1 // SPDX-License-Identifier: GPL-2.0-only
6 * Copyright (C) 2008-2009 Red Hat, Inc.
7 * Copyright (C) 2015 Red Hat, Inc.
9 * Some part derived from fs/eventfd.c (anon inode setup) and
10 * mm/ksm.c (mm hashing).
13 #include <linux/list.h>
14 #include <linux/hashtable.h>
15 #include <linux/sched/signal.h>
16 #include <linux/sched/mm.h>
18 #include <linux/mm_inline.h>
19 #include <linux/mmu_notifier.h>
20 #include <linux/poll.h>
21 #include <linux/slab.h>
22 #include <linux/seq_file.h>
23 #include <linux/file.h>
24 #include <linux/bug.h>
25 #include <linux/anon_inodes.h>
26 #include <linux/syscalls.h>
27 #include <linux/userfaultfd_k.h>
28 #include <linux/mempolicy.h>
29 #include <linux/ioctl.h>
30 #include <linux/security.h>
31 #include <linux/hugetlb.h>
32 #include <linux/swapops.h>
33 #include <linux/miscdevice.h>
34 #include <linux/uio.h>
36 static int sysctl_unprivileged_userfaultfd __read_mostly;
39 static struct ctl_table vm_userfaultfd_table[] = {
41 .procname = "unprivileged_userfaultfd",
42 .data = &sysctl_unprivileged_userfaultfd,
43 .maxlen = sizeof(sysctl_unprivileged_userfaultfd),
45 .proc_handler = proc_dointvec_minmax,
46 .extra1 = SYSCTL_ZERO,
52 static struct kmem_cache *userfaultfd_ctx_cachep __ro_after_init;
54 struct userfaultfd_fork_ctx {
55 struct userfaultfd_ctx *orig;
56 struct userfaultfd_ctx *new;
57 struct list_head list;
60 struct userfaultfd_unmap_ctx {
61 struct userfaultfd_ctx *ctx;
64 struct list_head list;
67 struct userfaultfd_wait_queue {
69 wait_queue_entry_t wq;
70 struct userfaultfd_ctx *ctx;
74 struct userfaultfd_wake_range {
79 /* internal indication that UFFD_API ioctl was successfully executed */
80 #define UFFD_FEATURE_INITIALIZED (1u << 31)
82 static bool userfaultfd_is_initialized(struct userfaultfd_ctx *ctx)
84 return ctx->features & UFFD_FEATURE_INITIALIZED;
87 static bool userfaultfd_wp_async_ctx(struct userfaultfd_ctx *ctx)
89 return ctx && (ctx->features & UFFD_FEATURE_WP_ASYNC);
93 * Whether WP_UNPOPULATED is enabled on the uffd context. It is only
94 * meaningful when userfaultfd_wp()==true on the vma and when it's
97 bool userfaultfd_wp_unpopulated(struct vm_area_struct *vma)
99 struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx;
104 return ctx->features & UFFD_FEATURE_WP_UNPOPULATED;
107 static int userfaultfd_wake_function(wait_queue_entry_t *wq, unsigned mode,
108 int wake_flags, void *key)
110 struct userfaultfd_wake_range *range = key;
112 struct userfaultfd_wait_queue *uwq;
113 unsigned long start, len;
115 uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
117 /* len == 0 means wake all */
118 start = range->start;
120 if (len && (start > uwq->msg.arg.pagefault.address ||
121 start + len <= uwq->msg.arg.pagefault.address))
123 WRITE_ONCE(uwq->waken, true);
125 * The Program-Order guarantees provided by the scheduler
126 * ensure uwq->waken is visible before the task is woken.
128 ret = wake_up_state(wq->private, mode);
131 * Wake only once, autoremove behavior.
133 * After the effect of list_del_init is visible to the other
134 * CPUs, the waitqueue may disappear from under us, see the
135 * !list_empty_careful() in handle_userfault().
137 * try_to_wake_up() has an implicit smp_mb(), and the
138 * wq->private is read before calling the extern function
139 * "wake_up_state" (which in turns calls try_to_wake_up).
141 list_del_init(&wq->entry);
148 * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd
150 * @ctx: [in] Pointer to the userfaultfd context.
152 static void userfaultfd_ctx_get(struct userfaultfd_ctx *ctx)
154 refcount_inc(&ctx->refcount);
158 * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd
160 * @ctx: [in] Pointer to userfaultfd context.
162 * The userfaultfd context reference must have been previously acquired either
163 * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget().
165 static void userfaultfd_ctx_put(struct userfaultfd_ctx *ctx)
167 if (refcount_dec_and_test(&ctx->refcount)) {
168 VM_BUG_ON(spin_is_locked(&ctx->fault_pending_wqh.lock));
169 VM_BUG_ON(waitqueue_active(&ctx->fault_pending_wqh));
170 VM_BUG_ON(spin_is_locked(&ctx->fault_wqh.lock));
171 VM_BUG_ON(waitqueue_active(&ctx->fault_wqh));
172 VM_BUG_ON(spin_is_locked(&ctx->event_wqh.lock));
173 VM_BUG_ON(waitqueue_active(&ctx->event_wqh));
174 VM_BUG_ON(spin_is_locked(&ctx->fd_wqh.lock));
175 VM_BUG_ON(waitqueue_active(&ctx->fd_wqh));
177 kmem_cache_free(userfaultfd_ctx_cachep, ctx);
181 static inline void msg_init(struct uffd_msg *msg)
183 BUILD_BUG_ON(sizeof(struct uffd_msg) != 32);
185 * Must use memset to zero out the paddings or kernel data is
186 * leaked to userland.
188 memset(msg, 0, sizeof(struct uffd_msg));
191 static inline struct uffd_msg userfault_msg(unsigned long address,
192 unsigned long real_address,
194 unsigned long reason,
195 unsigned int features)
200 msg.event = UFFD_EVENT_PAGEFAULT;
202 msg.arg.pagefault.address = (features & UFFD_FEATURE_EXACT_ADDRESS) ?
203 real_address : address;
206 * These flags indicate why the userfault occurred:
207 * - UFFD_PAGEFAULT_FLAG_WP indicates a write protect fault.
208 * - UFFD_PAGEFAULT_FLAG_MINOR indicates a minor fault.
209 * - Neither of these flags being set indicates a MISSING fault.
211 * Separately, UFFD_PAGEFAULT_FLAG_WRITE indicates it was a write
212 * fault. Otherwise, it was a read fault.
