]> Git Repo - J-linux.git/blob - fs/jbd2/transaction.c
Merge tag 'vfs-6.13-rc7.fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs
[J-linux.git] / fs / jbd2 / transaction.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * linux/fs/jbd2/transaction.c
4  *
5  * Written by Stephen C. Tweedie <[email protected]>, 1998
6  *
7  * Copyright 1998 Red Hat corp --- All Rights Reserved
8  *
9  * Generic filesystem transaction handling code; part of the ext2fs
10  * journaling system.
11  *
12  * This file manages transactions (compound commits managed by the
13  * journaling code) and handles (individual atomic operations by the
14  * filesystem).
15  */
16
17 #include <linux/time.h>
18 #include <linux/fs.h>
19 #include <linux/jbd2.h>
20 #include <linux/errno.h>
21 #include <linux/slab.h>
22 #include <linux/timer.h>
23 #include <linux/mm.h>
24 #include <linux/highmem.h>
25 #include <linux/hrtimer.h>
26 #include <linux/backing-dev.h>
27 #include <linux/bug.h>
28 #include <linux/module.h>
29 #include <linux/sched/mm.h>
30
31 #include <trace/events/jbd2.h>
32
33 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh);
34 static void __jbd2_journal_unfile_buffer(struct journal_head *jh);
35
36 static struct kmem_cache *transaction_cache;
37 int __init jbd2_journal_init_transaction_cache(void)
38 {
39         J_ASSERT(!transaction_cache);
40         transaction_cache = kmem_cache_create("jbd2_transaction_s",
41                                         sizeof(transaction_t),
42                                         0,
43                                         SLAB_HWCACHE_ALIGN|SLAB_TEMPORARY,
44                                         NULL);
45         if (!transaction_cache) {
46                 pr_emerg("JBD2: failed to create transaction cache\n");
47                 return -ENOMEM;
48         }
49         return 0;
50 }
51
52 void jbd2_journal_destroy_transaction_cache(void)
53 {
54         kmem_cache_destroy(transaction_cache);
55         transaction_cache = NULL;
56 }
57
58 void jbd2_journal_free_transaction(transaction_t *transaction)
59 {
60         if (unlikely(ZERO_OR_NULL_PTR(transaction)))
61                 return;
62         kmem_cache_free(transaction_cache, transaction);
63 }
64
65 /*
66  * jbd2_get_transaction: obtain a new transaction_t object.
67  *
68  * Simply initialise a new transaction. Initialize it in
69  * RUNNING state and add it to the current journal (which should not
70  * have an existing running transaction: we only make a new transaction
71  * once we have started to commit the old one).
72  *
73  * Preconditions:
74  *      The journal MUST be locked.  We don't perform atomic mallocs on the
75  *      new transaction and we can't block without protecting against other
76  *      processes trying to touch the journal while it is in transition.
77  *
78  */
79
80 static void jbd2_get_transaction(journal_t *journal,
81                                 transaction_t *transaction)
82 {
83         transaction->t_journal = journal;
84         transaction->t_state = T_RUNNING;
85         transaction->t_start_time = ktime_get();
86         transaction->t_tid = journal->j_transaction_sequence++;
87         transaction->t_expires = jiffies + journal->j_commit_interval;
88         atomic_set(&transaction->t_updates, 0);
89         atomic_set(&transaction->t_outstanding_credits,
90                    journal->j_transaction_overhead_buffers +
91                    atomic_read(&journal->j_reserved_credits));
92         atomic_set(&transaction->t_outstanding_revokes, 0);
93         atomic_set(&transaction->t_handle_count, 0);
94         INIT_LIST_HEAD(&transaction->t_inode_list);
95         INIT_LIST_HEAD(&transaction->t_private_list);
96
97         /* Set up the commit timer for the new transaction. */
98         journal->j_commit_timer.expires = round_jiffies_up(transaction->t_expires);
99         add_timer(&journal->j_commit_timer);
100
101         J_ASSERT(journal->j_running_transaction == NULL);
102         journal->j_running_transaction = transaction;
103         transaction->t_max_wait = 0;
104         transaction->t_start = jiffies;
105         transaction->t_requested = 0;
106 }
107
108 /*
109  * Handle management.
110  *
111  * A handle_t is an object which represents a single atomic update to a
112  * filesystem, and which tracks all of the modifications which form part
113  * of that one update.
114  */
115
116 /*
117  * Update transaction's maximum wait time, if debugging is enabled.
118  *
119  * t_max_wait is carefully updated here with use of atomic compare exchange.
120  * Note that there could be multiplre threads trying to do this simultaneously
121  * hence using cmpxchg to avoid any use of locks in this case.
122  * With this t_max_wait can be updated w/o enabling jbd2_journal_enable_debug.
123  */
124 static inline void update_t_max_wait(transaction_t *transaction,
125                                      unsigned long ts)
126 {
127         unsigned long oldts, newts;
128
129         if (time_after(transaction->t_start, ts)) {
130                 newts = jbd2_time_diff(ts, transaction->t_start);
131                 oldts = READ_ONCE(transaction->t_max_wait);
132                 while (oldts < newts)
133                         oldts = cmpxchg(&transaction->t_max_wait, oldts, newts);
134         }
135 }
136
137 /*
138  * Wait until running transaction passes to T_FLUSH state and new transaction
139  * can thus be started. Also starts the commit if needed. The function expects
140  * running transaction to exist and releases j_state_lock.
141  */
142 static void wait_transaction_locked(journal_t *journal)
143         __releases(journal->j_state_lock)
144 {
145         DEFINE_WAIT(wait);
146         int need_to_start;
147         tid_t tid = journal->j_running_transaction->t_tid;
148
149         prepare_to_wait_exclusive(&journal->j_wait_transaction_locked, &wait,
150                         TASK_UNINTERRUPTIBLE);
151         need_to_start = !tid_geq(journal->j_commit_request, tid);
152         read_unlock(&journal->j_state_lock);
153         if (need_to_start)
154                 jbd2_log_start_commit(journal, tid);
155         jbd2_might_wait_for_commit(journal);
156         schedule();
157         finish_wait(&journal->j_wait_transaction_locked, &wait);
158 }
159
160 /*
161  * Wait until running transaction transitions from T_SWITCH to T_FLUSH
162  * state and new transaction can thus be started. The function releases
163  * j_state_lock.
164  */
165 static void wait_transaction_switching(journal_t *journal)
166         __releases(journal->j_state_lock)
167 {
168         DEFINE_WAIT(wait);
169
170         if (WARN_ON(!journal->j_running_transaction ||
171                     journal->j_running_transaction->t_state != T_SWITCH)) {
172                 read_unlock(&journal->j_state_lock);
173                 return;
174         }
175         prepare_to_wait_exclusive(&journal->j_wait_transaction_locked, &wait,
176                         TASK_UNINTERRUPTIBLE);
177         read_unlock(&journal->j_state_lock);
178         /*
179          * We don't call jbd2_might_wait_for_commit() here as there's no
180          * waiting for outstanding handles happening anymore in T_SWITCH state
181          * and handling of reserved handles actually relies on that for
182          * correctness.
183          */
184         schedule();
185         finish_wait(&journal->j_wait_transaction_locked, &wait);
186 }
187
188 static void sub_reserved_credits(journal_t *journal, int blocks)
189 {
190         atomic_sub(blocks, &journal->j_reserved_credits);
191         wake_up(&journal->j_wait_reserved);
192 }
193
194 /* Maximum number of blocks for user transaction payload */
195 static int jbd2_max_user_trans_buffers(journal_t *journal)
196 {
197         return journal->j_max_transaction_buffers -
198                                 journal->j_transaction_overhead_buffers;
199 }
200
201 /*
202  * Wait until we can add credits for handle to the running transaction.  Called
203  * with j_state_lock held for reading. Returns 0 if handle joined the running
204  * transaction. Returns 1 if we had to wait, j_state_lock is dropped, and
205  * caller must retry.
206  *
207  * Note: because j_state_lock may be dropped depending on the return
208  * value, we need to fake out sparse so ti doesn't complain about a
209  * locking imbalance.  Callers of add_transaction_credits will need to
210  * make a similar accomodation.
211  */
212 static int add_transaction_credits(journal_t *journal, int blocks,
213                                    int rsv_blocks)
214 __must_hold(&journal->j_state_lock)
215 {
216         transaction_t *t = journal->j_running_transaction;
217         int needed;
218         int total = blocks + rsv_blocks;
219
220         /*
221          * If the current transaction is locked down for commit, wait
222          * for the lock to be released.
223          */
224         if (t->t_state != T_RUNNING) {
225                 WARN_ON_ONCE(t->t_state >= T_FLUSH);
226                 wait_transaction_locked(journal);
227                 __acquire(&journal->j_state_lock); /* fake out sparse */
228                 return 1;
229         }
230
231         /*
232          * If there is not enough space left in the log to write all
233          * potential buffers requested by this operation, we need to
234          * stall pending a log checkpoint to free some more log space.
235          */
236         needed = atomic_add_return(total, &t->t_outstanding_credits);
237         if (needed > journal->j_max_transaction_buffers) {
238                 /*
239                  * If the current transaction is already too large,
240                  * then start to commit it: we can then go back and
241                  * attach this handle to a new transaction.
242                  */
243                 atomic_sub(total, &t->t_outstanding_credits);
244
245                 /*
246                  * Is the number of reserved credits in the current transaction too
247                  * big to fit this handle? Wait until reserved credits are freed.
248                  */
249                 if (atomic_read(&journal->j_reserved_credits) + total >
250                     jbd2_max_user_trans_buffers(journal)) {
251                         read_unlock(&journal->j_state_lock);
252                         jbd2_might_wait_for_commit(journal);
253                         wait_event(journal->j_wait_reserved,
254                                    atomic_read(&journal->j_reserved_credits) + total <=
255                                    jbd2_max_user_trans_buffers(journal));
256                         __acquire(&journal->j_state_lock); /* fake out sparse */
257                         return 1;
258                 }
259
260                 wait_transaction_locked(journal);
261                 __acquire(&journal->j_state_lock); /* fake out sparse */
262                 return 1;
263         }
264
265         /*
266          * The commit code assumes that it can get enough log space
267          * without forcing a checkpoint.  This is *critical* for
268          * correctness: a checkpoint of a buffer which is also
269          * associated with a committing transaction creates a deadlock,
270          * so commit simply cannot force through checkpoints.
271          *
272          * We must therefore ensure the necessary space in the journal
273          * *before* starting to dirty potentially checkpointed buffers
274          * in the new transaction.
275          */
276         if (jbd2_log_space_left(journal) < journal->j_max_transaction_buffers) {
277                 atomic_sub(total, &t->t_outstanding_credits);
278                 read_unlock(&journal->j_state_lock);
279                 jbd2_might_wait_for_commit(journal);
280                 write_lock(&journal->j_state_lock);
281                 if (jbd2_log_space_left(journal) <
282                                         journal->j_max_transaction_buffers)
283                         __jbd2_log_wait_for_space(journal);
284                 write_unlock(&journal->j_state_lock);
285                 __acquire(&journal->j_state_lock); /* fake out sparse */
286                 return 1;
287         }
288
289         /* No reservation? We are done... */
290         if (!rsv_blocks)
291                 return 0;
292
293         needed = atomic_add_return(rsv_blocks, &journal->j_reserved_credits);
294         /* We allow at most half of a transaction to be reserved */
295         if (needed > jbd2_max_user_trans_buffers(journal) / 2) {
296                 sub_reserved_credits(journal, rsv_blocks);
297                 atomic_sub(total, &t->t_outstanding_credits);
298                 read_unlock(&journal->j_state_lock);
299                 jbd2_might_wait_for_commit(journal);
300                 wait_event(journal->j_wait_reserved,
301                          atomic_read(&journal->j_reserved_credits) + rsv_blocks
302                          <= jbd2_max_user_trans_buffers(journal) / 2);
303                 __acquire(&journal->j_state_lock); /* fake out sparse */
304                 return 1;
305         }
306         return 0;
307 }
308
309 /*
310  * start_this_handle: Given a handle, deal with any locking or stalling
311  * needed to make sure that there is enough journal space for the handle
312  * to begin.  Attach the handle to a transaction and set up the
313  * transaction's buffer credits.
314  */
315
316 static int start_this_handle(journal_t *journal, handle_t *handle,
317                              gfp_t gfp_mask)
318 {
319         transaction_t   *transaction, *new_transaction = NULL;
320         int             blocks = handle->h_total_credits;
321         int             rsv_blocks = 0;
322         unsigned long ts = jiffies;
323
324         if (handle->h_rsv_handle)
325                 rsv_blocks = handle->h_rsv_handle->h_total_credits;
326
327         /*
328          * Limit the number of reserved credits to 1/2 of maximum transaction
329          * size and limit the number of total credits to not exceed maximum
330          * transaction size per operation.
331          */
332         if (rsv_blocks > jbd2_max_user_trans_buffers(journal) / 2 ||
333             rsv_blocks + blocks > jbd2_max_user_trans_buffers(journal)) {
334                 printk(KERN_ERR "JBD2: %s wants too many credits "
335                        "credits:%d rsv_credits:%d max:%d\n",
336                        current->comm, blocks, rsv_blocks,
337                        jbd2_max_user_trans_buffers(journal));
338                 WARN_ON(1);
339                 return -ENOSPC;
340         }
341
342 alloc_transaction:
343         /*
344          * This check is racy but it is just an optimization of allocating new
345          * transaction early if there are high chances we'll need it. If we
346          * guess wrong, we'll retry or free unused transaction.
