1 // SPDX-License-Identifier: GPL-2.0
3 * Shared application/kernel submission and completion ring pairs, for
4 * supporting fast/efficient IO.
6 * A note on the read/write ordering memory barriers that are matched between
7 * the application and kernel side.
9 * After the application reads the CQ ring tail, it must use an
10 * appropriate smp_rmb() to pair with the smp_wmb() the kernel uses
11 * before writing the tail (using smp_load_acquire to read the tail will
12 * do). It also needs a smp_mb() before updating CQ head (ordering the
13 * entry load(s) with the head store), pairing with an implicit barrier
14 * through a control-dependency in io_get_cqe (smp_store_release to
15 * store head will do). Failure to do so could lead to reading invalid
18 * Likewise, the application must use an appropriate smp_wmb() before
19 * writing the SQ tail (ordering SQ entry stores with the tail store),
20 * which pairs with smp_load_acquire in io_get_sqring (smp_store_release
21 * to store the tail will do). And it needs a barrier ordering the SQ
22 * head load before writing new SQ entries (smp_load_acquire to read
25 * When using the SQ poll thread (IORING_SETUP_SQPOLL), the application
26 * needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after*
27 * updating the SQ tail; a full memory barrier smp_mb() is needed
30 * Also see the examples in the liburing library:
32 * git://git.kernel.dk/liburing
34 * io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens
35 * from data shared between the kernel and application. This is done both
36 * for ordering purposes, but also to ensure that once a value is loaded from
37 * data that the application could potentially modify, it remains stable.
39 * Copyright (C) 2018-2019 Jens Axboe
40 * Copyright (c) 2018-2019 Christoph Hellwig
42 #include <linux/kernel.h>
43 #include <linux/init.h>
44 #include <linux/errno.h>
45 #include <linux/syscalls.h>
46 #include <net/compat.h>
47 #include <linux/refcount.h>
48 #include <linux/uio.h>
49 #include <linux/bits.h>
51 #include <linux/sched/signal.h>
53 #include <linux/file.h>
55 #include <linux/mman.h>
56 #include <linux/percpu.h>
57 #include <linux/slab.h>
58 #include <linux/bvec.h>
59 #include <linux/net.h>
61 #include <linux/anon_inodes.h>
62 #include <linux/sched/mm.h>
63 #include <linux/uaccess.h>
64 #include <linux/nospec.h>
65 #include <linux/fsnotify.h>
66 #include <linux/fadvise.h>
67 #include <linux/task_work.h>
68 #include <linux/io_uring.h>
69 #include <linux/io_uring/cmd.h>
70 #include <linux/audit.h>
71 #include <linux/security.h>
72 #include <linux/jump_label.h>
73 #include <asm/shmparam.h>
75 #define CREATE_TRACE_POINTS
76 #include <trace/events/io_uring.h>
78 #include <uapi/linux/io_uring.h>
97 #include "uring_cmd.h"
104 #include "alloc_cache.h"
107 #define SQE_COMMON_FLAGS (IOSQE_FIXED_FILE | IOSQE_IO_LINK | \
108 IOSQE_IO_HARDLINK | IOSQE_ASYNC)
110 #define SQE_VALID_FLAGS (SQE_COMMON_FLAGS | IOSQE_BUFFER_SELECT | \
111 IOSQE_IO_DRAIN | IOSQE_CQE_SKIP_SUCCESS)
113 #define IO_REQ_CLEAN_FLAGS (REQ_F_BUFFER_SELECTED | REQ_F_NEED_CLEANUP | \
114 REQ_F_POLLED | REQ_F_INFLIGHT | REQ_F_CREDS | \
117 #define IO_REQ_CLEAN_SLOW_FLAGS (REQ_F_REFCOUNT | REQ_F_LINK | REQ_F_HARDLINK |\
120 #define IO_TCTX_REFS_CACHE_NR (1U << 10)
122 #define IO_COMPL_BATCH 32
123 #define IO_REQ_ALLOC_BATCH 8
124 #define IO_LOCAL_TW_DEFAULT_MAX 20
126 struct io_defer_entry {
127 struct list_head list;
128 struct io_kiocb *req;
132 /* requests with any of those set should undergo io_disarm_next() */
133 #define IO_DISARM_MASK (REQ_F_ARM_LTIMEOUT | REQ_F_LINK_TIMEOUT | REQ_F_FAIL)
134 #define IO_REQ_LINK_FLAGS (REQ_F_LINK | REQ_F_HARDLINK)
137 * No waiters. It's larger than any valid value of the tw counter
138 * so that tests against ->cq_wait_nr would fail and skip wake_up().
140 #define IO_CQ_WAKE_INIT (-1U)
141 /* Forced wake up if there is a waiter regardless of ->cq_wait_nr */
142 #define IO_CQ_WAKE_FORCE (IO_CQ_WAKE_INIT >> 1)
144 static bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
145 struct io_uring_task *tctx,
148 static void io_queue_sqe(struct io_kiocb *req);
150 static __read_mostly DEFINE_STATIC_KEY_FALSE(io_key_has_sqarray);
152 struct kmem_cache *req_cachep;
153 static struct workqueue_struct *iou_wq __ro_after_init;
155 static int __read_mostly sysctl_io_uring_disabled;
156 static int __read_mostly sysctl_io_uring_group = -1;
159 static struct ctl_table kernel_io_uring_disabled_table[] = {
161 .procname = "io_uring_disabled",
162 .data = &sysctl_io_uring_disabled,
163 .maxlen = sizeof(sysctl_io_uring_disabled),
165 .proc_handler = proc_dointvec_minmax,
166 .extra1 = SYSCTL_ZERO,
167 .extra2 = SYSCTL_TWO,
170 .procname = "io_uring_group",
171 .data = &sysctl_io_uring_group,
172 .maxlen = sizeof(gid_t),
174 .proc_handler = proc_dointvec,
179 static inline unsigned int __io_cqring_events(struct io_ring_ctx *ctx)
181 return ctx->cached_cq_tail - READ_ONCE(ctx->rings->cq.head);
184 static inline unsigned int __io_cqring_events_user(struct io_ring_ctx *ctx)
186 return READ_ONCE(ctx->rings->cq.tail) - READ_ONCE(ctx->rings->cq.head);
189 static bool io_match_linked(struct io_kiocb *head)
191 struct io_kiocb *req;
193 io_for_each_link(req, head) {
194 if (req->flags & REQ_F_INFLIGHT)
201 * As io_match_task() but protected against racing with linked timeouts.
202 * User must not hold timeout_lock.
204 bool io_match_task_safe(struct io_kiocb *head, struct io_uring_task *tctx,
209 if (tctx && head->tctx != tctx)
214 if (head->flags & REQ_F_LINK_TIMEOUT) {
215 struct io_ring_ctx *ctx = head->ctx;
217 /* protect against races with linked timeouts */
218 raw_spin_lock_irq(&ctx->timeout_lock);
219 matched = io_match_linked(head);
220 raw_spin_unlock_irq(&ctx->timeout_lock);
222 matched = io_match_linked(head);
227 static inline void req_fail_link_node(struct io_kiocb *req, int res)
230 io_req_set_res(req, res, 0);
233 static inline void io_req_add_to_cache(struct io_kiocb *req, struct io_ring_ctx *ctx)
235 wq_stack_add_head(&req->comp_list, &ctx->submit_state.free_list);
238 static __cold void io_ring_ctx_ref_free(struct percpu_ref *ref)
240 struct io_ring_ctx *ctx = container_of(ref, struct io_ring_ctx, refs);
242 complete(&ctx->ref_comp);
245 static __cold void io_fallback_req_func(struct work_struct *work)
247 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx,
249 struct llist_node *node = llist_del_all(&ctx->fallback_llist);
250 struct io_kiocb *req, *tmp;
251 struct io_tw_state ts = {};
253 percpu_ref_get(&ctx->refs);
254 mutex_lock(&ctx->uring_lock);
255 llist_for_each_entry_safe(req, tmp, node, io_task_work.node)
256 req->io_task_work.func(req, &ts);
257 io_submit_flush_completions(ctx);
258 mutex_unlock(&ctx->uring_lock);
259 percpu_ref_put(&ctx->refs);
262 static int io_alloc_hash_table(struct io_hash_table *table, unsigned bits)
264 unsigned int hash_buckets;
268 hash_buckets = 1U << bits;
269 table->hbs = kvmalloc_array(hash_buckets, sizeof(table->hbs[0]),
278 table->hash_bits = bits;
279 for (i = 0; i < hash_buckets; i++)
280 INIT_HLIST_HEAD(&table->hbs[i].list);
284 static __cold struct io_ring_ctx *io_ring_ctx_alloc(struct io_uring_params *p)
286 struct io_ring_ctx *ctx;
290 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
294 xa_init(&ctx->io_bl_xa);
297 * Use 5 bits less than the max cq entries, that should give us around
298 * 32 entries per hash list if totally full and uniformly spread, but
299 * don't keep too many buckets to not overconsume memory.
301 hash_bits = ilog2(p->cq_entries) - 5;
302 hash_bits = clamp(hash_bits, 1, 8);
303 if (io_alloc_hash_table(&ctx->cancel_table, hash_bits))
305 if (percpu_ref_init(&ctx->refs, io_ring_ctx_ref_free,
309 ctx->flags = p->flags;
310 ctx->hybrid_poll_time = LLONG_MAX;
311 atomic_set(&ctx->cq_wait_nr, IO_CQ_WAKE_INIT);
312 init_waitqueue_head(&ctx->sqo_sq_wait);
313 INIT_LIST_HEAD(&ctx->sqd_list);
314 INIT_LIST_HEAD(&ctx->cq_overflow_list);
315 INIT_LIST_HEAD(&ctx->io_buffers_cache);
316 ret = io_alloc_cache_init(&ctx->apoll_cache, IO_POLL_ALLOC_CACHE_MAX,
317 sizeof(struct async_poll));
318 ret |= io_alloc_cache_init(&ctx->netmsg_cache, IO_ALLOC_CACHE_MAX,
319 sizeof(struct io_async_msghdr));
320 ret |= io_alloc_cache_init(&ctx->rw_cache, IO_ALLOC_CACHE_MAX,
321 sizeof(struct io_async_rw));
322 ret |= io_alloc_cache_init(&ctx->uring_cache, IO_ALLOC_CACHE_MAX,
323 sizeof(struct uring_cache));
324 spin_lock_init(&ctx->msg_lock);
325 ret |= io_alloc_cache_init(&ctx->msg_cache, IO_ALLOC_CACHE_MAX,
326 sizeof(struct io_kiocb));
327 ret |= io_futex_cache_init(ctx);
330 init_completion(&ctx->ref_comp);
331 xa_init_flags(&ctx->personalities, XA_FLAGS_ALLOC1);
332 mutex_init(&ctx->uring_lock);
333 init_waitqueue_head(&ctx->cq_wait);
334 init_waitqueue_head(&ctx->poll_wq);
335 spin_lock_init(&ctx->completion_lock);
336 raw_spin_lock_init(&ctx->timeout_lock);
337 INIT_WQ_LIST(&ctx->iopoll_list);
338 INIT_LIST_HEAD(&ctx->io_buffers_comp);
339 INIT_LIST_HEAD(&ctx->defer_list);
340 INIT_LIST_HEAD(&ctx->timeout_list);
341 INIT_LIST_HEAD(&ctx->ltimeout_list);
342 init_llist_head(&ctx->work_llist);
343 INIT_LIST_HEAD(&ctx->tctx_list);
344 ctx->submit_state.free_list.next = NULL;
345 INIT_HLIST_HEAD(&ctx->waitid_list);
347 INIT_HLIST_HEAD(&ctx->futex_list);
349 INIT_DELAYED_WORK(&ctx->fallback_work, io_fallback_req_func);
350 INIT_WQ_LIST(&ctx->submit_state.compl_reqs);
351 INIT_HLIST_HEAD(&ctx->cancelable_uring_cmd);
353 mutex_init(&ctx->resize_lock);
358 percpu_ref_exit(&ctx->refs);
360 io_alloc_cache_free(&ctx->apoll_cache, kfree);
361 io_alloc_cache_free(&ctx->netmsg_cache, io_netmsg_cache_free);
362 io_alloc_cache_free(&ctx->rw_cache, io_rw_cache_free);
363 io_alloc_cache_free(&ctx->uring_cache, kfree);
364 io_alloc_cache_free(&ctx->msg_cache, io_msg_cache_free);
365 io_futex_cache_free(ctx);
366 kvfree(ctx->cancel_table.hbs);
367 xa_destroy(&ctx->io_bl_xa);
372 static void io_account_cq_overflow(struct io_ring_ctx *ctx)
374 struct io_rings *r = ctx->rings;
376 WRITE_ONCE(r->cq_overflow, READ_ONCE(r->cq_overflow) + 1);
380 static bool req_need_defer(struct io_kiocb *req, u32 seq)
382 if (unlikely(req->flags & REQ_F_IO_DRAIN)) {
383 struct io_ring_ctx *ctx = req->ctx;
385 return seq + READ_ONCE(ctx->cq_extra) != ctx->cached_cq_tail;
391 static void io_clean_op(struct io_kiocb *req)
393 if (req->flags & REQ_F_BUFFER_SELECTED) {
394 spin_lock(&req->ctx->completion_lock);
396 spin_unlock(&req->ctx->completion_lock);
399 if (req->flags & REQ_F_NEED_CLEANUP) {
400 const struct io_cold_def *def = &io_cold_defs[req->opcode];
405 if ((req->flags & REQ_F_POLLED) && req->apoll) {
406 kfree(req->apoll->double_poll);
410 if (req->flags & REQ_F_INFLIGHT)
411 atomic_dec(&req->tctx->inflight_tracked);
412 if (req->flags & REQ_F_CREDS)
413 put_cred(req->creds);
414 if (req->flags & REQ_F_ASYNC_DATA) {
415 kfree(req->async_data);
416 req->async_data = NULL;
418 req->flags &= ~IO_REQ_CLEAN_FLAGS;
421 static inline void io_req_track_inflight(struct io_kiocb *req)
423 if (!(req->flags & REQ_F_INFLIGHT)) {
424 req->flags |= REQ_F_INFLIGHT;
425 atomic_inc(&req->tctx->inflight_tracked);
429 static struct io_kiocb *__io_prep_linked_timeout(struct io_kiocb *req)
431 if (WARN_ON_ONCE(!req->link))
434 req->flags &= ~REQ_F_ARM_LTIMEOUT;
435 req->flags |= REQ_F_LINK_TIMEOUT;
437 /* linked timeouts should have two refs once prep'ed */
438 io_req_set_refcount(req);
439 __io_req_set_refcount(req->link, 2);
443 static inline struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req)
445 if (likely(!(req->flags & REQ_F_ARM_LTIMEOUT)))
447 return __io_prep_linked_timeout(req);
450 static noinline void __io_arm_ltimeout(struct io_kiocb *req)
452 io_queue_linked_timeout(__io_prep_linked_timeout(req));
455 static inline void io_arm_ltimeout(struct io_kiocb *req)
457 if (unlikely(req->flags & REQ_F_ARM_LTIMEOUT))
458 __io_arm_ltimeout(req);
461 static void io_prep_async_work(struct io_kiocb *req)
463 const struct io_issue_def *def = &io_issue_defs[req->opcode];
464 struct io_ring_ctx *ctx = req->ctx;
466 if (!(req->flags & REQ_F_CREDS)) {
467 req->flags |= REQ_F_CREDS;
468 req->creds = get_current_cred();
471 req->work.list.next = NULL;
472 atomic_set(&req->work.flags, 0);
473 if (req->flags & REQ_F_FORCE_ASYNC)
474 atomic_or(IO_WQ_WORK_CONCURRENT, &req->work.flags);
476 if (req->file && !(req->flags & REQ_F_FIXED_FILE))
477 req->flags |= io_file_get_flags(req->file);
