1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * Copyright (C) 2018-2023 Oracle. All Rights Reserved.
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_trans_resv.h"
11 #include "xfs_mount.h"
12 #include "xfs_defer.h"
13 #include "xfs_btree.h"
14 #include "xfs_btree_staging.h"
16 #include "xfs_log_format.h"
17 #include "xfs_trans.h"
19 #include "xfs_alloc.h"
20 #include "xfs_alloc_btree.h"
22 #include "xfs_rmap_btree.h"
23 #include "xfs_inode.h"
24 #include "xfs_refcount.h"
25 #include "xfs_extent_busy.h"
26 #include "xfs_health.h"
28 #include "xfs_ialloc.h"
30 #include "scrub/xfs_scrub.h"
31 #include "scrub/scrub.h"
32 #include "scrub/common.h"
33 #include "scrub/btree.h"
34 #include "scrub/trace.h"
35 #include "scrub/repair.h"
36 #include "scrub/bitmap.h"
37 #include "scrub/agb_bitmap.h"
38 #include "scrub/xfile.h"
39 #include "scrub/xfarray.h"
40 #include "scrub/newbt.h"
41 #include "scrub/reap.h"
44 * Free Space Btree Repair
45 * =======================
47 * The reverse mappings are supposed to record all space usage for the entire
48 * AG. Therefore, we can recreate the free extent records in an AG by looking
49 * for gaps in the physical extents recorded in the rmapbt. These records are
50 * staged in @free_records. Identifying the gaps is more difficult on a
51 * reflink filesystem because rmap records are allowed to overlap.
53 * Because the final step of building a new index is to free the space used by
54 * the old index, repair needs to find that space. Unfortunately, all
55 * structures that live in the free space (bnobt, cntbt, rmapbt, agfl) share
56 * the same rmapbt owner code (OWN_AG), so this is not straightforward.
58 * The scan of the reverse mapping information records the space used by OWN_AG
59 * in @old_allocbt_blocks, which (at this stage) is somewhat misnamed. While
60 * walking the rmapbt records, we create a second bitmap @not_allocbt_blocks to
61 * record all visited rmap btree blocks and all blocks owned by the AGFL.
63 * After that is where the definitions of old_allocbt_blocks shifts. This
64 * expression identifies possible former bnobt/cntbt blocks:
66 * (OWN_AG blocks) & ~(rmapbt blocks | agfl blocks);
68 * Substituting from above definitions, that becomes:
70 * old_allocbt_blocks & ~not_allocbt_blocks
72 * The OWN_AG bitmap itself isn't needed after this point, so what we really do
75 * old_allocbt_blocks &= ~not_allocbt_blocks;
77 * After this point, @old_allocbt_blocks is a bitmap of alleged former
78 * bnobt/cntbt blocks. The xagb_bitmap_disunion operation modifies its first
79 * parameter in place to avoid copying records around.
81 * Next, some of the space described by @free_records are diverted to the newbt
82 * reservation and used to format new btree blocks. The remaining records are
83 * written to the new btree indices. We reconstruct both bnobt and cntbt at
84 * the same time since we've already done all the work.
86 * We use the prefix 'xrep_abt' here because we regenerate both free space
87 * allocation btrees at the same time.
91 /* Blocks owned by the rmapbt or the agfl. */
92 struct xagb_bitmap not_allocbt_blocks;
94 /* All OWN_AG blocks. */
95 struct xagb_bitmap old_allocbt_blocks;
98 * New bnobt information. All btree block reservations are added to
99 * the reservation list in new_bnobt.
101 struct xrep_newbt new_bnobt;
103 /* new cntbt information */
104 struct xrep_newbt new_cntbt;
106 /* Free space extents. */
107 struct xfarray *free_records;
109 struct xfs_scrub *sc;
111 /* Number of non-null records in @free_records. */
112 uint64_t nr_real_records;
114 /* get_records()'s position in the free space record array. */
115 xfarray_idx_t array_cur;
118 * Next block we anticipate seeing in the rmap records. If the next
119 * rmap record is greater than next_agbno, we have found unused space.
