cpu_pmu_context *cpc);
486
487 int perf_event_max_sample_rate_handler(const struct ctl_table *table, int write,
488                                        void *buffer, size_t *lenp, loff_t *ppos)
489 {
490         int ret;
491         int perf_cpu = sysctl_perf_cpu_time_max_percent;
492         /*
493          * If throttling is disabled don't allow the write:
494          */
495         if (write && (perf_cpu == 100 || perf_cpu == 0))
496                 return -EINVAL;
497
498         ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
499         if (ret || !write)
500                 return ret;
501
502         max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
503         perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
504         update_perf_cpu_limits();
505
506         return 0;
507 }
508
509 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
510
511 int perf_cpu_time_max_percent_handler(const struct ctl_table *table, int write,
512                 void *buffer, size_t *lenp, loff_t *ppos)
513 {
514         int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
515
516         if (ret || !write)
517                 return ret;
518
519         if (sysctl_perf_cpu_time_max_percent == 100 ||
520             sysctl_perf_cpu_time_max_percent == 0) {
521                 printk(KERN_WARNING
522                        "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
523                 WRITE_ONCE(perf_sample_allowed_ns, 0);
524         } else {
525                 update_perf_cpu_limits();
526         }
527
528         return 0;
529 }
530
531 /*
532  * perf samples are done in some very critical code paths (NMIs).
533  * If they take too much CPU time, the system can lock up and not
534  * get any real work done.  This will drop the sample rate when
535  * we detect that events are taking too long.
536  */
537 #define NR_ACCUMULATED_SAMPLES 128
538 static DEFINE_PER_CPU(u64, running_sample_length);
539
540 static u64 __report_avg;
541 static u64 __report_allowed;
542
543 static void perf_duration_warn(struct irq_work *w)
544 {
545         printk_ratelimited(KERN_INFO
546                 "perf: interrupt took too long (%lld > %lld), lowering "
547                 "kernel.perf_event_max_sample_rate to %d\n",
548                 __report_avg, __report_allowed,
549                 sysctl_perf_event_sample_rate);
550 }
551
552 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
553
554 void perf_sample_event_took(u64 sample_len_ns)
555 {
556         u64 max_len = READ_ONCE(perf_sample_allowed_ns);
557         u64 running_len;
558         u64 avg_len;
559         u32 max;
560
561         if (max_len == 0)
562                 return;
563
564         /* Decay the counter by 1 average sample. */
565         running_len = __this_cpu_read(running_sample_length);
566         running_len -= running_len/NR_ACCUMULATED_SAMPLES;
567         running_len += sample_len_ns;
568         __this_cpu_write(running_sample_length, running_len);
569
570         /*
571          * Note: this will be biased artificially low until we have
572          * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
573          * from having to maintain a count.
574          */
575         avg_len = running_len/NR_ACCUMULATED_SAMPLES;
576         if (avg_len <= max_len)
577                 return;
578
579         __report_avg = avg_len;
580         __report_allowed = max_len;
581
582         /*
583          * Compute a throttle threshold 25% below the current duration.
584          */
585         avg_len += avg_len / 4;
586         max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
587         if (avg_len < max)
588                 max /= (u32)avg_len;
589         else
590                 max = 1;
591
592         WRITE_ONCE(perf_sample_allowed_ns, avg_len);
593         WRITE_ONCE(max_samples_per_tick, max);
594
595         sysctl_perf_event_sample_rate = max * HZ;
596         perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
597
598         if (!irq_work_queue(&perf_duration_work)) {
599                 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
600                              "kernel.perf_event_max_sample_rate to %d\n",
601                              __report_avg, __report_allowed,
602                              sysctl_perf_event_sample_rate);
603         }
604 }
605
606 static atomic64_t perf_event_id;
607
608 static void update_context_time(struct perf_event_context *ctx);
609 static u64 perf_event_time(struct perf_event *event);
610
611 void __weak perf_event_print_debug(void)        { }
612
613 static inline u64 perf_clock(void)
614 {
615         return local_clock();
616 }
617
618 static inline u64 perf_event_clock(struct perf_event *event)
619 {
620         return event->clock();
621 }
622
623 /*
624  * State based event timekeeping...
625  *
626  * The basic idea is to use event->state to determine which (if any) time
627  * fields to increment with the current delta. This means we only need to
628  * update timestamps when we change state or when they are explicitly requested
629  * (read).
630  *
631  * Event groups make things a little more complicated, but not terribly so. The
632  * rules for a group are that if the group leader is OFF the entire group is
633  * OFF, irrespective of what the group member states are. This results in
634  * __perf_effective_state().
635  *
636  * A further ramification is that when a group leader flips between OFF and
637  * !OFF, we need to update all group member times.
638  *
639  *
640  * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
641  * need to make sure the relevant context time is updated before we try and
642  * update our timestamps.
643  */
644
645 static __always_inline enum perf_event_state
646 __perf_effective_state(struct perf_event *event)
647 {
648         struct perf_event *leader = event->group_leader;
649
650         if (leader->state <= PERF_EVENT_STATE_OFF)
651                 return leader->state;
652
653         return event->state;
654 }
655
656 static __always_inline void
657 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
658 {
659         enum perf_event_state state = __perf_effective_state(event);
660         u64 delta = now - event->tstamp;
661
662         *enabled = event->total_time_enabled;
663         if (state >= PERF_EVENT_STATE_INACTIVE)
664                 *enabled += delta;
665
666         *running = event->total_time_running;
667         if (state >= PERF_EVENT_STATE_ACTIVE)
668                 *running += delta;
669 }
670
671 static void perf_event_update_time(struct perf_event *event)
672 {
673         u64 now = perf_event_time(event);
674
675         __perf_update_times(event, now, &event->total_time_enabled,
676                                         &event->total_time_running);
677         event->tstamp = now;
678 }
679
680 static void perf_event_update_sibling_time(struct perf_event *leader)
681 {
682         struct perf_event *sibling;
683
684         for_each_sibling_event(sibling, leader)
685                 perf_event_update_time(sibling);
686 }
687
688 static void
689 perf_event_set_state(struct perf_event *event, enum perf_event_state state)
690 {
691         if (event->state == state)
692                 return;
693
694         perf_event_update_time(event);
695         /*
696          * If a group leader gets enabled/disabled all its siblings
697          * are affected too.
698          */
699         if ((event->state < 0) ^ (state < 0))
700                 perf_event_update_sibling_time(event);
701
702         WRITE_ONCE(event->state, state);
703 }
704
705 /*
706  * UP store-release, load-acquire
707  */
708
709 #define __store_release(ptr, val)                                       \
710 do {                                                                    \
711         barrier();                                                      \
712         WRITE_ONCE(*(ptr), (val));                                      \
713 } while (0)
714
715 #define __load_acquire(ptr)                                             \
716 ({                                                                      \
717         __unqual_scalar_typeof(*(ptr)) ___p = READ_ONCE(*(ptr));        \
718         barrier();                                                      \
719         ___p;                                                           \
720 })
721
722 #define for_each_epc(_epc, _ctx, _pmu, _cgroup)                         \
723         list_for_each_entry(_epc, &((_ctx)->pmu_ctx_list), pmu_ctx_entry) \
724                 if (_cgroup && !_epc->nr_cgroups)                       \
725                         continue;                                       \
726                 else if (_pmu && _epc->pmu != _pmu)                     \
727                         continue;                                       \
728                 else
729
730 static void perf_ctx_disable(struct perf_event_context *ctx, bool cgroup)
731 {
732         struct perf_event_pmu_context *pmu_ctx;
733
734         for_each_epc(pmu_ctx, ctx, NULL, cgroup)
735                 perf_pmu_disable(pmu_ctx->pmu);
736 }
737
738 static void perf_ctx_enable(struct perf_event_context *ctx, bool cgroup)
739 {
740         struct perf_event_pmu_context *pmu_ctx;
741
742         for_each_epc(pmu_ctx, ctx, NULL, cgroup)
743                 perf_pmu_enable(pmu_ctx->pmu);
744 }
745
746 static void ctx_sched_out(struct perf_event_context *ctx, struct pmu *pmu, enum event_type_t event_type);
747 static void ctx_sched_in(struct perf_event_context *ctx, struct pmu *pmu, enum event_type_t event_type);
748
749 #ifdef CONFIG_CGROUP_PERF
750
751 static inline bool
752 perf_cgroup_match(struct perf_event *event)
753 {
754         struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
755
756         /* @event doesn't care about cgroup */
757         if (!event->cgrp)
758                 return true;
759
760         /* wants specific cgroup scope but @cpuctx isn't associated with any */
761         if (!cpuctx->cgrp)
762                 return false;
763
764         /*
765          * Cgroup scoping is recursive.  An event enabled for a cgroup is
766          * also enabled for all its descendant cgroups.  If @cpuctx's
767          * cgroup is a descendant of @event's (the test covers identity
768          * case), it's a match.
769          */
770         return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
771                                     event->cgrp->css.cgroup);
772 }
773
774 static inline void perf_detach_cgroup(struct perf_event *event)
775 {
776         css_put(&event->cgrp->css);
777         event->cgrp = NULL;
778 }
779
780 static inline int is_cgroup_event(struct perf_event *event)
781 {
782         return event->cgrp != NULL;
783 }
784
785 static inline u64 perf_cgroup_event_time(struct perf_event *event)
786 {
787         struct perf_cgroup_info *t;
788
789         t = per_cpu_ptr(event->cgrp->info, event->cpu);
790         return t->time;
791 }
792
793 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now)
794 {
795         struct perf_cgroup_info *t;
796
797         t = per_cpu_ptr(event->cgrp->info, event->cpu);
798         if (!__load_acquire(&t->active))
799                 return t->time;
800         now += READ_ONCE(t->timeoffset);
801         return now;
802 }
803
804 static inline void __update_cgrp_time(struct perf_cgroup_info *info, u64 now, bool adv)
805 {
806         if (adv)
807                 info->time += now - info->timestamp;
808         info->timestamp = now;
809         /*
810          * see update_context_time()
811          */
812         WRITE_ONCE(info->timeoffset, info->time - info->timestamp);
813 }
814
815 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx, bool final)
816 {
817         struct perf_cgroup *cgrp = cpuctx->cgrp;
818         struct cgroup_subsys_state *css;
819         struct perf_cgroup_info *info;
820
821         if (cgrp) {
822                 u64 now = perf_clock();
823
824                 for (css = &cgrp->css; css; css = css->parent) {
825                         cgrp = container_of(css, struct perf_cgroup, css);
826                         info = this_cpu_ptr(cgrp->info);
827
828                         __update_cgrp_time(info, now, true);
829                         if (final)
830                                 __store_release(&info->active, 0);
831                 }
832         }
833 }
834
835 static inline void update_cgrp_time_from_event(struct perf_event *event)
836 {
837         struct perf_cgroup_info *info;
838
839         /*
840          * ensure we access cgroup data only when needed and
841          * when we know the cgroup is pinned (css_get)
842          */
843         if (!is_cgroup_event(event))
844                 return;
845
846         info = this_cpu_ptr(event->cgrp->info);
847         /*
848          * Do not update time when cgroup is not active
849          */
850         if (info->active)
851                 __update_cgrp_time(info, perf_clock(), true);
852 }
853
854 static inline void
855 perf_cgroup_set_timestamp(struct perf_cpu_context *cpuctx)
856 {
857         struct perf_event_context *ctx = &cpuctx->ctx;
858         struct perf_cgroup *cgrp = cpuctx->cgrp;
859         struct perf_cgroup_info *info;
860         struct cgroup_subsys_state *css;
861
862         /*
863          * ctx->lock held by caller
864          * ensure we do not access cgroup data
865          * unless we have the cgroup pinned (css_get)
866          */
867         if (!cgrp)
868                 return;
869
870         WARN_ON_ONCE(!ctx->nr_cgroups);
871
872         for (css = &cgrp->css; css; css = css->parent) {
873                 cgrp = container_of(css, struct perf_cgroup, css);
874                 info = this_cpu_ptr(cgrp->info);
875                 __update_cgrp_time(info, ctx->timestamp, false);
876                 __store_release(&info->active, 1);
877         }
878 }
879
880 /*
881  * reschedule events based on the cgroup constraint of task.
882  */
883 static void perf_cgroup_switch(struct task_struct *task)
884 {
885         struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
886         struct perf_cgroup *cgrp;
887
888         /*
889          * cpuctx->cgrp is set when the first cgroup event enabled,
890          * and is cleared when the last cgroup event disabled.
891          */
892         if (READ_ONCE(cpuctx->cgrp) == NULL)
893                 return;
894
895         WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
896
897         cgrp = perf_cgroup_from_task(task, NULL);
898         if (READ_ONCE(cpuctx->cgrp) == cgrp)
899                 return;
900
901         perf_ctx_lock(cpuctx, cpuctx->task_ctx);
902         perf_ctx_disable(&cpuctx->ctx, true);
903
904         ctx_sched_out(&cpuctx->ctx, NULL, EVENT_ALL|EVENT_CGROUP);
905         /*
906          * must not be done before ctxswout due
907          * to update_cgrp_time_from_cpuctx() in
908          * ctx_sched_out()
909          */
910         cpuctx->cgrp = cgrp;
911         /*
912          * set cgrp before ctxsw in to allow
913          * perf_cgroup_set_timestamp() in ctx_sched_in()
914          * to not have to pass task around
915          */
916         ctx_sched_in(&cpuctx->ctx, NULL, EVENT_ALL|EVENT_CGROUP);
917
918         perf_ctx_enable(&cpuctx->ctx, true);
919         perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
920 }
921
922 static int perf_cgroup_ensure_storage(struct perf_event *event,
923                                 struct cgroup_subsys_state *css)
924 {
925         struct perf_cpu_context *cpuctx;
926         struct perf_event **storage;
927         int cpu, heap_size, ret = 0;
928
929         /*
930          * Allow storage to have sufficient space for an iterator for each
931          * possibly nested cgroup plus an iterator for events with no cgroup.
932          */
933         for (heap_size = 1; css; css = css->parent)
934                 heap_size++;
935
936         for_each_possible_cpu(cpu) {
937                 cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
938                 if (heap_size <= cpuctx->heap_size)
939                         continue;
940
941                 storage = kmalloc_node(heap_size * sizeof(struct perf_event *),
942                                        GFP_KERNEL, cpu_to_node(cpu));
943                 if (!storage) {
944                         ret = -ENOMEM;
945                         break;
946                 }
947
948                 raw_spin_lock_irq(&cpuctx->ctx.lock);
949                 if (cpuctx->heap_size < heap_size) {
950                         swap(cpuctx->heap, storage);
951                         if (storage == cpuctx->heap_default)
952                                 storage = NULL;
953                         cpuctx->heap_size = heap_size;
954                 }
955                 raw_spin_unlock_irq(&cpuctx->ctx.lock);
956
957                 kfree(storage);
958         }
959
960         return ret;
961 }
962
963 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
964                                       struct perf_event_attr *attr,
965                                       struct perf_event *group_leader)
966 {
967         struct perf_cgroup *cgrp;
968         struct cgroup_subsys_state *css;
969         CLASS(fd, f)(fd);
970         int ret = 0;
971
972         if (fd_empty(f))
973                 return -EBADF;
974
975         css = css_tryget_online_from_dir(fd_file(f)->f_path.dentry,
976                                          &perf_event_cgrp_subsys);
977         if (IS_ERR(css))
978                 return PTR_ERR(css);
979
980         ret = perf_cgroup_ensure_storage(event, css);
981         if (ret)
982                 return ret;
983
984         cgrp = container_of(css, struct perf_cgroup, css);
985         event->cgrp = cgrp;
986
987         /*
988          * all events in a group must monitor
989          * the same cgroup because a task belongs
990          * to only one perf cgroup at a time
991          */
992         if (group_leader && group_leader->cgrp != cgrp) {
993                 perf_detach_cgroup(event);
994                 ret = -EINVAL;
995         }
996         return ret;
997 }
998
999 static inline void
1000 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
1001 {
1002         struct perf_cpu_context *cpuctx;
1003
1004         if (!is_cgroup_event(event))
1005                 return;
1006
1007         event->pmu_ctx->nr_cgroups++;
1008
1009         /*
1010          * Because cgroup events are always per-cpu events,
1011          * @ctx == &cpuctx->ctx.
1012          */
1013         cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
1014
1015         if (ctx->nr_cgroups++)
1016                 return;
1017
1018         cpuctx->cgrp = perf_cgroup_from_task(current, ctx);
1019 }
1020
1021 static inline void
1022 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
1023 {
1024         struct perf_cpu_context *cpuctx;
1025
1026         if (!is_cgroup_event(event))
1027                 return;
1028
1029         event->pmu_ctx->nr_cgroups--;
1030
1031         /*
1032          * Because cgroup events are always per-cpu events,
1033          * @ctx == &cpuctx->ctx.
1034          */
1035         cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
1036
1037         if (--ctx->nr_cgroups)
1038                 return;
1039
1040         cpuctx->cgrp = NULL;
1041 }
1042
1043 #else /* !CONFIG_CGROUP_PERF */
1044
1045 static inline bool
1046 perf_cgroup_match(struct perf_event *event)
1047 {
1048         return true;
1049 }
1050
1051 static inline void perf_detach_cgroup(struct perf_event *event)
1052 {}
1053
1054 static inline int is_cgroup_event(struct perf_event *event)
1055 {
1056         return 0;
1057 }
1058
1059 static inline void update_cgrp_time_from_event(struct perf_event *event)
1060 {
1061 }
1062
1063 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx,
1064                                                 bool final)
1065 {
1066 }
1067
1068 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
1069                                       struct perf_event_attr *attr,
1070                                       struct perf_event *group_leader)
1071 {
1072         return -EINVAL;
1073 }
1074
1075 static inline void
1076 perf_cgroup_set_timestamp(struct perf_cpu_context *cpuctx)
1077 {
1078 }
1079
1080 static inline u64 perf_cgroup_event_time(struct perf_event *event)
1081 {
1082         return 0;
1083 }
1084
1085 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now)
1086 {
1087         return 0;
1088 }
1089
1090 static inline void
1091 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
1092 {
1093 }
1094
1095 static inline void
1096 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
1097 {
1098 }
1099
1100 static void perf_cgroup_switch(struct task_struct *task)
1101 {
1102 }
1103 #endif
1104
1105 /*
1106  * set default to be dependent on timer tick just
1107  * like original code
1108  */
1109 #define PERF_CPU_HRTIMER (1000 / HZ)
1110 /*
1111  * function must be called with interrupts disabled
1112  */
1113 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1114 {
1115         struct perf_cpu_pmu_context *cpc;
1116         bool rotations;
1117
1118         lockdep_assert_irqs_disabled();
1119
1120         cpc = container_of(hr, struct perf_cpu_pmu_context, hrtimer);
1121         rotations = perf_rotate_context(cpc);
1122
1123         raw_spin_lock(&cpc->hrtimer_lock);
1124         if (rotations)
1125                 hrtimer_forward_now(hr, cpc->hrtimer_interval);
1126         else
1127                 cpc->hrtimer_active = 0;
1128         raw_spin_unlock(&cpc->hrtimer_lock);
1129
1130         return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1131 }
1132
1133 static void __perf_mux_hrtimer_init(struct perf_cpu_pmu_context *cpc, int cpu)
1134 {
1135         struct hrtimer *timer = &cpc->hrtimer;
1136         struct pmu *pmu = cpc->epc.pmu;
1137         u64 interval;
1138
1139         /*
1140          * check default is sane, if not set then force to
1141          * default interval (1/tick)
1142          */
1143         interval = pmu->hrtimer_interval_ms;
1144         if (interval < 1)
1145                 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1146
1147         cpc->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1148
1149         raw_spin_lock_init(&cpc->hrtimer_lock);
1150         hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED_HARD);
1151         timer->function = perf_mux_hrtimer_handler;
1152 }
1153
1154 static int perf_mux_hrtimer_restart(struct perf_cpu_pmu_context *cpc)
1155 {
1156         struct hrtimer *timer = &cpc->hrtimer;
1157         unsigned long flags;
1158
1159         raw_spin_lock_irqsave(&cpc->hrtimer_lock, flags);
1160         if (!cpc->hrtimer_active) {
1161                 cpc->hrtimer_active = 1;
1162                 hrtimer_forward_now(timer, cpc->hrtimer_interval);
1163                 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD);
1164         }
1165         raw_spin_unlock_irqrestore(&cpc->hrtimer_lock, flags);
1166
1167         return 0;
1168 }
1169
1170 static int perf_mux_hrtimer_restart_ipi(void *arg)
1171 {
1172         return perf_mux_hrtimer_restart(arg);
1173 }
1174
1175 void perf_pmu_disable(struct pmu *pmu)
1176 {
1177         int *count = this_cpu_ptr(pmu->pmu_disable_count);
1178         if (!(*count)++)
1179                 pmu->pmu_disable(pmu);
1180 }
1181
1182 void perf_pmu_enable(struct pmu *pmu)
1183 {
1184         int *count = this_cpu_ptr(pmu->pmu_disable_count);
1185         if (!--(*count))
1186                 pmu->pmu_enable(pmu);
1187 }
1188
1189 static void perf_assert_pmu_disabled(struct pmu *pmu)
1190 {
1191         WARN_ON_ONCE(*this_cpu_ptr(pmu->pmu_disable_count) == 0);
1192 }
1193
1194 static void get_ctx(struct perf_event_context *ctx)
1195 {
1196         refcount_inc(&ctx->refcount);
1197 }
1198
1199 static void *alloc_task_ctx_data(struct pmu *pmu)
1200 {
1201         if (pmu->task_ctx_cache)
1202                 return kmem_cache_zalloc(pmu->task_ctx_cache, GFP_KERNEL);
1203
1204         return NULL;
1205 }
1206
1207 static void free_task_ctx_data(struct pmu *pmu, void *task_ctx_data)
1208 {
1209         if (pmu->task_ctx_cache && task_ctx_data)
1210                 kmem_cache_free(pmu->task_ctx_cache, task_ctx_data);
1211 }
1212
1213 static void free_ctx(struct rcu_head *head)
1214 {
1215         struct perf_event_context *ctx;
1216
1217         ctx = container_of(head, struct perf_event_context, rcu_head);
1218         kfree(ctx);
1219 }
1220
1221 static void put_ctx(struct perf_event_context *ctx)
1222 {
1223         if (refcount_dec_and_test(&ctx->refcount)) {
1224                 if (ctx->parent_ctx)
1225                         put_ctx(ctx->parent_ctx);
1226                 if (ctx->task && ctx->task != TASK_TOMBSTONE)
1227                         put_task_struct(ctx->task);
1228                 call_rcu(&ctx->rcu_head, free_ctx);
1229         }
1230 }
1231
1232 /*
1233  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1234  * perf_pmu_migrate_context() we need some magic.
1235  *
1236  * Those places that change perf_event::ctx will hold both
1237  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1238  *
1239  * Lock ordering is by mutex address. There are two other sites where
1240  * perf_event_context::mutex nests and those are:
1241  *
1242  *  - perf_event_exit_task_context()    [ child , 0 ]
1243  *      perf_event_exit_event()
1244  *        put_event()                   [ parent, 1 ]
1245  *
1246  *  - perf_event_init_context()         [ parent, 0 ]
1247  *      inherit_task_group()
1248  *        inherit_group()
1249  *          inherit_event()
1250  *            perf_event_alloc()
1251  *              perf_init_event()
1252  *                perf_try_init_event() [ child , 1 ]
1253  *
1254  * While it appears there is an obvious deadlock here -- the parent and child
1255  * nesting levels are inverted between the two. This is in fact safe because
1256  * life-time rules separate them. That is an exiting task cannot fork, and a
1257  * spawning task cannot (yet) exit.
1258  *
1259  * But remember that these are parent<->child context relations, and
1260  * migration does not affect children, therefore these two orderings should not
1261  * interact.
1262  *
1263  * The change in perf_event::ctx does not affect children (as claimed above)
1264  * because the sys_perf_event_open() case will install a new event and break
1265  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1266  * concerned with cpuctx and that doesn't have children.
1267  *
1268  * The places that change perf_event::ctx will issue:
1269  *
1270  *   perf_remove_from_context();
1271  *   synchronize_rcu();
1272  *   perf_install_in_context();
1273  *
1274  * to affect the change. The remove_from_context() + synchronize_rcu() should
1275  * quiesce the event, after which we can install it in the new location. This
1276  * means that only external vectors (perf_fops, prctl) can perturb the event
1277  * while in transit. Therefore all such accessors should also acquire
1278  * perf_event_context::mutex to serialize against this.
1279  *
1280  * However; because event->ctx can change while we're waiting to acquire
1281  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1282  * function.
1283  *
1284  * Lock order:
1285  *    exec_update_lock
1286  *      task_struct::perf_event_mutex
1287  *        perf_event_context::mutex
1288  *          perf_event::child_mutex;
1289  *            perf_event_context::lock
1290  *          mmap_lock
1291  *            perf_event::mmap_mutex
1292  *              perf_buffer::aux_mutex
1293  *            perf_addr_filters_head::lock
1294  *
1295  *    cpu_hotplug_lock
1296  *      pmus_lock
1297  *        cpuctx->mutex / perf_event_context::mutex
1298  */
1299 static struct perf_event_context *
1300 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1301 {
1302         struct perf_event_context *ctx;
1303
1304 again:
1305         rcu_read_lock();
1306         ctx = READ_ONCE(event->ctx);
1307         if (!refcount_inc_not_zero(&ctx->refcount)) {
1308                 rcu_read_unlock();
1309                 goto again;
1310         }
1311         rcu_read_unlock();
1312
1313         mutex_lock_nested(&ctx->mutex, nesting);
1314         if (event->ctx != ctx) {
1315                 mutex_unlock(&ctx->mutex);
1316                 put_ctx(ctx);
1317                 goto again;
1318         }
1319
1320         return ctx;
1321 }
1322
1323 static inline struct perf_event_context *
1324 perf_event_ctx_lock(struct perf_event *event)
1325 {
1326         return perf_event_ctx_lock_nested(event, 0);
1327 }
1328
1329 static void perf_event_ctx_unlock(struct perf_event *event,
1330                                   struct perf_event_context *ctx)
1331 {
1332         mutex_unlock(&ctx->mutex);
1333         put_ctx(ctx);
1334 }
1335
1336 /*
1337  * This must be done under the ctx->lock, such as to serialize against
1338  * context_equiv(), therefore we cannot call put_ctx() since that might end up
1339  * calling scheduler related locks and ctx->lock nests inside those.
1340  */
1341 static __must_check struct perf_event_context *
1342 unclone_ctx(struct perf_event_context *ctx)
1343 {
1344         struct perf_event_context *parent_ctx = ctx->parent_ctx;
1345
1346         lockdep_assert_held(&ctx->lock);
1347
1348         if (parent_ctx)
1349                 ctx->parent_ctx = NULL;
1350         ctx->generation++;
1351
1352         return parent_ctx;
1353 }
1354
1355 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1356                                 enum pid_type type)
1357 {
1358         u32 nr;
1359         /*
1360          * only top level events have the pid namespace they were created in
1361          */
1362         if (event->parent)
1363                 event = event->parent;
1364
1365         nr = __task_pid_nr_ns(p, type, event->ns);
1366         /* avoid -1 if it is idle thread or runs in another ns */
1367         if (!nr && !pid_alive(p))
1368                 nr = -1;
1369         return nr;
1370 }
1371
1372 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1373 {
1374         return perf_event_pid_type(event, p, PIDTYPE_TGID);
1375 }
1376
1377 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1378 {
1379         return perf_event_pid_type(event, p, PIDTYPE_PID);
1380 }
1381
1382 /*
1383  * If we inherit events we want to return the parent event id
1384  * to userspace.
1385  */
1386 static u64 primary_event_id(struct perf_event *event)
1387 {
1388         u64 id = event->id;
1389
1390         if (event->parent)
1391                 id = event->parent->id;
1392
1393         return id;
1394 }
1395
1396 /*
1397  * Get the perf_event_context for a task and lock it.
1398  *
1399  * This has to cope with the fact that until it is locked,
1400  * the context could get moved to another task.
1401  */
1402 static struct perf_event_context *
1403 perf_lock_task_context(struct task_struct *task, unsigned long *flags)
1404 {
1405         struct perf_event_context *ctx;
1406
1407 retry:
1408         /*
1409          * One of the few rules of preemptible RCU is that one cannot do
1410          * rcu_read_unlock() while holding a scheduler (or nested) lock when
1411          * part of the read side critical section was irqs-enabled -- see
1412          * rcu_read_unlock_special().
1413          *
1414          * Since ctx->lock nests under rq->lock we must ensure the entire read
1415          * side critical section has interrupts disabled.
1416          */
1417         local_irq_save(*flags);
1418         rcu_read_lock();
1419         ctx = rcu_dereference(task->perf_event_ctxp);
1420         if (ctx) {
1421                 /*
1422                  * If this context is a clone of another, it might
1423                  * get swapped for another underneath us by
1424                  * perf_event_task_sched_out, though the
1425                  * rcu_read_lock() protects us from any context
1426                  * getting freed.  Lock the context and check if it
1427                  * got swapped before we could get the lock, and retry
1428                  * if so.  If we locked the right context, then it
1429                  * can't get swapped on us any more.
1430                  */
1431                 raw_spin_lock(&ctx->lock);
1432                 if (ctx != rcu_dereference(task->perf_event_ctxp)) {
1433                         raw_spin_unlock(&ctx->lock);
1434                         rcu_read_unlock();
1435                         local_irq_restore(*flags);
1436                         goto retry;
1437                 }
1438
1439                 if (ctx->task == TASK_TOMBSTONE ||
1440                     !refcount_inc_not_zero(&ctx->refcount)) {
1441                         raw_spin_unlock(&ctx->lock);
1442                         ctx = NULL;
1443                 } else {
1444                         WARN_ON_ONCE(ctx->task != task);
1445                 }
1446         }
1447         rcu_read_unlock();
1448         if (!ctx)
1449                 local_irq_restore(*flags);
1450         return ctx;
1451 }
1452
1453 /*
1454  * Get the context for a task and increment its pin_count so it
1455  * can't get swapped to another task.  This also increments its
1456  * reference count so that the context can't get freed.
1457  */
1458 static struct perf_event_context *
1459 perf_pin_task_context(struct task_struct *task)
1460 {
1461         struct perf_event_context *ctx;
1462         unsigned long flags;
1463
1464         ctx = perf_lock_task_context(task, &flags);
1465         if (ctx) {
1466                 ++ctx->pin_count;
1467                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1468         }
1469         return ctx;
1470 }
1471
1472 static void perf_unpin_context(struct perf_event_context *ctx)
1473 {
1474         unsigned long flags;
1475
1476         raw_spin_lock_irqsave(&ctx->lock, flags);
1477         --ctx->pin_count;
1478         raw_spin_unlock_irqrestore(&ctx->lock, flags);
1479 }
1480
1481 /*
1482  * Update the record of the current time in a context.
1483  */
1484 static void __update_context_time(struct perf_event_context *ctx, bool adv)
1485 {
1486         u64 now = perf_clock();
1487
1488         lockdep_assert_held(&ctx->lock);
1489
1490         if (adv)
1491                 ctx->time += now - ctx->timestamp;
1492         ctx->timestamp = now;
1493
1494         /*
1495          * The above: time' = time + (now - timestamp), can be re-arranged
1496          * into: time` = now + (time - timestamp), which gives a single value
1497          * offset to compute future time without locks on.
1498          *
1499          * See perf_event_time_now(), which can be used from NMI context where
1500          * it's (obviously) not possible to acquire ctx->lock in order to read
1501          * both the above values in a consistent manner.
1502          */
1503         WRITE_ONCE(ctx->timeoffset, ctx->time - ctx->timestamp);
1504 }
1505
1506 static void update_context_time(struct perf_event_context *ctx)
1507 {
1508         __update_context_time(ctx, true);
1509 }
1510
1511 static u64 perf_event_time(struct perf_event *event)
1512 {
1513         struct perf_event_context *ctx = event->ctx;
1514
1515         if (unlikely(!ctx))
1516                 return 0;
1517
1518         if (is_cgroup_event(event))
1519                 return perf_cgroup_event_time(event);
1520
1521         return ctx->time;
1522 }
1523
1524 static u64 perf_event_time_now(struct perf_event *event, u64 now)
1525 {
1526         struct perf_event_context *ctx = event->ctx;
1527
1528         if (unlikely(!ctx))
1529                 return 0;
1530
1531         if (is_cgroup_event(event))
1532                 return perf_cgroup_event_time_now(event, now);
1533
1534         if (!(__load_acquire(&ctx->is_active) & EVENT_TIME))
1535                 return ctx->time;
1536
1537         now += READ_ONCE(ctx->timeoffset);
1538         return now;
1539 }
1540
1541 static enum event_type_t get_event_type(struct perf_event *event)
1542 {
1543         struct perf_event_context *ctx = event->ctx;
1544         enum event_type_t event_type;
1545
1546         lockdep_assert_held(&ctx->lock);
1547
1548         /*
1549          * It's 'group type', really, because if our group leader is
1550          * pinned, so are we.
1551          */
1552         if (event->group_leader != event)
1553                 event = event->group_leader;
1554
1555         event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1556         if (!ctx->task)
1557                 event_type |= EVENT_CPU;
1558
1559         return event_type;
1560 }
1561
1562 /*
1563  * Helper function to initialize event group nodes.
1564  */
1565 static void init_event_group(struct perf_event *event)
1566 {
1567         RB_CLEAR_NODE(&event->group_node);
1568         event->group_index = 0;
1569 }
1570
1571 /*
1572  * Extract pinned or flexible groups from the context
1573  * based on event attrs bits.
1574  */
1575 static struct perf_event_groups *
1576 get_event_groups(struct perf_event *event, struct perf_event_context *ctx)
1577 {
1578         if (event->attr.pinned)
1579                 return &ctx->pinned_groups;
1580         else
1581                 return &ctx->flexible_groups;
1582 }
1583
1584 /*
1585  * Helper function to initializes perf_event_group trees.
1586  */
1587 static void perf_event_groups_init(struct perf_event_groups *groups)
1588 {
1589         groups->tree = RB_ROOT;
1590         groups->index = 0;
1591 }
1592
1593 static inline struct cgroup *event_cgroup(const struct perf_event *event)
1594 {
1595         struct cgroup *cgroup = NULL;
1596
1597 #ifdef CONFIG_CGROUP_PERF
1598         if (event->cgrp)
1599                 cgroup = event->cgrp->css.cgroup;
1600 #endif
1601
1602         return cgroup;
1603 }
1604
1605 /*
1606  * Compare function for event groups;
1607  *
1608  * Implements complex key that first sorts by CPU and then by virtual index
1609  * which provides ordering when rotating groups for the same CPU.
1610  */
1611 static __always_inline int
1612 perf_event_groups_cmp(const int left_cpu, const struct pmu *left_pmu,
1613                       const struct cgroup *left_cgroup, const u64 left_group_index,
1614                       const struct perf_event *right)
1615 {
1616         if (left_cpu < right->cpu)
1617                 return -1;
1618         if (left_cpu > right->cpu)
1619                 return 1;
1620
1621         if (left_pmu) {
1622                 if (left_pmu < right->pmu_ctx->pmu)
1623                         return -1;
1624                 if (left_pmu > right->pmu_ctx->pmu)
1625                         return 1;
1626         }
1627
1628 #ifdef CONFIG_CGROUP_PERF
1629         {
1630                 const struct cgroup *right_cgroup = event_cgroup(right);
1631
1632                 if (left_cgroup != right_cgroup) {
1633                         if (!left_cgroup) {
1634                                 /*
1635                                  * Left has no cgroup but right does, no
1636                                  * cgroups come first.
1637                                  */
1638                                 return -1;
1639                         }
1640                         if (!right_cgroup) {
1641                                 /*
1642                                  * Right has no cgroup but left does, no
1643                                  * cgroups come first.
1644                                  */
1645                                 return 1;
1646                         }
1647                         /* Two dissimilar cgroups, order by id. */
1648                         if (cgroup_id(left_cgroup) < cgroup_id(right_cgroup))
1649                                 return -1;
1650
1651                         return 1;
1652                 }
1653         }
1654 #endif
1655
1656         if (left_group_index < right->group_index)
1657                 return -1;
1658         if (left_group_index > right->group_index)
1659                 return 1;
1660
1661         return 0;
1662 }
1663
1664 #define __node_2_pe(node) \
1665         rb_entry((node), struct perf_event, group_node)
1666
1667 static inline bool __group_less(struct rb_node *a, const struct rb_node *b)
1668 {
1669         struct perf_event *e = __node_2_pe(a);
1670         return perf_event_groups_cmp(e->cpu, e->pmu_ctx->pmu, event_cgroup(e),
1671                                      e->group_index, __node_2_pe(b)) < 0;
1672 }
1673
1674 struct __group_key {
1675         int cpu;
1676         struct pmu *pmu;
1677         struct cgroup *cgroup;
1678 };
1679
1680 static inline int __group_cmp(const void *key, const struct rb_node *node)
1681 {
1682         const struct __group_key *a = key;
1683         const struct perf_event *b = __node_2_pe(node);
1684
1685         /* partial/subtree match: @cpu, @pmu, @cgroup; ignore: @group_index */
1686         return perf_event_groups_cmp(a->cpu, a->pmu, a->cgroup, b->group_index, b);
1687 }
1688
1689 static inline int
1690 __group_cmp_ignore_cgroup(const void *key, const struct rb_node *node)
1691 {
1692         const struct __group_key *a = key;
1693         const struct perf_event *b = __node_2_pe(node);
1694
1695         /* partial/subtree match: @cpu, @pmu, ignore: @cgroup, @group_index */
1696         return perf_event_groups_cmp(a->cpu, a->pmu, event_cgroup(b),
1697                                      b->group_index, b);
1698 }
1699
1700 /*
1701  * Insert @event into @groups' tree; using
1702  *   {@event->cpu, @event->pmu_ctx->pmu, event_cgroup(@event), ++@groups->index}
1703  * as key. This places it last inside the {cpu,pmu,cgroup} subtree.
1704  */
1705 static void
1706 perf_event_groups_insert(struct perf_event_groups *groups,
1707                          struct perf_event *event)
1708 {
1709         event->group_index = ++groups->index;
1710
1711         rb_add(&event->group_node, &groups->tree, __group_less);
1712 }
1713
1714 /*
1715  * Helper function to insert event into the pinned or flexible groups.
1716  */
1717 static void
1718 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx)
1719 {
1720         struct perf_event_groups *groups;
1721
1722         groups = get_event_groups(event, ctx);
1723         perf_event_groups_insert(groups, event);
1724 }
1725
1726 /*
1727  * Delete a group from a tree.
1728  */
1729 static void
1730 perf_event_groups_delete(struct perf_event_groups *groups,
1731                          struct perf_event *event)
1732 {
1733         WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) ||
1734                      RB_EMPTY_ROOT(&groups->tree));
1735
1736         rb_erase(&event->group_node, &groups->tree);
1737         init_event_group(event);
1738 }
1739
1740 /*
1741  * Helper function to delete event from its groups.
1742  */
1743 static void
1744 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx)
1745 {
1746         struct perf_event_groups *groups;
1747
1748         groups = get_event_groups(event, ctx);
1749         perf_event_groups_delete(groups, event);
1750 }
1751
1752 /*
1753  * Get the leftmost event in the {cpu,pmu,cgroup} subtree.
1754  */
1755 static struct perf_event *
1756 perf_event_groups_first(struct perf_event_groups *groups, int cpu,
1757                         struct pmu *pmu, struct cgroup *cgrp)
1758 {
1759         struct __group_key key = {
1760                 .cpu = cpu,
1761                 .pmu = pmu,
1762                 .cgroup = cgrp,
1763         };
1764         struct rb_node *node;
1765
1766         node = rb_find_first(&key, &groups->tree, __group_cmp);
1767         if (node)
1768                 return __node_2_pe(node);
1769
1770         return NULL;
1771 }
1772
1773 static struct perf_event *
1774 perf_event_groups_next(struct perf_event *event, struct pmu *pmu)
1775 {
1776         struct __group_key key = {
1777                 .cpu = event->cpu,
1778                 .pmu = pmu,
1779                 .cgroup = event_cgroup(event),
1780         };
1781         struct rb_node *next;
1782
1783         next = rb_next_match(&key, &event->group_node, __group_cmp);
1784         if (next)
1785                 return __node_2_pe(next);
1786
1787         return NULL;
1788 }
1789
1790 #define perf_event_groups_for_cpu_pmu(event, groups, cpu, pmu)          \
1791         for (event = perf_event_groups_first(groups, cpu, pmu, NULL);   \
1792              event; event = perf_event_groups_next(event, pmu))
1793
1794 /*
1795  * Iterate through the whole groups tree.
1796  */
1797 #define perf_event_groups_for_each(event, groups)                       \
1798         for (event = rb_entry_safe(rb_first(&((groups)->tree)),         \
1799                                 typeof(*event), group_node); event;     \
1800                 event = rb_entry_safe(rb_next(&event->group_node),      \
1801                                 typeof(*event), group_node))
1802
1803 /*
1804  * Does the event attribute request inherit with PERF_SAMPLE_READ
1805  */
1806 static inline bool has_inherit_and_sample_read(struct perf_event_attr *attr)
1807 {
1808         return attr->inherit && (attr->sample_type & PERF_SAMPLE_READ);
1809 }
1810
1811 /*
1812  * Add an event from the lists for its context.
1813  * Must be called with ctx->mutex and ctx->lock held.
1814  */
1815 static void
1816 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1817 {
1818         lockdep_assert_held(&ctx->lock);
1819
1820         WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1821         event->attach_state |= PERF_ATTACH_CONTEXT;
1822
1823         event->tstamp = perf_event_time(event);
1824
1825         /*
1826          * If we're a stand alone event or group leader, we go to the context
1827          * list, group events are kept attached to the group so that
1828          * perf_group_detach can, at all times, locate all siblings.
1829          */
1830         if (event->group_leader == event) {
1831                 event->group_caps = event->event_caps;
1832                 add_event_to_groups(event, ctx);
1833         }
1834
1835         list_add_rcu(&event->event_entry, &ctx->event_list);
1836         ctx->nr_events++;
1837         if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT)
1838                 ctx->nr_user++;
1839         if (event->attr.inherit_stat)
1840                 ctx->nr_stat++;
1841         if (has_inherit_and_sample_read(&event->attr))
1842                 local_inc(&ctx->nr_no_switch_fast);
1843
1844         if (event->state > PERF_EVENT_STATE_OFF)
1845                 perf_cgroup_event_enable(event, ctx);
1846
1847         ctx->generation++;
1848         event->pmu_ctx->nr_events++;
1849 }
1850
1851 /*
1852  * Initialize event state based on the perf_event_attr::disabled.
1853  */
1854 static inline void perf_event__state_init(struct perf_event *event)
1855 {
1856         event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1857                                               PERF_EVENT_STATE_INACTIVE;
1858 }
1859
1860 static int __perf_event_read_size(u64 read_format, int nr_siblings)
1861 {
1862         int entry = sizeof(u64); /* value */
1863         int size = 0;
1864         int nr = 1;
1865
1866         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1867                 size += sizeof(u64);
1868
1869         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1870                 size += sizeof(u64);
1871
1872         if (read_format & PERF_FORMAT_ID)
1873                 entry += sizeof(u64);
1874
1875         if (read_format & PERF_FORMAT_LOST)
1876                 entry += sizeof(u64);
1877
1878         if (read_format & PERF_FORMAT_GROUP) {
1879                 nr += nr_siblings;
1880                 size += sizeof(u64);
1881         }
1882
1883         /*
1884          * Since perf_event_validate_size() limits this to 16k and inhibits
1885          * adding more siblings, this will never overflow.
1886          */
1887         return size + nr * entry;
1888 }
1889
1890 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1891 {
1892         struct perf_sample_data *data;
1893         u16 size = 0;
1894
1895         if (sample_type & PERF_SAMPLE_IP)
1896                 size += sizeof(data->ip);
1897
1898         if (sample_type & PERF_SAMPLE_ADDR)
1899                 size += sizeof(data->addr);
1900
1901         if (sample_type & PERF_SAMPLE_PERIOD)
1902                 size += sizeof(data->period);
1903
1904         if (sample_type & PERF_SAMPLE_WEIGHT_TYPE)
1905                 size += sizeof(data->weight.full);
1906
1907         if (sample_type & PERF_SAMPLE_READ)
1908                 size += event->read_size;
1909
1910         if (sample_type & PERF_SAMPLE_DATA_SRC)
1911                 size += sizeof(data->data_src.val);
1912
1913         if (sample_type & PERF_SAMPLE_TRANSACTION)
1914                 size += sizeof(data->txn);
1915
1916         if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1917                 size += sizeof(data->phys_addr);
1918
1919         if (sample_type & PERF_SAMPLE_CGROUP)
1920                 size += sizeof(data->cgroup);
1921
1922         if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
1923                 size += sizeof(data->data_page_size);
1924
1925         if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
1926                 size += sizeof(data->code_page_size);
1927
1928         event->header_size = size;
1929 }
1930
1931 /*
1932  * Called at perf_event creation and when events are attached/detached from a
1933  * group.
1934  */
1935 static void perf_event__header_size(struct perf_event *event)
1936 {
1937         event->read_size =
1938                 __perf_event_read_size(event->attr.read_format,
1939                                        event->group_leader->nr_siblings);
1940         __perf_event_header_size(event, event->attr.sample_type);
1941 }
1942
1943 static void perf_event__id_header_size(struct perf_event *event)
1944 {
1945         struct perf_sample_data *data;
1946         u64 sample_type = event->attr.sample_type;
1947         u16 size = 0;
1948
1949         if (sample_type & PERF_SAMPLE_TID)
1950                 size += sizeof(data->tid_entry);
1951
1952         if (sample_type & PERF_SAMPLE_TIME)
1953                 size += sizeof(data->time);
1954
1955         if (sample_type & PERF_SAMPLE_IDENTIFIER)
1956                 size += sizeof(data->id);
1957
1958         if (sample_type & PERF_SAMPLE_ID)
1959                 size += sizeof(data->id);
1960
1961         if (sample_type & PERF_SAMPLE_STREAM_ID)
1962                 size += sizeof(data->stream_id);
1963
1964         if (sample_type & PERF_SAMPLE_CPU)
1965                 size += sizeof(data->cpu_entry);
1966
1967         event->id_header_size = size;
1968 }
1969
1970 /*
1971  * Check that adding an event to the group does not result in anybody
1972  * overflowing the 64k event limit imposed by the output buffer.
1973  *
1974  * Specifically, check that the read_size for the event does not exceed 16k,
1975  * read_size being the one term that grows with groups size. Since read_size
1976  * depends on per-event read_format, also (re)check the existing events.
1977  *
1978  * This leaves 48k for the constant size fields and things like callchains,
1979  * branch stacks and register sets.
1980  */
1981 static bool perf_event_validate_size(struct perf_event *event)
1982 {
1983         struct perf_event *sibling, *group_leader = event->group_leader;
1984
1985         if (__perf_event_read_size(event->attr.read_format,
1986                                    group_leader->nr_siblings + 1) > 16*1024)
1987                 return false;
1988
1989         if (__perf_event_read_size(group_leader->attr.read_format,
1990                                    group_leader->nr_siblings + 1) > 16*1024)
1991                 return false;
1992
1993         /*
1994          * When creating a new group leader, group_leader->ctx is initialized
1995          * after the size has been validated, but we cannot safely use
1996          * for_each_sibling_event() until group_leader->ctx is set. A new group
1997          * leader cannot have any siblings yet, so we can safely skip checking
1998          * the non-existent siblings.
1999          */
2000         if (event == group_leader)
2001                 return true;
2002
2003         for_each_sibling_event(sibling, group_leader) {
2004                 if (__perf_event_read_size(sibling->attr.read_format,
2005                                            group_leader->nr_siblings + 1) > 16*1024)
2006                         return false;
2007         }
2008
2009         return true;
2010 }
2011
2012 static void perf_group_attach(struct perf_event *event)
2013 {
2014         struct perf_event *group_leader = event->group_leader, *pos;
2015
2016         lockdep_assert_held(&event->ctx->lock);
2017
2018         /*
2019          * We can have double attach due to group movement (move_group) in
2020          * perf_event_open().
2021          */
2022         if (event->attach_state & PERF_ATTACH_GROUP)
2023                 return;
2024
2025         event->attach_state |= PERF_ATTACH_GROUP;
2026
2027         if (group_leader == event)
2028                 return;
2029
2030         WARN_ON_ONCE(group_leader->ctx != event->ctx);
2031
2032         group_leader->group_caps &= event->event_caps;
2033
2034         list_add_tail(&event->sibling_list, &group_leader->sibling_list);
2035         group_leader->nr_siblings++;
2036         group_leader->group_generation++;
2037
2038         perf_event__header_size(group_leader);
2039
2040         for_each_sibling_event(pos, group_leader)
2041                 perf_event__header_size(pos);
2042 }
2043
2044 /*
2045  * Remove an event from the lists for its context.
2046  * Must be called with ctx->mutex and ctx->lock held.
2047  */
2048 static void
2049 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
2050 {
2051         WARN_ON_ONCE(event->ctx != ctx);
2052         lockdep_assert_held(&ctx->lock);
2053
2054         /*
2055          * We can have double detach due to exit/hot-unplug + close.
2056          */
2057         if (!(event->attach_state & PERF_ATTACH_CONTEXT))
2058                 return;
2059
2060         event->attach_state &= ~PERF_ATTACH_CONTEXT;
2061
2062         ctx->nr_events--;
2063         if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT)
2064                 ctx->nr_user--;
2065         if (event->attr.inherit_stat)
2066                 ctx->nr_stat--;
2067         if (has_inherit_and_sample_read(&event->attr))
2068                 local_dec(&ctx->nr_no_switch_fast);
2069
2070         list_del_rcu(&event->event_entry);
2071
2072         if (event->group_leader == event)
2073                 del_event_from_groups(event, ctx);
2074
2075         /*
2076          * If event was in error state, then keep it
2077          * that way, otherwise bogus counts will be
2078          * returned on read(). The only way to get out
2079          * of error state is by explicit re-enabling
2080          * of the event
2081          */
2082         if (event->state > PERF_EVENT_STATE_OFF) {
2083                 perf_cgroup_event_disable(event, ctx);
2084                 perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2085         }
2086
2087         ctx->generation++;
2088         event->pmu_ctx->nr_events--;
2089 }
2090
2091 static int
2092 perf_aux_output_match(struct perf_event *event, struct perf_event *aux_event)
2093 {
2094         if (!has_aux(aux_event))
2095                 return 0;
2096
2097         if (!event->pmu->aux_output_match)
2098                 return 0;
2099
2100         return event->pmu->aux_output_match(aux_event);
2101 }
2102
2103 static void put_event(struct perf_event *event);
2104 static void event_sched_out(struct perf_event *event,
2105                             struct perf_event_context *ctx);
2106
2107 static void perf_put_aux_event(struct perf_event *event)
2108 {
2109         struct perf_event_context *ctx = event->ctx;
2110         struct perf_event *iter;
2111
2112         /*
2113          * If event uses aux_event tear down the link
2114          */
2115         if (event->aux_event) {
2116                 iter = event->aux_event;
2117                 event->aux_event = NULL;
2118                 put_event(iter);
2119                 return;
2120         }
2121
2122         /*
2123          * If the event is an aux_event, tear down all links to
2124          * it from other events.
2125          */
2126         for_each_sibling_event(iter, event->group_leader) {
2127                 if (iter->aux_event != event)
2128                         continue;
2129
2130                 iter->aux_event = NULL;
2131                 put_event(event);
2132
2133                 /*
2134                  * If it's ACTIVE, schedule it out and put it into ERROR
2135                  * state so that we don't try to schedule it again. Note
2136                  * that perf_event_enable() will clear the ERROR status.
2137                  */
2138                 event_sched_out(iter, ctx);
2139                 perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
2140         }
2141 }
2142
2143 static bool perf_need_aux_event(struct perf_event *event)
2144 {
2145         return event->attr.aux_output || has_aux_action(event);
2146 }
2147
2148 static int perf_get_aux_event(struct perf_event *event,
2149                               struct perf_event *group_leader)
2150 {
2151         /*
2152          * Our group leader must be an aux event if we want to be
2153          * an aux_output. This way, the aux event will precede its
2154          * aux_output events in the group, and therefore will always
2155          * schedule first.
2156          */
2157         if (!group_leader)
2158                 return 0;
2159
2160         /*
2161          * aux_output and aux_sample_size are mutually exclusive.
2162          */
2163         if (event->attr.aux_output && event->attr.aux_sample_size)
2164                 return 0;
2165
2166         if (event->attr.aux_output &&
2167             !perf_aux_output_match(event, group_leader))
2168                 return 0;
2169
2170         if ((event->attr.aux_pause || event->attr.aux_resume) &&
2171             !(group_leader->pmu->capabilities & PERF_PMU_CAP_AUX_PAUSE))
2172                 return 0;
2173
2174         if (event->attr.aux_sample_size && !group_leader->pmu->snapshot_aux)
2175                 return 0;
2176
2177         if (!atomic_long_inc_not_zero(&group_leader->refcount))
2178                 return 0;
2179
2180         /*
2181          * Link aux_outputs to their aux event; this is undone in
2182          * perf_group_detach() by perf_put_aux_event(). When the
2183          * group in torn down, the aux_output events loose their
2184          * link to the aux_event and can't schedule any more.
2185          */
2186         event->aux_event = group_leader;
2187
2188         return 1;
2189 }
2190
2191 static inline struct list_head *get_event_list(struct perf_event *event)
2192 {
2193         return event->attr.pinned ? &event->pmu_ctx->pinned_active :
2194                                     &event->pmu_ctx->flexible_active;
2195 }
2196
2197 /*
2198  * Events that have PERF_EV_CAP_SIBLING require being part of a group and
2199  * cannot exist on their own, schedule them out and move them into the ERROR
2200  * state. Also see _perf_event_enable(), it will not be able to recover
2201  * this ERROR state.
2202  */
2203 static inline void perf_remove_sibling_event(struct perf_event *event)
2204 {
2205         event_sched_out(event, event->ctx);
2206         perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
2207 }
2208
2209 static void perf_group_detach(struct perf_event *event)
2210 {
2211         struct perf_event *leader = event->group_leader;
2212         struct perf_event *sibling, *tmp;
2213         struct perf_event_context *ctx = event->ctx;
2214
2215         lockdep_assert_held(&ctx->lock);
2216
2217         /*
2218          * We can have double detach due to exit/hot-unplug + close.
2219          */
2220         if (!(event->attach_state & PERF_ATTACH_GROUP))
2221                 return;
2222
2223         event->attach_state &= ~PERF_ATTACH_GROUP;
2224
2225         perf_put_aux_event(event);
2226
2227         /*
2228          * If this is a sibling, remove it from its group.
2229          */
2230         if (leader != event) {
2231                 list_del_init(&event->sibling_list);
2232                 event->group_leader->nr_siblings--;
2233                 event->group_leader->group_generation++;
2234                 goto out;
2235         }
2236
2237         /*
2238          * If this was a group event with sibling events then
2239          * upgrade the siblings to singleton events by adding them
2240          * to whatever list we are on.