479 if (req->file && (req->flags & REQ_F_ISREG)) {
480 bool should_hash = def->hash_reg_file;
482 /* don't serialize this request if the fs doesn't need it */
483 if (should_hash && (req->file->f_flags & O_DIRECT) &&
484 (req->file->f_op->fop_flags & FOP_DIO_PARALLEL_WRITE))
486 if (should_hash || (ctx->flags & IORING_SETUP_IOPOLL))
487 io_wq_hash_work(&req->work, file_inode(req->file));
488 } else if (!req->file || !S_ISBLK(file_inode(req->file)->i_mode)) {
489 if (def->unbound_nonreg_file)
490 atomic_or(IO_WQ_WORK_UNBOUND, &req->work.flags);
494 static void io_prep_async_link(struct io_kiocb *req)
496 struct io_kiocb *cur;
498 if (req->flags & REQ_F_LINK_TIMEOUT) {
499 struct io_ring_ctx *ctx = req->ctx;
501 raw_spin_lock_irq(&ctx->timeout_lock);
502 io_for_each_link(cur, req)
503 io_prep_async_work(cur);
504 raw_spin_unlock_irq(&ctx->timeout_lock);
506 io_for_each_link(cur, req)
507 io_prep_async_work(cur);
511 static void io_queue_iowq(struct io_kiocb *req)
513 struct io_kiocb *link = io_prep_linked_timeout(req);
514 struct io_uring_task *tctx = req->tctx;
518 if ((current->flags & PF_KTHREAD) || !tctx->io_wq) {
519 io_req_task_queue_fail(req, -ECANCELED);
523 /* init ->work of the whole link before punting */
524 io_prep_async_link(req);
527 * Not expected to happen, but if we do have a bug where this _can_
528 * happen, catch it here and ensure the request is marked as
529 * canceled. That will make io-wq go through the usual work cancel
530 * procedure rather than attempt to run this request (or create a new
533 if (WARN_ON_ONCE(!same_thread_group(tctx->task, current)))
534 atomic_or(IO_WQ_WORK_CANCEL, &req->work.flags);
536 trace_io_uring_queue_async_work(req, io_wq_is_hashed(&req->work));
537 io_wq_enqueue(tctx->io_wq, &req->work);
539 io_queue_linked_timeout(link);
542 static void io_req_queue_iowq_tw(struct io_kiocb *req, struct io_tw_state *ts)
547 void io_req_queue_iowq(struct io_kiocb *req)
549 req->io_task_work.func = io_req_queue_iowq_tw;
550 io_req_task_work_add(req);
553 static __cold void io_queue_deferred(struct io_ring_ctx *ctx)
555 while (!list_empty(&ctx->defer_list)) {
556 struct io_defer_entry *de = list_first_entry(&ctx->defer_list,
557 struct io_defer_entry, list);
559 if (req_need_defer(de->req, de->seq))
561 list_del_init(&de->list);
562 io_req_task_queue(de->req);
567 void __io_commit_cqring_flush(struct io_ring_ctx *ctx)
569 if (ctx->poll_activated)
570 io_poll_wq_wake(ctx);
571 if (ctx->off_timeout_used)
572 io_flush_timeouts(ctx);
573 if (ctx->drain_active) {
574 spin_lock(&ctx->completion_lock);
575 io_queue_deferred(ctx);
576 spin_unlock(&ctx->completion_lock);
579 io_eventfd_flush_signal(ctx);
582 static inline void __io_cq_lock(struct io_ring_ctx *ctx)
584 if (!ctx->lockless_cq)
585 spin_lock(&ctx->completion_lock);
588 static inline void io_cq_lock(struct io_ring_ctx *ctx)
589 __acquires(ctx->completion_lock)
591 spin_lock(&ctx->completion_lock);
594 static inline void __io_cq_unlock_post(struct io_ring_ctx *ctx)
596 io_commit_cqring(ctx);
597 if (!ctx->task_complete) {
598 if (!ctx->lockless_cq)
599 spin_unlock(&ctx->completion_lock);
600 /* IOPOLL rings only need to wake up if it's also SQPOLL */
601 if (!ctx->syscall_iopoll)
604 io_commit_cqring_flush(ctx);
607 static void io_cq_unlock_post(struct io_ring_ctx *ctx)
608 __releases(ctx->completion_lock)
610 io_commit_cqring(ctx);
611 spin_unlock(&ctx->completion_lock);
613 io_commit_cqring_flush(ctx);
616 static void __io_cqring_overflow_flush(struct io_ring_ctx *ctx, bool dying)
618 size_t cqe_size = sizeof(struct io_uring_cqe);
620 lockdep_assert_held(&ctx->uring_lock);
622 /* don't abort if we're dying, entries must get freed */
623 if (!dying && __io_cqring_events(ctx) == ctx->cq_entries)
626 if (ctx->flags & IORING_SETUP_CQE32)
630 while (!list_empty(&ctx->cq_overflow_list)) {
631 struct io_uring_cqe *cqe;
632 struct io_overflow_cqe *ocqe;
634 ocqe = list_first_entry(&ctx->cq_overflow_list,
635 struct io_overflow_cqe, list);
638 if (!io_get_cqe_overflow(ctx, &cqe, true))
640 memcpy(cqe, &ocqe->cqe, cqe_size);
642 list_del(&ocqe->list);
646 * For silly syzbot cases that deliberately overflow by huge
647 * amounts, check if we need to resched and drop and
648 * reacquire the locks if so. Nothing real would ever hit this.
649 * Ideally we'd have a non-posting unlock for this, but hard
650 * to care for a non-real case.
652 if (need_resched()) {
653 io_cq_unlock_post(ctx);
654 mutex_unlock(&ctx->uring_lock);
656 mutex_lock(&ctx->uring_lock);
661 if (list_empty(&ctx->cq_overflow_list)) {
662 clear_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq);
663 atomic_andnot(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags);
665 io_cq_unlock_post(ctx);
668 static void io_cqring_overflow_kill(struct io_ring_ctx *ctx)
671 __io_cqring_overflow_flush(ctx, true);
674 static void io_cqring_do_overflow_flush(struct io_ring_ctx *ctx)
676 mutex_lock(&ctx->uring_lock);
677 __io_cqring_overflow_flush(ctx, false);
678 mutex_unlock(&ctx->uring_lock);
681 /* must to be called somewhat shortly after putting a request */
682 static inline void io_put_task(struct io_kiocb *req)
684 struct io_uring_task *tctx = req->tctx;
686 if (likely(tctx->task == current)) {
689 percpu_counter_sub(&tctx->inflight, 1);
690 if (unlikely(atomic_read(&tctx->in_cancel)))
691 wake_up(&tctx->wait);
692 put_task_struct(tctx->task);
696 void io_task_refs_refill(struct io_uring_task *tctx)
698 unsigned int refill = -tctx->cached_refs + IO_TCTX_REFS_CACHE_NR;
700 percpu_counter_add(&tctx->inflight, refill);
701 refcount_add(refill, ¤t->usage);
702 tctx->cached_refs += refill;
705 static __cold void io_uring_drop_tctx_refs(struct task_struct *task)
707 struct io_uring_task *tctx = task->io_uring;
708 unsigned int refs = tctx->cached_refs;
711 tctx->cached_refs = 0;
712 percpu_counter_sub(&tctx->inflight, refs);
713 put_task_struct_many(task, refs);
717 static bool io_cqring_event_overflow(struct io_ring_ctx *ctx, u64 user_data,
718 s32 res, u32 cflags, u64 extra1, u64 extra2)
720 struct io_overflow_cqe *ocqe;
721 size_t ocq_size = sizeof(struct io_overflow_cqe);
722 bool is_cqe32 = (ctx->flags & IORING_SETUP_CQE32);
724 lockdep_assert_held(&ctx->completion_lock);
727 ocq_size += sizeof(struct io_uring_cqe);
729 ocqe = kmalloc(ocq_size, GFP_ATOMIC | __GFP_ACCOUNT);
730 trace_io_uring_cqe_overflow(ctx, user_data, res, cflags, ocqe);
733 * If we're in ring overflow flush mode, or in task cancel mode,
734 * or cannot allocate an overflow entry, then we need to drop it
737 io_account_cq_overflow(ctx);
738 set_bit(IO_CHECK_CQ_DROPPED_BIT, &ctx->check_cq);
741 if (list_empty(&ctx->cq_overflow_list)) {
742 set_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq);
743 atomic_or(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags);
746 ocqe->cqe.user_data = user_data;
748 ocqe->cqe.flags = cflags;
750 ocqe->cqe.big_cqe[0] = extra1;
751 ocqe->cqe.big_cqe[1] = extra2;
753 list_add_tail(&ocqe->list, &ctx->cq_overflow_list);
757 static void io_req_cqe_overflow(struct io_kiocb *req)
759 io_cqring_event_overflow(req->ctx, req->cqe.user_data,
760 req->cqe.res, req->cqe.flags,
761 req->big_cqe.extra1, req->big_cqe.extra2);
762 memset(&req->big_cqe, 0, sizeof(req->big_cqe));
766 * writes to the cq entry need to come after reading head; the
767 * control dependency is enough as we're using WRITE_ONCE to
770 bool io_cqe_cache_refill(struct io_ring_ctx *ctx, bool overflow)
772 struct io_rings *rings = ctx->rings;
773 unsigned int off = ctx->cached_cq_tail & (ctx->cq_entries - 1);
774 unsigned int free, queued, len;
777 * Posting into the CQ when there are pending overflowed CQEs may break
778 * ordering guarantees, which will affect links, F_MORE users and more.
779 * Force overflow the completion.
781 if (!overflow && (ctx->check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT)))
784 /* userspace may cheat modifying the tail, be safe and do min */
785 queued = min(__io_cqring_events(ctx), ctx->cq_entries);
786 free = ctx->cq_entries - queued;
787 /* we need a contiguous range, limit based on the current array offset */
788 len = min(free, ctx->cq_entries - off);
792 if (ctx->flags & IORING_SETUP_CQE32) {
797 ctx->cqe_cached = &rings->cqes[off];
798 ctx->cqe_sentinel = ctx->cqe_cached + len;
802 static bool io_fill_cqe_aux(struct io_ring_ctx *ctx, u64 user_data, s32 res,
805 struct io_uring_cqe *cqe;
810 * If we can't get a cq entry, userspace overflowed the
811 * submission (by quite a lot). Increment the overflow count in
814 if (likely(io_get_cqe(ctx, &cqe))) {
815 WRITE_ONCE(cqe->user_data, user_data);
816 WRITE_ONCE(cqe->res, res);
817 WRITE_ONCE(cqe->flags, cflags);
819 if (ctx->flags & IORING_SETUP_CQE32) {
820 WRITE_ONCE(cqe->big_cqe[0], 0);
821 WRITE_ONCE(cqe->big_cqe[1], 0);
824 trace_io_uring_complete(ctx, NULL, cqe);
830 static bool __io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res,
835 filled = io_fill_cqe_aux(ctx, user_data, res, cflags);
837 filled = io_cqring_event_overflow(ctx, user_data, res, cflags, 0, 0);
842 bool io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags)
847 filled = __io_post_aux_cqe(ctx, user_data, res, cflags);
848 io_cq_unlock_post(ctx);
853 * Must be called from inline task_work so we now a flush will happen later,
854 * and obviously with ctx->uring_lock held (tw always has that).
856 void io_add_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags)
858 if (!io_fill_cqe_aux(ctx, user_data, res, cflags)) {
859 spin_lock(&ctx->completion_lock);
860 io_cqring_event_overflow(ctx, user_data, res, cflags, 0, 0);
861 spin_unlock(&ctx->completion_lock);
863 ctx->submit_state.cq_flush = true;
867 * A helper for multishot requests posting additional CQEs.
868 * Should only be used from a task_work including IO_URING_F_MULTISHOT.
870 bool io_req_post_cqe(struct io_kiocb *req, s32 res, u32 cflags)
872 struct io_ring_ctx *ctx = req->ctx;
875 lockdep_assert(!io_wq_current_is_worker());
876 lockdep_assert_held(&ctx->uring_lock);
879 posted = io_fill_cqe_aux(ctx, req->cqe.user_data, res, cflags);
880 ctx->submit_state.cq_flush = true;
881 __io_cq_unlock_post(ctx);
885 static void io_req_complete_post(struct io_kiocb *req, unsigned issue_flags)
887 struct io_ring_ctx *ctx = req->ctx;
890 * All execution paths but io-wq use the deferred completions by
891 * passing IO_URING_F_COMPLETE_DEFER and thus should not end up here.
893 if (WARN_ON_ONCE(!(issue_flags & IO_URING_F_IOWQ)))
897 * Handle special CQ sync cases via task_work. DEFER_TASKRUN requires
898 * the submitter task context, IOPOLL protects with uring_lock.
900 if (ctx->task_complete || (ctx->flags & IORING_SETUP_IOPOLL)) {
901 req->io_task_work.func = io_req_task_complete;
902 io_req_task_work_add(req);
907 if (!(req->flags & REQ_F_CQE_SKIP)) {
908 if (!io_fill_cqe_req(ctx, req))
909 io_req_cqe_overflow(req);
911 io_cq_unlock_post(ctx);
914 * We don't free the request here because we know it's called from
915 * io-wq only, which holds a reference, so it cannot be the last put.
920 void io_req_defer_failed(struct io_kiocb *req, s32 res)
921 __must_hold(&ctx->uring_lock)
923 const struct io_cold_def *def = &io_cold_defs[req->opcode];
925 lockdep_assert_held(&req->ctx->uring_lock);
928 io_req_set_res(req, res, io_put_kbuf(req, res, IO_URING_F_UNLOCKED));
931 io_req_complete_defer(req);
935 * Don't initialise the fields below on every allocation, but do that in
936 * advance and keep them valid across allocations.
938 static void io_preinit_req(struct io_kiocb *req, struct io_ring_ctx *ctx)
941 req->buf_node = NULL;
942 req->file_node = NULL;
944 req->async_data = NULL;
945 /* not necessary, but safer to zero */
946 memset(&req->cqe, 0, sizeof(req->cqe));
947 memset(&req->big_cqe, 0, sizeof(req->big_cqe));
951 * A request might get retired back into the request caches even before opcode
952 * handlers and io_issue_sqe() are done with it, e.g. inline completion path.
953 * Because of that, io_alloc_req() should be called only under ->uring_lock
954 * and with extra caution to not get a request that is still worked on.
956 __cold bool __io_alloc_req_refill(struct io_ring_ctx *ctx)
957 __must_hold(&ctx->uring_lock)
959 gfp_t gfp = GFP_KERNEL | __GFP_NOWARN;
960 void *reqs[IO_REQ_ALLOC_BATCH];
963 ret = kmem_cache_alloc_bulk(req_cachep, gfp, ARRAY_SIZE(reqs), reqs);
966 * Bulk alloc is all-or-nothing. If we fail to get a batch,
967 * retry single alloc to be on the safe side.