121 xfs_agblock_t next_agbno;
123 /* Number of free blocks in this AG. */
124 xfs_agblock_t nr_blocks;
126 /* Longest free extent we found in the AG. */
127 xfs_agblock_t longest;
130 /* Set up to repair AG free space btrees. */
132 xrep_setup_ag_allocbt(
133 struct xfs_scrub *sc)
135 struct xfs_group *xg = pag_group(sc->sa.pag);
136 unsigned int busy_gen;
139 * Make sure the busy extent list is clear because we can't put extents
142 if (xfs_extent_busy_list_empty(xg, &busy_gen))
144 return xfs_extent_busy_flush(sc->tp, xg, busy_gen, 0);
147 /* Check for any obvious conflicts in the free extent. */
149 xrep_abt_check_free_ext(
150 struct xfs_scrub *sc,
151 const struct xfs_alloc_rec_incore *rec)
153 enum xbtree_recpacking outcome;
156 if (xfs_alloc_check_irec(sc->sa.pag, rec) != NULL)
157 return -EFSCORRUPTED;
159 /* Must not be an inode chunk. */
160 error = xfs_ialloc_has_inodes_at_extent(sc->sa.ino_cur,
161 rec->ar_startblock, rec->ar_blockcount, &outcome);
164 if (outcome != XBTREE_RECPACKING_EMPTY)
165 return -EFSCORRUPTED;
167 /* Must not be shared or CoW staging. */
168 if (sc->sa.refc_cur) {
169 error = xfs_refcount_has_records(sc->sa.refc_cur,
170 XFS_REFC_DOMAIN_SHARED, rec->ar_startblock,
171 rec->ar_blockcount, &outcome);
174 if (outcome != XBTREE_RECPACKING_EMPTY)
175 return -EFSCORRUPTED;
177 error = xfs_refcount_has_records(sc->sa.refc_cur,
178 XFS_REFC_DOMAIN_COW, rec->ar_startblock,
179 rec->ar_blockcount, &outcome);
182 if (outcome != XBTREE_RECPACKING_EMPTY)
183 return -EFSCORRUPTED;
190 * Stash a free space record for all the space since the last bno we found
191 * all the way up to @end.
198 struct xfs_alloc_rec_incore arec = {
199 .ar_startblock = ra->next_agbno,
200 .ar_blockcount = end - ra->next_agbno,
202 struct xfs_scrub *sc = ra->sc;
205 if (xchk_should_terminate(sc, &error))
208 error = xrep_abt_check_free_ext(ra->sc, &arec);
212 trace_xrep_abt_found(sc->sa.pag, &arec);
214 error = xfarray_append(ra->free_records, &arec);
218 ra->nr_blocks += arec.ar_blockcount;
222 /* Record extents that aren't in use from gaps in the rmap records. */
225 struct xfs_btree_cur *cur,
226 const struct xfs_rmap_irec *rec,
229 struct xrep_abt *ra = priv;
232 /* Record all the OWN_AG blocks... */
233 if (rec->rm_owner == XFS_RMAP_OWN_AG) {
234 error = xagb_bitmap_set(&ra->old_allocbt_blocks,
235 rec->rm_startblock, rec->rm_blockcount);
240 /* ...and all the rmapbt blocks... */
241 error = xagb_bitmap_set_btcur_path(&ra->not_allocbt_blocks, cur);
245 /* ...and all the free space. */
246 if (rec->rm_startblock > ra->next_agbno) {
247 error = xrep_abt_stash(ra, rec->rm_startblock);
253 * rmap records can overlap on reflink filesystems, so project
254 * next_agbno as far out into the AG space as we currently know about.