2241          */
2242         list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) {
2243
2244                 if (sibling->event_caps & PERF_EV_CAP_SIBLING)
2245                         perf_remove_sibling_event(sibling);
2246
2247                 sibling->group_leader = sibling;
2248                 list_del_init(&sibling->sibling_list);
2249
2250                 /* Inherit group flags from the previous leader */
2251                 sibling->group_caps = event->group_caps;
2252
2253                 if (sibling->attach_state & PERF_ATTACH_CONTEXT) {
2254                         add_event_to_groups(sibling, event->ctx);
2255
2256                         if (sibling->state == PERF_EVENT_STATE_ACTIVE)
2257                                 list_add_tail(&sibling->active_list, get_event_list(sibling));
2258                 }
2259
2260                 WARN_ON_ONCE(sibling->ctx != event->ctx);
2261         }
2262
2263 out:
2264         for_each_sibling_event(tmp, leader)
2265                 perf_event__header_size(tmp);
2266
2267         perf_event__header_size(leader);
2268 }
2269
2270 static void sync_child_event(struct perf_event *child_event);
2271
2272 static void perf_child_detach(struct perf_event *event)
2273 {
2274         struct perf_event *parent_event = event->parent;
2275
2276         if (!(event->attach_state & PERF_ATTACH_CHILD))
2277                 return;
2278
2279         event->attach_state &= ~PERF_ATTACH_CHILD;
2280
2281         if (WARN_ON_ONCE(!parent_event))
2282                 return;
2283
2284         lockdep_assert_held(&parent_event->child_mutex);
2285
2286         sync_child_event(event);
2287         list_del_init(&event->child_list);
2288 }
2289
2290 static bool is_orphaned_event(struct perf_event *event)
2291 {
2292         return event->state == PERF_EVENT_STATE_DEAD;
2293 }
2294
2295 static inline int
2296 event_filter_match(struct perf_event *event)
2297 {
2298         return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
2299                perf_cgroup_match(event);
2300 }
2301
2302 static void
2303 event_sched_out(struct perf_event *event, struct perf_event_context *ctx)
2304 {
2305         struct perf_event_pmu_context *epc = event->pmu_ctx;
2306         struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context);
2307         enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
2308
2309         // XXX cpc serialization, probably per-cpu IRQ disabled
2310
2311         WARN_ON_ONCE(event->ctx != ctx);
2312         lockdep_assert_held(&ctx->lock);
2313
2314         if (event->state != PERF_EVENT_STATE_ACTIVE)
2315                 return;
2316
2317         /*
2318          * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but
2319          * we can schedule events _OUT_ individually through things like
2320          * __perf_remove_from_context().
2321          */
2322         list_del_init(&event->active_list);
2323
2324         perf_pmu_disable(event->pmu);
2325
2326         event->pmu->del(event, 0);
2327         event->oncpu = -1;
2328
2329         if (event->pending_disable) {
2330                 event->pending_disable = 0;
2331                 perf_cgroup_event_disable(event, ctx);
2332                 state = PERF_EVENT_STATE_OFF;
2333         }
2334
2335         perf_event_set_state(event, state);
2336
2337         if (!is_software_event(event))
2338                 cpc->active_oncpu--;
2339         if (event->attr.freq && event->attr.sample_freq) {
2340                 ctx->nr_freq--;
2341                 epc->nr_freq--;
2342         }
2343         if (event->attr.exclusive || !cpc->active_oncpu)
2344                 cpc->exclusive = 0;
2345
2346         perf_pmu_enable(event->pmu);
2347 }
2348
2349 static void
2350 group_sched_out(struct perf_event *group_event, struct perf_event_context *ctx)
2351 {
2352         struct perf_event *event;
2353
2354         if (group_event->state != PERF_EVENT_STATE_ACTIVE)
2355                 return;
2356
2357         perf_assert_pmu_disabled(group_event->pmu_ctx->pmu);
2358
2359         event_sched_out(group_event, ctx);
2360
2361         /*
2362          * Schedule out siblings (if any):
2363          */
2364         for_each_sibling_event(event, group_event)
2365                 event_sched_out(event, ctx);
2366 }
2367
2368 static inline void
2369 __ctx_time_update(struct perf_cpu_context *cpuctx, struct perf_event_context *ctx, bool final)
2370 {
2371         if (ctx->is_active & EVENT_TIME) {
2372                 if (ctx->is_active & EVENT_FROZEN)
2373                         return;
2374                 update_context_time(ctx);
2375                 update_cgrp_time_from_cpuctx(cpuctx, final);
2376         }
2377 }
2378
2379 static inline void
2380 ctx_time_update(struct perf_cpu_context *cpuctx, struct perf_event_context *ctx)
2381 {
2382         __ctx_time_update(cpuctx, ctx, false);
2383 }
2384
2385 /*
2386  * To be used inside perf_ctx_lock() / perf_ctx_unlock(). Lasts until perf_ctx_unlock().
2387  */
2388 static inline void
2389 ctx_time_freeze(struct perf_cpu_context *cpuctx, struct perf_event_context *ctx)
2390 {
2391         ctx_time_update(cpuctx, ctx);
2392         if (ctx->is_active & EVENT_TIME)
2393                 ctx->is_active |= EVENT_FROZEN;
2394 }
2395
2396 static inline void
2397 ctx_time_update_event(struct perf_event_context *ctx, struct perf_event *event)
2398 {
2399         if (ctx->is_active & EVENT_TIME) {
2400                 if (ctx->is_active & EVENT_FROZEN)
2401                         return;
2402                 update_context_time(ctx);
2403                 update_cgrp_time_from_event(event);
2404         }
2405 }
2406
2407 #define DETACH_GROUP    0x01UL
2408 #define DETACH_CHILD    0x02UL
2409 #define DETACH_DEAD     0x04UL
2410
2411 /*
2412  * Cross CPU call to remove a performance event
2413  *
2414  * We disable the event on the hardware level first. After that we
2415  * remove it from the context list.
2416  */
2417 static void
2418 __perf_remove_from_context(struct perf_event *event,
2419                            struct perf_cpu_context *cpuctx,
2420                            struct perf_event_context *ctx,
2421                            void *info)
2422 {
2423         struct perf_event_pmu_context *pmu_ctx = event->pmu_ctx;
2424         unsigned long flags = (unsigned long)info;
2425
2426         ctx_time_update(cpuctx, ctx);
2427
2428         /*
2429          * Ensure event_sched_out() switches to OFF, at the very least
2430          * this avoids raising perf_pending_task() at this time.
2431          */
2432         if (flags & DETACH_DEAD)
2433                 event->pending_disable = 1;
2434         event_sched_out(event, ctx);
2435         if (flags & DETACH_GROUP)
2436                 perf_group_detach(event);
2437         if (flags & DETACH_CHILD)
2438                 perf_child_detach(event);
2439         list_del_event(event, ctx);
2440         if (flags & DETACH_DEAD)
2441                 event->state = PERF_EVENT_STATE_DEAD;
2442
2443         if (!pmu_ctx->nr_events) {
2444                 pmu_ctx->rotate_necessary = 0;
2445
2446                 if (ctx->task && ctx->is_active) {
2447                         struct perf_cpu_pmu_context *cpc;
2448
2449                         cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context);
2450                         WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx);
2451                         cpc->task_epc = NULL;
2452                 }
2453         }
2454
2455         if (!ctx->nr_events && ctx->is_active) {
2456                 if (ctx == &cpuctx->ctx)
2457                         update_cgrp_time_from_cpuctx(cpuctx, true);
2458
2459                 ctx->is_active = 0;
2460                 if (ctx->task) {
2461                         WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2462                         cpuctx->task_ctx = NULL;
2463                 }
2464         }
2465 }
2466
2467 /*
2468  * Remove the event from a task's (or a CPU's) list of events.
2469  *
2470  * If event->ctx is a cloned context, callers must make sure that
2471  * every task struct that event->ctx->task could possibly point to
2472  * remains valid.  This is OK when called from perf_release since
2473  * that only calls us on the top-level context, which can't be a clone.
2474  * When called from perf_event_exit_task, it's OK because the
2475  * context has been detached from its task.
2476  */
2477 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
2478 {
2479         struct perf_event_context *ctx = event->ctx;
2480
2481         lockdep_assert_held(&ctx->mutex);
2482
2483         /*
2484          * Because of perf_event_exit_task(), perf_remove_from_context() ought
2485          * to work in the face of TASK_TOMBSTONE, unlike every other
2486          * event_function_call() user.
2487          */
2488         raw_spin_lock_irq(&ctx->lock);
2489         if (!ctx->is_active) {
2490                 __perf_remove_from_context(event, this_cpu_ptr(&perf_cpu_context),
2491                                            ctx, (void *)flags);
2492                 raw_spin_unlock_irq(&ctx->lock);
2493                 return;
2494         }
2495         raw_spin_unlock_irq(&ctx->lock);
2496
2497         event_function_call(event, __perf_remove_from_context, (void *)flags);
2498 }
2499
2500 /*
2501  * Cross CPU call to disable a performance event
2502  */
2503 static void __perf_event_disable(struct perf_event *event,
2504                                  struct perf_cpu_context *cpuctx,
2505                                  struct perf_event_context *ctx,
2506                                  void *info)
2507 {
2508         if (event->state < PERF_EVENT_STATE_INACTIVE)
2509                 return;
2510
2511         perf_pmu_disable(event->pmu_ctx->pmu);
2512         ctx_time_update_event(ctx, event);
2513
2514         if (event == event->group_leader)
2515                 group_sched_out(event, ctx);
2516         else
2517                 event_sched_out(event, ctx);
2518
2519         perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2520         perf_cgroup_event_disable(event, ctx);
2521
2522         perf_pmu_enable(event->pmu_ctx->pmu);
2523 }
2524
2525 /*
2526  * Disable an event.
2527  *
2528  * If event->ctx is a cloned context, callers must make sure that
2529  * every task struct that event->ctx->task could possibly point to
2530  * remains valid.  This condition is satisfied when called through
2531  * perf_event_for_each_child or perf_event_for_each because they
2532  * hold the top-level event's child_mutex, so any descendant that
2533  * goes to exit will block in perf_event_exit_event().
2534  *
2535  * When called from perf_pending_disable it's OK because event->ctx
2536  * is the current context on this CPU and preemption is disabled,
2537  * hence we can't get into perf_event_task_sched_out for this context.
2538  */
2539 static void _perf_event_disable(struct perf_event *event)
2540 {
2541         struct perf_event_context *ctx = event->ctx;
2542
2543         raw_spin_lock_irq(&ctx->lock);
2544         if (event->state <= PERF_EVENT_STATE_OFF) {
2545                 raw_spin_unlock_irq(&ctx->lock);
2546                 return;
2547         }
2548         raw_spin_unlock_irq(&ctx->lock);
2549
2550         event_function_call(event, __perf_event_disable, NULL);
2551 }
2552
2553 void perf_event_disable_local(struct perf_event *event)
2554 {
2555         event_function_local(event, __perf_event_disable, NULL);
2556 }
2557
2558 /*
2559  * Strictly speaking kernel users cannot create groups and therefore this
2560  * interface does not need the perf_event_ctx_lock() magic.
2561  */
2562 void perf_event_disable(struct perf_event *event)
2563 {
2564         struct perf_event_context *ctx;
2565
2566         ctx = perf_event_ctx_lock(event);
2567         _perf_event_disable(event);
2568         perf_event_ctx_unlock(event, ctx);
2569 }
2570 EXPORT_SYMBOL_GPL(perf_event_disable);
2571
2572 void perf_event_disable_inatomic(struct perf_event *event)
2573 {
2574         event->pending_disable = 1;
2575         irq_work_queue(&event->pending_disable_irq);
2576 }
2577
2578 #define MAX_INTERRUPTS (~0ULL)
2579
2580 static void perf_log_throttle(struct perf_event *event, int enable);
2581 static void perf_log_itrace_start(struct perf_event *event);
2582
2583 static int
2584 event_sched_in(struct perf_event *event, struct perf_event_context *ctx)
2585 {
2586         struct perf_event_pmu_context *epc = event->pmu_ctx;
2587         struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context);
2588         int ret = 0;
2589
2590         WARN_ON_ONCE(event->ctx != ctx);
2591
2592         lockdep_assert_held(&ctx->lock);
2593
2594         if (event->state <= PERF_EVENT_STATE_OFF)
2595                 return 0;
2596
2597         WRITE_ONCE(event->oncpu, smp_processor_id());
2598         /*
2599          * Order event::oncpu write to happen before the ACTIVE state is
2600          * visible. This allows perf_event_{stop,read}() to observe the correct
2601          * ->oncpu if it sees ACTIVE.
2602          */
2603         smp_wmb();
2604         perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
2605
2606         /*
2607          * Unthrottle events, since we scheduled we might have missed several
2608          * ticks already, also for a heavily scheduling task there is little
2609          * guarantee it'll get a tick in a timely manner.
2610          */
2611         if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2612                 perf_log_throttle(event, 1);
2613                 event->hw.interrupts = 0;
2614         }
2615
2616         perf_pmu_disable(event->pmu);
2617
2618         perf_log_itrace_start(event);
2619
2620         if (event->pmu->add(event, PERF_EF_START)) {
2621                 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2622                 event->oncpu = -1;
2623                 ret = -EAGAIN;
2624                 goto out;
2625         }
2626
2627         if (!is_software_event(event))
2628                 cpc->active_oncpu++;
2629         if (event->attr.freq && event->attr.sample_freq) {
2630                 ctx->nr_freq++;
2631                 epc->nr_freq++;
2632         }
2633         if (event->attr.exclusive)
2634                 cpc->exclusive = 1;
2635
2636 out:
2637         perf_pmu_enable(event->pmu);
2638
2639         return ret;
2640 }
2641
2642 static int
2643 group_sched_in(struct perf_event *group_event, struct perf_event_context *ctx)
2644 {
2645         struct perf_event *event, *partial_group = NULL;
2646         struct pmu *pmu = group_event->pmu_ctx->pmu;
2647
2648         if (group_event->state == PERF_EVENT_STATE_OFF)
2649                 return 0;
2650
2651         pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2652
2653         if (event_sched_in(group_event, ctx))
2654                 goto error;
2655
2656         /*
2657          * Schedule in siblings as one group (if any):
2658          */
2659         for_each_sibling_event(event, group_event) {
2660                 if (event_sched_in(event, ctx)) {
2661                         partial_group = event;
2662                         goto group_error;
2663                 }
2664         }
2665
2666         if (!pmu->commit_txn(pmu))
2667                 return 0;
2668
2669 group_error:
2670         /*
2671          * Groups can be scheduled in as one unit only, so undo any
2672          * partial group before returning:
2673          * The events up to the failed event are scheduled out normally.
2674          */
2675         for_each_sibling_event(event, group_event) {
2676                 if (event == partial_group)
2677                         break;
2678
2679                 event_sched_out(event, ctx);
2680         }
2681         event_sched_out(group_event, ctx);
2682
2683 error:
2684         pmu->cancel_txn(pmu);
2685         return -EAGAIN;
2686 }
2687
2688 /*
2689  * Work out whether we can put this event group on the CPU now.
2690  */
2691 static int group_can_go_on(struct perf_event *event, int can_add_hw)
2692 {
2693         struct perf_event_pmu_context *epc = event->pmu_ctx;
2694         struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context);
2695
2696         /*
2697          * Groups consisting entirely of software events can always go on.
2698          */
2699         if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2700                 return 1;
2701         /*
2702          * If an exclusive group is already on, no other hardware
2703          * events can go on.
2704          */
2705         if (cpc->exclusive)
2706                 return 0;
2707         /*
2708          * If this group is exclusive and there are already
2709          * events on the CPU, it can't go on.
2710          */
2711         if (event->attr.exclusive && !list_empty(get_event_list(event)))
2712                 return 0;
2713         /*
2714          * Otherwise, try to add it if all previous groups were able
2715          * to go on.
2716          */
2717         return can_add_hw;
2718 }
2719
2720 static void add_event_to_ctx(struct perf_event *event,
2721                                struct perf_event_context *ctx)
2722 {
2723         list_add_event(event, ctx);
2724         perf_group_attach(event);
2725 }
2726
2727 static void task_ctx_sched_out(struct perf_event_context *ctx,
2728                                struct pmu *pmu,
2729                                enum event_type_t event_type)
2730 {
2731         struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
2732
2733         if (!cpuctx->task_ctx)
2734                 return;
2735
2736         if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2737                 return;
2738
2739         ctx_sched_out(ctx, pmu, event_type);
2740 }
2741
2742 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2743                                 struct perf_event_context *ctx,
2744                                 struct pmu *pmu)
2745 {
2746         ctx_sched_in(&cpuctx->ctx, pmu, EVENT_PINNED);
2747         if (ctx)
2748                  ctx_sched_in(ctx, pmu, EVENT_PINNED);
2749         ctx_sched_in(&cpuctx->ctx, pmu, EVENT_FLEXIBLE);
2750         if (ctx)
2751                  ctx_sched_in(ctx, pmu, EVENT_FLEXIBLE);
2752 }
2753
2754 /*
2755  * We want to maintain the following priority of scheduling:
2756  *  - CPU pinned (EVENT_CPU | EVENT_PINNED)
2757  *  - task pinned (EVENT_PINNED)
2758  *  - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2759  *  - task flexible (EVENT_FLEXIBLE).
2760  *
2761  * In order to avoid unscheduling and scheduling back in everything every
2762  * time an event is added, only do it for the groups of equal priority and
2763  * below.
2764  *
2765  * This can be called after a batch operation on task events, in which case
2766  * event_type is a bit mask of the types of events involved. For CPU events,
2767  * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2768  */
2769 static void ctx_resched(struct perf_cpu_context *cpuctx,
2770                         struct perf_event_context *task_ctx,
2771                         struct pmu *pmu, enum event_type_t event_type)
2772 {
2773         bool cpu_event = !!(event_type & EVENT_CPU);
2774         struct perf_event_pmu_context *epc;
2775
2776         /*
2777          * If pinned groups are involved, flexible groups also need to be
2778          * scheduled out.
2779          */
2780         if (event_type & EVENT_PINNED)
2781                 event_type |= EVENT_FLEXIBLE;
2782
2783         event_type &= EVENT_ALL;
2784
2785         for_each_epc(epc, &cpuctx->ctx, pmu, false)
2786                 perf_pmu_disable(epc->pmu);
2787
2788         if (task_ctx) {
2789                 for_each_epc(epc, task_ctx, pmu, false)
2790                         perf_pmu_disable(epc->pmu);
2791
2792                 task_ctx_sched_out(task_ctx, pmu, event_type);
2793         }
2794
2795         /*
2796          * Decide which cpu ctx groups to schedule out based on the types
2797          * of events that caused rescheduling:
2798          *  - EVENT_CPU: schedule out corresponding groups;
2799          *  - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2800          *  - otherwise, do nothing more.
2801          */
2802         if (cpu_event)
2803                 ctx_sched_out(&cpuctx->ctx, pmu, event_type);
2804         else if (event_type & EVENT_PINNED)
2805                 ctx_sched_out(&cpuctx->ctx, pmu, EVENT_FLEXIBLE);
2806
2807         perf_event_sched_in(cpuctx, task_ctx, pmu);
2808
2809         for_each_epc(epc, &cpuctx->ctx, pmu, false)
2810                 perf_pmu_enable(epc->pmu);
2811
2812         if (task_ctx) {
2813                 for_each_epc(epc, task_ctx, pmu, false)
2814                         perf_pmu_enable(epc->pmu);
2815         }
2816 }
2817
2818 void perf_pmu_resched(struct pmu *pmu)
2819 {
2820         struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
2821         struct perf_event_context *task_ctx = cpuctx->task_ctx;
2822
2823         perf_ctx_lock(cpuctx, task_ctx);
2824         ctx_resched(cpuctx, task_ctx, pmu, EVENT_ALL|EVENT_CPU);
2825         perf_ctx_unlock(cpuctx, task_ctx);
2826 }
2827
2828 /*
2829  * Cross CPU call to install and enable a performance event
2830  *
2831  * Very similar to remote_function() + event_function() but cannot assume that
2832  * things like ctx->is_active and cpuctx->task_ctx are set.
2833  */
2834 static int  __perf_install_in_context(void *info)
2835 {
2836         struct perf_event *event = info;
2837         struct perf_event_context *ctx = event->ctx;
2838         struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
2839         struct perf_event_context *task_ctx = cpuctx->task_ctx;
2840         bool reprogram = true;
2841         int ret = 0;
2842
2843         raw_spin_lock(&cpuctx->ctx.lock);
2844         if (ctx->task) {
2845                 raw_spin_lock(&ctx->lock);
2846                 task_ctx = ctx;
2847
2848                 reprogram = (ctx->task == current);
2849
2850                 /*
2851                  * If the task is running, it must be running on this CPU,
2852                  * otherwise we cannot reprogram things.
2853                  *
2854                  * If its not running, we don't care, ctx->lock will
2855                  * serialize against it becoming runnable.
2856                  */
2857                 if (task_curr(ctx->task) && !reprogram) {
2858                         ret = -ESRCH;
2859                         goto unlock;
2860                 }
2861
2862                 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2863         } else if (task_ctx) {
2864                 raw_spin_lock(&task_ctx->lock);
2865         }
2866
2867 #ifdef CONFIG_CGROUP_PERF
2868         if (event->state > PERF_EVENT_STATE_OFF && is_cgroup_event(event)) {
2869                 /*
2870                  * If the current cgroup doesn't match the event's
2871                  * cgroup, we should not try to schedule it.
2872                  */
2873                 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
2874                 reprogram = cgroup_is_descendant(cgrp->css.cgroup,
2875                                         event->cgrp->css.cgroup);
2876         }
2877 #endif
2878
2879         if (reprogram) {
2880                 ctx_time_freeze(cpuctx, ctx);
2881                 add_event_to_ctx(event, ctx);
2882                 ctx_resched(cpuctx, task_ctx, event->pmu_ctx->pmu,
2883                             get_event_type(event));
2884         } else {
2885                 add_event_to_ctx(event, ctx);
2886         }
2887
2888 unlock:
2889         perf_ctx_unlock(cpuctx, task_ctx);
2890
2891         return ret;
2892 }
2893
2894 static bool exclusive_event_installable(struct perf_event *event,
2895                                         struct perf_event_context *ctx);
2896
2897 /*
2898  * Attach a performance event to a context.
2899  *
2900  * Very similar to event_function_call, see comment there.
2901  */
2902 static void
2903 perf_install_in_context(struct perf_event_context *ctx,
2904                         struct perf_event *event,
2905                         int cpu)
2906 {
2907         struct task_struct *task = READ_ONCE(ctx->task);
2908
2909         lockdep_assert_held(&ctx->mutex);
2910
2911         WARN_ON_ONCE(!exclusive_event_installable(event, ctx));
2912
2913         if (event->cpu != -1)
2914                 WARN_ON_ONCE(event->cpu != cpu);
2915
2916         /*
2917          * Ensures that if we can observe event->ctx, both the event and ctx
2918          * will be 'complete'. See perf_iterate_sb_cpu().
2919          */
2920         smp_store_release(&event->ctx, ctx);
2921
2922         /*
2923          * perf_event_attr::disabled events will not run and can be initialized
2924          * without IPI. Except when this is the first event for the context, in
2925          * that case we need the magic of the IPI to set ctx->is_active.
2926          *
2927          * The IOC_ENABLE that is sure to follow the creation of a disabled
2928          * event will issue the IPI and reprogram the hardware.
2929          */
2930         if (__perf_effective_state(event) == PERF_EVENT_STATE_OFF &&
2931             ctx->nr_events && !is_cgroup_event(event)) {
2932                 raw_spin_lock_irq(&ctx->lock);
2933                 if (ctx->task == TASK_TOMBSTONE) {
2934                         raw_spin_unlock_irq(&ctx->lock);
2935                         return;
2936                 }
2937                 add_event_to_ctx(event, ctx);
2938                 raw_spin_unlock_irq(&ctx->lock);
2939                 return;
2940         }
2941
2942         if (!task) {
2943                 cpu_function_call(cpu, __perf_install_in_context, event);
2944                 return;
2945         }
2946
2947         /*
2948          * Should not happen, we validate the ctx is still alive before calling.
2949          */
2950         if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2951                 return;
2952
2953         /*
2954          * Installing events is tricky because we cannot rely on ctx->is_active
2955          * to be set in case this is the nr_events 0 -> 1 transition.
2956          *
2957          * Instead we use task_curr(), which tells us if the task is running.
2958          * However, since we use task_curr() outside of rq::lock, we can race
2959          * against the actual state. This means the result can be wrong.
2960          *
2961          * If we get a false positive, we retry, this is harmless.
2962          *
2963          * If we get a false negative, things are complicated. If we are after
2964          * perf_event_context_sched_in() ctx::lock will serialize us, and the
2965          * value must be correct. If we're before, it doesn't matter since
2966          * perf_event_context_sched_in() will program the counter.
2967          *
2968          * However, this hinges on the remote context switch having observed
2969          * our task->perf_event_ctxp[] store, such that it will in fact take
2970          * ctx::lock in perf_event_context_sched_in().
2971          *
2972          * We do this by task_function_call(), if the IPI fails to hit the task
2973          * we know any future context switch of task must see the
2974          * perf_event_ctpx[] store.
2975          */
2976
2977         /*
2978          * This smp_mb() orders the task->perf_event_ctxp[] store with the
2979          * task_cpu() load, such that if the IPI then does not find the task
2980          * running, a future context switch of that task must observe the
2981          * store.
2982          */
2983         smp_mb();
2984 again:
2985         if (!task_function_call(task, __perf_install_in_context, event))
2986                 return;
2987
2988         raw_spin_lock_irq(&ctx->lock);
2989         task = ctx->task;
2990         if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2991                 /*
2992                  * Cannot happen because we already checked above (which also
2993                  * cannot happen), and we hold ctx->mutex, which serializes us
2994                  * against perf_event_exit_task_context().
2995                  */
2996                 raw_spin_unlock_irq(&ctx->lock);
2997                 return;
2998         }
2999         /*
3000          * If the task is not running, ctx->lock will avoid it becoming so,
3001          * thus we can safely install the event.
3002          */
3003         if (task_curr(task)) {
3004                 raw_spin_unlock_irq(&ctx->lock);
3005                 goto again;
3006         }
3007         add_event_to_ctx(event, ctx);
3008         raw_spin_unlock_irq(&ctx->lock);
3009 }
3010
3011 /*
3012  * Cross CPU call to enable a performance event
3013  */
3014 static void __perf_event_enable(struct perf_event *event,
3015                                 struct perf_cpu_context *cpuctx,
3016                                 struct perf_event_context *ctx,
3017                                 void *info)
3018 {
3019         struct perf_event *leader = event->group_leader;
3020         struct perf_event_context *task_ctx;
3021
3022         if (event->state >= PERF_EVENT_STATE_INACTIVE ||
3023             event->state <= PERF_EVENT_STATE_ERROR)
3024                 return;
3025
3026         ctx_time_freeze(cpuctx, ctx);
3027
3028         perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
3029         perf_cgroup_event_enable(event, ctx);
3030
3031         if (!ctx->is_active)
3032                 return;
3033
3034         if (!event_filter_match(event))
3035                 return;
3036
3037         /*
3038          * If the event is in a group and isn't the group leader,
3039          * then don't put it on unless the group is on.
3040          */
3041         if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
3042                 return;
3043
3044         task_ctx = cpuctx->task_ctx;
3045         if (ctx->task)
3046                 WARN_ON_ONCE(task_ctx != ctx);
3047
3048         ctx_resched(cpuctx, task_ctx, event->pmu_ctx->pmu, get_event_type(event));
3049 }
3050
3051 /*
3052  * Enable an event.
3053  *
3054  * If event->ctx is a cloned context, callers must make sure that
3055  * every task struct that event->ctx->task could possibly point to
3056  * remains valid.  This condition is satisfied when called through
3057  * perf_event_for_each_child or perf_event_for_each as described
3058  * for perf_event_disable.
3059  */
3060 static void _perf_event_enable(struct perf_event *event)
3061 {
3062         struct perf_event_context *ctx = event->ctx;
3063
3064         raw_spin_lock_irq(&ctx->lock);
3065         if (event->state >= PERF_EVENT_STATE_INACTIVE ||
3066             event->state <  PERF_EVENT_STATE_ERROR) {
3067 out:
3068                 raw_spin_unlock_irq(&ctx->lock);
3069                 return;
3070         }
3071
3072         /*
3073          * If the event is in error state, clear that first.
3074          *
3075          * That way, if we see the event in error state below, we know that it
3076          * has gone back into error state, as distinct from the task having
3077          * been scheduled away before the cross-call arrived.
3078          */
3079         if (event->state == PERF_EVENT_STATE_ERROR) {
3080                 /*
3081                  * Detached SIBLING events cannot leave ERROR state.
3082                  */
3083                 if (event->event_caps & PERF_EV_CAP_SIBLING &&
3084                     event->group_leader == event)
3085                         goto out;
3086
3087                 event->state = PERF_EVENT_STATE_OFF;
3088         }
3089         raw_spin_unlock_irq(&ctx->lock);
3090
3091         event_function_call(event, __perf_event_enable, NULL);
3092 }
3093
3094 /*
3095  * See perf_event_disable();
3096  */
3097 void perf_event_enable(struct perf_event *event)
3098 {
3099         struct perf_event_context *ctx;
3100
3101         ctx = perf_event_ctx_lock(event);
3102         _perf_event_enable(event);
3103         perf_event_ctx_unlock(event, ctx);
3104 }
3105 EXPORT_SYMBOL_GPL(perf_event_enable);
3106
3107 struct stop_event_data {
3108         struct perf_event       *event;
3109         unsigned int            restart;
3110 };
3111
3112 static int __perf_event_stop(void *info)
3113 {
3114         struct stop_event_data *sd = info;
3115         struct perf_event *event = sd->event;
3116
3117         /* if it's already INACTIVE, do nothing */
3118         if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3119                 return 0;
3120
3121         /* matches smp_wmb() in event_sched_in() */
3122         smp_rmb();
3123
3124         /*
3125          * There is a window with interrupts enabled before we get here,
3126          * so we need to check again lest we try to stop another CPU's event.
3127          */
3128         if (READ_ONCE(event->oncpu) != smp_processor_id())
3129                 return -EAGAIN;
3130
3131         event->pmu->stop(event, PERF_EF_UPDATE);
3132
3133         /*
3134          * May race with the actual stop (through perf_pmu_output_stop()),
3135          * but it is only used for events with AUX ring buffer, and such
3136          * events will refuse to restart because of rb::aux_mmap_count==0,
3137          * see comments in perf_aux_output_begin().
3138          *
3139          * Since this is happening on an event-local CPU, no trace is lost
3140          * while restarting.
3141          */
3142         if (sd->restart)
3143                 event->pmu->start(event, 0);
3144
3145         return 0;
3146 }
3147
3148 static int perf_event_stop(struct perf_event *event, int restart)
3149 {
3150         struct stop_event_data sd = {
3151                 .event          = event,
3152                 .restart        = restart,
3153         };
3154         int ret = 0;
3155
3156         do {
3157                 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3158                         return 0;
3159
3160                 /* matches smp_wmb() in event_sched_in() */
3161                 smp_rmb();
3162
3163                 /*
3164                  * We only want to restart ACTIVE events, so if the event goes
3165                  * inactive here (event->oncpu==-1), there's nothing more to do;
3166                  * fall through with ret==-ENXIO.
3167                  */
3168                 ret = cpu_function_call(READ_ONCE(event->oncpu),
3169                                         __perf_event_stop, &sd);
3170         } while (ret == -EAGAIN);
3171
3172         return ret;
3173 }
3174
3175 /*
3176  * In order to contain the amount of racy and tricky in the address filter
3177  * configuration management, it is a two part process:
3178  *
3179  * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
3180  *      we update the addresses of corresponding vmas in
3181  *      event::addr_filter_ranges array and bump the event::addr_filters_gen;
3182  * (p2) when an event is scheduled in (pmu::add), it calls
3183  *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
3184  *      if the generation has changed since the previous call.
3185  *
3186  * If (p1) happens while the event is active, we restart it to force (p2).
3187  *
3188  * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
3189  *     pre-existing mappings, called once when new filters arrive via SET_FILTER
3190  *     ioctl;
3191  * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
3192  *     registered mapping, called for every new mmap(), with mm::mmap_lock down
3193  *     for reading;
3194  * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
3195  *     of exec.
3196  */
3197 void perf_event_addr_filters_sync(struct perf_event *event)
3198 {
3199         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
3200
3201         if (!has_addr_filter(event))
3202                 return;
3203
3204         raw_spin_lock(&ifh->lock);
3205         if (event->addr_filters_gen != event->hw.addr_filters_gen) {
3206                 event->pmu->addr_filters_sync(event);
3207                 event->hw.addr_filters_gen = event->addr_filters_gen;
3208         }
3209         raw_spin_unlock(&ifh->lock);
3210 }
3211 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
3212
3213 static int _perf_event_refresh(struct perf_event *event, int refresh)
3214 {
3215         /*
3216          * not supported on inherited events
3217          */
3218         if (event->attr.inherit || !is_sampling_event(event))
3219                 return -EINVAL;
3220
3221         atomic_add(refresh, &event->event_limit);
3222         _perf_event_enable(event);
3223
3224         return 0;
3225 }
3226
3227 /*
3228  * See perf_event_disable()
3229  */
3230 int perf_event_refresh(struct perf_event *event, int refresh)
3231 {
3232         struct perf_event_context *ctx;
3233         int ret;
3234
3235         ctx = perf_event_ctx_lock(event);
3236         ret = _perf_event_refresh(event, refresh);
3237         perf_event_ctx_unlock(event, ctx);
3238
3239         return ret;
3240 }
3241 EXPORT_SYMBOL_GPL(perf_event_refresh);
3242
3243 static int perf_event_modify_breakpoint(struct perf_event *bp,
3244                                          struct perf_event_attr *attr)
3245 {
3246         int err;
3247
3248         _perf_event_disable(bp);
3249
3250         err = modify_user_hw_breakpoint_check(bp, attr, true);
3251
3252         if (!bp->attr.disabled)
3253                 _perf_event_enable(bp);
3254
3255         return err;
3256 }
3257
3258 /*
3259  * Copy event-type-independent attributes that may be modified.
3260  */
3261 static void perf_event_modify_copy_attr(struct perf_event_attr *to,
3262                                         const struct perf_event_attr *from)
3263 {
3264         to->sig_data = from->sig_data;
3265 }
3266
3267 static int perf_event_modify_attr(struct perf_event *event,
3268                                   struct perf_event_attr *attr)
3269 {
3270         int (*func)(struct perf_event *, struct perf_event_attr *);
3271         struct perf_event *child;
3272         int err;
3273
3274         if (event->attr.type != attr->type)
3275                 return -EINVAL;
3276
3277         switch (event->attr.type) {
3278         case PERF_TYPE_BREAKPOINT:
3279                 func = perf_event_modify_breakpoint;
3280                 break;
3281         default:
3282                 /* Place holder for future additions. */
3283                 return -EOPNOTSUPP;
3284         }
3285
3286         WARN_ON_ONCE(event->ctx->parent_ctx);
3287
3288         mutex_lock(&event->child_mutex);
3289         /*
3290          * Event-type-independent attributes must be copied before event-type
3291          * modification, which will validate that final attributes match the
3292          * source attributes after all relevant attributes have been copied.
3293          */
3294         perf_event_modify_copy_attr(&event->attr, attr);
3295         err = func(event, attr);
3296         if (err)
3297                 goto out;
3298         list_for_each_entry(child, &event->child_list, child_list) {
3299                 perf_event_modify_copy_attr(&child->attr, attr);
3300                 err = func(child, attr);
3301                 if (err)
3302                         goto out;
3303         }
3304 out:
3305         mutex_unlock(&event->child_mutex);
3306         return err;
3307 }
3308
3309 static void __pmu_ctx_sched_out(struct perf_event_pmu_context *pmu_ctx,
3310                                 enum event_type_t event_type)
3311 {
3312         struct perf_event_context *ctx = pmu_ctx->ctx;
3313         struct perf_event *event, *tmp;
3314         struct pmu *pmu = pmu_ctx->pmu;
3315
3316         if (ctx->task && !(ctx->is_active & EVENT_ALL)) {
3317                 struct perf_cpu_pmu_context *cpc;
3318
3319                 cpc = this_cpu_ptr(pmu->cpu_pmu_context);
3320                 WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx);
3321                 cpc->task_epc = NULL;
3322         }
3323
3324         if (!(event_type & EVENT_ALL))
3325                 return;
3326
3327         perf_pmu_disable(pmu);
3328         if (event_type & EVENT_PINNED) {
3329                 list_for_each_entry_safe(event, tmp,
3330                                          &pmu_ctx->pinned_active,
3331                                          active_list)
3332                         group_sched_out(event, ctx);
3333         }
3334
3335         if (event_type & EVENT_FLEXIBLE) {
3336                 list_for_each_entry_safe(event, tmp,
3337                                          &pmu_ctx->flexible_active,
3338                                          active_list)
3339                         group_sched_out(event, ctx);
3340                 /*
3341                  * Since we cleared EVENT_FLEXIBLE, also clear
3342                  * rotate_necessary, is will be reset by
3343                  * ctx_flexible_sched_in() when needed.
3344                  */
3345                 pmu_ctx->rotate_necessary = 0;
3346         }
3347         perf_pmu_enable(pmu);
3348 }
3349
3350 /*
3351  * Be very careful with the @pmu argument since this will change ctx state.
3352  * The @pmu argument works for ctx_resched(), because that is symmetric in
3353  * ctx_sched_out() / ctx_sched_in() usage and the ctx state ends up invariant.
3354  *
3355  * However, if you were to be asymmetrical, you could end up with messed up
3356  * state, eg. ctx->is_active cleared even though most EPCs would still actually
3357  * be active.
3358  */
3359 static void
3360 ctx_sched_out(struct perf_event_context *ctx, struct pmu *pmu, enum event_type_t event_type)
3361 {
3362         struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3363         struct perf_event_pmu_context *pmu_ctx;
3364         int is_active = ctx->is_active;
3365         bool cgroup = event_type & EVENT_CGROUP;
3366
3367         event_type &= ~EVENT_CGROUP;
3368
3369         lockdep_assert_held(&ctx->lock);
3370
3371         if (likely(!ctx->nr_events)) {
3372                 /*
3373                  * See __perf_remove_from_context().
3374                  */
3375                 WARN_ON_ONCE(ctx->is_active);
3376                 if (ctx->task)
3377                         WARN_ON_ONCE(cpuctx->task_ctx);
3378                 return;
3379         }
3380
3381         /*
3382          * Always update time if it was set; not only when it changes.
3383          * Otherwise we can 'forget' to update time for any but the last
3384          * context we sched out. For example:
3385          *
3386          *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
3387          *   ctx_sched_out(.event_type = EVENT_PINNED)
3388          *
3389          * would only update time for the pinned events.
3390          */
3391         __ctx_time_update(cpuctx, ctx, ctx == &cpuctx->ctx);
3392
3393         /*
3394          * CPU-release for the below ->is_active store,
3395          * see __load_acquire() in perf_event_time_now()
3396          */
3397         barrier();
3398         ctx->is_active &= ~event_type;
3399
3400         if (!(ctx->is_active & EVENT_ALL)) {
3401                 /*
3402                  * For FROZEN, preserve TIME|FROZEN such that perf_event_time_now()
3403                  * does not observe a hole. perf_ctx_unlock() will clean up.
3404                  */
3405                 if (ctx->is_active & EVENT_FROZEN)
3406                         ctx->is_active &= EVENT_TIME_FROZEN;
3407                 else
3408                         ctx->is_active = 0;
3409         }
3410
3411         if (ctx->task) {
3412                 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3413                 if (!(ctx->is_active & EVENT_ALL))
3414                         cpuctx->task_ctx = NULL;
3415         }
3416
3417         is_active ^= ctx->is_active; /* changed bits */
3418
3419         for_each_epc(pmu_ctx, ctx, pmu, cgroup)
3420                 __pmu_ctx_sched_out(pmu_ctx, is_active);
3421 }
3422
3423 /*
3424  * Test whether two contexts are equivalent, i.e. whether they have both been
3425  * cloned from the same version of the same context.
3426  *
3427  * Equivalence is measured using a generation number in the context that is
3428  * incremented on each modification to it; see unclone_ctx(), list_add_event()
3429  * and list_del_event().
3430  */
3431 static int context_equiv(struct perf_event_context *ctx1,
3432                          struct perf_event_context *ctx2)
3433 {
3434         lockdep_assert_held(&ctx1->lock);
3435         lockdep_assert_held(&ctx2->lock);
3436
3437         /* Pinning disables the swap optimization */
3438         if (ctx1->pin_count || ctx2->pin_count)
3439                 return 0;
3440
3441         /* If ctx1 is the parent of ctx2 */
3442         if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
3443                 return 1;
3444
3445         /* If ctx2 is the parent of ctx1 */
3446         if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
3447                 return 1;
3448
3449         /*
3450          * If ctx1 and ctx2 have the same parent; we flatten the parent
3451          * hierarchy, see perf_event_init_context().
3452          */
3453         if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
3454                         ctx1->parent_gen == ctx2->parent_gen)
3455                 return 1;
3456
3457         /* Unmatched */
3458         return 0;
3459 }
3460
3461 static void __perf_event_sync_stat(struct perf_event *event,
3462                                      struct perf_event *next_event)
3463 {
3464         u64 value;
3465
3466         if (!event->attr.inherit_stat)
3467                 return;
3468
3469         /*
3470          * Update the event value, we cannot use perf_event_read()
3471          * because we're in the middle of a context switch and have IRQs
3472          * disabled, which upsets smp_call_function_single(), however
3473          * we know the event must be on the current CPU, therefore we
3474          * don't need to use it.
3475          */
3476         if (event->state == PERF_EVENT_STATE_ACTIVE)
3477                 event->pmu->read(event);
3478
3479         perf_event_update_time(event);
3480
3481         /*
3482          * In order to keep per-task stats reliable we need to flip the event
3483          * values when we flip the contexts.
3484          */
3485         value = local64_read(&next_event->count);
3486         value = local64_xchg(&event->count, value);
3487         local64_set(&next_event->count, value);
3488
3489         swap(event->total_time_enabled, next_event->total_time_enabled);
3490         swap(event->total_time_running, next_event->total_time_running);
3491
3492         /*
3493          * Since we swizzled the values, update the user visible data too.
3494          */
3495         perf_event_update_userpage(event);
3496         perf_event_update_userpage(next_event);
3497 }
3498
3499 static void perf_event_sync_stat(struct perf_event_context *ctx,
3500                                    struct perf_event_context *next_ctx)
3501 {
3502         struct perf_event *event, *next_event;
3503
3504         if (!ctx->nr_stat)
3505                 return;
3506
3507         update_context_time(ctx);
3508
3509         event = list_first_entry(&ctx->event_list,
3510                                    struct perf_event, event_entry);
3511
3512         next_event = list_first_entry(&next_ctx->event_list,
3513                                         struct perf_event, event_entry);
3514
3515         while (&event->event_entry != &ctx->event_list &&
3516                &next_event->event_entry != &next_ctx->event_list) {
3517
3518                 __perf_event_sync_stat(event, next_event);
3519
3520                 event = list_next_entry(event, event_entry);
3521                 next_event = list_next_entry(next_event, event_entry);
3522         }
3523 }
3524
3525 #define double_list_for_each_entry(pos1, pos2, head1, head2, member)    \
3526         for (pos1 = list_first_entry(head1, typeof(*pos1), member),     \
3527              pos2 = list_first_entry(head2, typeof(*pos2), member);     \
3528              !list_entry_is_head(pos1, head1, member) &&                \
3529              !list_entry_is_head(pos2, head2, member);                  \
3530              pos1 = list_next_entry(pos1, member),                      \
3531              pos2 = list_next_entry(pos2, member))
3532
3533 static void perf_event_swap_task_ctx_data(struct perf_event_context *prev_ctx,
3534                                           struct perf_event_context *next_ctx)
3535 {
3536         struct perf_event_pmu_context *prev_epc, *next_epc;
3537
3538         if (!prev_ctx->nr_task_data)
3539                 return;
3540
3541         double_list_for_each_entry(prev_epc, next_epc,
3542                                    &prev_ctx->pmu_ctx_list, &next_ctx->pmu_ctx_list,
3543                                    pmu_ctx_entry) {
3544
3545                 if (WARN_ON_ONCE(prev_epc->pmu != next_epc->pmu))
3546                         continue;
3547
3548                 /*
3549                  * PMU specific parts of task perf context can require
3550                  * additional synchronization. As an example of such
3551                  * synchronization see implementation details of Intel
3552                  * LBR call stack data profiling;
3553                  */
3554                 if (prev_epc->pmu->swap_task_ctx)
3555                         prev_epc->pmu->swap_task_ctx(prev_epc, next_epc);
3556                 else
3557                         swap(prev_epc->task_ctx_data, next_epc->task_ctx_data);
3558         }
3559 }
3560
3561 static void perf_ctx_sched_task_cb(struct perf_event_context *ctx, bool sched_in)
3562 {
3563         struct perf_event_pmu_context *pmu_ctx;
3564         struct perf_cpu_pmu_context *cpc;
3565
3566         list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
3567                 cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context);
3568
3569                 if (cpc->sched_cb_usage && pmu_ctx->pmu->sched_task)
3570                         pmu_ctx->pmu->sched_task(pmu_ctx, sched_in);
3571         }
3572 }
3573
3574 static void
3575 perf_event_context_sched_out(struct task_struct *task, struct task_struct *next)
3576 {
3577         struct perf_event_context *ctx = task->perf_event_ctxp;
3578         struct perf_event_context *next_ctx;
3579         struct perf_event_context *parent, *next_parent;
3580         int do_switch = 1;
3581
3582         if (likely(!ctx))
3583                 return;
3584
3585         rcu_read_lock();
3586         next_ctx = rcu_dereference(next->perf_event_ctxp);
3587         if (!next_ctx)
3588                 goto unlock;
3589
3590         parent = rcu_dereference(ctx->parent_ctx);
3591         next_parent = rcu_dereference(next_ctx->parent_ctx);
3592
3593         /* If neither context have a parent context; they cannot be clones. */
3594         if (!parent && !next_parent)
3595                 goto unlock;
3596
3597         if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
3598                 /*
3599                  * Looks like the two contexts are clones, so we might be
3600                  * able to optimize the context switch.  We lock both
3601                  * contexts and check that they are clones under the
3602                  * lock (including re-checking that neither has been
3603                  * uncloned in the meantime).  It doesn't matter which
3604                  * order we take the locks because no other cpu could
3605                  * be trying to lock both of these tasks.
3606                  */
3607                 raw_spin_lock(&ctx->lock);
3608                 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
3609                 if (context_equiv(ctx, next_ctx)) {
3610
3611                         perf_ctx_disable(ctx, false);
3612
3613                         /* PMIs are disabled; ctx->nr_no_switch_fast is stable. */
3614                         if (local_read(&ctx->nr_no_switch_fast) ||
3615                             local_read(&next_ctx->nr_no_switch_fast)) {
3616                                 /*
3617                                  * Must not swap out ctx when there's pending
3618                                  * events that rely on the ctx->task relation.
3619                                  *
3620                                  * Likewise, when a context contains inherit +
3621                                  * SAMPLE_READ events they should be switched
3622                                  * out using the slow path so that they are
3623                                  * treated as if they were distinct contexts.
3624                                  */
3625                                 raw_spin_unlock(&next_ctx->lock);
3626                                 rcu_read_unlock();
3627                                 goto inside_switch;
3628                         }
3629
3630                         WRITE_ONCE(ctx->task, next);
3631                         WRITE_ONCE(next_ctx->task, task);
3632
3633                         perf_ctx_sched_task_cb(ctx, false);
3634                         perf_event_swap_task_ctx_data(ctx, next_ctx);
3635
3636                         perf_ctx_enable(ctx, false);
3637
3638                         /*
3639                          * RCU_INIT_POINTER here is safe because we've not
3640                          * modified the ctx and the above modification of
3641                          * ctx->task and ctx->task_ctx_data are immaterial
3642                          * since those values are always verified under
3643                          * ctx->lock which we're now holding.
3644                          */
3645                         RCU_INIT_POINTER(task->perf_event_ctxp, next_ctx);
3646                         RCU_INIT_POINTER(next->perf_event_ctxp, ctx);
3647
3648                         do_switch = 0;
3649
3650                         perf_event_sync_stat(ctx, next_ctx);
3651                 }
3652                 raw_spin_unlock(&next_ctx->lock);
3653                 raw_spin_unlock(&ctx->lock);
3654         }
3655 unlock:
3656         rcu_read_unlock();
3657
3658         if (do_switch) {
3659                 raw_spin_lock(&ctx->lock);
3660                 perf_ctx_disable(ctx, false);
3661
3662 inside_switch:
3663                 perf_ctx_sched_task_cb(ctx, false);
3664                 task_ctx_sched_out(ctx, NULL, EVENT_ALL);
3665
3666                 perf_ctx_enable(ctx, false);
3667                 raw_spin_unlock(&ctx->lock);
3668         }
3669 }
3670
3671 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
3672 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
3673
3674 void perf_sched_cb_dec(struct pmu *pmu)
3675 {
3676         struct perf_cpu_pmu_context *cpc = this_cpu_ptr(pmu->cpu_pmu_context);
3677
3678         this_cpu_dec(perf_sched_cb_usages);
3679         barrier();
3680
3681         if (!--cpc->sched_cb_usage)
3682                 list_del(&cpc->sched_cb_entry);
3683 }
3684
3685
3686 void perf_sched_cb_inc(struct pmu *pmu)
3687 {
3688         struct perf_cpu_pmu_context *cpc = this_cpu_ptr(pmu->cpu_pmu_context);
3689
3690         if (!cpc->sched_cb_usage++)
3691                 list_add(&cpc->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
3692
3693         barrier();
3694         this_cpu_inc(perf_sched_cb_usages);
3695 }
3696
3697 /*
3698  * This function provides the context switch callback to the lower code
3699  * layer. It is invoked ONLY when the context switch callback is enabled.
3700  *
3701  * This callback is relevant even to per-cpu events; for example multi event
3702  * PEBS requires this to provide PID/TID information. This requires we flush
3703  * all queued PEBS records before we context switch to a new task.
3704  */
3705 static void __perf_pmu_sched_task(struct perf_cpu_pmu_context *cpc, bool sched_in)
3706 {
3707         struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3708         struct pmu *pmu;
3709
3710         pmu = cpc->epc.pmu;
3711
3712         /* software PMUs will not have sched_task */
3713         if (WARN_ON_ONCE(!pmu->sched_task))
3714                 return;
3715
3716         perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3717         perf_pmu_disable(pmu);
3718
3719         pmu->sched_task(cpc->task_epc, sched_in);
3720
3721         perf_pmu_enable(pmu);
3722         perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3723 }
3724
3725 static void perf_pmu_sched_task(struct task_struct *prev,
3726                                 struct task_struct *next,
3727                                 bool sched_in)
3728 {
3729         struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3730         struct perf_cpu_pmu_context *cpc;
3731
3732         /* cpuctx->task_ctx will be handled in perf_event_context_sched_in/out */
3733         if (prev == next || cpuctx->task_ctx)
3734                 return;
3735
3736         list_for_each_entry(cpc, this_cpu_ptr(&sched_cb_list), sched_cb_entry)
3737                 __perf_pmu_sched_task(cpc, sched_in);
3738 }
3739
3740 static void perf_event_switch(struct task_struct *task,
3741                               struct task_struct *next_prev, bool sched_in);
3742
3743 /*
3744  * Called from scheduler to remove the events of the current task,
3745  * with interrupts disabled.
3746  *
3747  * We stop each event and update the event value in event->count.
3748  *
3749  * This does not protect us against NMI, but disable()
3750  * sets the disabled bit in the control field of event _before_
3751  * accessing the event control register. If a NMI hits, then it will
3752  * not restart the event.
3753  */
3754 void __perf_event_task_sched_out(struct task_struct *task,
3755                                  struct task_struct *next)
3756 {
3757         if (__this_cpu_read(perf_sched_cb_usages))
3758                 perf_pmu_sched_task(task, next, false);
3759
3760         if (atomic_read(&nr_switch_events))
3761                 perf_event_switch(task, next, false);
3762
3763         perf_event_context_sched_out(task, next);
3764
3765         /*
3766          * if cgroup events exist on this CPU, then we need
3767          * to check if we have to switch out PMU state.
3768          * cgroup event are system-wide mode only
3769          */
3770         perf_cgroup_switch(next);
3771 }
3772
3773 static bool perf_less_group_idx(const void *l, const void *r, void __always_unused *args)
3774 {
3775         const struct perf_event *le = *(const struct perf_event **)l;
3776         const struct perf_event *re = *(const struct perf_event **)r;
3777
3778         return le->group_index < re->group_index;
3779 }
3780
3781 DEFINE_MIN_HEAP(struct perf_event *, perf_event_min_heap);
3782
3783 static const struct min_heap_callbacks perf_min_heap = {
3784         .less = perf_less_group_idx,
3785         .swp = NULL,
3786 };
3787
3788 static void __heap_add(struct perf_event_min_heap *heap, struct perf_event *event)
3789 {
3790         struct perf_event **itrs = heap->data;
3791
3792         if (event) {
3793                 itrs[heap->nr] = event;
3794                 heap->nr++;
3795         }
3796 }
3797
3798 static void __link_epc(struct perf_event_pmu_context *pmu_ctx)
3799 {
3800         struct perf_cpu_pmu_context *cpc;
3801
3802         if (!pmu_ctx->ctx->task)
3803                 return;
3804
3805         cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context);
3806         WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx);
3807         cpc->task_epc = pmu_ctx;
3808 }
3809
3810 static noinline int visit_groups_merge(struct perf_event_context *ctx,
3811                                 struct perf_event_groups *groups, int cpu,
3812                                 struct pmu *pmu,
3813                                 int (*func)(struct perf_event *, void *),
3814                                 void *data)
3815 {
3816 #ifdef CONFIG_CGROUP_PERF
3817         struct cgroup_subsys_state *css = NULL;
3818 #endif
3819         struct perf_cpu_context *cpuctx = NULL;
3820         /* Space for per CPU and/or any CPU event iterators. */
3821         struct perf_event *itrs[2];
3822         struct perf_event_min_heap event_heap;
3823         struct perf_event **evt;
3824         int ret;
3825
3826         if (pmu->filter && pmu->filter(pmu, cpu))
3827                 return 0;
3828
3829         if (!ctx->task) {
3830                 cpuctx = this_cpu_ptr(&perf_cpu_context);
3831                 event_heap = (struct perf_event_min_heap){
3832                         .data = cpuctx->heap,
3833                         .nr = 0,
3834                         .size = cpuctx->heap_size,
3835                 };
3836
3837                 lockdep_assert_held(&cpuctx->ctx.lock);
3838
3839 #ifdef CONFIG_CGROUP_PERF
3840                 if (cpuctx->cgrp)
3841                         css = &cpuctx->cgrp->css;
3842 #endif
3843         } else {
3844                 event_heap = (struct perf_event_min_heap){
3845                         .data = itrs,
3846                         .nr = 0,
3847                         .size = ARRAY_SIZE(itrs),
3848                 };
3849                 /* Events not within a CPU context may be on any CPU. */
3850                 __heap_add(&event_heap, perf_event_groups_first(groups, -1, pmu, NULL));
3851         }
3852         evt = event_heap.data;
3853
3854         __heap_add(&event_heap, perf_event_groups_first(groups, cpu, pmu, NULL));
3855
3856 #ifdef CONFIG_CGROUP_PERF
3857         for (; css; css = css->parent)
3858                 __heap_add(&event_heap, perf_event_groups_first(groups, cpu, pmu, css->cgroup));
3859 #endif
3860
3861         if (event_heap.nr) {
3862                 __link_epc((*evt)->pmu_ctx);
3863                 perf_assert_pmu_disabled((*evt)->pmu_ctx->pmu);
3864         }
3865
3866         min_heapify_all_inline(&event_heap, &perf_min_heap, NULL);
3867
3868         while (event_heap.nr) {
3869                 ret = func(*evt, data);
3870                 if (ret)
3871                         return ret;
3872
3873                 *evt = perf_event_groups_next(*evt, pmu);
3874                 if (*evt)
3875                         min_heap_sift_down_inline(&event_heap, 0, &perf_min_heap, NULL);
3876                 else
3877                         min_heap_pop_inline(&event_heap, &perf_min_heap, NULL);
3878         }
3879
3880         return 0;
3881 }
3882
3883 /*
3884  * Because the userpage is strictly per-event (there is no concept of context,
3885  * so there cannot be a context indirection), every userpage must be updated
3886  * when context time starts :-(
3887  *
3888  * IOW, we must not miss EVENT_TIME edges.