969 if (unlikely(ret <= 0)) {
970 reqs[0] = kmem_cache_alloc(req_cachep, gfp);
976 percpu_ref_get_many(&ctx->refs, ret);
978 struct io_kiocb *req = reqs[ret];
980 io_preinit_req(req, ctx);
981 io_req_add_to_cache(req, ctx);
986 __cold void io_free_req(struct io_kiocb *req)
988 /* refs were already put, restore them for io_req_task_complete() */
989 req->flags &= ~REQ_F_REFCOUNT;
990 /* we only want to free it, don't post CQEs */
991 req->flags |= REQ_F_CQE_SKIP;
992 req->io_task_work.func = io_req_task_complete;
993 io_req_task_work_add(req);
996 static void __io_req_find_next_prep(struct io_kiocb *req)
998 struct io_ring_ctx *ctx = req->ctx;
1000 spin_lock(&ctx->completion_lock);
1001 io_disarm_next(req);
1002 spin_unlock(&ctx->completion_lock);
1005 static inline struct io_kiocb *io_req_find_next(struct io_kiocb *req)
1007 struct io_kiocb *nxt;
1010 * If LINK is set, we have dependent requests in this chain. If we
1011 * didn't fail this request, queue the first one up, moving any other
1012 * dependencies to the next request. In case of failure, fail the rest
1015 if (unlikely(req->flags & IO_DISARM_MASK))
1016 __io_req_find_next_prep(req);
1022 static void ctx_flush_and_put(struct io_ring_ctx *ctx, struct io_tw_state *ts)
1026 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1027 atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1029 io_submit_flush_completions(ctx);
1030 mutex_unlock(&ctx->uring_lock);
1031 percpu_ref_put(&ctx->refs);
1035 * Run queued task_work, returning the number of entries processed in *count.
1036 * If more entries than max_entries are available, stop processing once this
1037 * is reached and return the rest of the list.
1039 struct llist_node *io_handle_tw_list(struct llist_node *node,
1040 unsigned int *count,
1041 unsigned int max_entries)
1043 struct io_ring_ctx *ctx = NULL;
1044 struct io_tw_state ts = { };
1047 struct llist_node *next = node->next;
1048 struct io_kiocb *req = container_of(node, struct io_kiocb,
1051 if (req->ctx != ctx) {
1052 ctx_flush_and_put(ctx, &ts);
1054 mutex_lock(&ctx->uring_lock);
1055 percpu_ref_get(&ctx->refs);
1057 INDIRECT_CALL_2(req->io_task_work.func,
1058 io_poll_task_func, io_req_rw_complete,
1062 if (unlikely(need_resched())) {
1063 ctx_flush_and_put(ctx, &ts);
1067 } while (node && *count < max_entries);
1069 ctx_flush_and_put(ctx, &ts);
1073 static __cold void __io_fallback_tw(struct llist_node *node, bool sync)
1075 struct io_ring_ctx *last_ctx = NULL;
1076 struct io_kiocb *req;
1079 req = container_of(node, struct io_kiocb, io_task_work.node);
1081 if (sync && last_ctx != req->ctx) {
1083 flush_delayed_work(&last_ctx->fallback_work);
1084 percpu_ref_put(&last_ctx->refs);
1086 last_ctx = req->ctx;
1087 percpu_ref_get(&last_ctx->refs);
1089 if (llist_add(&req->io_task_work.node,
1090 &req->ctx->fallback_llist))
1091 schedule_delayed_work(&req->ctx->fallback_work, 1);
1095 flush_delayed_work(&last_ctx->fallback_work);
1096 percpu_ref_put(&last_ctx->refs);
1100 static void io_fallback_tw(struct io_uring_task *tctx, bool sync)
1102 struct llist_node *node = llist_del_all(&tctx->task_list);
1104 __io_fallback_tw(node, sync);
1107 struct llist_node *tctx_task_work_run(struct io_uring_task *tctx,
1108 unsigned int max_entries,
1109 unsigned int *count)
1111 struct llist_node *node;
1113 if (unlikely(current->flags & PF_EXITING)) {
1114 io_fallback_tw(tctx, true);
1118 node = llist_del_all(&tctx->task_list);
1120 node = llist_reverse_order(node);
1121 node = io_handle_tw_list(node, count, max_entries);
1124 /* relaxed read is enough as only the task itself sets ->in_cancel */
1125 if (unlikely(atomic_read(&tctx->in_cancel)))
1126 io_uring_drop_tctx_refs(current);
1128 trace_io_uring_task_work_run(tctx, *count);
1132 void tctx_task_work(struct callback_head *cb)
1134 struct io_uring_task *tctx;
1135 struct llist_node *ret;
1136 unsigned int count = 0;
1138 tctx = container_of(cb, struct io_uring_task, task_work);
1139 ret = tctx_task_work_run(tctx, UINT_MAX, &count);
1144 static inline void io_req_local_work_add(struct io_kiocb *req,
1145 struct io_ring_ctx *ctx,
1148 unsigned nr_wait, nr_tw, nr_tw_prev;
1149 struct llist_node *head;
1151 /* See comment above IO_CQ_WAKE_INIT */
1152 BUILD_BUG_ON(IO_CQ_WAKE_FORCE <= IORING_MAX_CQ_ENTRIES);
1155 * We don't know how many reuqests is there in the link and whether
1156 * they can even be queued lazily, fall back to non-lazy.
1158 if (req->flags & (REQ_F_LINK | REQ_F_HARDLINK))
1159 flags &= ~IOU_F_TWQ_LAZY_WAKE;
1163 head = READ_ONCE(ctx->work_llist.first);
1167 struct io_kiocb *first_req = container_of(head,
1171 * Might be executed at any moment, rely on
1172 * SLAB_TYPESAFE_BY_RCU to keep it alive.
1174 nr_tw_prev = READ_ONCE(first_req->nr_tw);
1178 * Theoretically, it can overflow, but that's fine as one of
1179 * previous adds should've tried to wake the task.
1181 nr_tw = nr_tw_prev + 1;
1182 if (!(flags & IOU_F_TWQ_LAZY_WAKE))
1183 nr_tw = IO_CQ_WAKE_FORCE;
1186 req->io_task_work.node.next = head;
1187 } while (!try_cmpxchg(&ctx->work_llist.first, &head,
1188 &req->io_task_work.node));
1191 * cmpxchg implies a full barrier, which pairs with the barrier
1192 * in set_current_state() on the io_cqring_wait() side. It's used
1193 * to ensure that either we see updated ->cq_wait_nr, or waiters
1194 * going to sleep will observe the work added to the list, which
1195 * is similar to the wait/wawke task state sync.
1199 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1200 atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1202 io_eventfd_signal(ctx);
1205 nr_wait = atomic_read(&ctx->cq_wait_nr);
1206 /* not enough or no one is waiting */
1207 if (nr_tw < nr_wait)
1209 /* the previous add has already woken it up */
1210 if (nr_tw_prev >= nr_wait)
1212 wake_up_state(ctx->submitter_task, TASK_INTERRUPTIBLE);
1215 static void io_req_normal_work_add(struct io_kiocb *req)
1217 struct io_uring_task *tctx = req->tctx;
1218 struct io_ring_ctx *ctx = req->ctx;
1220 /* task_work already pending, we're done */
1221 if (!llist_add(&req->io_task_work.node, &tctx->task_list))
1224 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1225 atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1227 /* SQPOLL doesn't need the task_work added, it'll run it itself */
1228 if (ctx->flags & IORING_SETUP_SQPOLL) {
1229 struct io_sq_data *sqd = ctx->sq_data;
1232 __set_notify_signal(sqd->thread);
1236 if (likely(!task_work_add(tctx->task, &tctx->task_work, ctx->notify_method)))
1239 io_fallback_tw(tctx, false);
1242 void __io_req_task_work_add(struct io_kiocb *req, unsigned flags)
1244 if (req->ctx->flags & IORING_SETUP_DEFER_TASKRUN)
1245 io_req_local_work_add(req, req->ctx, flags);
1247 io_req_normal_work_add(req);
1250 void io_req_task_work_add_remote(struct io_kiocb *req, struct io_ring_ctx *ctx,
1253 if (WARN_ON_ONCE(!(ctx->flags & IORING_SETUP_DEFER_TASKRUN)))
1255 io_req_local_work_add(req, ctx, flags);
1258 static void __cold io_move_task_work_from_local(struct io_ring_ctx *ctx)
1260 struct llist_node *node = llist_del_all(&ctx->work_llist);
1262 __io_fallback_tw(node, false);
1263 node = llist_del_all(&ctx->retry_llist);
1264 __io_fallback_tw(node, false);
1267 static bool io_run_local_work_continue(struct io_ring_ctx *ctx, int events,
1270 if (!io_local_work_pending(ctx))
1272 if (events < min_events)
1274 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1275 atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1279 static int __io_run_local_work_loop(struct llist_node **node,
1280 struct io_tw_state *ts,
1286 struct llist_node *next = (*node)->next;
1287 struct io_kiocb *req = container_of(*node, struct io_kiocb,
1289 INDIRECT_CALL_2(req->io_task_work.func,
1290 io_poll_task_func, io_req_rw_complete,
1293 if (++ret >= events)
1300 static int __io_run_local_work(struct io_ring_ctx *ctx, struct io_tw_state *ts,
1301 int min_events, int max_events)
1303 struct llist_node *node;
1304 unsigned int loops = 0;
1307 if (WARN_ON_ONCE(ctx->submitter_task != current))
1309 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1310 atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1313 ret = __io_run_local_work_loop(&ctx->retry_llist.first, ts, max_events);
1314 if (ctx->retry_llist.first)
1318 * llists are in reverse order, flip it back the right way before
1319 * running the pending items.
1321 node = llist_reverse_order(llist_del_all(&ctx->work_llist));
1322 ret += __io_run_local_work_loop(&node, ts, max_events - ret);
1323 ctx->retry_llist.first = node;
1326 if (io_run_local_work_continue(ctx, ret, min_events))
1329 io_submit_flush_completions(ctx);
1330 if (io_run_local_work_continue(ctx, ret, min_events))
1333 trace_io_uring_local_work_run(ctx, ret, loops);
1337 static inline int io_run_local_work_locked(struct io_ring_ctx *ctx,
1340 struct io_tw_state ts = {};
1342 if (!io_local_work_pending(ctx))
1344 return __io_run_local_work(ctx, &ts, min_events,
1345 max(IO_LOCAL_TW_DEFAULT_MAX, min_events));
1348 static int io_run_local_work(struct io_ring_ctx *ctx, int min_events,
1351 struct io_tw_state ts = {};
1354 mutex_lock(&ctx->uring_lock);
1355 ret = __io_run_local_work(ctx, &ts, min_events, max_events);
1356 mutex_unlock(&ctx->uring_lock);
1360 static void io_req_task_cancel(struct io_kiocb *req, struct io_tw_state *ts)
1362 io_tw_lock(req->ctx, ts);
1363 io_req_defer_failed(req, req->cqe.res);
1366 void io_req_task_submit(struct io_kiocb *req, struct io_tw_state *ts)
1368 io_tw_lock(req->ctx, ts);
1369 if (unlikely(io_should_terminate_tw()))
1370 io_req_defer_failed(req, -EFAULT);
1371 else if (req->flags & REQ_F_FORCE_ASYNC)
1377 void io_req_task_queue_fail(struct io_kiocb *req, int ret)
1379 io_req_set_res(req, ret, 0);
1380 req->io_task_work.func = io_req_task_cancel;
1381 io_req_task_work_add(req);
1384 void io_req_task_queue(struct io_kiocb *req)
1386 req->io_task_work.func = io_req_task_submit;
1387 io_req_task_work_add(req);
1390 void io_queue_next(struct io_kiocb *req)
1392 struct io_kiocb *nxt = io_req_find_next(req);
1395 io_req_task_queue(nxt);
1398 static void io_free_batch_list(struct io_ring_ctx *ctx,
1399 struct io_wq_work_node *node)
1400 __must_hold(&ctx->uring_lock)
1403 struct io_kiocb *req = container_of(node, struct io_kiocb,
1406 if (unlikely(req->flags & IO_REQ_CLEAN_SLOW_FLAGS)) {
1407 if (req->flags & REQ_F_REFCOUNT) {
1408 node = req->comp_list.next;
1409 if (!req_ref_put_and_test(req))
1412 if ((req->flags & REQ_F_POLLED) && req->apoll) {
1413 struct async_poll *apoll = req->apoll;
1415 if (apoll->double_poll)
1416 kfree(apoll->double_poll);
1417 if (!io_alloc_cache_put(&ctx->apoll_cache, apoll))
1419 req->flags &= ~REQ_F_POLLED;
1421 if (req->flags & IO_REQ_LINK_FLAGS)
1423 if (unlikely(req->flags & IO_REQ_CLEAN_FLAGS))
1427 io_req_put_rsrc_nodes(req);
1430 node = req->comp_list.next;
1431 io_req_add_to_cache(req, ctx);
1435 void __io_submit_flush_completions(struct io_ring_ctx *ctx)
1436 __must_hold(&ctx->uring_lock)
1438 struct io_submit_state *state = &ctx->submit_state;
1439 struct io_wq_work_node *node;
1442 __wq_list_for_each(node, &state->compl_reqs) {
1443 struct io_kiocb *req = container_of(node, struct io_kiocb,
1446 if (!(req->flags & REQ_F_CQE_SKIP) &&
1447 unlikely(!io_fill_cqe_req(ctx, req))) {
1448 if (ctx->lockless_cq) {
1449 spin_lock(&ctx->completion_lock);
1450 io_req_cqe_overflow(req);
1451 spin_unlock(&ctx->completion_lock);
1453 io_req_cqe_overflow(req);
1457 __io_cq_unlock_post(ctx);
1459 if (!wq_list_empty(&state->compl_reqs)) {
1460 io_free_batch_list(ctx, state->compl_reqs.first);
1461 INIT_WQ_LIST(&state->compl_reqs);
1463 ctx->submit_state.cq_flush = false;
1466 static unsigned io_cqring_events(struct io_ring_ctx *ctx)
1468 /* See comment at the top of this file */
1470 return __io_cqring_events(ctx);
1474 * We can't just wait for polled events to come to us, we have to actively
1475 * find and complete them.
1477 static __cold void io_iopoll_try_reap_events(struct io_ring_ctx *ctx)
1479 if (!(ctx->flags & IORING_SETUP_IOPOLL))
1482 mutex_lock(&ctx->uring_lock);
1483 while (!wq_list_empty(&ctx->iopoll_list)) {
1484 /* let it sleep and repeat later if can't complete a request */
1485 if (io_do_iopoll(ctx, true) == 0)
1488 * Ensure we allow local-to-the-cpu processing to take place,
1489 * in this case we need to ensure that we reap all events.
1490 * Also let task_work, etc. to progress by releasing the mutex
1492 if (need_resched()) {
1493 mutex_unlock(&ctx->uring_lock);
1495 mutex_lock(&ctx->uring_lock);
1498 mutex_unlock(&ctx->uring_lock);
1501 static int io_iopoll_check(struct io_ring_ctx *ctx, long min)
1503 unsigned int nr_events = 0;
1504 unsigned long check_cq;
1506 lockdep_assert_held(&ctx->uring_lock);
1508 if (!io_allowed_run_tw(ctx))
1511 check_cq = READ_ONCE(ctx->check_cq);
1512 if (unlikely(check_cq)) {
1513 if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))
1514 __io_cqring_overflow_flush(ctx, false);
1516 * Similarly do not spin if we have not informed the user of any
1519 if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT))
1523 * Don't enter poll loop if we already have events pending.
1524 * If we do, we can potentially be spinning for commands that
1525 * already triggered a CQE (eg in error).
