1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
4 * Copyright (c) 2016-2018 Christoph Hellwig.
9 #include "xfs_shared.h"
10 #include "xfs_format.h"
11 #include "xfs_log_format.h"
12 #include "xfs_trans_resv.h"
13 #include "xfs_mount.h"
14 #include "xfs_inode.h"
15 #include "xfs_btree.h"
16 #include "xfs_bmap_btree.h"
18 #include "xfs_bmap_util.h"
19 #include "xfs_errortag.h"
20 #include "xfs_error.h"
21 #include "xfs_trans.h"
22 #include "xfs_trans_space.h"
23 #include "xfs_inode_item.h"
24 #include "xfs_iomap.h"
25 #include "xfs_trace.h"
26 #include "xfs_quota.h"
27 #include "xfs_rtgroup.h"
28 #include "xfs_dquot_item.h"
29 #include "xfs_dquot.h"
30 #include "xfs_reflink.h"
31 #include "xfs_health.h"
32 #include "xfs_rtbitmap.h"
34 #define XFS_ALLOC_ALIGN(mp, off) \
35 (((off) >> mp->m_allocsize_log) << mp->m_allocsize_log)
38 xfs_alert_fsblock_zero(
40 xfs_bmbt_irec_t *imap)
42 xfs_alert_tag(ip->i_mount, XFS_PTAG_FSBLOCK_ZERO,
43 "Access to block zero in inode %llu "
44 "start_block: %llx start_off: %llx "
45 "blkcnt: %llx extent-state: %x",
46 (unsigned long long)ip->i_ino,
47 (unsigned long long)imap->br_startblock,
48 (unsigned long long)imap->br_startoff,
49 (unsigned long long)imap->br_blockcount,
51 xfs_bmap_mark_sick(ip, XFS_DATA_FORK);
56 xfs_iomap_inode_sequence(
62 if (iomap_flags & IOMAP_F_XATTR)
63 return READ_ONCE(ip->i_af.if_seq);
64 if ((iomap_flags & IOMAP_F_SHARED) && ip->i_cowfp)
65 cookie = (u64)READ_ONCE(ip->i_cowfp->if_seq) << 32;
66 return cookie | READ_ONCE(ip->i_df.if_seq);
70 * Check that the iomap passed to us is still valid for the given offset and
76 const struct iomap *iomap)
78 struct xfs_inode *ip = XFS_I(inode);
80 if (iomap->validity_cookie !=
81 xfs_iomap_inode_sequence(ip, iomap->flags)) {
82 trace_xfs_iomap_invalid(ip, iomap);
86 XFS_ERRORTAG_DELAY(ip->i_mount, XFS_ERRTAG_WRITE_DELAY_MS);
90 static const struct iomap_folio_ops xfs_iomap_folio_ops = {
91 .iomap_valid = xfs_iomap_valid,
98 struct xfs_bmbt_irec *imap,
99 unsigned int mapping_flags,
103 struct xfs_mount *mp = ip->i_mount;
104 struct xfs_buftarg *target = xfs_inode_buftarg(ip);
106 if (unlikely(!xfs_valid_startblock(ip, imap->br_startblock))) {
107 xfs_bmap_mark_sick(ip, XFS_DATA_FORK);
108 return xfs_alert_fsblock_zero(ip, imap);
111 if (imap->br_startblock == HOLESTARTBLOCK) {
112 iomap->addr = IOMAP_NULL_ADDR;
113 iomap->type = IOMAP_HOLE;
114 } else if (imap->br_startblock == DELAYSTARTBLOCK ||
115 isnullstartblock(imap->br_startblock)) {
116 iomap->addr = IOMAP_NULL_ADDR;
117 iomap->type = IOMAP_DELALLOC;
119 xfs_daddr_t daddr = xfs_fsb_to_db(ip, imap->br_startblock);
121 iomap->addr = BBTOB(daddr);
122 if (mapping_flags & IOMAP_DAX)
123 iomap->addr += target->bt_dax_part_off;
125 if (imap->br_state == XFS_EXT_UNWRITTEN)
126 iomap->type = IOMAP_UNWRITTEN;
128 iomap->type = IOMAP_MAPPED;
131 * Mark iomaps starting at the first sector of a RTG as merge
132 * boundary so that each I/O completions is contained to a
135 if (XFS_IS_REALTIME_INODE(ip) && xfs_has_rtgroups(mp) &&
136 xfs_rtbno_is_group_start(mp, imap->br_startblock))
137 iomap->flags |= IOMAP_F_BOUNDARY;
139 iomap->offset = XFS_FSB_TO_B(mp, imap->br_startoff);
140 iomap->length = XFS_FSB_TO_B(mp, imap->br_blockcount);
141 if (mapping_flags & IOMAP_DAX)
142 iomap->dax_dev = target->bt_daxdev;
144 iomap->bdev = target->bt_bdev;
145 iomap->flags = iomap_flags;
147 if (xfs_ipincount(ip) &&
148 (ip->i_itemp->ili_fsync_fields & ~XFS_ILOG_TIMESTAMP))
149 iomap->flags |= IOMAP_F_DIRTY;
151 iomap->validity_cookie = sequence_cookie;
152 iomap->folio_ops = &xfs_iomap_folio_ops;
158 struct xfs_inode *ip,
160 xfs_fileoff_t offset_fsb,
161 xfs_fileoff_t end_fsb)
163 struct xfs_buftarg *target = xfs_inode_buftarg(ip);
165 iomap->addr = IOMAP_NULL_ADDR;
166 iomap->type = IOMAP_HOLE;
167 iomap->offset = XFS_FSB_TO_B(ip->i_mount, offset_fsb);
168 iomap->length = XFS_FSB_TO_B(ip->i_mount, end_fsb - offset_fsb);
169 iomap->bdev = target->bt_bdev;
170 iomap->dax_dev = target->bt_daxdev;
173 static inline xfs_fileoff_t
175 struct xfs_mount *mp,
179 ASSERT(offset <= mp->m_super->s_maxbytes);
180 return min(XFS_B_TO_FSB(mp, offset + count),
181 XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes));
186 struct xfs_inode *ip)
188 struct xfs_mount *mp = ip->i_mount;
189 xfs_extlen_t align = 0;
191 if (!XFS_IS_REALTIME_INODE(ip)) {
193 * Round up the allocation request to a stripe unit
194 * (m_dalign) boundary if the file size is >= stripe unit
195 * size, and we are allocating past the allocation eof.
