]> Git Repo - J-linux.git/blob - fs/fs-writeback.c
Merge tag 'vfs-6.13-rc7.fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs
[J-linux.git] / fs / fs-writeback.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * fs/fs-writeback.c
4  *
5  * Copyright (C) 2002, Linus Torvalds.
6  *
7  * Contains all the functions related to writing back and waiting
8  * upon dirty inodes against superblocks, and writing back dirty
9  * pages against inodes.  ie: data writeback.  Writeout of the
10  * inode itself is not handled here.
11  *
12  * 10Apr2002    Andrew Morton
13  *              Split out of fs/inode.c
14  *              Additions for address_space-based writeback
15  */
16
17 #include <linux/kernel.h>
18 #include <linux/export.h>
19 #include <linux/spinlock.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/fs.h>
23 #include <linux/mm.h>
24 #include <linux/pagemap.h>
25 #include <linux/kthread.h>
26 #include <linux/writeback.h>
27 #include <linux/blkdev.h>
28 #include <linux/backing-dev.h>
29 #include <linux/tracepoint.h>
30 #include <linux/device.h>
31 #include <linux/memcontrol.h>
32 #include "internal.h"
33
34 /*
35  * 4MB minimal write chunk size
36  */
37 #define MIN_WRITEBACK_PAGES     (4096UL >> (PAGE_SHIFT - 10))
38
39 /*
40  * Passed into wb_writeback(), essentially a subset of writeback_control
41  */
42 struct wb_writeback_work {
43         long nr_pages;
44         struct super_block *sb;
45         enum writeback_sync_modes sync_mode;
46         unsigned int tagged_writepages:1;
47         unsigned int for_kupdate:1;
48         unsigned int range_cyclic:1;
49         unsigned int for_background:1;
50         unsigned int for_sync:1;        /* sync(2) WB_SYNC_ALL writeback */
51         unsigned int auto_free:1;       /* free on completion */
52         enum wb_reason reason;          /* why was writeback initiated? */
53
54         struct list_head list;          /* pending work list */
55         struct wb_completion *done;     /* set if the caller waits */
56 };
57
58 /*
59  * If an inode is constantly having its pages dirtied, but then the
60  * updates stop dirtytime_expire_interval seconds in the past, it's
61  * possible for the worst case time between when an inode has its
62  * timestamps updated and when they finally get written out to be two
63  * dirtytime_expire_intervals.  We set the default to 12 hours (in
64  * seconds), which means most of the time inodes will have their
65  * timestamps written to disk after 12 hours, but in the worst case a
66  * few inodes might not their timestamps updated for 24 hours.
67  */
68 unsigned int dirtytime_expire_interval = 12 * 60 * 60;
69
70 static inline struct inode *wb_inode(struct list_head *head)
71 {
72         return list_entry(head, struct inode, i_io_list);
73 }
74
75 /*
76  * Include the creation of the trace points after defining the
77  * wb_writeback_work structure and inline functions so that the definition
78  * remains local to this file.
79  */
80 #define CREATE_TRACE_POINTS
81 #include <trace/events/writeback.h>
82
83 EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);
84
85 static bool wb_io_lists_populated(struct bdi_writeback *wb)
86 {
87         if (wb_has_dirty_io(wb)) {
88                 return false;
89         } else {
90                 set_bit(WB_has_dirty_io, &wb->state);
91                 WARN_ON_ONCE(!wb->avg_write_bandwidth);
92                 atomic_long_add(wb->avg_write_bandwidth,
93                                 &wb->bdi->tot_write_bandwidth);
94                 return true;
95         }
96 }
97
98 static void wb_io_lists_depopulated(struct bdi_writeback *wb)
99 {
100         if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) &&
101             list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) {
102                 clear_bit(WB_has_dirty_io, &wb->state);
103                 WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth,
104                                         &wb->bdi->tot_write_bandwidth) < 0);
105         }
106 }
107
108 /**
109  * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list
110  * @inode: inode to be moved
111  * @wb: target bdi_writeback
112  * @head: one of @wb->b_{dirty|io|more_io|dirty_time}
113  *
114  * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io.
115  * Returns %true if @inode is the first occupant of the !dirty_time IO
116  * lists; otherwise, %false.
117  */
118 static bool inode_io_list_move_locked(struct inode *inode,
119                                       struct bdi_writeback *wb,
120                                       struct list_head *head)
121 {
122         assert_spin_locked(&wb->list_lock);
123         assert_spin_locked(&inode->i_lock);
124         WARN_ON_ONCE(inode->i_state & I_FREEING);
125
126         list_move(&inode->i_io_list, head);
127
128         /* dirty_time doesn't count as dirty_io until expiration */
129         if (head != &wb->b_dirty_time)
130                 return wb_io_lists_populated(wb);
131
132         wb_io_lists_depopulated(wb);
133         return false;
134 }
135
136 static void wb_wakeup(struct bdi_writeback *wb)
137 {
138         spin_lock_irq(&wb->work_lock);
139         if (test_bit(WB_registered, &wb->state))
140                 mod_delayed_work(bdi_wq, &wb->dwork, 0);
141         spin_unlock_irq(&wb->work_lock);
142 }
143
144 /*
145  * This function is used when the first inode for this wb is marked dirty. It
146  * wakes-up the corresponding bdi thread which should then take care of the
147  * periodic background write-out of dirty inodes. Since the write-out would
148  * starts only 'dirty_writeback_interval' centisecs from now anyway, we just
149  * set up a timer which wakes the bdi thread up later.
150  *
151  * Note, we wouldn't bother setting up the timer, but this function is on the
152  * fast-path (used by '__mark_inode_dirty()'), so we save few context switches
153  * by delaying the wake-up.
154  *
155  * We have to be careful not to postpone flush work if it is scheduled for
156  * earlier. Thus we use queue_delayed_work().
157  */
158 static void wb_wakeup_delayed(struct bdi_writeback *wb)
159 {
160         unsigned long timeout;
161
162         timeout = msecs_to_jiffies(dirty_writeback_interval * 10);
163         spin_lock_irq(&wb->work_lock);
164         if (test_bit(WB_registered, &wb->state))
165                 queue_delayed_work(bdi_wq, &wb->dwork, timeout);
166         spin_unlock_irq(&wb->work_lock);
167 }
168
169 static void finish_writeback_work(struct wb_writeback_work *work)
170 {
171         struct wb_completion *done = work->done;
172
173         if (work->auto_free)
174                 kfree(work);
175         if (done) {
176                 wait_queue_head_t *waitq = done->waitq;
177
178                 /* @done can't be accessed after the following dec */
179                 if (atomic_dec_and_test(&done->cnt))
180                         wake_up_all(waitq);
181         }
182 }
183
184 static void wb_queue_work(struct bdi_writeback *wb,
185                           struct wb_writeback_work *work)
186 {
187         trace_writeback_queue(wb, work);
188
189         if (work->done)
190                 atomic_inc(&work->done->cnt);
191
192         spin_lock_irq(&wb->work_lock);
193
194         if (test_bit(WB_registered, &wb->state)) {
195                 list_add_tail(&work->list, &wb->work_list);
196                 mod_delayed_work(bdi_wq, &wb->dwork, 0);
197         } else
198                 finish_writeback_work(work);
199
200         spin_unlock_irq(&wb->work_lock);
201 }
202
203 /**
204  * wb_wait_for_completion - wait for completion of bdi_writeback_works
205  * @done: target wb_completion
206  *
207  * Wait for one or more work items issued to @bdi with their ->done field
208  * set to @done, which should have been initialized with
209  * DEFINE_WB_COMPLETION().  This function returns after all such work items
210  * are completed.  Work items which are waited upon aren't freed
211  * automatically on completion.
212  */
213 void wb_wait_for_completion(struct wb_completion *done)
214 {
215         atomic_dec(&done->cnt);         /* put down the initial count */
216         wait_event(*done->waitq, !atomic_read(&done->cnt));
217 }
218
219 #ifdef CONFIG_CGROUP_WRITEBACK
220
221 /*
222  * Parameters for foreign inode detection, see wbc_detach_inode() to see
223  * how they're used.
224  *
225  * These paramters are inherently heuristical as the detection target
226  * itself is fuzzy.  All we want to do is detaching an inode from the
227  * current owner if it's being written to by some other cgroups too much.