256 ra->next_agbno = max_t(xfs_agblock_t, ra->next_agbno,
257 rec->rm_startblock + rec->rm_blockcount);
261 /* Collect an AGFL block for the not-to-release list. */
264 struct xfs_mount *mp,
268 struct xrep_abt *ra = priv;
270 return xagb_bitmap_set(&ra->not_allocbt_blocks, agbno, 1);
274 * Compare two free space extents by block number. We want to sort in order of
275 * increasing block number.
278 xrep_bnobt_extent_cmp(
282 const struct xfs_alloc_rec_incore *ap = a;
283 const struct xfs_alloc_rec_incore *bp = b;
285 if (ap->ar_startblock > bp->ar_startblock)
287 else if (ap->ar_startblock < bp->ar_startblock)
293 * Re-sort the free extents by block number so that we can put the records into
294 * the bnobt in the correct order. Make sure the records do not overlap in
298 xrep_bnobt_sort_records(
301 struct xfs_alloc_rec_incore arec;
302 xfarray_idx_t cur = XFARRAY_CURSOR_INIT;
303 xfs_agblock_t next_agbno = 0;
306 error = xfarray_sort(ra->free_records, xrep_bnobt_extent_cmp, 0);
310 while ((error = xfarray_iter(ra->free_records, &cur, &arec)) == 1) {
311 if (arec.ar_startblock < next_agbno)
312 return -EFSCORRUPTED;
314 next_agbno = arec.ar_startblock + arec.ar_blockcount;
321 * Compare two free space extents by length and then block number. We want
322 * to sort first in order of increasing length and then in order of increasing
326 xrep_cntbt_extent_cmp(
330 const struct xfs_alloc_rec_incore *ap = a;
331 const struct xfs_alloc_rec_incore *bp = b;
333 if (ap->ar_blockcount > bp->ar_blockcount)
335 else if (ap->ar_blockcount < bp->ar_blockcount)
337 return xrep_bnobt_extent_cmp(a, b);
341 * Sort the free extents by length so so that we can put the records into the
342 * cntbt in the correct order. Don't let userspace kill us if we're resorting
343 * after allocating btree blocks.
346 xrep_cntbt_sort_records(
350 return xfarray_sort(ra->free_records, xrep_cntbt_extent_cmp,
351 is_resort ? 0 : XFARRAY_SORT_KILLABLE);
355 * Iterate all reverse mappings to find (1) the gaps between rmap records (all
356 * unowned space), (2) the OWN_AG extents (which encompass the free space
357 * btrees, the rmapbt, and the agfl), (3) the rmapbt blocks, and (4) the AGFL
358 * blocks. The free space is (1) + (2) - (3) - (4).
361 xrep_abt_find_freespace(
364 struct xfs_scrub *sc = ra->sc;
365 struct xfs_mount *mp = sc->mp;
366 struct xfs_agf *agf = sc->sa.agf_bp->b_addr;
367 struct xfs_buf *agfl_bp;
371 xagb_bitmap_init(&ra->not_allocbt_blocks);
373 xrep_ag_btcur_init(sc, &sc->sa);
376 * Iterate all the reverse mappings to find gaps in the physical
377 * mappings, all the OWN_AG blocks, and all the rmapbt extents.
379 error = xfs_rmap_query_all(sc->sa.rmap_cur, xrep_abt_walk_rmap, ra);
383 /* Insert a record for space between the last rmap and EOAG. */
384 agend = be32_to_cpu(agf->agf_length);
385 if (ra->next_agbno < agend) {
386 error = xrep_abt_stash(ra, agend);
391 /* Collect all the AGFL blocks. */
392 error = xfs_alloc_read_agfl(sc->sa.pag, sc->tp, &agfl_bp);
396 error = xfs_agfl_walk(mp, agf, agfl_bp, xrep_abt_walk_agfl, ra);
400 /* Compute the old bnobt/cntbt blocks. */
401 error = xagb_bitmap_disunion(&ra->old_allocbt_blocks,
402 &ra->not_allocbt_blocks);
406 ra->nr_real_records = xfarray_length(ra->free_records);
408 xfs_trans_brelse(sc->tp, agfl_bp);
410 xchk_ag_btcur_free(&sc->sa);
411 xagb_bitmap_destroy(&ra->not_allocbt_blocks);
416 * We're going to use the observed free space records to reserve blocks for the
417 * new free space btrees, so we play an iterative game where we try to converge
418 * on the number of blocks we need:
420 * 1. Estimate how many blocks we'll need to store the records.