214 if (flags & FAULT_FLAG_WRITE)
215 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WRITE;
216 if (reason & VM_UFFD_WP)
217 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WP;
218 if (reason & VM_UFFD_MINOR)
219 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_MINOR;
220 if (features & UFFD_FEATURE_THREAD_ID)
221 msg.arg.pagefault.feat.ptid = task_pid_vnr(current);
225 #ifdef CONFIG_HUGETLB_PAGE
227 * Same functionality as userfaultfd_must_wait below with modifications for
230 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
231 struct vm_fault *vmf,
232 unsigned long reason)
234 struct vm_area_struct *vma = vmf->vma;
238 assert_fault_locked(vmf);
240 ptep = hugetlb_walk(vma, vmf->address, vma_mmu_pagesize(vma));
245 pte = huge_ptep_get(vma->vm_mm, vmf->address, ptep);
248 * Lockless access: we're in a wait_event so it's ok if it
249 * changes under us. PTE markers should be handled the same as none
252 if (huge_pte_none_mostly(pte))
254 if (!huge_pte_write(pte) && (reason & VM_UFFD_WP))
260 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
261 struct vm_fault *vmf,
262 unsigned long reason)
264 return false; /* should never get here */
266 #endif /* CONFIG_HUGETLB_PAGE */
269 * Verify the pagetables are still not ok after having reigstered into
270 * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any
271 * userfault that has already been resolved, if userfaultfd_read_iter and
272 * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different
275 static inline bool userfaultfd_must_wait(struct userfaultfd_ctx *ctx,
276 struct vm_fault *vmf,
277 unsigned long reason)
279 struct mm_struct *mm = ctx->mm;
280 unsigned long address = vmf->address;
289 assert_fault_locked(vmf);
291 pgd = pgd_offset(mm, address);
292 if (!pgd_present(*pgd))
294 p4d = p4d_offset(pgd, address);
295 if (!p4d_present(*p4d))
297 pud = pud_offset(p4d, address);
298 if (!pud_present(*pud))
300 pmd = pmd_offset(pud, address);
302 _pmd = pmdp_get_lockless(pmd);
307 if (!pmd_present(_pmd) || pmd_devmap(_pmd))
310 if (pmd_trans_huge(_pmd)) {
311 if (!pmd_write(_pmd) && (reason & VM_UFFD_WP))
316 pte = pte_offset_map(pmd, address);
322 * Lockless access: we're in a wait_event so it's ok if it
323 * changes under us. PTE markers should be handled the same as none
326 ptent = ptep_get(pte);
327 if (pte_none_mostly(ptent))
329 if (!pte_write(ptent) && (reason & VM_UFFD_WP))
337 static inline unsigned int userfaultfd_get_blocking_state(unsigned int flags)
339 if (flags & FAULT_FLAG_INTERRUPTIBLE)
340 return TASK_INTERRUPTIBLE;
342 if (flags & FAULT_FLAG_KILLABLE)
343 return TASK_KILLABLE;
345 return TASK_UNINTERRUPTIBLE;
349 * The locking rules involved in returning VM_FAULT_RETRY depending on
350 * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and
351 * FAULT_FLAG_KILLABLE are not straightforward. The "Caution"
352 * recommendation in __lock_page_or_retry is not an understatement.
354 * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_lock must be released
355 * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is
358 * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not
359 * set, VM_FAULT_RETRY can still be returned if and only if there are
360 * fatal_signal_pending()s, and the mmap_lock must be released before
363 vm_fault_t handle_userfault(struct vm_fault *vmf, unsigned long reason)
365 struct vm_area_struct *vma = vmf->vma;
366 struct mm_struct *mm = vma->vm_mm;
367 struct userfaultfd_ctx *ctx;
368 struct userfaultfd_wait_queue uwq;
369 vm_fault_t ret = VM_FAULT_SIGBUS;
371 unsigned int blocking_state;
374 * We don't do userfault handling for the final child pid update
375 * and when coredumping (faults triggered by get_dump_page()).
377 if (current->flags & (PF_EXITING|PF_DUMPCORE))
380 assert_fault_locked(vmf);
382 ctx = vma->vm_userfaultfd_ctx.ctx;
386 BUG_ON(ctx->mm != mm);
388 /* Any unrecognized flag is a bug. */
389 VM_BUG_ON(reason & ~__VM_UFFD_FLAGS);
390 /* 0 or > 1 flags set is a bug; we expect exactly 1. */
391 VM_BUG_ON(!reason || (reason & (reason - 1)));
393 if (ctx->features & UFFD_FEATURE_SIGBUS)
395 if (!(vmf->flags & FAULT_FLAG_USER) && (ctx->flags & UFFD_USER_MODE_ONLY))
399 * If it's already released don't get it. This avoids to loop
400 * in __get_user_pages if userfaultfd_release waits on the
401 * caller of handle_userfault to release the mmap_lock.
403 if (unlikely(READ_ONCE(ctx->released))) {
405 * Don't return VM_FAULT_SIGBUS in this case, so a non
406 * cooperative manager can close the uffd after the
407 * last UFFDIO_COPY, without risking to trigger an
408 * involuntary SIGBUS if the process was starting the
409 * userfaultfd while the userfaultfd was still armed
410 * (but after the last UFFDIO_COPY). If the uffd
411 * wasn't already closed when the userfault reached
412 * this point, that would normally be solved by
413 * userfaultfd_must_wait returning 'false'.
415 * If we were to return VM_FAULT_SIGBUS here, the non
416 * cooperative manager would be instead forced to
417 * always call UFFDIO_UNREGISTER before it can safely
420 ret = VM_FAULT_NOPAGE;
425 * Check that we can return VM_FAULT_RETRY.
427 * NOTE: it should become possible to return VM_FAULT_RETRY
428 * even if FAULT_FLAG_TRIED is set without leading to gup()
429 * -EBUSY failures, if the userfaultfd is to be extended for
430 * VM_UFFD_WP tracking and we intend to arm the userfault
431 * without first stopping userland access to the memory. For
432 * VM_UFFD_MISSING userfaults this is enough for now.
434 if (unlikely(!(vmf->flags & FAULT_FLAG_ALLOW_RETRY))) {
436 * Validate the invariant that nowait must allow retry
437 * to be sure not to return SIGBUS erroneously on
438 * nowait invocations.
440 BUG_ON(vmf->flags & FAULT_FLAG_RETRY_NOWAIT);
441 #ifdef CONFIG_DEBUG_VM
442 if (printk_ratelimit()) {
444 "FAULT_FLAG_ALLOW_RETRY missing %x\n",
453 * Handle nowait, not much to do other than tell it to retry
456 ret = VM_FAULT_RETRY;
457 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
460 /* take the reference before dropping the mmap_lock */
461 userfaultfd_ctx_get(ctx);
463 init_waitqueue_func_entry(&uwq.wq, userfaultfd_wake_function);
464 uwq.wq.private = current;
465 uwq.msg = userfault_msg(vmf->address, vmf->real_address, vmf->flags,
466 reason, ctx->features);
470 blocking_state = userfaultfd_get_blocking_state(vmf->flags);
473 * Take the vma lock now, in order to safely call
474 * userfaultfd_huge_must_wait() later. Since acquiring the
475 * (sleepable) vma lock can modify the current task state, that
476 * must be before explicitly calling set_current_state().
478 if (is_vm_hugetlb_page(vma))
479 hugetlb_vma_lock_read(vma);
481 spin_lock_irq(&ctx->fault_pending_wqh.lock);
483 * After the __add_wait_queue the uwq is visible to userland
484 * through poll/read().
486 __add_wait_queue(&ctx->fault_pending_wqh, &uwq.wq);
488 * The smp_mb() after __set_current_state prevents the reads
489 * following the spin_unlock to happen before the list_add in
492 set_current_state(blocking_state);
493 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
495 if (!is_vm_hugetlb_page(vma))
496 must_wait = userfaultfd_must_wait(ctx, vmf, reason);
498 must_wait = userfaultfd_huge_must_wait(ctx, vmf, reason);
499 if (is_vm_hugetlb_page(vma))
500 hugetlb_vma_unlock_read(vma);
501 release_fault_lock(vmf);
503 if (likely(must_wait && !READ_ONCE(ctx->released))) {
504 wake_up_poll(&ctx->fd_wqh, EPOLLIN);
508 __set_current_state(TASK_RUNNING);
511 * Here we race with the list_del; list_add in
512 * userfaultfd_ctx_read(), however because we don't ever run
513 * list_del_init() to refile across the two lists, the prev
514 * and next pointers will never point to self. list_add also
515 * would never let any of the two pointers to point to
516 * self. So list_empty_careful won't risk to see both pointers
517 * pointing to self at any time during the list refile. The
518 * only case where list_del_init() is called is the full
519 * removal in the wake function and there we don't re-list_add
520 * and it's fine not to block on the spinlock. The uwq on this
521 * kernel stack can be released after the list_del_init.
523 if (!list_empty_careful(&uwq.wq.entry)) {
524 spin_lock_irq(&ctx->fault_pending_wqh.lock);
526 * No need of list_del_init(), the uwq on the stack
527 * will be freed shortly anyway.