3889  */
3890 static inline bool event_update_userpage(struct perf_event *event)
3891 {
3892         if (likely(!atomic_read(&event->mmap_count)))
3893                 return false;
3894
3895         perf_event_update_time(event);
3896         perf_event_update_userpage(event);
3897
3898         return true;
3899 }
3900
3901 static inline void group_update_userpage(struct perf_event *group_event)
3902 {
3903         struct perf_event *event;
3904
3905         if (!event_update_userpage(group_event))
3906                 return;
3907
3908         for_each_sibling_event(event, group_event)
3909                 event_update_userpage(event);
3910 }
3911
3912 static int merge_sched_in(struct perf_event *event, void *data)
3913 {
3914         struct perf_event_context *ctx = event->ctx;
3915         int *can_add_hw = data;
3916
3917         if (event->state <= PERF_EVENT_STATE_OFF)
3918                 return 0;
3919
3920         if (!event_filter_match(event))
3921                 return 0;
3922
3923         if (group_can_go_on(event, *can_add_hw)) {
3924                 if (!group_sched_in(event, ctx))
3925                         list_add_tail(&event->active_list, get_event_list(event));
3926         }
3927
3928         if (event->state == PERF_EVENT_STATE_INACTIVE) {
3929                 *can_add_hw = 0;
3930                 if (event->attr.pinned) {
3931                         perf_cgroup_event_disable(event, ctx);
3932                         perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
3933                 } else {
3934                         struct perf_cpu_pmu_context *cpc;
3935
3936                         event->pmu_ctx->rotate_necessary = 1;
3937                         cpc = this_cpu_ptr(event->pmu_ctx->pmu->cpu_pmu_context);
3938                         perf_mux_hrtimer_restart(cpc);
3939                         group_update_userpage(event);
3940                 }
3941         }
3942
3943         return 0;
3944 }
3945
3946 static void pmu_groups_sched_in(struct perf_event_context *ctx,
3947                                 struct perf_event_groups *groups,
3948                                 struct pmu *pmu)
3949 {
3950         int can_add_hw = 1;
3951         visit_groups_merge(ctx, groups, smp_processor_id(), pmu,
3952                            merge_sched_in, &can_add_hw);
3953 }
3954
3955 static void __pmu_ctx_sched_in(struct perf_event_pmu_context *pmu_ctx,
3956                                enum event_type_t event_type)
3957 {
3958         struct perf_event_context *ctx = pmu_ctx->ctx;
3959
3960         if (event_type & EVENT_PINNED)
3961                 pmu_groups_sched_in(ctx, &ctx->pinned_groups, pmu_ctx->pmu);
3962         if (event_type & EVENT_FLEXIBLE)
3963                 pmu_groups_sched_in(ctx, &ctx->flexible_groups, pmu_ctx->pmu);
3964 }
3965
3966 static void
3967 ctx_sched_in(struct perf_event_context *ctx, struct pmu *pmu, enum event_type_t event_type)
3968 {
3969         struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3970         struct perf_event_pmu_context *pmu_ctx;
3971         int is_active = ctx->is_active;
3972         bool cgroup = event_type & EVENT_CGROUP;
3973
3974         event_type &= ~EVENT_CGROUP;
3975
3976         lockdep_assert_held(&ctx->lock);
3977
3978         if (likely(!ctx->nr_events))
3979                 return;
3980
3981         if (!(is_active & EVENT_TIME)) {
3982                 /* start ctx time */
3983                 __update_context_time(ctx, false);
3984                 perf_cgroup_set_timestamp(cpuctx);
3985                 /*
3986                  * CPU-release for the below ->is_active store,
3987                  * see __load_acquire() in perf_event_time_now()
3988                  */
3989                 barrier();
3990         }
3991
3992         ctx->is_active |= (event_type | EVENT_TIME);
3993         if (ctx->task) {
3994                 if (!(is_active & EVENT_ALL))
3995                         cpuctx->task_ctx = ctx;
3996                 else
3997                         WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3998         }
3999
4000         is_active ^= ctx->is_active; /* changed bits */
4001
4002         /*
4003          * First go through the list and put on any pinned groups
4004          * in order to give them the best chance of going on.
4005          */
4006         if (is_active & EVENT_PINNED) {
4007                 for_each_epc(pmu_ctx, ctx, pmu, cgroup)
4008                         __pmu_ctx_sched_in(pmu_ctx, EVENT_PINNED);
4009         }
4010
4011         /* Then walk through the lower prio flexible groups */
4012         if (is_active & EVENT_FLEXIBLE) {
4013                 for_each_epc(pmu_ctx, ctx, pmu, cgroup)
4014                         __pmu_ctx_sched_in(pmu_ctx, EVENT_FLEXIBLE);
4015         }
4016 }
4017
4018 static void perf_event_context_sched_in(struct task_struct *task)
4019 {
4020         struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
4021         struct perf_event_context *ctx;
4022
4023         rcu_read_lock();
4024         ctx = rcu_dereference(task->perf_event_ctxp);
4025         if (!ctx)
4026                 goto rcu_unlock;
4027
4028         if (cpuctx->task_ctx == ctx) {
4029                 perf_ctx_lock(cpuctx, ctx);
4030                 perf_ctx_disable(ctx, false);
4031
4032                 perf_ctx_sched_task_cb(ctx, true);
4033
4034                 perf_ctx_enable(ctx, false);
4035                 perf_ctx_unlock(cpuctx, ctx);
4036                 goto rcu_unlock;
4037         }
4038
4039         perf_ctx_lock(cpuctx, ctx);
4040         /*
4041          * We must check ctx->nr_events while holding ctx->lock, such
4042          * that we serialize against perf_install_in_context().
4043          */
4044         if (!ctx->nr_events)
4045                 goto unlock;
4046
4047         perf_ctx_disable(ctx, false);
4048         /*
4049          * We want to keep the following priority order:
4050          * cpu pinned (that don't need to move), task pinned,
4051          * cpu flexible, task flexible.
4052          *
4053          * However, if task's ctx is not carrying any pinned
4054          * events, no need to flip the cpuctx's events around.
4055          */
4056         if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree)) {
4057                 perf_ctx_disable(&cpuctx->ctx, false);
4058                 ctx_sched_out(&cpuctx->ctx, NULL, EVENT_FLEXIBLE);
4059         }
4060
4061         perf_event_sched_in(cpuctx, ctx, NULL);
4062
4063         perf_ctx_sched_task_cb(cpuctx->task_ctx, true);
4064
4065         if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree))
4066                 perf_ctx_enable(&cpuctx->ctx, false);
4067
4068         perf_ctx_enable(ctx, false);
4069
4070 unlock:
4071         perf_ctx_unlock(cpuctx, ctx);
4072 rcu_unlock:
4073         rcu_read_unlock();
4074 }
4075
4076 /*
4077  * Called from scheduler to add the events of the current task
4078  * with interrupts disabled.
4079  *
4080  * We restore the event value and then enable it.
4081  *
4082  * This does not protect us against NMI, but enable()
4083  * sets the enabled bit in the control field of event _before_
4084  * accessing the event control register. If a NMI hits, then it will
4085  * keep the event running.
4086  */
4087 void __perf_event_task_sched_in(struct task_struct *prev,
4088                                 struct task_struct *task)
4089 {
4090         perf_event_context_sched_in(task);
4091
4092         if (atomic_read(&nr_switch_events))
4093                 perf_event_switch(task, prev, true);
4094
4095         if (__this_cpu_read(perf_sched_cb_usages))
4096                 perf_pmu_sched_task(prev, task, true);
4097 }
4098
4099 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
4100 {
4101         u64 frequency = event->attr.sample_freq;
4102         u64 sec = NSEC_PER_SEC;
4103         u64 divisor, dividend;
4104
4105         int count_fls, nsec_fls, frequency_fls, sec_fls;
4106
4107         count_fls = fls64(count);
4108         nsec_fls = fls64(nsec);
4109         frequency_fls = fls64(frequency);
4110         sec_fls = 30;
4111
4112         /*
4113          * We got @count in @nsec, with a target of sample_freq HZ
4114          * the target period becomes:
4115          *
4116          *             @count * 10^9
4117          * period = -------------------
4118          *          @nsec * sample_freq
4119          *
4120          */
4121
4122         /*
4123          * Reduce accuracy by one bit such that @a and @b converge
4124          * to a similar magnitude.
4125          */
4126 #define REDUCE_FLS(a, b)                \
4127 do {                                    \
4128         if (a##_fls > b##_fls) {        \
4129                 a >>= 1;                \
4130                 a##_fls--;              \
4131         } else {                        \
4132                 b >>= 1;                \
4133                 b##_fls--;              \
4134         }                               \
4135 } while (0)
4136
4137         /*
4138          * Reduce accuracy until either term fits in a u64, then proceed with
4139          * the other, so that finally we can do a u64/u64 division.
4140          */
4141         while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
4142                 REDUCE_FLS(nsec, frequency);
4143                 REDUCE_FLS(sec, count);
4144         }
4145
4146         if (count_fls + sec_fls > 64) {
4147                 divisor = nsec * frequency;
4148
4149                 while (count_fls + sec_fls > 64) {
4150                         REDUCE_FLS(count, sec);
4151                         divisor >>= 1;
4152                 }
4153
4154                 dividend = count * sec;
4155         } else {
4156                 dividend = count * sec;
4157
4158                 while (nsec_fls + frequency_fls > 64) {
4159                         REDUCE_FLS(nsec, frequency);
4160                         dividend >>= 1;
4161                 }
4162
4163                 divisor = nsec * frequency;
4164         }
4165
4166         if (!divisor)
4167                 return dividend;
4168
4169         return div64_u64(dividend, divisor);
4170 }
4171
4172 static DEFINE_PER_CPU(int, perf_throttled_count);
4173 static DEFINE_PER_CPU(u64, perf_throttled_seq);
4174
4175 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
4176 {
4177         struct hw_perf_event *hwc = &event->hw;
4178         s64 period, sample_period;
4179         s64 delta;
4180
4181         period = perf_calculate_period(event, nsec, count);
4182
4183         delta = (s64)(period - hwc->sample_period);
4184         if (delta >= 0)
4185                 delta += 7;
4186         else
4187                 delta -= 7;
4188         delta /= 8; /* low pass filter */
4189
4190         sample_period = hwc->sample_period + delta;
4191
4192         if (!sample_period)
4193                 sample_period = 1;
4194
4195         hwc->sample_period = sample_period;
4196
4197         if (local64_read(&hwc->period_left) > 8*sample_period) {
4198                 if (disable)
4199                         event->pmu->stop(event, PERF_EF_UPDATE);
4200
4201                 local64_set(&hwc->period_left, 0);
4202
4203                 if (disable)
4204                         event->pmu->start(event, PERF_EF_RELOAD);
4205         }
4206 }
4207
4208 static void perf_adjust_freq_unthr_events(struct list_head *event_list)
4209 {
4210         struct perf_event *event;
4211         struct hw_perf_event *hwc;
4212         u64 now, period = TICK_NSEC;
4213         s64 delta;
4214
4215         list_for_each_entry(event, event_list, active_list) {
4216                 if (event->state != PERF_EVENT_STATE_ACTIVE)
4217                         continue;
4218
4219                 // XXX use visit thingy to avoid the -1,cpu match
4220                 if (!event_filter_match(event))
4221                         continue;
4222
4223                 hwc = &event->hw;
4224
4225                 if (hwc->interrupts == MAX_INTERRUPTS) {
4226                         hwc->interrupts = 0;
4227                         perf_log_throttle(event, 1);
4228                         if (!event->attr.freq || !event->attr.sample_freq)
4229                                 event->pmu->start(event, 0);
4230                 }
4231
4232                 if (!event->attr.freq || !event->attr.sample_freq)
4233                         continue;
4234
4235                 /*
4236                  * stop the event and update event->count
4237                  */
4238                 event->pmu->stop(event, PERF_EF_UPDATE);
4239
4240                 now = local64_read(&event->count);
4241                 delta = now - hwc->freq_count_stamp;
4242                 hwc->freq_count_stamp = now;
4243
4244                 /*
4245                  * restart the event
4246                  * reload only if value has changed
4247                  * we have stopped the event so tell that
4248                  * to perf_adjust_period() to avoid stopping it
4249                  * twice.
4250                  */
4251                 if (delta > 0)
4252                         perf_adjust_period(event, period, delta, false);
4253
4254                 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
4255         }
4256 }
4257
4258 /*
4259  * combine freq adjustment with unthrottling to avoid two passes over the
4260  * events. At the same time, make sure, having freq events does not change
4261  * the rate of unthrottling as that would introduce bias.
4262  */
4263 static void
4264 perf_adjust_freq_unthr_context(struct perf_event_context *ctx, bool unthrottle)
4265 {
4266         struct perf_event_pmu_context *pmu_ctx;
4267
4268         /*
4269          * only need to iterate over all events iff:
4270          * - context have events in frequency mode (needs freq adjust)
4271          * - there are events to unthrottle on this cpu
4272          */
4273         if (!(ctx->nr_freq || unthrottle))
4274                 return;
4275
4276         raw_spin_lock(&ctx->lock);
4277
4278         list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
4279                 if (!(pmu_ctx->nr_freq || unthrottle))
4280                         continue;
4281                 if (!perf_pmu_ctx_is_active(pmu_ctx))
4282                         continue;
4283                 if (pmu_ctx->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT)
4284                         continue;
4285
4286                 perf_pmu_disable(pmu_ctx->pmu);
4287                 perf_adjust_freq_unthr_events(&pmu_ctx->pinned_active);
4288                 perf_adjust_freq_unthr_events(&pmu_ctx->flexible_active);
4289                 perf_pmu_enable(pmu_ctx->pmu);
4290         }
4291
4292         raw_spin_unlock(&ctx->lock);
4293 }
4294
4295 /*
4296  * Move @event to the tail of the @ctx's elegible events.
4297  */
4298 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event)
4299 {
4300         /*
4301          * Rotate the first entry last of non-pinned groups. Rotation might be
4302          * disabled by the inheritance code.
4303          */
4304         if (ctx->rotate_disable)
4305                 return;
4306
4307         perf_event_groups_delete(&ctx->flexible_groups, event);
4308         perf_event_groups_insert(&ctx->flexible_groups, event);
4309 }
4310
4311 /* pick an event from the flexible_groups to rotate */
4312 static inline struct perf_event *
4313 ctx_event_to_rotate(struct perf_event_pmu_context *pmu_ctx)
4314 {
4315         struct perf_event *event;
4316         struct rb_node *node;
4317         struct rb_root *tree;
4318         struct __group_key key = {
4319                 .pmu = pmu_ctx->pmu,
4320         };
4321
4322         /* pick the first active flexible event */
4323         event = list_first_entry_or_null(&pmu_ctx->flexible_active,
4324                                          struct perf_event, active_list);
4325         if (event)
4326                 goto out;
4327
4328         /* if no active flexible event, pick the first event */
4329         tree = &pmu_ctx->ctx->flexible_groups.tree;
4330
4331         if (!pmu_ctx->ctx->task) {
4332                 key.cpu = smp_processor_id();
4333
4334                 node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup);
4335                 if (node)
4336                         event = __node_2_pe(node);
4337                 goto out;
4338         }
4339
4340         key.cpu = -1;
4341         node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup);
4342         if (node) {
4343                 event = __node_2_pe(node);
4344                 goto out;
4345         }
4346
4347         key.cpu = smp_processor_id();
4348         node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup);
4349         if (node)
4350                 event = __node_2_pe(node);
4351
4352 out:
4353         /*
4354          * Unconditionally clear rotate_necessary; if ctx_flexible_sched_in()
4355          * finds there are unschedulable events, it will set it again.
4356          */
4357         pmu_ctx->rotate_necessary = 0;
4358
4359         return event;
4360 }
4361
4362 static bool perf_rotate_context(struct perf_cpu_pmu_context *cpc)
4363 {
4364         struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
4365         struct perf_event_pmu_context *cpu_epc, *task_epc = NULL;
4366         struct perf_event *cpu_event = NULL, *task_event = NULL;
4367         int cpu_rotate, task_rotate;
4368         struct pmu *pmu;
4369
4370         /*
4371          * Since we run this from IRQ context, nobody can install new
4372          * events, thus the event count values are stable.
4373          */
4374
4375         cpu_epc = &cpc->epc;
4376         pmu = cpu_epc->pmu;
4377         task_epc = cpc->task_epc;
4378
4379         cpu_rotate = cpu_epc->rotate_necessary;
4380         task_rotate = task_epc ? task_epc->rotate_necessary : 0;
4381
4382         if (!(cpu_rotate || task_rotate))
4383                 return false;
4384
4385         perf_ctx_lock(cpuctx, cpuctx->task_ctx);
4386         perf_pmu_disable(pmu);
4387
4388         if (task_rotate)
4389                 task_event = ctx_event_to_rotate(task_epc);
4390         if (cpu_rotate)
4391                 cpu_event = ctx_event_to_rotate(cpu_epc);
4392
4393         /*
4394          * As per the order given at ctx_resched() first 'pop' task flexible
4395          * and then, if needed CPU flexible.
4396          */
4397         if (task_event || (task_epc && cpu_event)) {
4398                 update_context_time(task_epc->ctx);
4399                 __pmu_ctx_sched_out(task_epc, EVENT_FLEXIBLE);
4400         }
4401
4402         if (cpu_event) {
4403                 update_context_time(&cpuctx->ctx);
4404                 __pmu_ctx_sched_out(cpu_epc, EVENT_FLEXIBLE);
4405                 rotate_ctx(&cpuctx->ctx, cpu_event);
4406                 __pmu_ctx_sched_in(cpu_epc, EVENT_FLEXIBLE);
4407         }
4408
4409         if (task_event)
4410                 rotate_ctx(task_epc->ctx, task_event);
4411
4412         if (task_event || (task_epc && cpu_event))
4413                 __pmu_ctx_sched_in(task_epc, EVENT_FLEXIBLE);
4414
4415         perf_pmu_enable(pmu);
4416         perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
4417
4418         return true;
4419 }
4420
4421 void perf_event_task_tick(void)
4422 {
4423         struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
4424         struct perf_event_context *ctx;
4425         int throttled;
4426
4427         lockdep_assert_irqs_disabled();
4428
4429         __this_cpu_inc(perf_throttled_seq);
4430         throttled = __this_cpu_xchg(perf_throttled_count, 0);
4431         tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
4432
4433         perf_adjust_freq_unthr_context(&cpuctx->ctx, !!throttled);
4434
4435         rcu_read_lock();
4436         ctx = rcu_dereference(current->perf_event_ctxp);
4437         if (ctx)
4438                 perf_adjust_freq_unthr_context(ctx, !!throttled);
4439         rcu_read_unlock();
4440 }
4441
4442 static int event_enable_on_exec(struct perf_event *event,
4443                                 struct perf_event_context *ctx)
4444 {
4445         if (!event->attr.enable_on_exec)
4446                 return 0;
4447
4448         event->attr.enable_on_exec = 0;
4449         if (event->state >= PERF_EVENT_STATE_INACTIVE)
4450                 return 0;
4451
4452         perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
4453
4454         return 1;
4455 }
4456
4457 /*
4458  * Enable all of a task's events that have been marked enable-on-exec.
4459  * This expects task == current.
4460  */
4461 static void perf_event_enable_on_exec(struct perf_event_context *ctx)
4462 {
4463         struct perf_event_context *clone_ctx = NULL;
4464         enum event_type_t event_type = 0;
4465         struct perf_cpu_context *cpuctx;
4466         struct perf_event *event;
4467         unsigned long flags;
4468         int enabled = 0;
4469
4470         local_irq_save(flags);
4471         if (WARN_ON_ONCE(current->perf_event_ctxp != ctx))
4472                 goto out;
4473
4474         if (!ctx->nr_events)
4475                 goto out;
4476
4477         cpuctx = this_cpu_ptr(&perf_cpu_context);
4478         perf_ctx_lock(cpuctx, ctx);
4479         ctx_time_freeze(cpuctx, ctx);
4480
4481         list_for_each_entry(event, &ctx->event_list, event_entry) {
4482                 enabled |= event_enable_on_exec(event, ctx);
4483                 event_type |= get_event_type(event);
4484         }
4485
4486         /*
4487          * Unclone and reschedule this context if we enabled any event.
4488          */
4489         if (enabled) {
4490                 clone_ctx = unclone_ctx(ctx);
4491                 ctx_resched(cpuctx, ctx, NULL, event_type);
4492         }
4493         perf_ctx_unlock(cpuctx, ctx);
4494
4495 out:
4496         local_irq_restore(flags);
4497
4498         if (clone_ctx)
4499                 put_ctx(clone_ctx);
4500 }
4501
4502 static void perf_remove_from_owner(struct perf_event *event);
4503 static void perf_event_exit_event(struct perf_event *event,
4504                                   struct perf_event_context *ctx);
4505
4506 /*
4507  * Removes all events from the current task that have been marked
4508  * remove-on-exec, and feeds their values back to parent events.
4509  */
4510 static void perf_event_remove_on_exec(struct perf_event_context *ctx)
4511 {
4512         struct perf_event_context *clone_ctx = NULL;
4513         struct perf_event *event, *next;
4514         unsigned long flags;
4515         bool modified = false;
4516
4517         mutex_lock(&ctx->mutex);
4518
4519         if (WARN_ON_ONCE(ctx->task != current))
4520                 goto unlock;
4521
4522         list_for_each_entry_safe(event, next, &ctx->event_list, event_entry) {
4523                 if (!event->attr.remove_on_exec)
4524                         continue;
4525
4526                 if (!is_kernel_event(event))
4527                         perf_remove_from_owner(event);
4528
4529                 modified = true;
4530
4531                 perf_event_exit_event(event, ctx);
4532         }
4533
4534         raw_spin_lock_irqsave(&ctx->lock, flags);
4535         if (modified)
4536                 clone_ctx = unclone_ctx(ctx);
4537         raw_spin_unlock_irqrestore(&ctx->lock, flags);
4538
4539 unlock:
4540         mutex_unlock(&ctx->mutex);
4541
4542         if (clone_ctx)
4543                 put_ctx(clone_ctx);
4544 }
4545
4546 struct perf_read_data {
4547         struct perf_event *event;
4548         bool group;
4549         int ret;
4550 };
4551
4552 static inline const struct cpumask *perf_scope_cpu_topology_cpumask(unsigned int scope, int cpu);
4553
4554 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
4555 {
4556         int local_cpu = smp_processor_id();
4557         u16 local_pkg, event_pkg;
4558
4559         if ((unsigned)event_cpu >= nr_cpu_ids)
4560                 return event_cpu;
4561
4562         if (event->group_caps & PERF_EV_CAP_READ_SCOPE) {
4563                 const struct cpumask *cpumask = perf_scope_cpu_topology_cpumask(event->pmu->scope, event_cpu);
4564
4565                 if (cpumask && cpumask_test_cpu(local_cpu, cpumask))
4566                         return local_cpu;
4567         }
4568
4569         if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
4570                 event_pkg = topology_physical_package_id(event_cpu);
4571                 local_pkg = topology_physical_package_id(local_cpu);
4572
4573                 if (event_pkg == local_pkg)
4574                         return local_cpu;
4575         }
4576
4577         return event_cpu;
4578 }
4579
4580 /*
4581  * Cross CPU call to read the hardware event
4582  */
4583 static void __perf_event_read(void *info)
4584 {
4585         struct perf_read_data *data = info;
4586         struct perf_event *sub, *event = data->event;
4587         struct perf_event_context *ctx = event->ctx;
4588         struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
4589         struct pmu *pmu = event->pmu;
4590
4591         /*
4592          * If this is a task context, we need to check whether it is
4593          * the current task context of this cpu.  If not it has been
4594          * scheduled out before the smp call arrived.  In that case
4595          * event->count would have been updated to a recent sample
4596          * when the event was scheduled out.
4597          */
4598         if (ctx->task && cpuctx->task_ctx != ctx)
4599                 return;
4600
4601         raw_spin_lock(&ctx->lock);
4602         ctx_time_update_event(ctx, event);
4603
4604         perf_event_update_time(event);
4605         if (data->group)
4606                 perf_event_update_sibling_time(event);
4607
4608         if (event->state != PERF_EVENT_STATE_ACTIVE)
4609                 goto unlock;
4610
4611         if (!data->group) {
4612                 pmu->read(event);
4613                 data->ret = 0;
4614                 goto unlock;
4615         }
4616
4617         pmu->start_txn(pmu, PERF_PMU_TXN_READ);
4618
4619         pmu->read(event);
4620
4621         for_each_sibling_event(sub, event) {
4622                 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
4623                         /*
4624                          * Use sibling's PMU rather than @event's since
4625                          * sibling could be on different (eg: software) PMU.
4626                          */
4627                         sub->pmu->read(sub);
4628                 }
4629         }
4630
4631         data->ret = pmu->commit_txn(pmu);
4632
4633 unlock:
4634         raw_spin_unlock(&ctx->lock);
4635 }
4636
4637 static inline u64 perf_event_count(struct perf_event *event, bool self)
4638 {
4639         if (self)
4640                 return local64_read(&event->count);
4641
4642         return local64_read(&event->count) + atomic64_read(&event->child_count);
4643 }
4644
4645 static void calc_timer_values(struct perf_event *event,
4646                                 u64 *now,
4647                                 u64 *enabled,
4648                                 u64 *running)
4649 {
4650         u64 ctx_time;
4651
4652         *now = perf_clock();
4653         ctx_time = perf_event_time_now(event, *now);
4654         __perf_update_times(event, ctx_time, enabled, running);
4655 }
4656
4657 /*
4658  * NMI-safe method to read a local event, that is an event that
4659  * is:
4660  *   - either for the current task, or for this CPU
4661  *   - does not have inherit set, for inherited task events
4662  *     will not be local and we cannot read them atomically
4663  *   - must not have a pmu::count method
4664  */
4665 int perf_event_read_local(struct perf_event *event, u64 *value,
4666                           u64 *enabled, u64 *running)
4667 {
4668         unsigned long flags;
4669         int event_oncpu;
4670         int event_cpu;
4671         int ret = 0;
4672
4673         /*
4674          * Disabling interrupts avoids all counter scheduling (context
4675          * switches, timer based rotation and IPIs).
4676          */
4677         local_irq_save(flags);
4678
4679         /*
4680          * It must not be an event with inherit set, we cannot read
4681          * all child counters from atomic context.
4682          */
4683         if (event->attr.inherit) {
4684                 ret = -EOPNOTSUPP;
4685                 goto out;
4686         }
4687
4688         /* If this is a per-task event, it must be for current */
4689         if ((event->attach_state & PERF_ATTACH_TASK) &&
4690             event->hw.target != current) {
4691                 ret = -EINVAL;
4692                 goto out;
4693         }
4694
4695         /*
4696          * Get the event CPU numbers, and adjust them to local if the event is
4697          * a per-package event that can be read locally
4698          */
4699         event_oncpu = __perf_event_read_cpu(event, event->oncpu);
4700         event_cpu = __perf_event_read_cpu(event, event->cpu);
4701
4702         /* If this is a per-CPU event, it must be for this CPU */
4703         if (!(event->attach_state & PERF_ATTACH_TASK) &&
4704             event_cpu != smp_processor_id()) {
4705                 ret = -EINVAL;
4706                 goto out;
4707         }
4708
4709         /* If this is a pinned event it must be running on this CPU */
4710         if (event->attr.pinned && event_oncpu != smp_processor_id()) {
4711                 ret = -EBUSY;
4712                 goto out;
4713         }
4714
4715         /*
4716          * If the event is currently on this CPU, its either a per-task event,
4717          * or local to this CPU. Furthermore it means its ACTIVE (otherwise
4718          * oncpu == -1).
4719          */
4720         if (event_oncpu == smp_processor_id())
4721                 event->pmu->read(event);
4722
4723         *value = local64_read(&event->count);
4724         if (enabled || running) {
4725                 u64 __enabled, __running, __now;
4726
4727                 calc_timer_values(event, &__now, &__enabled, &__running);
4728                 if (enabled)
4729                         *enabled = __enabled;
4730                 if (running)
4731                         *running = __running;
4732         }
4733 out:
4734         local_irq_restore(flags);
4735
4736         return ret;
4737 }
4738
4739 static int perf_event_read(struct perf_event *event, bool group)
4740 {
4741         enum perf_event_state state = READ_ONCE(event->state);
4742         int event_cpu, ret = 0;
4743
4744         /*
4745          * If event is enabled and currently active on a CPU, update the
4746          * value in the event structure:
4747          */
4748 again:
4749         if (state == PERF_EVENT_STATE_ACTIVE) {
4750                 struct perf_read_data data;
4751
4752                 /*
4753                  * Orders the ->state and ->oncpu loads such that if we see
4754                  * ACTIVE we must also see the right ->oncpu.
4755                  *
4756                  * Matches the smp_wmb() from event_sched_in().
4757                  */
4758                 smp_rmb();
4759
4760                 event_cpu = READ_ONCE(event->oncpu);
4761                 if ((unsigned)event_cpu >= nr_cpu_ids)
4762                         return 0;
4763
4764                 data = (struct perf_read_data){
4765                         .event = event,
4766                         .group = group,
4767                         .ret = 0,
4768                 };
4769
4770                 preempt_disable();
4771                 event_cpu = __perf_event_read_cpu(event, event_cpu);
4772
4773                 /*
4774                  * Purposely ignore the smp_call_function_single() return
4775                  * value.
4776                  *
4777                  * If event_cpu isn't a valid CPU it means the event got
4778                  * scheduled out and that will have updated the event count.
4779                  *
4780                  * Therefore, either way, we'll have an up-to-date event count
4781                  * after this.
4782                  */
4783                 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
4784                 preempt_enable();
4785                 ret = data.ret;
4786
4787         } else if (state == PERF_EVENT_STATE_INACTIVE) {
4788                 struct perf_event_context *ctx = event->ctx;
4789                 unsigned long flags;
4790
4791                 raw_spin_lock_irqsave(&ctx->lock, flags);
4792                 state = event->state;
4793                 if (state != PERF_EVENT_STATE_INACTIVE) {
4794                         raw_spin_unlock_irqrestore(&ctx->lock, flags);
4795                         goto again;
4796                 }
4797
4798                 /*
4799                  * May read while context is not active (e.g., thread is
4800                  * blocked), in that case we cannot update context time
4801                  */
4802                 ctx_time_update_event(ctx, event);
4803
4804                 perf_event_update_time(event);
4805                 if (group)
4806                         perf_event_update_sibling_time(event);
4807                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4808         }
4809
4810         return ret;
4811 }
4812
4813 /*
4814  * Initialize the perf_event context in a task_struct:
4815  */
4816 static void __perf_event_init_context(struct perf_event_context *ctx)
4817 {
4818         raw_spin_lock_init(&ctx->lock);
4819         mutex_init(&ctx->mutex);
4820         INIT_LIST_HEAD(&ctx->pmu_ctx_list);
4821         perf_event_groups_init(&ctx->pinned_groups);
4822         perf_event_groups_init(&ctx->flexible_groups);
4823         INIT_LIST_HEAD(&ctx->event_list);
4824         refcount_set(&ctx->refcount, 1);
4825 }
4826
4827 static void
4828 __perf_init_event_pmu_context(struct perf_event_pmu_context *epc, struct pmu *pmu)
4829 {
4830         epc->pmu = pmu;
4831         INIT_LIST_HEAD(&epc->pmu_ctx_entry);
4832         INIT_LIST_HEAD(&epc->pinned_active);
4833         INIT_LIST_HEAD(&epc->flexible_active);
4834         atomic_set(&epc->refcount, 1);
4835 }
4836
4837 static struct perf_event_context *
4838 alloc_perf_context(struct task_struct *task)
4839 {
4840         struct perf_event_context *ctx;
4841
4842         ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
4843         if (!ctx)
4844                 return NULL;
4845
4846         __perf_event_init_context(ctx);
4847         if (task)
4848                 ctx->task = get_task_struct(task);
4849
4850         return ctx;
4851 }
4852
4853 static struct task_struct *
4854 find_lively_task_by_vpid(pid_t vpid)
4855 {
4856         struct task_struct *task;
4857
4858         rcu_read_lock();
4859         if (!vpid)
4860                 task = current;
4861         else
4862                 task = find_task_by_vpid(vpid);
4863         if (task)
4864                 get_task_struct(task);
4865         rcu_read_unlock();
4866
4867         if (!task)
4868                 return ERR_PTR(-ESRCH);
4869
4870         return task;
4871 }
4872
4873 /*
4874  * Returns a matching context with refcount and pincount.
4875  */
4876 static struct perf_event_context *
4877 find_get_context(struct task_struct *task, struct perf_event *event)
4878 {
4879         struct perf_event_context *ctx, *clone_ctx = NULL;
4880         struct perf_cpu_context *cpuctx;
4881         unsigned long flags;
4882         int err;
4883
4884         if (!task) {
4885                 /* Must be root to operate on a CPU event: */
4886                 err = perf_allow_cpu(&event->attr);
4887                 if (err)
4888                         return ERR_PTR(err);
4889
4890                 cpuctx = per_cpu_ptr(&perf_cpu_context, event->cpu);
4891                 ctx = &cpuctx->ctx;
4892                 get_ctx(ctx);
4893                 raw_spin_lock_irqsave(&ctx->lock, flags);
4894                 ++ctx->pin_count;
4895                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4896
4897                 return ctx;
4898         }
4899
4900         err = -EINVAL;
4901 retry:
4902         ctx = perf_lock_task_context(task, &flags);
4903         if (ctx) {
4904                 clone_ctx = unclone_ctx(ctx);
4905                 ++ctx->pin_count;
4906
4907                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4908
4909                 if (clone_ctx)
4910                         put_ctx(clone_ctx);
4911         } else {
4912                 ctx = alloc_perf_context(task);
4913                 err = -ENOMEM;
4914                 if (!ctx)
4915                         goto errout;
4916
4917                 err = 0;
4918                 mutex_lock(&task->perf_event_mutex);
4919                 /*
4920                  * If it has already passed perf_event_exit_task().
4921                  * we must see PF_EXITING, it takes this mutex too.
4922                  */
4923                 if (task->flags & PF_EXITING)
4924                         err = -ESRCH;
4925                 else if (task->perf_event_ctxp)
4926                         err = -EAGAIN;
4927                 else {
4928                         get_ctx(ctx);
4929                         ++ctx->pin_count;
4930                         rcu_assign_pointer(task->perf_event_ctxp, ctx);
4931                 }
4932                 mutex_unlock(&task->perf_event_mutex);
4933
4934                 if (unlikely(err)) {
4935                         put_ctx(ctx);
4936
4937                         if (err == -EAGAIN)
4938                                 goto retry;
4939                         goto errout;
4940                 }
4941         }
4942
4943         return ctx;
4944
4945 errout:
4946         return ERR_PTR(err);
4947 }
4948
4949 static struct perf_event_pmu_context *
4950 find_get_pmu_context(struct pmu *pmu, struct perf_event_context *ctx,
4951                      struct perf_event *event)
4952 {
4953         struct perf_event_pmu_context *new = NULL, *epc;
4954         void *task_ctx_data = NULL;
4955
4956         if (!ctx->task) {
4957                 /*
4958                  * perf_pmu_migrate_context() / __perf_pmu_install_event()
4959                  * relies on the fact that find_get_pmu_context() cannot fail
4960                  * for CPU contexts.
4961                  */
4962                 struct perf_cpu_pmu_context *cpc;
4963
4964                 cpc = per_cpu_ptr(pmu->cpu_pmu_context, event->cpu);
4965                 epc = &cpc->epc;
4966                 raw_spin_lock_irq(&ctx->lock);
4967                 if (!epc->ctx) {
4968                         atomic_set(&epc->refcount, 1);
4969                         epc->embedded = 1;
4970                         list_add(&epc->pmu_ctx_entry, &ctx->pmu_ctx_list);
4971                         epc->ctx = ctx;
4972                 } else {
4973                         WARN_ON_ONCE(epc->ctx != ctx);
4974                         atomic_inc(&epc->refcount);
4975                 }
4976                 raw_spin_unlock_irq(&ctx->lock);
4977                 return epc;
4978         }
4979
4980         new = kzalloc(sizeof(*epc), GFP_KERNEL);
4981         if (!new)
4982                 return ERR_PTR(-ENOMEM);
4983
4984         if (event->attach_state & PERF_ATTACH_TASK_DATA) {
4985                 task_ctx_data = alloc_task_ctx_data(pmu);
4986                 if (!task_ctx_data) {
4987                         kfree(new);
4988                         return ERR_PTR(-ENOMEM);
4989                 }
4990         }
4991
4992         __perf_init_event_pmu_context(new, pmu);
4993
4994         /*
4995          * XXX
4996          *
4997          * lockdep_assert_held(&ctx->mutex);
4998          *
4999          * can't because perf_event_init_task() doesn't actually hold the
5000          * child_ctx->mutex.
5001          */
5002
5003         raw_spin_lock_irq(&ctx->lock);
5004         list_for_each_entry(epc, &ctx->pmu_ctx_list, pmu_ctx_entry) {
5005                 if (epc->pmu == pmu) {
5006                         WARN_ON_ONCE(epc->ctx != ctx);
5007                         atomic_inc(&epc->refcount);
5008                         goto found_epc;
5009                 }
5010         }
5011
5012         epc = new;
5013         new = NULL;
5014
5015         list_add(&epc->pmu_ctx_entry, &ctx->pmu_ctx_list);
5016         epc->ctx = ctx;
5017
5018 found_epc:
5019         if (task_ctx_data && !epc->task_ctx_data) {
5020                 epc->task_ctx_data = task_ctx_data;
5021                 task_ctx_data = NULL;
5022                 ctx->nr_task_data++;
5023         }
5024         raw_spin_unlock_irq(&ctx->lock);
5025
5026         free_task_ctx_data(pmu, task_ctx_data);
5027         kfree(new);
5028
5029         return epc;
5030 }
5031
5032 static void get_pmu_ctx(struct perf_event_pmu_context *epc)
5033 {
5034         WARN_ON_ONCE(!atomic_inc_not_zero(&epc->refcount));
5035 }
5036
5037 static void free_epc_rcu(struct rcu_head *head)
5038 {
5039         struct perf_event_pmu_context *epc = container_of(head, typeof(*epc), rcu_head);
5040
5041         kfree(epc->task_ctx_data);
5042         kfree(epc);
5043 }
5044
5045 static void put_pmu_ctx(struct perf_event_pmu_context *epc)
5046 {
5047         struct perf_event_context *ctx = epc->ctx;
5048         unsigned long flags;
5049
5050         /*
5051          * XXX
5052          *
5053          * lockdep_assert_held(&ctx->mutex);
5054          *
5055          * can't because of the call-site in _free_event()/put_event()
5056          * which isn't always called under ctx->mutex.
5057          */
5058         if (!atomic_dec_and_raw_lock_irqsave(&epc->refcount, &ctx->lock, flags))
5059                 return;
5060
5061         WARN_ON_ONCE(list_empty(&epc->pmu_ctx_entry));
5062
5063         list_del_init(&epc->pmu_ctx_entry);
5064         epc->ctx = NULL;
5065
5066         WARN_ON_ONCE(!list_empty(&epc->pinned_active));
5067         WARN_ON_ONCE(!list_empty(&epc->flexible_active));
5068
5069         raw_spin_unlock_irqrestore(&ctx->lock, flags);
5070
5071         if (epc->embedded)
5072                 return;
5073
5074         call_rcu(&epc->rcu_head, free_epc_rcu);
5075 }
5076
5077 static void perf_event_free_filter(struct perf_event *event);
5078
5079 static void free_event_rcu(struct rcu_head *head)
5080 {
5081         struct perf_event *event = container_of(head, typeof(*event), rcu_head);
5082
5083         if (event->ns)
5084                 put_pid_ns(event->ns);
5085         perf_event_free_filter(event);
5086         kmem_cache_free(perf_event_cache, event);
5087 }
5088
5089 static void ring_buffer_attach(struct perf_event *event,
5090                                struct perf_buffer *rb);
5091
5092 static void detach_sb_event(struct perf_event *event)
5093 {
5094         struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
5095
5096         raw_spin_lock(&pel->lock);
5097         list_del_rcu(&event->sb_list);
5098         raw_spin_unlock(&pel->lock);
5099 }
5100
5101 static bool is_sb_event(struct perf_event *event)
5102 {
5103         struct perf_event_attr *attr = &event->attr;
5104
5105         if (event->parent)
5106                 return false;
5107
5108         if (event->attach_state & PERF_ATTACH_TASK)
5109                 return false;
5110
5111         if (attr->mmap || attr->mmap_data || attr->mmap2 ||
5112             attr->comm || attr->comm_exec ||
5113             attr->task || attr->ksymbol ||
5114             attr->context_switch || attr->text_poke ||
5115             attr->bpf_event)
5116                 return true;
5117         return false;
5118 }
5119
5120 static void unaccount_pmu_sb_event(struct perf_event *event)
5121 {
5122         if (is_sb_event(event))
5123                 detach_sb_event(event);
5124 }
5125
5126 #ifdef CONFIG_NO_HZ_FULL
5127 static DEFINE_SPINLOCK(nr_freq_lock);
5128 #endif
5129
5130 static void unaccount_freq_event_nohz(void)
5131 {
5132 #ifdef CONFIG_NO_HZ_FULL
5133         spin_lock(&nr_freq_lock);
5134         if (atomic_dec_and_test(&nr_freq_events))
5135                 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
5136         spin_unlock(&nr_freq_lock);
5137 #endif
5138 }
5139
5140 static void unaccount_freq_event(void)
5141 {
5142         if (tick_nohz_full_enabled())
5143                 unaccount_freq_event_nohz();
5144         else
5145                 atomic_dec(&nr_freq_events);
5146 }
5147
5148 static void unaccount_event(struct perf_event *event)
5149 {
5150         bool dec = false;
5151
5152         if (event->parent)
5153                 return;
5154
5155         if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB))
5156                 dec = true;
5157         if (event->attr.mmap || event->attr.mmap_data)
5158                 atomic_dec(&nr_mmap_events);
5159         if (event->attr.build_id)
5160                 atomic_dec(&nr_build_id_events);
5161         if (event->attr.comm)
5162                 atomic_dec(&nr_comm_events);
5163         if (event->attr.namespaces)
5164                 atomic_dec(&nr_namespaces_events);
5165         if (event->attr.cgroup)
5166                 atomic_dec(&nr_cgroup_events);
5167         if (event->attr.task)
5168                 atomic_dec(&nr_task_events);
5169         if (event->attr.freq)
5170                 unaccount_freq_event();
5171         if (event->attr.context_switch) {
5172                 dec = true;
5173                 atomic_dec(&nr_switch_events);
5174         }
5175         if (is_cgroup_event(event))
5176                 dec = true;
5177         if (has_branch_stack(event))
5178                 dec = true;
5179         if (event->attr.ksymbol)
5180                 atomic_dec(&nr_ksymbol_events);
5181         if (event->attr.bpf_event)
5182                 atomic_dec(&nr_bpf_events);
5183         if (event->attr.text_poke)
5184                 atomic_dec(&nr_text_poke_events);
5185
5186         if (dec) {
5187                 if (!atomic_add_unless(&perf_sched_count, -1, 1))
5188                         schedule_delayed_work(&perf_sched_work, HZ);
5189         }
5190
5191         unaccount_pmu_sb_event(event);
5192 }
5193
5194 static void perf_sched_delayed(struct work_struct *work)
5195 {
5196         mutex_lock(&perf_sched_mutex);
5197         if (atomic_dec_and_test(&perf_sched_count))
5198                 static_branch_disable(&perf_sched_events);
5199         mutex_unlock(&perf_sched_mutex);
5200 }
5201
5202 /*
5203  * The following implement mutual exclusion of events on "exclusive" pmus
5204  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
5205  * at a time, so we disallow creating events that might conflict, namely:
5206  *
5207  *  1) cpu-wide events in the presence of per-task events,
5208  *  2) per-task events in the presence of cpu-wide events,
5209  *  3) two matching events on the same perf_event_context.
5210  *
5211  * The former two cases are handled in the allocation path (perf_event_alloc(),
5212  * _free_event()), the latter -- before the first perf_install_in_context().
5213  */
5214 static int exclusive_event_init(struct perf_event *event)
5215 {
5216         struct pmu *pmu = event->pmu;
5217
5218         if (!is_exclusive_pmu(pmu))
5219                 return 0;
5220
5221         /*
5222          * Prevent co-existence of per-task and cpu-wide events on the
5223          * same exclusive pmu.
5224          *
5225          * Negative pmu::exclusive_cnt means there are cpu-wide
5226          * events on this "exclusive" pmu, positive means there are
5227          * per-task events.
5228          *
5229          * Since this is called in perf_event_alloc() path, event::ctx
5230          * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
5231          * to mean "per-task event", because unlike other attach states it
5232          * never gets cleared.
5233          */
5234         if (event->attach_state & PERF_ATTACH_TASK) {
5235                 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
5236                         return -EBUSY;
5237         } else {
5238                 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
5239                         return -EBUSY;
5240         }
5241
5242         return 0;
5243 }
5244
5245 static void exclusive_event_destroy(struct perf_event *event)
5246 {
5247         struct pmu *pmu = event->pmu;
5248
5249         if (!is_exclusive_pmu(pmu))
5250                 return;
5251
5252         /* see comment in exclusive_event_init() */
5253         if (event->attach_state & PERF_ATTACH_TASK)
5254                 atomic_dec(&pmu->exclusive_cnt);
5255         else
5256                 atomic_inc(&pmu->exclusive_cnt);
5257 }
5258
5259 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
5260 {
5261         if ((e1->pmu == e2->pmu) &&
5262             (e1->cpu == e2->cpu ||
5263              e1->cpu == -1 ||
5264              e2->cpu == -1))
5265                 return true;
5266         return false;
5267 }
5268
5269 static bool exclusive_event_installable(struct perf_event *event,
5270                                         struct perf_event_context *ctx)
5271 {
5272         struct perf_event *iter_event;
5273         struct pmu *pmu = event->pmu;
5274
5275         lockdep_assert_held(&ctx->mutex);
5276
5277         if (!is_exclusive_pmu(pmu))
5278                 return true;
5279
5280         list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
5281                 if (exclusive_event_match(iter_event, event))
5282                         return false;
5283         }
5284
5285         return true;
5286 }
5287
5288 static void perf_addr_filters_splice(struct perf_event *event,
5289                                        struct list_head *head);
5290
5291 static void perf_pending_task_sync(struct perf_event *event)
5292 {
5293         struct callback_head *head = &event->pending_task;
5294
5295         if (!event->pending_work)
5296                 return;
5297         /*
5298          * If the task is queued to the current task's queue, we
5299          * obviously can't wait for it to complete. Simply cancel it.
5300          */
5301         if (task_work_cancel(current, head)) {
5302                 event->pending_work = 0;
5303                 local_dec(&event->ctx->nr_no_switch_fast);
5304                 return;
5305         }
5306
5307         /*
5308          * All accesses related to the event are within the same RCU section in
5309          * perf_pending_task(). The RCU grace period before the event is freed
5310          * will make sure all those accesses are complete by then.
5311          */
5312         rcuwait_wait_event(&event->pending_work_wait, !event->pending_work, TASK_UNINTERRUPTIBLE);
5313 }
5314
5315 static void _free_event(struct perf_event *event)
5316 {
5317         irq_work_sync(&event->pending_irq);
5318         irq_work_sync(&event->pending_disable_irq);
5319         perf_pending_task_sync(event);
5320
5321         unaccount_event(event);
5322
5323         security_perf_event_free(event);
5324
5325         if (event->rb) {
5326                 /*
5327                  * Can happen when we close an event with re-directed output.
5328                  *
5329                  * Since we have a 0 refcount, perf_mmap_close() will skip
5330                  * over us; possibly making our ring_buffer_put() the last.
5331                  */
5332                 mutex_lock(&event->mmap_mutex);
5333                 ring_buffer_attach(event, NULL);
5334                 mutex_unlock(&event->mmap_mutex);
5335         }
5336
5337         if (is_cgroup_event(event))
5338                 perf_detach_cgroup(event);
5339
5340         if (!event->parent) {
5341                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
5342                         put_callchain_buffers();
5343         }
5344
5345         perf_event_free_bpf_prog(event);
5346         perf_addr_filters_splice(event, NULL);
5347         kfree(event->addr_filter_ranges);
5348
5349         if (event->destroy)
5350                 event->destroy(event);
5351
5352         /*
5353          * Must be after ->destroy(), due to uprobe_perf_close() using
5354          * hw.target.
5355          */
5356         if (event->hw.target)
5357                 put_task_struct(event->hw.target);
5358
5359         if (event->pmu_ctx)
5360                 put_pmu_ctx(event->pmu_ctx);
5361
5362         /*
5363          * perf_event_free_task() relies on put_ctx() being 'last', in particular
5364          * all task references must be cleaned up.
5365          */
5366         if (event->ctx)
5367                 put_ctx(event->ctx);
5368
5369         exclusive_event_destroy(event);
5370         module_put(event->pmu->module);
5371
5372         call_rcu(&event->rcu_head, free_event_rcu);
5373 }
5374
5375 /*
5376  * Used to free events which have a known refcount of 1, such as in error paths
5377  * where the event isn't exposed yet and inherited events.
5378  */
5379 static void free_event(struct perf_event *event)
5380 {
5381         if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
5382                                 "unexpected event refcount: %ld; ptr=%p\n",
5383                                 atomic_long_read(&event->refcount), event)) {
5384                 /* leak to avoid use-after-free */
5385                 return;
5386         }
5387
5388         _free_event(event);
5389 }
5390
5391 /*
5392  * Remove user event from the owner task.
5393  */
5394 static void perf_remove_from_owner(struct perf_event *event)
5395 {
5396         struct task_struct *owner;
5397
5398         rcu_read_lock();
5399         /*
5400          * Matches the smp_store_release() in perf_event_exit_task(). If we
5401          * observe !owner it means the list deletion is complete and we can
5402          * indeed free this event, otherwise we need to serialize on
5403          * owner->perf_event_mutex.
5404          */
5405         owner = READ_ONCE(event->owner);
5406         if (owner) {
5407                 /*
5408                  * Since delayed_put_task_struct() also drops the last
5409                  * task reference we can safely take a new reference
5410                  * while holding the rcu_read_lock().
5411                  */
5412                 get_task_struct(owner);
5413         }
5414         rcu_read_unlock();
5415
5416         if (owner) {
5417                 /*
5418                  * If we're here through perf_event_exit_task() we're already
5419                  * holding ctx->mutex which would be an inversion wrt. the
5420                  * normal lock order.
5421                  *
5422                  * However we can safely take this lock because its the child
5423                  * ctx->mutex.
5424                  */
5425                 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
5426
5427                 /*
5428                  * We have to re-check the event->owner field, if it is cleared
5429                  * we raced with perf_event_exit_task(), acquiring the mutex
5430                  * ensured they're done, and we can proceed with freeing the
5431                  * event.
5432                  */
5433                 if (event->owner) {
5434                         list_del_init(&event->owner_entry);
5435                         smp_store_release(&event->owner, NULL);
5436                 }
5437                 mutex_unlock(&owner->perf_event_mutex);
5438                 put_task_struct(owner);
5439         }
5440 }
5441
5442 static void put_event(struct perf_event *event)
5443 {
5444         if (!atomic_long_dec_and_test(&event->refcount))
5445                 return;
5446
5447         _free_event(event);
5448 }
5449
5450 /*
5451  * Kill an event dead; while event:refcount will preserve the event
5452  * object, it will not preserve its functionality. Once the last 'user'
5453  * gives up the object, we'll destroy the thing.
5454  */
5455 int perf_event_release_kernel(struct perf_event *event)
5456 {
5457         struct perf_event_context *ctx = event->ctx;
5458         struct perf_event *child, *tmp;
5459         LIST_HEAD(free_list);
5460
5461         /*
5462          * If we got here through err_alloc: free_event(event); we will not
5463          * have attached to a context yet.
5464          */
5465         if (!ctx) {
5466                 WARN_ON_ONCE(event->attach_state &
5467                                 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
5468                 goto no_ctx;
5469         }
5470
5471         if (!is_kernel_event(event))
5472                 perf_remove_from_owner(event);
5473
5474         ctx = perf_event_ctx_lock(event);
5475         WARN_ON_ONCE(ctx->parent_ctx);
5476
5477         /*
5478          * Mark this event as STATE_DEAD, there is no external reference to it
5479          * anymore.
5480          *
5481          * Anybody acquiring event->child_mutex after the below loop _must_
5482          * also see this, most importantly inherit_event() which will avoid
5483          * placing more children on the list.
5484          *
5485          * Thus this guarantees that we will in fact observe and kill _ALL_
5486          * child events.
5487          */
5488         perf_remove_from_context(event, DETACH_GROUP|DETACH_DEAD);
5489
5490         perf_event_ctx_unlock(event, ctx);
5491
5492 again:
5493         mutex_lock(&event->child_mutex);
5494         list_for_each_entry(child, &event->child_list, child_list) {
5495                 void *var = NULL;
5496
5497                 /*
5498                  * Cannot change, child events are not migrated, see the
5499                  * comment with perf_event_ctx_lock_nested().
5500                  */
5501                 ctx = READ_ONCE(child->ctx);
5502                 /*
5503                  * Since child_mutex nests inside ctx::mutex, we must jump
5504                  * through hoops. We start by grabbing a reference on the ctx.
5505                  *
5506                  * Since the event cannot get freed while we hold the
5507                  * child_mutex, the context must also exist and have a !0
5508                  * reference count.
5509                  */
5510                 get_ctx(ctx);
5511
5512                 /*
5513                  * Now that we have a ctx ref, we can drop child_mutex, and
5514                  * acquire ctx::mutex without fear of it going away. Then we
5515                  * can re-acquire child_mutex.
5516                  */
5517                 mutex_unlock(&event->child_mutex);
5518                 mutex_lock(&ctx->mutex);
5519                 mutex_lock(&event->child_mutex);
5520
5521                 /*
5522                  * Now that we hold ctx::mutex and child_mutex, revalidate our
5523                  * state, if child is still the first entry, it didn't get freed
5524                  * and we can continue doing so.
5525                  */
5526                 tmp = list_first_entry_or_null(&event->child_list,
5527                                                struct perf_event, child_list);
5528                 if (tmp == child) {
5529                         perf_remove_from_context(child, DETACH_GROUP);
5530                         list_move(&child->child_list, &free_list);
5531                         /*
5532                          * This matches the refcount bump in inherit_event();
5533                          * this can't be the last reference.
5534                          */
5535                         put_event(event);
5536                 } else {
5537                         var = &ctx->refcount;
5538                 }
5539
5540                 mutex_unlock(&event->child_mutex);
5541                 mutex_unlock(&ctx->mutex);
5542                 put_ctx(ctx);
5543
5544                 if (var) {
5545                         /*
5546                          * If perf_event_free_task() has deleted all events from the
5547                          * ctx while the child_mutex got released above, make sure to
5548                          * notify about the preceding put_ctx().
5549                          */
5550                         smp_mb(); /* pairs with wait_var_event() */
5551                         wake_up_var(var);
5552                 }
5553                 goto again;
5554         }
5555         mutex_unlock(&event->child_mutex);
5556
5557         list_for_each_entry_safe(child, tmp, &free_list, child_list) {
5558                 void *var = &child->ctx->refcount;
5559
5560                 list_del(&child->child_list);
5561                 free_event(child);
5562
5563                 /*
5564                  * Wake any perf_event_free_task() waiting for this event to be
5565                  * freed.
5566                  */
5567                 smp_mb(); /* pairs with wait_var_event() */
5568                 wake_up_var(var);
5569         }
5570
5571 no_ctx:
5572         put_event(event); /* Must be the 'last' reference */
5573         return 0;
5574 }
5575 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
5576
5577 /*
5578  * Called when the last reference to the file is gone.
5579  */
5580 static int perf_release(struct inode *inode, struct file *file)
5581 {
5582         perf_event_release_kernel(file->private_data);
5583         return 0;
5584 }
5585
5586 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5587 {
5588         struct perf_event *child;
5589         u64 total = 0;
5590
5591         *enabled = 0;
5592         *running = 0;
5593
5594         mutex_lock(&event->child_mutex);
5595
5596         (void)perf_event_read(event, false);
5597         total += perf_event_count(event, false);
5598
5599         *enabled += event->total_time_enabled +
5600                         atomic64_read(&event->child_total_time_enabled);
5601         *running += event->total_time_running +
5602                         atomic64_read(&event->child_total_time_running);
5603
5604         list_for_each_entry(child, &event->child_list, child_list) {
5605                 (void)perf_event_read(child, false);
5606                 total += perf_event_count(child, false);
5607                 *enabled += child->total_time_enabled;
5608                 *running += child->total_time_running;
5609         }
5610         mutex_unlock(&event->child_mutex);
5611
5612         return total;
5613 }
5614
5615 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5616 {
5617         struct perf_event_context *ctx;
5618         u64 count;
5619
5620         ctx = perf_event_ctx_lock(event);
5621         count = __perf_event_read_value(event, enabled, running);
5622         perf_event_ctx_unlock(event, ctx);
5623
5624         return count;
5625 }
5626 EXPORT_SYMBOL_GPL(perf_event_read_value);
5627
5628 static int __perf_read_group_add(struct perf_event *leader,
5629                                         u64 read_format, u64 *values)
5630 {
5631         struct perf_event_context *ctx = leader->ctx;
5632         struct perf_event *sub, *parent;
5633         unsigned long flags;
5634         int n = 1; /* skip @nr */
5635         int ret;
5636
5637         ret = perf_event_read(leader, true);
5638         if (ret)
5639                 return ret;
5640
5641         raw_spin_lock_irqsave(&ctx->lock, flags);
5642         /*
5643          * Verify the grouping between the parent and child (inherited)
5644          * events is still in tact.