1527 if (io_cqring_events(ctx))
1534 * If a submit got punted to a workqueue, we can have the
1535 * application entering polling for a command before it gets
1536 * issued. That app will hold the uring_lock for the duration
1537 * of the poll right here, so we need to take a breather every
1538 * now and then to ensure that the issue has a chance to add
1539 * the poll to the issued list. Otherwise we can spin here
1540 * forever, while the workqueue is stuck trying to acquire the
1543 if (wq_list_empty(&ctx->iopoll_list) ||
1544 io_task_work_pending(ctx)) {
1545 u32 tail = ctx->cached_cq_tail;
1547 (void) io_run_local_work_locked(ctx, min);
1549 if (task_work_pending(current) ||
1550 wq_list_empty(&ctx->iopoll_list)) {
1551 mutex_unlock(&ctx->uring_lock);
1553 mutex_lock(&ctx->uring_lock);
1555 /* some requests don't go through iopoll_list */
1556 if (tail != ctx->cached_cq_tail ||
1557 wq_list_empty(&ctx->iopoll_list))
1560 ret = io_do_iopoll(ctx, !min);
1561 if (unlikely(ret < 0))
1564 if (task_sigpending(current))
1570 } while (nr_events < min);
1575 void io_req_task_complete(struct io_kiocb *req, struct io_tw_state *ts)
1577 io_req_complete_defer(req);
1581 * After the iocb has been issued, it's safe to be found on the poll list.
1582 * Adding the kiocb to the list AFTER submission ensures that we don't
1583 * find it from a io_do_iopoll() thread before the issuer is done
1584 * accessing the kiocb cookie.
1586 static void io_iopoll_req_issued(struct io_kiocb *req, unsigned int issue_flags)
1588 struct io_ring_ctx *ctx = req->ctx;
1589 const bool needs_lock = issue_flags & IO_URING_F_UNLOCKED;
1591 /* workqueue context doesn't hold uring_lock, grab it now */
1592 if (unlikely(needs_lock))
1593 mutex_lock(&ctx->uring_lock);
1596 * Track whether we have multiple files in our lists. This will impact
1597 * how we do polling eventually, not spinning if we're on potentially
1598 * different devices.
1600 if (wq_list_empty(&ctx->iopoll_list)) {
1601 ctx->poll_multi_queue = false;
1602 } else if (!ctx->poll_multi_queue) {
1603 struct io_kiocb *list_req;
1605 list_req = container_of(ctx->iopoll_list.first, struct io_kiocb,
1607 if (list_req->file != req->file)
1608 ctx->poll_multi_queue = true;
1612 * For fast devices, IO may have already completed. If it has, add
1613 * it to the front so we find it first.
1615 if (READ_ONCE(req->iopoll_completed))
1616 wq_list_add_head(&req->comp_list, &ctx->iopoll_list);
1618 wq_list_add_tail(&req->comp_list, &ctx->iopoll_list);
1620 if (unlikely(needs_lock)) {
1622 * If IORING_SETUP_SQPOLL is enabled, sqes are either handle
1623 * in sq thread task context or in io worker task context. If
1624 * current task context is sq thread, we don't need to check
1625 * whether should wake up sq thread.
1627 if ((ctx->flags & IORING_SETUP_SQPOLL) &&
1628 wq_has_sleeper(&ctx->sq_data->wait))
1629 wake_up(&ctx->sq_data->wait);
1631 mutex_unlock(&ctx->uring_lock);
1635 io_req_flags_t io_file_get_flags(struct file *file)
1637 io_req_flags_t res = 0;
1639 if (S_ISREG(file_inode(file)->i_mode))
1641 if ((file->f_flags & O_NONBLOCK) || (file->f_mode & FMODE_NOWAIT))
1642 res |= REQ_F_SUPPORT_NOWAIT;
1646 bool io_alloc_async_data(struct io_kiocb *req)
1648 const struct io_issue_def *def = &io_issue_defs[req->opcode];
1650 WARN_ON_ONCE(!def->async_size);
1651 req->async_data = kmalloc(def->async_size, GFP_KERNEL);
1652 if (req->async_data) {
1653 req->flags |= REQ_F_ASYNC_DATA;
1659 static u32 io_get_sequence(struct io_kiocb *req)
1661 u32 seq = req->ctx->cached_sq_head;
1662 struct io_kiocb *cur;
1664 /* need original cached_sq_head, but it was increased for each req */
1665 io_for_each_link(cur, req)
1670 static __cold void io_drain_req(struct io_kiocb *req)
1671 __must_hold(&ctx->uring_lock)
1673 struct io_ring_ctx *ctx = req->ctx;
1674 struct io_defer_entry *de;
1676 u32 seq = io_get_sequence(req);
1678 /* Still need defer if there is pending req in defer list. */
1679 spin_lock(&ctx->completion_lock);
1680 if (!req_need_defer(req, seq) && list_empty_careful(&ctx->defer_list)) {
1681 spin_unlock(&ctx->completion_lock);
1683 ctx->drain_active = false;
1684 io_req_task_queue(req);
1687 spin_unlock(&ctx->completion_lock);
1689 io_prep_async_link(req);
1690 de = kmalloc(sizeof(*de), GFP_KERNEL);
1693 io_req_defer_failed(req, ret);
1697 spin_lock(&ctx->completion_lock);
1698 if (!req_need_defer(req, seq) && list_empty(&ctx->defer_list)) {
1699 spin_unlock(&ctx->completion_lock);
1704 trace_io_uring_defer(req);
1707 list_add_tail(&de->list, &ctx->defer_list);
1708 spin_unlock(&ctx->completion_lock);
1711 static bool io_assign_file(struct io_kiocb *req, const struct io_issue_def *def,
1712 unsigned int issue_flags)
1714 if (req->file || !def->needs_file)
1717 if (req->flags & REQ_F_FIXED_FILE)
1718 req->file = io_file_get_fixed(req, req->cqe.fd, issue_flags);
1720 req->file = io_file_get_normal(req, req->cqe.fd);
1725 static int io_issue_sqe(struct io_kiocb *req, unsigned int issue_flags)
1727 const struct io_issue_def *def = &io_issue_defs[req->opcode];
1728 const struct cred *creds = NULL;
1731 if (unlikely(!io_assign_file(req, def, issue_flags)))
1734 if (unlikely((req->flags & REQ_F_CREDS) && req->creds != current_cred()))
1735 creds = override_creds(req->creds);
1737 if (!def->audit_skip)
1738 audit_uring_entry(req->opcode);
1740 ret = def->issue(req, issue_flags);
1742 if (!def->audit_skip)
1743 audit_uring_exit(!ret, ret);
1746 revert_creds(creds);
1748 if (ret == IOU_OK) {
1749 if (issue_flags & IO_URING_F_COMPLETE_DEFER)
1750 io_req_complete_defer(req);
1752 io_req_complete_post(req, issue_flags);
1757 if (ret == IOU_ISSUE_SKIP_COMPLETE) {
1759 io_arm_ltimeout(req);
1761 /* If the op doesn't have a file, we're not polling for it */
1762 if ((req->ctx->flags & IORING_SETUP_IOPOLL) && def->iopoll_queue)
1763 io_iopoll_req_issued(req, issue_flags);
1768 int io_poll_issue(struct io_kiocb *req, struct io_tw_state *ts)
1770 io_tw_lock(req->ctx, ts);
1771 return io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_MULTISHOT|
1772 IO_URING_F_COMPLETE_DEFER);
1775 struct io_wq_work *io_wq_free_work(struct io_wq_work *work)
1777 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
1778 struct io_kiocb *nxt = NULL;
1780 if (req_ref_put_and_test(req)) {
1781 if (req->flags & IO_REQ_LINK_FLAGS)
1782 nxt = io_req_find_next(req);
1785 return nxt ? &nxt->work : NULL;
1788 void io_wq_submit_work(struct io_wq_work *work)
1790 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
1791 const struct io_issue_def *def = &io_issue_defs[req->opcode];
1792 unsigned int issue_flags = IO_URING_F_UNLOCKED | IO_URING_F_IOWQ;
1793 bool needs_poll = false;
1794 int ret = 0, err = -ECANCELED;
1796 /* one will be dropped by ->io_wq_free_work() after returning to io-wq */
1797 if (!(req->flags & REQ_F_REFCOUNT))
1798 __io_req_set_refcount(req, 2);
1802 io_arm_ltimeout(req);
1804 /* either cancelled or io-wq is dying, so don't touch tctx->iowq */
1805 if (atomic_read(&work->flags) & IO_WQ_WORK_CANCEL) {
1807 io_req_task_queue_fail(req, err);
1810 if (!io_assign_file(req, def, issue_flags)) {
1812 atomic_or(IO_WQ_WORK_CANCEL, &work->flags);
1817 * If DEFER_TASKRUN is set, it's only allowed to post CQEs from the
1818 * submitter task context. Final request completions are handed to the
1819 * right context, however this is not the case of auxiliary CQEs,
1820 * which is the main mean of operation for multishot requests.
1821 * Don't allow any multishot execution from io-wq. It's more restrictive
1822 * than necessary and also cleaner.
1824 if (req->flags & REQ_F_APOLL_MULTISHOT) {
1826 if (!io_file_can_poll(req))
1828 if (req->file->f_flags & O_NONBLOCK ||
1829 req->file->f_mode & FMODE_NOWAIT) {
1831 if (io_arm_poll_handler(req, issue_flags) != IO_APOLL_OK)
1835 req->flags &= ~REQ_F_APOLL_MULTISHOT;
1839 if (req->flags & REQ_F_FORCE_ASYNC) {
1840 bool opcode_poll = def->pollin || def->pollout;
1842 if (opcode_poll && io_file_can_poll(req)) {
1844 issue_flags |= IO_URING_F_NONBLOCK;
1849 ret = io_issue_sqe(req, issue_flags);
1854 * If REQ_F_NOWAIT is set, then don't wait or retry with
1855 * poll. -EAGAIN is final for that case.
1857 if (req->flags & REQ_F_NOWAIT)
1861 * We can get EAGAIN for iopolled IO even though we're
1862 * forcing a sync submission from here, since we can't
1863 * wait for request slots on the block side.
1866 if (!(req->ctx->flags & IORING_SETUP_IOPOLL))
1868 if (io_wq_worker_stopped())
1874 if (io_arm_poll_handler(req, issue_flags) == IO_APOLL_OK)
1876 /* aborted or ready, in either case retry blocking */
1878 issue_flags &= ~IO_URING_F_NONBLOCK;
1881 /* avoid locking problems by failing it from a clean context */
1883 io_req_task_queue_fail(req, ret);
1886 inline struct file *io_file_get_fixed(struct io_kiocb *req, int fd,
1887 unsigned int issue_flags)
1889 struct io_ring_ctx *ctx = req->ctx;
1890 struct io_rsrc_node *node;
1891 struct file *file = NULL;
1893 io_ring_submit_lock(ctx, issue_flags);
1894 node = io_rsrc_node_lookup(&ctx->file_table.data, fd);
1896 io_req_assign_rsrc_node(&req->file_node, node);
1897 req->flags |= io_slot_flags(node);
1898 file = io_slot_file(node);
1900 io_ring_submit_unlock(ctx, issue_flags);
1904 struct file *io_file_get_normal(struct io_kiocb *req, int fd)
1906 struct file *file = fget(fd);
1908 trace_io_uring_file_get(req, fd);
1910 /* we don't allow fixed io_uring files */
1911 if (file && io_is_uring_fops(file))
1912 io_req_track_inflight(req);
1916 static void io_queue_async(struct io_kiocb *req, int ret)
1917 __must_hold(&req->ctx->uring_lock)
1919 struct io_kiocb *linked_timeout;
1921 if (ret != -EAGAIN || (req->flags & REQ_F_NOWAIT)) {
1922 io_req_defer_failed(req, ret);
1926 linked_timeout = io_prep_linked_timeout(req);
1928 switch (io_arm_poll_handler(req, 0)) {
1929 case IO_APOLL_READY:
1930 io_kbuf_recycle(req, 0);
1931 io_req_task_queue(req);
1933 case IO_APOLL_ABORTED:
1934 io_kbuf_recycle(req, 0);
1942 io_queue_linked_timeout(linked_timeout);
1945 static inline void io_queue_sqe(struct io_kiocb *req)
1946 __must_hold(&req->ctx->uring_lock)
1950 ret = io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_COMPLETE_DEFER);
1953 * We async punt it if the file wasn't marked NOWAIT, or if the file
1954 * doesn't support non-blocking read/write attempts
1957 io_queue_async(req, ret);
1960 static void io_queue_sqe_fallback(struct io_kiocb *req)
1961 __must_hold(&req->ctx->uring_lock)
1963 if (unlikely(req->flags & REQ_F_FAIL)) {
1965 * We don't submit, fail them all, for that replace hardlinks
1966 * with normal links. Extra REQ_F_LINK is tolerated.
1968 req->flags &= ~REQ_F_HARDLINK;
1969 req->flags |= REQ_F_LINK;
1970 io_req_defer_failed(req, req->cqe.res);
1972 if (unlikely(req->ctx->drain_active))
1980 * Check SQE restrictions (opcode and flags).
1982 * Returns 'true' if SQE is allowed, 'false' otherwise.
1984 static inline bool io_check_restriction(struct io_ring_ctx *ctx,
1985 struct io_kiocb *req,
1986 unsigned int sqe_flags)
1988 if (!test_bit(req->opcode, ctx->restrictions.sqe_op))
1991 if ((sqe_flags & ctx->restrictions.sqe_flags_required) !=
1992 ctx->restrictions.sqe_flags_required)
1995 if (sqe_flags & ~(ctx->restrictions.sqe_flags_allowed |
1996 ctx->restrictions.sqe_flags_required))
2002 static void io_init_req_drain(struct io_kiocb *req)
2004 struct io_ring_ctx *ctx = req->ctx;
2005 struct io_kiocb *head = ctx->submit_state.link.head;
2007 ctx->drain_active = true;
2010 * If we need to drain a request in the middle of a link, drain
2011 * the head request and the next request/link after the current
2012 * link. Considering sequential execution of links,
2013 * REQ_F_IO_DRAIN will be maintained for every request of our
2016 head->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC;
2017 ctx->drain_next = true;
2021 static __cold int io_init_fail_req(struct io_kiocb *req, int err)
2023 /* ensure per-opcode data is cleared if we fail before prep */
2024 memset(&req->cmd.data, 0, sizeof(req->cmd.data));
2028 static int io_init_req(struct io_ring_ctx *ctx, struct io_kiocb *req,
2029 const struct io_uring_sqe *sqe)
2030 __must_hold(&ctx->uring_lock)
2032 const struct io_issue_def *def;
2033 unsigned int sqe_flags;
2037 /* req is partially pre-initialised, see io_preinit_req() */
2038 req->opcode = opcode = READ_ONCE(sqe->opcode);
2039 /* same numerical values with corresponding REQ_F_*, safe to copy */
2040 sqe_flags = READ_ONCE(sqe->flags);
2041 req->flags = (__force io_req_flags_t) sqe_flags;
2042 req->cqe.user_data = READ_ONCE(sqe->user_data);
2044 req->tctx = current->io_uring;
2045 req->cancel_seq_set = false;
2047 if (unlikely(opcode >= IORING_OP_LAST)) {
2049 return io_init_fail_req(req, -EINVAL);
2051 def = &io_issue_defs[opcode];
2052 if (unlikely(sqe_flags & ~SQE_COMMON_FLAGS)) {
2053 /* enforce forwards compatibility on users */
2054 if (sqe_flags & ~SQE_VALID_FLAGS)
2055 return io_init_fail_req(req, -EINVAL);
2056 if (sqe_flags & IOSQE_BUFFER_SELECT) {
2057 if (!def->buffer_select)
2058 return io_init_fail_req(req, -EOPNOTSUPP);
2059 req->buf_index = READ_ONCE(sqe->buf_group);
2061 if (sqe_flags & IOSQE_CQE_SKIP_SUCCESS)
2062 ctx->drain_disabled = true;
2063 if (sqe_flags & IOSQE_IO_DRAIN) {
2064 if (ctx->drain_disabled)
2065 return io_init_fail_req(req, -EOPNOTSUPP);
2066 io_init_req_drain(req);
2069 if (unlikely(ctx->restricted || ctx->drain_active || ctx->drain_next)) {
2070 if (ctx->restricted && !io_check_restriction(ctx, req, sqe_flags))
2071 return io_init_fail_req(req, -EACCES);
2072 /* knock it to the slow queue path, will be drained there */
2073 if (ctx->drain_active)
2074 req->flags |= REQ_F_FORCE_ASYNC;
2075 /* if there is no link, we're at "next" request and need to drain */
2076 if (unlikely(ctx->drain_next) && !ctx->submit_state.link.head) {
2077 ctx->drain_next = false;
2078 ctx->drain_active = true;
2079 req->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC;
2083 if (!def->ioprio && sqe->ioprio)
2084 return io_init_fail_req(req, -EINVAL);
2085 if (!def->iopoll && (ctx->flags & IORING_SETUP_IOPOLL))
2086 return io_init_fail_req(req, -EINVAL);
2088 if (def->needs_file) {
2089 struct io_submit_state *state = &ctx->submit_state;
2091 req->cqe.fd = READ_ONCE(sqe->fd);
2094 * Plug now if we have more than 2 IO left after this, and the
2095 * target is potentially a read/write to block based storage.