197 * If mounted with the "-o swalloc" option the alignment is
198 * increased from the strip unit size to the stripe width.
200 if (mp->m_swidth && xfs_has_swalloc(mp))
201 align = mp->m_swidth;
202 else if (mp->m_dalign)
203 align = mp->m_dalign;
205 if (align && XFS_ISIZE(ip) < XFS_FSB_TO_B(mp, align))
213 * Check if last_fsb is outside the last extent, and if so grow it to the next
214 * stripe unit boundary.
217 xfs_iomap_eof_align_last_fsb(
218 struct xfs_inode *ip,
219 xfs_fileoff_t end_fsb)
221 struct xfs_ifork *ifp = xfs_ifork_ptr(ip, XFS_DATA_FORK);
222 xfs_extlen_t extsz = xfs_get_extsz_hint(ip);
223 xfs_extlen_t align = xfs_eof_alignment(ip);
224 struct xfs_bmbt_irec irec;
225 struct xfs_iext_cursor icur;
227 ASSERT(!xfs_need_iread_extents(ifp));
230 * Always round up the allocation request to the extent hint boundary.
234 align = roundup_64(align, extsz);
240 xfs_fileoff_t aligned_end_fsb = roundup_64(end_fsb, align);
242 xfs_iext_last(ifp, &icur);
243 if (!xfs_iext_get_extent(ifp, &icur, &irec) ||
244 aligned_end_fsb >= irec.br_startoff + irec.br_blockcount)
245 return aligned_end_fsb;
252 xfs_iomap_write_direct(
253 struct xfs_inode *ip,
254 xfs_fileoff_t offset_fsb,
255 xfs_fileoff_t count_fsb,
257 struct xfs_bmbt_irec *imap,
260 struct xfs_mount *mp = ip->i_mount;
261 struct xfs_trans *tp;
262 xfs_filblks_t resaligned;
264 unsigned int dblocks, rblocks;
267 int bmapi_flags = XFS_BMAPI_PREALLOC;
268 int nr_exts = XFS_IEXT_ADD_NOSPLIT_CNT;
270 ASSERT(count_fsb > 0);
272 resaligned = xfs_aligned_fsb_count(offset_fsb, count_fsb,
273 xfs_get_extsz_hint(ip));
274 if (unlikely(XFS_IS_REALTIME_INODE(ip))) {
275 dblocks = XFS_DIOSTRAT_SPACE_RES(mp, 0);
276 rblocks = resaligned;
278 dblocks = XFS_DIOSTRAT_SPACE_RES(mp, resaligned);
282 error = xfs_qm_dqattach(ip);
287 * For DAX, we do not allocate unwritten extents, but instead we zero
288 * the block before we commit the transaction. Ideally we'd like to do
289 * this outside the transaction context, but if we commit and then crash
290 * we may not have zeroed the blocks and this will be exposed on
291 * recovery of the allocation. Hence we must zero before commit.
293 * Further, if we are mapping unwritten extents here, we need to zero
294 * and convert them to written so that we don't need an unwritten extent
295 * callback for DAX. This also means that we need to be able to dip into
296 * the reserve block pool for bmbt block allocation if there is no space
297 * left but we need to do unwritten extent conversion.
299 if (flags & IOMAP_DAX) {
300 bmapi_flags = XFS_BMAPI_CONVERT | XFS_BMAPI_ZERO;
301 if (imap->br_state == XFS_EXT_UNWRITTEN) {
303 nr_exts = XFS_IEXT_WRITE_UNWRITTEN_CNT;
304 dblocks = XFS_DIOSTRAT_SPACE_RES(mp, 0) << 1;
308 error = xfs_trans_alloc_inode(ip, &M_RES(mp)->tr_write, dblocks,
309 rblocks, force, &tp);
313 error = xfs_iext_count_extend(tp, ip, XFS_DATA_FORK, nr_exts);
315 goto out_trans_cancel;
318 * From this point onwards we overwrite the imap pointer that the
322 error = xfs_bmapi_write(tp, ip, offset_fsb, count_fsb, bmapi_flags, 0,
325 goto out_trans_cancel;
328 * Complete the transaction
330 error = xfs_trans_commit(tp);
334 if (unlikely(!xfs_valid_startblock(ip, imap->br_startblock))) {
335 xfs_bmap_mark_sick(ip, XFS_DATA_FORK);
336 error = xfs_alert_fsblock_zero(ip, imap);
340 *seq = xfs_iomap_inode_sequence(ip, 0);
341 xfs_iunlock(ip, XFS_ILOCK_EXCL);
345 xfs_trans_cancel(tp);
350 xfs_quota_need_throttle(
351 struct xfs_inode *ip,
353 xfs_fsblock_t alloc_blocks)
355 struct xfs_dquot *dq = xfs_inode_dquot(ip, type);
356 struct xfs_dquot_res *res;
357 struct xfs_dquot_pre *pre;
359 if (!dq || !xfs_this_quota_on(ip->i_mount, type))
362 if (XFS_IS_REALTIME_INODE(ip)) {
364 pre = &dq->q_rtb_prealloc;
367 pre = &dq->q_blk_prealloc;
370 /* no hi watermark, no throttle */
371 if (!pre->q_prealloc_hi_wmark)
374 /* under the lo watermark, no throttle */
375 if (res->reserved + alloc_blocks < pre->q_prealloc_lo_wmark)
382 xfs_quota_calc_throttle(
383 struct xfs_inode *ip,
385 xfs_fsblock_t *qblocks,
389 struct xfs_dquot *dq = xfs_inode_dquot(ip, type);
390 struct xfs_dquot_res *res;
391 struct xfs_dquot_pre *pre;
398 } else if (XFS_IS_REALTIME_INODE(ip)) {
400 pre = &dq->q_rtb_prealloc;
403 pre = &dq->q_blk_prealloc;
406 /* no dq, or over hi wmark, squash the prealloc completely */
407 if (!res || res->reserved >= pre->q_prealloc_hi_wmark) {
413 freesp = pre->q_prealloc_hi_wmark - res->reserved;