529 list_del(&uwq.wq.entry);
530 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
534 * ctx may go away after this if the userfault pseudo fd is
537 userfaultfd_ctx_put(ctx);
543 static void userfaultfd_event_wait_completion(struct userfaultfd_ctx *ctx,
544 struct userfaultfd_wait_queue *ewq)
546 struct userfaultfd_ctx *release_new_ctx;
548 if (WARN_ON_ONCE(current->flags & PF_EXITING))
552 init_waitqueue_entry(&ewq->wq, current);
553 release_new_ctx = NULL;
555 spin_lock_irq(&ctx->event_wqh.lock);
557 * After the __add_wait_queue the uwq is visible to userland
558 * through poll/read().
560 __add_wait_queue(&ctx->event_wqh, &ewq->wq);
562 set_current_state(TASK_KILLABLE);
563 if (ewq->msg.event == 0)
565 if (READ_ONCE(ctx->released) ||
566 fatal_signal_pending(current)) {
568 * &ewq->wq may be queued in fork_event, but
569 * __remove_wait_queue ignores the head
570 * parameter. It would be a problem if it
573 __remove_wait_queue(&ctx->event_wqh, &ewq->wq);
574 if (ewq->msg.event == UFFD_EVENT_FORK) {
575 struct userfaultfd_ctx *new;
577 new = (struct userfaultfd_ctx *)
579 ewq->msg.arg.reserved.reserved1;
580 release_new_ctx = new;
585 spin_unlock_irq(&ctx->event_wqh.lock);
587 wake_up_poll(&ctx->fd_wqh, EPOLLIN);
590 spin_lock_irq(&ctx->event_wqh.lock);
592 __set_current_state(TASK_RUNNING);
593 spin_unlock_irq(&ctx->event_wqh.lock);
595 if (release_new_ctx) {
596 userfaultfd_release_new(release_new_ctx);
597 userfaultfd_ctx_put(release_new_ctx);
601 * ctx may go away after this if the userfault pseudo fd is
605 atomic_dec(&ctx->mmap_changing);
606 VM_BUG_ON(atomic_read(&ctx->mmap_changing) < 0);
607 userfaultfd_ctx_put(ctx);
610 static void userfaultfd_event_complete(struct userfaultfd_ctx *ctx,
611 struct userfaultfd_wait_queue *ewq)
614 wake_up_locked(&ctx->event_wqh);
615 __remove_wait_queue(&ctx->event_wqh, &ewq->wq);
618 int dup_userfaultfd(struct vm_area_struct *vma, struct list_head *fcs)
620 struct userfaultfd_ctx *ctx = NULL, *octx;
621 struct userfaultfd_fork_ctx *fctx;
623 octx = vma->vm_userfaultfd_ctx.ctx;
627 if (!(octx->features & UFFD_FEATURE_EVENT_FORK)) {
628 userfaultfd_reset_ctx(vma);
632 list_for_each_entry(fctx, fcs, list)
633 if (fctx->orig == octx) {
639 fctx = kmalloc(sizeof(*fctx), GFP_KERNEL);
643 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
649 refcount_set(&ctx->refcount, 1);
650 ctx->flags = octx->flags;
651 ctx->features = octx->features;
652 ctx->released = false;
653 init_rwsem(&ctx->map_changing_lock);
654 atomic_set(&ctx->mmap_changing, 0);
655 ctx->mm = vma->vm_mm;
658 userfaultfd_ctx_get(octx);
659 down_write(&octx->map_changing_lock);
660 atomic_inc(&octx->mmap_changing);
661 up_write(&octx->map_changing_lock);
664 list_add_tail(&fctx->list, fcs);
667 vma->vm_userfaultfd_ctx.ctx = ctx;
671 static void dup_fctx(struct userfaultfd_fork_ctx *fctx)
673 struct userfaultfd_ctx *ctx = fctx->orig;
674 struct userfaultfd_wait_queue ewq;
678 ewq.msg.event = UFFD_EVENT_FORK;
679 ewq.msg.arg.reserved.reserved1 = (unsigned long)fctx->new;
681 userfaultfd_event_wait_completion(ctx, &ewq);
684 void dup_userfaultfd_complete(struct list_head *fcs)
686 struct userfaultfd_fork_ctx *fctx, *n;
688 list_for_each_entry_safe(fctx, n, fcs, list) {
690 list_del(&fctx->list);
695 void dup_userfaultfd_fail(struct list_head *fcs)
697 struct userfaultfd_fork_ctx *fctx, *n;
700 * An error has occurred on fork, we will tear memory down, but have
701 * allocated memory for fctx's and raised reference counts for both the
702 * original and child contexts (and on the mm for each as a result).
704 * These would ordinarily be taken care of by a user handling the event,
705 * but we are no longer doing so, so manually clean up here.
707 * mm tear down will take care of cleaning up VMA contexts.
709 list_for_each_entry_safe(fctx, n, fcs, list) {
710 struct userfaultfd_ctx *octx = fctx->orig;
711 struct userfaultfd_ctx *ctx = fctx->new;
713 atomic_dec(&octx->mmap_changing);
714 VM_BUG_ON(atomic_read(&octx->mmap_changing) < 0);
715 userfaultfd_ctx_put(octx);
716 userfaultfd_ctx_put(ctx);
718 list_del(&fctx->list);
723 void mremap_userfaultfd_prep(struct vm_area_struct *vma,
724 struct vm_userfaultfd_ctx *vm_ctx)
726 struct userfaultfd_ctx *ctx;
728 ctx = vma->vm_userfaultfd_ctx.ctx;
733 if (ctx->features & UFFD_FEATURE_EVENT_REMAP) {
735 userfaultfd_ctx_get(ctx);
736 down_write(&ctx->map_changing_lock);
737 atomic_inc(&ctx->mmap_changing);
738 up_write(&ctx->map_changing_lock);
740 /* Drop uffd context if remap feature not enabled */
741 userfaultfd_reset_ctx(vma);
745 void mremap_userfaultfd_complete(struct vm_userfaultfd_ctx *vm_ctx,
746 unsigned long from, unsigned long to,
749 struct userfaultfd_ctx *ctx = vm_ctx->ctx;
750 struct userfaultfd_wait_queue ewq;
755 if (to & ~PAGE_MASK) {
756 userfaultfd_ctx_put(ctx);
762 ewq.msg.event = UFFD_EVENT_REMAP;
763 ewq.msg.arg.remap.from = from;
764 ewq.msg.arg.remap.to = to;
765 ewq.msg.arg.remap.len = len;
767 userfaultfd_event_wait_completion(ctx, &ewq);
770 bool userfaultfd_remove(struct vm_area_struct *vma,
771 unsigned long start, unsigned long end)
773 struct mm_struct *mm = vma->vm_mm;
774 struct userfaultfd_ctx *ctx;
775 struct userfaultfd_wait_queue ewq;
777 ctx = vma->vm_userfaultfd_ctx.ctx;
778 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_REMOVE))
781 userfaultfd_ctx_get(ctx);
782 down_write(&ctx->map_changing_lock);
783 atomic_inc(&ctx->mmap_changing);
784 up_write(&ctx->map_changing_lock);
785 mmap_read_unlock(mm);
789 ewq.msg.event = UFFD_EVENT_REMOVE;
790 ewq.msg.arg.remove.start = start;
791 ewq.msg.arg.remove.end = end;
793 userfaultfd_event_wait_completion(ctx, &ewq);
798 static bool has_unmap_ctx(struct userfaultfd_ctx *ctx, struct list_head *unmaps,
799 unsigned long start, unsigned long end)
801 struct userfaultfd_unmap_ctx *unmap_ctx;
803 list_for_each_entry(unmap_ctx, unmaps, list)
804 if (unmap_ctx->ctx == ctx && unmap_ctx->start == start &&
805 unmap_ctx->end == end)
811 int userfaultfd_unmap_prep(struct vm_area_struct *vma, unsigned long start,
812 unsigned long end, struct list_head *unmaps)
814 struct userfaultfd_unmap_ctx *unmap_ctx;
815 struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx;
817 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_UNMAP) ||
818 has_unmap_ctx(ctx, unmaps, start, end))
821 unmap_ctx = kzalloc(sizeof(*unmap_ctx), GFP_KERNEL);
825 userfaultfd_ctx_get(ctx);
826 down_write(&ctx->map_changing_lock);
827 atomic_inc(&ctx->mmap_changing);