2097 if (state->need_plug && def->plug) {
2098 state->plug_started = true;
2099 state->need_plug = false;
2100 blk_start_plug_nr_ios(&state->plug, state->submit_nr);
2104 personality = READ_ONCE(sqe->personality);
2108 req->creds = xa_load(&ctx->personalities, personality);
2110 return io_init_fail_req(req, -EINVAL);
2111 get_cred(req->creds);
2112 ret = security_uring_override_creds(req->creds);
2114 put_cred(req->creds);
2115 return io_init_fail_req(req, ret);
2117 req->flags |= REQ_F_CREDS;
2120 return def->prep(req, sqe);
2123 static __cold int io_submit_fail_init(const struct io_uring_sqe *sqe,
2124 struct io_kiocb *req, int ret)
2126 struct io_ring_ctx *ctx = req->ctx;
2127 struct io_submit_link *link = &ctx->submit_state.link;
2128 struct io_kiocb *head = link->head;
2130 trace_io_uring_req_failed(sqe, req, ret);
2133 * Avoid breaking links in the middle as it renders links with SQPOLL
2134 * unusable. Instead of failing eagerly, continue assembling the link if
2135 * applicable and mark the head with REQ_F_FAIL. The link flushing code
2136 * should find the flag and handle the rest.
2138 req_fail_link_node(req, ret);
2139 if (head && !(head->flags & REQ_F_FAIL))
2140 req_fail_link_node(head, -ECANCELED);
2142 if (!(req->flags & IO_REQ_LINK_FLAGS)) {
2144 link->last->link = req;
2148 io_queue_sqe_fallback(req);
2153 link->last->link = req;
2160 static inline int io_submit_sqe(struct io_ring_ctx *ctx, struct io_kiocb *req,
2161 const struct io_uring_sqe *sqe)
2162 __must_hold(&ctx->uring_lock)
2164 struct io_submit_link *link = &ctx->submit_state.link;
2167 ret = io_init_req(ctx, req, sqe);
2169 return io_submit_fail_init(sqe, req, ret);
2171 trace_io_uring_submit_req(req);
2174 * If we already have a head request, queue this one for async
2175 * submittal once the head completes. If we don't have a head but
2176 * IOSQE_IO_LINK is set in the sqe, start a new head. This one will be
2177 * submitted sync once the chain is complete. If none of those
2178 * conditions are true (normal request), then just queue it.
2180 if (unlikely(link->head)) {
2181 trace_io_uring_link(req, link->last);
2182 link->last->link = req;
2185 if (req->flags & IO_REQ_LINK_FLAGS)
2187 /* last request of the link, flush it */
2190 if (req->flags & (REQ_F_FORCE_ASYNC | REQ_F_FAIL))
2193 } else if (unlikely(req->flags & (IO_REQ_LINK_FLAGS |
2194 REQ_F_FORCE_ASYNC | REQ_F_FAIL))) {
2195 if (req->flags & IO_REQ_LINK_FLAGS) {
2200 io_queue_sqe_fallback(req);
2210 * Batched submission is done, ensure local IO is flushed out.
2212 static void io_submit_state_end(struct io_ring_ctx *ctx)
2214 struct io_submit_state *state = &ctx->submit_state;
2216 if (unlikely(state->link.head))
2217 io_queue_sqe_fallback(state->link.head);
2218 /* flush only after queuing links as they can generate completions */
2219 io_submit_flush_completions(ctx);
2220 if (state->plug_started)
2221 blk_finish_plug(&state->plug);
2225 * Start submission side cache.
2227 static void io_submit_state_start(struct io_submit_state *state,
2228 unsigned int max_ios)
2230 state->plug_started = false;
2231 state->need_plug = max_ios > 2;
2232 state->submit_nr = max_ios;
2233 /* set only head, no need to init link_last in advance */
2234 state->link.head = NULL;
2237 static void io_commit_sqring(struct io_ring_ctx *ctx)
2239 struct io_rings *rings = ctx->rings;
2242 * Ensure any loads from the SQEs are done at this point,
2243 * since once we write the new head, the application could
2244 * write new data to them.
2246 smp_store_release(&rings->sq.head, ctx->cached_sq_head);
2250 * Fetch an sqe, if one is available. Note this returns a pointer to memory
2251 * that is mapped by userspace. This means that care needs to be taken to
2252 * ensure that reads are stable, as we cannot rely on userspace always
2253 * being a good citizen. If members of the sqe are validated and then later
2254 * used, it's important that those reads are done through READ_ONCE() to
2255 * prevent a re-load down the line.
2257 static bool io_get_sqe(struct io_ring_ctx *ctx, const struct io_uring_sqe **sqe)
2259 unsigned mask = ctx->sq_entries - 1;
2260 unsigned head = ctx->cached_sq_head++ & mask;
2262 if (static_branch_unlikely(&io_key_has_sqarray) &&
2263 (!(ctx->flags & IORING_SETUP_NO_SQARRAY))) {
2264 head = READ_ONCE(ctx->sq_array[head]);
2265 if (unlikely(head >= ctx->sq_entries)) {
2266 /* drop invalid entries */
2267 spin_lock(&ctx->completion_lock);
2269 spin_unlock(&ctx->completion_lock);
2270 WRITE_ONCE(ctx->rings->sq_dropped,
2271 READ_ONCE(ctx->rings->sq_dropped) + 1);
2274 head = array_index_nospec(head, ctx->sq_entries);
2278 * The cached sq head (or cq tail) serves two purposes:
2280 * 1) allows us to batch the cost of updating the user visible
2282 * 2) allows the kernel side to track the head on its own, even
2283 * though the application is the one updating it.
2286 /* double index for 128-byte SQEs, twice as long */
2287 if (ctx->flags & IORING_SETUP_SQE128)
2289 *sqe = &ctx->sq_sqes[head];
2293 int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr)
2294 __must_hold(&ctx->uring_lock)
2296 unsigned int entries = io_sqring_entries(ctx);
2300 if (unlikely(!entries))
2302 /* make sure SQ entry isn't read before tail */
2303 ret = left = min(nr, entries);
2304 io_get_task_refs(left);
2305 io_submit_state_start(&ctx->submit_state, left);
2308 const struct io_uring_sqe *sqe;
2309 struct io_kiocb *req;
2311 if (unlikely(!io_alloc_req(ctx, &req)))
2313 if (unlikely(!io_get_sqe(ctx, &sqe))) {
2314 io_req_add_to_cache(req, ctx);
2319 * Continue submitting even for sqe failure if the
2320 * ring was setup with IORING_SETUP_SUBMIT_ALL
2322 if (unlikely(io_submit_sqe(ctx, req, sqe)) &&
2323 !(ctx->flags & IORING_SETUP_SUBMIT_ALL)) {
2329 if (unlikely(left)) {
2331 /* try again if it submitted nothing and can't allocate a req */
2332 if (!ret && io_req_cache_empty(ctx))
2334 current->io_uring->cached_refs += left;
2337 io_submit_state_end(ctx);
2338 /* Commit SQ ring head once we've consumed and submitted all SQEs */
2339 io_commit_sqring(ctx);
2343 static int io_wake_function(struct wait_queue_entry *curr, unsigned int mode,
2344 int wake_flags, void *key)
2346 struct io_wait_queue *iowq = container_of(curr, struct io_wait_queue, wq);
2349 * Cannot safely flush overflowed CQEs from here, ensure we wake up
2350 * the task, and the next invocation will do it.
2352 if (io_should_wake(iowq) || io_has_work(iowq->ctx))
2353 return autoremove_wake_function(curr, mode, wake_flags, key);
2357 int io_run_task_work_sig(struct io_ring_ctx *ctx)
2359 if (io_local_work_pending(ctx)) {
2360 __set_current_state(TASK_RUNNING);
2361 if (io_run_local_work(ctx, INT_MAX, IO_LOCAL_TW_DEFAULT_MAX) > 0)
2364 if (io_run_task_work() > 0)
2366 if (task_sigpending(current))
2371 static bool current_pending_io(void)
2373 struct io_uring_task *tctx = current->io_uring;
2377 return percpu_counter_read_positive(&tctx->inflight);
2380 static enum hrtimer_restart io_cqring_timer_wakeup(struct hrtimer *timer)
2382 struct io_wait_queue *iowq = container_of(timer, struct io_wait_queue, t);
2384 WRITE_ONCE(iowq->hit_timeout, 1);
2385 iowq->min_timeout = 0;
2386 wake_up_process(iowq->wq.private);
2387 return HRTIMER_NORESTART;
2391 * Doing min_timeout portion. If we saw any timeouts, events, or have work,
2392 * wake up. If not, and we have a normal timeout, switch to that and keep
2395 static enum hrtimer_restart io_cqring_min_timer_wakeup(struct hrtimer *timer)
2397 struct io_wait_queue *iowq = container_of(timer, struct io_wait_queue, t);
2398 struct io_ring_ctx *ctx = iowq->ctx;
2400 /* no general timeout, or shorter (or equal), we are done */
2401 if (iowq->timeout == KTIME_MAX ||
2402 ktime_compare(iowq->min_timeout, iowq->timeout) >= 0)
2404 /* work we may need to run, wake function will see if we need to wake */
2405 if (io_has_work(ctx))
2407 /* got events since we started waiting, min timeout is done */
2408 if (iowq->cq_min_tail != READ_ONCE(ctx->rings->cq.tail))
2410 /* if we have any events and min timeout expired, we're done */
2411 if (io_cqring_events(ctx))
2415 * If using deferred task_work running and application is waiting on
2416 * more than one request, ensure we reset it now where we are switching
2417 * to normal sleeps. Any request completion post min_wait should wake
2418 * the task and return.
2420 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) {
2421 atomic_set(&ctx->cq_wait_nr, 1);
2423 if (!llist_empty(&ctx->work_llist))
2427 iowq->t.function = io_cqring_timer_wakeup;
2428 hrtimer_set_expires(timer, iowq->timeout);
2429 return HRTIMER_RESTART;
2431 return io_cqring_timer_wakeup(timer);
2434 static int io_cqring_schedule_timeout(struct io_wait_queue *iowq,
2435 clockid_t clock_id, ktime_t start_time)
2439 if (iowq->min_timeout) {
2440 timeout = ktime_add_ns(iowq->min_timeout, start_time);
2441 hrtimer_setup_on_stack(&iowq->t, io_cqring_min_timer_wakeup, clock_id,
2444 timeout = iowq->timeout;
2445 hrtimer_setup_on_stack(&iowq->t, io_cqring_timer_wakeup, clock_id,
2449 hrtimer_set_expires_range_ns(&iowq->t, timeout, 0);
2450 hrtimer_start_expires(&iowq->t, HRTIMER_MODE_ABS);
2452 if (!READ_ONCE(iowq->hit_timeout))
2455 hrtimer_cancel(&iowq->t);
2456 destroy_hrtimer_on_stack(&iowq->t);
2457 __set_current_state(TASK_RUNNING);
2459 return READ_ONCE(iowq->hit_timeout) ? -ETIME : 0;
2462 static int __io_cqring_wait_schedule(struct io_ring_ctx *ctx,
2463 struct io_wait_queue *iowq,
2469 * Mark us as being in io_wait if we have pending requests, so cpufreq
2470 * can take into account that the task is waiting for IO - turns out
2471 * to be important for low QD IO.
2473 if (current_pending_io())
2474 current->in_iowait = 1;
2475 if (iowq->timeout != KTIME_MAX || iowq->min_timeout)
2476 ret = io_cqring_schedule_timeout(iowq, ctx->clockid, start_time);
2479 current->in_iowait = 0;
2483 /* If this returns > 0, the caller should retry */
2484 static inline int io_cqring_wait_schedule(struct io_ring_ctx *ctx,
2485 struct io_wait_queue *iowq,
2488 if (unlikely(READ_ONCE(ctx->check_cq)))
2490 if (unlikely(io_local_work_pending(ctx)))
2492 if (unlikely(task_work_pending(current)))
2494 if (unlikely(task_sigpending(current)))
2496 if (unlikely(io_should_wake(iowq)))
2499 return __io_cqring_wait_schedule(ctx, iowq, start_time);
2504 struct timespec64 ts;
2505 const sigset_t __user *sig;
2511 * Wait until events become available, if we don't already have some. The
2512 * application must reap them itself, as they reside on the shared cq ring.
2514 static int io_cqring_wait(struct io_ring_ctx *ctx, int min_events, u32 flags,
2515 struct ext_arg *ext_arg)
2517 struct io_wait_queue iowq;
2518 struct io_rings *rings = ctx->rings;
2522 if (!io_allowed_run_tw(ctx))
2524 if (io_local_work_pending(ctx))
2525 io_run_local_work(ctx, min_events,
2526 max(IO_LOCAL_TW_DEFAULT_MAX, min_events));
2529 if (unlikely(test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)))
2530 io_cqring_do_overflow_flush(ctx);
2531 if (__io_cqring_events_user(ctx) >= min_events)
2534 init_waitqueue_func_entry(&iowq.wq, io_wake_function);
2535 iowq.wq.private = current;
2536 INIT_LIST_HEAD(&iowq.wq.entry);
2538 iowq.cq_tail = READ_ONCE(ctx->rings->cq.head) + min_events;
2539 iowq.cq_min_tail = READ_ONCE(ctx->rings->cq.tail);
2540 iowq.nr_timeouts = atomic_read(&ctx->cq_timeouts);
2541 iowq.hit_timeout = 0;
2542 iowq.min_timeout = ext_arg->min_time;
2543 iowq.timeout = KTIME_MAX;
2544 start_time = io_get_time(ctx);
2546 if (ext_arg->ts_set) {
2547 iowq.timeout = timespec64_to_ktime(ext_arg->ts);
2548 if (!(flags & IORING_ENTER_ABS_TIMER))
2549 iowq.timeout = ktime_add(iowq.timeout, start_time);
2553 #ifdef CONFIG_COMPAT
2554 if (in_compat_syscall())
2555 ret = set_compat_user_sigmask((const compat_sigset_t __user *)ext_arg->sig,
2559 ret = set_user_sigmask(ext_arg->sig, ext_arg->argsz);
2565 io_napi_busy_loop(ctx, &iowq);
2567 trace_io_uring_cqring_wait(ctx, min_events);
2569 unsigned long check_cq;
2572 /* if min timeout has been hit, don't reset wait count */
2573 if (!iowq.hit_timeout)
2574 nr_wait = (int) iowq.cq_tail -
2575 READ_ONCE(ctx->rings->cq.tail);
2579 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) {
2580 atomic_set(&ctx->cq_wait_nr, nr_wait);
2581 set_current_state(TASK_INTERRUPTIBLE);
2583 prepare_to_wait_exclusive(&ctx->cq_wait, &iowq.wq,
2584 TASK_INTERRUPTIBLE);
2587 ret = io_cqring_wait_schedule(ctx, &iowq, start_time);
2588 __set_current_state(TASK_RUNNING);
2589 atomic_set(&ctx->cq_wait_nr, IO_CQ_WAKE_INIT);
2592 * Run task_work after scheduling and before io_should_wake().