421 * 2. If the first free record has more blocks than we need, we're done.
422 * We will have to re-sort the records prior to building the cntbt.
423 * 3. If that record has exactly the number of blocks we need, null out the
424 * record. We're done.
425 * 4. Otherwise, we still need more blocks. Null out the record, subtract its
426 * length from the number of blocks we need, and go back to step 1.
428 * Fortunately, we don't have to do any transaction work to play this game, so
429 * we don't have to tear down the staging cursors.
432 xrep_abt_reserve_space(
434 struct xfs_btree_cur *bno_cur,
435 struct xfs_btree_cur *cnt_cur,
438 struct xfs_scrub *sc = ra->sc;
439 xfarray_idx_t record_nr;
440 unsigned int allocated = 0;
443 record_nr = xfarray_length(ra->free_records) - 1;
445 struct xfs_alloc_rec_incore arec;
447 unsigned int desired;
450 /* Compute how many blocks we'll need. */
451 error = xfs_btree_bload_compute_geometry(cnt_cur,
452 &ra->new_cntbt.bload, ra->nr_real_records);
456 error = xfs_btree_bload_compute_geometry(bno_cur,
457 &ra->new_bnobt.bload, ra->nr_real_records);
461 /* How many btree blocks do we need to store all records? */
462 required = ra->new_bnobt.bload.nr_blocks +
463 ra->new_cntbt.bload.nr_blocks;
464 ASSERT(required < INT_MAX);
466 /* If we've reserved enough blocks, we're done. */
467 if (allocated >= required)
470 desired = required - allocated;
472 /* We need space but there's none left; bye! */
473 if (ra->nr_real_records == 0) {
478 /* Grab the first record from the list. */
479 error = xfarray_load(ra->free_records, record_nr, &arec);
483 ASSERT(arec.ar_blockcount <= UINT_MAX);
484 len = min_t(unsigned int, arec.ar_blockcount, desired);
486 trace_xrep_newbt_alloc_ag_blocks(sc->sa.pag, arec.ar_startblock,
487 len, XFS_RMAP_OWN_AG);
489 error = xrep_newbt_add_extent(&ra->new_bnobt, sc->sa.pag,
490 arec.ar_startblock, len);
494 ra->nr_blocks -= len;
496 if (arec.ar_blockcount > desired) {
498 * Record has more space than we need. The number of
499 * free records doesn't change, so shrink the free
500 * record, inform the caller that the records are no
501 * longer sorted by length, and exit.
503 arec.ar_startblock += desired;
504 arec.ar_blockcount -= desired;
505 error = xfarray_store(ra->free_records, record_nr,
510 *needs_resort = true;
515 * We're going to use up the entire record, so unset it and
516 * move on to the next one. This changes the number of free
517 * records (but doesn't break the sorting order), so we must
518 * go around the loop once more to re-run _bload_init.
520 error = xfarray_unset(ra->free_records, record_nr);
523 ra->nr_real_records--;
531 xrep_abt_dispose_one(
533 struct xrep_newbt_resv *resv)
535 struct xfs_scrub *sc = ra->sc;
536 struct xfs_perag *pag = sc->sa.pag;
537 xfs_agblock_t free_agbno = resv->agbno + resv->used;
538 xfs_extlen_t free_aglen = resv->len - resv->used;
541 ASSERT(pag == resv->pag);
543 /* Add a deferred rmap for each extent we used. */
545 xfs_rmap_alloc_extent(sc->tp, pag_agno(pag), resv->agbno,
546 resv->used, XFS_RMAP_OWN_AG);
549 * For each reserved btree block we didn't use, add it to the free
550 * space btree. We didn't touch fdblocks when we reserved them, so
551 * we don't touch it now.