347          */
348         if (!data_race(journal->j_running_transaction)) {
349                 /*
350                  * If __GFP_FS is not present, then we may be being called from
351                  * inside the fs writeback layer, so we MUST NOT fail.
352                  */
353                 if ((gfp_mask & __GFP_FS) == 0)
354                         gfp_mask |= __GFP_NOFAIL;
355                 new_transaction = kmem_cache_zalloc(transaction_cache,
356                                                     gfp_mask);
357                 if (!new_transaction)
358                         return -ENOMEM;
359         }
360
361         jbd2_debug(3, "New handle %p going live.\n", handle);
362
363         /*
364          * We need to hold j_state_lock until t_updates has been incremented,
365          * for proper journal barrier handling
366          */
367 repeat:
368         read_lock(&journal->j_state_lock);
369         BUG_ON(journal->j_flags & JBD2_UNMOUNT);
370         if (is_journal_aborted(journal) ||
371             (journal->j_errno != 0 && !(journal->j_flags & JBD2_ACK_ERR))) {
372                 read_unlock(&journal->j_state_lock);
373                 jbd2_journal_free_transaction(new_transaction);
374                 return -EROFS;
375         }
376
377         /*
378          * Wait on the journal's transaction barrier if necessary. Specifically
379          * we allow reserved handles to proceed because otherwise commit could
380          * deadlock on page writeback not being able to complete.
381          */
382         if (!handle->h_reserved && journal->j_barrier_count) {
383                 read_unlock(&journal->j_state_lock);
384                 wait_event(journal->j_wait_transaction_locked,
385                                 journal->j_barrier_count == 0);
386                 goto repeat;
387         }
388
389         if (!journal->j_running_transaction) {
390                 read_unlock(&journal->j_state_lock);
391                 if (!new_transaction)
392                         goto alloc_transaction;
393                 write_lock(&journal->j_state_lock);
394                 if (!journal->j_running_transaction &&
395                     (handle->h_reserved || !journal->j_barrier_count)) {
396                         jbd2_get_transaction(journal, new_transaction);
397                         new_transaction = NULL;
398                 }
399                 write_unlock(&journal->j_state_lock);
400                 goto repeat;
401         }
402
403         transaction = journal->j_running_transaction;
404
405         if (!handle->h_reserved) {
406                 /* We may have dropped j_state_lock - restart in that case */
407                 if (add_transaction_credits(journal, blocks, rsv_blocks)) {
408                         /*
409                          * add_transaction_credits releases
410                          * j_state_lock on a non-zero return
411                          */
412                         __release(&journal->j_state_lock);
413                         goto repeat;
414                 }
415         } else {
416                 /*
417                  * We have handle reserved so we are allowed to join T_LOCKED
418                  * transaction and we don't have to check for transaction size
419                  * and journal space. But we still have to wait while running
420                  * transaction is being switched to a committing one as it
421                  * won't wait for any handles anymore.
422                  */
423                 if (transaction->t_state == T_SWITCH) {
424                         wait_transaction_switching(journal);
425                         goto repeat;
426                 }
427                 sub_reserved_credits(journal, blocks);
428                 handle->h_reserved = 0;
429         }
430
431         /* OK, account for the buffers that this operation expects to
432          * use and add the handle to the running transaction.
433          */
434         update_t_max_wait(transaction, ts);
435         handle->h_transaction = transaction;
436         handle->h_requested_credits = blocks;
437         handle->h_revoke_credits_requested = handle->h_revoke_credits;
438         handle->h_start_jiffies = jiffies;
439         atomic_inc(&transaction->t_updates);
440         atomic_inc(&transaction->t_handle_count);
441         jbd2_debug(4, "Handle %p given %d credits (total %d, free %lu)\n",
442                   handle, blocks,
443                   atomic_read(&transaction->t_outstanding_credits),
444                   jbd2_log_space_left(journal));
445         read_unlock(&journal->j_state_lock);
446         current->journal_info = handle;
447
448         rwsem_acquire_read(&journal->j_trans_commit_map, 0, 0, _THIS_IP_);
449         jbd2_journal_free_transaction(new_transaction);
450         /*
451          * Ensure that no allocations done while the transaction is open are
452          * going to recurse back to the fs layer.
453          */
454         handle->saved_alloc_context = memalloc_nofs_save();
455         return 0;
456 }
457
458 /* Allocate a new handle.  This should probably be in a slab... */
459 static handle_t *new_handle(int nblocks)
460 {
461         handle_t *handle = jbd2_alloc_handle(GFP_NOFS);
462         if (!handle)
463                 return NULL;
464         handle->h_total_credits = nblocks;
465         handle->h_ref = 1;
466
467         return handle;
468 }
469
470 handle_t *jbd2__journal_start(journal_t *journal, int nblocks, int rsv_blocks,
471                               int revoke_records, gfp_t gfp_mask,
472                               unsigned int type, unsigned int line_no)
473 {
474         handle_t *handle = journal_current_handle();
475         int err;
476
477         if (!journal)
478                 return ERR_PTR(-EROFS);
479
480         if (handle) {
481                 J_ASSERT(handle->h_transaction->t_journal == journal);
482                 handle->h_ref++;
483                 return handle;
484         }
485
486         nblocks += DIV_ROUND_UP(revoke_records,
487                                 journal->j_revoke_records_per_block);
488         handle = new_handle(nblocks);
489         if (!handle)
490                 return ERR_PTR(-ENOMEM);
491         if (rsv_blocks) {
492                 handle_t *rsv_handle;
493
494                 rsv_handle = new_handle(rsv_blocks);
495                 if (!rsv_handle) {
496                         jbd2_free_handle(handle);
497                         return ERR_PTR(-ENOMEM);
498                 }
499                 rsv_handle->h_reserved = 1;
500                 rsv_handle->h_journal = journal;
501                 handle->h_rsv_handle = rsv_handle;
502         }
503         handle->h_revoke_credits = revoke_records;
504
505         err = start_this_handle(journal, handle, gfp_mask);
506         if (err < 0) {
507                 if (handle->h_rsv_handle)
508                         jbd2_free_handle(handle->h_rsv_handle);
509                 jbd2_free_handle(handle);
510                 return ERR_PTR(err);
511         }
512         handle->h_type = type;
513         handle->h_line_no = line_no;
514         trace_jbd2_handle_start(journal->j_fs_dev->bd_dev,
515                                 handle->h_transaction->t_tid, type,
516                                 line_no, nblocks);
517
518         return handle;
519 }
520 EXPORT_SYMBOL(jbd2__journal_start);
521
522
523 /**
524  * jbd2_journal_start() - Obtain a new handle.
525  * @journal: Journal to start transaction on.
526  * @nblocks: number of block buffer we might modify
527  *
528  * We make sure that the transaction can guarantee at least nblocks of
529  * modified buffers in the log.  We block until the log can guarantee
530  * that much space. Additionally, if rsv_blocks > 0, we also create another
531  * handle with rsv_blocks reserved blocks in the journal. This handle is
532  * stored in h_rsv_handle. It is not attached to any particular transaction
533  * and thus doesn't block transaction commit. If the caller uses this reserved
534  * handle, it has to set h_rsv_handle to NULL as otherwise jbd2_journal_stop()
535  * on the parent handle will dispose the reserved one. Reserved handle has to
536  * be converted to a normal handle using jbd2_journal_start_reserved() before
537  * it can be used.
538  *
539  * Return a pointer to a newly allocated handle, or an ERR_PTR() value
540  * on failure.
541  */
542 handle_t *jbd2_journal_start(journal_t *journal, int nblocks)
543 {
544         return jbd2__journal_start(journal, nblocks, 0, 0, GFP_NOFS, 0, 0);
545 }
546 EXPORT_SYMBOL(jbd2_journal_start);
547
548 static void __jbd2_journal_unreserve_handle(handle_t *handle, transaction_t *t)
549 {
550         journal_t *journal = handle->h_journal;
551
552         WARN_ON(!handle->h_reserved);
553         sub_reserved_credits(journal, handle->h_total_credits);
554         if (t)
555                 atomic_sub(handle->h_total_credits, &t->t_outstanding_credits);
556 }
557
558 void jbd2_journal_free_reserved(handle_t *handle)
559 {
560         journal_t *journal = handle->h_journal;
561
562         /* Get j_state_lock to pin running transaction if it exists */
563         read_lock(&journal->j_state_lock);
564         __jbd2_journal_unreserve_handle(handle, journal->j_running_transaction);
565         read_unlock(&journal->j_state_lock);
566         jbd2_free_handle(handle);
567 }
568 EXPORT_SYMBOL(jbd2_journal_free_reserved);
569
570 /**
571  * jbd2_journal_start_reserved() - start reserved handle
572  * @handle: handle to start
573  * @type: for handle statistics
574  * @line_no: for handle statistics
575  *
576  * Start handle that has been previously reserved with jbd2_journal_reserve().
577  * This attaches @handle to the running transaction (or creates one if there's
578  * not transaction running). Unlike jbd2_journal_start() this function cannot
579  * block on journal commit, checkpointing, or similar stuff. It can block on
580  * memory allocation or frozen journal though.
581  *
582  * Return 0 on success, non-zero on error - handle is freed in that case.
583  */
584 int jbd2_journal_start_reserved(handle_t *handle, unsigned int type,
585                                 unsigned int line_no)
586 {
587         journal_t *journal = handle->h_journal;
588         int ret = -EIO;
589
590         if (WARN_ON(!handle->h_reserved)) {
591                 /* Someone passed in normal handle? Just stop it. */
592                 jbd2_journal_stop(handle);
593                 return ret;
594         }
595         /*
596          * Usefulness of mixing of reserved and unreserved handles is
597          * questionable. So far nobody seems to need it so just error out.
598          */
599         if (WARN_ON(current->journal_info)) {
600                 jbd2_journal_free_reserved(handle);
601                 return ret;
602         }
603
604         handle->h_journal = NULL;
605         /*
606          * GFP_NOFS is here because callers are likely from writeback or
607          * similarly constrained call sites
608          */
609         ret = start_this_handle(journal, handle, GFP_NOFS);
610         if (ret < 0) {
611                 handle->h_journal = journal;
612                 jbd2_journal_free_reserved(handle);
613                 return ret;
614         }
615         handle->h_type = type;
616         handle->h_line_no = line_no;
617         trace_jbd2_handle_start(journal->j_fs_dev->bd_dev,
618                                 handle->h_transaction->t_tid, type,
619                                 line_no, handle->h_total_credits);
620         return 0;
621 }
622 EXPORT_SYMBOL(jbd2_journal_start_reserved);
623
624 /**
625  * jbd2_journal_extend() - extend buffer credits.
626  * @handle:  handle to 'extend'
627  * @nblocks: nr blocks to try to extend by.
628  * @revoke_records: number of revoke records to try to extend by.
629  *
630  * Some transactions, such as large extends and truncates, can be done
631  * atomically all at once or in several stages.  The operation requests
632  * a credit for a number of buffer modifications in advance, but can
633  * extend its credit if it needs more.
634  *
635  * jbd2_journal_extend tries to give the running handle more buffer credits.
636  * It does not guarantee that allocation - this is a best-effort only.
637  * The calling process MUST be able to deal cleanly with a failure to
638  * extend here.
639  *
640  * Return 0 on success, non-zero on failure.
641  *
642  * return code < 0 implies an error
643  * return code > 0 implies normal transaction-full status.
644  */
645 int jbd2_journal_extend(handle_t *handle, int nblocks, int revoke_records)
646 {
647         transaction_t *transaction = handle->h_transaction;
648         journal_t *journal;
649         int result;
650         int wanted;
651
652         if (is_handle_aborted(handle))
653                 return -EROFS;
654         journal = transaction->t_journal;
655
656         result = 1;
657
658         read_lock(&journal->j_state_lock);
659
660         /* Don't extend a locked-down transaction! */
661         if (transaction->t_state != T_RUNNING) {
662                 jbd2_debug(3, "denied handle %p %d blocks: "
663                           "transaction not running\n", handle, nblocks);
664                 goto error_out;
665         }
666
667         nblocks += DIV_ROUND_UP(
668                         handle->h_revoke_credits_requested + revoke_records,
669                         journal->j_revoke_records_per_block) -
670                 DIV_ROUND_UP(
671                         handle->h_revoke_credits_requested,
672                         journal->j_revoke_records_per_block);
673         wanted = atomic_add_return(nblocks,
674                                    &transaction->t_outstanding_credits);
675
676         if (wanted > journal->j_max_transaction_buffers) {
677                 jbd2_debug(3, "denied handle %p %d blocks: "
678                           "transaction too large\n", handle, nblocks);
679                 atomic_sub(nblocks, &transaction->t_outstanding_credits);
680                 goto error_out;
681         }
682
683         trace_jbd2_handle_extend(journal->j_fs_dev->bd_dev,
684                                  transaction->t_tid,
685                                  handle->h_type, handle->h_line_no,
686                                  handle->h_total_credits,
687                                  nblocks);
688
689         handle->h_total_credits += nblocks;
690         handle->h_requested_credits += nblocks;
691         handle->h_revoke_credits += revoke_records;
692         handle->h_revoke_credits_requested += revoke_records;
693         result = 0;
694
695         jbd2_debug(3, "extended handle %p by %d\n", handle, nblocks);
696 error_out:
697         read_unlock(&journal->j_state_lock);
698         return result;
699 }
700
701 static void stop_this_handle(handle_t *handle)
702 {
703         transaction_t *transaction = handle->h_transaction;
704         journal_t *journal = transaction->t_journal;
705         int revokes;
706
707         J_ASSERT(journal_current_handle() == handle);
708         J_ASSERT(atomic_read(&transaction->t_updates) > 0);
709         current->journal_info = NULL;
710         /*
711          * Subtract necessary revoke descriptor blocks from handle credits. We
712          * take care to account only for revoke descriptor blocks the
713          * transaction will really need as large sequences of transactions with
714          * small numbers of revokes are relatively common.