414 if (freesp < pre->q_low_space[XFS_QLOWSP_5_PCNT]) {
416 if (freesp < pre->q_low_space[XFS_QLOWSP_3_PCNT])
418 if (freesp < pre->q_low_space[XFS_QLOWSP_1_PCNT])
422 if (freesp < *qfreesp)
425 /* only overwrite the throttle values if we are more aggressive */
426 if ((freesp >> shift) < (*qblocks >> *qshift)) {
434 struct percpu_counter *counter,
435 uint64_t low_space[XFS_LOWSP_MAX],
440 freesp = percpu_counter_read_positive(counter);
441 if (freesp < low_space[XFS_LOWSP_5_PCNT]) {
443 if (freesp < low_space[XFS_LOWSP_4_PCNT])
445 if (freesp < low_space[XFS_LOWSP_3_PCNT])
447 if (freesp < low_space[XFS_LOWSP_2_PCNT])
449 if (freesp < low_space[XFS_LOWSP_1_PCNT])
456 * If we don't have a user specified preallocation size, dynamically increase
457 * the preallocation size as the size of the file grows. Cap the maximum size
458 * at a single extent or less if the filesystem is near full. The closer the
459 * filesystem is to being full, the smaller the maximum preallocation.
462 xfs_iomap_prealloc_size(
463 struct xfs_inode *ip,
467 struct xfs_iext_cursor *icur)
469 struct xfs_iext_cursor ncur = *icur;
470 struct xfs_bmbt_irec prev, got;
471 struct xfs_mount *mp = ip->i_mount;
472 struct xfs_ifork *ifp = xfs_ifork_ptr(ip, whichfork);
473 xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset);
475 xfs_fsblock_t qblocks;
476 xfs_fsblock_t alloc_blocks = 0;
482 * As an exception we don't do any preallocation at all if the file is
483 * smaller than the minimum preallocation and we are using the default
484 * dynamic preallocation scheme, as it is likely this is the only write
485 * to the file that is going to be done.
487 if (XFS_ISIZE(ip) < XFS_FSB_TO_B(mp, mp->m_allocsize_blocks))
491 * Use the minimum preallocation size for small files or if we are
492 * writing right after a hole.
494 if (XFS_ISIZE(ip) < XFS_FSB_TO_B(mp, mp->m_dalign) ||
495 !xfs_iext_prev_extent(ifp, &ncur, &prev) ||
496 prev.br_startoff + prev.br_blockcount < offset_fsb)
497 return mp->m_allocsize_blocks;
500 * Take the size of the preceding data extents as the basis for the
501 * preallocation size. Note that we don't care if the previous extents
502 * are written or not.
504 plen = prev.br_blockcount;
505 while (xfs_iext_prev_extent(ifp, &ncur, &got)) {
506 if (plen > XFS_MAX_BMBT_EXTLEN / 2 ||
507 isnullstartblock(got.br_startblock) ||
508 got.br_startoff + got.br_blockcount != prev.br_startoff ||
509 got.br_startblock + got.br_blockcount != prev.br_startblock)
511 plen += got.br_blockcount;
516 * If the size of the extents is greater than half the maximum extent
517 * length, then use the current offset as the basis. This ensures that
518 * for large files the preallocation size always extends to
519 * XFS_BMBT_MAX_EXTLEN rather than falling short due to things like stripe
520 * unit/width alignment of real extents.
522 alloc_blocks = plen * 2;
523 if (alloc_blocks > XFS_MAX_BMBT_EXTLEN)
524 alloc_blocks = XFS_B_TO_FSB(mp, offset);
525 qblocks = alloc_blocks;
528 * XFS_BMBT_MAX_EXTLEN is not a power of two value but we round the prealloc
529 * down to the nearest power of two value after throttling. To prevent
530 * the round down from unconditionally reducing the maximum supported
531 * prealloc size, we round up first, apply appropriate throttling, round
532 * down and cap the value to XFS_BMBT_MAX_EXTLEN.
534 alloc_blocks = XFS_FILEOFF_MIN(roundup_pow_of_two(XFS_MAX_BMBT_EXTLEN),
537 if (unlikely(XFS_IS_REALTIME_INODE(ip)))
538 freesp = xfs_rtbxlen_to_blen(mp,
539 xfs_iomap_freesp(&mp->m_frextents,
540 mp->m_low_rtexts, &shift));
542 freesp = xfs_iomap_freesp(&mp->m_fdblocks, mp->m_low_space,
546 * Check each quota to cap the prealloc size, provide a shift value to
547 * throttle with and adjust amount of available space.
549 if (xfs_quota_need_throttle(ip, XFS_DQTYPE_USER, alloc_blocks))
550 xfs_quota_calc_throttle(ip, XFS_DQTYPE_USER, &qblocks, &qshift,
552 if (xfs_quota_need_throttle(ip, XFS_DQTYPE_GROUP, alloc_blocks))
553 xfs_quota_calc_throttle(ip, XFS_DQTYPE_GROUP, &qblocks, &qshift,
555 if (xfs_quota_need_throttle(ip, XFS_DQTYPE_PROJ, alloc_blocks))
556 xfs_quota_calc_throttle(ip, XFS_DQTYPE_PROJ, &qblocks, &qshift,
560 * The final prealloc size is set to the minimum of free space available
561 * in each of the quotas and the overall filesystem.
563 * The shift throttle value is set to the maximum value as determined by
564 * the global low free space values and per-quota low free space values.