5645          *
5646          * Specifically:
5647          *  - leader->ctx->lock pins leader->sibling_list
5648          *  - parent->child_mutex pins parent->child_list
5649          *  - parent->ctx->mutex pins parent->sibling_list
5650          *
5651          * Because parent->ctx != leader->ctx (and child_list nests inside
5652          * ctx->mutex), group destruction is not atomic between children, also
5653          * see perf_event_release_kernel(). Additionally, parent can grow the
5654          * group.
5655          *
5656          * Therefore it is possible to have parent and child groups in a
5657          * different configuration and summing over such a beast makes no sense
5658          * what so ever.
5659          *
5660          * Reject this.
5661          */
5662         parent = leader->parent;
5663         if (parent &&
5664             (parent->group_generation != leader->group_generation ||
5665              parent->nr_siblings != leader->nr_siblings)) {
5666                 ret = -ECHILD;
5667                 goto unlock;
5668         }
5669
5670         /*
5671          * Since we co-schedule groups, {enabled,running} times of siblings
5672          * will be identical to those of the leader, so we only publish one
5673          * set.
5674          */
5675         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5676                 values[n++] += leader->total_time_enabled +
5677                         atomic64_read(&leader->child_total_time_enabled);
5678         }
5679
5680         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5681                 values[n++] += leader->total_time_running +
5682                         atomic64_read(&leader->child_total_time_running);
5683         }
5684
5685         /*
5686          * Write {count,id} tuples for every sibling.
5687          */
5688         values[n++] += perf_event_count(leader, false);
5689         if (read_format & PERF_FORMAT_ID)
5690                 values[n++] = primary_event_id(leader);
5691         if (read_format & PERF_FORMAT_LOST)
5692                 values[n++] = atomic64_read(&leader->lost_samples);
5693
5694         for_each_sibling_event(sub, leader) {
5695                 values[n++] += perf_event_count(sub, false);
5696                 if (read_format & PERF_FORMAT_ID)
5697                         values[n++] = primary_event_id(sub);
5698                 if (read_format & PERF_FORMAT_LOST)
5699                         values[n++] = atomic64_read(&sub->lost_samples);
5700         }
5701
5702 unlock:
5703         raw_spin_unlock_irqrestore(&ctx->lock, flags);
5704         return ret;
5705 }
5706
5707 static int perf_read_group(struct perf_event *event,
5708                                    u64 read_format, char __user *buf)
5709 {
5710         struct perf_event *leader = event->group_leader, *child;
5711         struct perf_event_context *ctx = leader->ctx;
5712         int ret;
5713         u64 *values;
5714
5715         lockdep_assert_held(&ctx->mutex);
5716
5717         values = kzalloc(event->read_size, GFP_KERNEL);
5718         if (!values)
5719                 return -ENOMEM;
5720
5721         values[0] = 1 + leader->nr_siblings;
5722
5723         mutex_lock(&leader->child_mutex);
5724
5725         ret = __perf_read_group_add(leader, read_format, values);
5726         if (ret)
5727                 goto unlock;
5728
5729         list_for_each_entry(child, &leader->child_list, child_list) {
5730                 ret = __perf_read_group_add(child, read_format, values);
5731                 if (ret)
5732                         goto unlock;
5733         }
5734
5735         mutex_unlock(&leader->child_mutex);
5736
5737         ret = event->read_size;
5738         if (copy_to_user(buf, values, event->read_size))
5739                 ret = -EFAULT;
5740         goto out;
5741
5742 unlock:
5743         mutex_unlock(&leader->child_mutex);
5744 out:
5745         kfree(values);
5746         return ret;
5747 }
5748
5749 static int perf_read_one(struct perf_event *event,
5750                                  u64 read_format, char __user *buf)
5751 {
5752         u64 enabled, running;
5753         u64 values[5];
5754         int n = 0;
5755
5756         values[n++] = __perf_event_read_value(event, &enabled, &running);
5757         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5758                 values[n++] = enabled;
5759         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5760                 values[n++] = running;
5761         if (read_format & PERF_FORMAT_ID)
5762                 values[n++] = primary_event_id(event);
5763         if (read_format & PERF_FORMAT_LOST)
5764                 values[n++] = atomic64_read(&event->lost_samples);
5765
5766         if (copy_to_user(buf, values, n * sizeof(u64)))
5767                 return -EFAULT;
5768
5769         return n * sizeof(u64);
5770 }
5771
5772 static bool is_event_hup(struct perf_event *event)
5773 {
5774         bool no_children;
5775
5776         if (event->state > PERF_EVENT_STATE_EXIT)
5777                 return false;
5778
5779         mutex_lock(&event->child_mutex);
5780         no_children = list_empty(&event->child_list);
5781         mutex_unlock(&event->child_mutex);
5782         return no_children;
5783 }
5784
5785 /*
5786  * Read the performance event - simple non blocking version for now
5787  */
5788 static ssize_t
5789 __perf_read(struct perf_event *event, char __user *buf, size_t count)
5790 {
5791         u64 read_format = event->attr.read_format;
5792         int ret;
5793
5794         /*
5795          * Return end-of-file for a read on an event that is in
5796          * error state (i.e. because it was pinned but it couldn't be
5797          * scheduled on to the CPU at some point).
5798          */
5799         if (event->state == PERF_EVENT_STATE_ERROR)
5800                 return 0;
5801
5802         if (count < event->read_size)
5803                 return -ENOSPC;
5804
5805         WARN_ON_ONCE(event->ctx->parent_ctx);
5806         if (read_format & PERF_FORMAT_GROUP)
5807                 ret = perf_read_group(event, read_format, buf);
5808         else
5809                 ret = perf_read_one(event, read_format, buf);
5810
5811         return ret;
5812 }
5813
5814 static ssize_t
5815 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
5816 {
5817         struct perf_event *event = file->private_data;
5818         struct perf_event_context *ctx;
5819         int ret;
5820
5821         ret = security_perf_event_read(event);
5822         if (ret)
5823                 return ret;
5824
5825         ctx = perf_event_ctx_lock(event);
5826         ret = __perf_read(event, buf, count);
5827         perf_event_ctx_unlock(event, ctx);
5828
5829         return ret;
5830 }
5831
5832 static __poll_t perf_poll(struct file *file, poll_table *wait)
5833 {
5834         struct perf_event *event = file->private_data;
5835         struct perf_buffer *rb;
5836         __poll_t events = EPOLLHUP;
5837
5838         poll_wait(file, &event->waitq, wait);
5839
5840         if (is_event_hup(event))
5841                 return events;
5842
5843         /*
5844          * Pin the event->rb by taking event->mmap_mutex; otherwise
5845          * perf_event_set_output() can swizzle our rb and make us miss wakeups.
5846          */
5847         mutex_lock(&event->mmap_mutex);
5848         rb = event->rb;
5849         if (rb)
5850                 events = atomic_xchg(&rb->poll, 0);
5851         mutex_unlock(&event->mmap_mutex);
5852         return events;
5853 }
5854
5855 static void _perf_event_reset(struct perf_event *event)
5856 {
5857         (void)perf_event_read(event, false);
5858         local64_set(&event->count, 0);
5859         perf_event_update_userpage(event);
5860 }
5861
5862 /* Assume it's not an event with inherit set. */
5863 u64 perf_event_pause(struct perf_event *event, bool reset)
5864 {
5865         struct perf_event_context *ctx;
5866         u64 count;
5867
5868         ctx = perf_event_ctx_lock(event);
5869         WARN_ON_ONCE(event->attr.inherit);
5870         _perf_event_disable(event);
5871         count = local64_read(&event->count);
5872         if (reset)
5873                 local64_set(&event->count, 0);
5874         perf_event_ctx_unlock(event, ctx);
5875
5876         return count;
5877 }
5878 EXPORT_SYMBOL_GPL(perf_event_pause);
5879
5880 /*
5881  * Holding the top-level event's child_mutex means that any
5882  * descendant process that has inherited this event will block
5883  * in perf_event_exit_event() if it goes to exit, thus satisfying the
5884  * task existence requirements of perf_event_enable/disable.
5885  */
5886 static void perf_event_for_each_child(struct perf_event *event,
5887                                         void (*func)(struct perf_event *))
5888 {
5889         struct perf_event *child;
5890
5891         WARN_ON_ONCE(event->ctx->parent_ctx);
5892
5893         mutex_lock(&event->child_mutex);
5894         func(event);
5895         list_for_each_entry(child, &event->child_list, child_list)
5896                 func(child);
5897         mutex_unlock(&event->child_mutex);
5898 }
5899
5900 static void perf_event_for_each(struct perf_event *event,
5901                                   void (*func)(struct perf_event *))
5902 {
5903         struct perf_event_context *ctx = event->ctx;
5904         struct perf_event *sibling;
5905
5906         lockdep_assert_held(&ctx->mutex);
5907
5908         event = event->group_leader;
5909
5910         perf_event_for_each_child(event, func);
5911         for_each_sibling_event(sibling, event)
5912                 perf_event_for_each_child(sibling, func);
5913 }
5914
5915 static void __perf_event_period(struct perf_event *event,
5916                                 struct perf_cpu_context *cpuctx,
5917                                 struct perf_event_context *ctx,
5918                                 void *info)
5919 {
5920         u64 value = *((u64 *)info);
5921         bool active;
5922
5923         if (event->attr.freq) {
5924                 event->attr.sample_freq = value;
5925         } else {
5926                 event->attr.sample_period = value;
5927                 event->hw.sample_period = value;
5928         }
5929
5930         active = (event->state == PERF_EVENT_STATE_ACTIVE);
5931         if (active) {
5932                 perf_pmu_disable(event->pmu);
5933                 /*
5934                  * We could be throttled; unthrottle now to avoid the tick
5935                  * trying to unthrottle while we already re-started the event.
5936                  */
5937                 if (event->hw.interrupts == MAX_INTERRUPTS) {
5938                         event->hw.interrupts = 0;
5939                         perf_log_throttle(event, 1);
5940                 }
5941                 event->pmu->stop(event, PERF_EF_UPDATE);
5942         }
5943
5944         local64_set(&event->hw.period_left, 0);
5945
5946         if (active) {
5947                 event->pmu->start(event, PERF_EF_RELOAD);
5948                 perf_pmu_enable(event->pmu);
5949         }
5950 }
5951
5952 static int perf_event_check_period(struct perf_event *event, u64 value)
5953 {
5954         return event->pmu->check_period(event, value);
5955 }
5956
5957 static int _perf_event_period(struct perf_event *event, u64 value)
5958 {
5959         if (!is_sampling_event(event))
5960                 return -EINVAL;
5961
5962         if (!value)
5963                 return -EINVAL;
5964
5965         if (event->attr.freq && value > sysctl_perf_event_sample_rate)
5966                 return -EINVAL;
5967
5968         if (perf_event_check_period(event, value))
5969                 return -EINVAL;
5970
5971         if (!event->attr.freq && (value & (1ULL << 63)))
5972                 return -EINVAL;
5973
5974         event_function_call(event, __perf_event_period, &value);
5975
5976         return 0;
5977 }
5978
5979 int perf_event_period(struct perf_event *event, u64 value)
5980 {
5981         struct perf_event_context *ctx;
5982         int ret;
5983
5984         ctx = perf_event_ctx_lock(event);
5985         ret = _perf_event_period(event, value);
5986         perf_event_ctx_unlock(event, ctx);
5987
5988         return ret;
5989 }
5990 EXPORT_SYMBOL_GPL(perf_event_period);
5991
5992 static const struct file_operations perf_fops;
5993
5994 static inline bool is_perf_file(struct fd f)
5995 {
5996         return !fd_empty(f) && fd_file(f)->f_op == &perf_fops;
5997 }
5998
5999 static int perf_event_set_output(struct perf_event *event,
6000                                  struct perf_event *output_event);
6001 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
6002 static int perf_copy_attr(struct perf_event_attr __user *uattr,
6003                           struct perf_event_attr *attr);
6004
6005 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
6006 {
6007         void (*func)(struct perf_event *);
6008         u32 flags = arg;
6009
6010         switch (cmd) {
6011         case PERF_EVENT_IOC_ENABLE:
6012                 func = _perf_event_enable;
6013                 break;
6014         case PERF_EVENT_IOC_DISABLE:
6015                 func = _perf_event_disable;
6016                 break;
6017         case PERF_EVENT_IOC_RESET:
6018                 func = _perf_event_reset;
6019                 break;
6020
6021         case PERF_EVENT_IOC_REFRESH:
6022                 return _perf_event_refresh(event, arg);
6023
6024         case PERF_EVENT_IOC_PERIOD:
6025         {
6026                 u64 value;
6027
6028                 if (copy_from_user(&value, (u64 __user *)arg, sizeof(value)))
6029                         return -EFAULT;
6030
6031                 return _perf_event_period(event, value);
6032         }
6033         case PERF_EVENT_IOC_ID:
6034         {
6035                 u64 id = primary_event_id(event);
6036
6037                 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
6038                         return -EFAULT;
6039                 return 0;
6040         }
6041
6042         case PERF_EVENT_IOC_SET_OUTPUT:
6043         {
6044                 CLASS(fd, output)(arg);      // arg == -1 => empty
6045                 struct perf_event *output_event = NULL;
6046                 if (arg != -1) {
6047                         if (!is_perf_file(output))
6048                                 return -EBADF;
6049                         output_event = fd_file(output)->private_data;
6050                 }
6051                 return perf_event_set_output(event, output_event);
6052         }
6053
6054         case PERF_EVENT_IOC_SET_FILTER:
6055                 return perf_event_set_filter(event, (void __user *)arg);
6056
6057         case PERF_EVENT_IOC_SET_BPF:
6058         {
6059                 struct bpf_prog *prog;
6060                 int err;
6061
6062                 prog = bpf_prog_get(arg);
6063                 if (IS_ERR(prog))
6064                         return PTR_ERR(prog);
6065
6066                 err = perf_event_set_bpf_prog(event, prog, 0);
6067                 if (err) {
6068                         bpf_prog_put(prog);
6069                         return err;
6070                 }
6071
6072                 return 0;
6073         }
6074
6075         case PERF_EVENT_IOC_PAUSE_OUTPUT: {
6076                 struct perf_buffer *rb;
6077
6078                 rcu_read_lock();
6079                 rb = rcu_dereference(event->rb);
6080                 if (!rb || !rb->nr_pages) {
6081                         rcu_read_unlock();
6082                         return -EINVAL;
6083                 }
6084                 rb_toggle_paused(rb, !!arg);
6085                 rcu_read_unlock();
6086                 return 0;
6087         }
6088
6089         case PERF_EVENT_IOC_QUERY_BPF:
6090                 return perf_event_query_prog_array(event, (void __user *)arg);
6091
6092         case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: {
6093                 struct perf_event_attr new_attr;
6094                 int err = perf_copy_attr((struct perf_event_attr __user *)arg,
6095                                          &new_attr);
6096
6097                 if (err)
6098                         return err;
6099
6100                 return perf_event_modify_attr(event,  &new_attr);
6101         }
6102         default:
6103                 return -ENOTTY;
6104         }
6105
6106         if (flags & PERF_IOC_FLAG_GROUP)
6107                 perf_event_for_each(event, func);
6108         else
6109                 perf_event_for_each_child(event, func);
6110
6111         return 0;
6112 }
6113
6114 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
6115 {
6116         struct perf_event *event = file->private_data;
6117         struct perf_event_context *ctx;
6118         long ret;
6119
6120         /* Treat ioctl like writes as it is likely a mutating operation. */
6121         ret = security_perf_event_write(event);
6122         if (ret)
6123                 return ret;
6124
6125         ctx = perf_event_ctx_lock(event);
6126         ret = _perf_ioctl(event, cmd, arg);
6127         perf_event_ctx_unlock(event, ctx);
6128
6129         return ret;
6130 }
6131
6132 #ifdef CONFIG_COMPAT
6133 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
6134                                 unsigned long arg)
6135 {
6136         switch (_IOC_NR(cmd)) {
6137         case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
6138         case _IOC_NR(PERF_EVENT_IOC_ID):
6139         case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF):
6140         case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES):
6141                 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
6142                 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
6143                         cmd &= ~IOCSIZE_MASK;
6144                         cmd |= sizeof(void *) << IOCSIZE_SHIFT;
6145                 }
6146                 break;
6147         }
6148         return perf_ioctl(file, cmd, arg);
6149 }
6150 #else
6151 # define perf_compat_ioctl NULL
6152 #endif
6153
6154 int perf_event_task_enable(void)
6155 {
6156         struct perf_event_context *ctx;
6157         struct perf_event *event;
6158
6159         mutex_lock(&current->perf_event_mutex);
6160         list_for_each_entry(event, &current->perf_event_list, owner_entry) {
6161                 ctx = perf_event_ctx_lock(event);
6162                 perf_event_for_each_child(event, _perf_event_enable);
6163                 perf_event_ctx_unlock(event, ctx);
6164         }
6165         mutex_unlock(&current->perf_event_mutex);
6166
6167         return 0;
6168 }
6169
6170 int perf_event_task_disable(void)
6171 {
6172         struct perf_event_context *ctx;
6173         struct perf_event *event;
6174
6175         mutex_lock(&current->perf_event_mutex);
6176         list_for_each_entry(event, &current->perf_event_list, owner_entry) {
6177                 ctx = perf_event_ctx_lock(event);
6178                 perf_event_for_each_child(event, _perf_event_disable);
6179                 perf_event_ctx_unlock(event, ctx);
6180         }
6181         mutex_unlock(&current->perf_event_mutex);
6182
6183         return 0;
6184 }
6185
6186 static int perf_event_index(struct perf_event *event)
6187 {
6188         if (event->hw.state & PERF_HES_STOPPED)
6189                 return 0;
6190
6191         if (event->state != PERF_EVENT_STATE_ACTIVE)
6192                 return 0;
6193
6194         return event->pmu->event_idx(event);
6195 }
6196
6197 static void perf_event_init_userpage(struct perf_event *event)
6198 {
6199         struct perf_event_mmap_page *userpg;
6200         struct perf_buffer *rb;
6201
6202         rcu_read_lock();
6203         rb = rcu_dereference(event->rb);
6204         if (!rb)
6205                 goto unlock;
6206
6207         userpg = rb->user_page;
6208
6209         /* Allow new userspace to detect that bit 0 is deprecated */
6210         userpg->cap_bit0_is_deprecated = 1;
6211         userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
6212         userpg->data_offset = PAGE_SIZE;
6213         userpg->data_size = perf_data_size(rb);
6214
6215 unlock:
6216         rcu_read_unlock();
6217 }
6218
6219 void __weak arch_perf_update_userpage(
6220         struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
6221 {
6222 }
6223
6224 /*
6225  * Callers need to ensure there can be no nesting of this function, otherwise
6226  * the seqlock logic goes bad. We can not serialize this because the arch
6227  * code calls this from NMI context.
6228  */
6229 void perf_event_update_userpage(struct perf_event *event)
6230 {
6231         struct perf_event_mmap_page *userpg;
6232         struct perf_buffer *rb;
6233         u64 enabled, running, now;
6234
6235         rcu_read_lock();
6236         rb = rcu_dereference(event->rb);
6237         if (!rb)
6238                 goto unlock;
6239
6240         /*
6241          * compute total_time_enabled, total_time_running
6242          * based on snapshot values taken when the event
6243          * was last scheduled in.
6244          *
6245          * we cannot simply called update_context_time()
6246          * because of locking issue as we can be called in
6247          * NMI context
6248          */
6249         calc_timer_values(event, &now, &enabled, &running);
6250
6251         userpg = rb->user_page;
6252         /*
6253          * Disable preemption to guarantee consistent time stamps are stored to
6254          * the user page.
6255          */
6256         preempt_disable();
6257         ++userpg->lock;
6258         barrier();
6259         userpg->index = perf_event_index(event);
6260         userpg->offset = perf_event_count(event, false);
6261         if (userpg->index)
6262                 userpg->offset -= local64_read(&event->hw.prev_count);
6263
6264         userpg->time_enabled = enabled +
6265                         atomic64_read(&event->child_total_time_enabled);
6266
6267         userpg->time_running = running +
6268                         atomic64_read(&event->child_total_time_running);
6269
6270         arch_perf_update_userpage(event, userpg, now);
6271
6272         barrier();
6273         ++userpg->lock;
6274         preempt_enable();
6275 unlock:
6276         rcu_read_unlock();
6277 }
6278 EXPORT_SYMBOL_GPL(perf_event_update_userpage);
6279
6280 static vm_fault_t perf_mmap_fault(struct vm_fault *vmf)
6281 {
6282         struct perf_event *event = vmf->vma->vm_file->private_data;
6283         struct perf_buffer *rb;
6284         vm_fault_t ret = VM_FAULT_SIGBUS;
6285
6286         if (vmf->flags & FAULT_FLAG_MKWRITE) {
6287                 if (vmf->pgoff == 0)
6288                         ret = 0;
6289                 return ret;
6290         }
6291
6292         rcu_read_lock();
6293         rb = rcu_dereference(event->rb);
6294         if (!rb)
6295                 goto unlock;
6296
6297         if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
6298                 goto unlock;
6299
6300         vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
6301         if (!vmf->page)
6302                 goto unlock;
6303
6304         get_page(vmf->page);
6305         vmf->page->mapping = vmf->vma->vm_file->f_mapping;
6306         vmf->page->index   = vmf->pgoff;
6307
6308         ret = 0;
6309 unlock:
6310         rcu_read_unlock();
6311
6312         return ret;
6313 }
6314
6315 static void ring_buffer_attach(struct perf_event *event,
6316                                struct perf_buffer *rb)
6317 {
6318         struct perf_buffer *old_rb = NULL;
6319         unsigned long flags;
6320
6321         WARN_ON_ONCE(event->parent);
6322
6323         if (event->rb) {
6324                 /*
6325                  * Should be impossible, we set this when removing
6326                  * event->rb_entry and wait/clear when adding event->rb_entry.
6327                  */
6328                 WARN_ON_ONCE(event->rcu_pending);
6329
6330                 old_rb = event->rb;
6331                 spin_lock_irqsave(&old_rb->event_lock, flags);
6332                 list_del_rcu(&event->rb_entry);
6333                 spin_unlock_irqrestore(&old_rb->event_lock, flags);
6334
6335                 event->rcu_batches = get_state_synchronize_rcu();
6336                 event->rcu_pending = 1;
6337         }
6338
6339         if (rb) {
6340                 if (event->rcu_pending) {
6341                         cond_synchronize_rcu(event->rcu_batches);
6342                         event->rcu_pending = 0;
6343                 }
6344
6345                 spin_lock_irqsave(&rb->event_lock, flags);
6346                 list_add_rcu(&event->rb_entry, &rb->event_list);
6347                 spin_unlock_irqrestore(&rb->event_lock, flags);
6348         }
6349
6350         /*
6351          * Avoid racing with perf_mmap_close(AUX): stop the event
6352          * before swizzling the event::rb pointer; if it's getting
6353          * unmapped, its aux_mmap_count will be 0 and it won't
6354          * restart. See the comment in __perf_pmu_output_stop().
6355          *
6356          * Data will inevitably be lost when set_output is done in
6357          * mid-air, but then again, whoever does it like this is
6358          * not in for the data anyway.
6359          */
6360         if (has_aux(event))
6361                 perf_event_stop(event, 0);
6362
6363         rcu_assign_pointer(event->rb, rb);
6364
6365         if (old_rb) {
6366                 ring_buffer_put(old_rb);
6367                 /*
6368                  * Since we detached before setting the new rb, so that we
6369                  * could attach the new rb, we could have missed a wakeup.
6370                  * Provide it now.
6371                  */
6372                 wake_up_all(&event->waitq);
6373         }
6374 }
6375
6376 static void ring_buffer_wakeup(struct perf_event *event)
6377 {
6378         struct perf_buffer *rb;
6379
6380         if (event->parent)
6381                 event = event->parent;
6382
6383         rcu_read_lock();
6384         rb = rcu_dereference(event->rb);
6385         if (rb) {
6386                 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
6387                         wake_up_all(&event->waitq);
6388         }
6389         rcu_read_unlock();
6390 }
6391
6392 struct perf_buffer *ring_buffer_get(struct perf_event *event)
6393 {
6394         struct perf_buffer *rb;
6395
6396         if (event->parent)
6397                 event = event->parent;
6398
6399         rcu_read_lock();
6400         rb = rcu_dereference(event->rb);
6401         if (rb) {
6402                 if (!refcount_inc_not_zero(&rb->refcount))
6403                         rb = NULL;
6404         }
6405         rcu_read_unlock();
6406
6407         return rb;
6408 }
6409
6410 void ring_buffer_put(struct perf_buffer *rb)
6411 {
6412         if (!refcount_dec_and_test(&rb->refcount))
6413                 return;
6414
6415         WARN_ON_ONCE(!list_empty(&rb->event_list));
6416
6417         call_rcu(&rb->rcu_head, rb_free_rcu);
6418 }
6419
6420 static void perf_mmap_open(struct vm_area_struct *vma)
6421 {
6422         struct perf_event *event = vma->vm_file->private_data;
6423
6424         atomic_inc(&event->mmap_count);
6425         atomic_inc(&event->rb->mmap_count);
6426
6427         if (vma->vm_pgoff)
6428                 atomic_inc(&event->rb->aux_mmap_count);
6429
6430         if (event->pmu->event_mapped)
6431                 event->pmu->event_mapped(event, vma->vm_mm);
6432 }
6433
6434 static void perf_pmu_output_stop(struct perf_event *event);
6435
6436 /*
6437  * A buffer can be mmap()ed multiple times; either directly through the same
6438  * event, or through other events by use of perf_event_set_output().
6439  *
6440  * In order to undo the VM accounting done by perf_mmap() we need to destroy
6441  * the buffer here, where we still have a VM context. This means we need
6442  * to detach all events redirecting to us.
6443  */
6444 static void perf_mmap_close(struct vm_area_struct *vma)
6445 {
6446         struct perf_event *event = vma->vm_file->private_data;
6447         struct perf_buffer *rb = ring_buffer_get(event);
6448         struct user_struct *mmap_user = rb->mmap_user;
6449         int mmap_locked = rb->mmap_locked;
6450         unsigned long size = perf_data_size(rb);
6451         bool detach_rest = false;
6452
6453         if (event->pmu->event_unmapped)
6454                 event->pmu->event_unmapped(event, vma->vm_mm);
6455
6456         /*
6457          * The AUX buffer is strictly a sub-buffer, serialize using aux_mutex
6458          * to avoid complications.
6459          */
6460         if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
6461             atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &rb->aux_mutex)) {
6462                 /*
6463                  * Stop all AUX events that are writing to this buffer,
6464                  * so that we can free its AUX pages and corresponding PMU
6465                  * data. Note that after rb::aux_mmap_count dropped to zero,
6466                  * they won't start any more (see perf_aux_output_begin()).
6467                  */
6468                 perf_pmu_output_stop(event);
6469
6470                 /* now it's safe to free the pages */
6471                 atomic_long_sub(rb->aux_nr_pages - rb->aux_mmap_locked, &mmap_user->locked_vm);
6472                 atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm);
6473
6474                 /* this has to be the last one */
6475                 rb_free_aux(rb);
6476                 WARN_ON_ONCE(refcount_read(&rb->aux_refcount));
6477
6478                 mutex_unlock(&rb->aux_mutex);
6479         }
6480
6481         if (atomic_dec_and_test(&rb->mmap_count))
6482                 detach_rest = true;
6483
6484         if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
6485                 goto out_put;
6486
6487         ring_buffer_attach(event, NULL);
6488         mutex_unlock(&event->mmap_mutex);
6489
6490         /* If there's still other mmap()s of this buffer, we're done. */
6491         if (!detach_rest)
6492                 goto out_put;
6493
6494         /*
6495          * No other mmap()s, detach from all other events that might redirect
6496          * into the now unreachable buffer. Somewhat complicated by the
6497          * fact that rb::event_lock otherwise nests inside mmap_mutex.
6498          */
6499 again:
6500         rcu_read_lock();
6501         list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
6502                 if (!atomic_long_inc_not_zero(&event->refcount)) {
6503                         /*
6504                          * This event is en-route to free_event() which will
6505                          * detach it and remove it from the list.
6506                          */
6507                         continue;
6508                 }
6509                 rcu_read_unlock();
6510
6511                 mutex_lock(&event->mmap_mutex);
6512                 /*
6513                  * Check we didn't race with perf_event_set_output() which can
6514                  * swizzle the rb from under us while we were waiting to
6515                  * acquire mmap_mutex.
6516                  *
6517                  * If we find a different rb; ignore this event, a next
6518                  * iteration will no longer find it on the list. We have to
6519                  * still restart the iteration to make sure we're not now
6520                  * iterating the wrong list.
6521                  */
6522                 if (event->rb == rb)
6523                         ring_buffer_attach(event, NULL);
6524
6525                 mutex_unlock(&event->mmap_mutex);
6526                 put_event(event);
6527
6528                 /*
6529                  * Restart the iteration; either we're on the wrong list or
6530                  * destroyed its integrity by doing a deletion.
6531                  */
6532                 goto again;
6533         }
6534         rcu_read_unlock();
6535
6536         /*
6537          * It could be there's still a few 0-ref events on the list; they'll
6538          * get cleaned up by free_event() -- they'll also still have their
6539          * ref on the rb and will free it whenever they are done with it.
6540          *
6541          * Aside from that, this buffer is 'fully' detached and unmapped,
6542          * undo the VM accounting.
6543          */
6544
6545         atomic_long_sub((size >> PAGE_SHIFT) + 1 - mmap_locked,
6546                         &mmap_user->locked_vm);
6547         atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm);
6548         free_uid(mmap_user);
6549
6550 out_put:
6551         ring_buffer_put(rb); /* could be last */
6552 }
6553
6554 static const struct vm_operations_struct perf_mmap_vmops = {
6555         .open           = perf_mmap_open,
6556         .close          = perf_mmap_close, /* non mergeable */
6557         .fault          = perf_mmap_fault,
6558         .page_mkwrite   = perf_mmap_fault,
6559 };
6560
6561 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
6562 {
6563         struct perf_event *event = file->private_data;
6564         unsigned long user_locked, user_lock_limit;
6565         struct user_struct *user = current_user();
6566         struct mutex *aux_mutex = NULL;
6567         struct perf_buffer *rb = NULL;
6568         unsigned long locked, lock_limit;
6569         unsigned long vma_size;
6570         unsigned long nr_pages;
6571         long user_extra = 0, extra = 0;
6572         int ret = 0, flags = 0;
6573
6574         /*
6575          * Don't allow mmap() of inherited per-task counters. This would
6576          * create a performance issue due to all children writing to the
6577          * same rb.
6578          */
6579         if (event->cpu == -1 && event->attr.inherit)
6580                 return -EINVAL;
6581
6582         if (!(vma->vm_flags & VM_SHARED))
6583                 return -EINVAL;
6584
6585         ret = security_perf_event_read(event);
6586         if (ret)
6587                 return ret;
6588
6589         vma_size = vma->vm_end - vma->vm_start;
6590
6591         if (vma->vm_pgoff == 0) {
6592                 nr_pages = (vma_size / PAGE_SIZE) - 1;
6593         } else {
6594                 /*
6595                  * AUX area mapping: if rb->aux_nr_pages != 0, it's already
6596                  * mapped, all subsequent mappings should have the same size
6597                  * and offset. Must be above the normal perf buffer.
6598                  */
6599                 u64 aux_offset, aux_size;
6600
6601                 if (!event->rb)
6602                         return -EINVAL;
6603
6604                 nr_pages = vma_size / PAGE_SIZE;
6605                 if (nr_pages > INT_MAX)
6606                         return -ENOMEM;
6607
6608                 mutex_lock(&event->mmap_mutex);
6609                 ret = -EINVAL;
6610
6611                 rb = event->rb;
6612                 if (!rb)
6613                         goto aux_unlock;
6614
6615                 aux_mutex = &rb->aux_mutex;
6616                 mutex_lock(aux_mutex);
6617
6618                 aux_offset = READ_ONCE(rb->user_page->aux_offset);
6619                 aux_size = READ_ONCE(rb->user_page->aux_size);
6620
6621                 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
6622                         goto aux_unlock;
6623
6624                 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
6625                         goto aux_unlock;
6626
6627                 /* already mapped with a different offset */
6628                 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
6629                         goto aux_unlock;
6630
6631                 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
6632                         goto aux_unlock;
6633
6634                 /* already mapped with a different size */
6635                 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
6636                         goto aux_unlock;
6637
6638                 if (!is_power_of_2(nr_pages))
6639                         goto aux_unlock;
6640
6641                 if (!atomic_inc_not_zero(&rb->mmap_count))
6642                         goto aux_unlock;
6643
6644                 if (rb_has_aux(rb)) {
6645                         atomic_inc(&rb->aux_mmap_count);
6646                         ret = 0;
6647                         goto unlock;
6648                 }
6649
6650                 atomic_set(&rb->aux_mmap_count, 1);
6651                 user_extra = nr_pages;
6652
6653                 goto accounting;
6654         }
6655
6656         /*
6657          * If we have rb pages ensure they're a power-of-two number, so we
6658          * can do bitmasks instead of modulo.
6659          */
6660         if (nr_pages != 0 && !is_power_of_2(nr_pages))
6661                 return -EINVAL;
6662
6663         if (vma_size != PAGE_SIZE * (1 + nr_pages))
6664                 return -EINVAL;
6665
6666         WARN_ON_ONCE(event->ctx->parent_ctx);
6667 again:
6668         mutex_lock(&event->mmap_mutex);
6669         if (event->rb) {
6670                 if (data_page_nr(event->rb) != nr_pages) {
6671                         ret = -EINVAL;
6672                         goto unlock;
6673                 }
6674
6675                 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
6676                         /*
6677                          * Raced against perf_mmap_close(); remove the
6678                          * event and try again.
6679                          */
6680                         ring_buffer_attach(event, NULL);
6681                         mutex_unlock(&event->mmap_mutex);
6682                         goto again;
6683                 }
6684
6685                 goto unlock;
6686         }
6687
6688         user_extra = nr_pages + 1;
6689
6690 accounting:
6691         user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
6692
6693         /*
6694          * Increase the limit linearly with more CPUs:
6695          */
6696         user_lock_limit *= num_online_cpus();
6697
6698         user_locked = atomic_long_read(&user->locked_vm);
6699
6700         /*
6701          * sysctl_perf_event_mlock may have changed, so that
6702          *     user->locked_vm > user_lock_limit
6703          */
6704         if (user_locked > user_lock_limit)
6705                 user_locked = user_lock_limit;
6706         user_locked += user_extra;
6707
6708         if (user_locked > user_lock_limit) {
6709                 /*
6710                  * charge locked_vm until it hits user_lock_limit;
6711                  * charge the rest from pinned_vm
6712                  */
6713                 extra = user_locked - user_lock_limit;
6714                 user_extra -= extra;
6715         }
6716
6717         lock_limit = rlimit(RLIMIT_MEMLOCK);
6718         lock_limit >>= PAGE_SHIFT;
6719         locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra;
6720
6721         if ((locked > lock_limit) && perf_is_paranoid() &&
6722                 !capable(CAP_IPC_LOCK)) {
6723                 ret = -EPERM;
6724                 goto unlock;
6725         }
6726
6727         WARN_ON(!rb && event->rb);
6728
6729         if (vma->vm_flags & VM_WRITE)
6730                 flags |= RING_BUFFER_WRITABLE;
6731
6732         if (!rb) {
6733                 rb = rb_alloc(nr_pages,
6734                               event->attr.watermark ? event->attr.wakeup_watermark : 0,
6735                               event->cpu, flags);
6736
6737                 if (!rb) {
6738                         ret = -ENOMEM;
6739                         goto unlock;
6740                 }
6741
6742                 atomic_set(&rb->mmap_count, 1);
6743                 rb->mmap_user = get_current_user();
6744                 rb->mmap_locked = extra;
6745
6746                 ring_buffer_attach(event, rb);
6747
6748                 perf_event_update_time(event);
6749                 perf_event_init_userpage(event);
6750                 perf_event_update_userpage(event);
6751         } else {
6752                 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
6753                                    event->attr.aux_watermark, flags);
6754                 if (!ret)
6755                         rb->aux_mmap_locked = extra;
6756         }
6757
6758 unlock:
6759         if (!ret) {
6760                 atomic_long_add(user_extra, &user->locked_vm);
6761                 atomic64_add(extra, &vma->vm_mm->pinned_vm);
6762
6763                 atomic_inc(&event->mmap_count);
6764         } else if (rb) {
6765                 atomic_dec(&rb->mmap_count);
6766         }
6767 aux_unlock:
6768         if (aux_mutex)
6769                 mutex_unlock(aux_mutex);
6770         mutex_unlock(&event->mmap_mutex);
6771
6772         /*
6773          * Since pinned accounting is per vm we cannot allow fork() to copy our
6774          * vma.
6775          */
6776         vm_flags_set(vma, VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP);
6777         vma->vm_ops = &perf_mmap_vmops;
6778
6779         if (event->pmu->event_mapped)
6780                 event->pmu->event_mapped(event, vma->vm_mm);
6781
6782         return ret;
6783 }
6784
6785 static int perf_fasync(int fd, struct file *filp, int on)
6786 {
6787         struct inode *inode = file_inode(filp);
6788         struct perf_event *event = filp->private_data;
6789         int retval;
6790
6791         inode_lock(inode);
6792         retval = fasync_helper(fd, filp, on, &event->fasync);
6793         inode_unlock(inode);
6794
6795         if (retval < 0)
6796                 return retval;
6797
6798         return 0;
6799 }
6800
6801 static const struct file_operations perf_fops = {
6802         .release                = perf_release,
6803         .read                   = perf_read,
6804         .poll                   = perf_poll,
6805         .unlocked_ioctl         = perf_ioctl,
6806         .compat_ioctl           = perf_compat_ioctl,
6807         .mmap                   = perf_mmap,
6808         .fasync                 = perf_fasync,
6809 };
6810
6811 /*
6812  * Perf event wakeup
6813  *
6814  * If there's data, ensure we set the poll() state and publish everything
6815  * to user-space before waking everybody up.
6816  */
6817
6818 void perf_event_wakeup(struct perf_event *event)
6819 {
6820         ring_buffer_wakeup(event);
6821
6822         if (event->pending_kill) {
6823                 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
6824                 event->pending_kill = 0;
6825         }
6826 }
6827
6828 static void perf_sigtrap(struct perf_event *event)
6829 {
6830         /*
6831          * We'd expect this to only occur if the irq_work is delayed and either
6832          * ctx->task or current has changed in the meantime. This can be the
6833          * case on architectures that do not implement arch_irq_work_raise().
6834          */
6835         if (WARN_ON_ONCE(event->ctx->task != current))
6836                 return;
6837
6838         /*
6839          * Both perf_pending_task() and perf_pending_irq() can race with the
6840          * task exiting.
6841          */
6842         if (current->flags & PF_EXITING)
6843                 return;
6844
6845         send_sig_perf((void __user *)event->pending_addr,
6846                       event->orig_type, event->attr.sig_data);
6847 }
6848
6849 /*
6850  * Deliver the pending work in-event-context or follow the context.
6851  */
6852 static void __perf_pending_disable(struct perf_event *event)
6853 {
6854         int cpu = READ_ONCE(event->oncpu);
6855
6856         /*
6857          * If the event isn't running; we done. event_sched_out() will have
6858          * taken care of things.
6859          */
6860         if (cpu < 0)
6861                 return;
6862
6863         /*
6864          * Yay, we hit home and are in the context of the event.
6865          */
6866         if (cpu == smp_processor_id()) {
6867                 if (event->pending_disable) {
6868                         event->pending_disable = 0;
6869                         perf_event_disable_local(event);
6870                 }
6871                 return;
6872         }
6873
6874         /*
6875          *  CPU-A                       CPU-B
6876          *
6877          *  perf_event_disable_inatomic()
6878          *    @pending_disable = CPU-A;
6879          *    irq_work_queue();
6880          *
6881          *  sched-out
6882          *    @pending_disable = -1;
6883          *
6884          *                              sched-in
6885          *                              perf_event_disable_inatomic()
6886          *                                @pending_disable = CPU-B;
6887          *                                irq_work_queue(); // FAILS
6888          *
6889          *  irq_work_run()
6890          *    perf_pending_disable()
6891          *
6892          * But the event runs on CPU-B and wants disabling there.
6893          */
6894         irq_work_queue_on(&event->pending_disable_irq, cpu);
6895 }
6896
6897 static void perf_pending_disable(struct irq_work *entry)
6898 {
6899         struct perf_event *event = container_of(entry, struct perf_event, pending_disable_irq);
6900         int rctx;
6901
6902         /*
6903          * If we 'fail' here, that's OK, it means recursion is already disabled
6904          * and we won't recurse 'further'.
6905          */
6906         rctx = perf_swevent_get_recursion_context();
6907         __perf_pending_disable(event);
6908         if (rctx >= 0)
6909                 perf_swevent_put_recursion_context(rctx);
6910 }
6911
6912 static void perf_pending_irq(struct irq_work *entry)
6913 {
6914         struct perf_event *event = container_of(entry, struct perf_event, pending_irq);
6915         int rctx;
6916
6917         /*
6918          * If we 'fail' here, that's OK, it means recursion is already disabled
6919          * and we won't recurse 'further'.
6920          */
6921         rctx = perf_swevent_get_recursion_context();
6922
6923         /*
6924          * The wakeup isn't bound to the context of the event -- it can happen
6925          * irrespective of where the event is.
6926          */
6927         if (event->pending_wakeup) {
6928                 event->pending_wakeup = 0;
6929                 perf_event_wakeup(event);
6930         }
6931
6932         if (rctx >= 0)
6933                 perf_swevent_put_recursion_context(rctx);
6934 }
6935
6936 static void perf_pending_task(struct callback_head *head)
6937 {
6938         struct perf_event *event = container_of(head, struct perf_event, pending_task);
6939         int rctx;
6940
6941         /*
6942          * All accesses to the event must belong to the same implicit RCU read-side
6943          * critical section as the ->pending_work reset. See comment in
6944          * perf_pending_task_sync().
6945          */
6946         rcu_read_lock();
6947         /*
6948          * If we 'fail' here, that's OK, it means recursion is already disabled
6949          * and we won't recurse 'further'.
6950          */
6951         rctx = perf_swevent_get_recursion_context();
6952
6953         if (event->pending_work) {
6954                 event->pending_work = 0;
6955                 perf_sigtrap(event);
6956                 local_dec(&event->ctx->nr_no_switch_fast);
6957                 rcuwait_wake_up(&event->pending_work_wait);
6958         }
6959         rcu_read_unlock();
6960
6961         if (rctx >= 0)
6962                 perf_swevent_put_recursion_context(rctx);
6963 }
6964
6965 #ifdef CONFIG_GUEST_PERF_EVENTS
6966 struct perf_guest_info_callbacks __rcu *perf_guest_cbs;
6967
6968 DEFINE_STATIC_CALL_RET0(__perf_guest_state, *perf_guest_cbs->state);
6969 DEFINE_STATIC_CALL_RET0(__perf_guest_get_ip, *perf_guest_cbs->get_ip);
6970 DEFINE_STATIC_CALL_RET0(__perf_guest_handle_intel_pt_intr, *perf_guest_cbs->handle_intel_pt_intr);
6971
6972 void perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6973 {
6974         if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs)))
6975                 return;
6976
6977         rcu_assign_pointer(perf_guest_cbs, cbs);
6978         static_call_update(__perf_guest_state, cbs->state);
6979         static_call_update(__perf_guest_get_ip, cbs->get_ip);
6980
6981         /* Implementing ->handle_intel_pt_intr is optional. */
6982         if (cbs->handle_intel_pt_intr)
6983                 static_call_update(__perf_guest_handle_intel_pt_intr,
6984                                    cbs->handle_intel_pt_intr);
6985 }
6986 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
6987
6988 void perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6989 {
6990         if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs) != cbs))
6991                 return;
6992
6993         rcu_assign_pointer(perf_guest_cbs, NULL);
6994         static_call_update(__perf_guest_state, (void *)&__static_call_return0);
6995         static_call_update(__perf_guest_get_ip, (void *)&__static_call_return0);
6996         static_call_update(__perf_guest_handle_intel_pt_intr,
6997                            (void *)&__static_call_return0);
6998         synchronize_rcu();
6999 }
7000 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
7001 #endif
7002
7003 static bool should_sample_guest(struct perf_event *event)
7004 {
7005         return !event->attr.exclude_guest && perf_guest_state();
7006 }
7007
7008 unsigned long perf_misc_flags(struct perf_event *event,
7009                               struct pt_regs *regs)
7010 {
7011         if (should_sample_guest(event))
7012                 return perf_arch_guest_misc_flags(regs);
7013
7014         return perf_arch_misc_flags(regs);
7015 }
7016
7017 unsigned long perf_instruction_pointer(struct perf_event *event,
7018                                        struct pt_regs *regs)
7019 {
7020         if (should_sample_guest(event))
7021                 return perf_guest_get_ip();
7022
7023         return perf_arch_instruction_pointer(regs);
7024 }
7025
7026 static void
7027 perf_output_sample_regs(struct perf_output_handle *handle,
7028                         struct pt_regs *regs, u64 mask)
7029 {
7030         int bit;
7031         DECLARE_BITMAP(_mask, 64);
7032
7033         bitmap_from_u64(_mask, mask);
7034         for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
7035                 u64 val;
7036
7037                 val = perf_reg_value(regs, bit);
7038                 perf_output_put(handle, val);
7039         }
7040 }
7041
7042 static void perf_sample_regs_user(struct perf_regs *regs_user,
7043                                   struct pt_regs *regs)
7044 {
7045         if (user_mode(regs)) {
7046                 regs_user->abi = perf_reg_abi(current);
7047                 regs_user->regs = regs;
7048         } else if (!(current->flags & PF_KTHREAD)) {
7049                 perf_get_regs_user(regs_user, regs);
7050         } else {
7051                 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
7052                 regs_user->regs = NULL;
7053         }
7054 }
7055
7056 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
7057                                   struct pt_regs *regs)
7058 {
7059         regs_intr->regs = regs;
7060         regs_intr->abi  = perf_reg_abi(current);
7061 }
7062
7063
7064 /*
7065  * Get remaining task size from user stack pointer.
7066  *
7067  * It'd be better to take stack vma map and limit this more
7068  * precisely, but there's no way to get it safely under interrupt,
7069  * so using TASK_SIZE as limit.
7070  */
7071 static u64 perf_ustack_task_size(struct pt_regs *regs)
7072 {
7073         unsigned long addr = perf_user_stack_pointer(regs);
7074
7075         if (!addr || addr >= TASK_SIZE)
7076                 return 0;
7077
7078         return TASK_SIZE - addr;
7079 }
7080
7081 static u16
7082 perf_sample_ustack_size(u16 stack_size, u16 header_size,
7083                         struct pt_regs *regs)
7084 {
7085         u64 task_size;
7086
7087         /* No regs, no stack pointer, no dump. */
7088         if (!regs)
7089                 return 0;
7090
7091         /*
7092          * Check if we fit in with the requested stack size into the:
7093          * - TASK_SIZE
7094          *   If we don't, we limit the size to the TASK_SIZE.
7095          *
7096          * - remaining sample size
7097          *   If we don't, we customize the stack size to
7098          *   fit in to the remaining sample size.
7099          */
7100
7101         task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
7102         stack_size = min(stack_size, (u16) task_size);
7103
7104         /* Current header size plus static size and dynamic size. */
7105         header_size += 2 * sizeof(u64);
7106
7107         /* Do we fit in with the current stack dump size? */
7108         if ((u16) (header_size + stack_size) < header_size) {
7109                 /*
7110                  * If we overflow the maximum size for the sample,
7111                  * we customize the stack dump size to fit in.
7112                  */
7113                 stack_size = USHRT_MAX - header_size - sizeof(u64);
7114                 stack_size = round_up(stack_size, sizeof(u64));
7115         }
7116
7117         return stack_size;
7118 }
7119
7120 static void
7121 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
7122                           struct pt_regs *regs)
7123 {
7124         /* Case of a kernel thread, nothing to dump */
7125         if (!regs) {
7126                 u64 size = 0;
7127                 perf_output_put(handle, size);
7128         } else {
7129                 unsigned long sp;
7130                 unsigned int rem;
7131                 u64 dyn_size;
7132
7133                 /*
7134                  * We dump:
7135                  * static size
7136                  *   - the size requested by user or the best one we can fit
7137                  *     in to the sample max size
7138                  * data
7139                  *   - user stack dump data
7140                  * dynamic size
7141                  *   - the actual dumped size
7142                  */
7143
7144                 /* Static size. */
7145                 perf_output_put(handle, dump_size);
7146
7147                 /* Data. */
7148                 sp = perf_user_stack_pointer(regs);
7149                 rem = __output_copy_user(handle, (void *) sp, dump_size);
7150                 dyn_size = dump_size - rem;
7151
7152                 perf_output_skip(handle, rem);
7153
7154                 /* Dynamic size. */
7155                 perf_output_put(handle, dyn_size);
7156         }
7157 }
7158
7159 static unsigned long perf_prepare_sample_aux(struct perf_event *event,
7160                                           struct perf_sample_data *data,
7161                                           size_t size)
7162 {
7163         struct perf_event *sampler = event->aux_event;
7164         struct perf_buffer *rb;
7165
7166         data->aux_size = 0;
7167
7168         if (!sampler)
7169                 goto out;
7170
7171         if (WARN_ON_ONCE(READ_ONCE(sampler->state) != PERF_EVENT_STATE_ACTIVE))
7172                 goto out;
7173
7174         if (WARN_ON_ONCE(READ_ONCE(sampler->oncpu) != smp_processor_id()))
7175                 goto out;
7176
7177         rb = ring_buffer_get(sampler);
7178         if (!rb)
7179                 goto out;
7180
7181         /*
7182          * If this is an NMI hit inside sampling code, don't take
7183          * the sample. See also perf_aux_sample_output().
7184          */
7185         if (READ_ONCE(rb->aux_in_sampling)) {
7186                 data->aux_size = 0;
7187         } else {
7188                 size = min_t(size_t, size, perf_aux_size(rb));
7189                 data->aux_size = ALIGN(size, sizeof(u64));
7190         }
7191         ring_buffer_put(rb);
7192
7193 out:
7194         return data->aux_size;
7195 }
7196
7197 static long perf_pmu_snapshot_aux(struct perf_buffer *rb,
7198                                  struct perf_event *event,
7199                                  struct perf_output_handle *handle,
7200                                  unsigned long size)
7201 {
7202         unsigned long flags;
7203         long ret;
7204
7205         /*
7206          * Normal ->start()/->stop() callbacks run in IRQ mode in scheduler
7207          * paths. If we start calling them in NMI context, they may race with
7208          * the IRQ ones, that is, for example, re-starting an event that's just
7209          * been stopped, which is why we're using a separate callback that
7210          * doesn't change the event state.
7211          *
7212          * IRQs need to be disabled to prevent IPIs from racing with us.
7213          */
7214         local_irq_save(flags);
7215         /*
7216          * Guard against NMI hits inside the critical section;
7217          * see also perf_prepare_sample_aux().
7218          */
7219         WRITE_ONCE(rb->aux_in_sampling, 1);
7220         barrier();
7221
7222         ret = event->pmu->snapshot_aux(event, handle, size);
7223
7224         barrier();
7225         WRITE_ONCE(rb->aux_in_sampling, 0);
7226         local_irq_restore(flags);
7227
7228         return ret;
7229 }
7230
7231 static void perf_aux_sample_output(struct perf_event *event,
7232                                    struct perf_output_handle *handle,
7233                                    struct perf_sample_data *data)
7234 {
7235         struct perf_event *sampler = event->aux_event;
7236         struct perf_buffer *rb;
7237         unsigned long pad;
7238         long size;
7239
7240         if (WARN_ON_ONCE(!sampler || !data->aux_size))
7241                 return;
7242
7243         rb = ring_buffer_get(sampler);
7244         if (!rb)
7245                 return;
7246
7247         size = perf_pmu_snapshot_aux(rb, sampler, handle, data->aux_size);
7248
7249         /*
7250          * An error here means that perf_output_copy() failed (returned a
7251          * non-zero surplus that it didn't copy), which in its current
7252          * enlightened implementation is not possible. If that changes, we'd
7253          * like to know.
7254          */
7255         if (WARN_ON_ONCE(size < 0))
7256                 goto out_put;
7257
7258         /*
7259          * The pad comes from ALIGN()ing data->aux_size up to u64 in
7260          * perf_prepare_sample_aux(), so should not be more than that.
7261          */
7262         pad = data->aux_size - size;
7263         if (WARN_ON_ONCE(pad >= sizeof(u64)))
7264                 pad = 8;
7265
7266         if (pad) {
7267                 u64 zero = 0;
7268                 perf_output_copy(handle, &zero, pad);
7269         }
7270
7271 out_put:
7272         ring_buffer_put(rb);
7273 }
7274
7275 /*
7276  * A set of common sample data types saved even for non-sample records
7277  * when event->attr.sample_id_all is set.
7278  */
7279 #define PERF_SAMPLE_ID_ALL  (PERF_SAMPLE_TID | PERF_SAMPLE_TIME |       \
7280                              PERF_SAMPLE_ID | PERF_SAMPLE_STREAM_ID |   \
7281                              PERF_SAMPLE_CPU | PERF_SAMPLE_IDENTIFIER)
7282
7283 static void __perf_event_header__init_id(struct perf_sample_data *data,
7284                                          struct perf_event *event,
7285                                          u64 sample_type)
7286 {
7287         data->type = event->attr.sample_type;
7288         data->sample_flags |= data->type & PERF_SAMPLE_ID_ALL;
7289
7290         if (sample_type & PERF_SAMPLE_TID) {
7291                 /* namespace issues */
7292                 data->tid_entry.pid = perf_event_pid(event, current);
7293                 data->tid_entry.tid = perf_event_tid(event, current);
7294         }
7295
7296         if (sample_type & PERF_SAMPLE_TIME)
7297                 data->time = perf_event_clock(event);
7298
7299         if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
7300                 data->id = primary_event_id(event);
7301
7302         if (sample_type & PERF_SAMPLE_STREAM_ID)
7303                 data->stream_id = event->id;
7304
7305         if (sample_type & PERF_SAMPLE_CPU) {
7306                 data->cpu_entry.cpu      = raw_smp_processor_id();
7307                 data->cpu_entry.reserved = 0;
7308         }
7309 }
7310
7311 void perf_event_header__init_id(struct perf_event_header *header,
7312                                 struct perf_sample_data *data,
7313                                 struct perf_event *event)
7314 {
7315         if (event->attr.sample_id_all) {
7316                 header->size += event->id_header_size;
7317                 __perf_event_header__init_id(data, event, event->attr.sample_type);
7318         }
7319 }
7320
7321 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
7322                                            struct perf_sample_data *data)
7323 {
7324         u64 sample_type = data->type;
7325
7326         if (sample_type & PERF_SAMPLE_TID)
7327                 perf_output_put(handle, data->tid_entry);
7328
7329         if (sample_type & PERF_SAMPLE_TIME)
7330                 perf_output_put(handle, data->time);
7331
7332         if (sample_type & PERF_SAMPLE_ID)
7333                 perf_output_put(handle, data->id);
7334
7335         if (sample_type & PERF_SAMPLE_STREAM_ID)
7336                 perf_output_put(handle, data->stream_id);
7337
7338         if (sample_type & PERF_SAMPLE_CPU)
7339                 perf_output_put(handle, data->cpu_entry);
7340
7341         if (sample_type & PERF_SAMPLE_IDENTIFIER)
7342                 perf_output_put(handle, data->id);
7343 }
7344
7345 void perf_event__output_id_sample(struct perf_event *event,
7346                                   struct perf_output_handle *handle,
7347                                   struct perf_sample_data *sample)
7348 {
7349         if (event->attr.sample_id_all)
7350                 __perf_event__output_id_sample(handle, sample);
7351 }
7352
7353 static void perf_output_read_one(struct perf_output_handle *handle,
7354                                  struct perf_event *event,
7355                                  u64 enabled, u64 running)
7356 {
7357         u64 read_format = event->attr.read_format;
7358         u64 values[5];
7359         int n = 0;
7360
7361         values[n++] = perf_event_count(event, has_inherit_and_sample_read(&event->attr));
7362         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
7363                 values[n++] = enabled +
7364                         atomic64_read(&event->child_total_time_enabled);
7365         }
7366         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
7367                 values[n++] = running +
7368                         atomic64_read(&event->child_total_time_running);
7369         }
7370         if (read_format & PERF_FORMAT_ID)
7371                 values[n++] = primary_event_id(event);
7372         if (read_format & PERF_FORMAT_LOST)
7373                 values[n++] = atomic64_read(&event->lost_samples);
7374
7375         __output_copy(handle, values, n * sizeof(u64));
7376 }
7377
7378 static void perf_output_read_group(struct perf_output_handle *handle,
7379                                    struct perf_event *event,
7380                                    u64 enabled, u64 running)
7381 {
7382         struct perf_event *leader = event->group_leader, *sub;
7383         u64 read_format = event->attr.read_format;
7384         unsigned long flags;
7385         u64 values[6];
7386         int n = 0;
7387         bool self = has_inherit_and_sample_read(&event->attr);
7388
7389         /*
7390          * Disabling interrupts avoids all counter scheduling
7391          * (context switches, timer based rotation and IPIs).