715          */
716         revokes = handle->h_revoke_credits_requested - handle->h_revoke_credits;
717         if (revokes) {
718                 int t_revokes, revoke_descriptors;
719                 int rr_per_blk = journal->j_revoke_records_per_block;
720
721                 WARN_ON_ONCE(DIV_ROUND_UP(revokes, rr_per_blk)
722                                 > handle->h_total_credits);
723                 t_revokes = atomic_add_return(revokes,
724                                 &transaction->t_outstanding_revokes);
725                 revoke_descriptors =
726                         DIV_ROUND_UP(t_revokes, rr_per_blk) -
727                         DIV_ROUND_UP(t_revokes - revokes, rr_per_blk);
728                 handle->h_total_credits -= revoke_descriptors;
729         }
730         atomic_sub(handle->h_total_credits,
731                    &transaction->t_outstanding_credits);
732         if (handle->h_rsv_handle)
733                 __jbd2_journal_unreserve_handle(handle->h_rsv_handle,
734                                                 transaction);
735         if (atomic_dec_and_test(&transaction->t_updates))
736                 wake_up(&journal->j_wait_updates);
737
738         rwsem_release(&journal->j_trans_commit_map, _THIS_IP_);
739         /*
740          * Scope of the GFP_NOFS context is over here and so we can restore the
741          * original alloc context.
742          */
743         memalloc_nofs_restore(handle->saved_alloc_context);
744 }
745
746 /**
747  * jbd2__journal_restart() - restart a handle .
748  * @handle:  handle to restart
749  * @nblocks: nr credits requested
750  * @revoke_records: number of revoke record credits requested
751  * @gfp_mask: memory allocation flags (for start_this_handle)
752  *
753  * Restart a handle for a multi-transaction filesystem
754  * operation.
755  *
756  * If the jbd2_journal_extend() call above fails to grant new buffer credits
757  * to a running handle, a call to jbd2_journal_restart will commit the
758  * handle's transaction so far and reattach the handle to a new
759  * transaction capable of guaranteeing the requested number of
760  * credits. We preserve reserved handle if there's any attached to the
761  * passed in handle.
762  */
763 int jbd2__journal_restart(handle_t *handle, int nblocks, int revoke_records,
764                           gfp_t gfp_mask)
765 {
766         transaction_t *transaction = handle->h_transaction;
767         journal_t *journal;
768         tid_t           tid;
769         int             need_to_start;
770         int             ret;
771
772         /* If we've had an abort of any type, don't even think about
773          * actually doing the restart! */
774         if (is_handle_aborted(handle))
775                 return 0;
776         journal = transaction->t_journal;
777         tid = transaction->t_tid;
778
779         /*
780          * First unlink the handle from its current transaction, and start the
781          * commit on that.
782          */
783         jbd2_debug(2, "restarting handle %p\n", handle);
784         stop_this_handle(handle);
785         handle->h_transaction = NULL;
786
787         /*
788          * TODO: If we use READ_ONCE / WRITE_ONCE for j_commit_request we can
789          * get rid of pointless j_state_lock traffic like this.
790          */
791         read_lock(&journal->j_state_lock);
792         need_to_start = !tid_geq(journal->j_commit_request, tid);
793         read_unlock(&journal->j_state_lock);
794         if (need_to_start)
795                 jbd2_log_start_commit(journal, tid);
796         handle->h_total_credits = nblocks +
797                 DIV_ROUND_UP(revoke_records,
798                              journal->j_revoke_records_per_block);
799         handle->h_revoke_credits = revoke_records;
800         ret = start_this_handle(journal, handle, gfp_mask);
801         trace_jbd2_handle_restart(journal->j_fs_dev->bd_dev,
802                                  ret ? 0 : handle->h_transaction->t_tid,
803                                  handle->h_type, handle->h_line_no,
804                                  handle->h_total_credits);
805         return ret;
806 }
807 EXPORT_SYMBOL(jbd2__journal_restart);
808
809
810 int jbd2_journal_restart(handle_t *handle, int nblocks)
811 {
812         return jbd2__journal_restart(handle, nblocks, 0, GFP_NOFS);
813 }
814 EXPORT_SYMBOL(jbd2_journal_restart);
815
816 /*
817  * Waits for any outstanding t_updates to finish.
818  * This is called with write j_state_lock held.
819  */
820 void jbd2_journal_wait_updates(journal_t *journal)
821 {
822         DEFINE_WAIT(wait);
823
824         while (1) {
825                 /*
826                  * Note that the running transaction can get freed under us if
827                  * this transaction is getting committed in
828                  * jbd2_journal_commit_transaction() ->
829                  * jbd2_journal_free_transaction(). This can only happen when we
830                  * release j_state_lock -> schedule() -> acquire j_state_lock.
831                  * Hence we should everytime retrieve new j_running_transaction
832                  * value (after j_state_lock release acquire cycle), else it may
833                  * lead to use-after-free of old freed transaction.
834                  */
835                 transaction_t *transaction = journal->j_running_transaction;
836
837                 if (!transaction)
838                         break;
839
840                 prepare_to_wait(&journal->j_wait_updates, &wait,
841                                 TASK_UNINTERRUPTIBLE);
842                 if (!atomic_read(&transaction->t_updates)) {
843                         finish_wait(&journal->j_wait_updates, &wait);
844                         break;
845                 }
846                 write_unlock(&journal->j_state_lock);
847                 schedule();
848                 finish_wait(&journal->j_wait_updates, &wait);
849                 write_lock(&journal->j_state_lock);
850         }
851 }
852
853 /**
854  * jbd2_journal_lock_updates () - establish a transaction barrier.
855  * @journal:  Journal to establish a barrier on.
856  *
857  * This locks out any further updates from being started, and blocks
858  * until all existing updates have completed, returning only once the
859  * journal is in a quiescent state with no updates running.
860  *
861  * The journal lock should not be held on entry.
862  */
863 void jbd2_journal_lock_updates(journal_t *journal)
864 {
865         jbd2_might_wait_for_commit(journal);
866
867         write_lock(&journal->j_state_lock);
868         ++journal->j_barrier_count;
869
870         /* Wait until there are no reserved handles */
871         if (atomic_read(&journal->j_reserved_credits)) {
872                 write_unlock(&journal->j_state_lock);
873                 wait_event(journal->j_wait_reserved,
874                            atomic_read(&journal->j_reserved_credits) == 0);
875                 write_lock(&journal->j_state_lock);
876         }
877
878         /* Wait until there are no running t_updates */
879         jbd2_journal_wait_updates(journal);
880
881         write_unlock(&journal->j_state_lock);
882
883         /*
884          * We have now established a barrier against other normal updates, but
885          * we also need to barrier against other jbd2_journal_lock_updates() calls
886          * to make sure that we serialise special journal-locked operations
887          * too.
888          */
889         mutex_lock(&journal->j_barrier);
890 }
891
892 /**
893  * jbd2_journal_unlock_updates () - release barrier
894  * @journal:  Journal to release the barrier on.
895  *
896  * Release a transaction barrier obtained with jbd2_journal_lock_updates().
897  *
898  * Should be called without the journal lock held.
899  */
900 void jbd2_journal_unlock_updates (journal_t *journal)
901 {
902         J_ASSERT(journal->j_barrier_count != 0);
903
904         mutex_unlock(&journal->j_barrier);
905         write_lock(&journal->j_state_lock);
906         --journal->j_barrier_count;
907         write_unlock(&journal->j_state_lock);
908         wake_up_all(&journal->j_wait_transaction_locked);
909 }
910
911 static void warn_dirty_buffer(struct buffer_head *bh)
912 {
913         printk(KERN_WARNING
914                "JBD2: Spotted dirty metadata buffer (dev = %pg, blocknr = %llu). "
915                "There's a risk of filesystem corruption in case of system "
916                "crash.\n",
917                bh->b_bdev, (unsigned long long)bh->b_blocknr);
918 }
919
920 /* Call t_frozen trigger and copy buffer data into jh->b_frozen_data. */
921 static void jbd2_freeze_jh_data(struct journal_head *jh)
922 {
923         char *source;
924         struct buffer_head *bh = jh2bh(jh);
925
926         J_EXPECT_JH(jh, buffer_uptodate(bh), "Possible IO failure.\n");
927         source = kmap_local_folio(bh->b_folio, bh_offset(bh));
928         /* Fire data frozen trigger just before we copy the data */
929         jbd2_buffer_frozen_trigger(jh, source, jh->b_triggers);
930         memcpy(jh->b_frozen_data, source, bh->b_size);
931         kunmap_local(source);
932
933         /*
934          * Now that the frozen data is saved off, we need to store any matching
935          * triggers.
936          */
937         jh->b_frozen_triggers = jh->b_triggers;
938 }
939
940 /*
941  * If the buffer is already part of the current transaction, then there
942  * is nothing we need to do.  If it is already part of a prior
943  * transaction which we are still committing to disk, then we need to
944  * make sure that we do not overwrite the old copy: we do copy-out to
945  * preserve the copy going to disk.  We also account the buffer against
946  * the handle's metadata buffer credits (unless the buffer is already
947  * part of the transaction, that is).
948  *
949  */
950 static int
951 do_get_write_access(handle_t *handle, struct journal_head *jh,
952                         int force_copy)
953 {
954         struct buffer_head *bh;
955         transaction_t *transaction = handle->h_transaction;
956         journal_t *journal;
957         int error;
958         char *frozen_buffer = NULL;
959         unsigned long start_lock, time_lock;
960
961         journal = transaction->t_journal;
962
963         jbd2_debug(5, "journal_head %p, force_copy %d\n", jh, force_copy);
964
965         JBUFFER_TRACE(jh, "entry");
966 repeat:
967         bh = jh2bh(jh);
968
969         /* @@@ Need to check for errors here at some point. */
970
971         start_lock = jiffies;
972         lock_buffer(bh);
973         spin_lock(&jh->b_state_lock);
974
975         /* If it takes too long to lock the buffer, trace it */
976         time_lock = jbd2_time_diff(start_lock, jiffies);
977         if (time_lock > HZ/10)
978                 trace_jbd2_lock_buffer_stall(bh->b_bdev->bd_dev,
979                         jiffies_to_msecs(time_lock));
980
981         /* We now hold the buffer lock so it is safe to query the buffer
982          * state.  Is the buffer dirty?
983          *
984          * If so, there are two possibilities.  The buffer may be
985          * non-journaled, and undergoing a quite legitimate writeback.
986          * Otherwise, it is journaled, and we don't expect dirty buffers
987          * in that state (the buffers should be marked JBD_Dirty
988          * instead.)  So either the IO is being done under our own
989          * control and this is a bug, or it's a third party IO such as
990          * dump(8) (which may leave the buffer scheduled for read ---
991          * ie. locked but not dirty) or tune2fs (which may actually have
992          * the buffer dirtied, ugh.)  */
993
994         if (buffer_dirty(bh) && jh->b_transaction) {
995                 warn_dirty_buffer(bh);
996                 /*
997                  * We need to clean the dirty flag and we must do it under the
998                  * buffer lock to be sure we don't race with running write-out.
999                  */
1000                 JBUFFER_TRACE(jh, "Journalling dirty buffer");
1001                 clear_buffer_dirty(bh);
1002                 /*
1003                  * The buffer is going to be added to BJ_Reserved list now and
1004                  * nothing guarantees jbd2_journal_dirty_metadata() will be
1005                  * ever called for it. So we need to set jbddirty bit here to
1006                  * make sure the buffer is dirtied and written out when the
1007                  * journaling machinery is done with it.
1008                  */
1009                 set_buffer_jbddirty(bh);
1010         }
1011
1012         error = -EROFS;
1013         if (is_handle_aborted(handle)) {
1014                 spin_unlock(&jh->b_state_lock);
1015                 unlock_buffer(bh);
1016                 goto out;
1017         }
1018         error = 0;
1019
1020         /*
1021          * The buffer is already part of this transaction if b_transaction or
1022          * b_next_transaction points to it
1023          */
1024         if (jh->b_transaction == transaction ||
1025             jh->b_next_transaction == transaction) {
1026                 unlock_buffer(bh);
1027                 goto done;
1028         }
1029
1030         /*
1031          * this is the first time this transaction is touching this buffer,
1032          * reset the modified flag
1033          */
1034         jh->b_modified = 0;
1035
1036         /*
1037          * If the buffer is not journaled right now, we need to make sure it
1038          * doesn't get written to disk before the caller actually commits the
1039          * new data
1040          */
1041         if (!jh->b_transaction) {
1042                 JBUFFER_TRACE(jh, "no transaction");
1043                 J_ASSERT_JH(jh, !jh->b_next_transaction);
1044                 JBUFFER_TRACE(jh, "file as BJ_Reserved");
1045                 /*
1046                  * Make sure all stores to jh (b_modified, b_frozen_data) are
1047                  * visible before attaching it to the running transaction.
1048                  * Paired with barrier in jbd2_write_access_granted()
1049                  */
1050                 smp_wmb();
1051                 spin_lock(&journal->j_list_lock);
1052                 if (test_clear_buffer_dirty(bh)) {
1053                         /*
1054                          * Execute buffer dirty clearing and jh->b_transaction
1055                          * assignment under journal->j_list_lock locked to
1056                          * prevent bh being removed from checkpoint list if
1057                          * the buffer is in an intermediate state (not dirty
1058                          * and jh->b_transaction is NULL).