828 up_write(&ctx->map_changing_lock);
829 unmap_ctx->ctx = ctx;
830 unmap_ctx->start = start;
831 unmap_ctx->end = end;
832 list_add_tail(&unmap_ctx->list, unmaps);
837 void userfaultfd_unmap_complete(struct mm_struct *mm, struct list_head *uf)
839 struct userfaultfd_unmap_ctx *ctx, *n;
840 struct userfaultfd_wait_queue ewq;
842 list_for_each_entry_safe(ctx, n, uf, list) {
845 ewq.msg.event = UFFD_EVENT_UNMAP;
846 ewq.msg.arg.remove.start = ctx->start;
847 ewq.msg.arg.remove.end = ctx->end;
849 userfaultfd_event_wait_completion(ctx->ctx, &ewq);
851 list_del(&ctx->list);
856 static int userfaultfd_release(struct inode *inode, struct file *file)
858 struct userfaultfd_ctx *ctx = file->private_data;
859 struct mm_struct *mm = ctx->mm;
860 /* len == 0 means wake all */
861 struct userfaultfd_wake_range range = { .len = 0, };
863 WRITE_ONCE(ctx->released, true);
865 userfaultfd_release_all(mm, ctx);
868 * After no new page faults can wait on this fault_*wqh, flush
869 * the last page faults that may have been already waiting on
872 spin_lock_irq(&ctx->fault_pending_wqh.lock);
873 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, &range);
874 __wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, &range);
875 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
877 /* Flush pending events that may still wait on event_wqh */
878 wake_up_all(&ctx->event_wqh);
880 wake_up_poll(&ctx->fd_wqh, EPOLLHUP);
881 userfaultfd_ctx_put(ctx);
885 /* fault_pending_wqh.lock must be hold by the caller */
886 static inline struct userfaultfd_wait_queue *find_userfault_in(
887 wait_queue_head_t *wqh)
889 wait_queue_entry_t *wq;
890 struct userfaultfd_wait_queue *uwq;
892 lockdep_assert_held(&wqh->lock);
895 if (!waitqueue_active(wqh))
897 /* walk in reverse to provide FIFO behavior to read userfaults */
898 wq = list_last_entry(&wqh->head, typeof(*wq), entry);
899 uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
904 static inline struct userfaultfd_wait_queue *find_userfault(
905 struct userfaultfd_ctx *ctx)
907 return find_userfault_in(&ctx->fault_pending_wqh);
910 static inline struct userfaultfd_wait_queue *find_userfault_evt(
911 struct userfaultfd_ctx *ctx)
913 return find_userfault_in(&ctx->event_wqh);
916 static __poll_t userfaultfd_poll(struct file *file, poll_table *wait)
918 struct userfaultfd_ctx *ctx = file->private_data;
921 poll_wait(file, &ctx->fd_wqh, wait);
923 if (!userfaultfd_is_initialized(ctx))
927 * poll() never guarantees that read won't block.
928 * userfaults can be waken before they're read().
930 if (unlikely(!(file->f_flags & O_NONBLOCK)))
933 * lockless access to see if there are pending faults
934 * __pollwait last action is the add_wait_queue but
935 * the spin_unlock would allow the waitqueue_active to
936 * pass above the actual list_add inside
937 * add_wait_queue critical section. So use a full
938 * memory barrier to serialize the list_add write of
939 * add_wait_queue() with the waitqueue_active read
944 if (waitqueue_active(&ctx->fault_pending_wqh))
946 else if (waitqueue_active(&ctx->event_wqh))
952 static const struct file_operations userfaultfd_fops;
954 static int resolve_userfault_fork(struct userfaultfd_ctx *new,
956 struct uffd_msg *msg)
960 fd = anon_inode_create_getfd("[userfaultfd]", &userfaultfd_fops, new,
961 O_RDONLY | (new->flags & UFFD_SHARED_FCNTL_FLAGS), inode);
965 msg->arg.reserved.reserved1 = 0;
966 msg->arg.fork.ufd = fd;
970 static ssize_t userfaultfd_ctx_read(struct userfaultfd_ctx *ctx, int no_wait,
971 struct uffd_msg *msg, struct inode *inode)
974 DECLARE_WAITQUEUE(wait, current);
975 struct userfaultfd_wait_queue *uwq;
977 * Handling fork event requires sleeping operations, so
978 * we drop the event_wqh lock, then do these ops, then
979 * lock it back and wake up the waiter. While the lock is
980 * dropped the ewq may go away so we keep track of it
983 LIST_HEAD(fork_event);
984 struct userfaultfd_ctx *fork_nctx = NULL;
986 /* always take the fd_wqh lock before the fault_pending_wqh lock */
987 spin_lock_irq(&ctx->fd_wqh.lock);
988 __add_wait_queue(&ctx->fd_wqh, &wait);
990 set_current_state(TASK_INTERRUPTIBLE);
991 spin_lock(&ctx->fault_pending_wqh.lock);
992 uwq = find_userfault(ctx);
995 * Use a seqcount to repeat the lockless check
996 * in wake_userfault() to avoid missing
997 * wakeups because during the refile both
998 * waitqueue could become empty if this is the
1001 write_seqcount_begin(&ctx->refile_seq);
1004 * The fault_pending_wqh.lock prevents the uwq
1005 * to disappear from under us.
1007 * Refile this userfault from
1008 * fault_pending_wqh to fault_wqh, it's not
1009 * pending anymore after we read it.
1011 * Use list_del() by hand (as
1012 * userfaultfd_wake_function also uses
1013 * list_del_init() by hand) to be sure nobody
1014 * changes __remove_wait_queue() to use
1015 * list_del_init() in turn breaking the
1016 * !list_empty_careful() check in
1017 * handle_userfault(). The uwq->wq.head list
1018 * must never be empty at any time during the
1019 * refile, or the waitqueue could disappear
1020 * from under us. The "wait_queue_head_t"
1021 * parameter of __remove_wait_queue() is unused
1024 list_del(&uwq->wq.entry);
1025 add_wait_queue(&ctx->fault_wqh, &uwq->wq);
1027 write_seqcount_end(&ctx->refile_seq);
1029 /* careful to always initialize msg if ret == 0 */
1031 spin_unlock(&ctx->fault_pending_wqh.lock);
1035 spin_unlock(&ctx->fault_pending_wqh.lock);
1037 spin_lock(&ctx->event_wqh.lock);
1038 uwq = find_userfault_evt(ctx);
1042 if (uwq->msg.event == UFFD_EVENT_FORK) {
1043 fork_nctx = (struct userfaultfd_ctx *)
1045 uwq->msg.arg.reserved.reserved1;
1046 list_move(&uwq->wq.entry, &fork_event);
1048 * fork_nctx can be freed as soon as
1049 * we drop the lock, unless we take a
1052 userfaultfd_ctx_get(fork_nctx);
1053 spin_unlock(&ctx->event_wqh.lock);
1058 userfaultfd_event_complete(ctx, uwq);
1059 spin_unlock(&ctx->event_wqh.lock);
1063 spin_unlock(&ctx->event_wqh.lock);
1065 if (signal_pending(current)) {
1073 spin_unlock_irq(&ctx->fd_wqh.lock);
1075 spin_lock_irq(&ctx->fd_wqh.lock);
1077 __remove_wait_queue(&ctx->fd_wqh, &wait);
1078 __set_current_state(TASK_RUNNING);
1079 spin_unlock_irq(&ctx->fd_wqh.lock);
1081 if (!ret && msg->event == UFFD_EVENT_FORK) {
1082 ret = resolve_userfault_fork(fork_nctx, inode, msg);
1083 spin_lock_irq(&ctx->event_wqh.lock);
1084 if (!list_empty(&fork_event)) {
1086 * The fork thread didn't abort, so we can
1087 * drop the temporary refcount.