7392          */
7393         local_irq_save(flags);
7394
7395         values[n++] = 1 + leader->nr_siblings;
7396
7397         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
7398                 values[n++] = enabled;
7399
7400         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
7401                 values[n++] = running;
7402
7403         if ((leader != event) &&
7404             (leader->state == PERF_EVENT_STATE_ACTIVE))
7405                 leader->pmu->read(leader);
7406
7407         values[n++] = perf_event_count(leader, self);
7408         if (read_format & PERF_FORMAT_ID)
7409                 values[n++] = primary_event_id(leader);
7410         if (read_format & PERF_FORMAT_LOST)
7411                 values[n++] = atomic64_read(&leader->lost_samples);
7412
7413         __output_copy(handle, values, n * sizeof(u64));
7414
7415         for_each_sibling_event(sub, leader) {
7416                 n = 0;
7417
7418                 if ((sub != event) &&
7419                     (sub->state == PERF_EVENT_STATE_ACTIVE))
7420                         sub->pmu->read(sub);
7421
7422                 values[n++] = perf_event_count(sub, self);
7423                 if (read_format & PERF_FORMAT_ID)
7424                         values[n++] = primary_event_id(sub);
7425                 if (read_format & PERF_FORMAT_LOST)
7426                         values[n++] = atomic64_read(&sub->lost_samples);
7427
7428                 __output_copy(handle, values, n * sizeof(u64));
7429         }
7430
7431         local_irq_restore(flags);
7432 }
7433
7434 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
7435                                  PERF_FORMAT_TOTAL_TIME_RUNNING)
7436
7437 /*
7438  * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
7439  *
7440  * The problem is that its both hard and excessively expensive to iterate the
7441  * child list, not to mention that its impossible to IPI the children running
7442  * on another CPU, from interrupt/NMI context.
7443  *
7444  * Instead the combination of PERF_SAMPLE_READ and inherit will track per-thread
7445  * counts rather than attempting to accumulate some value across all children on
7446  * all cores.
7447  */
7448 static void perf_output_read(struct perf_output_handle *handle,
7449                              struct perf_event *event)
7450 {
7451         u64 enabled = 0, running = 0, now;
7452         u64 read_format = event->attr.read_format;
7453
7454         /*
7455          * compute total_time_enabled, total_time_running
7456          * based on snapshot values taken when the event
7457          * was last scheduled in.
7458          *
7459          * we cannot simply called update_context_time()
7460          * because of locking issue as we are called in
7461          * NMI context
7462          */
7463         if (read_format & PERF_FORMAT_TOTAL_TIMES)
7464                 calc_timer_values(event, &now, &enabled, &running);
7465
7466         if (event->attr.read_format & PERF_FORMAT_GROUP)
7467                 perf_output_read_group(handle, event, enabled, running);
7468         else
7469                 perf_output_read_one(handle, event, enabled, running);
7470 }
7471
7472 void perf_output_sample(struct perf_output_handle *handle,
7473                         struct perf_event_header *header,
7474                         struct perf_sample_data *data,
7475                         struct perf_event *event)
7476 {
7477         u64 sample_type = data->type;
7478
7479         perf_output_put(handle, *header);
7480
7481         if (sample_type & PERF_SAMPLE_IDENTIFIER)
7482                 perf_output_put(handle, data->id);
7483
7484         if (sample_type & PERF_SAMPLE_IP)
7485                 perf_output_put(handle, data->ip);
7486
7487         if (sample_type & PERF_SAMPLE_TID)
7488                 perf_output_put(handle, data->tid_entry);
7489
7490         if (sample_type & PERF_SAMPLE_TIME)
7491                 perf_output_put(handle, data->time);
7492
7493         if (sample_type & PERF_SAMPLE_ADDR)
7494                 perf_output_put(handle, data->addr);
7495
7496         if (sample_type & PERF_SAMPLE_ID)
7497                 perf_output_put(handle, data->id);
7498
7499         if (sample_type & PERF_SAMPLE_STREAM_ID)
7500                 perf_output_put(handle, data->stream_id);
7501
7502         if (sample_type & PERF_SAMPLE_CPU)
7503                 perf_output_put(handle, data->cpu_entry);
7504
7505         if (sample_type & PERF_SAMPLE_PERIOD)
7506                 perf_output_put(handle, data->period);
7507
7508         if (sample_type & PERF_SAMPLE_READ)
7509                 perf_output_read(handle, event);
7510
7511         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
7512                 int size = 1;
7513
7514                 size += data->callchain->nr;
7515                 size *= sizeof(u64);
7516                 __output_copy(handle, data->callchain, size);
7517         }
7518
7519         if (sample_type & PERF_SAMPLE_RAW) {
7520                 struct perf_raw_record *raw = data->raw;
7521
7522                 if (raw) {
7523                         struct perf_raw_frag *frag = &raw->frag;
7524
7525                         perf_output_put(handle, raw->size);
7526                         do {
7527                                 if (frag->copy) {
7528                                         __output_custom(handle, frag->copy,
7529                                                         frag->data, frag->size);
7530                                 } else {
7531                                         __output_copy(handle, frag->data,
7532                                                       frag->size);
7533                                 }
7534                                 if (perf_raw_frag_last(frag))
7535                                         break;
7536                                 frag = frag->next;
7537                         } while (1);
7538                         if (frag->pad)
7539                                 __output_skip(handle, NULL, frag->pad);
7540                 } else {
7541                         struct {
7542                                 u32     size;
7543                                 u32     data;
7544                         } raw = {
7545                                 .size = sizeof(u32),
7546                                 .data = 0,
7547                         };
7548                         perf_output_put(handle, raw);
7549                 }
7550         }
7551
7552         if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
7553                 if (data->br_stack) {
7554                         size_t size;
7555
7556                         size = data->br_stack->nr
7557                              * sizeof(struct perf_branch_entry);
7558
7559                         perf_output_put(handle, data->br_stack->nr);
7560                         if (branch_sample_hw_index(event))
7561                                 perf_output_put(handle, data->br_stack->hw_idx);
7562                         perf_output_copy(handle, data->br_stack->entries, size);
7563                         /*
7564                          * Add the extension space which is appended
7565                          * right after the struct perf_branch_stack.
7566                          */
7567                         if (data->br_stack_cntr) {
7568                                 size = data->br_stack->nr * sizeof(u64);
7569                                 perf_output_copy(handle, data->br_stack_cntr, size);
7570                         }
7571                 } else {
7572                         /*
7573                          * we always store at least the value of nr
7574                          */
7575                         u64 nr = 0;
7576                         perf_output_put(handle, nr);
7577                 }
7578         }
7579
7580         if (sample_type & PERF_SAMPLE_REGS_USER) {
7581                 u64 abi = data->regs_user.abi;
7582
7583                 /*
7584                  * If there are no regs to dump, notice it through
7585                  * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
7586                  */
7587                 perf_output_put(handle, abi);
7588
7589                 if (abi) {
7590                         u64 mask = event->attr.sample_regs_user;
7591                         perf_output_sample_regs(handle,
7592                                                 data->regs_user.regs,
7593                                                 mask);
7594                 }
7595         }
7596
7597         if (sample_type & PERF_SAMPLE_STACK_USER) {
7598                 perf_output_sample_ustack(handle,
7599                                           data->stack_user_size,
7600                                           data->regs_user.regs);
7601         }
7602
7603         if (sample_type & PERF_SAMPLE_WEIGHT_TYPE)
7604                 perf_output_put(handle, data->weight.full);
7605
7606         if (sample_type & PERF_SAMPLE_DATA_SRC)
7607                 perf_output_put(handle, data->data_src.val);
7608
7609         if (sample_type & PERF_SAMPLE_TRANSACTION)
7610                 perf_output_put(handle, data->txn);
7611
7612         if (sample_type & PERF_SAMPLE_REGS_INTR) {
7613                 u64 abi = data->regs_intr.abi;
7614                 /*
7615                  * If there are no regs to dump, notice it through
7616                  * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
7617                  */
7618                 perf_output_put(handle, abi);
7619
7620                 if (abi) {
7621                         u64 mask = event->attr.sample_regs_intr;
7622
7623                         perf_output_sample_regs(handle,
7624                                                 data->regs_intr.regs,
7625                                                 mask);
7626                 }
7627         }
7628
7629         if (sample_type & PERF_SAMPLE_PHYS_ADDR)
7630                 perf_output_put(handle, data->phys_addr);
7631
7632         if (sample_type & PERF_SAMPLE_CGROUP)
7633                 perf_output_put(handle, data->cgroup);
7634
7635         if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
7636                 perf_output_put(handle, data->data_page_size);
7637
7638         if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
7639                 perf_output_put(handle, data->code_page_size);
7640
7641         if (sample_type & PERF_SAMPLE_AUX) {
7642                 perf_output_put(handle, data->aux_size);
7643
7644                 if (data->aux_size)
7645                         perf_aux_sample_output(event, handle, data);
7646         }
7647
7648         if (!event->attr.watermark) {
7649                 int wakeup_events = event->attr.wakeup_events;
7650
7651                 if (wakeup_events) {
7652                         struct perf_buffer *rb = handle->rb;
7653                         int events = local_inc_return(&rb->events);
7654
7655                         if (events >= wakeup_events) {
7656                                 local_sub(wakeup_events, &rb->events);
7657                                 local_inc(&rb->wakeup);
7658                         }
7659                 }
7660         }
7661 }
7662
7663 static u64 perf_virt_to_phys(u64 virt)
7664 {
7665         u64 phys_addr = 0;
7666
7667         if (!virt)
7668                 return 0;
7669
7670         if (virt >= TASK_SIZE) {
7671                 /* If it's vmalloc()d memory, leave phys_addr as 0 */
7672                 if (virt_addr_valid((void *)(uintptr_t)virt) &&
7673                     !(virt >= VMALLOC_START && virt < VMALLOC_END))
7674                         phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
7675         } else {
7676                 /*
7677                  * Walking the pages tables for user address.
7678                  * Interrupts are disabled, so it prevents any tear down
7679                  * of the page tables.
7680                  * Try IRQ-safe get_user_page_fast_only first.
7681                  * If failed, leave phys_addr as 0.
7682                  */
7683                 if (current->mm != NULL) {
7684                         struct page *p;
7685
7686                         pagefault_disable();
7687                         if (get_user_page_fast_only(virt, 0, &p)) {
7688                                 phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
7689                                 put_page(p);
7690                         }
7691                         pagefault_enable();
7692                 }
7693         }
7694
7695         return phys_addr;
7696 }
7697
7698 /*
7699  * Return the pagetable size of a given virtual address.
7700  */
7701 static u64 perf_get_pgtable_size(struct mm_struct *mm, unsigned long addr)
7702 {
7703         u64 size = 0;
7704
7705 #ifdef CONFIG_HAVE_GUP_FAST
7706         pgd_t *pgdp, pgd;
7707         p4d_t *p4dp, p4d;
7708         pud_t *pudp, pud;
7709         pmd_t *pmdp, pmd;
7710         pte_t *ptep, pte;
7711
7712         pgdp = pgd_offset(mm, addr);
7713         pgd = READ_ONCE(*pgdp);
7714         if (pgd_none(pgd))
7715                 return 0;
7716
7717         if (pgd_leaf(pgd))
7718                 return pgd_leaf_size(pgd);
7719
7720         p4dp = p4d_offset_lockless(pgdp, pgd, addr);
7721         p4d = READ_ONCE(*p4dp);
7722         if (!p4d_present(p4d))
7723                 return 0;
7724
7725         if (p4d_leaf(p4d))
7726                 return p4d_leaf_size(p4d);
7727
7728         pudp = pud_offset_lockless(p4dp, p4d, addr);
7729         pud = READ_ONCE(*pudp);
7730         if (!pud_present(pud))
7731                 return 0;
7732
7733         if (pud_leaf(pud))
7734                 return pud_leaf_size(pud);
7735
7736         pmdp = pmd_offset_lockless(pudp, pud, addr);
7737 again:
7738         pmd = pmdp_get_lockless(pmdp);
7739         if (!pmd_present(pmd))
7740                 return 0;
7741
7742         if (pmd_leaf(pmd))
7743                 return pmd_leaf_size(pmd);
7744
7745         ptep = pte_offset_map(&pmd, addr);
7746         if (!ptep)
7747                 goto again;
7748
7749         pte = ptep_get_lockless(ptep);
7750         if (pte_present(pte))
7751                 size = __pte_leaf_size(pmd, pte);
7752         pte_unmap(ptep);
7753 #endif /* CONFIG_HAVE_GUP_FAST */
7754
7755         return size;
7756 }
7757
7758 static u64 perf_get_page_size(unsigned long addr)
7759 {
7760         struct mm_struct *mm;
7761         unsigned long flags;
7762         u64 size;
7763
7764         if (!addr)
7765                 return 0;
7766
7767         /*
7768          * Software page-table walkers must disable IRQs,
7769          * which prevents any tear down of the page tables.
7770          */
7771         local_irq_save(flags);
7772
7773         mm = current->mm;
7774         if (!mm) {
7775                 /*
7776                  * For kernel threads and the like, use init_mm so that
7777                  * we can find kernel memory.
7778                  */
7779                 mm = &init_mm;
7780         }
7781
7782         size = perf_get_pgtable_size(mm, addr);
7783
7784         local_irq_restore(flags);
7785
7786         return size;
7787 }
7788
7789 static struct perf_callchain_entry __empty_callchain = { .nr = 0, };
7790
7791 struct perf_callchain_entry *
7792 perf_callchain(struct perf_event *event, struct pt_regs *regs)
7793 {
7794         bool kernel = !event->attr.exclude_callchain_kernel;
7795         bool user   = !event->attr.exclude_callchain_user;
7796         /* Disallow cross-task user callchains. */
7797         bool crosstask = event->ctx->task && event->ctx->task != current;
7798         const u32 max_stack = event->attr.sample_max_stack;
7799         struct perf_callchain_entry *callchain;
7800
7801         if (!kernel && !user)
7802                 return &__empty_callchain;
7803
7804         callchain = get_perf_callchain(regs, 0, kernel, user,
7805                                        max_stack, crosstask, true);
7806         return callchain ?: &__empty_callchain;
7807 }
7808
7809 static __always_inline u64 __cond_set(u64 flags, u64 s, u64 d)
7810 {
7811         return d * !!(flags & s);
7812 }
7813
7814 void perf_prepare_sample(struct perf_sample_data *data,
7815                          struct perf_event *event,
7816                          struct pt_regs *regs)
7817 {
7818         u64 sample_type = event->attr.sample_type;
7819         u64 filtered_sample_type;
7820
7821         /*
7822          * Add the sample flags that are dependent to others.  And clear the
7823          * sample flags that have already been done by the PMU driver.
7824          */
7825         filtered_sample_type = sample_type;
7826         filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_CODE_PAGE_SIZE,
7827                                            PERF_SAMPLE_IP);
7828         filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_DATA_PAGE_SIZE |
7829                                            PERF_SAMPLE_PHYS_ADDR, PERF_SAMPLE_ADDR);
7830         filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_STACK_USER,
7831                                            PERF_SAMPLE_REGS_USER);
7832         filtered_sample_type &= ~data->sample_flags;
7833
7834         if (filtered_sample_type == 0) {
7835                 /* Make sure it has the correct data->type for output */
7836                 data->type = event->attr.sample_type;
7837                 return;
7838         }
7839
7840         __perf_event_header__init_id(data, event, filtered_sample_type);
7841
7842         if (filtered_sample_type & PERF_SAMPLE_IP) {
7843                 data->ip = perf_instruction_pointer(event, regs);
7844                 data->sample_flags |= PERF_SAMPLE_IP;
7845         }
7846
7847         if (filtered_sample_type & PERF_SAMPLE_CALLCHAIN)
7848                 perf_sample_save_callchain(data, event, regs);
7849
7850         if (filtered_sample_type & PERF_SAMPLE_RAW) {
7851                 data->raw = NULL;
7852                 data->dyn_size += sizeof(u64);
7853                 data->sample_flags |= PERF_SAMPLE_RAW;
7854         }
7855
7856         if (filtered_sample_type & PERF_SAMPLE_BRANCH_STACK) {
7857                 data->br_stack = NULL;
7858                 data->dyn_size += sizeof(u64);
7859                 data->sample_flags |= PERF_SAMPLE_BRANCH_STACK;
7860         }
7861
7862         if (filtered_sample_type & PERF_SAMPLE_REGS_USER)
7863                 perf_sample_regs_user(&data->regs_user, regs);
7864
7865         /*
7866          * It cannot use the filtered_sample_type here as REGS_USER can be set
7867          * by STACK_USER (using __cond_set() above) and we don't want to update
7868          * the dyn_size if it's not requested by users.
7869          */
7870         if ((sample_type & ~data->sample_flags) & PERF_SAMPLE_REGS_USER) {
7871                 /* regs dump ABI info */
7872                 int size = sizeof(u64);
7873
7874                 if (data->regs_user.regs) {
7875                         u64 mask = event->attr.sample_regs_user;
7876                         size += hweight64(mask) * sizeof(u64);
7877                 }
7878
7879                 data->dyn_size += size;
7880                 data->sample_flags |= PERF_SAMPLE_REGS_USER;
7881         }
7882
7883         if (filtered_sample_type & PERF_SAMPLE_STACK_USER) {
7884                 /*
7885                  * Either we need PERF_SAMPLE_STACK_USER bit to be always
7886                  * processed as the last one or have additional check added
7887                  * in case new sample type is added, because we could eat
7888                  * up the rest of the sample size.
7889                  */
7890                 u16 stack_size = event->attr.sample_stack_user;
7891                 u16 header_size = perf_sample_data_size(data, event);
7892                 u16 size = sizeof(u64);
7893
7894                 stack_size = perf_sample_ustack_size(stack_size, header_size,
7895                                                      data->regs_user.regs);
7896
7897                 /*
7898                  * If there is something to dump, add space for the dump
7899                  * itself and for the field that tells the dynamic size,
7900                  * which is how many have been actually dumped.
7901                  */
7902                 if (stack_size)
7903                         size += sizeof(u64) + stack_size;
7904
7905                 data->stack_user_size = stack_size;
7906                 data->dyn_size += size;
7907                 data->sample_flags |= PERF_SAMPLE_STACK_USER;
7908         }
7909
7910         if (filtered_sample_type & PERF_SAMPLE_WEIGHT_TYPE) {
7911                 data->weight.full = 0;
7912                 data->sample_flags |= PERF_SAMPLE_WEIGHT_TYPE;
7913         }
7914
7915         if (filtered_sample_type & PERF_SAMPLE_DATA_SRC) {
7916                 data->data_src.val = PERF_MEM_NA;
7917                 data->sample_flags |= PERF_SAMPLE_DATA_SRC;
7918         }
7919
7920         if (filtered_sample_type & PERF_SAMPLE_TRANSACTION) {
7921                 data->txn = 0;
7922                 data->sample_flags |= PERF_SAMPLE_TRANSACTION;
7923         }
7924
7925         if (filtered_sample_type & PERF_SAMPLE_ADDR) {
7926                 data->addr = 0;
7927                 data->sample_flags |= PERF_SAMPLE_ADDR;
7928         }
7929
7930         if (filtered_sample_type & PERF_SAMPLE_REGS_INTR) {
7931                 /* regs dump ABI info */
7932                 int size = sizeof(u64);
7933
7934                 perf_sample_regs_intr(&data->regs_intr, regs);
7935
7936                 if (data->regs_intr.regs) {
7937                         u64 mask = event->attr.sample_regs_intr;
7938
7939                         size += hweight64(mask) * sizeof(u64);
7940                 }
7941
7942                 data->dyn_size += size;
7943                 data->sample_flags |= PERF_SAMPLE_REGS_INTR;
7944         }
7945
7946         if (filtered_sample_type & PERF_SAMPLE_PHYS_ADDR) {
7947                 data->phys_addr = perf_virt_to_phys(data->addr);
7948                 data->sample_flags |= PERF_SAMPLE_PHYS_ADDR;
7949         }
7950
7951 #ifdef CONFIG_CGROUP_PERF
7952         if (filtered_sample_type & PERF_SAMPLE_CGROUP) {
7953                 struct cgroup *cgrp;
7954
7955                 /* protected by RCU */
7956                 cgrp = task_css_check(current, perf_event_cgrp_id, 1)->cgroup;
7957                 data->cgroup = cgroup_id(cgrp);
7958                 data->sample_flags |= PERF_SAMPLE_CGROUP;
7959         }
7960 #endif
7961
7962         /*
7963          * PERF_DATA_PAGE_SIZE requires PERF_SAMPLE_ADDR. If the user doesn't
7964          * require PERF_SAMPLE_ADDR, kernel implicitly retrieve the data->addr,
7965          * but the value will not dump to the userspace.
7966          */
7967         if (filtered_sample_type & PERF_SAMPLE_DATA_PAGE_SIZE) {
7968                 data->data_page_size = perf_get_page_size(data->addr);
7969                 data->sample_flags |= PERF_SAMPLE_DATA_PAGE_SIZE;
7970         }
7971
7972         if (filtered_sample_type & PERF_SAMPLE_CODE_PAGE_SIZE) {
7973                 data->code_page_size = perf_get_page_size(data->ip);
7974                 data->sample_flags |= PERF_SAMPLE_CODE_PAGE_SIZE;
7975         }
7976
7977         if (filtered_sample_type & PERF_SAMPLE_AUX) {
7978                 u64 size;
7979                 u16 header_size = perf_sample_data_size(data, event);
7980
7981                 header_size += sizeof(u64); /* size */
7982
7983                 /*
7984                  * Given the 16bit nature of header::size, an AUX sample can
7985                  * easily overflow it, what with all the preceding sample bits.
7986                  * Make sure this doesn't happen by using up to U16_MAX bytes
7987                  * per sample in total (rounded down to 8 byte boundary).
7988                  */
7989                 size = min_t(size_t, U16_MAX - header_size,
7990                              event->attr.aux_sample_size);
7991                 size = rounddown(size, 8);
7992                 size = perf_prepare_sample_aux(event, data, size);
7993
7994                 WARN_ON_ONCE(size + header_size > U16_MAX);
7995                 data->dyn_size += size + sizeof(u64); /* size above */
7996                 data->sample_flags |= PERF_SAMPLE_AUX;
7997         }
7998 }
7999
8000 void perf_prepare_header(struct perf_event_header *header,
8001                          struct perf_sample_data *data,
8002                          struct perf_event *event,
8003                          struct pt_regs *regs)
8004 {
8005         header->type = PERF_RECORD_SAMPLE;
8006         header->size = perf_sample_data_size(data, event);
8007         header->misc = perf_misc_flags(event, regs);
8008
8009         /*
8010          * If you're adding more sample types here, you likely need to do
8011          * something about the overflowing header::size, like repurpose the
8012          * lowest 3 bits of size, which should be always zero at the moment.
8013          * This raises a more important question, do we really need 512k sized
8014          * samples and why, so good argumentation is in order for whatever you
8015          * do here next.
8016          */
8017         WARN_ON_ONCE(header->size & 7);
8018 }
8019
8020 static void __perf_event_aux_pause(struct perf_event *event, bool pause)
8021 {
8022         if (pause) {
8023                 if (!event->hw.aux_paused) {
8024                         event->hw.aux_paused = 1;
8025                         event->pmu->stop(event, PERF_EF_PAUSE);
8026                 }
8027         } else {
8028                 if (event->hw.aux_paused) {
8029                         event->hw.aux_paused = 0;
8030                         event->pmu->start(event, PERF_EF_RESUME);
8031                 }
8032         }
8033 }
8034
8035 static void perf_event_aux_pause(struct perf_event *event, bool pause)
8036 {
8037         struct perf_buffer *rb;
8038
8039         if (WARN_ON_ONCE(!event))
8040                 return;
8041
8042         rb = ring_buffer_get(event);
8043         if (!rb)
8044                 return;
8045
8046         scoped_guard (irqsave) {
8047                 /*
8048                  * Guard against self-recursion here. Another event could trip
8049                  * this same from NMI context.
8050                  */
8051                 if (READ_ONCE(rb->aux_in_pause_resume))
8052                         break;
8053
8054                 WRITE_ONCE(rb->aux_in_pause_resume, 1);
8055                 barrier();
8056                 __perf_event_aux_pause(event, pause);
8057                 barrier();
8058                 WRITE_ONCE(rb->aux_in_pause_resume, 0);
8059         }
8060         ring_buffer_put(rb);
8061 }
8062
8063 static __always_inline int
8064 __perf_event_output(struct perf_event *event,
8065                     struct perf_sample_data *data,
8066                     struct pt_regs *regs,
8067                     int (*output_begin)(struct perf_output_handle *,
8068                                         struct perf_sample_data *,
8069                                         struct perf_event *,
8070                                         unsigned int))
8071 {
8072         struct perf_output_handle handle;
8073         struct perf_event_header header;
8074         int err;
8075
8076         /* protect the callchain buffers */
8077         rcu_read_lock();
8078
8079         perf_prepare_sample(data, event, regs);
8080         perf_prepare_header(&header, data, event, regs);
8081
8082         err = output_begin(&handle, data, event, header.size);
8083         if (err)
8084                 goto exit;
8085
8086         perf_output_sample(&handle, &header, data, event);
8087
8088         perf_output_end(&handle);
8089
8090 exit:
8091         rcu_read_unlock();
8092         return err;
8093 }
8094
8095 void
8096 perf_event_output_forward(struct perf_event *event,
8097                          struct perf_sample_data *data,
8098                          struct pt_regs *regs)
8099 {
8100         __perf_event_output(event, data, regs, perf_output_begin_forward);
8101 }
8102
8103 void
8104 perf_event_output_backward(struct perf_event *event,
8105                            struct perf_sample_data *data,
8106                            struct pt_regs *regs)
8107 {
8108         __perf_event_output(event, data, regs, perf_output_begin_backward);
8109 }
8110
8111 int
8112 perf_event_output(struct perf_event *event,
8113                   struct perf_sample_data *data,
8114                   struct pt_regs *regs)
8115 {
8116         return __perf_event_output(event, data, regs, perf_output_begin);
8117 }
8118
8119 /*
8120  * read event_id
8121  */
8122
8123 struct perf_read_event {
8124         struct perf_event_header        header;
8125
8126         u32                             pid;
8127         u32                             tid;
8128 };
8129
8130 static void
8131 perf_event_read_event(struct perf_event *event,
8132                         struct task_struct *task)
8133 {
8134         struct perf_output_handle handle;
8135         struct perf_sample_data sample;
8136         struct perf_read_event read_event = {
8137                 .header = {
8138                         .type = PERF_RECORD_READ,
8139                         .misc = 0,
8140                         .size = sizeof(read_event) + event->read_size,
8141                 },
8142                 .pid = perf_event_pid(event, task),
8143                 .tid = perf_event_tid(event, task),
8144         };
8145         int ret;
8146
8147         perf_event_header__init_id(&read_event.header, &sample, event);
8148         ret = perf_output_begin(&handle, &sample, event, read_event.header.size);
8149         if (ret)
8150                 return;
8151
8152         perf_output_put(&handle, read_event);
8153         perf_output_read(&handle, event);
8154         perf_event__output_id_sample(event, &handle, &sample);
8155
8156         perf_output_end(&handle);
8157 }
8158
8159 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
8160
8161 static void
8162 perf_iterate_ctx(struct perf_event_context *ctx,
8163                    perf_iterate_f output,
8164                    void *data, bool all)
8165 {
8166         struct perf_event *event;
8167
8168         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
8169                 if (!all) {
8170                         if (event->state < PERF_EVENT_STATE_INACTIVE)
8171                                 continue;
8172                         if (!event_filter_match(event))
8173                                 continue;
8174                 }
8175
8176                 output(event, data);
8177         }
8178 }
8179
8180 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
8181 {
8182         struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
8183         struct perf_event *event;
8184
8185         list_for_each_entry_rcu(event, &pel->list, sb_list) {
8186                 /*
8187                  * Skip events that are not fully formed yet; ensure that
8188                  * if we observe event->ctx, both event and ctx will be
8189                  * complete enough. See perf_install_in_context().
8190                  */
8191                 if (!smp_load_acquire(&event->ctx))
8192                         continue;
8193
8194                 if (event->state < PERF_EVENT_STATE_INACTIVE)
8195                         continue;
8196                 if (!event_filter_match(event))
8197                         continue;
8198                 output(event, data);
8199         }
8200 }
8201
8202 /*
8203  * Iterate all events that need to receive side-band events.
8204  *
8205  * For new callers; ensure that account_pmu_sb_event() includes
8206  * your event, otherwise it might not get delivered.
8207  */
8208 static void
8209 perf_iterate_sb(perf_iterate_f output, void *data,
8210                struct perf_event_context *task_ctx)
8211 {
8212         struct perf_event_context *ctx;
8213
8214         rcu_read_lock();
8215         preempt_disable();
8216
8217         /*
8218          * If we have task_ctx != NULL we only notify the task context itself.
8219          * The task_ctx is set only for EXIT events before releasing task
8220          * context.
8221          */
8222         if (task_ctx) {
8223                 perf_iterate_ctx(task_ctx, output, data, false);
8224                 goto done;
8225         }
8226
8227         perf_iterate_sb_cpu(output, data);
8228
8229         ctx = rcu_dereference(current->perf_event_ctxp);
8230         if (ctx)
8231                 perf_iterate_ctx(ctx, output, data, false);
8232 done:
8233         preempt_enable();
8234         rcu_read_unlock();
8235 }
8236
8237 /*
8238  * Clear all file-based filters at exec, they'll have to be
8239  * re-instated when/if these objects are mmapped again.
8240  */
8241 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
8242 {
8243         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8244         struct perf_addr_filter *filter;
8245         unsigned int restart = 0, count = 0;
8246         unsigned long flags;
8247
8248         if (!has_addr_filter(event))
8249                 return;
8250
8251         raw_spin_lock_irqsave(&ifh->lock, flags);
8252         list_for_each_entry(filter, &ifh->list, entry) {
8253                 if (filter->path.dentry) {
8254                         event->addr_filter_ranges[count].start = 0;
8255                         event->addr_filter_ranges[count].size = 0;
8256                         restart++;
8257                 }
8258
8259                 count++;
8260         }
8261
8262         if (restart)
8263                 event->addr_filters_gen++;
8264         raw_spin_unlock_irqrestore(&ifh->lock, flags);
8265
8266         if (restart)
8267                 perf_event_stop(event, 1);
8268 }
8269
8270 void perf_event_exec(void)
8271 {
8272         struct perf_event_context *ctx;
8273
8274         ctx = perf_pin_task_context(current);
8275         if (!ctx)
8276                 return;
8277
8278         perf_event_enable_on_exec(ctx);
8279         perf_event_remove_on_exec(ctx);
8280         perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL, true);
8281
8282         perf_unpin_context(ctx);
8283         put_ctx(ctx);
8284 }
8285
8286 struct remote_output {
8287         struct perf_buffer      *rb;
8288         int                     err;
8289 };
8290
8291 static void __perf_event_output_stop(struct perf_event *event, void *data)
8292 {
8293         struct perf_event *parent = event->parent;
8294         struct remote_output *ro = data;
8295         struct perf_buffer *rb = ro->rb;
8296         struct stop_event_data sd = {
8297                 .event  = event,
8298         };
8299
8300         if (!has_aux(event))
8301                 return;
8302
8303         if (!parent)
8304                 parent = event;
8305
8306         /*
8307          * In case of inheritance, it will be the parent that links to the
8308          * ring-buffer, but it will be the child that's actually using it.
8309          *
8310          * We are using event::rb to determine if the event should be stopped,
8311          * however this may race with ring_buffer_attach() (through set_output),
8312          * which will make us skip the event that actually needs to be stopped.
8313          * So ring_buffer_attach() has to stop an aux event before re-assigning
8314          * its rb pointer.
8315          */
8316         if (rcu_dereference(parent->rb) == rb)
8317                 ro->err = __perf_event_stop(&sd);
8318 }
8319
8320 static int __perf_pmu_output_stop(void *info)
8321 {
8322         struct perf_event *event = info;
8323         struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
8324         struct remote_output ro = {
8325                 .rb     = event->rb,
8326         };
8327
8328         rcu_read_lock();
8329         perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
8330         if (cpuctx->task_ctx)
8331                 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
8332                                    &ro, false);
8333         rcu_read_unlock();
8334
8335         return ro.err;
8336 }
8337
8338 static void perf_pmu_output_stop(struct perf_event *event)
8339 {
8340         struct perf_event *iter;
8341         int err, cpu;
8342
8343 restart:
8344         rcu_read_lock();
8345         list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
8346                 /*
8347                  * For per-CPU events, we need to make sure that neither they
8348                  * nor their children are running; for cpu==-1 events it's
8349                  * sufficient to stop the event itself if it's active, since
8350                  * it can't have children.
8351                  */
8352                 cpu = iter->cpu;
8353                 if (cpu == -1)
8354                         cpu = READ_ONCE(iter->oncpu);
8355
8356                 if (cpu == -1)
8357                         continue;
8358
8359                 err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
8360                 if (err == -EAGAIN) {
8361                         rcu_read_unlock();
8362                         goto restart;
8363                 }
8364         }
8365         rcu_read_unlock();
8366 }
8367
8368 /*
8369  * task tracking -- fork/exit
8370  *
8371  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
8372  */
8373
8374 struct perf_task_event {
8375         struct task_struct              *task;
8376         struct perf_event_context       *task_ctx;
8377
8378         struct {
8379                 struct perf_event_header        header;
8380
8381                 u32                             pid;
8382                 u32                             ppid;
8383                 u32                             tid;
8384                 u32                             ptid;
8385                 u64                             time;
8386         } event_id;
8387 };
8388
8389 static int perf_event_task_match(struct perf_event *event)
8390 {
8391         return event->attr.comm  || event->attr.mmap ||
8392                event->attr.mmap2 || event->attr.mmap_data ||
8393                event->attr.task;
8394 }
8395
8396 static void perf_event_task_output(struct perf_event *event,
8397                                    void *data)
8398 {
8399         struct perf_task_event *task_event = data;
8400         struct perf_output_handle handle;
8401         struct perf_sample_data sample;
8402         struct task_struct *task = task_event->task;
8403         int ret, size = task_event->event_id.header.size;
8404
8405         if (!perf_event_task_match(event))
8406                 return;
8407
8408         perf_event_header__init_id(&task_event->event_id.header, &sample, event);
8409
8410         ret = perf_output_begin(&handle, &sample, event,
8411                                 task_event->event_id.header.size);
8412         if (ret)
8413                 goto out;
8414
8415         task_event->event_id.pid = perf_event_pid(event, task);
8416         task_event->event_id.tid = perf_event_tid(event, task);
8417
8418         if (task_event->event_id.header.type == PERF_RECORD_EXIT) {
8419                 task_event->event_id.ppid = perf_event_pid(event,
8420                                                         task->real_parent);
8421                 task_event->event_id.ptid = perf_event_pid(event,
8422                                                         task->real_parent);
8423         } else {  /* PERF_RECORD_FORK */
8424                 task_event->event_id.ppid = perf_event_pid(event, current);
8425                 task_event->event_id.ptid = perf_event_tid(event, current);
8426         }
8427
8428         task_event->event_id.time = perf_event_clock(event);
8429
8430         perf_output_put(&handle, task_event->event_id);
8431
8432         perf_event__output_id_sample(event, &handle, &sample);
8433
8434         perf_output_end(&handle);
8435 out:
8436         task_event->event_id.header.size = size;
8437 }
8438
8439 static void perf_event_task(struct task_struct *task,
8440                               struct perf_event_context *task_ctx,
8441                               int new)
8442 {
8443         struct perf_task_event task_event;
8444
8445         if (!atomic_read(&nr_comm_events) &&
8446             !atomic_read(&nr_mmap_events) &&
8447             !atomic_read(&nr_task_events))
8448                 return;
8449
8450         task_event = (struct perf_task_event){
8451                 .task     = task,
8452                 .task_ctx = task_ctx,
8453                 .event_id    = {
8454                         .header = {
8455                                 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
8456                                 .misc = 0,
8457                                 .size = sizeof(task_event.event_id),
8458                         },
8459                         /* .pid  */
8460                         /* .ppid */
8461                         /* .tid  */
8462                         /* .ptid */
8463                         /* .time */
8464                 },
8465         };
8466
8467         perf_iterate_sb(perf_event_task_output,
8468                        &task_event,
8469                        task_ctx);
8470 }
8471
8472 void perf_event_fork(struct task_struct *task)
8473 {
8474         perf_event_task(task, NULL, 1);
8475         perf_event_namespaces(task);
8476 }
8477
8478 /*
8479  * comm tracking
8480  */
8481
8482 struct perf_comm_event {
8483         struct task_struct      *task;
8484         char                    *comm;
8485         int                     comm_size;
8486
8487         struct {
8488                 struct perf_event_header        header;
8489
8490                 u32                             pid;
8491                 u32                             tid;
8492         } event_id;
8493 };
8494
8495 static int perf_event_comm_match(struct perf_event *event)
8496 {
8497         return event->attr.comm;
8498 }
8499
8500 static void perf_event_comm_output(struct perf_event *event,
8501                                    void *data)
8502 {
8503         struct perf_comm_event *comm_event = data;
8504         struct perf_output_handle handle;
8505         struct perf_sample_data sample;
8506         int size = comm_event->event_id.header.size;
8507         int ret;
8508
8509         if (!perf_event_comm_match(event))
8510                 return;
8511
8512         perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
8513         ret = perf_output_begin(&handle, &sample, event,
8514                                 comm_event->event_id.header.size);
8515
8516         if (ret)
8517                 goto out;
8518
8519         comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
8520         comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
8521
8522         perf_output_put(&handle, comm_event->event_id);
8523         __output_copy(&handle, comm_event->comm,
8524                                    comm_event->comm_size);
8525
8526         perf_event__output_id_sample(event, &handle, &sample);
8527
8528         perf_output_end(&handle);
8529 out:
8530         comm_event->event_id.header.size = size;
8531 }
8532
8533 static void perf_event_comm_event(struct perf_comm_event *comm_event)
8534 {
8535         char comm[TASK_COMM_LEN];
8536         unsigned int size;
8537
8538         memset(comm, 0, sizeof(comm));
8539         strscpy(comm, comm_event->task->comm, sizeof(comm));
8540         size = ALIGN(strlen(comm)+1, sizeof(u64));
8541
8542         comm_event->comm = comm;
8543         comm_event->comm_size = size;
8544
8545         comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
8546
8547         perf_iterate_sb(perf_event_comm_output,
8548                        comm_event,
8549                        NULL);
8550 }
8551
8552 void perf_event_comm(struct task_struct *task, bool exec)
8553 {
8554         struct perf_comm_event comm_event;
8555
8556         if (!atomic_read(&nr_comm_events))
8557                 return;
8558
8559         comm_event = (struct perf_comm_event){
8560                 .task   = task,
8561                 /* .comm      */
8562                 /* .comm_size */
8563                 .event_id  = {
8564                         .header = {
8565                                 .type = PERF_RECORD_COMM,
8566                                 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
8567                                 /* .size */
8568                         },
8569                         /* .pid */
8570                         /* .tid */
8571                 },
8572         };
8573
8574         perf_event_comm_event(&comm_event);
8575 }
8576
8577 /*
8578  * namespaces tracking
8579  */
8580
8581 struct perf_namespaces_event {
8582         struct task_struct              *task;
8583
8584         struct {
8585                 struct perf_event_header        header;
8586
8587                 u32                             pid;
8588                 u32                             tid;
8589                 u64                             nr_namespaces;
8590                 struct perf_ns_link_info        link_info[NR_NAMESPACES];
8591         } event_id;
8592 };
8593
8594 static int perf_event_namespaces_match(struct perf_event *event)
8595 {
8596         return event->attr.namespaces;
8597 }
8598
8599 static void perf_event_namespaces_output(struct perf_event *event,
8600                                          void *data)
8601 {
8602         struct perf_namespaces_event *namespaces_event = data;
8603         struct perf_output_handle handle;
8604         struct perf_sample_data sample;
8605         u16 header_size = namespaces_event->event_id.header.size;
8606         int ret;
8607
8608         if (!perf_event_namespaces_match(event))
8609                 return;
8610
8611         perf_event_header__init_id(&namespaces_event->event_id.header,
8612                                    &sample, event);
8613         ret = perf_output_begin(&handle, &sample, event,
8614                                 namespaces_event->event_id.header.size);
8615         if (ret)
8616                 goto out;
8617
8618         namespaces_event->event_id.pid = perf_event_pid(event,
8619                                                         namespaces_event->task);
8620         namespaces_event->event_id.tid = perf_event_tid(event,
8621                                                         namespaces_event->task);
8622
8623         perf_output_put(&handle, namespaces_event->event_id);
8624
8625         perf_event__output_id_sample(event, &handle, &sample);
8626
8627         perf_output_end(&handle);
8628 out:
8629         namespaces_event->event_id.header.size = header_size;
8630 }
8631
8632 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
8633                                    struct task_struct *task,
8634                                    const struct proc_ns_operations *ns_ops)
8635 {
8636         struct path ns_path;
8637         struct inode *ns_inode;
8638         int error;
8639
8640         error = ns_get_path(&ns_path, task, ns_ops);
8641         if (!error) {
8642                 ns_inode = ns_path.dentry->d_inode;
8643                 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
8644                 ns_link_info->ino = ns_inode->i_ino;
8645                 path_put(&ns_path);
8646         }
8647 }
8648
8649 void perf_event_namespaces(struct task_struct *task)
8650 {
8651         struct perf_namespaces_event namespaces_event;
8652         struct perf_ns_link_info *ns_link_info;
8653
8654         if (!atomic_read(&nr_namespaces_events))
8655                 return;
8656
8657         namespaces_event = (struct perf_namespaces_event){
8658                 .task   = task,
8659                 .event_id  = {
8660                         .header = {
8661                                 .type = PERF_RECORD_NAMESPACES,
8662                                 .misc = 0,
8663                                 .size = sizeof(namespaces_event.event_id),
8664                         },
8665                         /* .pid */
8666                         /* .tid */
8667                         .nr_namespaces = NR_NAMESPACES,
8668                         /* .link_info[NR_NAMESPACES] */
8669                 },
8670         };
8671
8672         ns_link_info = namespaces_event.event_id.link_info;
8673
8674         perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
8675                                task, &mntns_operations);
8676
8677 #ifdef CONFIG_USER_NS
8678         perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
8679                                task, &userns_operations);
8680 #endif
8681 #ifdef CONFIG_NET_NS
8682         perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
8683                                task, &netns_operations);
8684 #endif
8685 #ifdef CONFIG_UTS_NS
8686         perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
8687                                task, &utsns_operations);
8688 #endif
8689 #ifdef CONFIG_IPC_NS
8690         perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
8691                                task, &ipcns_operations);
8692 #endif
8693 #ifdef CONFIG_PID_NS
8694         perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
8695                                task, &pidns_operations);
8696 #endif
8697 #ifdef CONFIG_CGROUPS
8698         perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
8699                                task, &cgroupns_operations);
8700 #endif
8701
8702         perf_iterate_sb(perf_event_namespaces_output,
8703                         &namespaces_event,
8704                         NULL);
8705 }
8706
8707 /*
8708  * cgroup tracking
8709  */
8710 #ifdef CONFIG_CGROUP_PERF
8711
8712 struct perf_cgroup_event {
8713         char                            *path;
8714         int                             path_size;
8715         struct {
8716                 struct perf_event_header        header;
8717                 u64                             id;
8718                 char                            path[];
8719         } event_id;
8720 };
8721
8722 static int perf_event_cgroup_match(struct perf_event *event)
8723 {
8724         return event->attr.cgroup;
8725 }
8726
8727 static void perf_event_cgroup_output(struct perf_event *event, void *data)
8728 {
8729         struct perf_cgroup_event *cgroup_event = data;
8730         struct perf_output_handle handle;
8731         struct perf_sample_data sample;
8732         u16 header_size = cgroup_event->event_id.header.size;
8733         int ret;
8734
8735         if (!perf_event_cgroup_match(event))
8736                 return;
8737
8738         perf_event_header__init_id(&cgroup_event->event_id.header,
8739                                    &sample, event);
8740         ret = perf_output_begin(&handle, &sample, event,
8741                                 cgroup_event->event_id.header.size);
8742         if (ret)
8743                 goto out;
8744
8745         perf_output_put(&handle, cgroup_event->event_id);
8746         __output_copy(&handle, cgroup_event->path, cgroup_event->path_size);
8747
8748         perf_event__output_id_sample(event, &handle, &sample);
8749
8750         perf_output_end(&handle);
8751 out:
8752         cgroup_event->event_id.header.size = header_size;
8753 }
8754
8755 static void perf_event_cgroup(struct cgroup *cgrp)
8756 {
8757         struct perf_cgroup_event cgroup_event;
8758         char path_enomem[16] = "//enomem";
8759         char *pathname;
8760         size_t size;
8761
8762         if (!atomic_read(&nr_cgroup_events))
8763                 return;
8764
8765         cgroup_event = (struct perf_cgroup_event){
8766                 .event_id  = {
8767                         .header = {
8768                                 .type = PERF_RECORD_CGROUP,
8769                                 .misc = 0,
8770                                 .size = sizeof(cgroup_event.event_id),
8771                         },
8772                         .id = cgroup_id(cgrp),
8773                 },
8774         };
8775
8776         pathname = kmalloc(PATH_MAX, GFP_KERNEL);
8777         if (pathname == NULL) {
8778                 cgroup_event.path = path_enomem;
8779         } else {
8780                 /* just to be sure to have enough space for alignment */
8781                 cgroup_path(cgrp, pathname, PATH_MAX - sizeof(u64));
8782                 cgroup_event.path = pathname;
8783         }
8784
8785         /*
8786          * Since our buffer works in 8 byte units we need to align our string
8787          * size to a multiple of 8. However, we must guarantee the tail end is
8788          * zero'd out to avoid leaking random bits to userspace.
8789          */
8790         size = strlen(cgroup_event.path) + 1;
8791         while (!IS_ALIGNED(size, sizeof(u64)))
8792                 cgroup_event.path[size++] = '\0';
8793
8794         cgroup_event.event_id.header.size += size;
8795         cgroup_event.path_size = size;
8796
8797         perf_iterate_sb(perf_event_cgroup_output,
8798                         &cgroup_event,
8799                         NULL);
8800
8801         kfree(pathname);
8802 }
8803
8804 #endif
8805
8806 /*
8807  * mmap tracking
8808  */
8809
8810 struct perf_mmap_event {
8811         struct vm_area_struct   *vma;
8812
8813         const char              *file_name;
8814         int                     file_size;
8815         int                     maj, min;
8816         u64                     ino;
8817         u64                     ino_generation;
8818         u32                     prot, flags;
8819         u8                      build_id[BUILD_ID_SIZE_MAX];
8820         u32                     build_id_size;
8821
8822         struct {
8823                 struct perf_event_header        header;
8824
8825                 u32                             pid;
8826                 u32                             tid;
8827                 u64                             start;
8828                 u64                             len;
8829                 u64                             pgoff;
8830         } event_id;
8831 };
8832
8833 static int perf_event_mmap_match(struct perf_event *event,
8834                                  void *data)
8835 {
8836         struct perf_mmap_event *mmap_event = data;
8837         struct vm_area_struct *vma = mmap_event->vma;
8838         int executable = vma->vm_flags & VM_EXEC;
8839
8840         return (!executable && event->attr.mmap_data) ||
8841                (executable && (event->attr.mmap || event->attr.mmap2));
8842 }
8843
8844 static void perf_event_mmap_output(struct perf_event *event,
8845                                    void *data)
8846 {
8847         struct perf_mmap_event *mmap_event = data;
8848         struct perf_output_handle handle;
8849         struct perf_sample_data sample;
8850         int size = mmap_event->event_id.header.size;
8851         u32 type = mmap_event->event_id.header.type;
8852         bool use_build_id;
8853         int ret;
8854
8855         if (!perf_event_mmap_match(event, data))
8856                 return;
8857
8858         if (event->attr.mmap2) {
8859                 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
8860                 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
8861                 mmap_event->event_id.header.size += sizeof(mmap_event->min);
8862                 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
8863                 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
8864                 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
8865                 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
8866         }
8867
8868         perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
8869         ret = perf_output_begin(&handle, &sample, event,
8870                                 mmap_event->event_id.header.size);
8871         if (ret)
8872                 goto out;
8873
8874         mmap_event->event_id.pid = perf_event_pid(event, current);
8875         mmap_event->event_id.tid = perf_event_tid(event, current);
8876
8877         use_build_id = event->attr.build_id && mmap_event->build_id_size;
8878
8879         if (event->attr.mmap2 && use_build_id)
8880                 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_BUILD_ID;
8881
8882         perf_output_put(&handle, mmap_event->event_id);
8883
8884         if (event->attr.mmap2) {
8885                 if (use_build_id) {
8886                         u8 size[4] = { (u8) mmap_event->build_id_size, 0, 0, 0 };
8887
8888                         __output_copy(&handle, size, 4);
8889                         __output_copy(&handle, mmap_event->build_id, BUILD_ID_SIZE_MAX);
8890                 } else {
8891                         perf_output_put(&handle, mmap_event->maj);
8892                         perf_output_put(&handle, mmap_event->min);
8893                         perf_output_put(&handle, mmap_event->ino);
8894                         perf_output_put(&handle, mmap_event->ino_generation);
8895                 }
8896                 perf_output_put(&handle, mmap_event->prot);
8897                 perf_output_put(&handle, mmap_event->flags);
8898         }
8899
8900         __output_copy(&handle, mmap_event->file_name,
8901                                    mmap_event->file_size);
8902
8903         perf_event__output_id_sample(event, &handle, &sample);
8904
8905         perf_output_end(&handle);
8906 out:
8907         mmap_event->event_id.header.size = size;
8908         mmap_event->event_id.header.type = type;
8909 }
8910
8911 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
8912 {
8913         struct vm_area_struct *vma = mmap_event->vma;
8914         struct file *file = vma->vm_file;
8915         int maj = 0, min = 0;
8916         u64 ino = 0, gen = 0;
8917         u32 prot = 0, flags = 0;
8918         unsigned int size;
8919         char tmp[16];
8920         char *buf = NULL;
8921         char *name = NULL;
8922
8923         if (vma->vm_flags & VM_READ)
8924                 prot |= PROT_READ;
8925         if (vma->vm_flags & VM_WRITE)
8926                 prot |= PROT_WRITE;
8927         if (vma->vm_flags & VM_EXEC)
8928                 prot |= PROT_EXEC;
8929
8930         if (vma->vm_flags & VM_MAYSHARE)
8931                 flags = MAP_SHARED;
8932         else
8933                 flags = MAP_PRIVATE;
8934
8935         if (vma->vm_flags & VM_LOCKED)
8936                 flags |= MAP_LOCKED;
8937         if (is_vm_hugetlb_page(vma))
8938                 flags |= MAP_HUGETLB;
8939
8940         if (file) {
8941                 struct inode *inode;
8942                 dev_t dev;
8943
8944                 buf = kmalloc(PATH_MAX, GFP_KERNEL);
8945                 if (!buf) {
8946                         name = "//enomem";
8947                         goto cpy_name;
8948                 }
8949                 /*
8950                  * d_path() works from the end of the rb backwards, so we
8951                  * need to add enough zero bytes after the string to handle
8952                  * the 64bit alignment we do later.
8953                  */
8954                 name = file_path(file, buf, PATH_MAX - sizeof(u64));
8955                 if (IS_ERR(name)) {
8956                         name = "//toolong";
8957                         goto cpy_name;
8958                 }
8959                 inode = file_inode(vma->vm_file);
8960                 dev = inode->i_sb->s_dev;
8961                 ino = inode->i_ino;
8962                 gen = inode->i_generation;
8963                 maj = MAJOR(dev);
8964                 min = MINOR(dev);
8965
8966                 goto got_name;
8967         } else {
8968                 if (vma->vm_ops && vma->vm_ops->name)
8969                         name = (char *) vma->vm_ops->name(vma);
8970                 if (!name)
8971                         name = (char *)arch_vma_name(vma);
8972                 if (!name) {
8973                         if (vma_is_initial_heap(vma))
8974                                 name = "[heap]";
8975                         else if (vma_is_initial_stack(vma))
8976                                 name = "[stack]";
8977                         else
8978                                 name = "//anon";
8979                 }
8980         }
8981
8982 cpy_name:
8983         strscpy(tmp, name, sizeof(tmp));
8984         name = tmp;
8985 got_name:
8986         /*
8987          * Since our buffer works in 8 byte units we need to align our string
8988          * size to a multiple of 8. However, we must guarantee the tail end is
8989          * zero'd out to avoid leaking random bits to userspace.
8990          */
8991         size = strlen(name)+1;
8992         while (!IS_ALIGNED(size, sizeof(u64)))
8993                 name[size++] = '\0';
8994
8995         mmap_event->file_name = name;
8996         mmap_event->file_size = size;
8997         mmap_event->maj = maj;
8998         mmap_event->min = min;
8999         mmap_event->ino = ino;
9000         mmap_event->ino_generation = gen;
9001         mmap_event->prot = prot;
9002         mmap_event->flags = flags;
9003
9004         if (!(vma->vm_flags & VM_EXEC))
9005                 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
9006
9007         mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
9008
9009         if (atomic_read(&nr_build_id_events))
9010                 build_id_parse_nofault(vma, mmap_event->build_id, &mmap_event->build_id_size);
9011
9012         perf_iterate_sb(perf_event_mmap_output,
9013                        mmap_event,
9014                        NULL);
9015
9016         kfree(buf);
9017 }
9018
9019 /*
9020  * Check whether inode and address range match filter criteria.