566 alloc_blocks = min(alloc_blocks, qblocks);
567 shift = max(shift, qshift);
570 alloc_blocks >>= shift;
572 * rounddown_pow_of_two() returns an undefined result if we pass in
576 alloc_blocks = rounddown_pow_of_two(alloc_blocks);
577 if (alloc_blocks > XFS_MAX_BMBT_EXTLEN)
578 alloc_blocks = XFS_MAX_BMBT_EXTLEN;
581 * If we are still trying to allocate more space than is
582 * available, squash the prealloc hard. This can happen if we
583 * have a large file on a small filesystem and the above
584 * lowspace thresholds are smaller than XFS_BMBT_MAX_EXTLEN.
586 while (alloc_blocks && alloc_blocks >= freesp)
588 if (alloc_blocks < mp->m_allocsize_blocks)
589 alloc_blocks = mp->m_allocsize_blocks;
590 trace_xfs_iomap_prealloc_size(ip, alloc_blocks, shift,
591 mp->m_allocsize_blocks);
596 xfs_iomap_write_unwritten(
602 xfs_mount_t *mp = ip->i_mount;
603 xfs_fileoff_t offset_fsb;
604 xfs_filblks_t count_fsb;
605 xfs_filblks_t numblks_fsb;
608 xfs_bmbt_irec_t imap;
609 struct inode *inode = VFS_I(ip);
614 trace_xfs_unwritten_convert(ip, offset, count);
616 offset_fsb = XFS_B_TO_FSBT(mp, offset);
617 count_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + count);
618 count_fsb = (xfs_filblks_t)(count_fsb - offset_fsb);
621 * Reserve enough blocks in this transaction for two complete extent
622 * btree splits. We may be converting the middle part of an unwritten
623 * extent and in this case we will insert two new extents in the btree
624 * each of which could cause a full split.
626 * This reservation amount will be used in the first call to
627 * xfs_bmbt_split() to select an AG with enough space to satisfy the
628 * rest of the operation.
630 resblks = XFS_DIOSTRAT_SPACE_RES(mp, 0) << 1;
632 /* Attach dquots so that bmbt splits are accounted correctly. */
633 error = xfs_qm_dqattach(ip);
639 * Set up a transaction to convert the range of extents
640 * from unwritten to real. Do allocations in a loop until
641 * we have covered the range passed in.
643 * Note that we can't risk to recursing back into the filesystem
644 * here as we might be asked to write out the same inode that we
645 * complete here and might deadlock on the iolock.
647 error = xfs_trans_alloc_inode(ip, &M_RES(mp)->tr_write, resblks,
652 error = xfs_iext_count_extend(tp, ip, XFS_DATA_FORK,
653 XFS_IEXT_WRITE_UNWRITTEN_CNT);
655 goto error_on_bmapi_transaction;
658 * Modify the unwritten extent state of the buffer.
661 error = xfs_bmapi_write(tp, ip, offset_fsb, count_fsb,
662 XFS_BMAPI_CONVERT, resblks, &imap,
665 goto error_on_bmapi_transaction;
668 * Log the updated inode size as we go. We have to be careful
669 * to only log it up to the actual write offset if it is
670 * halfway into a block.
672 i_size = XFS_FSB_TO_B(mp, offset_fsb + count_fsb);
673 if (i_size > offset + count)
674 i_size = offset + count;
675 if (update_isize && i_size > i_size_read(inode))
676 i_size_write(inode, i_size);
677 i_size = xfs_new_eof(ip, i_size);
679 ip->i_disk_size = i_size;
680 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
683 error = xfs_trans_commit(tp);
684 xfs_iunlock(ip, XFS_ILOCK_EXCL);
688 if (unlikely(!xfs_valid_startblock(ip, imap.br_startblock))) {
689 xfs_bmap_mark_sick(ip, XFS_DATA_FORK);
690 return xfs_alert_fsblock_zero(ip, &imap);
693 if ((numblks_fsb = imap.br_blockcount) == 0) {
695 * The numblks_fsb value should always get
696 * smaller, otherwise the loop is stuck.
698 ASSERT(imap.br_blockcount);
701 offset_fsb += numblks_fsb;
702 count_fsb -= numblks_fsb;
703 } while (count_fsb > 0);
707 error_on_bmapi_transaction:
708 xfs_trans_cancel(tp);
709 xfs_iunlock(ip, XFS_ILOCK_EXCL);
717 struct xfs_bmbt_irec *imap,
720 /* don't allocate blocks when just zeroing */
721 if (flags & IOMAP_ZERO)
724 imap->br_startblock == HOLESTARTBLOCK ||
725 imap->br_startblock == DELAYSTARTBLOCK)
727 /* we convert unwritten extents before copying the data for DAX */
728 if ((flags & IOMAP_DAX) && imap->br_state == XFS_EXT_UNWRITTEN)
735 struct xfs_inode *ip,
737 struct xfs_bmbt_irec *imap,
740 if (!xfs_is_cow_inode(ip))
743 /* when zeroing we don't have to COW holes or unwritten extents */
744 if (flags & (IOMAP_UNSHARE | IOMAP_ZERO)) {
746 imap->br_startblock == HOLESTARTBLOCK ||
747 imap->br_state == XFS_EXT_UNWRITTEN)
755 * Extents not yet cached requires exclusive access, don't block for
758 * This is basically an opencoded xfs_ilock_data_map_shared() call, but with
759 * support for IOMAP_NOWAIT.
763 struct xfs_inode *ip,
767 if (flags & IOMAP_NOWAIT) {
768 if (xfs_need_iread_extents(&ip->i_df))
770 if (!xfs_ilock_nowait(ip, *lockmode))
773 if (xfs_need_iread_extents(&ip->i_df))
774 *lockmode = XFS_ILOCK_EXCL;
775 xfs_ilock(ip, *lockmode);
782 * Check that the imap we are going to return to the caller spans the entire
783 * range that the caller requested for the IO.