1089 userfaultfd_ctx_put(fork_nctx);
1091 uwq = list_first_entry(&fork_event,
1095 * If fork_event list wasn't empty and in turn
1096 * the event wasn't already released by fork
1097 * (the event is allocated on fork kernel
1098 * stack), put the event back to its place in
1099 * the event_wq. fork_event head will be freed
1100 * as soon as we return so the event cannot
1101 * stay queued there no matter the current
1104 list_del(&uwq->wq.entry);
1105 __add_wait_queue(&ctx->event_wqh, &uwq->wq);
1108 * Leave the event in the waitqueue and report
1109 * error to userland if we failed to resolve
1110 * the userfault fork.
1113 userfaultfd_event_complete(ctx, uwq);
1116 * Here the fork thread aborted and the
1117 * refcount from the fork thread on fork_nctx
1118 * has already been released. We still hold
1119 * the reference we took before releasing the
1120 * lock above. If resolve_userfault_fork
1121 * failed we've to drop it because the
1122 * fork_nctx has to be freed in such case. If
1123 * it succeeded we'll hold it because the new
1124 * uffd references it.
1127 userfaultfd_ctx_put(fork_nctx);
1129 spin_unlock_irq(&ctx->event_wqh.lock);
1135 static ssize_t userfaultfd_read_iter(struct kiocb *iocb, struct iov_iter *to)
1137 struct file *file = iocb->ki_filp;
1138 struct userfaultfd_ctx *ctx = file->private_data;
1139 ssize_t _ret, ret = 0;
1140 struct uffd_msg msg;
1141 struct inode *inode = file_inode(file);
1144 if (!userfaultfd_is_initialized(ctx))
1147 no_wait = file->f_flags & O_NONBLOCK || iocb->ki_flags & IOCB_NOWAIT;
1149 if (iov_iter_count(to) < sizeof(msg))
1150 return ret ? ret : -EINVAL;
1151 _ret = userfaultfd_ctx_read(ctx, no_wait, &msg, inode);
1153 return ret ? ret : _ret;
1154 _ret = !copy_to_iter_full(&msg, sizeof(msg), to);
1156 return ret ? ret : -EFAULT;
1159 * Allow to read more than one fault at time but only
1160 * block if waiting for the very first one.
1166 static void __wake_userfault(struct userfaultfd_ctx *ctx,
1167 struct userfaultfd_wake_range *range)
1169 spin_lock_irq(&ctx->fault_pending_wqh.lock);
1170 /* wake all in the range and autoremove */
1171 if (waitqueue_active(&ctx->fault_pending_wqh))
1172 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL,
1174 if (waitqueue_active(&ctx->fault_wqh))
1175 __wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, range);
1176 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
1179 static __always_inline void wake_userfault(struct userfaultfd_ctx *ctx,
1180 struct userfaultfd_wake_range *range)
1186 * To be sure waitqueue_active() is not reordered by the CPU
1187 * before the pagetable update, use an explicit SMP memory
1188 * barrier here. PT lock release or mmap_read_unlock(mm) still
1189 * have release semantics that can allow the
1190 * waitqueue_active() to be reordered before the pte update.
1195 * Use waitqueue_active because it's very frequent to
1196 * change the address space atomically even if there are no
1197 * userfaults yet. So we take the spinlock only when we're
1198 * sure we've userfaults to wake.
1201 seq = read_seqcount_begin(&ctx->refile_seq);
1202 need_wakeup = waitqueue_active(&ctx->fault_pending_wqh) ||
1203 waitqueue_active(&ctx->fault_wqh);
1205 } while (read_seqcount_retry(&ctx->refile_seq, seq));
1207 __wake_userfault(ctx, range);
1210 static __always_inline int validate_unaligned_range(
1211 struct mm_struct *mm, __u64 start, __u64 len)
1213 __u64 task_size = mm->task_size;
1215 if (len & ~PAGE_MASK)
1219 if (start < mmap_min_addr)
1221 if (start >= task_size)
1223 if (len > task_size - start)
1225 if (start + len <= start)
1230 static __always_inline int validate_range(struct mm_struct *mm,
1231 __u64 start, __u64 len)
1233 if (start & ~PAGE_MASK)
1236 return validate_unaligned_range(mm, start, len);
1239 static int userfaultfd_register(struct userfaultfd_ctx *ctx,
1242 struct mm_struct *mm = ctx->mm;
1243 struct vm_area_struct *vma, *cur;
1245 struct uffdio_register uffdio_register;
1246 struct uffdio_register __user *user_uffdio_register;
1247 unsigned long vm_flags;
1250 unsigned long start, end;
1251 struct vma_iterator vmi;
1252 bool wp_async = userfaultfd_wp_async_ctx(ctx);
1254 user_uffdio_register = (struct uffdio_register __user *) arg;
1257 if (copy_from_user(&uffdio_register, user_uffdio_register,
1258 sizeof(uffdio_register)-sizeof(__u64)))
1262 if (!uffdio_register.mode)
1264 if (uffdio_register.mode & ~UFFD_API_REGISTER_MODES)
1267 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MISSING)
1268 vm_flags |= VM_UFFD_MISSING;
1269 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_WP) {
1270 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_WP
1273 vm_flags |= VM_UFFD_WP;
1275 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MINOR) {
1276 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
1279 vm_flags |= VM_UFFD_MINOR;
1282 ret = validate_range(mm, uffdio_register.range.start,
1283 uffdio_register.range.len);
1287 start = uffdio_register.range.start;
1288 end = start + uffdio_register.range.len;
1291 if (!mmget_not_zero(mm))
1295 mmap_write_lock(mm);
1296 vma_iter_init(&vmi, mm, start);
1297 vma = vma_find(&vmi, end);
1302 * If the first vma contains huge pages, make sure start address
1303 * is aligned to huge page size.
1305 if (is_vm_hugetlb_page(vma)) {
1306 unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1308 if (start & (vma_hpagesize - 1))
1313 * Search for not compatible vmas.
1316 basic_ioctls = false;
1321 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1322 !!(cur->vm_flags & __VM_UFFD_FLAGS));
1324 /* check not compatible vmas */
1326 if (!vma_can_userfault(cur, vm_flags, wp_async))
1330 * UFFDIO_COPY will fill file holes even without
1331 * PROT_WRITE. This check enforces that if this is a
1332 * MAP_SHARED, the process has write permission to the backing
1333 * file. If VM_MAYWRITE is set it also enforces that on a
1334 * MAP_SHARED vma: there is no F_WRITE_SEAL and no further
1335 * F_WRITE_SEAL can be taken until the vma is destroyed.
1338 if (unlikely(!(cur->vm_flags & VM_MAYWRITE)))
1342 * If this vma contains ending address, and huge pages
1345 if (is_vm_hugetlb_page(cur) && end <= cur->vm_end &&
1346 end > cur->vm_start) {
1347 unsigned long vma_hpagesize = vma_kernel_pagesize(cur);
1351 if (end & (vma_hpagesize - 1))
1354 if ((vm_flags & VM_UFFD_WP) && !(cur->vm_flags & VM_MAYWRITE))
1358 * Check that this vma isn't already owned by a
1359 * different userfaultfd. We can't allow more than one
1360 * userfaultfd to own a single vma simultaneously or we
1361 * wouldn't know which one to deliver the userfaults to.