2593 * If we got woken because of task_work being processed, run it
2594 * now rather than let the caller do another wait loop.
2596 if (io_local_work_pending(ctx))
2597 io_run_local_work(ctx, nr_wait, nr_wait);
2601 * Non-local task_work will be run on exit to userspace, but
2602 * if we're using DEFER_TASKRUN, then we could have waited
2603 * with a timeout for a number of requests. If the timeout
2604 * hits, we could have some requests ready to process. Ensure
2605 * this break is _after_ we have run task_work, to avoid
2606 * deferring running potentially pending requests until the
2607 * next time we wait for events.
2612 check_cq = READ_ONCE(ctx->check_cq);
2613 if (unlikely(check_cq)) {
2614 /* let the caller flush overflows, retry */
2615 if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))
2616 io_cqring_do_overflow_flush(ctx);
2617 if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT)) {
2623 if (io_should_wake(&iowq)) {
2630 if (!(ctx->flags & IORING_SETUP_DEFER_TASKRUN))
2631 finish_wait(&ctx->cq_wait, &iowq.wq);
2632 restore_saved_sigmask_unless(ret == -EINTR);
2634 return READ_ONCE(rings->cq.head) == READ_ONCE(rings->cq.tail) ? ret : 0;
2637 static void *io_rings_map(struct io_ring_ctx *ctx, unsigned long uaddr,
2640 return __io_uaddr_map(&ctx->ring_pages, &ctx->n_ring_pages, uaddr,
2644 static void *io_sqes_map(struct io_ring_ctx *ctx, unsigned long uaddr,
2647 return __io_uaddr_map(&ctx->sqe_pages, &ctx->n_sqe_pages, uaddr,
2651 static void io_rings_free(struct io_ring_ctx *ctx)
2653 if (!(ctx->flags & IORING_SETUP_NO_MMAP)) {
2654 io_pages_unmap(ctx->rings, &ctx->ring_pages, &ctx->n_ring_pages,
2656 io_pages_unmap(ctx->sq_sqes, &ctx->sqe_pages, &ctx->n_sqe_pages,
2659 io_pages_free(&ctx->ring_pages, ctx->n_ring_pages);
2660 ctx->n_ring_pages = 0;
2661 io_pages_free(&ctx->sqe_pages, ctx->n_sqe_pages);
2662 ctx->n_sqe_pages = 0;
2664 vunmap(ctx->sq_sqes);
2668 ctx->sq_sqes = NULL;
2671 unsigned long rings_size(unsigned int flags, unsigned int sq_entries,
2672 unsigned int cq_entries, size_t *sq_offset)
2674 struct io_rings *rings;
2675 size_t off, sq_array_size;
2677 off = struct_size(rings, cqes, cq_entries);
2678 if (off == SIZE_MAX)
2680 if (flags & IORING_SETUP_CQE32) {
2681 if (check_shl_overflow(off, 1, &off))
2686 off = ALIGN(off, SMP_CACHE_BYTES);
2691 if (flags & IORING_SETUP_NO_SQARRAY) {
2692 *sq_offset = SIZE_MAX;
2698 sq_array_size = array_size(sizeof(u32), sq_entries);
2699 if (sq_array_size == SIZE_MAX)
2702 if (check_add_overflow(off, sq_array_size, &off))
2708 static void io_req_caches_free(struct io_ring_ctx *ctx)
2710 struct io_kiocb *req;
2713 mutex_lock(&ctx->uring_lock);
2715 while (!io_req_cache_empty(ctx)) {
2716 req = io_extract_req(ctx);
2717 kmem_cache_free(req_cachep, req);
2721 percpu_ref_put_many(&ctx->refs, nr);
2722 mutex_unlock(&ctx->uring_lock);
2725 static __cold void io_ring_ctx_free(struct io_ring_ctx *ctx)
2727 io_sq_thread_finish(ctx);
2729 mutex_lock(&ctx->uring_lock);
2730 io_sqe_buffers_unregister(ctx);
2731 io_sqe_files_unregister(ctx);
2732 io_cqring_overflow_kill(ctx);
2733 io_eventfd_unregister(ctx);
2734 io_alloc_cache_free(&ctx->apoll_cache, kfree);
2735 io_alloc_cache_free(&ctx->netmsg_cache, io_netmsg_cache_free);
2736 io_alloc_cache_free(&ctx->rw_cache, io_rw_cache_free);
2737 io_alloc_cache_free(&ctx->uring_cache, kfree);
2738 io_alloc_cache_free(&ctx->msg_cache, io_msg_cache_free);
2739 io_futex_cache_free(ctx);
2740 io_destroy_buffers(ctx);
2741 io_free_region(ctx, &ctx->param_region);
2742 mutex_unlock(&ctx->uring_lock);
2744 put_cred(ctx->sq_creds);
2745 if (ctx->submitter_task)
2746 put_task_struct(ctx->submitter_task);
2748 WARN_ON_ONCE(!list_empty(&ctx->ltimeout_list));
2750 if (ctx->mm_account) {
2751 mmdrop(ctx->mm_account);
2752 ctx->mm_account = NULL;
2756 if (!(ctx->flags & IORING_SETUP_NO_SQARRAY))
2757 static_branch_dec(&io_key_has_sqarray);
2759 percpu_ref_exit(&ctx->refs);
2760 free_uid(ctx->user);
2761 io_req_caches_free(ctx);
2763 io_wq_put_hash(ctx->hash_map);
2765 kvfree(ctx->cancel_table.hbs);
2766 xa_destroy(&ctx->io_bl_xa);
2770 static __cold void io_activate_pollwq_cb(struct callback_head *cb)
2772 struct io_ring_ctx *ctx = container_of(cb, struct io_ring_ctx,
2775 mutex_lock(&ctx->uring_lock);
2776 ctx->poll_activated = true;
2777 mutex_unlock(&ctx->uring_lock);
2780 * Wake ups for some events between start of polling and activation
2781 * might've been lost due to loose synchronisation.
2783 wake_up_all(&ctx->poll_wq);
2784 percpu_ref_put(&ctx->refs);
2787 __cold void io_activate_pollwq(struct io_ring_ctx *ctx)
2789 spin_lock(&ctx->completion_lock);
2790 /* already activated or in progress */
2791 if (ctx->poll_activated || ctx->poll_wq_task_work.func)
2793 if (WARN_ON_ONCE(!ctx->task_complete))
2795 if (!ctx->submitter_task)
2798 * with ->submitter_task only the submitter task completes requests, we
2799 * only need to sync with it, which is done by injecting a tw
2801 init_task_work(&ctx->poll_wq_task_work, io_activate_pollwq_cb);
2802 percpu_ref_get(&ctx->refs);
2803 if (task_work_add(ctx->submitter_task, &ctx->poll_wq_task_work, TWA_SIGNAL))
2804 percpu_ref_put(&ctx->refs);
2806 spin_unlock(&ctx->completion_lock);
2809 static __poll_t io_uring_poll(struct file *file, poll_table *wait)
2811 struct io_ring_ctx *ctx = file->private_data;
2814 if (unlikely(!ctx->poll_activated))
2815 io_activate_pollwq(ctx);
2817 poll_wait(file, &ctx->poll_wq, wait);
2819 * synchronizes with barrier from wq_has_sleeper call in
2823 if (!io_sqring_full(ctx))
2824 mask |= EPOLLOUT | EPOLLWRNORM;
2827 * Don't flush cqring overflow list here, just do a simple check.
2828 * Otherwise there could possible be ABBA deadlock:
2831 * lock(&ctx->uring_lock);
2833 * lock(&ctx->uring_lock);
2836 * Users may get EPOLLIN meanwhile seeing nothing in cqring, this
2837 * pushes them to do the flush.
2840 if (__io_cqring_events_user(ctx) || io_has_work(ctx))
2841 mask |= EPOLLIN | EPOLLRDNORM;
2846 struct io_tctx_exit {
2847 struct callback_head task_work;
2848 struct completion completion;
2849 struct io_ring_ctx *ctx;
2852 static __cold void io_tctx_exit_cb(struct callback_head *cb)
2854 struct io_uring_task *tctx = current->io_uring;
2855 struct io_tctx_exit *work;
2857 work = container_of(cb, struct io_tctx_exit, task_work);
2859 * When @in_cancel, we're in cancellation and it's racy to remove the
2860 * node. It'll be removed by the end of cancellation, just ignore it.
2861 * tctx can be NULL if the queueing of this task_work raced with
2862 * work cancelation off the exec path.
2864 if (tctx && !atomic_read(&tctx->in_cancel))
2865 io_uring_del_tctx_node((unsigned long)work->ctx);
2866 complete(&work->completion);
2869 static __cold bool io_cancel_ctx_cb(struct io_wq_work *work, void *data)
2871 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
2873 return req->ctx == data;
2876 static __cold void io_ring_exit_work(struct work_struct *work)
2878 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, exit_work);
2879 unsigned long timeout = jiffies + HZ * 60 * 5;
2880 unsigned long interval = HZ / 20;
2881 struct io_tctx_exit exit;
2882 struct io_tctx_node *node;
2886 * If we're doing polled IO and end up having requests being
2887 * submitted async (out-of-line), then completions can come in while
2888 * we're waiting for refs to drop. We need to reap these manually,
2889 * as nobody else will be looking for them.
2892 if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)) {
2893 mutex_lock(&ctx->uring_lock);
2894 io_cqring_overflow_kill(ctx);
2895 mutex_unlock(&ctx->uring_lock);
2898 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
2899 io_move_task_work_from_local(ctx);
2901 while (io_uring_try_cancel_requests(ctx, NULL, true))
2905 struct io_sq_data *sqd = ctx->sq_data;
2906 struct task_struct *tsk;
2908 io_sq_thread_park(sqd);
2910 if (tsk && tsk->io_uring && tsk->io_uring->io_wq)
2911 io_wq_cancel_cb(tsk->io_uring->io_wq,
2912 io_cancel_ctx_cb, ctx, true);
2913 io_sq_thread_unpark(sqd);
2916 io_req_caches_free(ctx);
2918 if (WARN_ON_ONCE(time_after(jiffies, timeout))) {
2919 /* there is little hope left, don't run it too often */
2923 * This is really an uninterruptible wait, as it has to be
2924 * complete. But it's also run from a kworker, which doesn't
2925 * take signals, so it's fine to make it interruptible. This
2926 * avoids scenarios where we knowingly can wait much longer
2927 * on completions, for example if someone does a SIGSTOP on
2928 * a task that needs to finish task_work to make this loop
2929 * complete. That's a synthetic situation that should not
2930 * cause a stuck task backtrace, and hence a potential panic
2931 * on stuck tasks if that is enabled.
2933 } while (!wait_for_completion_interruptible_timeout(&ctx->ref_comp, interval));
2935 init_completion(&exit.completion);
2936 init_task_work(&exit.task_work, io_tctx_exit_cb);
2939 mutex_lock(&ctx->uring_lock);
2940 while (!list_empty(&ctx->tctx_list)) {
2941 WARN_ON_ONCE(time_after(jiffies, timeout));
2943 node = list_first_entry(&ctx->tctx_list, struct io_tctx_node,
2945 /* don't spin on a single task if cancellation failed */
2946 list_rotate_left(&ctx->tctx_list);
2947 ret = task_work_add(node->task, &exit.task_work, TWA_SIGNAL);
2948 if (WARN_ON_ONCE(ret))
2951 mutex_unlock(&ctx->uring_lock);
2953 * See comment above for
2954 * wait_for_completion_interruptible_timeout() on why this
2955 * wait is marked as interruptible.
2957 wait_for_completion_interruptible(&exit.completion);
2958 mutex_lock(&ctx->uring_lock);
2960 mutex_unlock(&ctx->uring_lock);
2961 spin_lock(&ctx->completion_lock);
2962 spin_unlock(&ctx->completion_lock);
2964 /* pairs with RCU read section in io_req_local_work_add() */
2965 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
2968 io_ring_ctx_free(ctx);
2971 static __cold void io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx)
2973 unsigned long index;
2974 struct creds *creds;
2976 mutex_lock(&ctx->uring_lock);
2977 percpu_ref_kill(&ctx->refs);
2978 xa_for_each(&ctx->personalities, index, creds)
2979 io_unregister_personality(ctx, index);
2980 mutex_unlock(&ctx->uring_lock);
2982 flush_delayed_work(&ctx->fallback_work);
2984 INIT_WORK(&ctx->exit_work, io_ring_exit_work);
2986 * Use system_unbound_wq to avoid spawning tons of event kworkers
2987 * if we're exiting a ton of rings at the same time. It just adds
2988 * noise and overhead, there's no discernable change in runtime
2989 * over using system_wq.
2991 queue_work(iou_wq, &ctx->exit_work);
2994 static int io_uring_release(struct inode *inode, struct file *file)
2996 struct io_ring_ctx *ctx = file->private_data;
2998 file->private_data = NULL;
2999 io_ring_ctx_wait_and_kill(ctx);
3003 struct io_task_cancel {
3004 struct io_uring_task *tctx;
3008 static bool io_cancel_task_cb(struct io_wq_work *work, void *data)
3010 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
3011 struct io_task_cancel *cancel = data;
3013 return io_match_task_safe(req, cancel->tctx, cancel->all);
3016 static __cold bool io_cancel_defer_files(struct io_ring_ctx *ctx,
3017 struct io_uring_task *tctx,
3020 struct io_defer_entry *de;
3023 spin_lock(&ctx->completion_lock);
3024 list_for_each_entry_reverse(de, &ctx->defer_list, list) {
3025 if (io_match_task_safe(de->req, tctx, cancel_all)) {
3026 list_cut_position(&list, &ctx->defer_list, &de->list);
3030 spin_unlock(&ctx->completion_lock);
3031 if (list_empty(&list))
3034 while (!list_empty(&list)) {
3035 de = list_first_entry(&list, struct io_defer_entry, list);
3036 list_del_init(&de->list);
3037 io_req_task_queue_fail(de->req, -ECANCELED);
3043 static __cold bool io_uring_try_cancel_iowq(struct io_ring_ctx *ctx)
3045 struct io_tctx_node *node;
3046 enum io_wq_cancel cret;
3049 mutex_lock(&ctx->uring_lock);
3050 list_for_each_entry(node, &ctx->tctx_list, ctx_node) {
3051 struct io_uring_task *tctx = node->task->io_uring;
3054 * io_wq will stay alive while we hold uring_lock, because it's
3055 * killed after ctx nodes, which requires to take the lock.
3057 if (!tctx || !tctx->io_wq)
3059 cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_ctx_cb, ctx, true);
3060 ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
3062 mutex_unlock(&ctx->uring_lock);
3067 static __cold bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
3068 struct io_uring_task *tctx,
3071 struct io_task_cancel cancel = { .tctx = tctx, .all = cancel_all, };
3072 enum io_wq_cancel cret;
3075 /* set it so io_req_local_work_add() would wake us up */
3076 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) {
3077 atomic_set(&ctx->cq_wait_nr, 1);
3081 /* failed during ring init, it couldn't have issued any requests */
3086 ret |= io_uring_try_cancel_iowq(ctx);
3087 } else if (tctx->io_wq) {
3089 * Cancels requests of all rings, not only @ctx, but
3090 * it's fine as the task is in exit/exec.