228  *
229  * The current cgroup writeback is built on the assumption that multiple
230  * cgroups writing to the same inode concurrently is very rare and a mode
231  * of operation which isn't well supported.  As such, the goal is not
232  * taking too long when a different cgroup takes over an inode while
233  * avoiding too aggressive flip-flops from occasional foreign writes.
234  *
235  * We record, very roughly, 2s worth of IO time history and if more than
236  * half of that is foreign, trigger the switch.  The recording is quantized
237  * to 16 slots.  To avoid tiny writes from swinging the decision too much,
238  * writes smaller than 1/8 of avg size are ignored.
239  */
240 #define WB_FRN_TIME_SHIFT       13      /* 1s = 2^13, upto 8 secs w/ 16bit */
241 #define WB_FRN_TIME_AVG_SHIFT   3       /* avg = avg * 7/8 + new * 1/8 */
242 #define WB_FRN_TIME_CUT_DIV     8       /* ignore rounds < avg / 8 */
243 #define WB_FRN_TIME_PERIOD      (2 * (1 << WB_FRN_TIME_SHIFT))  /* 2s */
244
245 #define WB_FRN_HIST_SLOTS       16      /* inode->i_wb_frn_history is 16bit */
246 #define WB_FRN_HIST_UNIT        (WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS)
247                                         /* each slot's duration is 2s / 16 */
248 #define WB_FRN_HIST_THR_SLOTS   (WB_FRN_HIST_SLOTS / 2)
249                                         /* if foreign slots >= 8, switch */
250 #define WB_FRN_HIST_MAX_SLOTS   (WB_FRN_HIST_THR_SLOTS / 2 + 1)
251                                         /* one round can affect upto 5 slots */
252 #define WB_FRN_MAX_IN_FLIGHT    1024    /* don't queue too many concurrently */
253
254 /*
255  * Maximum inodes per isw.  A specific value has been chosen to make
256  * struct inode_switch_wbs_context fit into 1024 bytes kmalloc.
257  */
258 #define WB_MAX_INODES_PER_ISW  ((1024UL - sizeof(struct inode_switch_wbs_context)) \
259                                 / sizeof(struct inode *))
260
261 static atomic_t isw_nr_in_flight = ATOMIC_INIT(0);
262 static struct workqueue_struct *isw_wq;
263
264 void __inode_attach_wb(struct inode *inode, struct folio *folio)
265 {
266         struct backing_dev_info *bdi = inode_to_bdi(inode);
267         struct bdi_writeback *wb = NULL;
268
269         if (inode_cgwb_enabled(inode)) {
270                 struct cgroup_subsys_state *memcg_css;
271
272                 if (folio) {
273                         memcg_css = mem_cgroup_css_from_folio(folio);
274                         wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
275                 } else {
276                         /* must pin memcg_css, see wb_get_create() */
277                         memcg_css = task_get_css(current, memory_cgrp_id);
278                         wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
279                         css_put(memcg_css);
280                 }
281         }
282
283         if (!wb)
284                 wb = &bdi->wb;
285
286         /*
287          * There may be multiple instances of this function racing to
288          * update the same inode.  Use cmpxchg() to tell the winner.
289          */
290         if (unlikely(cmpxchg(&inode->i_wb, NULL, wb)))
291                 wb_put(wb);
292 }
293
294 /**
295  * inode_cgwb_move_to_attached - put the inode onto wb->b_attached list
296  * @inode: inode of interest with i_lock held
297  * @wb: target bdi_writeback
298  *
299  * Remove the inode from wb's io lists and if necessarily put onto b_attached
300  * list.  Only inodes attached to cgwb's are kept on this list.
301  */
302 static void inode_cgwb_move_to_attached(struct inode *inode,
303                                         struct bdi_writeback *wb)
304 {
305         assert_spin_locked(&wb->list_lock);
306         assert_spin_locked(&inode->i_lock);
307         WARN_ON_ONCE(inode->i_state & I_FREEING);
308
309         inode->i_state &= ~I_SYNC_QUEUED;
310         if (wb != &wb->bdi->wb)
311                 list_move(&inode->i_io_list, &wb->b_attached);
312         else
313                 list_del_init(&inode->i_io_list);
314         wb_io_lists_depopulated(wb);
315 }
316
317 /**
318  * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it
319  * @inode: inode of interest with i_lock held
320  *
321  * Returns @inode's wb with its list_lock held.  @inode->i_lock must be
322  * held on entry and is released on return.  The returned wb is guaranteed
323  * to stay @inode's associated wb until its list_lock is released.
324  */
325 static struct bdi_writeback *
326 locked_inode_to_wb_and_lock_list(struct inode *inode)
327         __releases(&inode->i_lock)
328         __acquires(&wb->list_lock)
329 {
330         while (true) {
331                 struct bdi_writeback *wb = inode_to_wb(inode);
332
333                 /*
334                  * inode_to_wb() association is protected by both
335                  * @inode->i_lock and @wb->list_lock but list_lock nests
336                  * outside i_lock.  Drop i_lock and verify that the
337                  * association hasn't changed after acquiring list_lock.
338                  */
339                 wb_get(wb);
340                 spin_unlock(&inode->i_lock);
341                 spin_lock(&wb->list_lock);
342
343                 /* i_wb may have changed inbetween, can't use inode_to_wb() */
344                 if (likely(wb == inode->i_wb)) {
345                         wb_put(wb);     /* @inode already has ref */
346                         return wb;
347                 }
348
349                 spin_unlock(&wb->list_lock);
350                 wb_put(wb);
351                 cpu_relax();
352                 spin_lock(&inode->i_lock);
353         }
354 }
355
356 /**
357  * inode_to_wb_and_lock_list - determine an inode's wb and lock it
358  * @inode: inode of interest
359  *
360  * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held
361  * on entry.
362  */
363 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
364         __acquires(&wb->list_lock)
365 {
366         spin_lock(&inode->i_lock);
367         return locked_inode_to_wb_and_lock_list(inode);
368 }
369
370 struct inode_switch_wbs_context {
371         struct rcu_work         work;
372
373         /*
374          * Multiple inodes can be switched at once.  The switching procedure
375          * consists of two parts, separated by a RCU grace period.  To make
376          * sure that the second part is executed for each inode gone through
377          * the first part, all inode pointers are placed into a NULL-terminated
378          * array embedded into struct inode_switch_wbs_context.  Otherwise
379          * an inode could be left in a non-consistent state.
380          */
381         struct bdi_writeback    *new_wb;
382         struct inode            *inodes[];
383 };
384
385 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi)
386 {
387         down_write(&bdi->wb_switch_rwsem);
388 }
389
390 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi)
391 {
392         up_write(&bdi->wb_switch_rwsem);
393 }
394
395 static bool inode_do_switch_wbs(struct inode *inode,
396                                 struct bdi_writeback *old_wb,
397                                 struct bdi_writeback *new_wb)
398 {
399         struct address_space *mapping = inode->i_mapping;
400         XA_STATE(xas, &mapping->i_pages, 0);
401         struct folio *folio;
402         bool switched = false;
403
404         spin_lock(&inode->i_lock);
405         xa_lock_irq(&mapping->i_pages);
406
407         /*
408          * Once I_FREEING or I_WILL_FREE are visible under i_lock, the eviction
409          * path owns the inode and we shouldn't modify ->i_io_list.
410          */
411         if (unlikely(inode->i_state & (I_FREEING | I_WILL_FREE)))
412                 goto skip_switch;
413
414         trace_inode_switch_wbs(inode, old_wb, new_wb);
415
416         /*
417          * Count and transfer stats.  Note that PAGECACHE_TAG_DIRTY points
418          * to possibly dirty folios while PAGECACHE_TAG_WRITEBACK points to
419          * folios actually under writeback.