1059                          */
1060                         JBUFFER_TRACE(jh, "Journalling dirty buffer");
1061                         set_buffer_jbddirty(bh);
1062                 }
1063                 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
1064                 spin_unlock(&journal->j_list_lock);
1065                 unlock_buffer(bh);
1066                 goto done;
1067         }
1068         unlock_buffer(bh);
1069
1070         /*
1071          * If there is already a copy-out version of this buffer, then we don't
1072          * need to make another one
1073          */
1074         if (jh->b_frozen_data) {
1075                 JBUFFER_TRACE(jh, "has frozen data");
1076                 J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
1077                 goto attach_next;
1078         }
1079
1080         JBUFFER_TRACE(jh, "owned by older transaction");
1081         J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
1082         J_ASSERT_JH(jh, jh->b_transaction == journal->j_committing_transaction);
1083
1084         /*
1085          * There is one case we have to be very careful about.  If the
1086          * committing transaction is currently writing this buffer out to disk
1087          * and has NOT made a copy-out, then we cannot modify the buffer
1088          * contents at all right now.  The essence of copy-out is that it is
1089          * the extra copy, not the primary copy, which gets journaled.  If the
1090          * primary copy is already going to disk then we cannot do copy-out
1091          * here.
1092          */
1093         if (buffer_shadow(bh)) {
1094                 JBUFFER_TRACE(jh, "on shadow: sleep");
1095                 spin_unlock(&jh->b_state_lock);
1096                 wait_on_bit_io(&bh->b_state, BH_Shadow, TASK_UNINTERRUPTIBLE);
1097                 goto repeat;
1098         }
1099
1100         /*
1101          * Only do the copy if the currently-owning transaction still needs it.
1102          * If buffer isn't on BJ_Metadata list, the committing transaction is
1103          * past that stage (here we use the fact that BH_Shadow is set under
1104          * bh_state lock together with refiling to BJ_Shadow list and at this
1105          * point we know the buffer doesn't have BH_Shadow set).
1106          *
1107          * Subtle point, though: if this is a get_undo_access, then we will be
1108          * relying on the frozen_data to contain the new value of the
1109          * committed_data record after the transaction, so we HAVE to force the
1110          * frozen_data copy in that case.
1111          */
1112         if (jh->b_jlist == BJ_Metadata || force_copy) {
1113                 JBUFFER_TRACE(jh, "generate frozen data");
1114                 if (!frozen_buffer) {
1115                         JBUFFER_TRACE(jh, "allocate memory for buffer");
1116                         spin_unlock(&jh->b_state_lock);
1117                         frozen_buffer = jbd2_alloc(jh2bh(jh)->b_size,
1118                                                    GFP_NOFS | __GFP_NOFAIL);
1119                         goto repeat;
1120                 }
1121                 jh->b_frozen_data = frozen_buffer;
1122                 frozen_buffer = NULL;
1123                 jbd2_freeze_jh_data(jh);
1124         }
1125 attach_next:
1126         /*
1127          * Make sure all stores to jh (b_modified, b_frozen_data) are visible
1128          * before attaching it to the running transaction. Paired with barrier
1129          * in jbd2_write_access_granted()
1130          */
1131         smp_wmb();
1132         jh->b_next_transaction = transaction;
1133
1134 done:
1135         spin_unlock(&jh->b_state_lock);
1136
1137         /*
1138          * If we are about to journal a buffer, then any revoke pending on it is
1139          * no longer valid
1140          */
1141         jbd2_journal_cancel_revoke(handle, jh);
1142
1143 out:
1144         if (unlikely(frozen_buffer))    /* It's usually NULL */
1145                 jbd2_free(frozen_buffer, bh->b_size);
1146
1147         JBUFFER_TRACE(jh, "exit");
1148         return error;
1149 }
1150
1151 /* Fast check whether buffer is already attached to the required transaction */
1152 static bool jbd2_write_access_granted(handle_t *handle, struct buffer_head *bh,
1153                                                         bool undo)
1154 {
1155         struct journal_head *jh;
1156         bool ret = false;
1157
1158         /* Dirty buffers require special handling... */
1159         if (buffer_dirty(bh))
1160                 return false;
1161
1162         /*
1163          * RCU protects us from dereferencing freed pages. So the checks we do
1164          * are guaranteed not to oops. However the jh slab object can get freed
1165          * & reallocated while we work with it. So we have to be careful. When
1166          * we see jh attached to the running transaction, we know it must stay
1167          * so until the transaction is committed. Thus jh won't be freed and
1168          * will be attached to the same bh while we run.  However it can
1169          * happen jh gets freed, reallocated, and attached to the transaction
1170          * just after we get pointer to it from bh. So we have to be careful
1171          * and recheck jh still belongs to our bh before we return success.
1172          */
1173         rcu_read_lock();
1174         if (!buffer_jbd(bh))
1175                 goto out;
1176         /* This should be bh2jh() but that doesn't work with inline functions */
1177         jh = READ_ONCE(bh->b_private);
1178         if (!jh)
1179                 goto out;
1180         /* For undo access buffer must have data copied */
1181         if (undo && !jh->b_committed_data)
1182                 goto out;
1183         if (READ_ONCE(jh->b_transaction) != handle->h_transaction &&
1184             READ_ONCE(jh->b_next_transaction) != handle->h_transaction)
1185                 goto out;
1186         /*
1187          * There are two reasons for the barrier here:
1188          * 1) Make sure to fetch b_bh after we did previous checks so that we
1189          * detect when jh went through free, realloc, attach to transaction
1190          * while we were checking. Paired with implicit barrier in that path.
1191          * 2) So that access to bh done after jbd2_write_access_granted()
1192          * doesn't get reordered and see inconsistent state of concurrent
1193          * do_get_write_access().
1194          */
1195         smp_mb();
1196         if (unlikely(jh->b_bh != bh))
1197                 goto out;
1198         ret = true;
1199 out:
1200         rcu_read_unlock();
1201         return ret;
1202 }
1203
1204 /**
1205  * jbd2_journal_get_write_access() - notify intent to modify a buffer
1206  *                                   for metadata (not data) update.
1207  * @handle: transaction to add buffer modifications to
1208  * @bh:     bh to be used for metadata writes
1209  *
1210  * Returns: error code or 0 on success.
1211  *
1212  * In full data journalling mode the buffer may be of type BJ_AsyncData,
1213  * because we're ``write()ing`` a buffer which is also part of a shared mapping.
1214  */
1215
1216 int jbd2_journal_get_write_access(handle_t *handle, struct buffer_head *bh)
1217 {
1218         struct journal_head *jh;
1219         journal_t *journal;
1220         int rc;
1221
1222         if (is_handle_aborted(handle))
1223                 return -EROFS;
1224
1225         journal = handle->h_transaction->t_journal;
1226         if (jbd2_check_fs_dev_write_error(journal)) {
1227                 /*
1228                  * If the fs dev has writeback errors, it may have failed
1229                  * to async write out metadata buffers in the background.
1230                  * In this case, we could read old data from disk and write
1231                  * it out again, which may lead to on-disk filesystem
1232                  * inconsistency. Aborting journal can avoid it happen.
1233                  */
1234                 jbd2_journal_abort(journal, -EIO);
1235                 return -EIO;
1236         }
1237
1238         if (jbd2_write_access_granted(handle, bh, false))
1239                 return 0;
1240
1241         jh = jbd2_journal_add_journal_head(bh);
1242         /* We do not want to get caught playing with fields which the
1243          * log thread also manipulates.  Make sure that the buffer
1244          * completes any outstanding IO before proceeding. */
1245         rc = do_get_write_access(handle, jh, 0);
1246         jbd2_journal_put_journal_head(jh);
1247         return rc;
1248 }
1249
1250
1251 /*
1252  * When the user wants to journal a newly created buffer_head
1253  * (ie. getblk() returned a new buffer and we are going to populate it
1254  * manually rather than reading off disk), then we need to keep the
1255  * buffer_head locked until it has been completely filled with new
1256  * data.  In this case, we should be able to make the assertion that
1257  * the bh is not already part of an existing transaction.
1258  *
1259  * The buffer should already be locked by the caller by this point.
1260  * There is no lock ranking violation: it was a newly created,
1261  * unlocked buffer beforehand. */
1262
1263 /**
1264  * jbd2_journal_get_create_access () - notify intent to use newly created bh
1265  * @handle: transaction to new buffer to
1266  * @bh: new buffer.
1267  *
1268  * Call this if you create a new bh.
1269  */
1270 int jbd2_journal_get_create_access(handle_t *handle, struct buffer_head *bh)
1271 {
1272         transaction_t *transaction = handle->h_transaction;
1273         journal_t *journal;
1274         struct journal_head *jh = jbd2_journal_add_journal_head(bh);
1275         int err;
1276
1277         jbd2_debug(5, "journal_head %p\n", jh);
1278         err = -EROFS;
1279         if (is_handle_aborted(handle))
1280                 goto out;
1281         journal = transaction->t_journal;
1282         err = 0;
1283
1284         JBUFFER_TRACE(jh, "entry");
1285         /*
1286          * The buffer may already belong to this transaction due to pre-zeroing
1287          * in the filesystem's new_block code.  It may also be on the previous,
1288          * committing transaction's lists, but it HAS to be in Forget state in
1289          * that case: the transaction must have deleted the buffer for it to be
1290          * reused here.
1291          */
1292         spin_lock(&jh->b_state_lock);
1293         J_ASSERT_JH(jh, (jh->b_transaction == transaction ||
1294                 jh->b_transaction == NULL ||
1295                 (jh->b_transaction == journal->j_committing_transaction &&
1296                           jh->b_jlist == BJ_Forget)));
1297
1298         J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
1299         J_ASSERT_JH(jh, buffer_locked(jh2bh(jh)));
1300
1301         if (jh->b_transaction == NULL) {
1302                 /*
1303                  * Previous jbd2_journal_forget() could have left the buffer
1304                  * with jbddirty bit set because it was being committed. When
1305                  * the commit finished, we've filed the buffer for
1306                  * checkpointing and marked it dirty. Now we are reallocating
1307                  * the buffer so the transaction freeing it must have
1308                  * committed and so it's safe to clear the dirty bit.
1309                  */
1310                 clear_buffer_dirty(jh2bh(jh));
1311                 /* first access by this transaction */
1312                 jh->b_modified = 0;
1313
1314                 JBUFFER_TRACE(jh, "file as BJ_Reserved");
1315                 spin_lock(&journal->j_list_lock);
1316                 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
1317                 spin_unlock(&journal->j_list_lock);
1318         } else if (jh->b_transaction == journal->j_committing_transaction) {
1319                 /* first access by this transaction */
1320                 jh->b_modified = 0;
1321
1322                 JBUFFER_TRACE(jh, "set next transaction");
1323                 spin_lock(&journal->j_list_lock);
1324                 jh->b_next_transaction = transaction;
1325                 spin_unlock(&journal->j_list_lock);
1326         }
1327         spin_unlock(&jh->b_state_lock);
1328
1329         /*
1330          * akpm: I added this.  ext3_alloc_branch can pick up new indirect
1331          * blocks which contain freed but then revoked metadata.  We need
1332          * to cancel the revoke in case we end up freeing it yet again
1333          * and the reallocating as data - this would cause a second revoke,
1334          * which hits an assertion error.
1335          */
1336         JBUFFER_TRACE(jh, "cancelling revoke");
1337         jbd2_journal_cancel_revoke(handle, jh);
1338 out:
1339         jbd2_journal_put_journal_head(jh);
1340         return err;
1341 }
1342
1343 /**
1344  * jbd2_journal_get_undo_access() -  Notify intent to modify metadata with
1345  *     non-rewindable consequences
1346  * @handle: transaction
1347  * @bh: buffer to undo
1348  *
1349  * Sometimes there is a need to distinguish between metadata which has
1350  * been committed to disk and that which has not.  The ext3fs code uses
1351  * this for freeing and allocating space, we have to make sure that we
1352  * do not reuse freed space until the deallocation has been committed,
1353  * since if we overwrote that space we would make the delete
1354  * un-rewindable in case of a crash.
1355  *
1356  * To deal with that, jbd2_journal_get_undo_access requests write access to a
1357  * buffer for parts of non-rewindable operations such as delete
1358  * operations on the bitmaps.  The journaling code must keep a copy of
1359  * the buffer's contents prior to the undo_access call until such time
1360  * as we know that the buffer has definitely been committed to disk.
1361  *
1362  * We never need to know which transaction the committed data is part
1363  * of, buffers touched here are guaranteed to be dirtied later and so
1364  * will be committed to a new transaction in due course, at which point
1365  * we can discard the old committed data pointer.
1366  *
1367  * Returns error number or 0 on success.
1368  */
1369 int jbd2_journal_get_undo_access(handle_t *handle, struct buffer_head *bh)
1370 {
1371         int err;
1372         struct journal_head *jh;
1373         char *committed_data = NULL;
1374
1375         if (is_handle_aborted(handle))
1376                 return -EROFS;
1377
1378         if (jbd2_write_access_granted(handle, bh, true))
1379                 return 0;
1380
1381         jh = jbd2_journal_add_journal_head(bh);
1382         JBUFFER_TRACE(jh, "entry");
1383
1384         /*
1385          * Do this first --- it can drop the journal lock, so we want to
1386          * make sure that obtaining the committed_data is done
1387          * atomically wrt. completion of any outstanding commits.