9021  */
9022 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
9023                                      struct file *file, unsigned long offset,
9024                                      unsigned long size)
9025 {
9026         /* d_inode(NULL) won't be equal to any mapped user-space file */
9027         if (!filter->path.dentry)
9028                 return false;
9029
9030         if (d_inode(filter->path.dentry) != file_inode(file))
9031                 return false;
9032
9033         if (filter->offset > offset + size)
9034                 return false;
9035
9036         if (filter->offset + filter->size < offset)
9037                 return false;
9038
9039         return true;
9040 }
9041
9042 static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter,
9043                                         struct vm_area_struct *vma,
9044                                         struct perf_addr_filter_range *fr)
9045 {
9046         unsigned long vma_size = vma->vm_end - vma->vm_start;
9047         unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
9048         struct file *file = vma->vm_file;
9049
9050         if (!perf_addr_filter_match(filter, file, off, vma_size))
9051                 return false;
9052
9053         if (filter->offset < off) {
9054                 fr->start = vma->vm_start;
9055                 fr->size = min(vma_size, filter->size - (off - filter->offset));
9056         } else {
9057                 fr->start = vma->vm_start + filter->offset - off;
9058                 fr->size = min(vma->vm_end - fr->start, filter->size);
9059         }
9060
9061         return true;
9062 }
9063
9064 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
9065 {
9066         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
9067         struct vm_area_struct *vma = data;
9068         struct perf_addr_filter *filter;
9069         unsigned int restart = 0, count = 0;
9070         unsigned long flags;
9071
9072         if (!has_addr_filter(event))
9073                 return;
9074
9075         if (!vma->vm_file)
9076                 return;
9077
9078         raw_spin_lock_irqsave(&ifh->lock, flags);
9079         list_for_each_entry(filter, &ifh->list, entry) {
9080                 if (perf_addr_filter_vma_adjust(filter, vma,
9081                                                 &event->addr_filter_ranges[count]))
9082                         restart++;
9083
9084                 count++;
9085         }
9086
9087         if (restart)
9088                 event->addr_filters_gen++;
9089         raw_spin_unlock_irqrestore(&ifh->lock, flags);
9090
9091         if (restart)
9092                 perf_event_stop(event, 1);
9093 }
9094
9095 /*
9096  * Adjust all task's events' filters to the new vma
9097  */
9098 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
9099 {
9100         struct perf_event_context *ctx;
9101
9102         /*
9103          * Data tracing isn't supported yet and as such there is no need
9104          * to keep track of anything that isn't related to executable code:
9105          */
9106         if (!(vma->vm_flags & VM_EXEC))
9107                 return;
9108
9109         rcu_read_lock();
9110         ctx = rcu_dereference(current->perf_event_ctxp);
9111         if (ctx)
9112                 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
9113         rcu_read_unlock();
9114 }
9115
9116 void perf_event_mmap(struct vm_area_struct *vma)
9117 {
9118         struct perf_mmap_event mmap_event;
9119
9120         if (!atomic_read(&nr_mmap_events))
9121                 return;
9122
9123         mmap_event = (struct perf_mmap_event){
9124                 .vma    = vma,
9125                 /* .file_name */
9126                 /* .file_size */
9127                 .event_id  = {
9128                         .header = {
9129                                 .type = PERF_RECORD_MMAP,
9130                                 .misc = PERF_RECORD_MISC_USER,
9131                                 /* .size */
9132                         },
9133                         /* .pid */
9134                         /* .tid */
9135                         .start  = vma->vm_start,
9136                         .len    = vma->vm_end - vma->vm_start,
9137                         .pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
9138                 },
9139                 /* .maj (attr_mmap2 only) */
9140                 /* .min (attr_mmap2 only) */
9141                 /* .ino (attr_mmap2 only) */
9142                 /* .ino_generation (attr_mmap2 only) */
9143                 /* .prot (attr_mmap2 only) */
9144                 /* .flags (attr_mmap2 only) */
9145         };
9146
9147         perf_addr_filters_adjust(vma);
9148         perf_event_mmap_event(&mmap_event);
9149 }
9150
9151 void perf_event_aux_event(struct perf_event *event, unsigned long head,
9152                           unsigned long size, u64 flags)
9153 {
9154         struct perf_output_handle handle;
9155         struct perf_sample_data sample;
9156         struct perf_aux_event {
9157                 struct perf_event_header        header;
9158                 u64                             offset;
9159                 u64                             size;
9160                 u64                             flags;
9161         } rec = {
9162                 .header = {
9163                         .type = PERF_RECORD_AUX,
9164                         .misc = 0,
9165                         .size = sizeof(rec),
9166                 },
9167                 .offset         = head,
9168                 .size           = size,
9169                 .flags          = flags,
9170         };
9171         int ret;
9172
9173         perf_event_header__init_id(&rec.header, &sample, event);
9174         ret = perf_output_begin(&handle, &sample, event, rec.header.size);
9175
9176         if (ret)
9177                 return;
9178
9179         perf_output_put(&handle, rec);
9180         perf_event__output_id_sample(event, &handle, &sample);
9181
9182         perf_output_end(&handle);
9183 }
9184
9185 /*
9186  * Lost/dropped samples logging
9187  */
9188 void perf_log_lost_samples(struct perf_event *event, u64 lost)
9189 {
9190         struct perf_output_handle handle;
9191         struct perf_sample_data sample;
9192         int ret;
9193
9194         struct {
9195                 struct perf_event_header        header;
9196                 u64                             lost;
9197         } lost_samples_event = {
9198                 .header = {
9199                         .type = PERF_RECORD_LOST_SAMPLES,
9200                         .misc = 0,
9201                         .size = sizeof(lost_samples_event),
9202                 },
9203                 .lost           = lost,
9204         };
9205
9206         perf_event_header__init_id(&lost_samples_event.header, &sample, event);
9207
9208         ret = perf_output_begin(&handle, &sample, event,
9209                                 lost_samples_event.header.size);
9210         if (ret)
9211                 return;
9212
9213         perf_output_put(&handle, lost_samples_event);
9214         perf_event__output_id_sample(event, &handle, &sample);
9215         perf_output_end(&handle);
9216 }
9217
9218 /*
9219  * context_switch tracking
9220  */
9221
9222 struct perf_switch_event {
9223         struct task_struct      *task;
9224         struct task_struct      *next_prev;
9225
9226         struct {
9227                 struct perf_event_header        header;
9228                 u32                             next_prev_pid;
9229                 u32                             next_prev_tid;
9230         } event_id;
9231 };
9232
9233 static int perf_event_switch_match(struct perf_event *event)
9234 {
9235         return event->attr.context_switch;
9236 }
9237
9238 static void perf_event_switch_output(struct perf_event *event, void *data)
9239 {
9240         struct perf_switch_event *se = data;
9241         struct perf_output_handle handle;
9242         struct perf_sample_data sample;
9243         int ret;
9244
9245         if (!perf_event_switch_match(event))
9246                 return;
9247
9248         /* Only CPU-wide events are allowed to see next/prev pid/tid */
9249         if (event->ctx->task) {
9250                 se->event_id.header.type = PERF_RECORD_SWITCH;
9251                 se->event_id.header.size = sizeof(se->event_id.header);
9252         } else {
9253                 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
9254                 se->event_id.header.size = sizeof(se->event_id);
9255                 se->event_id.next_prev_pid =
9256                                         perf_event_pid(event, se->next_prev);
9257                 se->event_id.next_prev_tid =
9258                                         perf_event_tid(event, se->next_prev);
9259         }
9260
9261         perf_event_header__init_id(&se->event_id.header, &sample, event);
9262
9263         ret = perf_output_begin(&handle, &sample, event, se->event_id.header.size);
9264         if (ret)
9265                 return;
9266
9267         if (event->ctx->task)
9268                 perf_output_put(&handle, se->event_id.header);
9269         else
9270                 perf_output_put(&handle, se->event_id);
9271
9272         perf_event__output_id_sample(event, &handle, &sample);
9273
9274         perf_output_end(&handle);
9275 }
9276
9277 static void perf_event_switch(struct task_struct *task,
9278                               struct task_struct *next_prev, bool sched_in)
9279 {
9280         struct perf_switch_event switch_event;
9281
9282         /* N.B. caller checks nr_switch_events != 0 */
9283
9284         switch_event = (struct perf_switch_event){
9285                 .task           = task,
9286                 .next_prev      = next_prev,
9287                 .event_id       = {
9288                         .header = {
9289                                 /* .type */
9290                                 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
9291                                 /* .size */
9292                         },
9293                         /* .next_prev_pid */
9294                         /* .next_prev_tid */
9295                 },
9296         };
9297
9298         if (!sched_in && task_is_runnable(task)) {
9299                 switch_event.event_id.header.misc |=
9300                                 PERF_RECORD_MISC_SWITCH_OUT_PREEMPT;
9301         }
9302
9303         perf_iterate_sb(perf_event_switch_output, &switch_event, NULL);
9304 }
9305
9306 /*
9307  * IRQ throttle logging
9308  */
9309
9310 static void perf_log_throttle(struct perf_event *event, int enable)
9311 {
9312         struct perf_output_handle handle;
9313         struct perf_sample_data sample;
9314         int ret;
9315
9316         struct {
9317                 struct perf_event_header        header;
9318                 u64                             time;
9319                 u64                             id;
9320                 u64                             stream_id;
9321         } throttle_event = {
9322                 .header = {
9323                         .type = PERF_RECORD_THROTTLE,
9324                         .misc = 0,
9325                         .size = sizeof(throttle_event),
9326                 },
9327                 .time           = perf_event_clock(event),
9328                 .id             = primary_event_id(event),
9329                 .stream_id      = event->id,
9330         };
9331
9332         if (enable)
9333                 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
9334
9335         perf_event_header__init_id(&throttle_event.header, &sample, event);
9336
9337         ret = perf_output_begin(&handle, &sample, event,
9338                                 throttle_event.header.size);
9339         if (ret)
9340                 return;
9341
9342         perf_output_put(&handle, throttle_event);
9343         perf_event__output_id_sample(event, &handle, &sample);
9344         perf_output_end(&handle);
9345 }
9346
9347 /*
9348  * ksymbol register/unregister tracking
9349  */
9350
9351 struct perf_ksymbol_event {
9352         const char      *name;
9353         int             name_len;
9354         struct {
9355                 struct perf_event_header        header;
9356                 u64                             addr;
9357                 u32                             len;
9358                 u16                             ksym_type;
9359                 u16                             flags;
9360         } event_id;
9361 };
9362
9363 static int perf_event_ksymbol_match(struct perf_event *event)
9364 {
9365         return event->attr.ksymbol;
9366 }
9367
9368 static void perf_event_ksymbol_output(struct perf_event *event, void *data)
9369 {
9370         struct perf_ksymbol_event *ksymbol_event = data;
9371         struct perf_output_handle handle;
9372         struct perf_sample_data sample;
9373         int ret;
9374
9375         if (!perf_event_ksymbol_match(event))
9376                 return;
9377
9378         perf_event_header__init_id(&ksymbol_event->event_id.header,
9379                                    &sample, event);
9380         ret = perf_output_begin(&handle, &sample, event,
9381                                 ksymbol_event->event_id.header.size);
9382         if (ret)
9383                 return;
9384
9385         perf_output_put(&handle, ksymbol_event->event_id);
9386         __output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len);
9387         perf_event__output_id_sample(event, &handle, &sample);
9388
9389         perf_output_end(&handle);
9390 }
9391
9392 void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister,
9393                         const char *sym)
9394 {
9395         struct perf_ksymbol_event ksymbol_event;
9396         char name[KSYM_NAME_LEN];
9397         u16 flags = 0;
9398         int name_len;
9399
9400         if (!atomic_read(&nr_ksymbol_events))
9401                 return;
9402
9403         if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX ||
9404             ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN)
9405                 goto err;
9406
9407         strscpy(name, sym, KSYM_NAME_LEN);
9408         name_len = strlen(name) + 1;
9409         while (!IS_ALIGNED(name_len, sizeof(u64)))
9410                 name[name_len++] = '\0';
9411         BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64));
9412
9413         if (unregister)
9414                 flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER;
9415
9416         ksymbol_event = (struct perf_ksymbol_event){
9417                 .name = name,
9418                 .name_len = name_len,
9419                 .event_id = {
9420                         .header = {
9421                                 .type = PERF_RECORD_KSYMBOL,
9422                                 .size = sizeof(ksymbol_event.event_id) +
9423                                         name_len,
9424                         },
9425                         .addr = addr,
9426                         .len = len,
9427                         .ksym_type = ksym_type,
9428                         .flags = flags,
9429                 },
9430         };
9431
9432         perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL);
9433         return;
9434 err:
9435         WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type);
9436 }
9437
9438 /*
9439  * bpf program load/unload tracking
9440  */
9441
9442 struct perf_bpf_event {
9443         struct bpf_prog *prog;
9444         struct {
9445                 struct perf_event_header        header;
9446                 u16                             type;
9447                 u16                             flags;
9448                 u32                             id;
9449                 u8                              tag[BPF_TAG_SIZE];
9450         } event_id;
9451 };
9452
9453 static int perf_event_bpf_match(struct perf_event *event)
9454 {
9455         return event->attr.bpf_event;
9456 }
9457
9458 static void perf_event_bpf_output(struct perf_event *event, void *data)
9459 {
9460         struct perf_bpf_event *bpf_event = data;
9461         struct perf_output_handle handle;
9462         struct perf_sample_data sample;
9463         int ret;
9464
9465         if (!perf_event_bpf_match(event))
9466                 return;
9467
9468         perf_event_header__init_id(&bpf_event->event_id.header,
9469                                    &sample, event);
9470         ret = perf_output_begin(&handle, &sample, event,
9471                                 bpf_event->event_id.header.size);
9472         if (ret)
9473                 return;
9474
9475         perf_output_put(&handle, bpf_event->event_id);
9476         perf_event__output_id_sample(event, &handle, &sample);
9477
9478         perf_output_end(&handle);
9479 }
9480
9481 static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog,
9482                                          enum perf_bpf_event_type type)
9483 {
9484         bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD;
9485         int i;
9486
9487         perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF,
9488                            (u64)(unsigned long)prog->bpf_func,
9489                            prog->jited_len, unregister,
9490                            prog->aux->ksym.name);
9491
9492         for (i = 1; i < prog->aux->func_cnt; i++) {
9493                 struct bpf_prog *subprog = prog->aux->func[i];
9494
9495                 perf_event_ksymbol(
9496                         PERF_RECORD_KSYMBOL_TYPE_BPF,
9497                         (u64)(unsigned long)subprog->bpf_func,
9498                         subprog->jited_len, unregister,
9499                         subprog->aux->ksym.name);
9500         }
9501 }
9502
9503 void perf_event_bpf_event(struct bpf_prog *prog,
9504                           enum perf_bpf_event_type type,
9505                           u16 flags)
9506 {
9507         struct perf_bpf_event bpf_event;
9508
9509         switch (type) {
9510         case PERF_BPF_EVENT_PROG_LOAD:
9511         case PERF_BPF_EVENT_PROG_UNLOAD:
9512                 if (atomic_read(&nr_ksymbol_events))
9513                         perf_event_bpf_emit_ksymbols(prog, type);
9514                 break;
9515         default:
9516                 return;
9517         }
9518
9519         if (!atomic_read(&nr_bpf_events))
9520                 return;
9521
9522         bpf_event = (struct perf_bpf_event){
9523                 .prog = prog,
9524                 .event_id = {
9525                         .header = {
9526                                 .type = PERF_RECORD_BPF_EVENT,
9527                                 .size = sizeof(bpf_event.event_id),
9528                         },
9529                         .type = type,
9530                         .flags = flags,
9531                         .id = prog->aux->id,
9532                 },
9533         };
9534
9535         BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64));
9536
9537         memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE);
9538         perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL);
9539 }
9540
9541 struct perf_text_poke_event {
9542         const void              *old_bytes;
9543         const void              *new_bytes;
9544         size_t                  pad;
9545         u16                     old_len;
9546         u16                     new_len;
9547
9548         struct {
9549                 struct perf_event_header        header;
9550
9551                 u64                             addr;
9552         } event_id;
9553 };
9554
9555 static int perf_event_text_poke_match(struct perf_event *event)
9556 {
9557         return event->attr.text_poke;
9558 }
9559
9560 static void perf_event_text_poke_output(struct perf_event *event, void *data)
9561 {
9562         struct perf_text_poke_event *text_poke_event = data;
9563         struct perf_output_handle handle;
9564         struct perf_sample_data sample;
9565         u64 padding = 0;
9566         int ret;
9567
9568         if (!perf_event_text_poke_match(event))
9569                 return;
9570
9571         perf_event_header__init_id(&text_poke_event->event_id.header, &sample, event);
9572
9573         ret = perf_output_begin(&handle, &sample, event,
9574                                 text_poke_event->event_id.header.size);
9575         if (ret)
9576                 return;
9577
9578         perf_output_put(&handle, text_poke_event->event_id);
9579         perf_output_put(&handle, text_poke_event->old_len);
9580         perf_output_put(&handle, text_poke_event->new_len);
9581
9582         __output_copy(&handle, text_poke_event->old_bytes, text_poke_event->old_len);
9583         __output_copy(&handle, text_poke_event->new_bytes, text_poke_event->new_len);
9584
9585         if (text_poke_event->pad)
9586                 __output_copy(&handle, &padding, text_poke_event->pad);
9587
9588         perf_event__output_id_sample(event, &handle, &sample);
9589
9590         perf_output_end(&handle);
9591 }
9592
9593 void perf_event_text_poke(const void *addr, const void *old_bytes,
9594                           size_t old_len, const void *new_bytes, size_t new_len)
9595 {
9596         struct perf_text_poke_event text_poke_event;
9597         size_t tot, pad;
9598
9599         if (!atomic_read(&nr_text_poke_events))
9600                 return;
9601
9602         tot  = sizeof(text_poke_event.old_len) + old_len;
9603         tot += sizeof(text_poke_event.new_len) + new_len;
9604         pad  = ALIGN(tot, sizeof(u64)) - tot;
9605
9606         text_poke_event = (struct perf_text_poke_event){
9607                 .old_bytes    = old_bytes,
9608                 .new_bytes    = new_bytes,
9609                 .pad          = pad,
9610                 .old_len      = old_len,
9611                 .new_len      = new_len,
9612                 .event_id  = {
9613                         .header = {
9614                                 .type = PERF_RECORD_TEXT_POKE,
9615                                 .misc = PERF_RECORD_MISC_KERNEL,
9616                                 .size = sizeof(text_poke_event.event_id) + tot + pad,
9617                         },
9618                         .addr = (unsigned long)addr,
9619                 },
9620         };
9621
9622         perf_iterate_sb(perf_event_text_poke_output, &text_poke_event, NULL);
9623 }
9624
9625 void perf_event_itrace_started(struct perf_event *event)
9626 {
9627         event->attach_state |= PERF_ATTACH_ITRACE;
9628 }
9629
9630 static void perf_log_itrace_start(struct perf_event *event)
9631 {
9632         struct perf_output_handle handle;
9633         struct perf_sample_data sample;
9634         struct perf_aux_event {
9635                 struct perf_event_header        header;
9636                 u32                             pid;
9637                 u32                             tid;
9638         } rec;
9639         int ret;
9640
9641         if (event->parent)
9642                 event = event->parent;
9643
9644         if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
9645             event->attach_state & PERF_ATTACH_ITRACE)
9646                 return;
9647
9648         rec.header.type = PERF_RECORD_ITRACE_START;
9649         rec.header.misc = 0;
9650         rec.header.size = sizeof(rec);
9651         rec.pid = perf_event_pid(event, current);
9652         rec.tid = perf_event_tid(event, current);
9653
9654         perf_event_header__init_id(&rec.header, &sample, event);
9655         ret = perf_output_begin(&handle, &sample, event, rec.header.size);
9656
9657         if (ret)
9658                 return;
9659
9660         perf_output_put(&handle, rec);
9661         perf_event__output_id_sample(event, &handle, &sample);
9662
9663         perf_output_end(&handle);
9664 }
9665
9666 void perf_report_aux_output_id(struct perf_event *event, u64 hw_id)
9667 {
9668         struct perf_output_handle handle;
9669         struct perf_sample_data sample;
9670         struct perf_aux_event {
9671                 struct perf_event_header        header;
9672                 u64                             hw_id;
9673         } rec;
9674         int ret;
9675
9676         if (event->parent)
9677                 event = event->parent;
9678
9679         rec.header.type = PERF_RECORD_AUX_OUTPUT_HW_ID;
9680         rec.header.misc = 0;
9681         rec.header.size = sizeof(rec);
9682         rec.hw_id       = hw_id;
9683
9684         perf_event_header__init_id(&rec.header, &sample, event);
9685         ret = perf_output_begin(&handle, &sample, event, rec.header.size);
9686
9687         if (ret)
9688                 return;
9689
9690         perf_output_put(&handle, rec);
9691         perf_event__output_id_sample(event, &handle, &sample);
9692
9693         perf_output_end(&handle);
9694 }
9695 EXPORT_SYMBOL_GPL(perf_report_aux_output_id);
9696
9697 static int
9698 __perf_event_account_interrupt(struct perf_event *event, int throttle)
9699 {
9700         struct hw_perf_event *hwc = &event->hw;
9701         int ret = 0;
9702         u64 seq;
9703
9704         seq = __this_cpu_read(perf_throttled_seq);
9705         if (seq != hwc->interrupts_seq) {
9706                 hwc->interrupts_seq = seq;
9707                 hwc->interrupts = 1;
9708         } else {
9709                 hwc->interrupts++;
9710                 if (unlikely(throttle &&
9711                              hwc->interrupts > max_samples_per_tick)) {
9712                         __this_cpu_inc(perf_throttled_count);
9713                         tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
9714                         hwc->interrupts = MAX_INTERRUPTS;
9715                         perf_log_throttle(event, 0);
9716                         ret = 1;
9717                 }
9718         }
9719
9720         if (event->attr.freq) {
9721                 u64 now = perf_clock();
9722                 s64 delta = now - hwc->freq_time_stamp;
9723
9724                 hwc->freq_time_stamp = now;
9725
9726                 if (delta > 0 && delta < 2*TICK_NSEC)
9727                         perf_adjust_period(event, delta, hwc->last_period, true);
9728         }
9729
9730         return ret;
9731 }
9732
9733 int perf_event_account_interrupt(struct perf_event *event)
9734 {
9735         return __perf_event_account_interrupt(event, 1);
9736 }
9737
9738 static inline bool sample_is_allowed(struct perf_event *event, struct pt_regs *regs)
9739 {
9740         /*
9741          * Due to interrupt latency (AKA "skid"), we may enter the
9742          * kernel before taking an overflow, even if the PMU is only
9743          * counting user events.
9744          */
9745         if (event->attr.exclude_kernel && !user_mode(regs))
9746                 return false;
9747
9748         return true;
9749 }
9750
9751 #ifdef CONFIG_BPF_SYSCALL
9752 static int bpf_overflow_handler(struct perf_event *event,
9753                                 struct perf_sample_data *data,
9754                                 struct pt_regs *regs)
9755 {
9756         struct bpf_perf_event_data_kern ctx = {
9757                 .data = data,
9758                 .event = event,
9759         };
9760         struct bpf_prog *prog;
9761         int ret = 0;
9762
9763         ctx.regs = perf_arch_bpf_user_pt_regs(regs);
9764         if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
9765                 goto out;
9766         rcu_read_lock();
9767         prog = READ_ONCE(event->prog);
9768         if (prog) {
9769                 perf_prepare_sample(data, event, regs);
9770                 ret = bpf_prog_run(prog, &ctx);
9771         }
9772         rcu_read_unlock();
9773 out:
9774         __this_cpu_dec(bpf_prog_active);
9775
9776         return ret;
9777 }
9778
9779 static inline int perf_event_set_bpf_handler(struct perf_event *event,
9780                                              struct bpf_prog *prog,
9781                                              u64 bpf_cookie)
9782 {
9783         if (event->overflow_handler_context)
9784                 /* hw breakpoint or kernel counter */
9785                 return -EINVAL;
9786
9787         if (event->prog)
9788                 return -EEXIST;
9789
9790         if (prog->type != BPF_PROG_TYPE_PERF_EVENT)
9791                 return -EINVAL;
9792
9793         if (event->attr.precise_ip &&
9794             prog->call_get_stack &&
9795             (!(event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) ||
9796              event->attr.exclude_callchain_kernel ||
9797              event->attr.exclude_callchain_user)) {
9798                 /*
9799                  * On perf_event with precise_ip, calling bpf_get_stack()
9800                  * may trigger unwinder warnings and occasional crashes.
9801                  * bpf_get_[stack|stackid] works around this issue by using
9802                  * callchain attached to perf_sample_data. If the
9803                  * perf_event does not full (kernel and user) callchain
9804                  * attached to perf_sample_data, do not allow attaching BPF
9805                  * program that calls bpf_get_[stack|stackid].
9806                  */
9807                 return -EPROTO;
9808         }
9809
9810         event->prog = prog;
9811         event->bpf_cookie = bpf_cookie;
9812         return 0;
9813 }
9814
9815 static inline void perf_event_free_bpf_handler(struct perf_event *event)
9816 {
9817         struct bpf_prog *prog = event->prog;
9818
9819         if (!prog)
9820                 return;
9821
9822         event->prog = NULL;
9823         bpf_prog_put(prog);
9824 }
9825 #else
9826 static inline int bpf_overflow_handler(struct perf_event *event,
9827                                        struct perf_sample_data *data,
9828                                        struct pt_regs *regs)
9829 {
9830         return 1;
9831 }
9832
9833 static inline int perf_event_set_bpf_handler(struct perf_event *event,
9834                                              struct bpf_prog *prog,
9835                                              u64 bpf_cookie)
9836 {
9837         return -EOPNOTSUPP;
9838 }
9839
9840 static inline void perf_event_free_bpf_handler(struct perf_event *event)
9841 {
9842 }
9843 #endif
9844
9845 /*
9846  * Generic event overflow handling, sampling.
9847  */
9848
9849 static int __perf_event_overflow(struct perf_event *event,
9850                                  int throttle, struct perf_sample_data *data,
9851                                  struct pt_regs *regs)
9852 {
9853         int events = atomic_read(&event->event_limit);
9854         int ret = 0;
9855
9856         /*
9857          * Non-sampling counters might still use the PMI to fold short
9858          * hardware counters, ignore those.
9859          */
9860         if (unlikely(!is_sampling_event(event)))
9861                 return 0;
9862
9863         ret = __perf_event_account_interrupt(event, throttle);
9864
9865         if (event->attr.aux_pause)
9866                 perf_event_aux_pause(event->aux_event, true);
9867
9868         if (event->prog && event->prog->type == BPF_PROG_TYPE_PERF_EVENT &&
9869             !bpf_overflow_handler(event, data, regs))
9870                 goto out;
9871
9872         /*
9873          * XXX event_limit might not quite work as expected on inherited
9874          * events
9875          */
9876
9877         event->pending_kill = POLL_IN;
9878         if (events && atomic_dec_and_test(&event->event_limit)) {
9879                 ret = 1;
9880                 event->pending_kill = POLL_HUP;
9881                 perf_event_disable_inatomic(event);
9882         }
9883
9884         if (event->attr.sigtrap) {
9885                 /*
9886                  * The desired behaviour of sigtrap vs invalid samples is a bit
9887                  * tricky; on the one hand, one should not loose the SIGTRAP if
9888                  * it is the first event, on the other hand, we should also not
9889                  * trigger the WARN or override the data address.
9890                  */
9891                 bool valid_sample = sample_is_allowed(event, regs);
9892                 unsigned int pending_id = 1;
9893                 enum task_work_notify_mode notify_mode;
9894
9895                 if (regs)
9896                         pending_id = hash32_ptr((void *)instruction_pointer(regs)) ?: 1;
9897
9898                 notify_mode = in_nmi() ? TWA_NMI_CURRENT : TWA_RESUME;
9899
9900                 if (!event->pending_work &&
9901                     !task_work_add(current, &event->pending_task, notify_mode)) {
9902                         event->pending_work = pending_id;
9903                         local_inc(&event->ctx->nr_no_switch_fast);
9904
9905                         event->pending_addr = 0;
9906                         if (valid_sample && (data->sample_flags & PERF_SAMPLE_ADDR))
9907                                 event->pending_addr = data->addr;
9908
9909                 } else if (event->attr.exclude_kernel && valid_sample) {
9910                         /*
9911                          * Should not be able to return to user space without
9912                          * consuming pending_work; with exceptions:
9913                          *
9914                          *  1. Where !exclude_kernel, events can overflow again
9915                          *     in the kernel without returning to user space.
9916                          *
9917                          *  2. Events that can overflow again before the IRQ-
9918                          *     work without user space progress (e.g. hrtimer).
9919                          *     To approximate progress (with false negatives),
9920                          *     check 32-bit hash of the current IP.
9921                          */
9922                         WARN_ON_ONCE(event->pending_work != pending_id);
9923                 }
9924         }
9925
9926         READ_ONCE(event->overflow_handler)(event, data, regs);
9927
9928         if (*perf_event_fasync(event) && event->pending_kill) {
9929                 event->pending_wakeup = 1;
9930                 irq_work_queue(&event->pending_irq);
9931         }
9932 out:
9933         if (event->attr.aux_resume)
9934                 perf_event_aux_pause(event->aux_event, false);
9935
9936         return ret;
9937 }
9938
9939 int perf_event_overflow(struct perf_event *event,
9940                         struct perf_sample_data *data,
9941                         struct pt_regs *regs)
9942 {
9943         return __perf_event_overflow(event, 1, data, regs);
9944 }
9945
9946 /*
9947  * Generic software event infrastructure
9948  */
9949
9950 struct swevent_htable {
9951         struct swevent_hlist            *swevent_hlist;
9952         struct mutex                    hlist_mutex;
9953         int                             hlist_refcount;
9954 };
9955 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
9956
9957 /*
9958  * We directly increment event->count and keep a second value in
9959  * event->hw.period_left to count intervals. This period event
9960  * is kept in the range [-sample_period, 0] so that we can use the
9961  * sign as trigger.
9962  */
9963
9964 u64 perf_swevent_set_period(struct perf_event *event)
9965 {
9966         struct hw_perf_event *hwc = &event->hw;
9967         u64 period = hwc->last_period;
9968         u64 nr, offset;
9969         s64 old, val;
9970
9971         hwc->last_period = hwc->sample_period;
9972
9973         old = local64_read(&hwc->period_left);
9974         do {
9975                 val = old;
9976                 if (val < 0)
9977                         return 0;
9978
9979                 nr = div64_u64(period + val, period);
9980                 offset = nr * period;
9981                 val -= offset;
9982         } while (!local64_try_cmpxchg(&hwc->period_left, &old, val));
9983
9984         return nr;
9985 }
9986
9987 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
9988                                     struct perf_sample_data *data,
9989                                     struct pt_regs *regs)
9990 {
9991         struct hw_perf_event *hwc = &event->hw;
9992         int throttle = 0;
9993
9994         if (!overflow)
9995                 overflow = perf_swevent_set_period(event);
9996
9997         if (hwc->interrupts == MAX_INTERRUPTS)
9998                 return;
9999
10000         for (; overflow; overflow--) {
10001                 if (__perf_event_overflow(event, throttle,
10002                                             data, regs)) {
10003                         /*
10004                          * We inhibit the overflow from happening when
10005                          * hwc->interrupts == MAX_INTERRUPTS.
10006                          */
10007                         break;
10008                 }
10009                 throttle = 1;
10010         }
10011 }
10012
10013 static void perf_swevent_event(struct perf_event *event, u64 nr,
10014                                struct perf_sample_data *data,
10015                                struct pt_regs *regs)
10016 {
10017         struct hw_perf_event *hwc = &event->hw;
10018
10019         local64_add(nr, &event->count);
10020
10021         if (!regs)
10022                 return;
10023
10024         if (!is_sampling_event(event))
10025                 return;
10026
10027         if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
10028                 data->period = nr;
10029                 return perf_swevent_overflow(event, 1, data, regs);
10030         } else
10031                 data->period = event->hw.last_period;
10032
10033         if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
10034                 return perf_swevent_overflow(event, 1, data, regs);
10035
10036         if (local64_add_negative(nr, &hwc->period_left))
10037                 return;
10038
10039         perf_swevent_overflow(event, 0, data, regs);
10040 }
10041
10042 static int perf_exclude_event(struct perf_event *event,
10043                               struct pt_regs *regs)
10044 {
10045         if (event->hw.state & PERF_HES_STOPPED)
10046                 return 1;
10047
10048         if (regs) {
10049                 if (event->attr.exclude_user && user_mode(regs))
10050                         return 1;
10051
10052                 if (event->attr.exclude_kernel && !user_mode(regs))
10053                         return 1;
10054         }
10055
10056         return 0;
10057 }
10058
10059 static int perf_swevent_match(struct perf_event *event,
10060                                 enum perf_type_id type,
10061                                 u32 event_id,
10062                                 struct perf_sample_data *data,
10063                                 struct pt_regs *regs)
10064 {
10065         if (event->attr.type != type)
10066                 return 0;
10067
10068         if (event->attr.config != event_id)
10069                 return 0;
10070
10071         if (perf_exclude_event(event, regs))
10072                 return 0;
10073
10074         return 1;
10075 }
10076
10077 static inline u64 swevent_hash(u64 type, u32 event_id)
10078 {
10079         u64 val = event_id | (type << 32);
10080
10081         return hash_64(val, SWEVENT_HLIST_BITS);
10082 }
10083
10084 static inline struct hlist_head *
10085 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
10086 {
10087         u64 hash = swevent_hash(type, event_id);
10088
10089         return &hlist->heads[hash];
10090 }
10091
10092 /* For the read side: events when they trigger */
10093 static inline struct hlist_head *
10094 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
10095 {
10096         struct swevent_hlist *hlist;
10097
10098         hlist = rcu_dereference(swhash->swevent_hlist);
10099         if (!hlist)
10100                 return NULL;
10101
10102         return __find_swevent_head(hlist, type, event_id);
10103 }
10104
10105 /* For the event head insertion and removal in the hlist */
10106 static inline struct hlist_head *
10107 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
10108 {
10109         struct swevent_hlist *hlist;
10110         u32 event_id = event->attr.config;
10111         u64 type = event->attr.type;
10112
10113         /*
10114          * Event scheduling is always serialized against hlist allocation
10115          * and release. Which makes the protected version suitable here.
10116          * The context lock guarantees that.
10117          */
10118         hlist = rcu_dereference_protected(swhash->swevent_hlist,
10119                                           lockdep_is_held(&event->ctx->lock));
10120         if (!hlist)
10121                 return NULL;
10122
10123         return __find_swevent_head(hlist, type, event_id);
10124 }
10125
10126 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
10127                                     u64 nr,
10128                                     struct perf_sample_data *data,
10129                                     struct pt_regs *regs)
10130 {
10131         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
10132         struct perf_event *event;
10133         struct hlist_head *head;
10134
10135         rcu_read_lock();
10136         head = find_swevent_head_rcu(swhash, type, event_id);
10137         if (!head)
10138                 goto end;
10139
10140         hlist_for_each_entry_rcu(event, head, hlist_entry) {
10141                 if (perf_swevent_match(event, type, event_id, data, regs))
10142                         perf_swevent_event(event, nr, data, regs);
10143         }
10144 end:
10145         rcu_read_unlock();
10146 }
10147
10148 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
10149
10150 int perf_swevent_get_recursion_context(void)
10151 {
10152         return get_recursion_context(current->perf_recursion);
10153 }
10154 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
10155
10156 void perf_swevent_put_recursion_context(int rctx)
10157 {
10158         put_recursion_context(current->perf_recursion, rctx);
10159 }
10160
10161 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
10162 {
10163         struct perf_sample_data data;
10164
10165         if (WARN_ON_ONCE(!regs))
10166                 return;
10167
10168         perf_sample_data_init(&data, addr, 0);
10169         do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
10170 }
10171
10172 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
10173 {
10174         int rctx;
10175
10176         preempt_disable_notrace();
10177         rctx = perf_swevent_get_recursion_context();
10178         if (unlikely(rctx < 0))
10179                 goto fail;
10180
10181         ___perf_sw_event(event_id, nr, regs, addr);
10182
10183         perf_swevent_put_recursion_context(rctx);
10184 fail:
10185         preempt_enable_notrace();
10186 }
10187
10188 static void perf_swevent_read(struct perf_event *event)
10189 {
10190 }
10191
10192 static int perf_swevent_add(struct perf_event *event, int flags)
10193 {
10194         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
10195         struct hw_perf_event *hwc = &event->hw;
10196         struct hlist_head *head;
10197
10198         if (is_sampling_event(event)) {
10199                 hwc->last_period = hwc->sample_period;
10200                 perf_swevent_set_period(event);
10201         }
10202
10203         hwc->state = !(flags & PERF_EF_START);
10204
10205         head = find_swevent_head(swhash, event);
10206         if (WARN_ON_ONCE(!head))
10207                 return -EINVAL;
10208
10209         hlist_add_head_rcu(&event->hlist_entry, head);
10210         perf_event_update_userpage(event);
10211
10212         return 0;
10213 }
10214
10215 static void perf_swevent_del(struct perf_event *event, int flags)
10216 {
10217         hlist_del_rcu(&event->hlist_entry);
10218 }
10219
10220 static void perf_swevent_start(struct perf_event *event, int flags)
10221 {
10222         event->hw.state = 0;
10223 }
10224
10225 static void perf_swevent_stop(struct perf_event *event, int flags)
10226 {
10227         event->hw.state = PERF_HES_STOPPED;
10228 }
10229
10230 /* Deref the hlist from the update side */
10231 static inline struct swevent_hlist *
10232 swevent_hlist_deref(struct swevent_htable *swhash)
10233 {
10234         return rcu_dereference_protected(swhash->swevent_hlist,
10235                                          lockdep_is_held(&swhash->hlist_mutex));
10236 }
10237
10238 static void swevent_hlist_release(struct swevent_htable *swhash)
10239 {
10240         struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
10241
10242         if (!hlist)
10243                 return;
10244
10245         RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
10246         kfree_rcu(hlist, rcu_head);
10247 }
10248
10249 static void swevent_hlist_put_cpu(int cpu)
10250 {
10251         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
10252
10253         mutex_lock(&swhash->hlist_mutex);
10254
10255         if (!--swhash->hlist_refcount)
10256                 swevent_hlist_release(swhash);
10257
10258         mutex_unlock(&swhash->hlist_mutex);
10259 }
10260
10261 static void swevent_hlist_put(void)
10262 {
10263         int cpu;
10264
10265         for_each_possible_cpu(cpu)
10266                 swevent_hlist_put_cpu(cpu);
10267 }
10268
10269 static int swevent_hlist_get_cpu(int cpu)
10270 {
10271         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
10272         int err = 0;
10273
10274         mutex_lock(&swhash->hlist_mutex);
10275         if (!swevent_hlist_deref(swhash) &&
10276             cpumask_test_cpu(cpu, perf_online_mask)) {
10277                 struct swevent_hlist *hlist;
10278
10279                 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
10280                 if (!hlist) {
10281                         err = -ENOMEM;
10282                         goto exit;
10283                 }
10284                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
10285         }
10286         swhash->hlist_refcount++;
10287 exit:
10288         mutex_unlock(&swhash->hlist_mutex);
10289
10290         return err;
10291 }
10292
10293 static int swevent_hlist_get(void)
10294 {
10295         int err, cpu, failed_cpu;
10296
10297         mutex_lock(&pmus_lock);
10298         for_each_possible_cpu(cpu) {
10299                 err = swevent_hlist_get_cpu(cpu);
10300                 if (err) {
10301                         failed_cpu = cpu;
10302                         goto fail;
10303                 }
10304         }
10305         mutex_unlock(&pmus_lock);
10306         return 0;
10307 fail:
10308         for_each_possible_cpu(cpu) {
10309                 if (cpu == failed_cpu)
10310                         break;
10311                 swevent_hlist_put_cpu(cpu);
10312         }
10313         mutex_unlock(&pmus_lock);
10314         return err;
10315 }
10316
10317 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
10318
10319 static void sw_perf_event_destroy(struct perf_event *event)
10320 {
10321         u64 event_id = event->attr.config;
10322
10323         WARN_ON(event->parent);
10324
10325         static_key_slow_dec(&perf_swevent_enabled[event_id]);
10326         swevent_hlist_put();
10327 }
10328
10329 static struct pmu perf_cpu_clock; /* fwd declaration */
10330 static struct pmu perf_task_clock;
10331
10332 static int perf_swevent_init(struct perf_event *event)
10333 {
10334         u64 event_id = event->attr.config;
10335
10336         if (event->attr.type != PERF_TYPE_SOFTWARE)
10337                 return -ENOENT;
10338
10339         /*
10340          * no branch sampling for software events
10341          */
10342         if (has_branch_stack(event))
10343                 return -EOPNOTSUPP;
10344
10345         switch (event_id) {
10346         case PERF_COUNT_SW_CPU_CLOCK:
10347                 event->attr.type = perf_cpu_clock.type;
10348                 return -ENOENT;
10349         case PERF_COUNT_SW_TASK_CLOCK:
10350                 event->attr.type = perf_task_clock.type;
10351                 return -ENOENT;
10352
10353         default:
10354                 break;
10355         }
10356
10357         if (event_id >= PERF_COUNT_SW_MAX)
10358                 return -ENOENT;
10359
10360         if (!event->parent) {
10361                 int err;
10362
10363                 err = swevent_hlist_get();
10364                 if (err)
10365                         return err;
10366
10367                 static_key_slow_inc(&perf_swevent_enabled[event_id]);
10368                 event->destroy = sw_perf_event_destroy;
10369         }
10370
10371         return 0;
10372 }
10373
10374 static struct pmu perf_swevent = {
10375         .task_ctx_nr    = perf_sw_context,
10376
10377         .capabilities   = PERF_PMU_CAP_NO_NMI,
10378
10379         .event_init     = perf_swevent_init,
10380         .add            = perf_swevent_add,
10381         .del            = perf_swevent_del,
10382         .start          = perf_swevent_start,
10383         .stop           = perf_swevent_stop,
10384         .read           = perf_swevent_read,
10385 };
10386
10387 #ifdef CONFIG_EVENT_TRACING
10388
10389 static void tp_perf_event_destroy(struct perf_event *event)
10390 {
10391         perf_trace_destroy(event);
10392 }
10393
10394 static int perf_tp_event_init(struct perf_event *event)
10395 {
10396         int err;
10397
10398         if (event->attr.type != PERF_TYPE_TRACEPOINT)
10399                 return -ENOENT;
10400
10401         /*
10402          * no branch sampling for tracepoint events
10403          */
10404         if (has_branch_stack(event))
10405                 return -EOPNOTSUPP;
10406
10407         err = perf_trace_init(event);
10408         if (err)
10409                 return err;
10410
10411         event->destroy = tp_perf_event_destroy;
10412
10413         return 0;
10414 }
10415
10416 static struct pmu perf_tracepoint = {
10417         .task_ctx_nr    = perf_sw_context,
10418
10419         .event_init     = perf_tp_event_init,
10420         .add            = perf_trace_add,
10421         .del            = perf_trace_del,
10422         .start          = perf_swevent_start,
10423         .stop           = perf_swevent_stop,
10424         .read           = perf_swevent_read,
10425 };
10426
10427 static int perf_tp_filter_match(struct perf_event *event,
10428                                 struct perf_sample_data *data)
10429 {
10430         void *record = data->raw->frag.data;
10431
10432         /* only top level events have filters set */
10433         if (event->parent)
10434                 event = event->parent;
10435
10436         if (likely(!event->filter) || filter_match_preds(event->filter, record))
10437                 return 1;
10438         return 0;
10439 }
10440
10441 static int perf_tp_event_match(struct perf_event *event,
10442                                 struct perf_sample_data *data,
10443                                 struct pt_regs *regs)
10444 {
10445         if (event->hw.state & PERF_HES_STOPPED)
10446                 return 0;
10447         /*
10448          * If exclude_kernel, only trace user-space tracepoints (uprobes)
10449          */
10450         if (event->attr.exclude_kernel && !user_mode(regs))
10451                 return 0;
10452
10453         if (!perf_tp_filter_match(event, data))
10454                 return 0;
10455
10456         return 1;
10457 }
10458
10459 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
10460                                struct trace_event_call *call, u64 count,
10461                                struct pt_regs *regs, struct hlist_head *head,
10462                                struct task_struct *task)
10463 {
10464         if (bpf_prog_array_valid(call)) {
10465                 *(struct pt_regs **)raw_data = regs;
10466                 if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
10467                         perf_swevent_put_recursion_context(rctx);
10468                         return;
10469                 }
10470         }
10471         perf_tp_event(call->event.type, count, raw_data, size, regs, head,
10472                       rctx, task);
10473 }
10474 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
10475
10476 static void __perf_tp_event_target_task(u64 count, void *record,
10477                                         struct pt_regs *regs,
10478                                         struct perf_sample_data *data,
10479                                         struct perf_event *event)
10480 {
10481         struct trace_entry *entry = record;
10482
10483         if (event->attr.config != entry->type)
10484                 return;
10485         /* Cannot deliver synchronous signal to other task. */
10486         if (event->attr.sigtrap)
10487                 return;
10488         if (perf_tp_event_match(event, data, regs))
10489                 perf_swevent_event(event, count, data, regs);
10490 }
10491
10492 static void perf_tp_event_target_task(u64 count, void *record,
10493                                       struct pt_regs *regs,
10494                                       struct perf_sample_data *data,
10495                                       struct perf_event_context *ctx)
10496 {
10497         unsigned int cpu = smp_processor_id();
10498         struct pmu *pmu = &perf_tracepoint;
10499         struct perf_event *event, *sibling;
10500
10501         perf_event_groups_for_cpu_pmu(event, &ctx->pinned_groups, cpu, pmu) {
10502                 __perf_tp_event_target_task(count, record, regs, data, event);
10503                 for_each_sibling_event(sibling, event)
10504                         __perf_tp_event_target_task(count, record, regs, data, sibling);
10505         }
10506
10507         perf_event_groups_for_cpu_pmu(event, &ctx->flexible_groups, cpu, pmu) {
10508                 __perf_tp_event_target_task(count, record, regs, data, event);
10509                 for_each_sibling_event(sibling, event)
10510                         __perf_tp_event_target_task(count, record, regs, data, sibling);
10511         }
10512 }
10513
10514 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
10515                    struct pt_regs *regs, struct hlist_head *head, int rctx,
10516                    struct task_struct *task)
10517 {
10518         struct perf_sample_data data;
10519         struct perf_event *event;
10520
10521         struct perf_raw_record raw = {
10522                 .frag = {
10523                         .size = entry_size,
10524                         .data = record,
10525                 },
10526         };
10527
10528         perf_sample_data_init(&data, 0, 0);
10529         perf_sample_save_raw_data(&data, &raw);
10530
10531         perf_trace_buf_update(record, event_type);
10532
10533         hlist_for_each_entry_rcu(event, head, hlist_entry) {
10534                 if (perf_tp_event_match(event, &data, regs)) {
10535                         perf_swevent_event(event, count, &data, regs);
10536
10537                         /*
10538                          * Here use the same on-stack perf_sample_data,
10539                          * some members in data are event-specific and
10540                          * need to be re-computed for different sweveents.
10541                          * Re-initialize data->sample_flags safely to avoid
10542                          * the problem that next event skips preparing data
10543                          * because data->sample_flags is set.
10544                          */
10545                         perf_sample_data_init(&data, 0, 0);
10546                         perf_sample_save_raw_data(&data, &raw);
10547                 }
10548         }
10549
10550         /*
10551          * If we got specified a target task, also iterate its context and
10552          * deliver this event there too.
10553          */
10554         if (task && task != current) {
10555                 struct perf_event_context *ctx;
10556
10557                 rcu_read_lock();
10558                 ctx = rcu_dereference(task->perf_event_ctxp);
10559                 if (!ctx)
10560                         goto unlock;
10561
10562                 raw_spin_lock(&ctx->lock);
10563                 perf_tp_event_target_task(count, record, regs, &data, ctx);
10564                 raw_spin_unlock(&ctx->lock);
10565 unlock:
10566                 rcu_read_unlock();
10567         }
10568
10569         perf_swevent_put_recursion_context(rctx);
10570 }
10571 EXPORT_SYMBOL_GPL(perf_tp_event);
10572
10573 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS)
10574 /*
10575  * Flags in config, used by dynamic PMU kprobe and uprobe
10576  * The flags should match following PMU_FORMAT_ATTR().
10577  *
10578  * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe
10579  *                               if not set, create kprobe/uprobe
10580  *
10581  * The following values specify a reference counter (or semaphore in the
10582  * terminology of tools like dtrace, systemtap, etc.) Userspace Statically
10583  * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset.
10584  *
10585  * PERF_UPROBE_REF_CTR_OFFSET_BITS      # of bits in config as th offset
10586  * PERF_UPROBE_REF_CTR_OFFSET_SHIFT     # of bits to shift left
10587  */
10588 enum perf_probe_config {
10589         PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0,  /* [k,u]retprobe */
10590         PERF_UPROBE_REF_CTR_OFFSET_BITS = 32,
10591         PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS,
10592 };
10593
10594 PMU_FORMAT_ATTR(retprobe, "config:0");
10595 #endif
10596
10597 #ifdef CONFIG_KPROBE_EVENTS
10598 static struct attribute *kprobe_attrs[] = {
10599         &format_attr_retprobe.attr,
10600         NULL,
10601 };
10602
10603 static struct attribute_group kprobe_format_group = {
10604         .name = "format",
10605         .attrs = kprobe_attrs,
10606 };
10607
10608 static const struct attribute_group *kprobe_attr_groups[] = {
10609         &kprobe_format_group,
10610         NULL,
10611 };
10612
10613 static int perf_kprobe_event_init(struct perf_event *event);
10614 static struct pmu perf_kprobe = {
10615         .task_ctx_nr    = perf_sw_context,
10616         .event_init     = perf_kprobe_event_init,
10617         .add            = perf_trace_add,
10618         .del            = perf_trace_del,
10619         .start          = perf_swevent_start,
10620         .stop           = perf_swevent_stop,
10621         .read           = perf_swevent_read,
10622         .attr_groups    = kprobe_attr_groups,
10623 };
10624
10625 static int perf_kprobe_event_init(struct perf_event *event)
10626 {
10627         int err;
10628         bool is_retprobe;
10629
10630         if (event->attr.type != perf_kprobe.type)
10631                 return -ENOENT;
10632
10633         if (!perfmon_capable())
10634                 return -EACCES;
10635
10636         /*
10637          * no branch sampling for probe events
10638          */
10639         if (has_branch_stack(event))
10640                 return -EOPNOTSUPP;
10641
10642         is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
10643         err = perf_kprobe_init(event, is_retprobe);
10644         if (err)
10645                 return err;
10646
10647         event->destroy = perf_kprobe_destroy;
10648
10649         return 0;
10650 }
10651 #endif /* CONFIG_KPROBE_EVENTS */
10652
10653 #ifdef CONFIG_UPROBE_EVENTS
10654 PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63");
10655
10656 static struct attribute *uprobe_attrs[] = {
10657         &format_attr_retprobe.attr,
10658         &format_attr_ref_ctr_offset.attr,
10659         NULL,
10660 };
10661
10662 static struct attribute_group uprobe_format_group = {
10663         .name = "format",
10664         .attrs = uprobe_attrs,
10665 };
10666
10667 static const struct attribute_group *uprobe_attr_groups[] = {
10668         &uprobe_format_group,
10669         NULL,
10670 };
10671
10672 static int perf_uprobe_event_init(struct perf_event *event);
10673 static struct pmu perf_uprobe = {
10674         .task_ctx_nr    = perf_sw_context,
10675         .event_init     = perf_uprobe_event_init,
10676         .add            = perf_trace_add,
10677         .del            = perf_trace_del,
10678         .start          = perf_swevent_start,
10679         .stop           = perf_swevent_stop,
10680         .read           = perf_swevent_read,
10681         .attr_groups    = uprobe_attr_groups,
10682 };
10683
10684 static int perf_uprobe_event_init(struct perf_event *event)
10685 {
10686         int err;
10687         unsigned long ref_ctr_offset;
10688         bool is_retprobe;
10689
10690         if (event->attr.type != perf_uprobe.type)
10691                 return -ENOENT;
10692
10693         if (!perfmon_capable())
10694                 return -EACCES;
10695
10696         /*
10697          * no branch sampling for probe events
10698          */
10699         if (has_branch_stack(event))
10700                 return -EOPNOTSUPP;
10701
10702         is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
10703         ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
10704         err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe);
10705         if (err)
10706                 return err;
10707
10708         event->destroy = perf_uprobe_destroy;
10709
10710         return 0;
10711 }
10712 #endif /* CONFIG_UPROBE_EVENTS */
10713
10714 static inline void perf_tp_register(void)
10715 {
10716         perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
10717 #ifdef CONFIG_KPROBE_EVENTS
10718         perf_pmu_register(&perf_kprobe, "kprobe", -1);
10719 #endif
10720 #ifdef CONFIG_UPROBE_EVENTS
10721         perf_pmu_register(&perf_uprobe, "uprobe", -1);
10722 #endif
10723 }
10724
10725 static void perf_event_free_filter(struct perf_event *event)
10726 {
10727         ftrace_profile_free_filter(event);
10728 }
10729
10730 /*
10731  * returns true if the event is a tracepoint, or a kprobe/upprobe created
10732  * with perf_event_open()
10733  */
10734 static inline bool perf_event_is_tracing(struct perf_event *event)
10735 {
10736         if (event->pmu == &perf_tracepoint)
10737                 return true;
10738 #ifdef CONFIG_KPROBE_EVENTS
10739         if (event->pmu == &perf_kprobe)
10740                 return true;
10741 #endif
10742 #ifdef CONFIG_UPROBE_EVENTS
10743         if (event->pmu == &perf_uprobe)
10744                 return true;
10745 #endif
10746         return false;
10747 }
10748
10749 int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog,
10750                             u64 bpf_cookie)
10751 {
10752         bool is_kprobe, is_uprobe, is_tracepoint, is_syscall_tp;
10753
10754         if (!perf_event_is_tracing(event))
10755                 return perf_event_set_bpf_handler(event, prog, bpf_cookie);
10756
10757         is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_KPROBE;
10758         is_uprobe = event->tp_event->flags & TRACE_EVENT_FL_UPROBE;
10759         is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
10760         is_syscall_tp = is_syscall_trace_event(event->tp_event);
10761         if (!is_kprobe && !is_uprobe && !is_tracepoint && !is_syscall_tp)
10762                 /* bpf programs can only be attached to u/kprobe or tracepoint */
10763                 return -EINVAL;
10764
10765         if (((is_kprobe || is_uprobe) && prog->type != BPF_PROG_TYPE_KPROBE) ||
10766             (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
10767             (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT))
10768                 return -EINVAL;
10769
10770         if (prog->type == BPF_PROG_TYPE_KPROBE && prog->sleepable && !is_uprobe)
10771                 /* only uprobe programs are allowed to be sleepable */
10772                 return -EINVAL;
10773
10774         /* Kprobe override only works for kprobes, not uprobes. */
10775         if (prog->kprobe_override && !is_kprobe)
10776                 return -EINVAL;
10777
10778         if (is_tracepoint || is_syscall_tp) {
10779                 int off = trace_event_get_offsets(event->tp_event);
10780
10781                 if (prog->aux->max_ctx_offset > off)
10782                         return -EACCES;
10783         }
10784
10785         return perf_event_attach_bpf_prog(event, prog, bpf_cookie);
10786 }
10787
10788 void perf_event_free_bpf_prog(struct perf_event *event)
10789 {
10790         if (!perf_event_is_tracing(event)) {
10791                 perf_event_free_bpf_handler(event);
10792                 return;
10793         }
10794         perf_event_detach_bpf_prog(event);
10795 }
10796
10797 #else
10798
10799 static inline void perf_tp_register(void)
10800 {
10801 }
10802
10803 static void perf_event_free_filter(struct perf_event *event)
10804 {
10805 }
10806
10807 int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog,
10808                             u64 bpf_cookie)
10809 {
10810         return -ENOENT;
10811 }
10812
10813 void perf_event_free_bpf_prog(struct perf_event *event)
10814 {
10815 }
10816 #endif /* CONFIG_EVENT_TRACING */
10817
10818 #ifdef CONFIG_HAVE_HW_BREAKPOINT
10819 void perf_bp_event(struct perf_event *bp, void *data)
10820 {
10821         struct perf_sample_data sample;
10822         struct pt_regs *regs = data;
10823
10824         perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
10825
10826         if (!bp->hw.state && !perf_exclude_event(bp, regs))
10827                 perf_swevent_event(bp, 1, &sample, regs);
10828 }
10829 #endif
10830
10831 /*
10832  * Allocate a new address filter
10833  */
10834 static struct perf_addr_filter *
10835 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
10836 {
10837         int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
10838         struct perf_addr_filter *filter;
10839
10840         filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
10841         if (!filter)
10842                 return NULL;
10843
10844         INIT_LIST_HEAD(&filter->entry);
10845         list_add_tail(&filter->entry, filters);
10846
10847         return filter;
10848 }
10849
10850 static void free_filters_list(struct list_head *filters)
10851 {
10852         struct perf_addr_filter *filter, *iter;
10853
10854         list_for_each_entry_safe(filter, iter, filters, entry) {
10855                 path_put(&filter->path);
10856                 list_del(&filter->entry);
10857                 kfree(filter);
10858         }
10859 }
10860
10861 /*
10862  * Free existing address filters and optionally install new ones
10863  */
10864 static void perf_addr_filters_splice(struct perf_event *event,
10865                                      struct list_head *head)
10866 {
10867         unsigned long flags;
10868         LIST_HEAD(list);
10869
10870         if (!has_addr_filter(event))
10871                 return;
10872
10873         /* don't bother with children, they don't have their own filters */
10874         if (event->parent)
10875                 return;
10876
10877         raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
10878
10879         list_splice_init(&event->addr_filters.list, &list);
10880         if (head)
10881                 list_splice(head, &event->addr_filters.list);
10882
10883         raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
10884
10885         free_filters_list(&list);
10886 }
10887
10888 /*
10889  * Scan through mm's vmas and see if one of them matches the
10890  * @filter; if so, adjust filter's address range.