420          */
421         xas_for_each_marked(&xas, folio, ULONG_MAX, PAGECACHE_TAG_DIRTY) {
422                 if (folio_test_dirty(folio)) {
423                         long nr = folio_nr_pages(folio);
424                         wb_stat_mod(old_wb, WB_RECLAIMABLE, -nr);
425                         wb_stat_mod(new_wb, WB_RECLAIMABLE, nr);
426                 }
427         }
428
429         xas_set(&xas, 0);
430         xas_for_each_marked(&xas, folio, ULONG_MAX, PAGECACHE_TAG_WRITEBACK) {
431                 long nr = folio_nr_pages(folio);
432                 WARN_ON_ONCE(!folio_test_writeback(folio));
433                 wb_stat_mod(old_wb, WB_WRITEBACK, -nr);
434                 wb_stat_mod(new_wb, WB_WRITEBACK, nr);
435         }
436
437         if (mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK)) {
438                 atomic_dec(&old_wb->writeback_inodes);
439                 atomic_inc(&new_wb->writeback_inodes);
440         }
441
442         wb_get(new_wb);
443
444         /*
445          * Transfer to @new_wb's IO list if necessary.  If the @inode is dirty,
446          * the specific list @inode was on is ignored and the @inode is put on
447          * ->b_dirty which is always correct including from ->b_dirty_time.
448          * The transfer preserves @inode->dirtied_when ordering.  If the @inode
449          * was clean, it means it was on the b_attached list, so move it onto
450          * the b_attached list of @new_wb.
451          */
452         if (!list_empty(&inode->i_io_list)) {
453                 inode->i_wb = new_wb;
454
455                 if (inode->i_state & I_DIRTY_ALL) {
456                         struct inode *pos;
457
458                         list_for_each_entry(pos, &new_wb->b_dirty, i_io_list)
459                                 if (time_after_eq(inode->dirtied_when,
460                                                   pos->dirtied_when))
461                                         break;
462                         inode_io_list_move_locked(inode, new_wb,
463                                                   pos->i_io_list.prev);
464                 } else {
465                         inode_cgwb_move_to_attached(inode, new_wb);
466                 }
467         } else {
468                 inode->i_wb = new_wb;
469         }
470
471         /* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */
472         inode->i_wb_frn_winner = 0;
473         inode->i_wb_frn_avg_time = 0;
474         inode->i_wb_frn_history = 0;
475         switched = true;
476 skip_switch:
477         /*
478          * Paired with load_acquire in unlocked_inode_to_wb_begin() and
479          * ensures that the new wb is visible if they see !I_WB_SWITCH.
480          */
481         smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH);
482
483         xa_unlock_irq(&mapping->i_pages);
484         spin_unlock(&inode->i_lock);
485
486         return switched;
487 }
488
489 static void inode_switch_wbs_work_fn(struct work_struct *work)
490 {
491         struct inode_switch_wbs_context *isw =
492                 container_of(to_rcu_work(work), struct inode_switch_wbs_context, work);
493         struct backing_dev_info *bdi = inode_to_bdi(isw->inodes[0]);
494         struct bdi_writeback *old_wb = isw->inodes[0]->i_wb;
495         struct bdi_writeback *new_wb = isw->new_wb;
496         unsigned long nr_switched = 0;
497         struct inode **inodep;
498
499         /*
500          * If @inode switches cgwb membership while sync_inodes_sb() is
501          * being issued, sync_inodes_sb() might miss it.  Synchronize.
502          */
503         down_read(&bdi->wb_switch_rwsem);
504
505         /*
506          * By the time control reaches here, RCU grace period has passed
507          * since I_WB_SWITCH assertion and all wb stat update transactions
508          * between unlocked_inode_to_wb_begin/end() are guaranteed to be
509          * synchronizing against the i_pages lock.
510          *
511          * Grabbing old_wb->list_lock, inode->i_lock and the i_pages lock
512          * gives us exclusion against all wb related operations on @inode
513          * including IO list manipulations and stat updates.
514          */
515         if (old_wb < new_wb) {
516                 spin_lock(&old_wb->list_lock);
517                 spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING);
518         } else {
519                 spin_lock(&new_wb->list_lock);
520                 spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING);
521         }
522
523         for (inodep = isw->inodes; *inodep; inodep++) {
524                 WARN_ON_ONCE((*inodep)->i_wb != old_wb);
525                 if (inode_do_switch_wbs(*inodep, old_wb, new_wb))
526                         nr_switched++;
527         }
528
529         spin_unlock(&new_wb->list_lock);
530         spin_unlock(&old_wb->list_lock);
531
532         up_read(&bdi->wb_switch_rwsem);
533
534         if (nr_switched) {
535                 wb_wakeup(new_wb);
536                 wb_put_many(old_wb, nr_switched);
537         }
538
539         for (inodep = isw->inodes; *inodep; inodep++)
540                 iput(*inodep);
541         wb_put(new_wb);
542         kfree(isw);
543         atomic_dec(&isw_nr_in_flight);
544 }
545
546 static bool inode_prepare_wbs_switch(struct inode *inode,
547                                      struct bdi_writeback *new_wb)
548 {
549         /*
550          * Paired with smp_mb() in cgroup_writeback_umount().
551          * isw_nr_in_flight must be increased before checking SB_ACTIVE and
552          * grabbing an inode, otherwise isw_nr_in_flight can be observed as 0
553          * in cgroup_writeback_umount() and the isw_wq will be not flushed.
554          */
555         smp_mb();
556
557         if (IS_DAX(inode))
558                 return false;
559
560         /* while holding I_WB_SWITCH, no one else can update the association */
561         spin_lock(&inode->i_lock);
562         if (!(inode->i_sb->s_flags & SB_ACTIVE) ||
563             inode->i_state & (I_WB_SWITCH | I_FREEING | I_WILL_FREE) ||
564             inode_to_wb(inode) == new_wb) {
565                 spin_unlock(&inode->i_lock);
566                 return false;
567         }
568         inode->i_state |= I_WB_SWITCH;
569         __iget(inode);
570         spin_unlock(&inode->i_lock);
571
572         return true;
573 }
574
575 /**
576  * inode_switch_wbs - change the wb association of an inode
577  * @inode: target inode
578  * @new_wb_id: ID of the new wb
579  *
580  * Switch @inode's wb association to the wb identified by @new_wb_id.  The
581  * switching is performed asynchronously and may fail silently.
582  */
583 static void inode_switch_wbs(struct inode *inode, int new_wb_id)
584 {
585         struct backing_dev_info *bdi = inode_to_bdi(inode);
586         struct cgroup_subsys_state *memcg_css;
587         struct inode_switch_wbs_context *isw;
588
589         /* noop if seems to be already in progress */
590         if (inode->i_state & I_WB_SWITCH)
591                 return;
592
593         /* avoid queueing a new switch if too many are already in flight */
594         if (atomic_read(&isw_nr_in_flight) > WB_FRN_MAX_IN_FLIGHT)
595                 return;
596
597         isw = kzalloc(struct_size(isw, inodes, 2), GFP_ATOMIC);
598         if (!isw)
599                 return;
600
601         atomic_inc(&isw_nr_in_flight);
602
603         /* find and pin the new wb */
604         rcu_read_lock();
605         memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys);
606         if (memcg_css && !css_tryget(memcg_css))
607                 memcg_css = NULL;
608         rcu_read_unlock();
609         if (!memcg_css)
610                 goto out_free;
611
612         isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
613         css_put(memcg_css);
614         if (!isw->new_wb)
615                 goto out_free;
616
617         if (!inode_prepare_wbs_switch(inode, isw->new_wb))
618                 goto out_free;
619
620         isw->inodes[0] = inode;
621
622         /*
623          * In addition to synchronizing among switchers, I_WB_SWITCH tells
624          * the RCU protected stat update paths to grab the i_page
625          * lock so that stat transfer can synchronize against them.
626          * Let's continue after I_WB_SWITCH is guaranteed to be visible.
627          */
628         INIT_RCU_WORK(&isw->work, inode_switch_wbs_work_fn);
629         queue_rcu_work(isw_wq, &isw->work);
630         return;
631
632 out_free:
633         atomic_dec(&isw_nr_in_flight);
634         if (isw->new_wb)
635                 wb_put(isw->new_wb);
636         kfree(isw);
637 }
638
639 static bool isw_prepare_wbs_switch(struct inode_switch_wbs_context *isw,
640                                    struct list_head *list, int *nr)
641 {
642         struct inode *inode;
643
644         list_for_each_entry(inode, list, i_io_list) {
645                 if (!inode_prepare_wbs_switch(inode, isw->new_wb))
646                         continue;
647
648                 isw->inodes[*nr] = inode;
649                 (*nr)++;
650
651                 if (*nr >= WB_MAX_INODES_PER_ISW - 1)
652                         return true;
653         }
654         return false;
655 }
656
657 /**
658  * cleanup_offline_cgwb - detach associated inodes
659  * @wb: target wb
660  *
661  * Switch all inodes attached to @wb to a nearest living ancestor's wb in order
662  * to eventually release the dying @wb.  Returns %true if not all inodes were
663  * switched and the function has to be restarted.