1388          */
1389         err = do_get_write_access(handle, jh, 1);
1390         if (err)
1391                 goto out;
1392
1393 repeat:
1394         if (!jh->b_committed_data)
1395                 committed_data = jbd2_alloc(jh2bh(jh)->b_size,
1396                                             GFP_NOFS|__GFP_NOFAIL);
1397
1398         spin_lock(&jh->b_state_lock);
1399         if (!jh->b_committed_data) {
1400                 /* Copy out the current buffer contents into the
1401                  * preserved, committed copy. */
1402                 JBUFFER_TRACE(jh, "generate b_committed data");
1403                 if (!committed_data) {
1404                         spin_unlock(&jh->b_state_lock);
1405                         goto repeat;
1406                 }
1407
1408                 jh->b_committed_data = committed_data;
1409                 committed_data = NULL;
1410                 memcpy(jh->b_committed_data, bh->b_data, bh->b_size);
1411         }
1412         spin_unlock(&jh->b_state_lock);
1413 out:
1414         jbd2_journal_put_journal_head(jh);
1415         if (unlikely(committed_data))
1416                 jbd2_free(committed_data, bh->b_size);
1417         return err;
1418 }
1419
1420 /**
1421  * jbd2_journal_set_triggers() - Add triggers for commit writeout
1422  * @bh: buffer to trigger on
1423  * @type: struct jbd2_buffer_trigger_type containing the trigger(s).
1424  *
1425  * Set any triggers on this journal_head.  This is always safe, because
1426  * triggers for a committing buffer will be saved off, and triggers for
1427  * a running transaction will match the buffer in that transaction.
1428  *
1429  * Call with NULL to clear the triggers.
1430  */
1431 void jbd2_journal_set_triggers(struct buffer_head *bh,
1432                                struct jbd2_buffer_trigger_type *type)
1433 {
1434         struct journal_head *jh = jbd2_journal_grab_journal_head(bh);
1435
1436         if (WARN_ON_ONCE(!jh))
1437                 return;
1438         jh->b_triggers = type;
1439         jbd2_journal_put_journal_head(jh);
1440 }
1441
1442 void jbd2_buffer_frozen_trigger(struct journal_head *jh, void *mapped_data,
1443                                 struct jbd2_buffer_trigger_type *triggers)
1444 {
1445         struct buffer_head *bh = jh2bh(jh);
1446
1447         if (!triggers || !triggers->t_frozen)
1448                 return;
1449
1450         triggers->t_frozen(triggers, bh, mapped_data, bh->b_size);
1451 }
1452
1453 void jbd2_buffer_abort_trigger(struct journal_head *jh,
1454                                struct jbd2_buffer_trigger_type *triggers)
1455 {
1456         if (!triggers || !triggers->t_abort)
1457                 return;
1458
1459         triggers->t_abort(triggers, jh2bh(jh));
1460 }
1461
1462 /**
1463  * jbd2_journal_dirty_metadata() -  mark a buffer as containing dirty metadata
1464  * @handle: transaction to add buffer to.
1465  * @bh: buffer to mark
1466  *
1467  * mark dirty metadata which needs to be journaled as part of the current
1468  * transaction.
1469  *
1470  * The buffer must have previously had jbd2_journal_get_write_access()
1471  * called so that it has a valid journal_head attached to the buffer
1472  * head.
1473  *
1474  * The buffer is placed on the transaction's metadata list and is marked
1475  * as belonging to the transaction.
1476  *
1477  * Returns error number or 0 on success.
1478  *
1479  * Special care needs to be taken if the buffer already belongs to the
1480  * current committing transaction (in which case we should have frozen
1481  * data present for that commit).  In that case, we don't relink the
1482  * buffer: that only gets done when the old transaction finally
1483  * completes its commit.
1484  */
1485 int jbd2_journal_dirty_metadata(handle_t *handle, struct buffer_head *bh)
1486 {
1487         transaction_t *transaction = handle->h_transaction;
1488         journal_t *journal;
1489         struct journal_head *jh;
1490         int ret = 0;
1491
1492         if (!buffer_jbd(bh))
1493                 return -EUCLEAN;
1494
1495         /*
1496          * We don't grab jh reference here since the buffer must be part
1497          * of the running transaction.
1498          */
1499         jh = bh2jh(bh);
1500         jbd2_debug(5, "journal_head %p\n", jh);
1501         JBUFFER_TRACE(jh, "entry");
1502
1503         /*
1504          * This and the following assertions are unreliable since we may see jh
1505          * in inconsistent state unless we grab bh_state lock. But this is
1506          * crucial to catch bugs so let's do a reliable check until the
1507          * lockless handling is fully proven.
1508          */
1509         if (data_race(jh->b_transaction != transaction &&
1510             jh->b_next_transaction != transaction)) {
1511                 spin_lock(&jh->b_state_lock);
1512                 J_ASSERT_JH(jh, jh->b_transaction == transaction ||
1513                                 jh->b_next_transaction == transaction);
1514                 spin_unlock(&jh->b_state_lock);
1515         }
1516         if (jh->b_modified == 1) {
1517                 /* If it's in our transaction it must be in BJ_Metadata list. */
1518                 if (data_race(jh->b_transaction == transaction &&
1519                     jh->b_jlist != BJ_Metadata)) {
1520                         spin_lock(&jh->b_state_lock);
1521                         if (jh->b_transaction == transaction &&
1522                             jh->b_jlist != BJ_Metadata)
1523                                 pr_err("JBD2: assertion failure: h_type=%u "
1524                                        "h_line_no=%u block_no=%llu jlist=%u\n",
1525                                        handle->h_type, handle->h_line_no,
1526                                        (unsigned long long) bh->b_blocknr,
1527                                        jh->b_jlist);
1528                         J_ASSERT_JH(jh, jh->b_transaction != transaction ||
1529                                         jh->b_jlist == BJ_Metadata);
1530                         spin_unlock(&jh->b_state_lock);
1531                 }
1532                 goto out;
1533         }
1534
1535         journal = transaction->t_journal;
1536         spin_lock(&jh->b_state_lock);
1537
1538         if (is_handle_aborted(handle)) {
1539                 /*
1540                  * Check journal aborting with @jh->b_state_lock locked,
1541                  * since 'jh->b_transaction' could be replaced with
1542                  * 'jh->b_next_transaction' during old transaction
1543                  * committing if journal aborted, which may fail
1544                  * assertion on 'jh->b_frozen_data == NULL'.
1545                  */
1546                 ret = -EROFS;
1547                 goto out_unlock_bh;
1548         }
1549
1550         if (jh->b_modified == 0) {
1551                 /*
1552                  * This buffer's got modified and becoming part
1553                  * of the transaction. This needs to be done
1554                  * once a transaction -bzzz
1555                  */
1556                 if (WARN_ON_ONCE(jbd2_handle_buffer_credits(handle) <= 0)) {
1557                         ret = -ENOSPC;
1558                         goto out_unlock_bh;
1559                 }
1560                 jh->b_modified = 1;
1561                 handle->h_total_credits--;
1562         }
1563
1564         /*
1565          * fastpath, to avoid expensive locking.  If this buffer is already
1566          * on the running transaction's metadata list there is nothing to do.
1567          * Nobody can take it off again because there is a handle open.
1568          * I _think_ we're OK here with SMP barriers - a mistaken decision will
1569          * result in this test being false, so we go in and take the locks.
1570          */
1571         if (jh->b_transaction == transaction && jh->b_jlist == BJ_Metadata) {
1572                 JBUFFER_TRACE(jh, "fastpath");
1573                 if (unlikely(jh->b_transaction !=
1574                              journal->j_running_transaction)) {
1575                         printk(KERN_ERR "JBD2: %s: "
1576                                "jh->b_transaction (%llu, %p, %u) != "
1577                                "journal->j_running_transaction (%p, %u)\n",
1578                                journal->j_devname,
1579                                (unsigned long long) bh->b_blocknr,
1580                                jh->b_transaction,
1581                                jh->b_transaction ? jh->b_transaction->t_tid : 0,
1582                                journal->j_running_transaction,
1583                                journal->j_running_transaction ?
1584                                journal->j_running_transaction->t_tid : 0);
1585                         ret = -EINVAL;
1586                 }
1587                 goto out_unlock_bh;
1588         }
1589
1590         set_buffer_jbddirty(bh);
1591
1592         /*
1593          * Metadata already on the current transaction list doesn't
1594          * need to be filed.  Metadata on another transaction's list must
1595          * be committing, and will be refiled once the commit completes:
1596          * leave it alone for now.
1597          */
1598         if (jh->b_transaction != transaction) {
1599                 JBUFFER_TRACE(jh, "already on other transaction");
1600                 if (unlikely(((jh->b_transaction !=
1601                                journal->j_committing_transaction)) ||
1602                              (jh->b_next_transaction != transaction))) {
1603                         printk(KERN_ERR "jbd2_journal_dirty_metadata: %s: "
1604                                "bad jh for block %llu: "
1605                                "transaction (%p, %u), "
1606                                "jh->b_transaction (%p, %u), "
1607                                "jh->b_next_transaction (%p, %u), jlist %u\n",
1608                                journal->j_devname,
1609                                (unsigned long long) bh->b_blocknr,
1610                                transaction, transaction->t_tid,
1611                                jh->b_transaction,
1612                                jh->b_transaction ?
1613                                jh->b_transaction->t_tid : 0,
1614                                jh->b_next_transaction,
1615                                jh->b_next_transaction ?
1616                                jh->b_next_transaction->t_tid : 0,
1617                                jh->b_jlist);
1618                         WARN_ON(1);
1619                         ret = -EINVAL;
1620                 }
1621                 /* And this case is illegal: we can't reuse another
1622                  * transaction's data buffer, ever. */
1623                 goto out_unlock_bh;
1624         }
1625
1626         /* That test should have eliminated the following case: */
1627         J_ASSERT_JH(jh, jh->b_frozen_data == NULL);
1628
1629         JBUFFER_TRACE(jh, "file as BJ_Metadata");
1630         spin_lock(&journal->j_list_lock);
1631         __jbd2_journal_file_buffer(jh, transaction, BJ_Metadata);
1632         spin_unlock(&journal->j_list_lock);
1633 out_unlock_bh:
1634         spin_unlock(&jh->b_state_lock);
1635 out:
1636         JBUFFER_TRACE(jh, "exit");
1637         return ret;
1638 }
1639
1640 /**
1641  * jbd2_journal_forget() - bforget() for potentially-journaled buffers.
1642  * @handle: transaction handle
1643  * @bh:     bh to 'forget'
1644  *
1645  * We can only do the bforget if there are no commits pending against the
1646  * buffer.  If the buffer is dirty in the current running transaction we
1647  * can safely unlink it.
1648  *
1649  * bh may not be a journalled buffer at all - it may be a non-JBD
1650  * buffer which came off the hashtable.  Check for this.
1651  *
1652  * Decrements bh->b_count by one.
1653  *
1654  * Allow this call even if the handle has aborted --- it may be part of
1655  * the caller's cleanup after an abort.
1656  */
1657 int jbd2_journal_forget(handle_t *handle, struct buffer_head *bh)
1658 {
1659         transaction_t *transaction = handle->h_transaction;
1660         journal_t *journal;
1661         struct journal_head *jh;
1662         int drop_reserve = 0;
1663         int err = 0;
1664         int was_modified = 0;
1665
1666         if (is_handle_aborted(handle))
1667                 return -EROFS;
1668         journal = transaction->t_journal;
1669
1670         BUFFER_TRACE(bh, "entry");
1671
1672         jh = jbd2_journal_grab_journal_head(bh);
1673         if (!jh) {
1674                 __bforget(bh);
1675                 return 0;
1676         }
1677
1678         spin_lock(&jh->b_state_lock);
1679
1680         /* Critical error: attempting to delete a bitmap buffer, maybe?
1681          * Don't do any jbd operations, and return an error. */
1682         if (!J_EXPECT_JH(jh, !jh->b_committed_data,
1683                          "inconsistent data on disk")) {
1684                 err = -EIO;
1685                 goto drop;
1686         }
1687
1688         /* keep track of whether or not this transaction modified us */
1689         was_modified = jh->b_modified;
1690
1691         /*
1692          * The buffer's going from the transaction, we must drop
1693          * all references -bzzz
1694          */
1695         jh->b_modified = 0;
1696
1697         if (jh->b_transaction == transaction) {
1698                 J_ASSERT_JH(jh, !jh->b_frozen_data);
1699
1700                 /* If we are forgetting a buffer which is already part
1701                  * of this transaction, then we can just drop it from
1702                  * the transaction immediately. */
1703                 clear_buffer_dirty(bh);
1704                 clear_buffer_jbddirty(bh);
1705
1706                 JBUFFER_TRACE(jh, "belongs to current transaction: unfile");
1707
1708                 /*
1709                  * we only want to drop a reference if this transaction
1710                  * modified the buffer
1711                  */
1712                 if (was_modified)
1713                         drop_reserve = 1;
1714
1715                 /*
1716                  * We are no longer going to journal this buffer.
1717                  * However, the commit of this transaction is still
1718                  * important to the buffer: the delete that we are now
1719                  * processing might obsolete an old log entry, so by
1720                  * committing, we can satisfy the buffer's checkpoint.
1721                  *
1722                  * So, if we have a checkpoint on the buffer, we should
1723                  * now refile the buffer on our BJ_Forget list so that
1724                  * we know to remove the checkpoint after we commit.