10891  * Called with mm::mmap_lock down for reading.
10892  */
10893 static void perf_addr_filter_apply(struct perf_addr_filter *filter,
10894                                    struct mm_struct *mm,
10895                                    struct perf_addr_filter_range *fr)
10896 {
10897         struct vm_area_struct *vma;
10898         VMA_ITERATOR(vmi, mm, 0);
10899
10900         for_each_vma(vmi, vma) {
10901                 if (!vma->vm_file)
10902                         continue;
10903
10904                 if (perf_addr_filter_vma_adjust(filter, vma, fr))
10905                         return;
10906         }
10907 }
10908
10909 /*
10910  * Update event's address range filters based on the
10911  * task's existing mappings, if any.
10912  */
10913 static void perf_event_addr_filters_apply(struct perf_event *event)
10914 {
10915         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
10916         struct task_struct *task = READ_ONCE(event->ctx->task);
10917         struct perf_addr_filter *filter;
10918         struct mm_struct *mm = NULL;
10919         unsigned int count = 0;
10920         unsigned long flags;
10921
10922         /*
10923          * We may observe TASK_TOMBSTONE, which means that the event tear-down
10924          * will stop on the parent's child_mutex that our caller is also holding
10925          */
10926         if (task == TASK_TOMBSTONE)
10927                 return;
10928
10929         if (ifh->nr_file_filters) {
10930                 mm = get_task_mm(task);
10931                 if (!mm)
10932                         goto restart;
10933
10934                 mmap_read_lock(mm);
10935         }
10936
10937         raw_spin_lock_irqsave(&ifh->lock, flags);
10938         list_for_each_entry(filter, &ifh->list, entry) {
10939                 if (filter->path.dentry) {
10940                         /*
10941                          * Adjust base offset if the filter is associated to a
10942                          * binary that needs to be mapped:
10943                          */
10944                         event->addr_filter_ranges[count].start = 0;
10945                         event->addr_filter_ranges[count].size = 0;
10946
10947                         perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]);
10948                 } else {
10949                         event->addr_filter_ranges[count].start = filter->offset;
10950                         event->addr_filter_ranges[count].size  = filter->size;
10951                 }
10952
10953                 count++;
10954         }
10955
10956         event->addr_filters_gen++;
10957         raw_spin_unlock_irqrestore(&ifh->lock, flags);
10958
10959         if (ifh->nr_file_filters) {
10960                 mmap_read_unlock(mm);
10961
10962                 mmput(mm);
10963         }
10964
10965 restart:
10966         perf_event_stop(event, 1);
10967 }
10968
10969 /*
10970  * Address range filtering: limiting the data to certain
10971  * instruction address ranges. Filters are ioctl()ed to us from
10972  * userspace as ascii strings.
10973  *
10974  * Filter string format:
10975  *
10976  * ACTION RANGE_SPEC
10977  * where ACTION is one of the
10978  *  * "filter": limit the trace to this region
10979  *  * "start": start tracing from this address
10980  *  * "stop": stop tracing at this address/region;
10981  * RANGE_SPEC is
10982  *  * for kernel addresses: <start address>[/<size>]
10983  *  * for object files:     <start address>[/<size>]@</path/to/object/file>
10984  *
10985  * if <size> is not specified or is zero, the range is treated as a single
10986  * address; not valid for ACTION=="filter".
10987  */
10988 enum {
10989         IF_ACT_NONE = -1,
10990         IF_ACT_FILTER,
10991         IF_ACT_START,
10992         IF_ACT_STOP,
10993         IF_SRC_FILE,
10994         IF_SRC_KERNEL,
10995         IF_SRC_FILEADDR,
10996         IF_SRC_KERNELADDR,
10997 };
10998
10999 enum {
11000         IF_STATE_ACTION = 0,
11001         IF_STATE_SOURCE,
11002         IF_STATE_END,
11003 };
11004
11005 static const match_table_t if_tokens = {
11006         { IF_ACT_FILTER,        "filter" },
11007         { IF_ACT_START,         "start" },
11008         { IF_ACT_STOP,          "stop" },
11009         { IF_SRC_FILE,          "%u/%u@%s" },
11010         { IF_SRC_KERNEL,        "%u/%u" },
11011         { IF_SRC_FILEADDR,      "%u@%s" },
11012         { IF_SRC_KERNELADDR,    "%u" },
11013         { IF_ACT_NONE,          NULL },
11014 };
11015
11016 /*
11017  * Address filter string parser
11018  */
11019 static int
11020 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
11021                              struct list_head *filters)
11022 {
11023         struct perf_addr_filter *filter = NULL;
11024         char *start, *orig, *filename = NULL;
11025         substring_t args[MAX_OPT_ARGS];
11026         int state = IF_STATE_ACTION, token;
11027         unsigned int kernel = 0;
11028         int ret = -EINVAL;
11029
11030         orig = fstr = kstrdup(fstr, GFP_KERNEL);
11031         if (!fstr)
11032                 return -ENOMEM;
11033
11034         while ((start = strsep(&fstr, " ,\n")) != NULL) {
11035                 static const enum perf_addr_filter_action_t actions[] = {
11036                         [IF_ACT_FILTER] = PERF_ADDR_FILTER_ACTION_FILTER,
11037                         [IF_ACT_START]  = PERF_ADDR_FILTER_ACTION_START,
11038                         [IF_ACT_STOP]   = PERF_ADDR_FILTER_ACTION_STOP,
11039                 };
11040                 ret = -EINVAL;
11041
11042                 if (!*start)
11043                         continue;
11044
11045                 /* filter definition begins */
11046                 if (state == IF_STATE_ACTION) {
11047                         filter = perf_addr_filter_new(event, filters);
11048                         if (!filter)
11049                                 goto fail;
11050                 }
11051
11052                 token = match_token(start, if_tokens, args);
11053                 switch (token) {
11054                 case IF_ACT_FILTER:
11055                 case IF_ACT_START:
11056                 case IF_ACT_STOP:
11057                         if (state != IF_STATE_ACTION)
11058                                 goto fail;
11059
11060                         filter->action = actions[token];
11061                         state = IF_STATE_SOURCE;
11062                         break;
11063
11064                 case IF_SRC_KERNELADDR:
11065                 case IF_SRC_KERNEL:
11066                         kernel = 1;
11067                         fallthrough;
11068
11069                 case IF_SRC_FILEADDR:
11070                 case IF_SRC_FILE:
11071                         if (state != IF_STATE_SOURCE)
11072                                 goto fail;
11073
11074                         *args[0].to = 0;
11075                         ret = kstrtoul(args[0].from, 0, &filter->offset);
11076                         if (ret)
11077                                 goto fail;
11078
11079                         if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) {
11080                                 *args[1].to = 0;
11081                                 ret = kstrtoul(args[1].from, 0, &filter->size);
11082                                 if (ret)
11083                                         goto fail;
11084                         }
11085
11086                         if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
11087                                 int fpos = token == IF_SRC_FILE ? 2 : 1;
11088
11089                                 kfree(filename);
11090                                 filename = match_strdup(&args[fpos]);
11091                                 if (!filename) {
11092                                         ret = -ENOMEM;
11093                                         goto fail;
11094                                 }
11095                         }
11096
11097                         state = IF_STATE_END;
11098                         break;
11099
11100                 default:
11101                         goto fail;
11102                 }
11103
11104                 /*
11105                  * Filter definition is fully parsed, validate and install it.
11106                  * Make sure that it doesn't contradict itself or the event's
11107                  * attribute.
11108                  */
11109                 if (state == IF_STATE_END) {
11110                         ret = -EINVAL;
11111
11112                         /*
11113                          * ACTION "filter" must have a non-zero length region
11114                          * specified.
11115                          */
11116                         if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER &&
11117                             !filter->size)
11118                                 goto fail;
11119
11120                         if (!kernel) {
11121                                 if (!filename)
11122                                         goto fail;
11123
11124                                 /*
11125                                  * For now, we only support file-based filters
11126                                  * in per-task events; doing so for CPU-wide
11127                                  * events requires additional context switching
11128                                  * trickery, since same object code will be
11129                                  * mapped at different virtual addresses in
11130                                  * different processes.
11131                                  */
11132                                 ret = -EOPNOTSUPP;
11133                                 if (!event->ctx->task)
11134                                         goto fail;
11135
11136                                 /* look up the path and grab its inode */
11137                                 ret = kern_path(filename, LOOKUP_FOLLOW,
11138                                                 &filter->path);
11139                                 if (ret)
11140                                         goto fail;
11141
11142                                 ret = -EINVAL;
11143                                 if (!filter->path.dentry ||
11144                                     !S_ISREG(d_inode(filter->path.dentry)
11145                                              ->i_mode))
11146                                         goto fail;
11147
11148                                 event->addr_filters.nr_file_filters++;
11149                         }
11150
11151                         /* ready to consume more filters */
11152                         kfree(filename);
11153                         filename = NULL;
11154                         state = IF_STATE_ACTION;
11155                         filter = NULL;
11156                         kernel = 0;
11157                 }
11158         }
11159
11160         if (state != IF_STATE_ACTION)
11161                 goto fail;
11162
11163         kfree(filename);
11164         kfree(orig);
11165
11166         return 0;
11167
11168 fail:
11169         kfree(filename);
11170         free_filters_list(filters);
11171         kfree(orig);
11172
11173         return ret;
11174 }
11175
11176 static int
11177 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
11178 {
11179         LIST_HEAD(filters);
11180         int ret;
11181
11182         /*
11183          * Since this is called in perf_ioctl() path, we're already holding
11184          * ctx::mutex.
11185          */
11186         lockdep_assert_held(&event->ctx->mutex);
11187
11188         if (WARN_ON_ONCE(event->parent))
11189                 return -EINVAL;
11190
11191         ret = perf_event_parse_addr_filter(event, filter_str, &filters);
11192         if (ret)
11193                 goto fail_clear_files;
11194
11195         ret = event->pmu->addr_filters_validate(&filters);
11196         if (ret)
11197                 goto fail_free_filters;
11198
11199         /* remove existing filters, if any */
11200         perf_addr_filters_splice(event, &filters);
11201
11202         /* install new filters */
11203         perf_event_for_each_child(event, perf_event_addr_filters_apply);
11204
11205         return ret;
11206
11207 fail_free_filters:
11208         free_filters_list(&filters);
11209
11210 fail_clear_files:
11211         event->addr_filters.nr_file_filters = 0;
11212
11213         return ret;
11214 }
11215
11216 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
11217 {
11218         int ret = -EINVAL;
11219         char *filter_str;
11220
11221         filter_str = strndup_user(arg, PAGE_SIZE);
11222         if (IS_ERR(filter_str))
11223                 return PTR_ERR(filter_str);
11224
11225 #ifdef CONFIG_EVENT_TRACING
11226         if (perf_event_is_tracing(event)) {
11227                 struct perf_event_context *ctx = event->ctx;
11228
11229                 /*
11230                  * Beware, here be dragons!!
11231                  *
11232                  * the tracepoint muck will deadlock against ctx->mutex, but
11233                  * the tracepoint stuff does not actually need it. So
11234                  * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we
11235                  * already have a reference on ctx.
11236                  *
11237                  * This can result in event getting moved to a different ctx,
11238                  * but that does not affect the tracepoint state.
11239                  */
11240                 mutex_unlock(&ctx->mutex);
11241                 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
11242                 mutex_lock(&ctx->mutex);
11243         } else
11244 #endif
11245         if (has_addr_filter(event))
11246                 ret = perf_event_set_addr_filter(event, filter_str);
11247
11248         kfree(filter_str);
11249         return ret;
11250 }
11251
11252 /*
11253  * hrtimer based swevent callback
11254  */
11255
11256 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
11257 {
11258         enum hrtimer_restart ret = HRTIMER_RESTART;
11259         struct perf_sample_data data;
11260         struct pt_regs *regs;
11261         struct perf_event *event;
11262         u64 period;
11263
11264         event = container_of(hrtimer, struct perf_event, hw.hrtimer);
11265
11266         if (event->state != PERF_EVENT_STATE_ACTIVE)
11267                 return HRTIMER_NORESTART;
11268
11269         event->pmu->read(event);
11270
11271         perf_sample_data_init(&data, 0, event->hw.last_period);
11272         regs = get_irq_regs();
11273
11274         if (regs && !perf_exclude_event(event, regs)) {
11275                 if (!(event->attr.exclude_idle && is_idle_task(current)))
11276                         if (__perf_event_overflow(event, 1, &data, regs))
11277                                 ret = HRTIMER_NORESTART;
11278         }
11279
11280         period = max_t(u64, 10000, event->hw.sample_period);
11281         hrtimer_forward_now(hrtimer, ns_to_ktime(period));
11282
11283         return ret;
11284 }
11285
11286 static void perf_swevent_start_hrtimer(struct perf_event *event)
11287 {
11288         struct hw_perf_event *hwc = &event->hw;
11289         s64 period;
11290
11291         if (!is_sampling_event(event))
11292                 return;
11293
11294         period = local64_read(&hwc->period_left);
11295         if (period) {
11296                 if (period < 0)
11297                         period = 10000;
11298
11299                 local64_set(&hwc->period_left, 0);
11300         } else {
11301                 period = max_t(u64, 10000, hwc->sample_period);
11302         }
11303         hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
11304                       HRTIMER_MODE_REL_PINNED_HARD);
11305 }
11306
11307 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
11308 {
11309         struct hw_perf_event *hwc = &event->hw;
11310
11311         if (is_sampling_event(event)) {
11312                 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
11313                 local64_set(&hwc->period_left, ktime_to_ns(remaining));
11314
11315                 hrtimer_cancel(&hwc->hrtimer);
11316         }
11317 }
11318
11319 static void perf_swevent_init_hrtimer(struct perf_event *event)
11320 {
11321         struct hw_perf_event *hwc = &event->hw;
11322
11323         if (!is_sampling_event(event))
11324                 return;
11325
11326         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
11327         hwc->hrtimer.function = perf_swevent_hrtimer;
11328
11329         /*
11330          * Since hrtimers have a fixed rate, we can do a static freq->period
11331          * mapping and avoid the whole period adjust feedback stuff.
11332          */
11333         if (event->attr.freq) {
11334                 long freq = event->attr.sample_freq;
11335
11336                 event->attr.sample_period = NSEC_PER_SEC / freq;
11337                 hwc->sample_period = event->attr.sample_period;
11338                 local64_set(&hwc->period_left, hwc->sample_period);
11339                 hwc->last_period = hwc->sample_period;
11340                 event->attr.freq = 0;
11341         }
11342 }
11343
11344 /*
11345  * Software event: cpu wall time clock
11346  */
11347
11348 static void cpu_clock_event_update(struct perf_event *event)
11349 {
11350         s64 prev;
11351         u64 now;
11352
11353         now = local_clock();
11354         prev = local64_xchg(&event->hw.prev_count, now);
11355         local64_add(now - prev, &event->count);
11356 }
11357
11358 static void cpu_clock_event_start(struct perf_event *event, int flags)
11359 {
11360         local64_set(&event->hw.prev_count, local_clock());
11361         perf_swevent_start_hrtimer(event);
11362 }
11363
11364 static void cpu_clock_event_stop(struct perf_event *event, int flags)
11365 {
11366         perf_swevent_cancel_hrtimer(event);
11367         cpu_clock_event_update(event);
11368 }
11369
11370 static int cpu_clock_event_add(struct perf_event *event, int flags)
11371 {
11372         if (flags & PERF_EF_START)
11373                 cpu_clock_event_start(event, flags);
11374         perf_event_update_userpage(event);
11375
11376         return 0;
11377 }
11378
11379 static void cpu_clock_event_del(struct perf_event *event, int flags)
11380 {
11381         cpu_clock_event_stop(event, flags);
11382 }
11383
11384 static void cpu_clock_event_read(struct perf_event *event)
11385 {
11386         cpu_clock_event_update(event);
11387 }
11388
11389 static int cpu_clock_event_init(struct perf_event *event)
11390 {
11391         if (event->attr.type != perf_cpu_clock.type)
11392                 return -ENOENT;
11393
11394         if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
11395                 return -ENOENT;
11396
11397         /*
11398          * no branch sampling for software events
11399          */
11400         if (has_branch_stack(event))
11401                 return -EOPNOTSUPP;
11402
11403         perf_swevent_init_hrtimer(event);
11404
11405         return 0;
11406 }
11407
11408 static struct pmu perf_cpu_clock = {
11409         .task_ctx_nr    = perf_sw_context,
11410
11411         .capabilities   = PERF_PMU_CAP_NO_NMI,
11412         .dev            = PMU_NULL_DEV,
11413
11414         .event_init     = cpu_clock_event_init,
11415         .add            = cpu_clock_event_add,
11416         .del            = cpu_clock_event_del,
11417         .start          = cpu_clock_event_start,
11418         .stop           = cpu_clock_event_stop,
11419         .read           = cpu_clock_event_read,
11420 };
11421
11422 /*
11423  * Software event: task time clock
11424  */
11425
11426 static void task_clock_event_update(struct perf_event *event, u64 now)
11427 {
11428         u64 prev;
11429         s64 delta;
11430
11431         prev = local64_xchg(&event->hw.prev_count, now);
11432         delta = now - prev;
11433         local64_add(delta, &event->count);
11434 }
11435
11436 static void task_clock_event_start(struct perf_event *event, int flags)
11437 {
11438         local64_set(&event->hw.prev_count, event->ctx->time);
11439         perf_swevent_start_hrtimer(event);
11440 }
11441
11442 static void task_clock_event_stop(struct perf_event *event, int flags)
11443 {
11444         perf_swevent_cancel_hrtimer(event);
11445         task_clock_event_update(event, event->ctx->time);
11446 }
11447
11448 static int task_clock_event_add(struct perf_event *event, int flags)
11449 {
11450         if (flags & PERF_EF_START)
11451                 task_clock_event_start(event, flags);
11452         perf_event_update_userpage(event);
11453
11454         return 0;
11455 }
11456
11457 static void task_clock_event_del(struct perf_event *event, int flags)
11458 {
11459         task_clock_event_stop(event, PERF_EF_UPDATE);
11460 }
11461
11462 static void task_clock_event_read(struct perf_event *event)
11463 {
11464         u64 now = perf_clock();
11465         u64 delta = now - event->ctx->timestamp;
11466         u64 time = event->ctx->time + delta;
11467
11468         task_clock_event_update(event, time);
11469 }
11470
11471 static int task_clock_event_init(struct perf_event *event)
11472 {
11473         if (event->attr.type != perf_task_clock.type)
11474                 return -ENOENT;
11475
11476         if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
11477                 return -ENOENT;
11478
11479         /*
11480          * no branch sampling for software events
11481          */
11482         if (has_branch_stack(event))
11483                 return -EOPNOTSUPP;
11484
11485         perf_swevent_init_hrtimer(event);
11486
11487         return 0;
11488 }
11489
11490 static struct pmu perf_task_clock = {
11491         .task_ctx_nr    = perf_sw_context,
11492
11493         .capabilities   = PERF_PMU_CAP_NO_NMI,
11494         .dev            = PMU_NULL_DEV,
11495
11496         .event_init     = task_clock_event_init,
11497         .add            = task_clock_event_add,
11498         .del            = task_clock_event_del,
11499         .start          = task_clock_event_start,
11500         .stop           = task_clock_event_stop,
11501         .read           = task_clock_event_read,
11502 };
11503
11504 static void perf_pmu_nop_void(struct pmu *pmu)
11505 {
11506 }
11507
11508 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
11509 {
11510 }
11511
11512 static int perf_pmu_nop_int(struct pmu *pmu)
11513 {
11514         return 0;
11515 }
11516
11517 static int perf_event_nop_int(struct perf_event *event, u64 value)
11518 {
11519         return 0;
11520 }
11521
11522 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
11523
11524 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
11525 {
11526         __this_cpu_write(nop_txn_flags, flags);
11527
11528         if (flags & ~PERF_PMU_TXN_ADD)
11529                 return;
11530
11531         perf_pmu_disable(pmu);
11532 }
11533
11534 static int perf_pmu_commit_txn(struct pmu *pmu)
11535 {
11536         unsigned int flags = __this_cpu_read(nop_txn_flags);
11537
11538         __this_cpu_write(nop_txn_flags, 0);
11539
11540         if (flags & ~PERF_PMU_TXN_ADD)
11541                 return 0;
11542
11543         perf_pmu_enable(pmu);
11544         return 0;
11545 }
11546
11547 static void perf_pmu_cancel_txn(struct pmu *pmu)
11548 {
11549         unsigned int flags =  __this_cpu_read(nop_txn_flags);
11550
11551         __this_cpu_write(nop_txn_flags, 0);
11552
11553         if (flags & ~PERF_PMU_TXN_ADD)
11554                 return;
11555
11556         perf_pmu_enable(pmu);
11557 }
11558
11559 static int perf_event_idx_default(struct perf_event *event)
11560 {
11561         return 0;
11562 }
11563
11564 static void free_pmu_context(struct pmu *pmu)
11565 {
11566         free_percpu(pmu->cpu_pmu_context);
11567 }
11568
11569 /*
11570  * Let userspace know that this PMU supports address range filtering:
11571  */
11572 static ssize_t nr_addr_filters_show(struct device *dev,
11573                                     struct device_attribute *attr,
11574                                     char *page)
11575 {
11576         struct pmu *pmu = dev_get_drvdata(dev);
11577
11578         return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
11579 }
11580 DEVICE_ATTR_RO(nr_addr_filters);
11581
11582 static struct idr pmu_idr;
11583
11584 static ssize_t
11585 type_show(struct device *dev, struct device_attribute *attr, char *page)
11586 {
11587         struct pmu *pmu = dev_get_drvdata(dev);
11588
11589         return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->type);
11590 }
11591 static DEVICE_ATTR_RO(type);
11592
11593 static ssize_t
11594 perf_event_mux_interval_ms_show(struct device *dev,
11595                                 struct device_attribute *attr,
11596                                 char *page)
11597 {
11598         struct pmu *pmu = dev_get_drvdata(dev);
11599
11600         return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->hrtimer_interval_ms);
11601 }
11602
11603 static DEFINE_MUTEX(mux_interval_mutex);
11604
11605 static ssize_t
11606 perf_event_mux_interval_ms_store(struct device *dev,
11607                                  struct device_attribute *attr,
11608                                  const char *buf, size_t count)
11609 {
11610         struct pmu *pmu = dev_get_drvdata(dev);
11611         int timer, cpu, ret;
11612
11613         ret = kstrtoint(buf, 0, &timer);
11614         if (ret)
11615                 return ret;
11616
11617         if (timer < 1)
11618                 return -EINVAL;
11619
11620         /* same value, noting to do */
11621         if (timer == pmu->hrtimer_interval_ms)
11622                 return count;
11623
11624         mutex_lock(&mux_interval_mutex);
11625         pmu->hrtimer_interval_ms = timer;
11626
11627         /* update all cpuctx for this PMU */
11628         cpus_read_lock();
11629         for_each_online_cpu(cpu) {
11630                 struct perf_cpu_pmu_context *cpc;
11631                 cpc = per_cpu_ptr(pmu->cpu_pmu_context, cpu);
11632                 cpc->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
11633
11634                 cpu_function_call(cpu, perf_mux_hrtimer_restart_ipi, cpc);
11635         }
11636         cpus_read_unlock();
11637         mutex_unlock(&mux_interval_mutex);
11638
11639         return count;
11640 }
11641 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
11642
11643 static inline const struct cpumask *perf_scope_cpu_topology_cpumask(unsigned int scope, int cpu)
11644 {
11645         switch (scope) {
11646         case PERF_PMU_SCOPE_CORE:
11647                 return topology_sibling_cpumask(cpu);
11648         case PERF_PMU_SCOPE_DIE:
11649                 return topology_die_cpumask(cpu);
11650         case PERF_PMU_SCOPE_CLUSTER:
11651                 return topology_cluster_cpumask(cpu);
11652         case PERF_PMU_SCOPE_PKG:
11653                 return topology_core_cpumask(cpu);
11654         case PERF_PMU_SCOPE_SYS_WIDE:
11655                 return cpu_online_mask;
11656         }
11657
11658         return NULL;
11659 }
11660
11661 static inline struct cpumask *perf_scope_cpumask(unsigned int scope)
11662 {
11663         switch (scope) {
11664         case PERF_PMU_SCOPE_CORE:
11665                 return perf_online_core_mask;
11666         case PERF_PMU_SCOPE_DIE:
11667                 return perf_online_die_mask;
11668         case PERF_PMU_SCOPE_CLUSTER:
11669                 return perf_online_cluster_mask;
11670         case PERF_PMU_SCOPE_PKG:
11671                 return perf_online_pkg_mask;
11672         case PERF_PMU_SCOPE_SYS_WIDE:
11673                 return perf_online_sys_mask;
11674         }
11675
11676         return NULL;
11677 }
11678
11679 static ssize_t cpumask_show(struct device *dev, struct device_attribute *attr,
11680                             char *buf)
11681 {
11682         struct pmu *pmu = dev_get_drvdata(dev);
11683         struct cpumask *mask = perf_scope_cpumask(pmu->scope);
11684
11685         if (mask)
11686                 return cpumap_print_to_pagebuf(true, buf, mask);
11687         return 0;
11688 }
11689
11690 static DEVICE_ATTR_RO(cpumask);
11691
11692 static struct attribute *pmu_dev_attrs[] = {
11693         &dev_attr_type.attr,
11694         &dev_attr_perf_event_mux_interval_ms.attr,
11695         &dev_attr_nr_addr_filters.attr,
11696         &dev_attr_cpumask.attr,
11697         NULL,
11698 };
11699
11700 static umode_t pmu_dev_is_visible(struct kobject *kobj, struct attribute *a, int n)
11701 {
11702         struct device *dev = kobj_to_dev(kobj);
11703         struct pmu *pmu = dev_get_drvdata(dev);
11704
11705         if (n == 2 && !pmu->nr_addr_filters)
11706                 return 0;
11707
11708         /* cpumask */
11709         if (n == 3 && pmu->scope == PERF_PMU_SCOPE_NONE)
11710                 return 0;
11711
11712         return a->mode;
11713 }
11714
11715 static struct attribute_group pmu_dev_attr_group = {
11716         .is_visible = pmu_dev_is_visible,
11717         .attrs = pmu_dev_attrs,
11718 };
11719
11720 static const struct attribute_group *pmu_dev_groups[] = {
11721         &pmu_dev_attr_group,
11722         NULL,
11723 };
11724
11725 static int pmu_bus_running;
11726 static struct bus_type pmu_bus = {
11727         .name           = "event_source",
11728         .dev_groups     = pmu_dev_groups,
11729 };
11730
11731 static void pmu_dev_release(struct device *dev)
11732 {
11733         kfree(dev);
11734 }
11735
11736 static int pmu_dev_alloc(struct pmu *pmu)
11737 {
11738         int ret = -ENOMEM;
11739
11740         pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
11741         if (!pmu->dev)
11742                 goto out;
11743
11744         pmu->dev->groups = pmu->attr_groups;
11745         device_initialize(pmu->dev);
11746
11747         dev_set_drvdata(pmu->dev, pmu);
11748         pmu->dev->bus = &pmu_bus;
11749         pmu->dev->parent = pmu->parent;
11750         pmu->dev->release = pmu_dev_release;
11751
11752         ret = dev_set_name(pmu->dev, "%s", pmu->name);
11753         if (ret)
11754                 goto free_dev;
11755
11756         ret = device_add(pmu->dev);
11757         if (ret)
11758                 goto free_dev;
11759
11760         if (pmu->attr_update) {
11761                 ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update);
11762                 if (ret)
11763                         goto del_dev;
11764         }
11765
11766 out:
11767         return ret;
11768
11769 del_dev:
11770         device_del(pmu->dev);
11771
11772 free_dev:
11773         put_device(pmu->dev);
11774         goto out;
11775 }
11776
11777 static struct lock_class_key cpuctx_mutex;
11778 static struct lock_class_key cpuctx_lock;
11779
11780 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
11781 {
11782         int cpu, ret, max = PERF_TYPE_MAX;
11783
11784         mutex_lock(&pmus_lock);
11785         ret = -ENOMEM;
11786         pmu->pmu_disable_count = alloc_percpu(int);
11787         if (!pmu->pmu_disable_count)
11788                 goto unlock;
11789
11790         pmu->type = -1;
11791         if (WARN_ONCE(!name, "Can not register anonymous pmu.\n")) {
11792                 ret = -EINVAL;
11793                 goto free_pdc;
11794         }
11795
11796         if (WARN_ONCE(pmu->scope >= PERF_PMU_MAX_SCOPE, "Can not register a pmu with an invalid scope.\n")) {
11797                 ret = -EINVAL;
11798                 goto free_pdc;
11799         }
11800
11801         pmu->name = name;
11802
11803         if (type >= 0)
11804                 max = type;
11805
11806         ret = idr_alloc(&pmu_idr, pmu, max, 0, GFP_KERNEL);
11807         if (ret < 0)
11808                 goto free_pdc;
11809
11810         WARN_ON(type >= 0 && ret != type);
11811
11812         type = ret;
11813         pmu->type = type;
11814
11815         if (pmu_bus_running && !pmu->dev) {
11816                 ret = pmu_dev_alloc(pmu);
11817                 if (ret)
11818                         goto free_idr;
11819         }
11820
11821         ret = -ENOMEM;
11822         pmu->cpu_pmu_context = alloc_percpu(struct perf_cpu_pmu_context);
11823         if (!pmu->cpu_pmu_context)
11824                 goto free_dev;
11825
11826         for_each_possible_cpu(cpu) {
11827                 struct perf_cpu_pmu_context *cpc;
11828
11829                 cpc = per_cpu_ptr(pmu->cpu_pmu_context, cpu);
11830                 __perf_init_event_pmu_context(&cpc->epc, pmu);
11831                 __perf_mux_hrtimer_init(cpc, cpu);
11832         }
11833
11834         if (!pmu->start_txn) {
11835                 if (pmu->pmu_enable) {
11836                         /*
11837                          * If we have pmu_enable/pmu_disable calls, install
11838                          * transaction stubs that use that to try and batch
11839                          * hardware accesses.
11840                          */
11841                         pmu->start_txn  = perf_pmu_start_txn;
11842                         pmu->commit_txn = perf_pmu_commit_txn;
11843                         pmu->cancel_txn = perf_pmu_cancel_txn;
11844                 } else {
11845                         pmu->start_txn  = perf_pmu_nop_txn;
11846                         pmu->commit_txn = perf_pmu_nop_int;
11847                         pmu->cancel_txn = perf_pmu_nop_void;
11848                 }
11849         }
11850
11851         if (!pmu->pmu_enable) {
11852                 pmu->pmu_enable  = perf_pmu_nop_void;
11853                 pmu->pmu_disable = perf_pmu_nop_void;
11854         }
11855
11856         if (!pmu->check_period)
11857                 pmu->check_period = perf_event_nop_int;
11858
11859         if (!pmu->event_idx)
11860                 pmu->event_idx = perf_event_idx_default;
11861
11862         list_add_rcu(&pmu->entry, &pmus);
11863         atomic_set(&pmu->exclusive_cnt, 0);
11864         ret = 0;
11865 unlock:
11866         mutex_unlock(&pmus_lock);
11867
11868         return ret;
11869
11870 free_dev:
11871         if (pmu->dev && pmu->dev != PMU_NULL_DEV) {
11872                 device_del(pmu->dev);
11873                 put_device(pmu->dev);
11874         }
11875
11876 free_idr:
11877         idr_remove(&pmu_idr, pmu->type);
11878
11879 free_pdc:
11880         free_percpu(pmu->pmu_disable_count);
11881         goto unlock;
11882 }
11883 EXPORT_SYMBOL_GPL(perf_pmu_register);
11884
11885 void perf_pmu_unregister(struct pmu *pmu)
11886 {
11887         mutex_lock(&pmus_lock);
11888         list_del_rcu(&pmu->entry);
11889
11890         /*
11891          * We dereference the pmu list under both SRCU and regular RCU, so
11892          * synchronize against both of those.
11893          */
11894         synchronize_srcu(&pmus_srcu);
11895         synchronize_rcu();
11896
11897         free_percpu(pmu->pmu_disable_count);
11898         idr_remove(&pmu_idr, pmu->type);
11899         if (pmu_bus_running && pmu->dev && pmu->dev != PMU_NULL_DEV) {
11900                 if (pmu->nr_addr_filters)
11901                         device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
11902                 device_del(pmu->dev);
11903                 put_device(pmu->dev);
11904         }
11905         free_pmu_context(pmu);
11906         mutex_unlock(&pmus_lock);
11907 }
11908 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
11909
11910 static inline bool has_extended_regs(struct perf_event *event)
11911 {
11912         return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) ||
11913                (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK);
11914 }
11915
11916 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
11917 {
11918         struct perf_event_context *ctx = NULL;
11919         int ret;
11920
11921         if (!try_module_get(pmu->module))
11922                 return -ENODEV;
11923
11924         /*
11925          * A number of pmu->event_init() methods iterate the sibling_list to,
11926          * for example, validate if the group fits on the PMU. Therefore,
11927          * if this is a sibling event, acquire the ctx->mutex to protect
11928          * the sibling_list.
11929          */
11930         if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) {
11931                 /*
11932                  * This ctx->mutex can nest when we're called through
11933                  * inheritance. See the perf_event_ctx_lock_nested() comment.
11934                  */
11935                 ctx = perf_event_ctx_lock_nested(event->group_leader,
11936                                                  SINGLE_DEPTH_NESTING);
11937                 BUG_ON(!ctx);
11938         }
11939
11940         event->pmu = pmu;
11941         ret = pmu->event_init(event);
11942
11943         if (ctx)
11944                 perf_event_ctx_unlock(event->group_leader, ctx);
11945
11946         if (!ret) {
11947                 if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) &&
11948                     has_extended_regs(event))
11949                         ret = -EOPNOTSUPP;
11950
11951                 if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE &&
11952                     event_has_any_exclude_flag(event))
11953                         ret = -EINVAL;
11954
11955                 if (pmu->scope != PERF_PMU_SCOPE_NONE && event->cpu >= 0) {
11956                         const struct cpumask *cpumask = perf_scope_cpu_topology_cpumask(pmu->scope, event->cpu);
11957                         struct cpumask *pmu_cpumask = perf_scope_cpumask(pmu->scope);
11958                         int cpu;
11959
11960                         if (pmu_cpumask && cpumask) {
11961                                 cpu = cpumask_any_and(pmu_cpumask, cpumask);
11962                                 if (cpu >= nr_cpu_ids)
11963                                         ret = -ENODEV;
11964                                 else
11965                                         event->event_caps |= PERF_EV_CAP_READ_SCOPE;
11966                         } else {
11967                                 ret = -ENODEV;
11968                         }
11969                 }
11970
11971                 if (ret && event->destroy)
11972                         event->destroy(event);
11973         }
11974
11975         if (ret)
11976                 module_put(pmu->module);
11977
11978         return ret;
11979 }
11980
11981 static struct pmu *perf_init_event(struct perf_event *event)
11982 {
11983         bool extended_type = false;
11984         int idx, type, ret;
11985         struct pmu *pmu;
11986
11987         idx = srcu_read_lock(&pmus_srcu);
11988
11989         /*
11990          * Save original type before calling pmu->event_init() since certain
11991          * pmus overwrites event->attr.type to forward event to another pmu.
11992          */
11993         event->orig_type = event->attr.type;
11994
11995         /* Try parent's PMU first: */
11996         if (event->parent && event->parent->pmu) {
11997                 pmu = event->parent->pmu;
11998                 ret = perf_try_init_event(pmu, event);
11999                 if (!ret)
12000                         goto unlock;
12001         }
12002
12003         /*
12004          * PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE
12005          * are often aliases for PERF_TYPE_RAW.
12006          */
12007         type = event->attr.type;
12008         if (type == PERF_TYPE_HARDWARE || type == PERF_TYPE_HW_CACHE) {
12009                 type = event->attr.config >> PERF_PMU_TYPE_SHIFT;
12010                 if (!type) {
12011                         type = PERF_TYPE_RAW;
12012                 } else {
12013                         extended_type = true;
12014                         event->attr.config &= PERF_HW_EVENT_MASK;
12015                 }
12016         }
12017
12018 again:
12019         rcu_read_lock();
12020         pmu = idr_find(&pmu_idr, type);
12021         rcu_read_unlock();
12022         if (pmu) {
12023                 if (event->attr.type != type && type != PERF_TYPE_RAW &&
12024                     !(pmu->capabilities & PERF_PMU_CAP_EXTENDED_HW_TYPE))
12025                         goto fail;
12026
12027                 ret = perf_try_init_event(pmu, event);
12028                 if (ret == -ENOENT && event->attr.type != type && !extended_type) {
12029                         type = event->attr.type;
12030                         goto again;
12031                 }
12032
12033                 if (ret)
12034                         pmu = ERR_PTR(ret);
12035
12036                 goto unlock;
12037         }
12038
12039         list_for_each_entry_rcu(pmu, &pmus, entry, lockdep_is_held(&pmus_srcu)) {
12040                 ret = perf_try_init_event(pmu, event);
12041                 if (!ret)
12042                         goto unlock;
12043
12044                 if (ret != -ENOENT) {
12045                         pmu = ERR_PTR(ret);
12046                         goto unlock;
12047                 }
12048         }
12049 fail:
12050         pmu = ERR_PTR(-ENOENT);
12051 unlock:
12052         srcu_read_unlock(&pmus_srcu, idx);
12053
12054         return pmu;
12055 }
12056
12057 static void attach_sb_event(struct perf_event *event)
12058 {
12059         struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
12060
12061         raw_spin_lock(&pel->lock);
12062         list_add_rcu(&event->sb_list, &pel->list);
12063         raw_spin_unlock(&pel->lock);
12064 }
12065
12066 /*
12067  * We keep a list of all !task (and therefore per-cpu) events
12068  * that need to receive side-band records.
12069  *
12070  * This avoids having to scan all the various PMU per-cpu contexts
12071  * looking for them.
12072  */
12073 static void account_pmu_sb_event(struct perf_event *event)
12074 {
12075         if (is_sb_event(event))
12076                 attach_sb_event(event);
12077 }
12078
12079 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
12080 static void account_freq_event_nohz(void)
12081 {
12082 #ifdef CONFIG_NO_HZ_FULL
12083         /* Lock so we don't race with concurrent unaccount */
12084         spin_lock(&nr_freq_lock);
12085         if (atomic_inc_return(&nr_freq_events) == 1)
12086                 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
12087         spin_unlock(&nr_freq_lock);
12088 #endif
12089 }
12090
12091 static void account_freq_event(void)
12092 {
12093         if (tick_nohz_full_enabled())
12094                 account_freq_event_nohz();
12095         else
12096                 atomic_inc(&nr_freq_events);
12097 }
12098
12099
12100 static void account_event(struct perf_event *event)
12101 {
12102         bool inc = false;
12103
12104         if (event->parent)
12105                 return;
12106
12107         if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB))
12108                 inc = true;
12109         if (event->attr.mmap || event->attr.mmap_data)
12110                 atomic_inc(&nr_mmap_events);
12111         if (event->attr.build_id)
12112                 atomic_inc(&nr_build_id_events);
12113         if (event->attr.comm)
12114                 atomic_inc(&nr_comm_events);
12115         if (event->attr.namespaces)
12116                 atomic_inc(&nr_namespaces_events);
12117         if (event->attr.cgroup)
12118                 atomic_inc(&nr_cgroup_events);
12119         if (event->attr.task)
12120                 atomic_inc(&nr_task_events);
12121         if (event->attr.freq)
12122                 account_freq_event();
12123         if (event->attr.context_switch) {
12124                 atomic_inc(&nr_switch_events);
12125                 inc = true;
12126         }
12127         if (has_branch_stack(event))
12128                 inc = true;
12129         if (is_cgroup_event(event))
12130                 inc = true;
12131         if (event->attr.ksymbol)
12132                 atomic_inc(&nr_ksymbol_events);
12133         if (event->attr.bpf_event)
12134                 atomic_inc(&nr_bpf_events);
12135         if (event->attr.text_poke)
12136                 atomic_inc(&nr_text_poke_events);
12137
12138         if (inc) {
12139                 /*
12140                  * We need the mutex here because static_branch_enable()
12141                  * must complete *before* the perf_sched_count increment
12142                  * becomes visible.
12143                  */
12144                 if (atomic_inc_not_zero(&perf_sched_count))
12145                         goto enabled;
12146
12147                 mutex_lock(&perf_sched_mutex);
12148                 if (!atomic_read(&perf_sched_count)) {
12149                         static_branch_enable(&perf_sched_events);
12150                         /*
12151                          * Guarantee that all CPUs observe they key change and
12152                          * call the perf scheduling hooks before proceeding to
12153                          * install events that need them.
12154                          */
12155                         synchronize_rcu();
12156                 }
12157                 /*
12158                  * Now that we have waited for the sync_sched(), allow further
12159                  * increments to by-pass the mutex.
12160                  */
12161                 atomic_inc(&perf_sched_count);
12162                 mutex_unlock(&perf_sched_mutex);
12163         }
12164 enabled:
12165
12166         account_pmu_sb_event(event);
12167 }
12168
12169 /*
12170  * Allocate and initialize an event structure
12171  */
12172 static struct perf_event *
12173 perf_event_alloc(struct perf_event_attr *attr, int cpu,
12174                  struct task_struct *task,
12175                  struct perf_event *group_leader,
12176                  struct perf_event *parent_event,
12177                  perf_overflow_handler_t overflow_handler,
12178                  void *context, int cgroup_fd)
12179 {
12180         struct pmu *pmu;
12181         struct perf_event *event;
12182         struct hw_perf_event *hwc;
12183         long err = -EINVAL;
12184         int node;
12185
12186         if ((unsigned)cpu >= nr_cpu_ids) {
12187                 if (!task || cpu != -1)
12188                         return ERR_PTR(-EINVAL);
12189         }
12190         if (attr->sigtrap && !task) {
12191                 /* Requires a task: avoid signalling random tasks. */
12192                 return ERR_PTR(-EINVAL);
12193         }
12194
12195         node = (cpu >= 0) ? cpu_to_node(cpu) : -1;
12196         event = kmem_cache_alloc_node(perf_event_cache, GFP_KERNEL | __GFP_ZERO,
12197                                       node);
12198         if (!event)
12199                 return ERR_PTR(-ENOMEM);
12200
12201         /*
12202          * Single events are their own group leaders, with an
12203          * empty sibling list:
12204          */
12205         if (!group_leader)
12206                 group_leader = event;
12207
12208         mutex_init(&event->child_mutex);
12209         INIT_LIST_HEAD(&event->child_list);
12210
12211         INIT_LIST_HEAD(&event->event_entry);
12212         INIT_LIST_HEAD(&event->sibling_list);
12213         INIT_LIST_HEAD(&event->active_list);
12214         init_event_group(event);
12215         INIT_LIST_HEAD(&event->rb_entry);
12216         INIT_LIST_HEAD(&event->active_entry);
12217         INIT_LIST_HEAD(&event->addr_filters.list);
12218         INIT_HLIST_NODE(&event->hlist_entry);
12219
12220
12221         init_waitqueue_head(&event->waitq);
12222         init_irq_work(&event->pending_irq, perf_pending_irq);
12223         event->pending_disable_irq = IRQ_WORK_INIT_HARD(perf_pending_disable);
12224         init_task_work(&event->pending_task, perf_pending_task);
12225         rcuwait_init(&event->pending_work_wait);
12226
12227         mutex_init(&event->mmap_mutex);
12228         raw_spin_lock_init(&event->addr_filters.lock);
12229
12230         atomic_long_set(&event->refcount, 1);
12231         event->cpu              = cpu;
12232         event->attr             = *attr;
12233         event->group_leader     = group_leader;
12234         event->pmu              = NULL;
12235         event->oncpu            = -1;
12236
12237         event->parent           = parent_event;
12238
12239         event->ns               = get_pid_ns(task_active_pid_ns(current));
12240         event->id               = atomic64_inc_return(&perf_event_id);
12241
12242         event->state            = PERF_EVENT_STATE_INACTIVE;
12243
12244         if (parent_event)
12245                 event->event_caps = parent_event->event_caps;
12246
12247         if (task) {
12248                 event->attach_state = PERF_ATTACH_TASK;
12249                 /*
12250                  * XXX pmu::event_init needs to know what task to account to
12251                  * and we cannot use the ctx information because we need the
12252                  * pmu before we get a ctx.
12253                  */
12254                 event->hw.target = get_task_struct(task);
12255         }
12256
12257         event->clock = &local_clock;
12258         if (parent_event)
12259                 event->clock = parent_event->clock;
12260
12261         if (!overflow_handler && parent_event) {
12262                 overflow_handler = parent_event->overflow_handler;
12263                 context = parent_event->overflow_handler_context;
12264 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
12265                 if (parent_event->prog) {
12266                         struct bpf_prog *prog = parent_event->prog;
12267
12268                         bpf_prog_inc(prog);
12269                         event->prog = prog;
12270                 }
12271 #endif
12272         }
12273
12274         if (overflow_handler) {
12275                 event->overflow_handler = overflow_handler;
12276                 event->overflow_handler_context = context;
12277         } else if (is_write_backward(event)){
12278                 event->overflow_handler = perf_event_output_backward;
12279                 event->overflow_handler_context = NULL;
12280         } else {
12281                 event->overflow_handler = perf_event_output_forward;
12282                 event->overflow_handler_context = NULL;
12283         }
12284
12285         perf_event__state_init(event);
12286
12287         pmu = NULL;
12288
12289         hwc = &event->hw;
12290         hwc->sample_period = attr->sample_period;
12291         if (attr->freq && attr->sample_freq)
12292                 hwc->sample_period = 1;
12293         hwc->last_period = hwc->sample_period;
12294
12295         local64_set(&hwc->period_left, hwc->sample_period);
12296
12297         /*
12298          * We do not support PERF_SAMPLE_READ on inherited events unless
12299          * PERF_SAMPLE_TID is also selected, which allows inherited events to
12300          * collect per-thread samples.
12301          * See perf_output_read().
12302          */
12303         if (has_inherit_and_sample_read(attr) && !(attr->sample_type & PERF_SAMPLE_TID))
12304                 goto err_ns;
12305
12306         if (!has_branch_stack(event))
12307                 event->attr.branch_sample_type = 0;
12308
12309         pmu = perf_init_event(event);
12310         if (IS_ERR(pmu)) {
12311                 err = PTR_ERR(pmu);
12312                 goto err_ns;
12313         }
12314
12315         /*
12316          * Disallow uncore-task events. Similarly, disallow uncore-cgroup
12317          * events (they don't make sense as the cgroup will be different
12318          * on other CPUs in the uncore mask).
12319          */
12320         if (pmu->task_ctx_nr == perf_invalid_context && (task || cgroup_fd != -1)) {
12321                 err = -EINVAL;
12322                 goto err_pmu;
12323         }
12324
12325         if (event->attr.aux_output &&
12326             (!(pmu->capabilities & PERF_PMU_CAP_AUX_OUTPUT) ||
12327              event->attr.aux_pause || event->attr.aux_resume)) {
12328                 err = -EOPNOTSUPP;
12329                 goto err_pmu;
12330         }
12331
12332         if (event->attr.aux_pause && event->attr.aux_resume) {
12333                 err = -EINVAL;
12334                 goto err_pmu;
12335         }
12336
12337         if (event->attr.aux_start_paused) {
12338                 if (!(pmu->capabilities & PERF_PMU_CAP_AUX_PAUSE)) {
12339                         err = -EOPNOTSUPP;
12340                         goto err_pmu;
12341                 }
12342                 event->hw.aux_paused = 1;
12343         }
12344
12345         if (cgroup_fd != -1) {
12346                 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
12347                 if (err)
12348                         goto err_pmu;
12349         }
12350
12351         err = exclusive_event_init(event);
12352         if (err)
12353                 goto err_pmu;
12354
12355         if (has_addr_filter(event)) {
12356                 event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters,
12357                                                     sizeof(struct perf_addr_filter_range),
12358                                                     GFP_KERNEL);
12359                 if (!event->addr_filter_ranges) {
12360                         err = -ENOMEM;
12361                         goto err_per_task;
12362                 }
12363
12364                 /*
12365                  * Clone the parent's vma offsets: they are valid until exec()
12366                  * even if the mm is not shared with the parent.
12367                  */
12368                 if (event->parent) {
12369                         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
12370
12371                         raw_spin_lock_irq(&ifh->lock);
12372                         memcpy(event->addr_filter_ranges,
12373                                event->parent->addr_filter_ranges,
12374                                pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range));
12375                         raw_spin_unlock_irq(&ifh->lock);
12376                 }
12377
12378                 /* force hw sync on the address filters */
12379                 event->addr_filters_gen = 1;
12380         }
12381
12382         if (!event->parent) {
12383                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
12384                         err = get_callchain_buffers(attr->sample_max_stack);
12385                         if (err)
12386                                 goto err_addr_filters;
12387                 }
12388         }
12389
12390         err = security_perf_event_alloc(event);
12391         if (err)
12392                 goto err_callchain_buffer;
12393
12394         /* symmetric to unaccount_event() in _free_event() */
12395         account_event(event);
12396
12397         return event;
12398
12399 err_callchain_buffer:
12400         if (!event->parent) {
12401                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
12402                         put_callchain_buffers();
12403         }
12404 err_addr_filters:
12405         kfree(event->addr_filter_ranges);
12406
12407 err_per_task:
12408         exclusive_event_destroy(event);
12409
12410 err_pmu:
12411         if (is_cgroup_event(event))
12412                 perf_detach_cgroup(event);
12413         if (event->destroy)
12414                 event->destroy(event);
12415         module_put(pmu->module);
12416 err_ns:
12417         if (event->hw.target)
12418                 put_task_struct(event->hw.target);
12419         call_rcu(&event->rcu_head, free_event_rcu);
12420
12421         return ERR_PTR(err);
12422 }
12423
12424 static int perf_copy_attr(struct perf_event_attr __user *uattr,
12425                           struct perf_event_attr *attr)
12426 {
12427         u32 size;
12428         int ret;
12429
12430         /* Zero the full structure, so that a short copy will be nice. */
12431         memset(attr, 0, sizeof(*attr));
12432
12433         ret = get_user(size, &uattr->size);
12434         if (ret)
12435                 return ret;
12436
12437         /* ABI compatibility quirk: */
12438         if (!size)
12439                 size = PERF_ATTR_SIZE_VER0;
12440         if (size < PERF_ATTR_SIZE_VER0 || size > PAGE_SIZE)
12441                 goto err_size;
12442
12443         ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
12444         if (ret) {
12445                 if (ret == -E2BIG)
12446                         goto err_size;
12447                 return ret;
12448         }
12449
12450         attr->size = size;
12451
12452         if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3)
12453                 return -EINVAL;
12454
12455         if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
12456                 return -EINVAL;
12457
12458         if (attr->read_format & ~(PERF_FORMAT_MAX-1))
12459                 return -EINVAL;
12460
12461         if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
12462                 u64 mask = attr->branch_sample_type;
12463
12464                 /* only using defined bits */
12465                 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
12466                         return -EINVAL;
12467
12468                 /* at least one branch bit must be set */
12469                 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
12470                         return -EINVAL;
12471
12472                 /* propagate priv level, when not set for branch */
12473                 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
12474
12475                         /* exclude_kernel checked on syscall entry */
12476                         if (!attr->exclude_kernel)
12477                                 mask |= PERF_SAMPLE_BRANCH_KERNEL;
12478
12479                         if (!attr->exclude_user)
12480                                 mask |= PERF_SAMPLE_BRANCH_USER;
12481
12482                         if (!attr->exclude_hv)
12483                                 mask |= PERF_SAMPLE_BRANCH_HV;
12484                         /*
12485                          * adjust user setting (for HW filter setup)
12486                          */
12487                         attr->branch_sample_type = mask;
12488                 }
12489                 /* privileged levels capture (kernel, hv): check permissions */
12490                 if (mask & PERF_SAMPLE_BRANCH_PERM_PLM) {
12491                         ret = perf_allow_kernel(attr);
12492                         if (ret)
12493                                 return ret;
12494                 }
12495         }
12496
12497         if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
12498                 ret = perf_reg_validate(attr->sample_regs_user);
12499                 if (ret)
12500                         return ret;
12501         }
12502
12503         if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
12504                 if (!arch_perf_have_user_stack_dump())
12505                         return -ENOSYS;
12506
12507                 /*
12508                  * We have __u32 type for the size, but so far
12509                  * we can only use __u16 as maximum due to the
12510                  * __u16 sample size limit.
12511                  */
12512                 if (attr->sample_stack_user >= USHRT_MAX)
12513                         return -EINVAL;
12514                 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
12515                         return -EINVAL;
12516         }
12517
12518         if (!attr->sample_max_stack)
12519                 attr->sample_max_stack = sysctl_perf_event_max_stack;
12520
12521         if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
12522                 ret = perf_reg_validate(attr->sample_regs_intr);
12523
12524 #ifndef CONFIG_CGROUP_PERF
12525         if (attr->sample_type & PERF_SAMPLE_CGROUP)
12526                 return -EINVAL;
12527 #endif
12528         if ((attr->sample_type & PERF_SAMPLE_WEIGHT) &&
12529             (attr->sample_type & PERF_SAMPLE_WEIGHT_STRUCT))
12530                 return -EINVAL;
12531
12532         if (!attr->inherit && attr->inherit_thread)
12533                 return -EINVAL;
12534
12535         if (attr->remove_on_exec && attr->enable_on_exec)
12536                 return -EINVAL;
12537
12538         if (attr->sigtrap && !attr->remove_on_exec)
12539                 return -EINVAL;
12540
12541 out:
12542         return ret;
12543
12544 err_size:
12545         put_user(sizeof(*attr), &uattr->size);
12546         ret = -E2BIG;
12547         goto out;
12548 }
12549
12550 static void mutex_lock_double(struct mutex *a, struct mutex *b)
12551 {
12552         if (b < a)
12553                 swap(a, b);
12554
12555         mutex_lock(a);
12556         mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
12557 }
12558
12559 static int
12560 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
12561 {
12562         struct perf_buffer *rb = NULL;
12563         int ret = -EINVAL;
12564
12565         if (!output_event) {
12566                 mutex_lock(&event->mmap_mutex);
12567                 goto set;
12568         }
12569
12570         /* don't allow circular references */
12571         if (event == output_event)
12572                 goto out;
12573
12574         /*
12575          * Don't allow cross-cpu buffers
12576          */
12577         if (output_event->cpu != event->cpu)
12578                 goto out;
12579
12580         /*
12581          * If its not a per-cpu rb, it must be the same task.
12582          */
12583         if (output_event->cpu == -1 && output_event->hw.target != event->hw.target)
12584                 goto out;
12585
12586         /*
12587          * Mixing clocks in the same buffer is trouble you don't need.
12588          */
12589         if (output_event->clock != event->clock)
12590                 goto out;
12591
12592         /*
12593          * Either writing ring buffer from beginning or from end.
12594          * Mixing is not allowed.
12595          */
12596         if (is_write_backward(output_event) != is_write_backward(event))
12597                 goto out;
12598
12599         /*
12600          * If both events generate aux data, they must be on the same PMU
12601          */
12602         if (has_aux(event) && has_aux(output_event) &&
12603             event->pmu != output_event->pmu)
12604                 goto out;
12605
12606         /*
12607          * Hold both mmap_mutex to serialize against perf_mmap_close().  Since
12608          * output_event is already on rb->event_list, and the list iteration
12609          * restarts after every removal, it is guaranteed this new event is
12610          * observed *OR* if output_event is already removed, it's guaranteed we
12611          * observe !rb->mmap_count.