664  */
665 bool cleanup_offline_cgwb(struct bdi_writeback *wb)
666 {
667         struct cgroup_subsys_state *memcg_css;
668         struct inode_switch_wbs_context *isw;
669         int nr;
670         bool restart = false;
671
672         isw = kzalloc(struct_size(isw, inodes, WB_MAX_INODES_PER_ISW),
673                       GFP_KERNEL);
674         if (!isw)
675                 return restart;
676
677         atomic_inc(&isw_nr_in_flight);
678
679         for (memcg_css = wb->memcg_css->parent; memcg_css;
680              memcg_css = memcg_css->parent) {
681                 isw->new_wb = wb_get_create(wb->bdi, memcg_css, GFP_KERNEL);
682                 if (isw->new_wb)
683                         break;
684         }
685         if (unlikely(!isw->new_wb))
686                 isw->new_wb = &wb->bdi->wb; /* wb_get() is noop for bdi's wb */
687
688         nr = 0;
689         spin_lock(&wb->list_lock);
690         /*
691          * In addition to the inodes that have completed writeback, also switch
692          * cgwbs for those inodes only with dirty timestamps. Otherwise, those
693          * inodes won't be written back for a long time when lazytime is
694          * enabled, and thus pinning the dying cgwbs. It won't break the
695          * bandwidth restrictions, as writeback of inode metadata is not
696          * accounted for.
697          */
698         restart = isw_prepare_wbs_switch(isw, &wb->b_attached, &nr);
699         if (!restart)
700                 restart = isw_prepare_wbs_switch(isw, &wb->b_dirty_time, &nr);
701         spin_unlock(&wb->list_lock);
702
703         /* no attached inodes? bail out */
704         if (nr == 0) {
705                 atomic_dec(&isw_nr_in_flight);
706                 wb_put(isw->new_wb);
707                 kfree(isw);
708                 return restart;
709         }
710
711         /*
712          * In addition to synchronizing among switchers, I_WB_SWITCH tells
713          * the RCU protected stat update paths to grab the i_page
714          * lock so that stat transfer can synchronize against them.
715          * Let's continue after I_WB_SWITCH is guaranteed to be visible.
716          */
717         INIT_RCU_WORK(&isw->work, inode_switch_wbs_work_fn);
718         queue_rcu_work(isw_wq, &isw->work);
719
720         return restart;
721 }
722
723 /**
724  * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it
725  * @wbc: writeback_control of interest
726  * @inode: target inode
727  *
728  * @inode is locked and about to be written back under the control of @wbc.
729  * Record @inode's writeback context into @wbc and unlock the i_lock.  On
730  * writeback completion, wbc_detach_inode() should be called.  This is used
731  * to track the cgroup writeback context.
732  */
733 static void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
734                 struct inode *inode)
735         __releases(&inode->i_lock)
736 {
737         if (!inode_cgwb_enabled(inode)) {
738                 spin_unlock(&inode->i_lock);
739                 return;
740         }
741
742         wbc->wb = inode_to_wb(inode);
743         wbc->inode = inode;
744
745         wbc->wb_id = wbc->wb->memcg_css->id;
746         wbc->wb_lcand_id = inode->i_wb_frn_winner;
747         wbc->wb_tcand_id = 0;
748         wbc->wb_bytes = 0;
749         wbc->wb_lcand_bytes = 0;
750         wbc->wb_tcand_bytes = 0;
751
752         wb_get(wbc->wb);
753         spin_unlock(&inode->i_lock);
754
755         /*
756          * A dying wb indicates that either the blkcg associated with the
757          * memcg changed or the associated memcg is dying.  In the first
758          * case, a replacement wb should already be available and we should
759          * refresh the wb immediately.  In the second case, trying to
760          * refresh will keep failing.
761          */
762         if (unlikely(wb_dying(wbc->wb) && !css_is_dying(wbc->wb->memcg_css)))
763                 inode_switch_wbs(inode, wbc->wb_id);
764 }
765
766 /**
767  * wbc_attach_fdatawrite_inode - associate wbc and inode for fdatawrite
768  * @wbc: writeback_control of interest
769  * @inode: target inode
770  *
771  * This function is to be used by __filemap_fdatawrite_range(), which is an
772  * alternative entry point into writeback code, and first ensures @inode is
773  * associated with a bdi_writeback and attaches it to @wbc.
774  */
775 void wbc_attach_fdatawrite_inode(struct writeback_control *wbc,
776                 struct inode *inode)
777 {
778         spin_lock(&inode->i_lock);
779         inode_attach_wb(inode, NULL);
780         wbc_attach_and_unlock_inode(wbc, inode);
781 }
782 EXPORT_SYMBOL_GPL(wbc_attach_fdatawrite_inode);
783
784 /**
785  * wbc_detach_inode - disassociate wbc from inode and perform foreign detection
786  * @wbc: writeback_control of the just finished writeback
787  *
788  * To be called after a writeback attempt of an inode finishes and undoes
789  * wbc_attach_and_unlock_inode().  Can be called under any context.
790  *
791  * As concurrent write sharing of an inode is expected to be very rare and
792  * memcg only tracks page ownership on first-use basis severely confining
793  * the usefulness of such sharing, cgroup writeback tracks ownership
794  * per-inode.  While the support for concurrent write sharing of an inode
795  * is deemed unnecessary, an inode being written to by different cgroups at
796  * different points in time is a lot more common, and, more importantly,
797  * charging only by first-use can too readily lead to grossly incorrect
798  * behaviors (single foreign page can lead to gigabytes of writeback to be
799  * incorrectly attributed).
800  *
801  * To resolve this issue, cgroup writeback detects the majority dirtier of
802  * an inode and transfers the ownership to it.  To avoid unnecessary
803  * oscillation, the detection mechanism keeps track of history and gives
804  * out the switch verdict only if the foreign usage pattern is stable over
805  * a certain amount of time and/or writeback attempts.
806  *
807  * On each writeback attempt, @wbc tries to detect the majority writer
808  * using Boyer-Moore majority vote algorithm.  In addition to the byte
809  * count from the majority voting, it also counts the bytes written for the
810  * current wb and the last round's winner wb (max of last round's current
811  * wb, the winner from two rounds ago, and the last round's majority
812  * candidate).  Keeping track of the historical winner helps the algorithm
813  * to semi-reliably detect the most active writer even when it's not the
814  * absolute majority.
815  *
816  * Once the winner of the round is determined, whether the winner is
817  * foreign or not and how much IO time the round consumed is recorded in
818  * inode->i_wb_frn_history.  If the amount of recorded foreign IO time is
819  * over a certain threshold, the switch verdict is given.
820  */
821 void wbc_detach_inode(struct writeback_control *wbc)
822 {
823         struct bdi_writeback *wb = wbc->wb;
824         struct inode *inode = wbc->inode;
825         unsigned long avg_time, max_bytes, max_time;
826         u16 history;
827         int max_id;
828
829         if (!wb)
830                 return;
831
832         history = inode->i_wb_frn_history;
833         avg_time = inode->i_wb_frn_avg_time;
834
835         /* pick the winner of this round */
836         if (wbc->wb_bytes >= wbc->wb_lcand_bytes &&
837             wbc->wb_bytes >= wbc->wb_tcand_bytes) {
838                 max_id = wbc->wb_id;
839                 max_bytes = wbc->wb_bytes;
840         } else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) {
841                 max_id = wbc->wb_lcand_id;
842                 max_bytes = wbc->wb_lcand_bytes;
843         } else {
844                 max_id = wbc->wb_tcand_id;
845                 max_bytes = wbc->wb_tcand_bytes;
846         }
847
848         /*
849          * Calculate the amount of IO time the winner consumed and fold it
850          * into the running average kept per inode.  If the consumed IO
851          * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for
852          * deciding whether to switch or not.  This is to prevent one-off
853          * small dirtiers from skewing the verdict.