1725                  */
1726
1727                 spin_lock(&journal->j_list_lock);
1728                 if (jh->b_cp_transaction) {
1729                         __jbd2_journal_temp_unlink_buffer(jh);
1730                         __jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1731                 } else {
1732                         __jbd2_journal_unfile_buffer(jh);
1733                         jbd2_journal_put_journal_head(jh);
1734                 }
1735                 spin_unlock(&journal->j_list_lock);
1736         } else if (jh->b_transaction) {
1737                 J_ASSERT_JH(jh, (jh->b_transaction ==
1738                                  journal->j_committing_transaction));
1739                 /* However, if the buffer is still owned by a prior
1740                  * (committing) transaction, we can't drop it yet... */
1741                 JBUFFER_TRACE(jh, "belongs to older transaction");
1742                 /* ... but we CAN drop it from the new transaction through
1743                  * marking the buffer as freed and set j_next_transaction to
1744                  * the new transaction, so that not only the commit code
1745                  * knows it should clear dirty bits when it is done with the
1746                  * buffer, but also the buffer can be checkpointed only
1747                  * after the new transaction commits. */
1748
1749                 set_buffer_freed(bh);
1750
1751                 if (!jh->b_next_transaction) {
1752                         spin_lock(&journal->j_list_lock);
1753                         jh->b_next_transaction = transaction;
1754                         spin_unlock(&journal->j_list_lock);
1755                 } else {
1756                         J_ASSERT(jh->b_next_transaction == transaction);
1757
1758                         /*
1759                          * only drop a reference if this transaction modified
1760                          * the buffer
1761                          */
1762                         if (was_modified)
1763                                 drop_reserve = 1;
1764                 }
1765         } else {
1766                 /*
1767                  * Finally, if the buffer is not belongs to any
1768                  * transaction, we can just drop it now if it has no
1769                  * checkpoint.
1770                  */
1771                 spin_lock(&journal->j_list_lock);
1772                 if (!jh->b_cp_transaction) {
1773                         JBUFFER_TRACE(jh, "belongs to none transaction");
1774                         spin_unlock(&journal->j_list_lock);
1775                         goto drop;
1776                 }
1777
1778                 /*
1779                  * Otherwise, if the buffer has been written to disk,
1780                  * it is safe to remove the checkpoint and drop it.
1781                  */
1782                 if (jbd2_journal_try_remove_checkpoint(jh) >= 0) {
1783                         spin_unlock(&journal->j_list_lock);
1784                         goto drop;
1785                 }
1786
1787                 /*
1788                  * The buffer is still not written to disk, we should
1789                  * attach this buffer to current transaction so that the
1790                  * buffer can be checkpointed only after the current
1791                  * transaction commits.
1792                  */
1793                 clear_buffer_dirty(bh);
1794                 __jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1795                 spin_unlock(&journal->j_list_lock);
1796         }
1797 drop:
1798         __brelse(bh);
1799         spin_unlock(&jh->b_state_lock);
1800         jbd2_journal_put_journal_head(jh);
1801         if (drop_reserve) {
1802                 /* no need to reserve log space for this block -bzzz */
1803                 handle->h_total_credits++;
1804         }
1805         return err;
1806 }
1807
1808 /**
1809  * jbd2_journal_stop() - complete a transaction
1810  * @handle: transaction to complete.
1811  *
1812  * All done for a particular handle.
1813  *
1814  * There is not much action needed here.  We just return any remaining
1815  * buffer credits to the transaction and remove the handle.  The only
1816  * complication is that we need to start a commit operation if the
1817  * filesystem is marked for synchronous update.
1818  *
1819  * jbd2_journal_stop itself will not usually return an error, but it may
1820  * do so in unusual circumstances.  In particular, expect it to
1821  * return -EIO if a jbd2_journal_abort has been executed since the
1822  * transaction began.
1823  */
1824 int jbd2_journal_stop(handle_t *handle)
1825 {
1826         transaction_t *transaction = handle->h_transaction;
1827         journal_t *journal;
1828         int err = 0, wait_for_commit = 0;
1829         tid_t tid;
1830         pid_t pid;
1831
1832         if (--handle->h_ref > 0) {
1833                 jbd2_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1,
1834                                                  handle->h_ref);
1835                 if (is_handle_aborted(handle))
1836                         return -EIO;
1837                 return 0;
1838         }
1839         if (!transaction) {
1840                 /*
1841                  * Handle is already detached from the transaction so there is
1842                  * nothing to do other than free the handle.
1843                  */
1844                 memalloc_nofs_restore(handle->saved_alloc_context);
1845                 goto free_and_exit;
1846         }
1847         journal = transaction->t_journal;
1848         tid = transaction->t_tid;
1849
1850         if (is_handle_aborted(handle))
1851                 err = -EIO;
1852
1853         jbd2_debug(4, "Handle %p going down\n", handle);
1854         trace_jbd2_handle_stats(journal->j_fs_dev->bd_dev,
1855                                 tid, handle->h_type, handle->h_line_no,
1856                                 jiffies - handle->h_start_jiffies,
1857                                 handle->h_sync, handle->h_requested_credits,
1858                                 (handle->h_requested_credits -
1859                                  handle->h_total_credits));
1860
1861         /*
1862          * Implement synchronous transaction batching.  If the handle
1863          * was synchronous, don't force a commit immediately.  Let's
1864          * yield and let another thread piggyback onto this
1865          * transaction.  Keep doing that while new threads continue to
1866          * arrive.  It doesn't cost much - we're about to run a commit
1867          * and sleep on IO anyway.  Speeds up many-threaded, many-dir
1868          * operations by 30x or more...
1869          *
1870          * We try and optimize the sleep time against what the
1871          * underlying disk can do, instead of having a static sleep
1872          * time.  This is useful for the case where our storage is so
1873          * fast that it is more optimal to go ahead and force a flush
1874          * and wait for the transaction to be committed than it is to
1875          * wait for an arbitrary amount of time for new writers to
1876          * join the transaction.  We achieve this by measuring how
1877          * long it takes to commit a transaction, and compare it with
1878          * how long this transaction has been running, and if run time
1879          * < commit time then we sleep for the delta and commit.  This
1880          * greatly helps super fast disks that would see slowdowns as
1881          * more threads started doing fsyncs.
1882          *
1883          * But don't do this if this process was the most recent one
1884          * to perform a synchronous write.  We do this to detect the
1885          * case where a single process is doing a stream of sync
1886          * writes.  No point in waiting for joiners in that case.
1887          *
1888          * Setting max_batch_time to 0 disables this completely.
1889          */
1890         pid = current->pid;
1891         if (handle->h_sync && journal->j_last_sync_writer != pid &&
1892             journal->j_max_batch_time) {
1893                 u64 commit_time, trans_time;
1894
1895                 journal->j_last_sync_writer = pid;
1896
1897                 read_lock(&journal->j_state_lock);
1898                 commit_time = journal->j_average_commit_time;
1899                 read_unlock(&journal->j_state_lock);
1900
1901                 trans_time = ktime_to_ns(ktime_sub(ktime_get(),
1902                                                    transaction->t_start_time));
1903
1904                 commit_time = max_t(u64, commit_time,
1905                                     1000*journal->j_min_batch_time);
1906                 commit_time = min_t(u64, commit_time,
1907                                     1000*journal->j_max_batch_time);
1908
1909                 if (trans_time < commit_time) {
1910                         ktime_t expires = ktime_add_ns(ktime_get(),
1911                                                        commit_time);
1912                         set_current_state(TASK_UNINTERRUPTIBLE);
1913                         schedule_hrtimeout(&expires, HRTIMER_MODE_ABS);
1914                 }
1915         }
1916
1917         if (handle->h_sync)
1918                 transaction->t_synchronous_commit = 1;
1919
1920         /*
1921          * If the handle is marked SYNC, we need to set another commit
1922          * going!  We also want to force a commit if the transaction is too
1923          * old now.
1924          */
1925         if (handle->h_sync ||
1926             time_after_eq(jiffies, transaction->t_expires)) {
1927                 /* Do this even for aborted journals: an abort still
1928                  * completes the commit thread, it just doesn't write
1929                  * anything to disk. */
1930
1931                 jbd2_debug(2, "transaction too old, requesting commit for "
1932                                         "handle %p\n", handle);
1933                 /* This is non-blocking */
1934                 jbd2_log_start_commit(journal, tid);
1935
1936                 /*
1937                  * Special case: JBD2_SYNC synchronous updates require us
1938                  * to wait for the commit to complete.
1939                  */
1940                 if (handle->h_sync && !(current->flags & PF_MEMALLOC))
1941                         wait_for_commit = 1;
1942         }
1943
1944         /*
1945          * Once stop_this_handle() drops t_updates, the transaction could start
1946          * committing on us and eventually disappear.  So we must not
1947          * dereference transaction pointer again after calling
1948          * stop_this_handle().
1949          */
1950         stop_this_handle(handle);
1951
1952         if (wait_for_commit)
1953                 err = jbd2_log_wait_commit(journal, tid);
1954
1955 free_and_exit:
1956         if (handle->h_rsv_handle)
1957                 jbd2_free_handle(handle->h_rsv_handle);
1958         jbd2_free_handle(handle);
1959         return err;
1960 }
1961
1962 /*
1963  *
1964  * List management code snippets: various functions for manipulating the
1965  * transaction buffer lists.
1966  *
1967  */
1968
1969 /*
1970  * Append a buffer to a transaction list, given the transaction's list head
1971  * pointer.
1972  *
1973  * j_list_lock is held.
1974  *
1975  * jh->b_state_lock is held.
1976  */
1977
1978 static inline void
1979 __blist_add_buffer(struct journal_head **list, struct journal_head *jh)
1980 {
1981         if (!*list) {
1982                 jh->b_tnext = jh->b_tprev = jh;
1983                 *list = jh;
1984         } else {
1985                 /* Insert at the tail of the list to preserve order */
1986                 struct journal_head *first = *list, *last = first->b_tprev;
1987                 jh->b_tprev = last;
1988                 jh->b_tnext = first;
1989                 last->b_tnext = first->b_tprev = jh;
1990         }
1991 }
1992
1993 /*
1994  * Remove a buffer from a transaction list, given the transaction's list
1995  * head pointer.
1996  *
1997  * Called with j_list_lock held, and the journal may not be locked.
1998  *
1999  * jh->b_state_lock is held.
2000  */
2001
2002 static inline void
2003 __blist_del_buffer(struct journal_head **list, struct journal_head *jh)
2004 {
2005         if (*list == jh) {
2006                 *list = jh->b_tnext;
2007                 if (*list == jh)
2008                         *list = NULL;
2009         }
2010         jh->b_tprev->b_tnext = jh->b_tnext;
2011         jh->b_tnext->b_tprev = jh->b_tprev;
2012 }
2013
2014 /*
2015  * Remove a buffer from the appropriate transaction list.
2016  *
2017  * Note that this function can *change* the value of
2018  * bh->b_transaction->t_buffers, t_forget, t_shadow_list, t_log_list or
2019  * t_reserved_list.  If the caller is holding onto a copy of one of these
2020  * pointers, it could go bad.  Generally the caller needs to re-read the
2021  * pointer from the transaction_t.
2022  *
2023  * Called under j_list_lock.
2024  */
2025 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh)
2026 {
2027         struct journal_head **list = NULL;
2028         transaction_t *transaction;
2029         struct buffer_head *bh = jh2bh(jh);
2030
2031         lockdep_assert_held(&jh->b_state_lock);
2032         transaction = jh->b_transaction;
2033         if (transaction)
2034                 assert_spin_locked(&transaction->t_journal->j_list_lock);
2035
2036         J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
2037         if (jh->b_jlist != BJ_None)
2038                 J_ASSERT_JH(jh, transaction != NULL);
2039
2040         switch (jh->b_jlist) {
2041         case BJ_None:
2042                 return;
2043         case BJ_Metadata:
2044                 transaction->t_nr_buffers--;
2045                 J_ASSERT_JH(jh, transaction->t_nr_buffers >= 0);
2046                 list = &transaction->t_buffers;
2047                 break;
2048         case BJ_Forget:
2049                 list = &transaction->t_forget;
2050                 break;
2051         case BJ_Shadow:
2052                 list = &transaction->t_shadow_list;
2053                 break;
2054         case BJ_Reserved:
2055                 list = &transaction->t_reserved_list;
2056                 break;
2057         }
2058
2059         __blist_del_buffer(list, jh);
2060         jh->b_jlist = BJ_None;
2061         if (transaction && is_journal_aborted(transaction->t_journal))
2062                 clear_buffer_jbddirty(bh);
2063         else if (test_clear_buffer_jbddirty(bh))
2064                 mark_buffer_dirty(bh);  /* Expose it to the VM */
2065 }
2066
2067 /*
2068  * Remove buffer from all transactions. The caller is responsible for dropping
2069  * the jh reference that belonged to the transaction.
2070  *
2071  * Called with bh_state lock and j_list_lock
2072  */
2073 static void __jbd2_journal_unfile_buffer(struct journal_head *jh)
2074 {
2075         J_ASSERT_JH(jh, jh->b_transaction != NULL);
2076         J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
2077
2078         __jbd2_journal_temp_unlink_buffer(jh);
2079         jh->b_transaction = NULL;
2080 }
2081
2082 void jbd2_journal_unfile_buffer(journal_t *journal, struct journal_head *jh)
2083 {
2084         struct buffer_head *bh = jh2bh(jh);
2085
2086         /* Get reference so that buffer cannot be freed before we unlock it */
2087         get_bh(bh);
2088         spin_lock(&jh->b_state_lock);
2089         spin_lock(&journal->j_list_lock);
2090         __jbd2_journal_unfile_buffer(jh);
2091         spin_unlock(&journal->j_list_lock);
2092         spin_unlock(&jh->b_state_lock);
2093         jbd2_journal_put_journal_head(jh);
2094         __brelse(bh);
2095 }
2096
2097 /**
2098  * jbd2_journal_try_to_free_buffers() - try to free page buffers.