1364 if (cur->vm_userfaultfd_ctx.ctx &&
1365 cur->vm_userfaultfd_ctx.ctx != ctx)
1369 * Note vmas containing huge pages
1371 if (is_vm_hugetlb_page(cur))
1372 basic_ioctls = true;
1375 } for_each_vma_range(vmi, cur, end);
1378 ret = userfaultfd_register_range(ctx, vma, vm_flags, start, end,
1382 mmap_write_unlock(mm);
1387 ioctls_out = basic_ioctls ? UFFD_API_RANGE_IOCTLS_BASIC :
1388 UFFD_API_RANGE_IOCTLS;
1391 * Declare the WP ioctl only if the WP mode is
1392 * specified and all checks passed with the range
1394 if (!(uffdio_register.mode & UFFDIO_REGISTER_MODE_WP))
1395 ioctls_out &= ~((__u64)1 << _UFFDIO_WRITEPROTECT);
1397 /* CONTINUE ioctl is only supported for MINOR ranges. */
1398 if (!(uffdio_register.mode & UFFDIO_REGISTER_MODE_MINOR))
1399 ioctls_out &= ~((__u64)1 << _UFFDIO_CONTINUE);
1402 * Now that we scanned all vmas we can already tell
1403 * userland which ioctls methods are guaranteed to
1404 * succeed on this range.
1406 if (put_user(ioctls_out, &user_uffdio_register->ioctls))
1413 static int userfaultfd_unregister(struct userfaultfd_ctx *ctx,
1416 struct mm_struct *mm = ctx->mm;
1417 struct vm_area_struct *vma, *prev, *cur;
1419 struct uffdio_range uffdio_unregister;
1421 unsigned long start, end, vma_end;
1422 const void __user *buf = (void __user *)arg;
1423 struct vma_iterator vmi;
1424 bool wp_async = userfaultfd_wp_async_ctx(ctx);
1427 if (copy_from_user(&uffdio_unregister, buf, sizeof(uffdio_unregister)))
1430 ret = validate_range(mm, uffdio_unregister.start,
1431 uffdio_unregister.len);
1435 start = uffdio_unregister.start;
1436 end = start + uffdio_unregister.len;
1439 if (!mmget_not_zero(mm))
1442 mmap_write_lock(mm);
1444 vma_iter_init(&vmi, mm, start);
1445 vma = vma_find(&vmi, end);
1450 * If the first vma contains huge pages, make sure start address
1451 * is aligned to huge page size.
1453 if (is_vm_hugetlb_page(vma)) {
1454 unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1456 if (start & (vma_hpagesize - 1))
1461 * Search for not compatible vmas.
1468 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1469 !!(cur->vm_flags & __VM_UFFD_FLAGS));
1472 * Check not compatible vmas, not strictly required
1473 * here as not compatible vmas cannot have an
1474 * userfaultfd_ctx registered on them, but this
1475 * provides for more strict behavior to notice
1476 * unregistration errors.
1478 if (!vma_can_userfault(cur, cur->vm_flags, wp_async))
1482 } for_each_vma_range(vmi, cur, end);
1485 vma_iter_set(&vmi, start);
1486 prev = vma_prev(&vmi);
1487 if (vma->vm_start < start)
1491 for_each_vma_range(vmi, vma, end) {
1494 BUG_ON(!vma_can_userfault(vma, vma->vm_flags, wp_async));
1497 * Nothing to do: this vma is already registered into this
1498 * userfaultfd and with the right tracking mode too.
1500 if (!vma->vm_userfaultfd_ctx.ctx)
1503 WARN_ON(!(vma->vm_flags & VM_MAYWRITE));
1505 if (vma->vm_start > start)
1506 start = vma->vm_start;
1507 vma_end = min(end, vma->vm_end);
1509 if (userfaultfd_missing(vma)) {
1511 * Wake any concurrent pending userfault while
1512 * we unregister, so they will not hang
1513 * permanently and it avoids userland to call
1514 * UFFDIO_WAKE explicitly.
1516 struct userfaultfd_wake_range range;
1517 range.start = start;
1518 range.len = vma_end - start;
1519 wake_userfault(vma->vm_userfaultfd_ctx.ctx, &range);
1522 vma = userfaultfd_clear_vma(&vmi, prev, vma,
1531 start = vma->vm_end;
1535 mmap_write_unlock(mm);
1542 * userfaultfd_wake may be used in combination with the
1543 * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches.
1545 static int userfaultfd_wake(struct userfaultfd_ctx *ctx,
1549 struct uffdio_range uffdio_wake;
1550 struct userfaultfd_wake_range range;
1551 const void __user *buf = (void __user *)arg;
1554 if (copy_from_user(&uffdio_wake, buf, sizeof(uffdio_wake)))
1557 ret = validate_range(ctx->mm, uffdio_wake.start, uffdio_wake.len);
1561 range.start = uffdio_wake.start;
1562 range.len = uffdio_wake.len;
1565 * len == 0 means wake all and we don't want to wake all here,
1566 * so check it again to be sure.
1568 VM_BUG_ON(!range.len);
1570 wake_userfault(ctx, &range);
1577 static int userfaultfd_copy(struct userfaultfd_ctx *ctx,
1581 struct uffdio_copy uffdio_copy;
1582 struct uffdio_copy __user *user_uffdio_copy;
1583 struct userfaultfd_wake_range range;
1584 uffd_flags_t flags = 0;
1586 user_uffdio_copy = (struct uffdio_copy __user *) arg;
1589 if (atomic_read(&ctx->mmap_changing))
1593 if (copy_from_user(&uffdio_copy, user_uffdio_copy,
1594 /* don't copy "copy" last field */
1595 sizeof(uffdio_copy)-sizeof(__s64)))
1598 ret = validate_unaligned_range(ctx->mm, uffdio_copy.src,
1602 ret = validate_range(ctx->mm, uffdio_copy.dst, uffdio_copy.len);
1607 if (uffdio_copy.mode & ~(UFFDIO_COPY_MODE_DONTWAKE|UFFDIO_COPY_MODE_WP))
1609 if (uffdio_copy.mode & UFFDIO_COPY_MODE_WP)
1610 flags |= MFILL_ATOMIC_WP;
1611 if (mmget_not_zero(ctx->mm)) {
1612 ret = mfill_atomic_copy(ctx, uffdio_copy.dst, uffdio_copy.src,
1613 uffdio_copy.len, flags);
1618 if (unlikely(put_user(ret, &user_uffdio_copy->copy)))
1623 /* len == 0 would wake all */
1625 if (!(uffdio_copy.mode & UFFDIO_COPY_MODE_DONTWAKE)) {
1626 range.start = uffdio_copy.dst;
1627 wake_userfault(ctx, &range);
1629 ret = range.len == uffdio_copy.len ? 0 : -EAGAIN;
1634 static int userfaultfd_zeropage(struct userfaultfd_ctx *ctx,
1638 struct uffdio_zeropage uffdio_zeropage;
1639 struct uffdio_zeropage __user *user_uffdio_zeropage;
1640 struct userfaultfd_wake_range range;
1642 user_uffdio_zeropage = (struct uffdio_zeropage __user *) arg;
1645 if (atomic_read(&ctx->mmap_changing))
1649 if (copy_from_user(&uffdio_zeropage, user_uffdio_zeropage,
1650 /* don't copy "zeropage" last field */
1651 sizeof(uffdio_zeropage)-sizeof(__s64)))