854          */
855         max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT,
856                                 wb->avg_write_bandwidth);
857         if (avg_time)
858                 avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) -
859                             (avg_time >> WB_FRN_TIME_AVG_SHIFT);
860         else
861                 avg_time = max_time;    /* immediate catch up on first run */
862
863         if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) {
864                 int slots;
865
866                 /*
867                  * The switch verdict is reached if foreign wb's consume
868                  * more than a certain proportion of IO time in a
869                  * WB_FRN_TIME_PERIOD.  This is loosely tracked by 16 slot
870                  * history mask where each bit represents one sixteenth of
871                  * the period.  Determine the number of slots to shift into
872                  * history from @max_time.
873                  */
874                 slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT),
875                             (unsigned long)WB_FRN_HIST_MAX_SLOTS);
876                 history <<= slots;
877                 if (wbc->wb_id != max_id)
878                         history |= (1U << slots) - 1;
879
880                 if (history)
881                         trace_inode_foreign_history(inode, wbc, history);
882
883                 /*
884                  * Switch if the current wb isn't the consistent winner.
885                  * If there are multiple closely competing dirtiers, the
886                  * inode may switch across them repeatedly over time, which
887                  * is okay.  The main goal is avoiding keeping an inode on
888                  * the wrong wb for an extended period of time.
889                  */
890                 if (hweight16(history) > WB_FRN_HIST_THR_SLOTS)
891                         inode_switch_wbs(inode, max_id);
892         }
893
894         /*
895          * Multiple instances of this function may race to update the
896          * following fields but we don't mind occassional inaccuracies.
897          */
898         inode->i_wb_frn_winner = max_id;
899         inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX);
900         inode->i_wb_frn_history = history;
901
902         wb_put(wbc->wb);
903         wbc->wb = NULL;
904 }
905 EXPORT_SYMBOL_GPL(wbc_detach_inode);
906
907 /**
908  * wbc_account_cgroup_owner - account writeback to update inode cgroup ownership
909  * @wbc: writeback_control of the writeback in progress
910  * @folio: folio being written out
911  * @bytes: number of bytes being written out
912  *
913  * @bytes from @folio are about to written out during the writeback
914  * controlled by @wbc.  Keep the book for foreign inode detection.  See
915  * wbc_detach_inode().
916  */
917 void wbc_account_cgroup_owner(struct writeback_control *wbc, struct folio *folio,
918                               size_t bytes)
919 {
920         struct cgroup_subsys_state *css;
921         int id;
922
923         /*
924          * pageout() path doesn't attach @wbc to the inode being written
925          * out.  This is intentional as we don't want the function to block
926          * behind a slow cgroup.  Ultimately, we want pageout() to kick off
927          * regular writeback instead of writing things out itself.
928          */
929         if (!wbc->wb || wbc->no_cgroup_owner)
930                 return;
931
932         css = mem_cgroup_css_from_folio(folio);
933         /* dead cgroups shouldn't contribute to inode ownership arbitration */
934         if (!(css->flags & CSS_ONLINE))
935                 return;
936
937         id = css->id;
938
939         if (id == wbc->wb_id) {
940                 wbc->wb_bytes += bytes;
941                 return;
942         }
943
944         if (id == wbc->wb_lcand_id)
945                 wbc->wb_lcand_bytes += bytes;
946
947         /* Boyer-Moore majority vote algorithm */
948         if (!wbc->wb_tcand_bytes)
949                 wbc->wb_tcand_id = id;
950         if (id == wbc->wb_tcand_id)
951                 wbc->wb_tcand_bytes += bytes;
952         else
953                 wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes);
954 }
955 EXPORT_SYMBOL_GPL(wbc_account_cgroup_owner);
956
957 /**
958  * wb_split_bdi_pages - split nr_pages to write according to bandwidth
959  * @wb: target bdi_writeback to split @nr_pages to
960  * @nr_pages: number of pages to write for the whole bdi
961  *
962  * Split @wb's portion of @nr_pages according to @wb's write bandwidth in
963  * relation to the total write bandwidth of all wb's w/ dirty inodes on
964  * @wb->bdi.
965  */
966 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
967 {
968         unsigned long this_bw = wb->avg_write_bandwidth;
969         unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
970
971         if (nr_pages == LONG_MAX)
972                 return LONG_MAX;
973
974         /*
975          * This may be called on clean wb's and proportional distribution
976          * may not make sense, just use the original @nr_pages in those
977          * cases.  In general, we wanna err on the side of writing more.
978          */
979         if (!tot_bw || this_bw >= tot_bw)
980                 return nr_pages;
981         else
982                 return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw);
983 }
984
985 /**
986  * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi
987  * @bdi: target backing_dev_info
988  * @base_work: wb_writeback_work to issue
989  * @skip_if_busy: skip wb's which already have writeback in progress
990  *
991  * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which
992  * have dirty inodes.  If @base_work->nr_page isn't %LONG_MAX, it's
993  * distributed to the busy wbs according to each wb's proportion in the
994  * total active write bandwidth of @bdi.
995  */
996 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
997                                   struct wb_writeback_work *base_work,
998                                   bool skip_if_busy)
999 {
1000         struct bdi_writeback *last_wb = NULL;
1001         struct bdi_writeback *wb = list_entry(&bdi->wb_list,
1002                                               struct bdi_writeback, bdi_node);
1003
1004         might_sleep();
1005 restart:
1006         rcu_read_lock();
1007         list_for_each_entry_continue_rcu(wb, &bdi->wb_list, bdi_node) {
1008                 DEFINE_WB_COMPLETION(fallback_work_done, bdi);
1009                 struct wb_writeback_work fallback_work;
1010                 struct wb_writeback_work *work;
1011                 long nr_pages;
1012
1013                 if (last_wb) {
1014                         wb_put(last_wb);
1015                         last_wb = NULL;
1016                 }
1017
1018                 /* SYNC_ALL writes out I_DIRTY_TIME too */
1019                 if (!wb_has_dirty_io(wb) &&
1020                     (base_work->sync_mode == WB_SYNC_NONE ||
1021                      list_empty(&wb->b_dirty_time)))
1022                         continue;
1023                 if (skip_if_busy && writeback_in_progress(wb))
1024                         continue;
1025
1026                 nr_pages = wb_split_bdi_pages(wb, base_work->nr_pages);
1027
1028                 work = kmalloc(sizeof(*work), GFP_ATOMIC);
1029                 if (work) {
1030                         *work = *base_work;
1031                         work->nr_pages = nr_pages;
1032                         work->auto_free = 1;
1033                         wb_queue_work(wb, work);
1034                         continue;
1035                 }
1036
1037                 /*
1038                  * If wb_tryget fails, the wb has been shutdown, skip it.
1039                  *
1040                  * Pin @wb so that it stays on @bdi->wb_list.  This allows
1041                  * continuing iteration from @wb after dropping and
1042                  * regrabbing rcu read lock.
1043                  */
1044                 if (!wb_tryget(wb))
1045                         continue;
1046
1047                 /* alloc failed, execute synchronously using on-stack fallback */
1048                 work = &fallback_work;
1049                 *work = *base_work;
1050                 work->nr_pages = nr_pages;
1051                 work->auto_free = 0;
1052                 work->done = &fallback_work_done;
1053
1054                 wb_queue_work(wb, work);
1055                 last_wb = wb;
1056
1057                 rcu_read_unlock();
1058                 wb_wait_for_completion(&fallback_work_done);
1059                 goto restart;
1060         }
1061         rcu_read_unlock();
1062
1063         if (last_wb)
1064                 wb_put(last_wb);
1065 }
1066
1067 /**
1068  * cgroup_writeback_by_id - initiate cgroup writeback from bdi and memcg IDs
1069  * @bdi_id: target bdi id
1070  * @memcg_id: target memcg css id
1071  * @reason: reason why some writeback work initiated
1072  * @done: target wb_completion
1073  *
1074  * Initiate flush of the bdi_writeback identified by @bdi_id and @memcg_id
1075  * with the specified parameters.