556 trace_xrep_newbt_free_blocks(resv->pag, free_agbno, free_aglen,
557 ra->new_bnobt.oinfo.oi_owner);
559 error = __xfs_free_extent(sc->tp, resv->pag, free_agbno, free_aglen,
560 &ra->new_bnobt.oinfo, XFS_AG_RESV_IGNORE, true);
564 return xrep_defer_finish(sc);
568 * Deal with all the space we reserved. Blocks that were allocated for the
569 * free space btrees need to have a (deferred) rmap added for the OWN_AG
570 * allocation, and blocks that didn't get used can be freed via the usual
574 xrep_abt_dispose_reservations(
578 struct xrep_newbt_resv *resv, *n;
583 list_for_each_entry_safe(resv, n, &ra->new_bnobt.resv_list, list) {
584 error = xrep_abt_dispose_one(ra, resv);
590 list_for_each_entry_safe(resv, n, &ra->new_bnobt.resv_list, list) {
591 xfs_perag_put(resv->pag);
592 list_del(&resv->list);
596 xrep_newbt_cancel(&ra->new_bnobt);
597 xrep_newbt_cancel(&ra->new_cntbt);
600 /* Retrieve free space data for bulk load. */
602 xrep_abt_get_records(
603 struct xfs_btree_cur *cur,
605 struct xfs_btree_block *block,
606 unsigned int nr_wanted,
609 struct xfs_alloc_rec_incore *arec = &cur->bc_rec.a;
610 struct xrep_abt *ra = priv;
611 union xfs_btree_rec *block_rec;
615 for (loaded = 0; loaded < nr_wanted; loaded++, idx++) {
616 error = xfarray_load_next(ra->free_records, &ra->array_cur,
621 ra->longest = max(ra->longest, arec->ar_blockcount);
623 block_rec = xfs_btree_rec_addr(cur, idx, block);
624 cur->bc_ops->init_rec_from_cur(cur, block_rec);
630 /* Feed one of the new btree blocks to the bulk loader. */
632 xrep_abt_claim_block(
633 struct xfs_btree_cur *cur,
634 union xfs_btree_ptr *ptr,
637 struct xrep_abt *ra = priv;
639 return xrep_newbt_claim_block(cur, &ra->new_bnobt, ptr);
643 * Reset the AGF counters to reflect the free space btrees that we just
644 * rebuilt, then reinitialize the per-AG data.
647 xrep_abt_reset_counters(
650 struct xfs_scrub *sc = ra->sc;
651 struct xfs_perag *pag = sc->sa.pag;
652 struct xfs_agf *agf = sc->sa.agf_bp->b_addr;
653 unsigned int freesp_btreeblks = 0;
656 * Compute the contribution to agf_btreeblks for the new free space
657 * btrees. This is the computed btree size minus anything we didn't
660 freesp_btreeblks += ra->new_bnobt.bload.nr_blocks - 1;
661 freesp_btreeblks += ra->new_cntbt.bload.nr_blocks - 1;
663 freesp_btreeblks -= xrep_newbt_unused_blocks(&ra->new_bnobt);
664 freesp_btreeblks -= xrep_newbt_unused_blocks(&ra->new_cntbt);
667 * The AGF header contains extra information related to the free space
668 * btrees, so we must update those fields here.
670 agf->agf_btreeblks = cpu_to_be32(freesp_btreeblks +
671 (be32_to_cpu(agf->agf_rmap_blocks) - 1));
672 agf->agf_freeblks = cpu_to_be32(ra->nr_blocks);
673 agf->agf_longest = cpu_to_be32(ra->longest);
674 xfs_alloc_log_agf(sc->tp, sc->sa.agf_bp, XFS_AGF_BTREEBLKS |
679 * After we commit the new btree to disk, it is possible that the
680 * process to reap the old btree blocks will race with the AIL trying
681 * to checkpoint the old btree blocks into the filesystem. If the new
682 * tree is shorter than the old one, the allocbt write verifier will
683 * fail and the AIL will shut down the filesystem.