787 struct xfs_bmbt_irec *imap,
788 xfs_fileoff_t offset_fsb,
789 xfs_fileoff_t end_fsb)
791 if (imap->br_startoff > offset_fsb)
793 if (imap->br_startoff + imap->br_blockcount < end_fsb)
799 xfs_direct_write_iomap_begin(
805 struct iomap *srcmap)
807 struct xfs_inode *ip = XFS_I(inode);
808 struct xfs_mount *mp = ip->i_mount;
809 struct xfs_bmbt_irec imap, cmap;
810 xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset);
811 xfs_fileoff_t end_fsb = xfs_iomap_end_fsb(mp, offset, length);
812 int nimaps = 1, error = 0;
815 unsigned int lockmode;
818 ASSERT(flags & (IOMAP_WRITE | IOMAP_ZERO));
820 if (xfs_is_shutdown(mp))
824 * Writes that span EOF might trigger an IO size update on completion,
825 * so consider them to be dirty for the purposes of O_DSYNC even if
826 * there is no other metadata changes pending or have been made here.
828 if (offset + length > i_size_read(inode))
829 iomap_flags |= IOMAP_F_DIRTY;
832 * COW writes may allocate delalloc space or convert unwritten COW
833 * extents, so we need to make sure to take the lock exclusively here.
835 if (xfs_is_cow_inode(ip))
836 lockmode = XFS_ILOCK_EXCL;
838 lockmode = XFS_ILOCK_SHARED;
841 error = xfs_ilock_for_iomap(ip, flags, &lockmode);
846 * The reflink iflag could have changed since the earlier unlocked
847 * check, check if it again and relock if needed.
849 if (xfs_is_cow_inode(ip) && lockmode == XFS_ILOCK_SHARED) {
850 xfs_iunlock(ip, lockmode);
851 lockmode = XFS_ILOCK_EXCL;
855 error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb, &imap,
860 if (imap_needs_cow(ip, flags, &imap, nimaps)) {
862 if (flags & IOMAP_NOWAIT)
865 /* may drop and re-acquire the ilock */
866 error = xfs_reflink_allocate_cow(ip, &imap, &cmap, &shared,
868 (flags & IOMAP_DIRECT) || IS_DAX(inode));
873 end_fsb = imap.br_startoff + imap.br_blockcount;
874 length = XFS_FSB_TO_B(mp, end_fsb) - offset;
877 if (imap_needs_alloc(inode, flags, &imap, nimaps))
878 goto allocate_blocks;
881 * NOWAIT and OVERWRITE I/O needs to span the entire requested I/O with
882 * a single map so that we avoid partial IO failures due to the rest of
883 * the I/O range not covered by this map triggering an EAGAIN condition
884 * when it is subsequently mapped and aborting the I/O.
886 if (flags & (IOMAP_NOWAIT | IOMAP_OVERWRITE_ONLY)) {
888 if (!imap_spans_range(&imap, offset_fsb, end_fsb))
893 * For overwrite only I/O, we cannot convert unwritten extents without
894 * requiring sub-block zeroing. This can only be done under an
895 * exclusive IOLOCK, hence return -EAGAIN if this is not a written
896 * extent to tell the caller to try again.
898 if (flags & IOMAP_OVERWRITE_ONLY) {
900 if (imap.br_state != XFS_EXT_NORM &&
901 ((offset | length) & mp->m_blockmask))
905 seq = xfs_iomap_inode_sequence(ip, iomap_flags);
906 xfs_iunlock(ip, lockmode);
907 trace_xfs_iomap_found(ip, offset, length, XFS_DATA_FORK, &imap);
908 return xfs_bmbt_to_iomap(ip, iomap, &imap, flags, iomap_flags, seq);
912 if (flags & (IOMAP_NOWAIT | IOMAP_OVERWRITE_ONLY))
916 * We cap the maximum length we map to a sane size to keep the chunks
917 * of work done where somewhat symmetric with the work writeback does.
918 * This is a completely arbitrary number pulled out of thin air as a
919 * best guess for initial testing.
921 * Note that the values needs to be less than 32-bits wide until the
922 * lower level functions are updated.
924 length = min_t(loff_t, length, 1024 * PAGE_SIZE);
925 end_fsb = xfs_iomap_end_fsb(mp, offset, length);
927 if (offset + length > XFS_ISIZE(ip))
928 end_fsb = xfs_iomap_eof_align_last_fsb(ip, end_fsb);
929 else if (nimaps && imap.br_startblock == HOLESTARTBLOCK)
930 end_fsb = min(end_fsb, imap.br_startoff + imap.br_blockcount);
931 xfs_iunlock(ip, lockmode);
933 error = xfs_iomap_write_direct(ip, offset_fsb, end_fsb - offset_fsb,
938 trace_xfs_iomap_alloc(ip, offset, length, XFS_DATA_FORK, &imap);
939 return xfs_bmbt_to_iomap(ip, iomap, &imap, flags,
940 iomap_flags | IOMAP_F_NEW, seq);
943 length = XFS_FSB_TO_B(mp, cmap.br_startoff + cmap.br_blockcount);
944 trace_xfs_iomap_found(ip, offset, length - offset, XFS_COW_FORK, &cmap);
945 if (imap.br_startblock != HOLESTARTBLOCK) {
946 seq = xfs_iomap_inode_sequence(ip, 0);
947 error = xfs_bmbt_to_iomap(ip, srcmap, &imap, flags, 0, seq);
951 seq = xfs_iomap_inode_sequence(ip, IOMAP_F_SHARED);
952 xfs_iunlock(ip, lockmode);
953 return xfs_bmbt_to_iomap(ip, iomap, &cmap, flags, IOMAP_F_SHARED, seq);
957 xfs_iunlock(ip, lockmode);
961 const struct iomap_ops xfs_direct_write_iomap_ops = {
962 .iomap_begin = xfs_direct_write_iomap_begin,
966 xfs_dax_write_iomap_end(
974 struct xfs_inode *ip = XFS_I(inode);
976 if (!xfs_is_cow_inode(ip))