1076  */
1077 int cgroup_writeback_by_id(u64 bdi_id, int memcg_id,
1078                            enum wb_reason reason, struct wb_completion *done)
1079 {
1080         struct backing_dev_info *bdi;
1081         struct cgroup_subsys_state *memcg_css;
1082         struct bdi_writeback *wb;
1083         struct wb_writeback_work *work;
1084         unsigned long dirty;
1085         int ret;
1086
1087         /* lookup bdi and memcg */
1088         bdi = bdi_get_by_id(bdi_id);
1089         if (!bdi)
1090                 return -ENOENT;
1091
1092         rcu_read_lock();
1093         memcg_css = css_from_id(memcg_id, &memory_cgrp_subsys);
1094         if (memcg_css && !css_tryget(memcg_css))
1095                 memcg_css = NULL;
1096         rcu_read_unlock();
1097         if (!memcg_css) {
1098                 ret = -ENOENT;
1099                 goto out_bdi_put;
1100         }
1101
1102         /*
1103          * And find the associated wb.  If the wb isn't there already
1104          * there's nothing to flush, don't create one.
1105          */
1106         wb = wb_get_lookup(bdi, memcg_css);
1107         if (!wb) {
1108                 ret = -ENOENT;
1109                 goto out_css_put;
1110         }
1111
1112         /*
1113          * The caller is attempting to write out most of
1114          * the currently dirty pages.  Let's take the current dirty page
1115          * count and inflate it by 25% which should be large enough to
1116          * flush out most dirty pages while avoiding getting livelocked by
1117          * concurrent dirtiers.
1118          *
1119          * BTW the memcg stats are flushed periodically and this is best-effort
1120          * estimation, so some potential error is ok.
1121          */
1122         dirty = memcg_page_state(mem_cgroup_from_css(memcg_css), NR_FILE_DIRTY);
1123         dirty = dirty * 10 / 8;
1124
1125         /* issue the writeback work */
1126         work = kzalloc(sizeof(*work), GFP_NOWAIT | __GFP_NOWARN);
1127         if (work) {
1128                 work->nr_pages = dirty;
1129                 work->sync_mode = WB_SYNC_NONE;
1130                 work->range_cyclic = 1;
1131                 work->reason = reason;
1132                 work->done = done;
1133                 work->auto_free = 1;
1134                 wb_queue_work(wb, work);
1135                 ret = 0;
1136         } else {
1137                 ret = -ENOMEM;
1138         }
1139
1140         wb_put(wb);
1141 out_css_put:
1142         css_put(memcg_css);
1143 out_bdi_put:
1144         bdi_put(bdi);
1145         return ret;
1146 }
1147
1148 /**
1149  * cgroup_writeback_umount - flush inode wb switches for umount
1150  * @sb: target super_block
1151  *
1152  * This function is called when a super_block is about to be destroyed and
1153  * flushes in-flight inode wb switches.  An inode wb switch goes through
1154  * RCU and then workqueue, so the two need to be flushed in order to ensure
1155  * that all previously scheduled switches are finished.  As wb switches are
1156  * rare occurrences and synchronize_rcu() can take a while, perform
1157  * flushing iff wb switches are in flight.
1158  */
1159 void cgroup_writeback_umount(struct super_block *sb)
1160 {
1161
1162         if (!(sb->s_bdi->capabilities & BDI_CAP_WRITEBACK))
1163                 return;
1164
1165         /*
1166          * SB_ACTIVE should be reliably cleared before checking
1167          * isw_nr_in_flight, see generic_shutdown_super().
1168          */
1169         smp_mb();
1170
1171         if (atomic_read(&isw_nr_in_flight)) {
1172                 /*
1173                  * Use rcu_barrier() to wait for all pending callbacks to
1174                  * ensure that all in-flight wb switches are in the workqueue.
1175                  */
1176                 rcu_barrier();
1177                 flush_workqueue(isw_wq);
1178         }
1179 }
1180
1181 static int __init cgroup_writeback_init(void)
1182 {
1183         isw_wq = alloc_workqueue("inode_switch_wbs", 0, 0);
1184         if (!isw_wq)
1185                 return -ENOMEM;
1186         return 0;
1187 }
1188 fs_initcall(cgroup_writeback_init);
1189
1190 #else   /* CONFIG_CGROUP_WRITEBACK */
1191
1192 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
1193 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
1194
1195 static void inode_cgwb_move_to_attached(struct inode *inode,
1196                                         struct bdi_writeback *wb)
1197 {
1198         assert_spin_locked(&wb->list_lock);
1199         assert_spin_locked(&inode->i_lock);
1200         WARN_ON_ONCE(inode->i_state & I_FREEING);
1201
1202         inode->i_state &= ~I_SYNC_QUEUED;
1203         list_del_init(&inode->i_io_list);
1204         wb_io_lists_depopulated(wb);
1205 }
1206
1207 static struct bdi_writeback *
1208 locked_inode_to_wb_and_lock_list(struct inode *inode)
1209         __releases(&inode->i_lock)
1210         __acquires(&wb->list_lock)
1211 {
1212         struct bdi_writeback *wb = inode_to_wb(inode);
1213
1214         spin_unlock(&inode->i_lock);
1215         spin_lock(&wb->list_lock);
1216         return wb;
1217 }
1218
1219 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
1220         __acquires(&wb->list_lock)
1221 {
1222         struct bdi_writeback *wb = inode_to_wb(inode);
1223
1224         spin_lock(&wb->list_lock);
1225         return wb;
1226 }
1227
1228 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
1229 {
1230         return nr_pages;
1231 }
1232
1233 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
1234                                   struct wb_writeback_work *base_work,
1235                                   bool skip_if_busy)
1236 {
1237         might_sleep();
1238
1239         if (!skip_if_busy || !writeback_in_progress(&bdi->wb)) {
1240                 base_work->auto_free = 0;
1241                 wb_queue_work(&bdi->wb, base_work);
1242         }
1243 }
1244
1245 static inline void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
1246                                                struct inode *inode)
1247         __releases(&inode->i_lock)
1248 {
1249         spin_unlock(&inode->i_lock);
1250 }
1251
1252 #endif  /* CONFIG_CGROUP_WRITEBACK */
1253
1254 /*
1255  * Add in the number of potentially dirty inodes, because each inode
1256  * write can dirty pagecache in the underlying blockdev.
1257  */
1258 static unsigned long get_nr_dirty_pages(void)
1259 {
1260         return global_node_page_state(NR_FILE_DIRTY) +
1261                 get_nr_dirty_inodes();
1262 }
1263
1264 static void wb_start_writeback(struct bdi_writeback *wb, enum wb_reason reason)
1265 {
1266         if (!wb_has_dirty_io(wb))
1267                 return;
1268
1269         /*
1270          * All callers of this function want to start writeback of all
1271          * dirty pages. Places like vmscan can call this at a very
1272          * high frequency, causing pointless allocations of tons of
1273          * work items and keeping the flusher threads busy retrieving
1274          * that work. Ensure that we only allow one of them pending and
1275          * inflight at the time.
1276          */
1277         if (test_bit(WB_start_all, &wb->state) ||
1278             test_and_set_bit(WB_start_all, &wb->state))
1279                 return;
1280
1281         wb->start_all_reason = reason;
1282         wb_wakeup(wb);
1283 }
1284
1285 /**
1286  * wb_start_background_writeback - start background writeback
1287  * @wb: bdi_writback to write from
1288  *
1289  * Description:
1290  *   This makes sure WB_SYNC_NONE background writeback happens. When
1291  *   this function returns, it is only guaranteed that for given wb
1292  *   some IO is happening if we are over background dirty threshold.
1293  *   Caller need not hold sb s_umount semaphore.
1294  */
1295 void wb_start_background_writeback(struct bdi_writeback *wb)
1296 {
1297         /*
1298          * We just wake up the flusher thread. It will perform background
1299          * writeback as soon as there is no other work to do.
1300          */
1301         trace_writeback_wake_background(wb);
1302         wb_wakeup(wb);
1303 }
1304
1305 /*
1306  * Remove the inode from the writeback list it is on.