2099  * @journal: journal for operation
2100  * @folio: Folio to detach data from.
2101  *
2102  * For all the buffers on this page,
2103  * if they are fully written out ordered data, move them onto BUF_CLEAN
2104  * so try_to_free_buffers() can reap them.
2105  *
2106  * This function returns non-zero if we wish try_to_free_buffers()
2107  * to be called. We do this if the page is releasable by try_to_free_buffers().
2108  * We also do it if the page has locked or dirty buffers and the caller wants
2109  * us to perform sync or async writeout.
2110  *
2111  * This complicates JBD locking somewhat.  We aren't protected by the
2112  * BKL here.  We wish to remove the buffer from its committing or
2113  * running transaction's ->t_datalist via __jbd2_journal_unfile_buffer.
2114  *
2115  * This may *change* the value of transaction_t->t_datalist, so anyone
2116  * who looks at t_datalist needs to lock against this function.
2117  *
2118  * Even worse, someone may be doing a jbd2_journal_dirty_data on this
2119  * buffer.  So we need to lock against that.  jbd2_journal_dirty_data()
2120  * will come out of the lock with the buffer dirty, which makes it
2121  * ineligible for release here.
2122  *
2123  * Who else is affected by this?  hmm...  Really the only contender
2124  * is do_get_write_access() - it could be looking at the buffer while
2125  * journal_try_to_free_buffer() is changing its state.  But that
2126  * cannot happen because we never reallocate freed data as metadata
2127  * while the data is part of a transaction.  Yes?
2128  *
2129  * Return false on failure, true on success
2130  */
2131 bool jbd2_journal_try_to_free_buffers(journal_t *journal, struct folio *folio)
2132 {
2133         struct buffer_head *head;
2134         struct buffer_head *bh;
2135         bool ret = false;
2136
2137         J_ASSERT(folio_test_locked(folio));
2138
2139         head = folio_buffers(folio);
2140         bh = head;
2141         do {
2142                 struct journal_head *jh;
2143
2144                 /*
2145                  * We take our own ref against the journal_head here to avoid
2146                  * having to add tons of locking around each instance of
2147                  * jbd2_journal_put_journal_head().
2148                  */
2149                 jh = jbd2_journal_grab_journal_head(bh);
2150                 if (!jh)
2151                         continue;
2152
2153                 spin_lock(&jh->b_state_lock);
2154                 if (!jh->b_transaction && !jh->b_next_transaction) {
2155                         spin_lock(&journal->j_list_lock);
2156                         /* Remove written-back checkpointed metadata buffer */
2157                         if (jh->b_cp_transaction != NULL)
2158                                 jbd2_journal_try_remove_checkpoint(jh);
2159                         spin_unlock(&journal->j_list_lock);
2160                 }
2161                 spin_unlock(&jh->b_state_lock);
2162                 jbd2_journal_put_journal_head(jh);
2163                 if (buffer_jbd(bh))
2164                         goto busy;
2165         } while ((bh = bh->b_this_page) != head);
2166
2167         ret = try_to_free_buffers(folio);
2168 busy:
2169         return ret;
2170 }
2171
2172 /*
2173  * This buffer is no longer needed.  If it is on an older transaction's
2174  * checkpoint list we need to record it on this transaction's forget list
2175  * to pin this buffer (and hence its checkpointing transaction) down until
2176  * this transaction commits.  If the buffer isn't on a checkpoint list, we
2177  * release it.
2178  * Returns non-zero if JBD no longer has an interest in the buffer.
2179  *
2180  * Called under j_list_lock.
2181  *
2182  * Called under jh->b_state_lock.
2183  */
2184 static int __dispose_buffer(struct journal_head *jh, transaction_t *transaction)
2185 {
2186         int may_free = 1;
2187         struct buffer_head *bh = jh2bh(jh);
2188
2189         if (jh->b_cp_transaction) {
2190                 JBUFFER_TRACE(jh, "on running+cp transaction");
2191                 __jbd2_journal_temp_unlink_buffer(jh);
2192                 /*
2193                  * We don't want to write the buffer anymore, clear the
2194                  * bit so that we don't confuse checks in
2195                  * __journal_file_buffer
2196                  */
2197                 clear_buffer_dirty(bh);
2198                 __jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
2199                 may_free = 0;
2200         } else {
2201                 JBUFFER_TRACE(jh, "on running transaction");
2202                 __jbd2_journal_unfile_buffer(jh);
2203                 jbd2_journal_put_journal_head(jh);
2204         }
2205         return may_free;
2206 }
2207
2208 /*
2209  * jbd2_journal_invalidate_folio
2210  *
2211  * This code is tricky.  It has a number of cases to deal with.
2212  *
2213  * There are two invariants which this code relies on:
2214  *
2215  * i_size must be updated on disk before we start calling invalidate_folio
2216  * on the data.
2217  *
2218  *  This is done in ext3 by defining an ext3_setattr method which
2219  *  updates i_size before truncate gets going.  By maintaining this
2220  *  invariant, we can be sure that it is safe to throw away any buffers
2221  *  attached to the current transaction: once the transaction commits,
2222  *  we know that the data will not be needed.
2223  *
2224  *  Note however that we can *not* throw away data belonging to the
2225  *  previous, committing transaction!
2226  *
2227  * Any disk blocks which *are* part of the previous, committing
2228  * transaction (and which therefore cannot be discarded immediately) are
2229  * not going to be reused in the new running transaction
2230  *
2231  *  The bitmap committed_data images guarantee this: any block which is
2232  *  allocated in one transaction and removed in the next will be marked
2233  *  as in-use in the committed_data bitmap, so cannot be reused until
2234  *  the next transaction to delete the block commits.  This means that
2235  *  leaving committing buffers dirty is quite safe: the disk blocks
2236  *  cannot be reallocated to a different file and so buffer aliasing is
2237  *  not possible.
2238  *
2239  *
2240  * The above applies mainly to ordered data mode.  In writeback mode we
2241  * don't make guarantees about the order in which data hits disk --- in
2242  * particular we don't guarantee that new dirty data is flushed before
2243  * transaction commit --- so it is always safe just to discard data
2244  * immediately in that mode.  --sct
2245  */
2246
2247 /*
2248  * The journal_unmap_buffer helper function returns zero if the buffer
2249  * concerned remains pinned as an anonymous buffer belonging to an older
2250  * transaction.
2251  *
2252  * We're outside-transaction here.  Either or both of j_running_transaction
2253  * and j_committing_transaction may be NULL.
2254  */
2255 static int journal_unmap_buffer(journal_t *journal, struct buffer_head *bh,
2256                                 int partial_page)
2257 {
2258         transaction_t *transaction;
2259         struct journal_head *jh;
2260         int may_free = 1;
2261
2262         BUFFER_TRACE(bh, "entry");
2263
2264         /*
2265          * It is safe to proceed here without the j_list_lock because the
2266          * buffers cannot be stolen by try_to_free_buffers as long as we are
2267          * holding the page lock. --sct
2268          */
2269
2270         jh = jbd2_journal_grab_journal_head(bh);
2271         if (!jh)
2272                 goto zap_buffer_unlocked;
2273
2274         /* OK, we have data buffer in journaled mode */
2275         write_lock(&journal->j_state_lock);
2276         spin_lock(&jh->b_state_lock);
2277         spin_lock(&journal->j_list_lock);
2278
2279         /*
2280          * We cannot remove the buffer from checkpoint lists until the
2281          * transaction adding inode to orphan list (let's call it T)
2282          * is committed.  Otherwise if the transaction changing the
2283          * buffer would be cleaned from the journal before T is
2284          * committed, a crash will cause that the correct contents of
2285          * the buffer will be lost.  On the other hand we have to
2286          * clear the buffer dirty bit at latest at the moment when the
2287          * transaction marking the buffer as freed in the filesystem
2288          * structures is committed because from that moment on the
2289          * block can be reallocated and used by a different page.
2290          * Since the block hasn't been freed yet but the inode has
2291          * already been added to orphan list, it is safe for us to add
2292          * the buffer to BJ_Forget list of the newest transaction.
2293          *
2294          * Also we have to clear buffer_mapped flag of a truncated buffer
2295          * because the buffer_head may be attached to the page straddling
2296          * i_size (can happen only when blocksize < pagesize) and thus the
2297          * buffer_head can be reused when the file is extended again. So we end
2298          * up keeping around invalidated buffers attached to transactions'
2299          * BJ_Forget list just to stop checkpointing code from cleaning up
2300          * the transaction this buffer was modified in.
2301          */
2302         transaction = jh->b_transaction;
2303         if (transaction == NULL) {
2304                 /* First case: not on any transaction.  If it
2305                  * has no checkpoint link, then we can zap it:
2306                  * it's a writeback-mode buffer so we don't care
2307                  * if it hits disk safely. */
2308                 if (!jh->b_cp_transaction) {
2309                         JBUFFER_TRACE(jh, "not on any transaction: zap");
2310                         goto zap_buffer;
2311                 }
2312
2313                 if (!buffer_dirty(bh)) {
2314                         /* bdflush has written it.  We can drop it now */
2315                         __jbd2_journal_remove_checkpoint(jh);
2316                         goto zap_buffer;
2317                 }
2318
2319                 /* OK, it must be in the journal but still not
2320                  * written fully to disk: it's metadata or
2321                  * journaled data... */
2322
2323                 if (journal->j_running_transaction) {
2324                         /* ... and once the current transaction has
2325                          * committed, the buffer won't be needed any
2326                          * longer. */
2327                         JBUFFER_TRACE(jh, "checkpointed: add to BJ_Forget");
2328                         may_free = __dispose_buffer(jh,
2329                                         journal->j_running_transaction);
2330                         goto zap_buffer;
2331                 } else {
2332                         /* There is no currently-running transaction. So the
2333                          * orphan record which we wrote for this file must have
2334                          * passed into commit.  We must attach this buffer to
2335                          * the committing transaction, if it exists. */
2336                         if (journal->j_committing_transaction) {
2337                                 JBUFFER_TRACE(jh, "give to committing trans");
2338                                 may_free = __dispose_buffer(jh,
2339                                         journal->j_committing_transaction);
2340                                 goto zap_buffer;
2341                         } else {
2342                                 /* The orphan record's transaction has
2343                                  * committed.  We can cleanse this buffer */
2344                                 clear_buffer_jbddirty(bh);
2345                                 __jbd2_journal_remove_checkpoint(jh);
2346                                 goto zap_buffer;
2347                         }
2348                 }
2349         } else if (transaction == journal->j_committing_transaction) {
2350                 JBUFFER_TRACE(jh, "on committing transaction");
2351                 /*
2352                  * The buffer is committing, we simply cannot touch
2353                  * it. If the page is straddling i_size we have to wait
2354                  * for commit and try again.
2355                  */
2356                 if (partial_page) {
2357                         spin_unlock(&journal->j_list_lock);
2358                         spin_unlock(&jh->b_state_lock);
2359                         write_unlock(&journal->j_state_lock);
2360                         jbd2_journal_put_journal_head(jh);
2361                         /* Already zapped buffer? Nothing to do... */
2362                         if (!bh->b_bdev)
2363                                 return 0;
2364                         return -EBUSY;
2365                 }
2366                 /*
2367                  * OK, buffer won't be reachable after truncate. We just clear
2368                  * b_modified to not confuse transaction credit accounting, and
2369                  * set j_next_transaction to the running transaction (if there
2370                  * is one) and mark buffer as freed so that commit code knows
2371                  * it should clear dirty bits when it is done with the buffer.
2372                  */
2373                 set_buffer_freed(bh);
2374                 if (journal->j_running_transaction && buffer_jbddirty(bh))
2375                         jh->b_next_transaction = journal->j_running_transaction;
2376                 jh->b_modified = 0;
2377                 spin_unlock(&journal->j_list_lock);
2378                 spin_unlock(&jh->b_state_lock);
2379                 write_unlock(&journal->j_state_lock);
2380                 jbd2_journal_put_journal_head(jh);
2381                 return 0;
2382         } else {
2383                 /* Good, the buffer belongs to the running transaction.
2384                  * We are writing our own transaction's data, not any
2385                  * previous one's, so it is safe to throw it away
2386                  * (remember that we expect the filesystem to have set
2387                  * i_size already for this truncate so recovery will not
2388                  * expose the disk blocks we are discarding here.) */
2389                 J_ASSERT_JH(jh, transaction == journal->j_running_transaction);
2390                 JBUFFER_TRACE(jh, "on running transaction");
2391                 may_free = __dispose_buffer(jh, transaction);
2392         }
2393
2394 zap_buffer:
2395         /*
2396          * This is tricky. Although the buffer is truncated, it may be reused
2397          * if blocksize < pagesize and it is attached to the page straddling
2398          * EOF. Since the buffer might have been added to BJ_Forget list of the
2399          * running transaction, journal_get_write_access() won't clear
2400          * b_modified and credit accounting gets confused. So clear b_modified
2401          * here.
2402          */
2403         jh->b_modified = 0;
2404         spin_unlock(&journal->j_list_lock);
2405         spin_unlock(&jh->b_state_lock);
2406         write_unlock(&journal->j_state_lock);
2407         jbd2_journal_put_journal_head(jh);
2408 zap_buffer_unlocked:
2409         clear_buffer_dirty(bh);
2410         J_ASSERT_BH(bh, !buffer_jbddirty(bh));
2411         clear_buffer_mapped(bh);
2412         clear_buffer_req(bh);
2413         clear_buffer_new(bh);
2414         clear_buffer_delay(bh);
2415         clear_buffer_unwritten(bh);
2416         bh->b_bdev = NULL;
2417         return may_free;
2418 }
2419
2420 /**
2421  * jbd2_journal_invalidate_folio()
2422  * @journal: journal to use for flush...