1654 ret = validate_range(ctx->mm, uffdio_zeropage.range.start,
1655 uffdio_zeropage.range.len);
1659 if (uffdio_zeropage.mode & ~UFFDIO_ZEROPAGE_MODE_DONTWAKE)
1662 if (mmget_not_zero(ctx->mm)) {
1663 ret = mfill_atomic_zeropage(ctx, uffdio_zeropage.range.start,
1664 uffdio_zeropage.range.len);
1669 if (unlikely(put_user(ret, &user_uffdio_zeropage->zeropage)))
1673 /* len == 0 would wake all */
1676 if (!(uffdio_zeropage.mode & UFFDIO_ZEROPAGE_MODE_DONTWAKE)) {
1677 range.start = uffdio_zeropage.range.start;
1678 wake_userfault(ctx, &range);
1680 ret = range.len == uffdio_zeropage.range.len ? 0 : -EAGAIN;
1685 static int userfaultfd_writeprotect(struct userfaultfd_ctx *ctx,
1689 struct uffdio_writeprotect uffdio_wp;
1690 struct uffdio_writeprotect __user *user_uffdio_wp;
1691 struct userfaultfd_wake_range range;
1692 bool mode_wp, mode_dontwake;
1694 if (atomic_read(&ctx->mmap_changing))
1697 user_uffdio_wp = (struct uffdio_writeprotect __user *) arg;
1699 if (copy_from_user(&uffdio_wp, user_uffdio_wp,
1700 sizeof(struct uffdio_writeprotect)))
1703 ret = validate_range(ctx->mm, uffdio_wp.range.start,
1704 uffdio_wp.range.len);
1708 if (uffdio_wp.mode & ~(UFFDIO_WRITEPROTECT_MODE_DONTWAKE |
1709 UFFDIO_WRITEPROTECT_MODE_WP))
1712 mode_wp = uffdio_wp.mode & UFFDIO_WRITEPROTECT_MODE_WP;
1713 mode_dontwake = uffdio_wp.mode & UFFDIO_WRITEPROTECT_MODE_DONTWAKE;
1715 if (mode_wp && mode_dontwake)
1718 if (mmget_not_zero(ctx->mm)) {
1719 ret = mwriteprotect_range(ctx, uffdio_wp.range.start,
1720 uffdio_wp.range.len, mode_wp);
1729 if (!mode_wp && !mode_dontwake) {
1730 range.start = uffdio_wp.range.start;
1731 range.len = uffdio_wp.range.len;
1732 wake_userfault(ctx, &range);
1737 static int userfaultfd_continue(struct userfaultfd_ctx *ctx, unsigned long arg)
1740 struct uffdio_continue uffdio_continue;
1741 struct uffdio_continue __user *user_uffdio_continue;
1742 struct userfaultfd_wake_range range;
1743 uffd_flags_t flags = 0;
1745 user_uffdio_continue = (struct uffdio_continue __user *)arg;
1748 if (atomic_read(&ctx->mmap_changing))
1752 if (copy_from_user(&uffdio_continue, user_uffdio_continue,
1753 /* don't copy the output fields */
1754 sizeof(uffdio_continue) - (sizeof(__s64))))
1757 ret = validate_range(ctx->mm, uffdio_continue.range.start,
1758 uffdio_continue.range.len);
1763 if (uffdio_continue.mode & ~(UFFDIO_CONTINUE_MODE_DONTWAKE |
1764 UFFDIO_CONTINUE_MODE_WP))
1766 if (uffdio_continue.mode & UFFDIO_CONTINUE_MODE_WP)
1767 flags |= MFILL_ATOMIC_WP;
1769 if (mmget_not_zero(ctx->mm)) {
1770 ret = mfill_atomic_continue(ctx, uffdio_continue.range.start,
1771 uffdio_continue.range.len, flags);
1777 if (unlikely(put_user(ret, &user_uffdio_continue->mapped)))
1782 /* len == 0 would wake all */
1785 if (!(uffdio_continue.mode & UFFDIO_CONTINUE_MODE_DONTWAKE)) {
1786 range.start = uffdio_continue.range.start;
1787 wake_userfault(ctx, &range);
1789 ret = range.len == uffdio_continue.range.len ? 0 : -EAGAIN;
1795 static inline int userfaultfd_poison(struct userfaultfd_ctx *ctx, unsigned long arg)
1798 struct uffdio_poison uffdio_poison;
1799 struct uffdio_poison __user *user_uffdio_poison;
1800 struct userfaultfd_wake_range range;
1802 user_uffdio_poison = (struct uffdio_poison __user *)arg;
1805 if (atomic_read(&ctx->mmap_changing))
1809 if (copy_from_user(&uffdio_poison, user_uffdio_poison,
1810 /* don't copy the output fields */
1811 sizeof(uffdio_poison) - (sizeof(__s64))))
1814 ret = validate_range(ctx->mm, uffdio_poison.range.start,
1815 uffdio_poison.range.len);
1820 if (uffdio_poison.mode & ~UFFDIO_POISON_MODE_DONTWAKE)
1823 if (mmget_not_zero(ctx->mm)) {
1824 ret = mfill_atomic_poison(ctx, uffdio_poison.range.start,
1825 uffdio_poison.range.len, 0);
1831 if (unlikely(put_user(ret, &user_uffdio_poison->updated)))
1836 /* len == 0 would wake all */
1839 if (!(uffdio_poison.mode & UFFDIO_POISON_MODE_DONTWAKE)) {
1840 range.start = uffdio_poison.range.start;
1841 wake_userfault(ctx, &range);
1843 ret = range.len == uffdio_poison.range.len ? 0 : -EAGAIN;
1849 bool userfaultfd_wp_async(struct vm_area_struct *vma)
1851 return userfaultfd_wp_async_ctx(vma->vm_userfaultfd_ctx.ctx);
1854 static inline unsigned int uffd_ctx_features(__u64 user_features)
1857 * For the current set of features the bits just coincide. Set
1858 * UFFD_FEATURE_INITIALIZED to mark the features as enabled.
1860 return (unsigned int)user_features | UFFD_FEATURE_INITIALIZED;
1863 static int userfaultfd_move(struct userfaultfd_ctx *ctx,
1867 struct uffdio_move uffdio_move;
1868 struct uffdio_move __user *user_uffdio_move;
1869 struct userfaultfd_wake_range range;
1870 struct mm_struct *mm = ctx->mm;
1872 user_uffdio_move = (struct uffdio_move __user *) arg;
1874 if (atomic_read(&ctx->mmap_changing))
1877 if (copy_from_user(&uffdio_move, user_uffdio_move,
1878 /* don't copy "move" last field */
1879 sizeof(uffdio_move)-sizeof(__s64)))
1882 /* Do not allow cross-mm moves. */
1883 if (mm != current->mm)
1886 ret = validate_range(mm, uffdio_move.dst, uffdio_move.len);
1890 ret = validate_range(mm, uffdio_move.src, uffdio_move.len);
1894 if (uffdio_move.mode & ~(UFFDIO_MOVE_MODE_ALLOW_SRC_HOLES|
1895 UFFDIO_MOVE_MODE_DONTWAKE))
1898 if (mmget_not_zero(mm)) {
1899 ret = move_pages(ctx, uffdio_move.dst, uffdio_move.src,
1900 uffdio_move.len, uffdio_move.mode);
1906 if (unlikely(put_user(ret, &user_uffdio_move->move)))
1911 /* len == 0 would wake all */
1914 if (!(uffdio_move.mode & UFFDIO_MOVE_MODE_DONTWAKE)) {
1915 range.start = uffdio_move.dst;
1916 wake_userfault(ctx, &range);
1918 ret = range.len == uffdio_move.len ? 0 : -EAGAIN;
1925 * userland asks for a certain API version and we return which bits
1926 * and ioctl commands are implemented in this kernel for such API
1927 * version or -EINVAL if unknown.