980 xfs_reflink_cancel_cow_range(ip, pos, length, true);
984 return xfs_reflink_end_cow(ip, pos, written);
987 const struct iomap_ops xfs_dax_write_iomap_ops = {
988 .iomap_begin = xfs_direct_write_iomap_begin,
989 .iomap_end = xfs_dax_write_iomap_end,
993 xfs_buffered_write_iomap_begin(
999 struct iomap *srcmap)
1001 struct xfs_inode *ip = XFS_I(inode);
1002 struct xfs_mount *mp = ip->i_mount;
1003 xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset);
1004 xfs_fileoff_t end_fsb = xfs_iomap_end_fsb(mp, offset, count);
1005 struct xfs_bmbt_irec imap, cmap;
1006 struct xfs_iext_cursor icur, ccur;
1007 xfs_fsblock_t prealloc_blocks = 0;
1008 bool eof = false, cow_eof = false, shared = false;
1009 int allocfork = XFS_DATA_FORK;
1011 unsigned int lockmode = XFS_ILOCK_EXCL;
1012 unsigned int iomap_flags = 0;
1015 if (xfs_is_shutdown(mp))
1018 /* we can't use delayed allocations when using extent size hints */
1019 if (xfs_get_extsz_hint(ip))
1020 return xfs_direct_write_iomap_begin(inode, offset, count,
1021 flags, iomap, srcmap);
1023 error = xfs_qm_dqattach(ip);
1027 error = xfs_ilock_for_iomap(ip, flags, &lockmode);
1031 if (XFS_IS_CORRUPT(mp, !xfs_ifork_has_extents(&ip->i_df)) ||
1032 XFS_TEST_ERROR(false, mp, XFS_ERRTAG_BMAPIFORMAT)) {
1033 xfs_bmap_mark_sick(ip, XFS_DATA_FORK);
1034 error = -EFSCORRUPTED;
1038 XFS_STATS_INC(mp, xs_blk_mapw);
1040 error = xfs_iread_extents(NULL, ip, XFS_DATA_FORK);
1045 * Search the data fork first to look up our source mapping. We
1046 * always need the data fork map, as we have to return it to the
1047 * iomap code so that the higher level write code can read data in to
1048 * perform read-modify-write cycles for unaligned writes.
1050 eof = !xfs_iext_lookup_extent(ip, &ip->i_df, offset_fsb, &icur, &imap);
1052 imap.br_startoff = end_fsb; /* fake hole until the end */
1054 /* We never need to allocate blocks for zeroing or unsharing a hole. */
1055 if ((flags & (IOMAP_UNSHARE | IOMAP_ZERO)) &&
1056 imap.br_startoff > offset_fsb) {
1057 xfs_hole_to_iomap(ip, iomap, offset_fsb, imap.br_startoff);
1062 * For zeroing, trim a delalloc extent that extends beyond the EOF
1063 * block. If it starts beyond the EOF block, convert it to an
1066 if ((flags & IOMAP_ZERO) && imap.br_startoff <= offset_fsb &&
1067 isnullstartblock(imap.br_startblock)) {
1068 xfs_fileoff_t eof_fsb = XFS_B_TO_FSB(mp, XFS_ISIZE(ip));
1070 if (offset_fsb >= eof_fsb)
1072 if (end_fsb > eof_fsb) {
1074 xfs_trim_extent(&imap, offset_fsb,
1075 end_fsb - offset_fsb);
1080 * Search the COW fork extent list even if we did not find a data fork
1081 * extent. This serves two purposes: first this implements the
1082 * speculative preallocation using cowextsize, so that we also unshare
1083 * block adjacent to shared blocks instead of just the shared blocks
1084 * themselves. Second the lookup in the extent list is generally faster
1085 * than going out to the shared extent tree.
1087 if (xfs_is_cow_inode(ip)) {
1089 ASSERT(!xfs_is_reflink_inode(ip));
1090 xfs_ifork_init_cow(ip);
1092 cow_eof = !xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb,
1094 if (!cow_eof && cmap.br_startoff <= offset_fsb) {
1095 trace_xfs_reflink_cow_found(ip, &cmap);
1100 if (imap.br_startoff <= offset_fsb) {
1102 * For reflink files we may need a delalloc reservation when
1103 * overwriting shared extents. This includes zeroing of
1104 * existing extents that contain data.
1106 if (!xfs_is_cow_inode(ip) ||
1107 ((flags & IOMAP_ZERO) && imap.br_state != XFS_EXT_NORM)) {
1108 trace_xfs_iomap_found(ip, offset, count, XFS_DATA_FORK,
1113 xfs_trim_extent(&imap, offset_fsb, end_fsb - offset_fsb);
1115 /* Trim the mapping to the nearest shared extent boundary. */
1116 error = xfs_bmap_trim_cow(ip, &imap, &shared);
1120 /* Not shared? Just report the (potentially capped) extent. */
1122 trace_xfs_iomap_found(ip, offset, count, XFS_DATA_FORK,
1128 * Fork all the shared blocks from our write offset until the
1129 * end of the extent.
1131 allocfork = XFS_COW_FORK;
1132 end_fsb = imap.br_startoff + imap.br_blockcount;
1135 * We cap the maximum length we map here to MAX_WRITEBACK_PAGES
1136 * pages to keep the chunks of work done where somewhat
1137 * symmetric with the work writeback does. This is a completely
1138 * arbitrary number pulled out of thin air.
1140 * Note that the values needs to be less than 32-bits wide until
1141 * the lower level functions are updated.
1143 count = min_t(loff_t, count, 1024 * PAGE_SIZE);
1144 end_fsb = xfs_iomap_end_fsb(mp, offset, count);
1146 if (xfs_is_always_cow_inode(ip))
1147 allocfork = XFS_COW_FORK;
1150 if (eof && offset + count > XFS_ISIZE(ip)) {
1152 * Determine the initial size of the preallocation.