685 * To avoid this, save the old incore btree height values as the alt
686 * height values before re-initializing the perag info from the updated
687 * AGF to capture all the new values.
689 pag->pagf_repair_bno_level = pag->pagf_bno_level;
690 pag->pagf_repair_cnt_level = pag->pagf_cnt_level;
692 /* Reinitialize with the values we just logged. */
693 return xrep_reinit_pagf(sc);
697 * Use the collected free space information to stage new free space btrees.
698 * If this is successful we'll return with the new btree root
699 * information logged to the repair transaction but not yet committed.
702 xrep_abt_build_new_trees(
705 struct xfs_scrub *sc = ra->sc;
706 struct xfs_btree_cur *bno_cur;
707 struct xfs_btree_cur *cnt_cur;
708 struct xfs_perag *pag = sc->sa.pag;
709 bool needs_resort = false;
713 * Sort the free extents by length so that we can set up the free space
714 * btrees in as few extents as possible. This reduces the amount of
715 * deferred rmap / free work we have to do at the end.
717 error = xrep_cntbt_sort_records(ra, false);
722 * Prepare to construct the new btree by reserving disk space for the
723 * new btree and setting up all the accounting information we'll need
724 * to root the new btree while it's under construction and before we
725 * attach it to the AG header.
727 xrep_newbt_init_bare(&ra->new_bnobt, sc);
728 xrep_newbt_init_bare(&ra->new_cntbt, sc);
730 ra->new_bnobt.bload.get_records = xrep_abt_get_records;
731 ra->new_cntbt.bload.get_records = xrep_abt_get_records;
733 ra->new_bnobt.bload.claim_block = xrep_abt_claim_block;
734 ra->new_cntbt.bload.claim_block = xrep_abt_claim_block;
736 /* Allocate cursors for the staged btrees. */
737 bno_cur = xfs_bnobt_init_cursor(sc->mp, NULL, NULL, pag);
738 xfs_btree_stage_afakeroot(bno_cur, &ra->new_bnobt.afake);
740 cnt_cur = xfs_cntbt_init_cursor(sc->mp, NULL, NULL, pag);
741 xfs_btree_stage_afakeroot(cnt_cur, &ra->new_cntbt.afake);
743 /* Last chance to abort before we start committing fixes. */
744 if (xchk_should_terminate(sc, &error))
747 /* Reserve the space we'll need for the new btrees. */
748 error = xrep_abt_reserve_space(ra, bno_cur, cnt_cur, &needs_resort);
753 * If we need to re-sort the free extents by length, do so so that we
754 * can put the records into the cntbt in the correct order.
757 error = xrep_cntbt_sort_records(ra, needs_resort);
763 * Due to btree slack factors, it's possible for a new btree to be one
764 * level taller than the old btree. Update the alternate incore btree
765 * height so that we don't trip the verifiers when writing the new
766 * btree blocks to disk.
768 pag->pagf_repair_bno_level = ra->new_bnobt.bload.btree_height;
769 pag->pagf_repair_cnt_level = ra->new_cntbt.bload.btree_height;
771 /* Load the free space by length tree. */
772 ra->array_cur = XFARRAY_CURSOR_INIT;
774 error = xfs_btree_bload(cnt_cur, &ra->new_cntbt.bload, ra);
778 error = xrep_bnobt_sort_records(ra);
782 /* Load the free space by block number tree. */
783 ra->array_cur = XFARRAY_CURSOR_INIT;
784 error = xfs_btree_bload(bno_cur, &ra->new_bnobt.bload, ra);
789 * Install the new btrees in the AG header. After this point the old
790 * btrees are no longer accessible and the new trees are live.