3092 cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_task_cb,
3094 ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
3097 /* SQPOLL thread does its own polling */
3098 if ((!(ctx->flags & IORING_SETUP_SQPOLL) && cancel_all) ||
3099 (ctx->sq_data && ctx->sq_data->thread == current)) {
3100 while (!wq_list_empty(&ctx->iopoll_list)) {
3101 io_iopoll_try_reap_events(ctx);
3107 if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) &&
3108 io_allowed_defer_tw_run(ctx))
3109 ret |= io_run_local_work(ctx, INT_MAX, INT_MAX) > 0;
3110 ret |= io_cancel_defer_files(ctx, tctx, cancel_all);
3111 mutex_lock(&ctx->uring_lock);
3112 ret |= io_poll_remove_all(ctx, tctx, cancel_all);
3113 ret |= io_waitid_remove_all(ctx, tctx, cancel_all);
3114 ret |= io_futex_remove_all(ctx, tctx, cancel_all);
3115 ret |= io_uring_try_cancel_uring_cmd(ctx, tctx, cancel_all);
3116 mutex_unlock(&ctx->uring_lock);
3117 ret |= io_kill_timeouts(ctx, tctx, cancel_all);
3119 ret |= io_run_task_work() > 0;
3121 ret |= flush_delayed_work(&ctx->fallback_work);
3125 static s64 tctx_inflight(struct io_uring_task *tctx, bool tracked)
3128 return atomic_read(&tctx->inflight_tracked);
3129 return percpu_counter_sum(&tctx->inflight);
3133 * Find any io_uring ctx that this task has registered or done IO on, and cancel
3134 * requests. @sqd should be not-null IFF it's an SQPOLL thread cancellation.
3136 __cold void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd)
3138 struct io_uring_task *tctx = current->io_uring;
3139 struct io_ring_ctx *ctx;
3140 struct io_tctx_node *node;
3141 unsigned long index;
3145 WARN_ON_ONCE(sqd && sqd->thread != current);
3147 if (!current->io_uring)
3150 io_wq_exit_start(tctx->io_wq);
3152 atomic_inc(&tctx->in_cancel);
3156 io_uring_drop_tctx_refs(current);
3157 if (!tctx_inflight(tctx, !cancel_all))
3160 /* read completions before cancelations */
3161 inflight = tctx_inflight(tctx, false);
3166 xa_for_each(&tctx->xa, index, node) {
3167 /* sqpoll task will cancel all its requests */
3168 if (node->ctx->sq_data)
3170 loop |= io_uring_try_cancel_requests(node->ctx,
3175 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
3176 loop |= io_uring_try_cancel_requests(ctx,
3186 prepare_to_wait(&tctx->wait, &wait, TASK_INTERRUPTIBLE);
3188 io_uring_drop_tctx_refs(current);
3189 xa_for_each(&tctx->xa, index, node) {
3190 if (io_local_work_pending(node->ctx)) {
3191 WARN_ON_ONCE(node->ctx->submitter_task &&
3192 node->ctx->submitter_task != current);
3197 * If we've seen completions, retry without waiting. This
3198 * avoids a race where a completion comes in before we did
3199 * prepare_to_wait().
3201 if (inflight == tctx_inflight(tctx, !cancel_all))
3204 finish_wait(&tctx->wait, &wait);
3207 io_uring_clean_tctx(tctx);
3210 * We shouldn't run task_works after cancel, so just leave
3211 * ->in_cancel set for normal exit.
3213 atomic_dec(&tctx->in_cancel);
3214 /* for exec all current's requests should be gone, kill tctx */
3215 __io_uring_free(current);
3219 void __io_uring_cancel(bool cancel_all)
3221 io_uring_unreg_ringfd();
3222 io_uring_cancel_generic(cancel_all, NULL);
3225 static struct io_uring_reg_wait *io_get_ext_arg_reg(struct io_ring_ctx *ctx,
3226 const struct io_uring_getevents_arg __user *uarg)
3228 unsigned long size = sizeof(struct io_uring_reg_wait);
3229 unsigned long offset = (uintptr_t)uarg;
3232 if (unlikely(offset % sizeof(long)))
3233 return ERR_PTR(-EFAULT);
3235 /* also protects from NULL ->cq_wait_arg as the size would be 0 */
3236 if (unlikely(check_add_overflow(offset, size, &end) ||
3237 end > ctx->cq_wait_size))
3238 return ERR_PTR(-EFAULT);
3240 return ctx->cq_wait_arg + offset;
3243 static int io_validate_ext_arg(struct io_ring_ctx *ctx, unsigned flags,
3244 const void __user *argp, size_t argsz)
3246 struct io_uring_getevents_arg arg;
3248 if (!(flags & IORING_ENTER_EXT_ARG))
3250 if (flags & IORING_ENTER_EXT_ARG_REG)
3252 if (argsz != sizeof(arg))
3254 if (copy_from_user(&arg, argp, sizeof(arg)))
3259 static int io_get_ext_arg(struct io_ring_ctx *ctx, unsigned flags,
3260 const void __user *argp, struct ext_arg *ext_arg)
3262 const struct io_uring_getevents_arg __user *uarg = argp;
3263 struct io_uring_getevents_arg arg;
3266 * If EXT_ARG isn't set, then we have no timespec and the argp pointer
3267 * is just a pointer to the sigset_t.
3269 if (!(flags & IORING_ENTER_EXT_ARG)) {
3270 ext_arg->sig = (const sigset_t __user *) argp;
3274 if (flags & IORING_ENTER_EXT_ARG_REG) {
3275 struct io_uring_reg_wait *w;
3277 if (ext_arg->argsz != sizeof(struct io_uring_reg_wait))
3279 w = io_get_ext_arg_reg(ctx, argp);
3283 if (w->flags & ~IORING_REG_WAIT_TS)
3285 ext_arg->min_time = READ_ONCE(w->min_wait_usec) * NSEC_PER_USEC;
3286 ext_arg->sig = u64_to_user_ptr(READ_ONCE(w->sigmask));
3287 ext_arg->argsz = READ_ONCE(w->sigmask_sz);
3288 if (w->flags & IORING_REG_WAIT_TS) {
3289 ext_arg->ts.tv_sec = READ_ONCE(w->ts.tv_sec);
3290 ext_arg->ts.tv_nsec = READ_ONCE(w->ts.tv_nsec);
3291 ext_arg->ts_set = true;
3297 * EXT_ARG is set - ensure we agree on the size of it and copy in our
3298 * timespec and sigset_t pointers if good.
3300 if (ext_arg->argsz != sizeof(arg))
3303 if (!user_access_begin(uarg, sizeof(*uarg)))
3305 unsafe_get_user(arg.sigmask, &uarg->sigmask, uaccess_end);
3306 unsafe_get_user(arg.sigmask_sz, &uarg->sigmask_sz, uaccess_end);
3307 unsafe_get_user(arg.min_wait_usec, &uarg->min_wait_usec, uaccess_end);
3308 unsafe_get_user(arg.ts, &uarg->ts, uaccess_end);
3311 if (copy_from_user(&arg, uarg, sizeof(arg)))
3314 ext_arg->min_time = arg.min_wait_usec * NSEC_PER_USEC;
3315 ext_arg->sig = u64_to_user_ptr(arg.sigmask);
3316 ext_arg->argsz = arg.sigmask_sz;
3318 if (get_timespec64(&ext_arg->ts, u64_to_user_ptr(arg.ts)))
3320 ext_arg->ts_set = true;
3330 SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit,
3331 u32, min_complete, u32, flags, const void __user *, argp,
3334 struct io_ring_ctx *ctx;
3338 if (unlikely(flags & ~(IORING_ENTER_GETEVENTS | IORING_ENTER_SQ_WAKEUP |
3339 IORING_ENTER_SQ_WAIT | IORING_ENTER_EXT_ARG |
3340 IORING_ENTER_REGISTERED_RING |
3341 IORING_ENTER_ABS_TIMER |
3342 IORING_ENTER_EXT_ARG_REG)))
3346 * Ring fd has been registered via IORING_REGISTER_RING_FDS, we
3347 * need only dereference our task private array to find it.
3349 if (flags & IORING_ENTER_REGISTERED_RING) {
3350 struct io_uring_task *tctx = current->io_uring;
3352 if (unlikely(!tctx || fd >= IO_RINGFD_REG_MAX))
3354 fd = array_index_nospec(fd, IO_RINGFD_REG_MAX);
3355 file = tctx->registered_rings[fd];
3356 if (unlikely(!file))
3360 if (unlikely(!file))
3363 if (unlikely(!io_is_uring_fops(file)))
3367 ctx = file->private_data;
3369 if (unlikely(ctx->flags & IORING_SETUP_R_DISABLED))
3373 * For SQ polling, the thread will do all submissions and completions.
3374 * Just return the requested submit count, and wake the thread if
3378 if (ctx->flags & IORING_SETUP_SQPOLL) {
3379 if (unlikely(ctx->sq_data->thread == NULL)) {
3383 if (flags & IORING_ENTER_SQ_WAKEUP)
3384 wake_up(&ctx->sq_data->wait);
3385 if (flags & IORING_ENTER_SQ_WAIT)
3386 io_sqpoll_wait_sq(ctx);
3389 } else if (to_submit) {
3390 ret = io_uring_add_tctx_node(ctx);
3394 mutex_lock(&ctx->uring_lock);
3395 ret = io_submit_sqes(ctx, to_submit);
3396 if (ret != to_submit) {
3397 mutex_unlock(&ctx->uring_lock);
3400 if (flags & IORING_ENTER_GETEVENTS) {
3401 if (ctx->syscall_iopoll)
3404 * Ignore errors, we'll soon call io_cqring_wait() and
3405 * it should handle ownership problems if any.
3407 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
3408 (void)io_run_local_work_locked(ctx, min_complete);
3410 mutex_unlock(&ctx->uring_lock);
3413 if (flags & IORING_ENTER_GETEVENTS) {
3416 if (ctx->syscall_iopoll) {
3418 * We disallow the app entering submit/complete with
3419 * polling, but we still need to lock the ring to
3420 * prevent racing with polled issue that got punted to
3423 mutex_lock(&ctx->uring_lock);
3425 ret2 = io_validate_ext_arg(ctx, flags, argp, argsz);
3426 if (likely(!ret2)) {
3427 min_complete = min(min_complete,
3429 ret2 = io_iopoll_check(ctx, min_complete);
3431 mutex_unlock(&ctx->uring_lock);
3433 struct ext_arg ext_arg = { .argsz = argsz };
3435 ret2 = io_get_ext_arg(ctx, flags, argp, &ext_arg);
3436 if (likely(!ret2)) {
3437 min_complete = min(min_complete,
3439 ret2 = io_cqring_wait(ctx, min_complete, flags,
3448 * EBADR indicates that one or more CQE were dropped.
3449 * Once the user has been informed we can clear the bit
3450 * as they are obviously ok with those drops.
3452 if (unlikely(ret2 == -EBADR))
3453 clear_bit(IO_CHECK_CQ_DROPPED_BIT,
3458 if (!(flags & IORING_ENTER_REGISTERED_RING))
3463 static const struct file_operations io_uring_fops = {
3464 .release = io_uring_release,
3465 .mmap = io_uring_mmap,
3466 .get_unmapped_area = io_uring_get_unmapped_area,
3468 .mmap_capabilities = io_uring_nommu_mmap_capabilities,
3470 .poll = io_uring_poll,
3471 #ifdef CONFIG_PROC_FS
3472 .show_fdinfo = io_uring_show_fdinfo,
3476 bool io_is_uring_fops(struct file *file)
3478 return file->f_op == &io_uring_fops;
3481 static __cold int io_allocate_scq_urings(struct io_ring_ctx *ctx,
3482 struct io_uring_params *p)
3484 struct io_rings *rings;
3485 size_t size, sq_array_offset;
3488 /* make sure these are sane, as we already accounted them */
3489 ctx->sq_entries = p->sq_entries;
3490 ctx->cq_entries = p->cq_entries;
3492 size = rings_size(ctx->flags, p->sq_entries, p->cq_entries,
3494 if (size == SIZE_MAX)
3497 if (!(ctx->flags & IORING_SETUP_NO_MMAP))
3498 rings = io_pages_map(&ctx->ring_pages, &ctx->n_ring_pages, size);
3500 rings = io_rings_map(ctx, p->cq_off.user_addr, size);
3503 return PTR_ERR(rings);
3506 if (!(ctx->flags & IORING_SETUP_NO_SQARRAY))
3507 ctx->sq_array = (u32 *)((char *)rings + sq_array_offset);
3508 rings->sq_ring_mask = p->sq_entries - 1;
3509 rings->cq_ring_mask = p->cq_entries - 1;
3510 rings->sq_ring_entries = p->sq_entries;
3511 rings->cq_ring_entries = p->cq_entries;
3513 if (p->flags & IORING_SETUP_SQE128)
3514 size = array_size(2 * sizeof(struct io_uring_sqe), p->sq_entries);
3516 size = array_size(sizeof(struct io_uring_sqe), p->sq_entries);
3517 if (size == SIZE_MAX) {
3522 if (!(ctx->flags & IORING_SETUP_NO_MMAP))
3523 ptr = io_pages_map(&ctx->sqe_pages, &ctx->n_sqe_pages, size);
3525 ptr = io_sqes_map(ctx, p->sq_off.user_addr, size);
3529 return PTR_ERR(ptr);
3536 static int io_uring_install_fd(struct file *file)
3540 fd = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
3543 fd_install(fd, file);
3548 * Allocate an anonymous fd, this is what constitutes the application
3549 * visible backing of an io_uring instance. The application mmaps this
3550 * fd to gain access to the SQ/CQ ring details.
3552 static struct file *io_uring_get_file(struct io_ring_ctx *ctx)
3554 /* Create a new inode so that the LSM can block the creation. */
3555 return anon_inode_create_getfile("[io_uring]", &io_uring_fops, ctx,
3556 O_RDWR | O_CLOEXEC, NULL);
3559 int io_uring_fill_params(unsigned entries, struct io_uring_params *p)
3563 if (entries > IORING_MAX_ENTRIES) {
3564 if (!(p->flags & IORING_SETUP_CLAMP))
3566 entries = IORING_MAX_ENTRIES;
3569 if ((p->flags & IORING_SETUP_REGISTERED_FD_ONLY)
3570 && !(p->flags & IORING_SETUP_NO_MMAP))
3574 * Use twice as many entries for the CQ ring. It's possible for the
3575 * application to drive a higher depth than the size of the SQ ring,
3576 * since the sqes are only used at submission time. This allows for
3577 * some flexibility in overcommitting a bit. If the application has
3578 * set IORING_SETUP_CQSIZE, it will have passed in the desired number
3579 * of CQ ring entries manually.
3581 p->sq_entries = roundup_pow_of_two(entries);
3582 if (p->flags & IORING_SETUP_CQSIZE) {
3584 * If IORING_SETUP_CQSIZE is set, we do the same roundup
3585 * to a power-of-two, if it isn't already. We do NOT impose
3586 * any cq vs sq ring sizing.