1153 * We clean up any extra preallocation when the file is closed.
1155 if (xfs_has_allocsize(mp))
1156 prealloc_blocks = mp->m_allocsize_blocks;
1157 else if (allocfork == XFS_DATA_FORK)
1158 prealloc_blocks = xfs_iomap_prealloc_size(ip, allocfork,
1159 offset, count, &icur);
1161 prealloc_blocks = xfs_iomap_prealloc_size(ip, allocfork,
1162 offset, count, &ccur);
1163 if (prealloc_blocks) {
1165 xfs_off_t end_offset;
1166 xfs_fileoff_t p_end_fsb;
1168 end_offset = XFS_ALLOC_ALIGN(mp, offset + count - 1);
1169 p_end_fsb = XFS_B_TO_FSBT(mp, end_offset) +
1172 align = xfs_eof_alignment(ip);
1174 p_end_fsb = roundup_64(p_end_fsb, align);
1176 p_end_fsb = min(p_end_fsb,
1177 XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes));
1178 ASSERT(p_end_fsb > offset_fsb);
1179 prealloc_blocks = p_end_fsb - end_fsb;
1184 * Flag newly allocated delalloc blocks with IOMAP_F_NEW so we punch
1185 * them out if the write happens to fail.
1187 iomap_flags |= IOMAP_F_NEW;
1188 if (allocfork == XFS_COW_FORK) {
1189 error = xfs_bmapi_reserve_delalloc(ip, allocfork, offset_fsb,
1190 end_fsb - offset_fsb, prealloc_blocks, &cmap,
1195 trace_xfs_iomap_alloc(ip, offset, count, allocfork, &cmap);
1199 error = xfs_bmapi_reserve_delalloc(ip, allocfork, offset_fsb,
1200 end_fsb - offset_fsb, prealloc_blocks, &imap, &icur,
1205 trace_xfs_iomap_alloc(ip, offset, count, allocfork, &imap);
1207 seq = xfs_iomap_inode_sequence(ip, iomap_flags);
1208 xfs_iunlock(ip, lockmode);
1209 return xfs_bmbt_to_iomap(ip, iomap, &imap, flags, iomap_flags, seq);
1212 xfs_iunlock(ip, lockmode);
1213 truncate_pagecache(inode, offset);
1214 error = xfs_bmapi_convert_delalloc(ip, XFS_DATA_FORK, offset,
1219 trace_xfs_iomap_alloc(ip, offset, count, XFS_DATA_FORK, &imap);
1223 if (imap.br_startoff <= offset_fsb) {
1224 error = xfs_bmbt_to_iomap(ip, srcmap, &imap, flags, 0,
1225 xfs_iomap_inode_sequence(ip, 0));
1229 xfs_trim_extent(&cmap, offset_fsb,
1230 imap.br_startoff - offset_fsb);
1233 iomap_flags |= IOMAP_F_SHARED;
1234 seq = xfs_iomap_inode_sequence(ip, iomap_flags);
1235 xfs_iunlock(ip, lockmode);
1236 return xfs_bmbt_to_iomap(ip, iomap, &cmap, flags, iomap_flags, seq);
1239 xfs_iunlock(ip, lockmode);
1244 xfs_buffered_write_delalloc_punch(
1245 struct inode *inode,
1248 struct iomap *iomap)
1250 xfs_bmap_punch_delalloc_range(XFS_I(inode),
1251 (iomap->flags & IOMAP_F_SHARED) ?
1252 XFS_COW_FORK : XFS_DATA_FORK,
1253 offset, offset + length);
1257 xfs_buffered_write_iomap_end(
1258 struct inode *inode,
1263 struct iomap *iomap)
1265 loff_t start_byte, end_byte;
1267 /* If we didn't reserve the blocks, we're not allowed to punch them. */
1268 if (iomap->type != IOMAP_DELALLOC || !(iomap->flags & IOMAP_F_NEW))
1272 * iomap_page_mkwrite() will never fail in a way that requires delalloc
1273 * extents that it allocated to be revoked. Hence never try to release
1276 if (flags & IOMAP_FAULT)
1279 /* Nothing to do if we've written the entire delalloc extent */
1280 start_byte = iomap_last_written_block(inode, offset, written);
1281 end_byte = round_up(offset + length, i_blocksize(inode));
1282 if (start_byte >= end_byte)
1285 /* For zeroing operations the callers already hold invalidate_lock. */
1286 if (flags & (IOMAP_UNSHARE | IOMAP_ZERO)) {
1287 rwsem_assert_held_write(&inode->i_mapping->invalidate_lock);
1288 iomap_write_delalloc_release(inode, start_byte, end_byte, flags,
1289 iomap, xfs_buffered_write_delalloc_punch);
1291 filemap_invalidate_lock(inode->i_mapping);
1292 iomap_write_delalloc_release(inode, start_byte, end_byte, flags,
1293 iomap, xfs_buffered_write_delalloc_punch);
1294 filemap_invalidate_unlock(inode->i_mapping);
1300 const struct iomap_ops xfs_buffered_write_iomap_ops = {
1301 .iomap_begin = xfs_buffered_write_iomap_begin,
1302 .iomap_end = xfs_buffered_write_iomap_end,
1306 xfs_read_iomap_begin(
1307 struct inode *inode,
1311 struct iomap *iomap,
1312 struct iomap *srcmap)
1314 struct xfs_inode *ip = XFS_I(inode);
1315 struct xfs_mount *mp = ip->i_mount;
1316 struct xfs_bmbt_irec imap;
1317 xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset);
1318 xfs_fileoff_t end_fsb = xfs_iomap_end_fsb(mp, offset, length);
1319 int nimaps = 1, error = 0;
1320 bool shared = false;
1321 unsigned int lockmode = XFS_ILOCK_SHARED;
1324 ASSERT(!(flags & (IOMAP_WRITE | IOMAP_ZERO)));
1326 if (xfs_is_shutdown(mp))
1329 error = xfs_ilock_for_iomap(ip, flags, &lockmode);
1332 error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb, &imap,
1334 if (!error && ((flags & IOMAP_REPORT) || IS_DAX(inode)))
1335 error = xfs_reflink_trim_around_shared(ip, &imap, &shared);
1336 seq = xfs_iomap_inode_sequence(ip, shared ? IOMAP_F_SHARED : 0);
1337 xfs_iunlock(ip, lockmode);
1341 trace_xfs_iomap_found(ip, offset, length, XFS_DATA_FORK, &imap);
1342 return xfs_bmbt_to_iomap(ip, iomap, &imap, flags,
1343 shared ? IOMAP_F_SHARED : 0, seq);
1346 const struct iomap_ops xfs_read_iomap_ops = {
1347 .iomap_begin = xfs_read_iomap_begin,
1351 xfs_seek_iomap_begin(
1352 struct inode *inode,
1356 struct iomap *iomap,
1357 struct iomap *srcmap)
1359 struct xfs_inode *ip = XFS_I(inode);
1360 struct xfs_mount *mp = ip->i_mount;
1361 xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset);
1362 xfs_fileoff_t end_fsb = XFS_B_TO_FSB(mp, offset + length);
1363 xfs_fileoff_t cow_fsb = NULLFILEOFF, data_fsb = NULLFILEOFF;
1364 struct xfs_iext_cursor icur;
1365 struct xfs_bmbt_irec imap, cmap;
1370 if (xfs_is_shutdown(mp))
1373 lockmode = xfs_ilock_data_map_shared(ip);
1374 error = xfs_iread_extents(NULL, ip, XFS_DATA_FORK);
1378 if (xfs_iext_lookup_extent(ip, &ip->i_df, offset_fsb, &icur, &imap)) {
1380 * If we found a data extent we are done.