792 xfs_allocbt_commit_staged_btree(bno_cur, sc->tp, sc->sa.agf_bp);
793 xfs_btree_del_cursor(bno_cur, 0);
794 xfs_allocbt_commit_staged_btree(cnt_cur, sc->tp, sc->sa.agf_bp);
795 xfs_btree_del_cursor(cnt_cur, 0);
797 /* Reset the AGF counters now that we've changed the btree shape. */
798 error = xrep_abt_reset_counters(ra);
802 /* Dispose of any unused blocks and the accounting information. */
803 xrep_abt_dispose_reservations(ra, error);
805 return xrep_roll_ag_trans(sc);
808 pag->pagf_repair_bno_level = 0;
809 pag->pagf_repair_cnt_level = 0;
811 xfs_btree_del_cursor(cnt_cur, error);
812 xfs_btree_del_cursor(bno_cur, error);
814 xrep_abt_dispose_reservations(ra, error);
819 * Now that we've logged the roots of the new btrees, invalidate all of the
820 * old blocks and free them.
823 xrep_abt_remove_old_trees(
826 struct xfs_perag *pag = ra->sc->sa.pag;
829 /* Free the old btree blocks if they're not in use. */
830 error = xrep_reap_agblocks(ra->sc, &ra->old_allocbt_blocks,
831 &XFS_RMAP_OINFO_AG, XFS_AG_RESV_IGNORE);
836 * Now that we've zapped all the old allocbt blocks we can turn off
837 * the alternate height mechanism.
839 pag->pagf_repair_bno_level = 0;
840 pag->pagf_repair_cnt_level = 0;
844 /* Repair the freespace btrees for some AG. */
847 struct xfs_scrub *sc)
850 struct xfs_mount *mp = sc->mp;
851 unsigned int busy_gen;
855 /* We require the rmapbt to rebuild anything. */
856 if (!xfs_has_rmapbt(mp))
859 ra = kzalloc(sizeof(struct xrep_abt), XCHK_GFP_FLAGS);
864 /* We rebuild both data structures. */
865 sc->sick_mask = XFS_SICK_AG_BNOBT | XFS_SICK_AG_CNTBT;
868 * Make sure the busy extent list is clear because we can't put extents
869 * on there twice. In theory we cleared this before we started, but
870 * let's not risk the filesystem.
872 if (!xfs_extent_busy_list_empty(pag_group(sc->sa.pag), &busy_gen)) {
877 /* Set up enough storage to handle maximally fragmented free space. */
878 descr = xchk_xfile_ag_descr(sc, "free space records");
879 error = xfarray_create(descr, mp->m_sb.sb_agblocks / 2,
880 sizeof(struct xfs_alloc_rec_incore),
886 /* Collect the free space data and find the old btree blocks. */
887 xagb_bitmap_init(&ra->old_allocbt_blocks);
888 error = xrep_abt_find_freespace(ra);
892 /* Rebuild the free space information. */
893 error = xrep_abt_build_new_trees(ra);
897 /* Kill the old trees. */
898 error = xrep_abt_remove_old_trees(ra);
903 xagb_bitmap_destroy(&ra->old_allocbt_blocks);
904 xfarray_destroy(ra->free_records);
910 /* Make sure both btrees are ok after we've rebuilt them. */
912 xrep_revalidate_allocbt(
913 struct xfs_scrub *sc)
915 __u32 old_type = sc->sm->sm_type;
919 * We must update sm_type temporarily so that the tree-to-tree cross
920 * reference checks will work in the correct direction, and also so
921 * that tracing will report correctly if there are more errors.
923 sc->sm->sm_type = XFS_SCRUB_TYPE_BNOBT;
924 error = xchk_allocbt(sc);
928 sc->sm->sm_type = XFS_SCRUB_TYPE_CNTBT;
929 error = xchk_allocbt(sc);
931 sc->sm->sm_type = old_type;