12612          */
12613         mutex_lock_double(&event->mmap_mutex, &output_event->mmap_mutex);
12614 set:
12615         /* Can't redirect output if we've got an active mmap() */
12616         if (atomic_read(&event->mmap_count))
12617                 goto unlock;
12618
12619         if (output_event) {
12620                 /* get the rb we want to redirect to */
12621                 rb = ring_buffer_get(output_event);
12622                 if (!rb)
12623                         goto unlock;
12624
12625                 /* did we race against perf_mmap_close() */
12626                 if (!atomic_read(&rb->mmap_count)) {
12627                         ring_buffer_put(rb);
12628                         goto unlock;
12629                 }
12630         }
12631
12632         ring_buffer_attach(event, rb);
12633
12634         ret = 0;
12635 unlock:
12636         mutex_unlock(&event->mmap_mutex);
12637         if (output_event)
12638                 mutex_unlock(&output_event->mmap_mutex);
12639
12640 out:
12641         return ret;
12642 }
12643
12644 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
12645 {
12646         bool nmi_safe = false;
12647
12648         switch (clk_id) {
12649         case CLOCK_MONOTONIC:
12650                 event->clock = &ktime_get_mono_fast_ns;
12651                 nmi_safe = true;
12652                 break;
12653
12654         case CLOCK_MONOTONIC_RAW:
12655                 event->clock = &ktime_get_raw_fast_ns;
12656                 nmi_safe = true;
12657                 break;
12658
12659         case CLOCK_REALTIME:
12660                 event->clock = &ktime_get_real_ns;
12661                 break;
12662
12663         case CLOCK_BOOTTIME:
12664                 event->clock = &ktime_get_boottime_ns;
12665                 break;
12666
12667         case CLOCK_TAI:
12668                 event->clock = &ktime_get_clocktai_ns;
12669                 break;
12670
12671         default:
12672                 return -EINVAL;
12673         }
12674
12675         if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
12676                 return -EINVAL;
12677
12678         return 0;
12679 }
12680
12681 static bool
12682 perf_check_permission(struct perf_event_attr *attr, struct task_struct *task)
12683 {
12684         unsigned int ptrace_mode = PTRACE_MODE_READ_REALCREDS;
12685         bool is_capable = perfmon_capable();
12686
12687         if (attr->sigtrap) {
12688                 /*
12689                  * perf_event_attr::sigtrap sends signals to the other task.
12690                  * Require the current task to also have CAP_KILL.
12691                  */
12692                 rcu_read_lock();
12693                 is_capable &= ns_capable(__task_cred(task)->user_ns, CAP_KILL);
12694                 rcu_read_unlock();
12695
12696                 /*
12697                  * If the required capabilities aren't available, checks for
12698                  * ptrace permissions: upgrade to ATTACH, since sending signals
12699                  * can effectively change the target task.
12700                  */
12701                 ptrace_mode = PTRACE_MODE_ATTACH_REALCREDS;
12702         }
12703
12704         /*
12705          * Preserve ptrace permission check for backwards compatibility. The
12706          * ptrace check also includes checks that the current task and other
12707          * task have matching uids, and is therefore not done here explicitly.
12708          */
12709         return is_capable || ptrace_may_access(task, ptrace_mode);
12710 }
12711
12712 /**
12713  * sys_perf_event_open - open a performance event, associate it to a task/cpu
12714  *
12715  * @attr_uptr:  event_id type attributes for monitoring/sampling
12716  * @pid:                target pid
12717  * @cpu:                target cpu
12718  * @group_fd:           group leader event fd
12719  * @flags:              perf event open flags
12720  */
12721 SYSCALL_DEFINE5(perf_event_open,
12722                 struct perf_event_attr __user *, attr_uptr,
12723                 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
12724 {
12725         struct perf_event *group_leader = NULL, *output_event = NULL;
12726         struct perf_event_pmu_context *pmu_ctx;
12727         struct perf_event *event, *sibling;
12728         struct perf_event_attr attr;
12729         struct perf_event_context *ctx;
12730         struct file *event_file = NULL;
12731         struct task_struct *task = NULL;
12732         struct pmu *pmu;
12733         int event_fd;
12734         int move_group = 0;
12735         int err;
12736         int f_flags = O_RDWR;
12737         int cgroup_fd = -1;
12738
12739         /* for future expandability... */
12740         if (flags & ~PERF_FLAG_ALL)
12741                 return -EINVAL;
12742
12743         err = perf_copy_attr(attr_uptr, &attr);
12744         if (err)
12745                 return err;
12746
12747         /* Do we allow access to perf_event_open(2) ? */
12748         err = security_perf_event_open(&attr, PERF_SECURITY_OPEN);
12749         if (err)
12750                 return err;
12751
12752         if (!attr.exclude_kernel) {
12753                 err = perf_allow_kernel(&attr);
12754                 if (err)
12755                         return err;
12756         }
12757
12758         if (attr.namespaces) {
12759                 if (!perfmon_capable())
12760                         return -EACCES;
12761         }
12762
12763         if (attr.freq) {
12764                 if (attr.sample_freq > sysctl_perf_event_sample_rate)
12765                         return -EINVAL;
12766         } else {
12767                 if (attr.sample_period & (1ULL << 63))
12768                         return -EINVAL;
12769         }
12770
12771         /* Only privileged users can get physical addresses */
12772         if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR)) {
12773                 err = perf_allow_kernel(&attr);
12774                 if (err)
12775                         return err;
12776         }
12777
12778         /* REGS_INTR can leak data, lockdown must prevent this */
12779         if (attr.sample_type & PERF_SAMPLE_REGS_INTR) {
12780                 err = security_locked_down(LOCKDOWN_PERF);
12781                 if (err)
12782                         return err;
12783         }
12784
12785         /*
12786          * In cgroup mode, the pid argument is used to pass the fd
12787          * opened to the cgroup directory in cgroupfs. The cpu argument
12788          * designates the cpu on which to monitor threads from that
12789          * cgroup.
12790          */
12791         if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
12792                 return -EINVAL;
12793
12794         if (flags & PERF_FLAG_FD_CLOEXEC)
12795                 f_flags |= O_CLOEXEC;
12796
12797         event_fd = get_unused_fd_flags(f_flags);
12798         if (event_fd < 0)
12799                 return event_fd;
12800
12801         CLASS(fd, group)(group_fd);     // group_fd == -1 => empty
12802         if (group_fd != -1) {
12803                 if (!is_perf_file(group)) {
12804                         err = -EBADF;
12805                         goto err_fd;
12806                 }
12807                 group_leader = fd_file(group)->private_data;
12808                 if (flags & PERF_FLAG_FD_OUTPUT)
12809                         output_event = group_leader;
12810                 if (flags & PERF_FLAG_FD_NO_GROUP)
12811                         group_leader = NULL;
12812         }
12813
12814         if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
12815                 task = find_lively_task_by_vpid(pid);
12816                 if (IS_ERR(task)) {
12817                         err = PTR_ERR(task);
12818                         goto err_fd;
12819                 }
12820         }
12821
12822         if (task && group_leader &&
12823             group_leader->attr.inherit != attr.inherit) {
12824                 err = -EINVAL;
12825                 goto err_task;
12826         }
12827
12828         if (flags & PERF_FLAG_PID_CGROUP)
12829                 cgroup_fd = pid;
12830
12831         event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
12832                                  NULL, NULL, cgroup_fd);
12833         if (IS_ERR(event)) {
12834                 err = PTR_ERR(event);
12835                 goto err_task;
12836         }
12837
12838         if (is_sampling_event(event)) {
12839                 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
12840                         err = -EOPNOTSUPP;
12841                         goto err_alloc;
12842                 }
12843         }
12844
12845         /*
12846          * Special case software events and allow them to be part of
12847          * any hardware group.
12848          */
12849         pmu = event->pmu;
12850
12851         if (attr.use_clockid) {
12852                 err = perf_event_set_clock(event, attr.clockid);
12853                 if (err)
12854                         goto err_alloc;
12855         }
12856
12857         if (pmu->task_ctx_nr == perf_sw_context)
12858                 event->event_caps |= PERF_EV_CAP_SOFTWARE;
12859
12860         if (task) {
12861                 err = down_read_interruptible(&task->signal->exec_update_lock);
12862                 if (err)
12863                         goto err_alloc;
12864
12865                 /*
12866                  * We must hold exec_update_lock across this and any potential
12867                  * perf_install_in_context() call for this new event to
12868                  * serialize against exec() altering our credentials (and the
12869                  * perf_event_exit_task() that could imply).
12870                  */
12871                 err = -EACCES;
12872                 if (!perf_check_permission(&attr, task))
12873                         goto err_cred;
12874         }
12875
12876         /*
12877          * Get the target context (task or percpu):
12878          */
12879         ctx = find_get_context(task, event);
12880         if (IS_ERR(ctx)) {
12881                 err = PTR_ERR(ctx);
12882                 goto err_cred;
12883         }
12884
12885         mutex_lock(&ctx->mutex);
12886
12887         if (ctx->task == TASK_TOMBSTONE) {
12888                 err = -ESRCH;
12889                 goto err_locked;
12890         }
12891
12892         if (!task) {
12893                 /*
12894                  * Check if the @cpu we're creating an event for is online.
12895                  *
12896                  * We use the perf_cpu_context::ctx::mutex to serialize against
12897                  * the hotplug notifiers. See perf_event_{init,exit}_cpu().
12898                  */
12899                 struct perf_cpu_context *cpuctx = per_cpu_ptr(&perf_cpu_context, event->cpu);
12900
12901                 if (!cpuctx->online) {
12902                         err = -ENODEV;
12903                         goto err_locked;
12904                 }
12905         }
12906
12907         if (group_leader) {
12908                 err = -EINVAL;
12909
12910                 /*
12911                  * Do not allow a recursive hierarchy (this new sibling
12912                  * becoming part of another group-sibling):
12913                  */
12914                 if (group_leader->group_leader != group_leader)
12915                         goto err_locked;
12916
12917                 /* All events in a group should have the same clock */
12918                 if (group_leader->clock != event->clock)
12919                         goto err_locked;
12920
12921                 /*
12922                  * Make sure we're both events for the same CPU;
12923                  * grouping events for different CPUs is broken; since
12924                  * you can never concurrently schedule them anyhow.
12925                  */
12926                 if (group_leader->cpu != event->cpu)
12927                         goto err_locked;
12928
12929                 /*
12930                  * Make sure we're both on the same context; either task or cpu.
12931                  */
12932                 if (group_leader->ctx != ctx)
12933                         goto err_locked;
12934
12935                 /*
12936                  * Only a group leader can be exclusive or pinned
12937                  */
12938                 if (attr.exclusive || attr.pinned)
12939                         goto err_locked;
12940
12941                 if (is_software_event(event) &&
12942                     !in_software_context(group_leader)) {
12943                         /*
12944                          * If the event is a sw event, but the group_leader
12945                          * is on hw context.
12946                          *
12947                          * Allow the addition of software events to hw
12948                          * groups, this is safe because software events
12949                          * never fail to schedule.
12950                          *
12951                          * Note the comment that goes with struct
12952                          * perf_event_pmu_context.
12953                          */
12954                         pmu = group_leader->pmu_ctx->pmu;
12955                 } else if (!is_software_event(event)) {
12956                         if (is_software_event(group_leader) &&
12957                             (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
12958                                 /*
12959                                  * In case the group is a pure software group, and we
12960                                  * try to add a hardware event, move the whole group to
12961                                  * the hardware context.
12962                                  */
12963                                 move_group = 1;
12964                         }
12965
12966                         /* Don't allow group of multiple hw events from different pmus */
12967                         if (!in_software_context(group_leader) &&
12968                             group_leader->pmu_ctx->pmu != pmu)
12969                                 goto err_locked;
12970                 }
12971         }
12972
12973         /*
12974          * Now that we're certain of the pmu; find the pmu_ctx.
12975          */
12976         pmu_ctx = find_get_pmu_context(pmu, ctx, event);
12977         if (IS_ERR(pmu_ctx)) {
12978                 err = PTR_ERR(pmu_ctx);
12979                 goto err_locked;
12980         }
12981         event->pmu_ctx = pmu_ctx;
12982
12983         if (output_event) {
12984                 err = perf_event_set_output(event, output_event);
12985                 if (err)
12986                         goto err_context;
12987         }
12988
12989         if (!perf_event_validate_size(event)) {
12990                 err = -E2BIG;
12991                 goto err_context;
12992         }
12993
12994         if (perf_need_aux_event(event) && !perf_get_aux_event(event, group_leader)) {
12995                 err = -EINVAL;
12996                 goto err_context;
12997         }
12998
12999         /*
13000          * Must be under the same ctx::mutex as perf_install_in_context(),
13001          * because we need to serialize with concurrent event creation.
13002          */
13003         if (!exclusive_event_installable(event, ctx)) {
13004                 err = -EBUSY;
13005                 goto err_context;
13006         }
13007
13008         WARN_ON_ONCE(ctx->parent_ctx);
13009
13010         event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, f_flags);
13011         if (IS_ERR(event_file)) {
13012                 err = PTR_ERR(event_file);
13013                 event_file = NULL;
13014                 goto err_context;
13015         }
13016
13017         /*
13018          * This is the point on no return; we cannot fail hereafter. This is
13019          * where we start modifying current state.
13020          */
13021
13022         if (move_group) {
13023                 perf_remove_from_context(group_leader, 0);
13024                 put_pmu_ctx(group_leader->pmu_ctx);
13025
13026                 for_each_sibling_event(sibling, group_leader) {
13027                         perf_remove_from_context(sibling, 0);
13028                         put_pmu_ctx(sibling->pmu_ctx);
13029                 }
13030
13031                 /*
13032                  * Install the group siblings before the group leader.
13033                  *
13034                  * Because a group leader will try and install the entire group
13035                  * (through the sibling list, which is still in-tact), we can
13036                  * end up with siblings installed in the wrong context.
13037                  *
13038                  * By installing siblings first we NO-OP because they're not
13039                  * reachable through the group lists.
13040                  */
13041                 for_each_sibling_event(sibling, group_leader) {
13042                         sibling->pmu_ctx = pmu_ctx;
13043                         get_pmu_ctx(pmu_ctx);
13044                         perf_event__state_init(sibling);
13045                         perf_install_in_context(ctx, sibling, sibling->cpu);
13046                 }
13047
13048                 /*
13049                  * Removing from the context ends up with disabled
13050                  * event. What we want here is event in the initial
13051                  * startup state, ready to be add into new context.
13052                  */
13053                 group_leader->pmu_ctx = pmu_ctx;
13054                 get_pmu_ctx(pmu_ctx);
13055                 perf_event__state_init(group_leader);
13056                 perf_install_in_context(ctx, group_leader, group_leader->cpu);
13057         }
13058
13059         /*
13060          * Precalculate sample_data sizes; do while holding ctx::mutex such
13061          * that we're serialized against further additions and before
13062          * perf_install_in_context() which is the point the event is active and
13063          * can use these values.
13064          */
13065         perf_event__header_size(event);
13066         perf_event__id_header_size(event);
13067
13068         event->owner = current;
13069
13070         perf_install_in_context(ctx, event, event->cpu);
13071         perf_unpin_context(ctx);
13072
13073         mutex_unlock(&ctx->mutex);
13074
13075         if (task) {
13076                 up_read(&task->signal->exec_update_lock);
13077                 put_task_struct(task);
13078         }
13079
13080         mutex_lock(&current->perf_event_mutex);
13081         list_add_tail(&event->owner_entry, &current->perf_event_list);
13082         mutex_unlock(&current->perf_event_mutex);
13083
13084         /*
13085          * File reference in group guarantees that group_leader has been
13086          * kept alive until we place the new event on the sibling_list.
13087          * This ensures destruction of the group leader will find
13088          * the pointer to itself in perf_group_detach().
13089          */
13090         fd_install(event_fd, event_file);
13091         return event_fd;
13092
13093 err_context:
13094         put_pmu_ctx(event->pmu_ctx);
13095         event->pmu_ctx = NULL; /* _free_event() */
13096 err_locked:
13097         mutex_unlock(&ctx->mutex);
13098         perf_unpin_context(ctx);
13099         put_ctx(ctx);
13100 err_cred:
13101         if (task)
13102                 up_read(&task->signal->exec_update_lock);
13103 err_alloc:
13104         free_event(event);
13105 err_task:
13106         if (task)
13107                 put_task_struct(task);
13108 err_fd:
13109         put_unused_fd(event_fd);
13110         return err;
13111 }
13112
13113 /**
13114  * perf_event_create_kernel_counter
13115  *
13116  * @attr: attributes of the counter to create
13117  * @cpu: cpu in which the counter is bound
13118  * @task: task to profile (NULL for percpu)
13119  * @overflow_handler: callback to trigger when we hit the event
13120  * @context: context data could be used in overflow_handler callback
13121  */
13122 struct perf_event *
13123 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
13124                                  struct task_struct *task,
13125                                  perf_overflow_handler_t overflow_handler,
13126                                  void *context)
13127 {
13128         struct perf_event_pmu_context *pmu_ctx;
13129         struct perf_event_context *ctx;
13130         struct perf_event *event;
13131         struct pmu *pmu;
13132         int err;
13133
13134         /*
13135          * Grouping is not supported for kernel events, neither is 'AUX',
13136          * make sure the caller's intentions are adjusted.
13137          */
13138         if (attr->aux_output || attr->aux_action)
13139                 return ERR_PTR(-EINVAL);
13140
13141         event = perf_event_alloc(attr, cpu, task, NULL, NULL,
13142                                  overflow_handler, context, -1);
13143         if (IS_ERR(event)) {
13144                 err = PTR_ERR(event);
13145                 goto err;
13146         }
13147
13148         /* Mark owner so we could distinguish it from user events. */
13149         event->owner = TASK_TOMBSTONE;
13150         pmu = event->pmu;
13151
13152         if (pmu->task_ctx_nr == perf_sw_context)
13153                 event->event_caps |= PERF_EV_CAP_SOFTWARE;
13154
13155         /*
13156          * Get the target context (task or percpu):
13157          */
13158         ctx = find_get_context(task, event);
13159         if (IS_ERR(ctx)) {
13160                 err = PTR_ERR(ctx);
13161                 goto err_alloc;
13162         }
13163
13164         WARN_ON_ONCE(ctx->parent_ctx);
13165         mutex_lock(&ctx->mutex);
13166         if (ctx->task == TASK_TOMBSTONE) {
13167                 err = -ESRCH;
13168                 goto err_unlock;
13169         }
13170
13171         pmu_ctx = find_get_pmu_context(pmu, ctx, event);
13172         if (IS_ERR(pmu_ctx)) {
13173                 err = PTR_ERR(pmu_ctx);
13174                 goto err_unlock;
13175         }
13176         event->pmu_ctx = pmu_ctx;
13177
13178         if (!task) {
13179                 /*
13180                  * Check if the @cpu we're creating an event for is online.
13181                  *
13182                  * We use the perf_cpu_context::ctx::mutex to serialize against
13183                  * the hotplug notifiers. See perf_event_{init,exit}_cpu().
13184                  */
13185                 struct perf_cpu_context *cpuctx =
13186                         container_of(ctx, struct perf_cpu_context, ctx);
13187                 if (!cpuctx->online) {
13188                         err = -ENODEV;
13189                         goto err_pmu_ctx;
13190                 }
13191         }
13192
13193         if (!exclusive_event_installable(event, ctx)) {
13194                 err = -EBUSY;
13195                 goto err_pmu_ctx;
13196         }
13197
13198         perf_install_in_context(ctx, event, event->cpu);
13199         perf_unpin_context(ctx);
13200         mutex_unlock(&ctx->mutex);
13201
13202         return event;
13203
13204 err_pmu_ctx:
13205         put_pmu_ctx(pmu_ctx);
13206         event->pmu_ctx = NULL; /* _free_event() */
13207 err_unlock:
13208         mutex_unlock(&ctx->mutex);
13209         perf_unpin_context(ctx);
13210         put_ctx(ctx);
13211 err_alloc:
13212         free_event(event);
13213 err:
13214         return ERR_PTR(err);
13215 }
13216 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
13217
13218 static void __perf_pmu_remove(struct perf_event_context *ctx,
13219                               int cpu, struct pmu *pmu,
13220                               struct perf_event_groups *groups,
13221                               struct list_head *events)
13222 {
13223         struct perf_event *event, *sibling;
13224
13225         perf_event_groups_for_cpu_pmu(event, groups, cpu, pmu) {
13226                 perf_remove_from_context(event, 0);
13227                 put_pmu_ctx(event->pmu_ctx);
13228                 list_add(&event->migrate_entry, events);
13229
13230                 for_each_sibling_event(sibling, event) {
13231                         perf_remove_from_context(sibling, 0);
13232                         put_pmu_ctx(sibling->pmu_ctx);
13233                         list_add(&sibling->migrate_entry, events);
13234                 }
13235         }
13236 }
13237
13238 static void __perf_pmu_install_event(struct pmu *pmu,
13239                                      struct perf_event_context *ctx,
13240                                      int cpu, struct perf_event *event)
13241 {
13242         struct perf_event_pmu_context *epc;
13243         struct perf_event_context *old_ctx = event->ctx;
13244
13245         get_ctx(ctx); /* normally find_get_context() */
13246
13247         event->cpu = cpu;
13248         epc = find_get_pmu_context(pmu, ctx, event);
13249         event->pmu_ctx = epc;
13250
13251         if (event->state >= PERF_EVENT_STATE_OFF)
13252                 event->state = PERF_EVENT_STATE_INACTIVE;
13253         perf_install_in_context(ctx, event, cpu);
13254
13255         /*
13256          * Now that event->ctx is updated and visible, put the old ctx.
13257          */
13258         put_ctx(old_ctx);
13259 }
13260
13261 static void __perf_pmu_install(struct perf_event_context *ctx,
13262                                int cpu, struct pmu *pmu, struct list_head *events)
13263 {
13264         struct perf_event *event, *tmp;
13265
13266         /*
13267          * Re-instate events in 2 passes.
13268          *
13269          * Skip over group leaders and only install siblings on this first
13270          * pass, siblings will not get enabled without a leader, however a
13271          * leader will enable its siblings, even if those are still on the old
13272          * context.
13273          */
13274         list_for_each_entry_safe(event, tmp, events, migrate_entry) {
13275                 if (event->group_leader == event)
13276                         continue;
13277
13278                 list_del(&event->migrate_entry);
13279                 __perf_pmu_install_event(pmu, ctx, cpu, event);
13280         }
13281
13282         /*
13283          * Once all the siblings are setup properly, install the group leaders
13284          * to make it go.
13285          */
13286         list_for_each_entry_safe(event, tmp, events, migrate_entry) {
13287                 list_del(&event->migrate_entry);
13288                 __perf_pmu_install_event(pmu, ctx, cpu, event);
13289         }
13290 }
13291
13292 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
13293 {
13294         struct perf_event_context *src_ctx, *dst_ctx;
13295         LIST_HEAD(events);
13296
13297         /*
13298          * Since per-cpu context is persistent, no need to grab an extra
13299          * reference.
13300          */
13301         src_ctx = &per_cpu_ptr(&perf_cpu_context, src_cpu)->ctx;
13302         dst_ctx = &per_cpu_ptr(&perf_cpu_context, dst_cpu)->ctx;
13303
13304         /*
13305          * See perf_event_ctx_lock() for comments on the details
13306          * of swizzling perf_event::ctx.
13307          */
13308         mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
13309
13310         __perf_pmu_remove(src_ctx, src_cpu, pmu, &src_ctx->pinned_groups, &events);
13311         __perf_pmu_remove(src_ctx, src_cpu, pmu, &src_ctx->flexible_groups, &events);
13312
13313         if (!list_empty(&events)) {
13314                 /*
13315                  * Wait for the events to quiesce before re-instating them.
13316                  */
13317                 synchronize_rcu();
13318
13319                 __perf_pmu_install(dst_ctx, dst_cpu, pmu, &events);
13320         }
13321
13322         mutex_unlock(&dst_ctx->mutex);
13323         mutex_unlock(&src_ctx->mutex);
13324 }
13325 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
13326
13327 static void sync_child_event(struct perf_event *child_event)
13328 {
13329         struct perf_event *parent_event = child_event->parent;
13330         u64 child_val;
13331
13332         if (child_event->attr.inherit_stat) {
13333                 struct task_struct *task = child_event->ctx->task;
13334
13335                 if (task && task != TASK_TOMBSTONE)
13336                         perf_event_read_event(child_event, task);
13337         }
13338
13339         child_val = perf_event_count(child_event, false);
13340
13341         /*
13342          * Add back the child's count to the parent's count:
13343          */
13344         atomic64_add(child_val, &parent_event->child_count);
13345         atomic64_add(child_event->total_time_enabled,
13346                      &parent_event->child_total_time_enabled);
13347         atomic64_add(child_event->total_time_running,
13348                      &parent_event->child_total_time_running);
13349 }
13350
13351 static void
13352 perf_event_exit_event(struct perf_event *event, struct perf_event_context *ctx)
13353 {
13354         struct perf_event *parent_event = event->parent;
13355         unsigned long detach_flags = 0;
13356
13357         if (parent_event) {
13358                 /*
13359                  * Do not destroy the 'original' grouping; because of the
13360                  * context switch optimization the original events could've
13361                  * ended up in a random child task.
13362                  *
13363                  * If we were to destroy the original group, all group related
13364                  * operations would cease to function properly after this
13365                  * random child dies.
13366                  *
13367                  * Do destroy all inherited groups, we don't care about those
13368                  * and being thorough is better.
13369                  */
13370                 detach_flags = DETACH_GROUP | DETACH_CHILD;
13371                 mutex_lock(&parent_event->child_mutex);
13372         }
13373
13374         perf_remove_from_context(event, detach_flags);
13375
13376         raw_spin_lock_irq(&ctx->lock);
13377         if (event->state > PERF_EVENT_STATE_EXIT)
13378                 perf_event_set_state(event, PERF_EVENT_STATE_EXIT);
13379         raw_spin_unlock_irq(&ctx->lock);
13380
13381         /*
13382          * Child events can be freed.
13383          */
13384         if (parent_event) {
13385                 mutex_unlock(&parent_event->child_mutex);
13386                 /*
13387                  * Kick perf_poll() for is_event_hup();
13388                  */
13389                 perf_event_wakeup(parent_event);
13390                 free_event(event);
13391                 put_event(parent_event);
13392                 return;
13393         }
13394
13395         /*
13396          * Parent events are governed by their filedesc, retain them.
13397          */
13398         perf_event_wakeup(event);
13399 }
13400
13401 static void perf_event_exit_task_context(struct task_struct *child)
13402 {
13403         struct perf_event_context *child_ctx, *clone_ctx = NULL;
13404         struct perf_event *child_event, *next;
13405
13406         WARN_ON_ONCE(child != current);
13407
13408         child_ctx = perf_pin_task_context(child);
13409         if (!child_ctx)
13410                 return;
13411
13412         /*
13413          * In order to reduce the amount of tricky in ctx tear-down, we hold
13414          * ctx::mutex over the entire thing. This serializes against almost
13415          * everything that wants to access the ctx.
13416          *
13417          * The exception is sys_perf_event_open() /
13418          * perf_event_create_kernel_count() which does find_get_context()
13419          * without ctx::mutex (it cannot because of the move_group double mutex
13420          * lock thing). See the comments in perf_install_in_context().
13421          */
13422         mutex_lock(&child_ctx->mutex);
13423
13424         /*
13425          * In a single ctx::lock section, de-schedule the events and detach the
13426          * context from the task such that we cannot ever get it scheduled back
13427          * in.
13428          */
13429         raw_spin_lock_irq(&child_ctx->lock);
13430         task_ctx_sched_out(child_ctx, NULL, EVENT_ALL);
13431
13432         /*
13433          * Now that the context is inactive, destroy the task <-> ctx relation
13434          * and mark the context dead.
13435          */
13436         RCU_INIT_POINTER(child->perf_event_ctxp, NULL);
13437         put_ctx(child_ctx); /* cannot be last */
13438         WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
13439         put_task_struct(current); /* cannot be last */
13440
13441         clone_ctx = unclone_ctx(child_ctx);
13442         raw_spin_unlock_irq(&child_ctx->lock);
13443
13444         if (clone_ctx)
13445                 put_ctx(clone_ctx);
13446
13447         /*
13448          * Report the task dead after unscheduling the events so that we
13449          * won't get any samples after PERF_RECORD_EXIT. We can however still
13450          * get a few PERF_RECORD_READ events.
13451          */
13452         perf_event_task(child, child_ctx, 0);
13453
13454         list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
13455                 perf_event_exit_event(child_event, child_ctx);
13456
13457         mutex_unlock(&child_ctx->mutex);
13458
13459         put_ctx(child_ctx);
13460 }
13461
13462 /*
13463  * When a child task exits, feed back event values to parent events.
13464  *
13465  * Can be called with exec_update_lock held when called from
13466  * setup_new_exec().
13467  */
13468 void perf_event_exit_task(struct task_struct *child)
13469 {
13470         struct perf_event *event, *tmp;
13471
13472         mutex_lock(&child->perf_event_mutex);
13473         list_for_each_entry_safe(event, tmp, &child->perf_event_list,
13474                                  owner_entry) {
13475                 list_del_init(&event->owner_entry);
13476
13477                 /*
13478                  * Ensure the list deletion is visible before we clear
13479                  * the owner, closes a race against perf_release() where
13480                  * we need to serialize on the owner->perf_event_mutex.
13481                  */
13482                 smp_store_release(&event->owner, NULL);
13483         }
13484         mutex_unlock(&child->perf_event_mutex);
13485
13486         perf_event_exit_task_context(child);
13487
13488         /*
13489          * The perf_event_exit_task_context calls perf_event_task
13490          * with child's task_ctx, which generates EXIT events for
13491          * child contexts and sets child->perf_event_ctxp[] to NULL.
13492          * At this point we need to send EXIT events to cpu contexts.
13493          */
13494         perf_event_task(child, NULL, 0);
13495 }
13496
13497 static void perf_free_event(struct perf_event *event,
13498                             struct perf_event_context *ctx)
13499 {
13500         struct perf_event *parent = event->parent;
13501
13502         if (WARN_ON_ONCE(!parent))
13503                 return;
13504
13505         mutex_lock(&parent->child_mutex);
13506         list_del_init(&event->child_list);
13507         mutex_unlock(&parent->child_mutex);
13508
13509         put_event(parent);
13510
13511         raw_spin_lock_irq(&ctx->lock);
13512         perf_group_detach(event);
13513         list_del_event(event, ctx);
13514         raw_spin_unlock_irq(&ctx->lock);
13515         free_event(event);
13516 }
13517
13518 /*
13519  * Free a context as created by inheritance by perf_event_init_task() below,
13520  * used by fork() in case of fail.
13521  *
13522  * Even though the task has never lived, the context and events have been
13523  * exposed through the child_list, so we must take care tearing it all down.
13524  */
13525 void perf_event_free_task(struct task_struct *task)
13526 {
13527         struct perf_event_context *ctx;
13528         struct perf_event *event, *tmp;
13529
13530         ctx = rcu_access_pointer(task->perf_event_ctxp);
13531         if (!ctx)
13532                 return;
13533
13534         mutex_lock(&ctx->mutex);
13535         raw_spin_lock_irq(&ctx->lock);
13536         /*
13537          * Destroy the task <-> ctx relation and mark the context dead.
13538          *
13539          * This is important because even though the task hasn't been
13540          * exposed yet the context has been (through child_list).
13541          */
13542         RCU_INIT_POINTER(task->perf_event_ctxp, NULL);
13543         WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
13544         put_task_struct(task); /* cannot be last */
13545         raw_spin_unlock_irq(&ctx->lock);
13546
13547
13548         list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
13549                 perf_free_event(event, ctx);
13550
13551         mutex_unlock(&ctx->mutex);
13552
13553         /*
13554          * perf_event_release_kernel() could've stolen some of our
13555          * child events and still have them on its free_list. In that
13556          * case we must wait for these events to have been freed (in
13557          * particular all their references to this task must've been
13558          * dropped).
13559          *
13560          * Without this copy_process() will unconditionally free this
13561          * task (irrespective of its reference count) and
13562          * _free_event()'s put_task_struct(event->hw.target) will be a
13563          * use-after-free.
13564          *
13565          * Wait for all events to drop their context reference.
13566          */
13567         wait_var_event(&ctx->refcount, refcount_read(&ctx->refcount) == 1);
13568         put_ctx(ctx); /* must be last */
13569 }
13570
13571 void perf_event_delayed_put(struct task_struct *task)
13572 {
13573         WARN_ON_ONCE(task->perf_event_ctxp);
13574 }
13575
13576 struct file *perf_event_get(unsigned int fd)
13577 {
13578         struct file *file = fget(fd);
13579         if (!file)
13580                 return ERR_PTR(-EBADF);
13581
13582         if (file->f_op != &perf_fops) {
13583                 fput(file);
13584                 return ERR_PTR(-EBADF);
13585         }
13586
13587         return file;
13588 }
13589
13590 const struct perf_event *perf_get_event(struct file *file)
13591 {
13592         if (file->f_op != &perf_fops)
13593                 return ERR_PTR(-EINVAL);
13594
13595         return file->private_data;
13596 }
13597
13598 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
13599 {
13600         if (!event)
13601                 return ERR_PTR(-EINVAL);
13602
13603         return &event->attr;
13604 }
13605
13606 int perf_allow_kernel(struct perf_event_attr *attr)
13607 {
13608         if (sysctl_perf_event_paranoid > 1 && !perfmon_capable())
13609                 return -EACCES;
13610
13611         return security_perf_event_open(attr, PERF_SECURITY_KERNEL);
13612 }
13613 EXPORT_SYMBOL_GPL(perf_allow_kernel);
13614
13615 /*
13616  * Inherit an event from parent task to child task.
13617  *
13618  * Returns:
13619  *  - valid pointer on success
13620  *  - NULL for orphaned events
13621  *  - IS_ERR() on error
13622  */
13623 static struct perf_event *
13624 inherit_event(struct perf_event *parent_event,
13625               struct task_struct *parent,
13626               struct perf_event_context *parent_ctx,
13627               struct task_struct *child,
13628               struct perf_event *group_leader,
13629               struct perf_event_context *child_ctx)
13630 {
13631         enum perf_event_state parent_state = parent_event->state;
13632         struct perf_event_pmu_context *pmu_ctx;
13633         struct perf_event *child_event;
13634         unsigned long flags;
13635
13636         /*
13637          * Instead of creating recursive hierarchies of events,
13638          * we link inherited events back to the original parent,
13639          * which has a filp for sure, which we use as the reference
13640          * count:
13641          */
13642         if (parent_event->parent)
13643                 parent_event = parent_event->parent;
13644
13645         child_event = perf_event_alloc(&parent_event->attr,
13646                                            parent_event->cpu,
13647                                            child,
13648                                            group_leader, parent_event,
13649                                            NULL, NULL, -1);
13650         if (IS_ERR(child_event))
13651                 return child_event;
13652
13653         pmu_ctx = find_get_pmu_context(child_event->pmu, child_ctx, child_event);
13654         if (IS_ERR(pmu_ctx)) {
13655                 free_event(child_event);
13656                 return ERR_CAST(pmu_ctx);
13657         }
13658         child_event->pmu_ctx = pmu_ctx;
13659
13660         /*
13661          * is_orphaned_event() and list_add_tail(&parent_event->child_list)
13662          * must be under the same lock in order to serialize against
13663          * perf_event_release_kernel(), such that either we must observe
13664          * is_orphaned_event() or they will observe us on the child_list.
13665          */
13666         mutex_lock(&parent_event->child_mutex);
13667         if (is_orphaned_event(parent_event) ||
13668             !atomic_long_inc_not_zero(&parent_event->refcount)) {
13669                 mutex_unlock(&parent_event->child_mutex);
13670                 /* task_ctx_data is freed with child_ctx */
13671                 free_event(child_event);
13672                 return NULL;
13673         }
13674
13675         get_ctx(child_ctx);
13676
13677         /*
13678          * Make the child state follow the state of the parent event,
13679          * not its attr.disabled bit.  We hold the parent's mutex,
13680          * so we won't race with perf_event_{en, dis}able_family.
13681          */
13682         if (parent_state >= PERF_EVENT_STATE_INACTIVE)
13683                 child_event->state = PERF_EVENT_STATE_INACTIVE;
13684         else
13685                 child_event->state = PERF_EVENT_STATE_OFF;
13686
13687         if (parent_event->attr.freq) {
13688                 u64 sample_period = parent_event->hw.sample_period;
13689                 struct hw_perf_event *hwc = &child_event->hw;
13690
13691                 hwc->sample_period = sample_period;
13692                 hwc->last_period   = sample_period;
13693
13694                 local64_set(&hwc->period_left, sample_period);
13695         }
13696
13697         child_event->ctx = child_ctx;
13698         child_event->overflow_handler = parent_event->overflow_handler;
13699         child_event->overflow_handler_context
13700                 = parent_event->overflow_handler_context;
13701
13702         /*
13703          * Precalculate sample_data sizes
13704          */
13705         perf_event__header_size(child_event);
13706         perf_event__id_header_size(child_event);
13707
13708         /*
13709          * Link it up in the child's context:
13710          */
13711         raw_spin_lock_irqsave(&child_ctx->lock, flags);
13712         add_event_to_ctx(child_event, child_ctx);
13713         child_event->attach_state |= PERF_ATTACH_CHILD;
13714         raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
13715
13716         /*
13717          * Link this into the parent event's child list
13718          */
13719         list_add_tail(&child_event->child_list, &parent_event->child_list);
13720         mutex_unlock(&parent_event->child_mutex);
13721
13722         return child_event;
13723 }
13724
13725 /*
13726  * Inherits an event group.
13727  *
13728  * This will quietly suppress orphaned events; !inherit_event() is not an error.
13729  * This matches with perf_event_release_kernel() removing all child events.
13730  *
13731  * Returns:
13732  *  - 0 on success
13733  *  - <0 on error
13734  */
13735 static int inherit_group(struct perf_event *parent_event,
13736               struct task_struct *parent,
13737               struct perf_event_context *parent_ctx,
13738               struct task_struct *child,
13739               struct perf_event_context *child_ctx)
13740 {
13741         struct perf_event *leader;
13742         struct perf_event *sub;
13743         struct perf_event *child_ctr;
13744
13745         leader = inherit_event(parent_event, parent, parent_ctx,
13746                                  child, NULL, child_ctx);
13747         if (IS_ERR(leader))
13748                 return PTR_ERR(leader);
13749         /*
13750          * @leader can be NULL here because of is_orphaned_event(). In this
13751          * case inherit_event() will create individual events, similar to what
13752          * perf_group_detach() would do anyway.
13753          */
13754         for_each_sibling_event(sub, parent_event) {
13755                 child_ctr = inherit_event(sub, parent, parent_ctx,
13756                                             child, leader, child_ctx);
13757                 if (IS_ERR(child_ctr))
13758                         return PTR_ERR(child_ctr);
13759
13760                 if (sub->aux_event == parent_event && child_ctr &&
13761                     !perf_get_aux_event(child_ctr, leader))
13762                         return -EINVAL;
13763         }
13764         if (leader)
13765                 leader->group_generation = parent_event->group_generation;
13766         return 0;
13767 }
13768
13769 /*
13770  * Creates the child task context and tries to inherit the event-group.
13771  *
13772  * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
13773  * inherited_all set when we 'fail' to inherit an orphaned event; this is
13774  * consistent with perf_event_release_kernel() removing all child events.
13775  *
13776  * Returns:
13777  *  - 0 on success
13778  *  - <0 on error
13779  */
13780 static int
13781 inherit_task_group(struct perf_event *event, struct task_struct *parent,
13782                    struct perf_event_context *parent_ctx,
13783                    struct task_struct *child,
13784                    u64 clone_flags, int *inherited_all)
13785 {
13786         struct perf_event_context *child_ctx;
13787         int ret;
13788
13789         if (!event->attr.inherit ||
13790             (event->attr.inherit_thread && !(clone_flags & CLONE_THREAD)) ||
13791             /* Do not inherit if sigtrap and signal handlers were cleared. */
13792             (event->attr.sigtrap && (clone_flags & CLONE_CLEAR_SIGHAND))) {
13793                 *inherited_all = 0;
13794                 return 0;
13795         }
13796
13797         child_ctx = child->perf_event_ctxp;
13798         if (!child_ctx) {
13799                 /*
13800                  * This is executed from the parent task context, so
13801                  * inherit events that have been marked for cloning.
13802                  * First allocate and initialize a context for the
13803                  * child.
13804                  */
13805                 child_ctx = alloc_perf_context(child);
13806                 if (!child_ctx)
13807                         return -ENOMEM;
13808
13809                 child->perf_event_ctxp = child_ctx;
13810         }
13811
13812         ret = inherit_group(event, parent, parent_ctx, child, child_ctx);
13813         if (ret)
13814                 *inherited_all = 0;
13815
13816         return ret;
13817 }
13818
13819 /*
13820  * Initialize the perf_event context in task_struct
13821  */
13822 static int perf_event_init_context(struct task_struct *child, u64 clone_flags)
13823 {
13824         struct perf_event_context *child_ctx, *parent_ctx;
13825         struct perf_event_context *cloned_ctx;
13826         struct perf_event *event;
13827         struct task_struct *parent = current;
13828         int inherited_all = 1;
13829         unsigned long flags;
13830         int ret = 0;
13831
13832         if (likely(!parent->perf_event_ctxp))
13833                 return 0;
13834
13835         /*
13836          * If the parent's context is a clone, pin it so it won't get
13837          * swapped under us.
13838          */
13839         parent_ctx = perf_pin_task_context(parent);
13840         if (!parent_ctx)
13841                 return 0;
13842
13843         /*
13844          * No need to check if parent_ctx != NULL here; since we saw
13845          * it non-NULL earlier, the only reason for it to become NULL
13846          * is if we exit, and since we're currently in the middle of
13847          * a fork we can't be exiting at the same time.
13848          */
13849
13850         /*
13851          * Lock the parent list. No need to lock the child - not PID
13852          * hashed yet and not running, so nobody can access it.
13853          */
13854         mutex_lock(&parent_ctx->mutex);
13855
13856         /*
13857          * We dont have to disable NMIs - we are only looking at
13858          * the list, not manipulating it:
13859          */
13860         perf_event_groups_for_each(event, &parent_ctx->pinned_groups) {
13861                 ret = inherit_task_group(event, parent, parent_ctx,
13862                                          child, clone_flags, &inherited_all);
13863                 if (ret)
13864                         goto out_unlock;
13865         }
13866
13867         /*
13868          * We can't hold ctx->lock when iterating the ->flexible_group list due
13869          * to allocations, but we need to prevent rotation because
13870          * rotate_ctx() will change the list from interrupt context.
13871          */
13872         raw_spin_lock_irqsave(&parent_ctx->lock, flags);
13873         parent_ctx->rotate_disable = 1;
13874         raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
13875
13876         perf_event_groups_for_each(event, &parent_ctx->flexible_groups) {
13877                 ret = inherit_task_group(event, parent, parent_ctx,
13878                                          child, clone_flags, &inherited_all);
13879                 if (ret)
13880                         goto out_unlock;
13881         }
13882
13883         raw_spin_lock_irqsave(&parent_ctx->lock, flags);
13884         parent_ctx->rotate_disable = 0;
13885
13886         child_ctx = child->perf_event_ctxp;
13887
13888         if (child_ctx && inherited_all) {
13889                 /*
13890                  * Mark the child context as a clone of the parent
13891                  * context, or of whatever the parent is a clone of.
13892                  *
13893                  * Note that if the parent is a clone, the holding of
13894                  * parent_ctx->lock avoids it from being uncloned.
13895                  */
13896                 cloned_ctx = parent_ctx->parent_ctx;
13897                 if (cloned_ctx) {
13898                         child_ctx->parent_ctx = cloned_ctx;
13899                         child_ctx->parent_gen = parent_ctx->parent_gen;
13900                 } else {
13901                         child_ctx->parent_ctx = parent_ctx;
13902                         child_ctx->parent_gen = parent_ctx->generation;
13903                 }
13904                 get_ctx(child_ctx->parent_ctx);
13905         }
13906
13907         raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
13908 out_unlock:
13909         mutex_unlock(&parent_ctx->mutex);
13910
13911         perf_unpin_context(parent_ctx);
13912         put_ctx(parent_ctx);
13913
13914         return ret;
13915 }
13916
13917 /*
13918  * Initialize the perf_event context in task_struct
13919  */
13920 int perf_event_init_task(struct task_struct *child, u64 clone_flags)
13921 {
13922         int ret;
13923
13924         memset(child->perf_recursion, 0, sizeof(child->perf_recursion));
13925         child->perf_event_ctxp = NULL;
13926         mutex_init(&child->perf_event_mutex);
13927         INIT_LIST_HEAD(&child->perf_event_list);
13928
13929         ret = perf_event_init_context(child, clone_flags);
13930         if (ret) {
13931                 perf_event_free_task(child);
13932                 return ret;
13933         }
13934
13935         return 0;
13936 }
13937
13938 static void __init perf_event_init_all_cpus(void)
13939 {
13940         struct swevent_htable *swhash;
13941         struct perf_cpu_context *cpuctx;
13942         int cpu;
13943
13944         zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
13945         zalloc_cpumask_var(&perf_online_core_mask, GFP_KERNEL);
13946         zalloc_cpumask_var(&perf_online_die_mask, GFP_KERNEL);
13947         zalloc_cpumask_var(&perf_online_cluster_mask, GFP_KERNEL);
13948         zalloc_cpumask_var(&perf_online_pkg_mask, GFP_KERNEL);
13949         zalloc_cpumask_var(&perf_online_sys_mask, GFP_KERNEL);
13950
13951
13952         for_each_possible_cpu(cpu) {
13953                 swhash = &per_cpu(swevent_htable, cpu);
13954                 mutex_init(&swhash->hlist_mutex);
13955
13956                 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
13957                 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
13958
13959                 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
13960
13961                 cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
13962                 __perf_event_init_context(&cpuctx->ctx);
13963                 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
13964                 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
13965                 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
13966                 cpuctx->heap_size = ARRAY_SIZE(cpuctx->heap_default);
13967                 cpuctx->heap = cpuctx->heap_default;
13968         }
13969 }
13970
13971 static void perf_swevent_init_cpu(unsigned int cpu)
13972 {
13973         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
13974
13975         mutex_lock(&swhash->hlist_mutex);
13976         if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
13977                 struct swevent_hlist *hlist;
13978
13979                 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
13980                 WARN_ON(!hlist);
13981                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
13982         }
13983         mutex_unlock(&swhash->hlist_mutex);
13984 }
13985
13986 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
13987 static void __perf_event_exit_context(void *__info)
13988 {
13989         struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
13990         struct perf_event_context *ctx = __info;
13991         struct perf_event *event;
13992
13993         raw_spin_lock(&ctx->lock);
13994         ctx_sched_out(ctx, NULL, EVENT_TIME);
13995         list_for_each_entry(event, &ctx->event_list, event_entry)
13996                 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
13997         raw_spin_unlock(&ctx->lock);
13998 }
13999
14000 static void perf_event_clear_cpumask(unsigned int cpu)
14001 {
14002         int target[PERF_PMU_MAX_SCOPE];
14003         unsigned int scope;
14004         struct pmu *pmu;
14005
14006         cpumask_clear_cpu(cpu, perf_online_mask);
14007
14008         for (scope = PERF_PMU_SCOPE_NONE + 1; scope < PERF_PMU_MAX_SCOPE; scope++) {
14009                 const struct cpumask *cpumask = perf_scope_cpu_topology_cpumask(scope, cpu);
14010                 struct cpumask *pmu_cpumask = perf_scope_cpumask(scope);
14011
14012                 target[scope] = -1;
14013                 if (WARN_ON_ONCE(!pmu_cpumask || !cpumask))
14014                         continue;
14015
14016                 if (!cpumask_test_and_clear_cpu(cpu, pmu_cpumask))
14017                         continue;
14018                 target[scope] = cpumask_any_but(cpumask, cpu);
14019                 if (target[scope] < nr_cpu_ids)
14020                         cpumask_set_cpu(target[scope], pmu_cpumask);
14021         }
14022
14023         /* migrate */
14024         list_for_each_entry(pmu, &pmus, entry) {
14025                 if (pmu->scope == PERF_PMU_SCOPE_NONE ||
14026                     WARN_ON_ONCE(pmu->scope >= PERF_PMU_MAX_SCOPE))
14027                         continue;
14028
14029                 if (target[pmu->scope] >= 0 && target[pmu->scope] < nr_cpu_ids)
14030                         perf_pmu_migrate_context(pmu, cpu, target[pmu->scope]);
14031         }
14032 }
14033
14034 static void perf_event_exit_cpu_context(int cpu)
14035 {
14036         struct perf_cpu_context *cpuctx;
14037         struct perf_event_context *ctx;
14038
14039         // XXX simplify cpuctx->online
14040         mutex_lock(&pmus_lock);
14041         /*
14042          * Clear the cpumasks, and migrate to other CPUs if possible.
14043          * Must be invoked before the __perf_event_exit_context.
14044          */
14045         perf_event_clear_cpumask(cpu);
14046         cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
14047         ctx = &cpuctx->ctx;
14048
14049         mutex_lock(&ctx->mutex);
14050         smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
14051         cpuctx->online = 0;
14052         mutex_unlock(&ctx->mutex);
14053         mutex_unlock(&pmus_lock);
14054 }
14055 #else
14056
14057 static void perf_event_exit_cpu_context(int cpu) { }
14058
14059 #endif
14060
14061 static void perf_event_setup_cpumask(unsigned int cpu)
14062 {
14063         struct cpumask *pmu_cpumask;
14064         unsigned int scope;
14065
14066         /*
14067          * Early boot stage, the cpumask hasn't been set yet.
14068          * The perf_online_<domain>_masks includes the first CPU of each domain.
14069          * Always unconditionally set the boot CPU for the perf_online_<domain>_masks.
14070          */
14071         if (cpumask_empty(perf_online_mask)) {
14072                 for (scope = PERF_PMU_SCOPE_NONE + 1; scope < PERF_PMU_MAX_SCOPE; scope++) {
14073                         pmu_cpumask = perf_scope_cpumask(scope);
14074                         if (WARN_ON_ONCE(!pmu_cpumask))
14075                                 continue;
14076                         cpumask_set_cpu(cpu, pmu_cpumask);
14077                 }
14078                 goto end;
14079         }
14080
14081         for (scope = PERF_PMU_SCOPE_NONE + 1; scope < PERF_PMU_MAX_SCOPE; scope++) {
14082                 const struct cpumask *cpumask = perf_scope_cpu_topology_cpumask(scope, cpu);
14083
14084                 pmu_cpumask = perf_scope_cpumask(scope);
14085
14086                 if (WARN_ON_ONCE(!pmu_cpumask || !cpumask))
14087                         continue;
14088
14089                 if (!cpumask_empty(cpumask) &&
14090                     cpumask_any_and(pmu_cpumask, cpumask) >= nr_cpu_ids)
14091                         cpumask_set_cpu(cpu, pmu_cpumask);
14092         }
14093 end:
14094         cpumask_set_cpu(cpu, perf_online_mask);
14095 }
14096
14097 int perf_event_init_cpu(unsigned int cpu)
14098 {
14099         struct perf_cpu_context *cpuctx;
14100         struct perf_event_context *ctx;
14101
14102         perf_swevent_init_cpu(cpu);
14103
14104         mutex_lock(&pmus_lock);
14105         perf_event_setup_cpumask(cpu);
14106         cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
14107         ctx = &cpuctx->ctx;
14108
14109         mutex_lock(&ctx->mutex);
14110         cpuctx->online = 1;
14111         mutex_unlock(&ctx->mutex);
14112         mutex_unlock(&pmus_lock);
14113
14114         return 0;
14115 }
14116
14117 int perf_event_exit_cpu(unsigned int cpu)
14118 {
14119         perf_event_exit_cpu_context(cpu);
14120         return 0;
14121 }
14122
14123 static int
14124 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
14125 {
14126         int cpu;
14127
14128         for_each_online_cpu(cpu)
14129                 perf_event_exit_cpu(cpu);
14130
14131         return NOTIFY_OK;
14132 }
14133
14134 /*
14135  * Run the perf reboot notifier at the very last possible moment so that
14136  * the generic watchdog code runs as long as possible.
14137  */
14138 static struct notifier_block perf_reboot_notifier = {
14139         .notifier_call = perf_reboot,
14140         .priority = INT_MIN,
14141 };
14142
14143 void __init perf_event_init(void)
14144 {
14145         int ret;
14146
14147         idr_init(&pmu_idr);
14148
14149         perf_event_init_all_cpus();
14150         init_srcu_struct(&pmus_srcu);
14151         perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
14152         perf_pmu_register(&perf_cpu_clock, "cpu_clock", -1);
14153         perf_pmu_register(&perf_task_clock, "task_clock", -1);
14154         perf_tp_register();
14155         perf_event_init_cpu(smp_processor_id());
14156         register_reboot_notifier(&perf_reboot_notifier);
14157
14158         ret = init_hw_breakpoint();
14159         WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
14160
14161         perf_event_cache = KMEM_CACHE(perf_event, SLAB_PANIC);
14162
14163         /*
14164          * Build time assertion that we keep the data_head at the intended
14165          * location.  IOW, validation we got the __reserved[] size right.
14166          */
14167         BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
14168                      != 1024);
14169 }
14170
14171 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
14172                               char *page)
14173 {
14174         struct perf_pmu_events_attr *pmu_attr =
14175                 container_of(attr, struct perf_pmu_events_attr, attr);
14176
14177         if (pmu_attr->event_str)
14178                 return sprintf(page, "%s\n", pmu_attr->event_str);
14179
14180         return 0;
14181 }
14182 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
14183
14184 static int __init perf_event_sysfs_init(void)
14185 {
14186         struct pmu *pmu;
14187         int ret;
14188
14189         mutex_lock(&pmus_lock);
14190
14191         ret = bus_register(&pmu_bus);
14192         if (ret)
14193                 goto unlock;
14194
14195         list_for_each_entry(pmu, &pmus, entry) {
14196                 if (pmu->dev)
14197                         continue;
14198
14199                 ret = pmu_dev_alloc(pmu);
14200                 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
14201         }
14202         pmu_bus_running = 1;
14203         ret = 0;
14204
14205 unlock:
14206         mutex_unlock(&pmus_lock);
14207
14208         return ret;
14209 }
14210 device_initcall(perf_event_sysfs_init);
14211
14212 #ifdef CONFIG_CGROUP_PERF
14213 static struct cgroup_subsys_state *
14214 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
14215 {
14216         struct perf_cgroup *jc;
14217
14218         jc = kzalloc(sizeof(*jc), GFP_KERNEL);
14219         if (!jc)
14220                 return ERR_PTR(-ENOMEM);
14221
14222         jc->info = alloc_percpu(struct perf_cgroup_info);
14223         if (!jc->info) {
14224                 kfree(jc);
14225                 return ERR_PTR(-ENOMEM);
14226         }
14227
14228         return &jc->css;
14229 }
14230
14231 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
14232 {
14233         struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
14234
14235         free_percpu(jc->info);
14236         kfree(jc);
14237 }
14238
14239 static int perf_cgroup_css_online(struct cgroup_subsys_state *css)
14240 {
14241         perf_event_cgroup(css->cgroup);
14242         return 0;
14243 }
14244
14245 static int __perf_cgroup_move(void *info)
14246 {
14247         struct task_struct *task = info;
14248
14249         preempt_disable();
14250         perf_cgroup_switch(task);
14251         preempt_enable();
14252
14253         return 0;
14254 }
14255
14256 static void perf_cgroup_attach(struct cgroup_taskset *tset)
14257 {
14258         struct task_struct *task;
14259         struct cgroup_subsys_state *css;
14260
14261         cgroup_taskset_for_each(task, css, tset)
14262                 task_function_call(task, __perf_cgroup_move, task);
14263 }
14264
14265 struct cgroup_subsys perf_event_cgrp_subsys = {
14266         .css_alloc      = perf_cgroup_css_alloc,
14267         .css_free       = perf_cgroup_css_free,
14268         .css_online     = perf_cgroup_css_online,
14269         .attach         = perf_cgroup_attach,
14270         /*
14271          * Implicitly enable on dfl hierarchy so that perf events can
14272          * always be filtered by cgroup2 path as long as perf_event
14273          * controller is not mounted on a legacy hierarchy.
14274          */
14275         .implicit_on_dfl = true,
14276         .threaded       = true,
14277 };
14278 #endif /* CONFIG_CGROUP_PERF */
14279
14280 DEFINE_STATIC_CALL_RET0(perf_snapshot_branch_stack, perf_snapshot_branch_stack_t);
This page took 0.792495 seconds and 4 git commands to generate.