3590 if (p->cq_entries > IORING_MAX_CQ_ENTRIES) {
3591 if (!(p->flags & IORING_SETUP_CLAMP))
3593 p->cq_entries = IORING_MAX_CQ_ENTRIES;
3595 p->cq_entries = roundup_pow_of_two(p->cq_entries);
3596 if (p->cq_entries < p->sq_entries)
3599 p->cq_entries = 2 * p->sq_entries;
3602 p->sq_off.head = offsetof(struct io_rings, sq.head);
3603 p->sq_off.tail = offsetof(struct io_rings, sq.tail);
3604 p->sq_off.ring_mask = offsetof(struct io_rings, sq_ring_mask);
3605 p->sq_off.ring_entries = offsetof(struct io_rings, sq_ring_entries);
3606 p->sq_off.flags = offsetof(struct io_rings, sq_flags);
3607 p->sq_off.dropped = offsetof(struct io_rings, sq_dropped);
3608 p->sq_off.resv1 = 0;
3609 if (!(p->flags & IORING_SETUP_NO_MMAP))
3610 p->sq_off.user_addr = 0;
3612 p->cq_off.head = offsetof(struct io_rings, cq.head);
3613 p->cq_off.tail = offsetof(struct io_rings, cq.tail);
3614 p->cq_off.ring_mask = offsetof(struct io_rings, cq_ring_mask);
3615 p->cq_off.ring_entries = offsetof(struct io_rings, cq_ring_entries);
3616 p->cq_off.overflow = offsetof(struct io_rings, cq_overflow);
3617 p->cq_off.cqes = offsetof(struct io_rings, cqes);
3618 p->cq_off.flags = offsetof(struct io_rings, cq_flags);
3619 p->cq_off.resv1 = 0;
3620 if (!(p->flags & IORING_SETUP_NO_MMAP))
3621 p->cq_off.user_addr = 0;
3626 static __cold int io_uring_create(unsigned entries, struct io_uring_params *p,
3627 struct io_uring_params __user *params)
3629 struct io_ring_ctx *ctx;
3630 struct io_uring_task *tctx;
3634 ret = io_uring_fill_params(entries, p);
3638 ctx = io_ring_ctx_alloc(p);
3642 ctx->clockid = CLOCK_MONOTONIC;
3643 ctx->clock_offset = 0;
3645 if (!(ctx->flags & IORING_SETUP_NO_SQARRAY))
3646 static_branch_inc(&io_key_has_sqarray);
3648 if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) &&
3649 !(ctx->flags & IORING_SETUP_IOPOLL) &&
3650 !(ctx->flags & IORING_SETUP_SQPOLL))
3651 ctx->task_complete = true;
3653 if (ctx->task_complete || (ctx->flags & IORING_SETUP_IOPOLL))
3654 ctx->lockless_cq = true;
3657 * lazy poll_wq activation relies on ->task_complete for synchronisation
3658 * purposes, see io_activate_pollwq()
3660 if (!ctx->task_complete)
3661 ctx->poll_activated = true;
3664 * When SETUP_IOPOLL and SETUP_SQPOLL are both enabled, user
3665 * space applications don't need to do io completion events
3666 * polling again, they can rely on io_sq_thread to do polling
3667 * work, which can reduce cpu usage and uring_lock contention.
3669 if (ctx->flags & IORING_SETUP_IOPOLL &&
3670 !(ctx->flags & IORING_SETUP_SQPOLL))
3671 ctx->syscall_iopoll = 1;
3673 ctx->compat = in_compat_syscall();
3674 if (!ns_capable_noaudit(&init_user_ns, CAP_IPC_LOCK))
3675 ctx->user = get_uid(current_user());
3678 * For SQPOLL, we just need a wakeup, always. For !SQPOLL, if
3679 * COOP_TASKRUN is set, then IPIs are never needed by the app.
3682 if (ctx->flags & IORING_SETUP_SQPOLL) {
3683 /* IPI related flags don't make sense with SQPOLL */
3684 if (ctx->flags & (IORING_SETUP_COOP_TASKRUN |
3685 IORING_SETUP_TASKRUN_FLAG |
3686 IORING_SETUP_DEFER_TASKRUN))
3688 ctx->notify_method = TWA_SIGNAL_NO_IPI;
3689 } else if (ctx->flags & IORING_SETUP_COOP_TASKRUN) {
3690 ctx->notify_method = TWA_SIGNAL_NO_IPI;
3692 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG &&
3693 !(ctx->flags & IORING_SETUP_DEFER_TASKRUN))
3695 ctx->notify_method = TWA_SIGNAL;
3698 /* HYBRID_IOPOLL only valid with IOPOLL */
3699 if ((ctx->flags & (IORING_SETUP_IOPOLL|IORING_SETUP_HYBRID_IOPOLL)) ==
3700 IORING_SETUP_HYBRID_IOPOLL)
3704 * For DEFER_TASKRUN we require the completion task to be the same as the
3705 * submission task. This implies that there is only one submitter, so enforce
3708 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN &&
3709 !(ctx->flags & IORING_SETUP_SINGLE_ISSUER)) {
3714 * This is just grabbed for accounting purposes. When a process exits,
3715 * the mm is exited and dropped before the files, hence we need to hang
3716 * on to this mm purely for the purposes of being able to unaccount
3717 * memory (locked/pinned vm). It's not used for anything else.
3719 mmgrab(current->mm);
3720 ctx->mm_account = current->mm;
3722 ret = io_allocate_scq_urings(ctx, p);
3726 if (!(p->flags & IORING_SETUP_NO_SQARRAY))
3727 p->sq_off.array = (char *)ctx->sq_array - (char *)ctx->rings;
3729 ret = io_sq_offload_create(ctx, p);
3733 p->features = IORING_FEAT_SINGLE_MMAP | IORING_FEAT_NODROP |
3734 IORING_FEAT_SUBMIT_STABLE | IORING_FEAT_RW_CUR_POS |
3735 IORING_FEAT_CUR_PERSONALITY | IORING_FEAT_FAST_POLL |
3736 IORING_FEAT_POLL_32BITS | IORING_FEAT_SQPOLL_NONFIXED |
3737 IORING_FEAT_EXT_ARG | IORING_FEAT_NATIVE_WORKERS |
3738 IORING_FEAT_RSRC_TAGS | IORING_FEAT_CQE_SKIP |
3739 IORING_FEAT_LINKED_FILE | IORING_FEAT_REG_REG_RING |
3740 IORING_FEAT_RECVSEND_BUNDLE | IORING_FEAT_MIN_TIMEOUT;
3742 if (copy_to_user(params, p, sizeof(*p))) {
3747 if (ctx->flags & IORING_SETUP_SINGLE_ISSUER
3748 && !(ctx->flags & IORING_SETUP_R_DISABLED))
3749 WRITE_ONCE(ctx->submitter_task, get_task_struct(current));
3751 file = io_uring_get_file(ctx);
3753 ret = PTR_ERR(file);
3757 ret = __io_uring_add_tctx_node(ctx);
3760 tctx = current->io_uring;
3763 * Install ring fd as the very last thing, so we don't risk someone
3764 * having closed it before we finish setup
3766 if (p->flags & IORING_SETUP_REGISTERED_FD_ONLY)
3767 ret = io_ring_add_registered_file(tctx, file, 0, IO_RINGFD_REG_MAX);
3769 ret = io_uring_install_fd(file);
3773 trace_io_uring_create(ret, ctx, p->sq_entries, p->cq_entries, p->flags);
3776 io_ring_ctx_wait_and_kill(ctx);
3784 * Sets up an aio uring context, and returns the fd. Applications asks for a
3785 * ring size, we return the actual sq/cq ring sizes (among other things) in the
3786 * params structure passed in.
3788 static long io_uring_setup(u32 entries, struct io_uring_params __user *params)
3790 struct io_uring_params p;
3793 if (copy_from_user(&p, params, sizeof(p)))
3795 for (i = 0; i < ARRAY_SIZE(p.resv); i++) {
3800 if (p.flags & ~(IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL |
3801 IORING_SETUP_SQ_AFF | IORING_SETUP_CQSIZE |
3802 IORING_SETUP_CLAMP | IORING_SETUP_ATTACH_WQ |
3803 IORING_SETUP_R_DISABLED | IORING_SETUP_SUBMIT_ALL |
3804 IORING_SETUP_COOP_TASKRUN | IORING_SETUP_TASKRUN_FLAG |
3805 IORING_SETUP_SQE128 | IORING_SETUP_CQE32 |
3806 IORING_SETUP_SINGLE_ISSUER | IORING_SETUP_DEFER_TASKRUN |
3807 IORING_SETUP_NO_MMAP | IORING_SETUP_REGISTERED_FD_ONLY |
3808 IORING_SETUP_NO_SQARRAY | IORING_SETUP_HYBRID_IOPOLL))
3811 return io_uring_create(entries, &p, params);
3814 static inline bool io_uring_allowed(void)
3816 int disabled = READ_ONCE(sysctl_io_uring_disabled);
3817 kgid_t io_uring_group;
3822 if (disabled == 0 || capable(CAP_SYS_ADMIN))
3825 io_uring_group = make_kgid(&init_user_ns, sysctl_io_uring_group);
3826 if (!gid_valid(io_uring_group))
3829 return in_group_p(io_uring_group);
3832 SYSCALL_DEFINE2(io_uring_setup, u32, entries,
3833 struct io_uring_params __user *, params)
3835 if (!io_uring_allowed())
3838 return io_uring_setup(entries, params);
3841 static int __init io_uring_init(void)
3843 struct kmem_cache_args kmem_args = {
3844 .useroffset = offsetof(struct io_kiocb, cmd.data),
3845 .usersize = sizeof_field(struct io_kiocb, cmd.data),
3846 .freeptr_offset = offsetof(struct io_kiocb, work),
3847 .use_freeptr_offset = true,
3850 #define __BUILD_BUG_VERIFY_OFFSET_SIZE(stype, eoffset, esize, ename) do { \
3851 BUILD_BUG_ON(offsetof(stype, ename) != eoffset); \
3852 BUILD_BUG_ON(sizeof_field(stype, ename) != esize); \
3855 #define BUILD_BUG_SQE_ELEM(eoffset, etype, ename) \
3856 __BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, sizeof(etype), ename)
3857 #define BUILD_BUG_SQE_ELEM_SIZE(eoffset, esize, ename) \
3858 __BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, esize, ename)
3859 BUILD_BUG_ON(sizeof(struct io_uring_sqe) != 64);
3860 BUILD_BUG_SQE_ELEM(0, __u8, opcode);
3861 BUILD_BUG_SQE_ELEM(1, __u8, flags);
3862 BUILD_BUG_SQE_ELEM(2, __u16, ioprio);
3863 BUILD_BUG_SQE_ELEM(4, __s32, fd);
3864 BUILD_BUG_SQE_ELEM(8, __u64, off);
3865 BUILD_BUG_SQE_ELEM(8, __u64, addr2);
3866 BUILD_BUG_SQE_ELEM(8, __u32, cmd_op);
3867 BUILD_BUG_SQE_ELEM(12, __u32, __pad1);
3868 BUILD_BUG_SQE_ELEM(16, __u64, addr);
3869 BUILD_BUG_SQE_ELEM(16, __u64, splice_off_in);
3870 BUILD_BUG_SQE_ELEM(24, __u32, len);
3871 BUILD_BUG_SQE_ELEM(28, __kernel_rwf_t, rw_flags);
3872 BUILD_BUG_SQE_ELEM(28, /* compat */ int, rw_flags);
3873 BUILD_BUG_SQE_ELEM(28, /* compat */ __u32, rw_flags);
3874 BUILD_BUG_SQE_ELEM(28, __u32, fsync_flags);
3875 BUILD_BUG_SQE_ELEM(28, /* compat */ __u16, poll_events);
3876 BUILD_BUG_SQE_ELEM(28, __u32, poll32_events);
3877 BUILD_BUG_SQE_ELEM(28, __u32, sync_range_flags);
3878 BUILD_BUG_SQE_ELEM(28, __u32, msg_flags);
3879 BUILD_BUG_SQE_ELEM(28, __u32, timeout_flags);
3880 BUILD_BUG_SQE_ELEM(28, __u32, accept_flags);
3881 BUILD_BUG_SQE_ELEM(28, __u32, cancel_flags);
3882 BUILD_BUG_SQE_ELEM(28, __u32, open_flags);
3883 BUILD_BUG_SQE_ELEM(28, __u32, statx_flags);
3884 BUILD_BUG_SQE_ELEM(28, __u32, fadvise_advice);
3885 BUILD_BUG_SQE_ELEM(28, __u32, splice_flags);
3886 BUILD_BUG_SQE_ELEM(28, __u32, rename_flags);
3887 BUILD_BUG_SQE_ELEM(28, __u32, unlink_flags);
3888 BUILD_BUG_SQE_ELEM(28, __u32, hardlink_flags);
3889 BUILD_BUG_SQE_ELEM(28, __u32, xattr_flags);
3890 BUILD_BUG_SQE_ELEM(28, __u32, msg_ring_flags);
3891 BUILD_BUG_SQE_ELEM(32, __u64, user_data);
3892 BUILD_BUG_SQE_ELEM(40, __u16, buf_index);
3893 BUILD_BUG_SQE_ELEM(40, __u16, buf_group);
3894 BUILD_BUG_SQE_ELEM(42, __u16, personality);
3895 BUILD_BUG_SQE_ELEM(44, __s32, splice_fd_in);
3896 BUILD_BUG_SQE_ELEM(44, __u32, file_index);
3897 BUILD_BUG_SQE_ELEM(44, __u16, addr_len);
3898 BUILD_BUG_SQE_ELEM(46, __u16, __pad3[0]);
3899 BUILD_BUG_SQE_ELEM(48, __u64, addr3);
3900 BUILD_BUG_SQE_ELEM_SIZE(48, 0, cmd);
3901 BUILD_BUG_SQE_ELEM(56, __u64, __pad2);
3903 BUILD_BUG_ON(sizeof(struct io_uring_files_update) !=
3904 sizeof(struct io_uring_rsrc_update));
3905 BUILD_BUG_ON(sizeof(struct io_uring_rsrc_update) >
3906 sizeof(struct io_uring_rsrc_update2));
3908 /* ->buf_index is u16 */
3909 BUILD_BUG_ON(offsetof(struct io_uring_buf_ring, bufs) != 0);
3910 BUILD_BUG_ON(offsetof(struct io_uring_buf, resv) !=
3911 offsetof(struct io_uring_buf_ring, tail));
3913 /* should fit into one byte */
3914 BUILD_BUG_ON(SQE_VALID_FLAGS >= (1 << 8));
3915 BUILD_BUG_ON(SQE_COMMON_FLAGS >= (1 << 8));
3916 BUILD_BUG_ON((SQE_VALID_FLAGS | SQE_COMMON_FLAGS) != SQE_VALID_FLAGS);
3918 BUILD_BUG_ON(__REQ_F_LAST_BIT > 8 * sizeof_field(struct io_kiocb, flags));
3920 BUILD_BUG_ON(sizeof(atomic_t) != sizeof(u32));
3922 /* top 8bits are for internal use */
3923 BUILD_BUG_ON((IORING_URING_CMD_MASK & 0xff000000) != 0);
3925 io_uring_optable_init();
3928 * Allow user copy in the per-command field, which starts after the
3929 * file in io_kiocb and until the opcode field. The openat2 handling
3930 * requires copying in user memory into the io_kiocb object in that
3931 * range, and HARDENED_USERCOPY will complain if we haven't
3932 * correctly annotated this range.
3934 req_cachep = kmem_cache_create("io_kiocb", sizeof(struct io_kiocb), &kmem_args,
3935 SLAB_HWCACHE_ALIGN | SLAB_PANIC | SLAB_ACCOUNT |
3936 SLAB_TYPESAFE_BY_RCU);
3937 io_buf_cachep = KMEM_CACHE(io_buffer,
3938 SLAB_HWCACHE_ALIGN | SLAB_PANIC | SLAB_ACCOUNT);
3940 iou_wq = alloc_workqueue("iou_exit", WQ_UNBOUND, 64);
3942 #ifdef CONFIG_SYSCTL
3943 register_sysctl_init("kernel", kernel_io_uring_disabled_table);
3948 __initcall(io_uring_init);