1307  */
1308 void inode_io_list_del(struct inode *inode)
1309 {
1310         struct bdi_writeback *wb;
1311
1312         wb = inode_to_wb_and_lock_list(inode);
1313         spin_lock(&inode->i_lock);
1314
1315         inode->i_state &= ~I_SYNC_QUEUED;
1316         list_del_init(&inode->i_io_list);
1317         wb_io_lists_depopulated(wb);
1318
1319         spin_unlock(&inode->i_lock);
1320         spin_unlock(&wb->list_lock);
1321 }
1322 EXPORT_SYMBOL(inode_io_list_del);
1323
1324 /*
1325  * mark an inode as under writeback on the sb
1326  */
1327 void sb_mark_inode_writeback(struct inode *inode)
1328 {
1329         struct super_block *sb = inode->i_sb;
1330         unsigned long flags;
1331
1332         if (list_empty(&inode->i_wb_list)) {
1333                 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1334                 if (list_empty(&inode->i_wb_list)) {
1335                         list_add_tail(&inode->i_wb_list, &sb->s_inodes_wb);
1336                         trace_sb_mark_inode_writeback(inode);
1337                 }
1338                 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1339         }
1340 }
1341
1342 /*
1343  * clear an inode as under writeback on the sb
1344  */
1345 void sb_clear_inode_writeback(struct inode *inode)
1346 {
1347         struct super_block *sb = inode->i_sb;
1348         unsigned long flags;
1349
1350         if (!list_empty(&inode->i_wb_list)) {
1351                 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1352                 if (!list_empty(&inode->i_wb_list)) {
1353                         list_del_init(&inode->i_wb_list);
1354                         trace_sb_clear_inode_writeback(inode);
1355                 }
1356                 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1357         }
1358 }
1359
1360 /*
1361  * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
1362  * furthest end of its superblock's dirty-inode list.
1363  *
1364  * Before stamping the inode's ->dirtied_when, we check to see whether it is
1365  * already the most-recently-dirtied inode on the b_dirty list.  If that is
1366  * the case then the inode must have been redirtied while it was being written
1367  * out and we don't reset its dirtied_when.
1368  */
1369 static void redirty_tail_locked(struct inode *inode, struct bdi_writeback *wb)
1370 {
1371         assert_spin_locked(&inode->i_lock);
1372
1373         inode->i_state &= ~I_SYNC_QUEUED;
1374         /*
1375          * When the inode is being freed just don't bother with dirty list
1376          * tracking. Flush worker will ignore this inode anyway and it will
1377          * trigger assertions in inode_io_list_move_locked().
1378          */
1379         if (inode->i_state & I_FREEING) {
1380                 list_del_init(&inode->i_io_list);
1381                 wb_io_lists_depopulated(wb);
1382                 return;
1383         }
1384         if (!list_empty(&wb->b_dirty)) {
1385                 struct inode *tail;
1386
1387                 tail = wb_inode(wb->b_dirty.next);
1388                 if (time_before(inode->dirtied_when, tail->dirtied_when))
1389                         inode->dirtied_when = jiffies;
1390         }
1391         inode_io_list_move_locked(inode, wb, &wb->b_dirty);
1392 }
1393
1394 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
1395 {
1396         spin_lock(&inode->i_lock);
1397         redirty_tail_locked(inode, wb);
1398         spin_unlock(&inode->i_lock);
1399 }
1400
1401 /*
1402  * requeue inode for re-scanning after bdi->b_io list is exhausted.
1403  */
1404 static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
1405 {
1406         inode_io_list_move_locked(inode, wb, &wb->b_more_io);
1407 }
1408
1409 static void inode_sync_complete(struct inode *inode)
1410 {
1411         assert_spin_locked(&inode->i_lock);
1412
1413         inode->i_state &= ~I_SYNC;
1414         /* If inode is clean an unused, put it into LRU now... */
1415         inode_add_lru(inode);
1416         /* Called with inode->i_lock which ensures memory ordering. */
1417         inode_wake_up_bit(inode, __I_SYNC);
1418 }
1419
1420 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
1421 {
1422         bool ret = time_after(inode->dirtied_when, t);
1423 #ifndef CONFIG_64BIT
1424         /*
1425          * For inodes being constantly redirtied, dirtied_when can get stuck.
1426          * It _appears_ to be in the future, but is actually in distant past.
1427          * This test is necessary to prevent such wrapped-around relative times
1428          * from permanently stopping the whole bdi writeback.
1429          */
1430         ret = ret && time_before_eq(inode->dirtied_when, jiffies);
1431 #endif
1432         return ret;
1433 }
1434
1435 /*
1436  * Move expired (dirtied before dirtied_before) dirty inodes from
1437  * @delaying_queue to @dispatch_queue.
1438  */
1439 static int move_expired_inodes(struct list_head *delaying_queue,
1440                                struct list_head *dispatch_queue,
1441                                unsigned long dirtied_before)
1442 {
1443         LIST_HEAD(tmp);
1444         struct list_head *pos, *node;
1445         struct super_block *sb = NULL;
1446         struct inode *inode;
1447         int do_sb_sort = 0;
1448         int moved = 0;
1449
1450         while (!list_empty(delaying_queue)) {
1451                 inode = wb_inode(delaying_queue->prev);
1452                 if (inode_dirtied_after(inode, dirtied_before))
1453                         break;
1454                 spin_lock(&inode->i_lock);
1455                 list_move(&inode->i_io_list, &tmp);
1456                 moved++;
1457                 inode->i_state |= I_SYNC_QUEUED;
1458                 spin_unlock(&inode->i_lock);
1459                 if (sb_is_blkdev_sb(inode->i_sb))
1460                         continue;
1461                 if (sb && sb != inode->i_sb)
1462                         do_sb_sort = 1;
1463                 sb = inode->i_sb;
1464         }
1465
1466         /* just one sb in list, splice to dispatch_queue and we're done */
1467         if (!do_sb_sort) {
1468                 list_splice(&tmp, dispatch_queue);
1469                 goto out;
1470         }
1471
1472         /*
1473          * Although inode's i_io_list is moved from 'tmp' to 'dispatch_queue',
1474          * we don't take inode->i_lock here because it is just a pointless overhead.
1475          * Inode is already marked as I_SYNC_QUEUED so writeback list handling is
1476          * fully under our control.
1477          */
1478         while (!list_empty(&tmp)) {
1479                 sb = wb_inode(tmp.prev)->i_sb;
1480                 list_for_each_prev_safe(pos, node, &tmp) {
1481                         inode = wb_inode(pos);
1482                         if (inode->i_sb == sb)
1483                                 list_move(&inode->i_io_list, dispatch_queue);
1484                 }
1485         }
1486 out:
1487         return moved;
1488 }
1489
1490 /*
1491  * Queue all expired dirty inodes for io, eldest first.
1492  * Before
1493  *         newly dirtied     b_dirty    b_io    b_more_io
1494  *         =============>    gf         edc     BA
1495  * After
1496  *         newly dirtied     b_dirty    b_io    b_more_io
1497  *         =============>    g          fBAedc
1498  *                                           |
1499  *                                           +--> dequeue for IO
1500  */
1501 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work,
1502                      unsigned long dirtied_before)
1503 {
1504         int moved;
1505         unsigned long time_expire_jif = dirtied_before;
1506
1507         assert_spin_locked(&wb->list_lock);
1508         list_splice_init(&wb->b_more_io, &wb->b_io);
1509         moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, dirtied_before);
1510         if (!work->for_sync)
1511                 time_expire_jif = jiffies - dirtytime_expire_interval * HZ;
1512         moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io,
1513                                      time_expire_jif);
1514         if (moved)
1515                 wb_io_lists_populated(wb);
1516         trace_writeback_queue_io(wb, work, dirtied_before, moved);
1517 }
1518
1519 static int write_inode(struct inode *inode, struct writeback_control *wbc)
1520 {
1521         int ret;
1522
1523         if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
1524                 trace_writeback_write_inode_start(inode, wbc);
1525                 ret = inode->i_sb->s_op->write_inode(inode, wbc);
1526                 trace_writeback_write_inode(inode, wbc);
1527                 return ret;
1528         }
1529         return 0;
1530 }
1531
1532 /*
1533  * Wait for writeback on an inode to complete. Called with i_lock held.
1534  * Caller must make sure inode cannot go away when we drop i_lock.