2423  * @folio:    folio to flush
2424  * @offset:  start of the range to invalidate
2425  * @length:  length of the range to invalidate
2426  *
2427  * Reap page buffers containing data after in the specified range in page.
2428  * Can return -EBUSY if buffers are part of the committing transaction and
2429  * the page is straddling i_size. Caller then has to wait for current commit
2430  * and try again.
2431  */
2432 int jbd2_journal_invalidate_folio(journal_t *journal, struct folio *folio,
2433                                 size_t offset, size_t length)
2434 {
2435         struct buffer_head *head, *bh, *next;
2436         unsigned int stop = offset + length;
2437         unsigned int curr_off = 0;
2438         int partial_page = (offset || length < folio_size(folio));
2439         int may_free = 1;
2440         int ret = 0;
2441
2442         if (!folio_test_locked(folio))
2443                 BUG();
2444         head = folio_buffers(folio);
2445         if (!head)
2446                 return 0;
2447
2448         BUG_ON(stop > folio_size(folio) || stop < length);
2449
2450         /* We will potentially be playing with lists other than just the
2451          * data lists (especially for journaled data mode), so be
2452          * cautious in our locking. */
2453
2454         bh = head;
2455         do {
2456                 unsigned int next_off = curr_off + bh->b_size;
2457                 next = bh->b_this_page;
2458
2459                 if (next_off > stop)
2460                         return 0;
2461
2462                 if (offset <= curr_off) {
2463                         /* This block is wholly outside the truncation point */
2464                         lock_buffer(bh);
2465                         ret = journal_unmap_buffer(journal, bh, partial_page);
2466                         unlock_buffer(bh);
2467                         if (ret < 0)
2468                                 return ret;
2469                         may_free &= ret;
2470                 }
2471                 curr_off = next_off;
2472                 bh = next;
2473
2474         } while (bh != head);
2475
2476         if (!partial_page) {
2477                 if (may_free && try_to_free_buffers(folio))
2478                         J_ASSERT(!folio_buffers(folio));
2479         }
2480         return 0;
2481 }
2482
2483 /*
2484  * File a buffer on the given transaction list.
2485  */
2486 void __jbd2_journal_file_buffer(struct journal_head *jh,
2487                         transaction_t *transaction, int jlist)
2488 {
2489         struct journal_head **list = NULL;
2490         int was_dirty = 0;
2491         struct buffer_head *bh = jh2bh(jh);
2492
2493         lockdep_assert_held(&jh->b_state_lock);
2494         assert_spin_locked(&transaction->t_journal->j_list_lock);
2495
2496         J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
2497         J_ASSERT_JH(jh, jh->b_transaction == transaction ||
2498                                 jh->b_transaction == NULL);
2499
2500         if (jh->b_transaction && jh->b_jlist == jlist)
2501                 return;
2502
2503         if (jlist == BJ_Metadata || jlist == BJ_Reserved ||
2504             jlist == BJ_Shadow || jlist == BJ_Forget) {
2505                 /*
2506                  * For metadata buffers, we track dirty bit in buffer_jbddirty
2507                  * instead of buffer_dirty. We should not see a dirty bit set
2508                  * here because we clear it in do_get_write_access but e.g.
2509                  * tune2fs can modify the sb and set the dirty bit at any time
2510                  * so we try to gracefully handle that.
2511                  */
2512                 if (buffer_dirty(bh))
2513                         warn_dirty_buffer(bh);
2514                 if (test_clear_buffer_dirty(bh) ||
2515                     test_clear_buffer_jbddirty(bh))
2516                         was_dirty = 1;
2517         }
2518
2519         if (jh->b_transaction)
2520                 __jbd2_journal_temp_unlink_buffer(jh);
2521         else
2522                 jbd2_journal_grab_journal_head(bh);
2523         jh->b_transaction = transaction;
2524
2525         switch (jlist) {
2526         case BJ_None:
2527                 J_ASSERT_JH(jh, !jh->b_committed_data);
2528                 J_ASSERT_JH(jh, !jh->b_frozen_data);
2529                 return;
2530         case BJ_Metadata:
2531                 transaction->t_nr_buffers++;
2532                 list = &transaction->t_buffers;
2533                 break;
2534         case BJ_Forget:
2535                 list = &transaction->t_forget;
2536                 break;
2537         case BJ_Shadow:
2538                 list = &transaction->t_shadow_list;
2539                 break;
2540         case BJ_Reserved:
2541                 list = &transaction->t_reserved_list;
2542                 break;
2543         }
2544
2545         __blist_add_buffer(list, jh);
2546         jh->b_jlist = jlist;
2547
2548         if (was_dirty)
2549                 set_buffer_jbddirty(bh);
2550 }
2551
2552 void jbd2_journal_file_buffer(struct journal_head *jh,
2553                                 transaction_t *transaction, int jlist)
2554 {
2555         spin_lock(&jh->b_state_lock);
2556         spin_lock(&transaction->t_journal->j_list_lock);
2557         __jbd2_journal_file_buffer(jh, transaction, jlist);
2558         spin_unlock(&transaction->t_journal->j_list_lock);
2559         spin_unlock(&jh->b_state_lock);
2560 }
2561
2562 /*
2563  * Remove a buffer from its current buffer list in preparation for
2564  * dropping it from its current transaction entirely.  If the buffer has
2565  * already started to be used by a subsequent transaction, refile the
2566  * buffer on that transaction's metadata list.
2567  *
2568  * Called under j_list_lock
2569  * Called under jh->b_state_lock
2570  *
2571  * When this function returns true, there's no next transaction to refile to
2572  * and the caller has to drop jh reference through
2573  * jbd2_journal_put_journal_head().
2574  */
2575 bool __jbd2_journal_refile_buffer(struct journal_head *jh)
2576 {
2577         int was_dirty, jlist;
2578         struct buffer_head *bh = jh2bh(jh);
2579
2580         lockdep_assert_held(&jh->b_state_lock);
2581         if (jh->b_transaction)
2582                 assert_spin_locked(&jh->b_transaction->t_journal->j_list_lock);
2583
2584         /* If the buffer is now unused, just drop it. */
2585         if (jh->b_next_transaction == NULL) {
2586                 __jbd2_journal_unfile_buffer(jh);
2587                 return true;
2588         }
2589
2590         /*
2591          * It has been modified by a later transaction: add it to the new
2592          * transaction's metadata list.
2593          */
2594
2595         was_dirty = test_clear_buffer_jbddirty(bh);
2596         __jbd2_journal_temp_unlink_buffer(jh);
2597
2598         /*
2599          * b_transaction must be set, otherwise the new b_transaction won't
2600          * be holding jh reference
2601          */
2602         J_ASSERT_JH(jh, jh->b_transaction != NULL);
2603
2604         /*
2605          * We set b_transaction here because b_next_transaction will inherit
2606          * our jh reference and thus __jbd2_journal_file_buffer() must not
2607          * take a new one.
2608          */
2609         WRITE_ONCE(jh->b_transaction, jh->b_next_transaction);
2610         WRITE_ONCE(jh->b_next_transaction, NULL);
2611         if (buffer_freed(bh))
2612                 jlist = BJ_Forget;
2613         else if (jh->b_modified)
2614                 jlist = BJ_Metadata;
2615         else
2616                 jlist = BJ_Reserved;
2617         __jbd2_journal_file_buffer(jh, jh->b_transaction, jlist);
2618         J_ASSERT_JH(jh, jh->b_transaction->t_state == T_RUNNING);
2619
2620         if (was_dirty)
2621                 set_buffer_jbddirty(bh);
2622         return false;
2623 }
2624
2625 /*
2626  * __jbd2_journal_refile_buffer() with necessary locking added. We take our
2627  * bh reference so that we can safely unlock bh.
2628  *
2629  * The jh and bh may be freed by this call.
2630  */
2631 void jbd2_journal_refile_buffer(journal_t *journal, struct journal_head *jh)
2632 {
2633         bool drop;
2634
2635         spin_lock(&jh->b_state_lock);
2636         spin_lock(&journal->j_list_lock);
2637         drop = __jbd2_journal_refile_buffer(jh);
2638         spin_unlock(&jh->b_state_lock);
2639         spin_unlock(&journal->j_list_lock);
2640         if (drop)
2641                 jbd2_journal_put_journal_head(jh);
2642 }
2643
2644 /*
2645  * File inode in the inode list of the handle's transaction
2646  */
2647 static int jbd2_journal_file_inode(handle_t *handle, struct jbd2_inode *jinode,
2648                 unsigned long flags, loff_t start_byte, loff_t end_byte)
2649 {
2650         transaction_t *transaction = handle->h_transaction;
2651         journal_t *journal;
2652
2653         if (is_handle_aborted(handle))
2654                 return -EROFS;
2655         journal = transaction->t_journal;
2656
2657         jbd2_debug(4, "Adding inode %lu, tid:%d\n", jinode->i_vfs_inode->i_ino,
2658                         transaction->t_tid);
2659
2660         spin_lock(&journal->j_list_lock);
2661         jinode->i_flags |= flags;
2662
2663         if (jinode->i_dirty_end) {
2664                 jinode->i_dirty_start = min(jinode->i_dirty_start, start_byte);
2665                 jinode->i_dirty_end = max(jinode->i_dirty_end, end_byte);
2666         } else {
2667                 jinode->i_dirty_start = start_byte;
2668                 jinode->i_dirty_end = end_byte;
2669         }
2670
2671         /* Is inode already attached where we need it? */
2672         if (jinode->i_transaction == transaction ||
2673             jinode->i_next_transaction == transaction)
2674                 goto done;
2675
2676         /*
2677          * We only ever set this variable to 1 so the test is safe. Since
2678          * t_need_data_flush is likely to be set, we do the test to save some
2679          * cacheline bouncing
2680          */
2681         if (!transaction->t_need_data_flush)
2682                 transaction->t_need_data_flush = 1;
2683         /* On some different transaction's list - should be
2684          * the committing one */
2685         if (jinode->i_transaction) {
2686                 J_ASSERT(jinode->i_next_transaction == NULL);
2687                 J_ASSERT(jinode->i_transaction ==
2688                                         journal->j_committing_transaction);
2689                 jinode->i_next_transaction = transaction;
2690                 goto done;
2691         }
2692         /* Not on any transaction list... */
2693         J_ASSERT(!jinode->i_next_transaction);
2694         jinode->i_transaction = transaction;
2695         list_add(&jinode->i_list, &transaction->t_inode_list);
2696 done:
2697         spin_unlock(&journal->j_list_lock);
2698
2699         return 0;
2700 }
2701
2702 int jbd2_journal_inode_ranged_write(handle_t *handle,
2703                 struct jbd2_inode *jinode, loff_t start_byte, loff_t length)
2704 {
2705         return jbd2_journal_file_inode(handle, jinode,
2706                         JI_WRITE_DATA | JI_WAIT_DATA, start_byte,
2707                         start_byte + length - 1);
2708 }
2709
2710 int jbd2_journal_inode_ranged_wait(handle_t *handle, struct jbd2_inode *jinode,
2711                 loff_t start_byte, loff_t length)
2712 {
2713         return jbd2_journal_file_inode(handle, jinode, JI_WAIT_DATA,
2714                         start_byte, start_byte + length - 1);
2715 }
2716
2717 /*
2718  * File truncate and transaction commit interact with each other in a
2719  * non-trivial way.  If a transaction writing data block A is
2720  * committing, we cannot discard the data by truncate until we have
2721  * written them.  Otherwise if we crashed after the transaction with
2722  * write has committed but before the transaction with truncate has
2723  * committed, we could see stale data in block A.  This function is a
2724  * helper to solve this problem.  It starts writeout of the truncated
2725  * part in case it is in the committing transaction.
2726  *
2727  * Filesystem code must call this function when inode is journaled in
2728  * ordered mode before truncation happens and after the inode has been
2729  * placed on orphan list with the new inode size. The second condition
2730  * avoids the race that someone writes new data and we start
2731  * committing the transaction after this function has been called but
2732  * before a transaction for truncate is started (and furthermore it
2733  * allows us to optimize the case where the addition to orphan list
2734  * happens in the same transaction as write --- we don't have to write
2735  * any data in such case).
2736  */
2737 int jbd2_journal_begin_ordered_truncate(journal_t *journal,
2738                                         struct jbd2_inode *jinode,
2739                                         loff_t new_size)
2740 {
2741         transaction_t *inode_trans, *commit_trans;
2742         int ret = 0;
2743
2744         /* This is a quick check to avoid locking if not necessary */
2745         if (!jinode->i_transaction)
2746                 goto out;
2747         /* Locks are here just to force reading of recent values, it is
2748          * enough that the transaction was not committing before we started
2749          * a transaction adding the inode to orphan list */
2750         read_lock(&journal->j_state_lock);
2751         commit_trans = journal->j_committing_transaction;
2752         read_unlock(&journal->j_state_lock);
2753         spin_lock(&journal->j_list_lock);
2754         inode_trans = jinode->i_transaction;
2755         spin_unlock(&journal->j_list_lock);
2756         if (inode_trans == commit_trans) {
2757                 ret = filemap_fdatawrite_range(jinode->i_vfs_inode->i_mapping,
2758                         new_size, LLONG_MAX);
2759                 if (ret)
2760                         jbd2_journal_abort(journal, ret);
2761         }
2762 out:
2763         return ret;
2764 }
This page took 0.190689 seconds and 4 git commands to generate.