1929 static int userfaultfd_api(struct userfaultfd_ctx *ctx,
1932 struct uffdio_api uffdio_api;
1933 void __user *buf = (void __user *)arg;
1934 unsigned int ctx_features;
1939 if (copy_from_user(&uffdio_api, buf, sizeof(uffdio_api)))
1941 features = uffdio_api.features;
1943 if (uffdio_api.api != UFFD_API)
1946 if ((features & UFFD_FEATURE_EVENT_FORK) && !capable(CAP_SYS_PTRACE))
1949 /* WP_ASYNC relies on WP_UNPOPULATED, choose it unconditionally */
1950 if (features & UFFD_FEATURE_WP_ASYNC)
1951 features |= UFFD_FEATURE_WP_UNPOPULATED;
1953 /* report all available features and ioctls to userland */
1954 uffdio_api.features = UFFD_API_FEATURES;
1955 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
1956 uffdio_api.features &=
1957 ~(UFFD_FEATURE_MINOR_HUGETLBFS | UFFD_FEATURE_MINOR_SHMEM);
1959 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_WP
1960 uffdio_api.features &= ~UFFD_FEATURE_PAGEFAULT_FLAG_WP;
1962 #ifndef CONFIG_PTE_MARKER_UFFD_WP
1963 uffdio_api.features &= ~UFFD_FEATURE_WP_HUGETLBFS_SHMEM;
1964 uffdio_api.features &= ~UFFD_FEATURE_WP_UNPOPULATED;
1965 uffdio_api.features &= ~UFFD_FEATURE_WP_ASYNC;
1969 if (features & ~uffdio_api.features)
1972 uffdio_api.ioctls = UFFD_API_IOCTLS;
1974 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1977 /* only enable the requested features for this uffd context */
1978 ctx_features = uffd_ctx_features(features);
1980 if (cmpxchg(&ctx->features, 0, ctx_features) != 0)
1987 memset(&uffdio_api, 0, sizeof(uffdio_api));
1988 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1993 static long userfaultfd_ioctl(struct file *file, unsigned cmd,
1997 struct userfaultfd_ctx *ctx = file->private_data;
1999 if (cmd != UFFDIO_API && !userfaultfd_is_initialized(ctx))
2004 ret = userfaultfd_api(ctx, arg);
2006 case UFFDIO_REGISTER:
2007 ret = userfaultfd_register(ctx, arg);
2009 case UFFDIO_UNREGISTER:
2010 ret = userfaultfd_unregister(ctx, arg);
2013 ret = userfaultfd_wake(ctx, arg);
2016 ret = userfaultfd_copy(ctx, arg);
2018 case UFFDIO_ZEROPAGE:
2019 ret = userfaultfd_zeropage(ctx, arg);
2022 ret = userfaultfd_move(ctx, arg);
2024 case UFFDIO_WRITEPROTECT:
2025 ret = userfaultfd_writeprotect(ctx, arg);
2027 case UFFDIO_CONTINUE:
2028 ret = userfaultfd_continue(ctx, arg);
2031 ret = userfaultfd_poison(ctx, arg);
2037 #ifdef CONFIG_PROC_FS
2038 static void userfaultfd_show_fdinfo(struct seq_file *m, struct file *f)
2040 struct userfaultfd_ctx *ctx = f->private_data;
2041 wait_queue_entry_t *wq;
2042 unsigned long pending = 0, total = 0;
2044 spin_lock_irq(&ctx->fault_pending_wqh.lock);
2045 list_for_each_entry(wq, &ctx->fault_pending_wqh.head, entry) {
2049 list_for_each_entry(wq, &ctx->fault_wqh.head, entry) {
2052 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
2055 * If more protocols will be added, there will be all shown
2056 * separated by a space. Like this:
2057 * protocols: aa:... bb:...
2059 seq_printf(m, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n",
2060 pending, total, UFFD_API, ctx->features,
2061 UFFD_API_IOCTLS|UFFD_API_RANGE_IOCTLS);
2065 static const struct file_operations userfaultfd_fops = {
2066 #ifdef CONFIG_PROC_FS
2067 .show_fdinfo = userfaultfd_show_fdinfo,
2069 .release = userfaultfd_release,
2070 .poll = userfaultfd_poll,
2071 .read_iter = userfaultfd_read_iter,
2072 .unlocked_ioctl = userfaultfd_ioctl,
2073 .compat_ioctl = compat_ptr_ioctl,
2074 .llseek = noop_llseek,
2077 static void init_once_userfaultfd_ctx(void *mem)
2079 struct userfaultfd_ctx *ctx = (struct userfaultfd_ctx *) mem;
2081 init_waitqueue_head(&ctx->fault_pending_wqh);
2082 init_waitqueue_head(&ctx->fault_wqh);
2083 init_waitqueue_head(&ctx->event_wqh);
2084 init_waitqueue_head(&ctx->fd_wqh);
2085 seqcount_spinlock_init(&ctx->refile_seq, &ctx->fault_pending_wqh.lock);
2088 static int new_userfaultfd(int flags)
2090 struct userfaultfd_ctx *ctx;
2094 BUG_ON(!current->mm);
2096 /* Check the UFFD_* constants for consistency. */
2097 BUILD_BUG_ON(UFFD_USER_MODE_ONLY & UFFD_SHARED_FCNTL_FLAGS);
2098 BUILD_BUG_ON(UFFD_CLOEXEC != O_CLOEXEC);
2099 BUILD_BUG_ON(UFFD_NONBLOCK != O_NONBLOCK);
2101 if (flags & ~(UFFD_SHARED_FCNTL_FLAGS | UFFD_USER_MODE_ONLY))
2104 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
2108 refcount_set(&ctx->refcount, 1);
2111 ctx->released = false;
2112 init_rwsem(&ctx->map_changing_lock);
2113 atomic_set(&ctx->mmap_changing, 0);
2114 ctx->mm = current->mm;
2116 fd = get_unused_fd_flags(flags & UFFD_SHARED_FCNTL_FLAGS);
2120 /* Create a new inode so that the LSM can block the creation. */
2121 file = anon_inode_create_getfile("[userfaultfd]", &userfaultfd_fops, ctx,
2122 O_RDONLY | (flags & UFFD_SHARED_FCNTL_FLAGS), NULL);
2128 /* prevent the mm struct to be freed */
2130 file->f_mode |= FMODE_NOWAIT;
2131 fd_install(fd, file);
2134 kmem_cache_free(userfaultfd_ctx_cachep, ctx);
2138 static inline bool userfaultfd_syscall_allowed(int flags)
2140 /* Userspace-only page faults are always allowed */
2141 if (flags & UFFD_USER_MODE_ONLY)
2145 * The user is requesting a userfaultfd which can handle kernel faults.
2146 * Privileged users are always allowed to do this.
2148 if (capable(CAP_SYS_PTRACE))
2151 /* Otherwise, access to kernel fault handling is sysctl controlled. */
2152 return sysctl_unprivileged_userfaultfd;
2155 SYSCALL_DEFINE1(userfaultfd, int, flags)
2157 if (!userfaultfd_syscall_allowed(flags))
2160 return new_userfaultfd(flags);
2163 static long userfaultfd_dev_ioctl(struct file *file, unsigned int cmd, unsigned long flags)
2165 if (cmd != USERFAULTFD_IOC_NEW)
2168 return new_userfaultfd(flags);
2171 static const struct file_operations userfaultfd_dev_fops = {
2172 .unlocked_ioctl = userfaultfd_dev_ioctl,
2173 .compat_ioctl = userfaultfd_dev_ioctl,
2174 .owner = THIS_MODULE,
2175 .llseek = noop_llseek,
2178 static struct miscdevice userfaultfd_misc = {
2179 .minor = MISC_DYNAMIC_MINOR,
2180 .name = "userfaultfd",
2181 .fops = &userfaultfd_dev_fops
2184 static int __init userfaultfd_init(void)
2188 ret = misc_register(&userfaultfd_misc);
2192 userfaultfd_ctx_cachep = kmem_cache_create("userfaultfd_ctx_cache",
2193 sizeof(struct userfaultfd_ctx),
2195 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
2196 init_once_userfaultfd_ctx);
2197 #ifdef CONFIG_SYSCTL
2198 register_sysctl_init("vm", vm_userfaultfd_table);
2202 __initcall(userfaultfd_init);