1382 if (imap.br_startoff <= offset_fsb)
1384 data_fsb = imap.br_startoff;
1387 * Fake a hole until the end of the file.
1389 data_fsb = xfs_iomap_end_fsb(mp, offset, length);
1393 * If a COW fork extent covers the hole, report it - capped to the next
1396 if (xfs_inode_has_cow_data(ip) &&
1397 xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, &cmap))
1398 cow_fsb = cmap.br_startoff;
1399 if (cow_fsb != NULLFILEOFF && cow_fsb <= offset_fsb) {
1400 if (data_fsb < cow_fsb + cmap.br_blockcount)
1401 end_fsb = min(end_fsb, data_fsb);
1402 xfs_trim_extent(&cmap, offset_fsb, end_fsb - offset_fsb);
1403 seq = xfs_iomap_inode_sequence(ip, IOMAP_F_SHARED);
1404 error = xfs_bmbt_to_iomap(ip, iomap, &cmap, flags,
1405 IOMAP_F_SHARED, seq);
1407 * This is a COW extent, so we must probe the page cache
1408 * because there could be dirty page cache being backed
1411 iomap->type = IOMAP_UNWRITTEN;
1416 * Else report a hole, capped to the next found data or COW extent.
1418 if (cow_fsb != NULLFILEOFF && cow_fsb < data_fsb)
1419 imap.br_blockcount = cow_fsb - offset_fsb;
1421 imap.br_blockcount = data_fsb - offset_fsb;
1422 imap.br_startoff = offset_fsb;
1423 imap.br_startblock = HOLESTARTBLOCK;
1424 imap.br_state = XFS_EXT_NORM;
1426 seq = xfs_iomap_inode_sequence(ip, 0);
1427 xfs_trim_extent(&imap, offset_fsb, end_fsb - offset_fsb);
1428 error = xfs_bmbt_to_iomap(ip, iomap, &imap, flags, 0, seq);
1430 xfs_iunlock(ip, lockmode);
1434 const struct iomap_ops xfs_seek_iomap_ops = {
1435 .iomap_begin = xfs_seek_iomap_begin,
1439 xfs_xattr_iomap_begin(
1440 struct inode *inode,
1444 struct iomap *iomap,
1445 struct iomap *srcmap)
1447 struct xfs_inode *ip = XFS_I(inode);
1448 struct xfs_mount *mp = ip->i_mount;
1449 xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset);
1450 xfs_fileoff_t end_fsb = XFS_B_TO_FSB(mp, offset + length);
1451 struct xfs_bmbt_irec imap;
1452 int nimaps = 1, error = 0;
1456 if (xfs_is_shutdown(mp))
1459 lockmode = xfs_ilock_attr_map_shared(ip);
1461 /* if there are no attribute fork or extents, return ENOENT */
1462 if (!xfs_inode_has_attr_fork(ip) || !ip->i_af.if_nextents) {
1467 ASSERT(ip->i_af.if_format != XFS_DINODE_FMT_LOCAL);
1468 error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb, &imap,
1469 &nimaps, XFS_BMAPI_ATTRFORK);
1472 seq = xfs_iomap_inode_sequence(ip, IOMAP_F_XATTR);
1473 xfs_iunlock(ip, lockmode);
1478 return xfs_bmbt_to_iomap(ip, iomap, &imap, flags, IOMAP_F_XATTR, seq);
1481 const struct iomap_ops xfs_xattr_iomap_ops = {
1482 .iomap_begin = xfs_xattr_iomap_begin,
1487 struct xfs_inode *ip,
1492 struct inode *inode = VFS_I(ip);
1494 xfs_assert_ilocked(ip, XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL);
1497 return dax_zero_range(inode, pos, len, did_zero,
1498 &xfs_dax_write_iomap_ops);
1499 return iomap_zero_range(inode, pos, len, did_zero,
1500 &xfs_buffered_write_iomap_ops);
1505 struct xfs_inode *ip,
1509 struct inode *inode = VFS_I(ip);
1512 return dax_truncate_page(inode, pos, did_zero,
1513 &xfs_dax_write_iomap_ops);
1514 return iomap_truncate_page(inode, pos, did_zero,
1515 &xfs_buffered_write_iomap_ops);