1535  */
1536 void inode_wait_for_writeback(struct inode *inode)
1537 {
1538         struct wait_bit_queue_entry wqe;
1539         struct wait_queue_head *wq_head;
1540
1541         assert_spin_locked(&inode->i_lock);
1542
1543         if (!(inode->i_state & I_SYNC))
1544                 return;
1545
1546         wq_head = inode_bit_waitqueue(&wqe, inode, __I_SYNC);
1547         for (;;) {
1548                 prepare_to_wait_event(wq_head, &wqe.wq_entry, TASK_UNINTERRUPTIBLE);
1549                 /* Checking I_SYNC with inode->i_lock guarantees memory ordering. */
1550                 if (!(inode->i_state & I_SYNC))
1551                         break;
1552                 spin_unlock(&inode->i_lock);
1553                 schedule();
1554                 spin_lock(&inode->i_lock);
1555         }
1556         finish_wait(wq_head, &wqe.wq_entry);
1557 }
1558
1559 /*
1560  * Sleep until I_SYNC is cleared. This function must be called with i_lock
1561  * held and drops it. It is aimed for callers not holding any inode reference
1562  * so once i_lock is dropped, inode can go away.
1563  */
1564 static void inode_sleep_on_writeback(struct inode *inode)
1565         __releases(inode->i_lock)
1566 {
1567         struct wait_bit_queue_entry wqe;
1568         struct wait_queue_head *wq_head;
1569         bool sleep;
1570
1571         assert_spin_locked(&inode->i_lock);
1572
1573         wq_head = inode_bit_waitqueue(&wqe, inode, __I_SYNC);
1574         prepare_to_wait_event(wq_head, &wqe.wq_entry, TASK_UNINTERRUPTIBLE);
1575         /* Checking I_SYNC with inode->i_lock guarantees memory ordering. */
1576         sleep = !!(inode->i_state & I_SYNC);
1577         spin_unlock(&inode->i_lock);
1578         if (sleep)
1579                 schedule();
1580         finish_wait(wq_head, &wqe.wq_entry);
1581 }
1582
1583 /*
1584  * Find proper writeback list for the inode depending on its current state and
1585  * possibly also change of its state while we were doing writeback.  Here we
1586  * handle things such as livelock prevention or fairness of writeback among
1587  * inodes. This function can be called only by flusher thread - noone else
1588  * processes all inodes in writeback lists and requeueing inodes behind flusher
1589  * thread's back can have unexpected consequences.
1590  */
1591 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
1592                           struct writeback_control *wbc,
1593                           unsigned long dirtied_before)
1594 {
1595         if (inode->i_state & I_FREEING)
1596                 return;
1597
1598         /*
1599          * Sync livelock prevention. Each inode is tagged and synced in one
1600          * shot. If still dirty, it will be redirty_tail()'ed below.  Update
1601          * the dirty time to prevent enqueue and sync it again.
1602          */
1603         if ((inode->i_state & I_DIRTY) &&
1604             (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
1605                 inode->dirtied_when = jiffies;
1606
1607         if (wbc->pages_skipped) {
1608                 /*
1609                  * Writeback is not making progress due to locked buffers.
1610                  * Skip this inode for now. Although having skipped pages
1611                  * is odd for clean inodes, it can happen for some
1612                  * filesystems so handle that gracefully.
1613                  */
1614                 if (inode->i_state & I_DIRTY_ALL)
1615                         redirty_tail_locked(inode, wb);
1616                 else
1617                         inode_cgwb_move_to_attached(inode, wb);
1618                 return;
1619         }
1620
1621         if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
1622                 /*
1623                  * We didn't write back all the pages.  nfs_writepages()
1624                  * sometimes bales out without doing anything.
1625                  */
1626                 if (wbc->nr_to_write <= 0 &&
1627                     !inode_dirtied_after(inode, dirtied_before)) {
1628                         /* Slice used up. Queue for next turn. */
1629                         requeue_io(inode, wb);
1630                 } else {
1631                         /*
1632                          * Writeback blocked by something other than
1633                          * congestion. Delay the inode for some time to
1634                          * avoid spinning on the CPU (100% iowait)
1635                          * retrying writeback of the dirty page/inode
1636                          * that cannot be performed immediately.
1637                          */
1638                         redirty_tail_locked(inode, wb);
1639                 }
1640         } else if (inode->i_state & I_DIRTY) {
1641                 /*
1642                  * Filesystems can dirty the inode during writeback operations,
1643                  * such as delayed allocation during submission or metadata
1644                  * updates after data IO completion.
1645                  */
1646                 redirty_tail_locked(inode, wb);
1647         } else if (inode->i_state & I_DIRTY_TIME) {
1648                 inode->dirtied_when = jiffies;
1649                 inode_io_list_move_locked(inode, wb, &wb->b_dirty_time);
1650                 inode->i_state &= ~I_SYNC_QUEUED;
1651         } else {
1652                 /* The inode is clean. Remove from writeback lists. */
1653                 inode_cgwb_move_to_attached(inode, wb);
1654         }
1655 }
1656
1657 /*
1658  * Write out an inode and its dirty pages (or some of its dirty pages, depending
1659  * on @wbc->nr_to_write), and clear the relevant dirty flags from i_state.
1660  *
1661  * This doesn't remove the inode from the writeback list it is on, except
1662  * potentially to move it from b_dirty_time to b_dirty due to timestamp
1663  * expiration.  The caller is otherwise responsible for writeback list handling.
1664  *
1665  * The caller is also responsible for setting the I_SYNC flag beforehand and
1666  * calling inode_sync_complete() to clear it afterwards.
1667  */
1668 static int
1669 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
1670 {
1671         struct address_space *mapping = inode->i_mapping;
1672         long nr_to_write = wbc->nr_to_write;
1673         unsigned dirty;
1674         int ret;
1675
1676         WARN_ON(!(inode->i_state & I_SYNC));
1677
1678         trace_writeback_single_inode_start(inode, wbc, nr_to_write);
1679
1680         ret = do_writepages(mapping, wbc);
1681
1682         /*
1683          * Make sure to wait on the data before writing out the metadata.
1684          * This is important for filesystems that modify metadata on data
1685          * I/O completion. We don't do it for sync(2) writeback because it has a
1686          * separate, external IO completion path and ->sync_fs for guaranteeing
1687          * inode metadata is written back correctly.
1688          */
1689         if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
1690                 int err = filemap_fdatawait(mapping);
1691                 if (ret == 0)
1692                         ret = err;
1693         }
1694
1695         /*
1696          * If the inode has dirty timestamps and we need to write them, call
1697          * mark_inode_dirty_sync() to notify the filesystem about it and to
1698          * change I_DIRTY_TIME into I_DIRTY_SYNC.
1699          */
1700         if ((inode->i_state & I_DIRTY_TIME) &&
1701             (wbc->sync_mode == WB_SYNC_ALL ||
1702              time_after(jiffies, inode->dirtied_time_when +
1703                         dirtytime_expire_interval * HZ))) {
1704                 trace_writeback_lazytime(inode);
1705                 mark_inode_dirty_sync(inode);
1706         }
1707
1708         /*
1709          * Get and clear the dirty flags from i_state.  This needs to be done
1710          * after calling writepages because some filesystems may redirty the
1711          * inode during writepages due to delalloc.  It also needs to be done
1712          * after handling timestamp expiration, as that may dirty the inode too.
1713          */
1714         spin_lock(&inode->i_lock);
1715         dirty = inode->i_state & I_DIRTY;
1716         inode->i_state &= ~dirty;
1717
1718         /*
1719          * Paired with smp_mb() in __mark_inode_dirty().  This allows
1720          * __mark_inode_dirty() to test i_state without grabbing i_lock -
1721          * either they see the I_DIRTY bits cleared or we see the dirtied
1722          * inode.
1723          *
1724          * I_DIRTY_PAGES is always cleared together above even if @mapping
1725          * still has dirty pages.  The flag is reinstated after smp_mb() if
1726          * necessary.  This guarantees that either __mark_inode_dirty()
1727          * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
1728          */
1729         smp_mb();
1730
1731         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
1732                 inode->i_state |= I_DIRTY_PAGES;
1733         else if (unlikely(inode->i_state & I_PINNING_NETFS_WB)) {
1734                 if (!(inode->i_state & I_DIRTY_PAGES)) {
1735                         inode->i_state &= ~I_PINNING_NETFS_WB;
1736                         wbc->unpinned_netfs_wb = true;
1737                         dirty |= I_PINNING_NETFS_WB; /* Cause write_inode */
1738                 }
1739         }
1740
1741         spin_unlock(&inode->i_lock);
1742
1743         /* Don't write the inode if only I_DIRTY_PAGES was set */
1744         if (dirty & ~I_DIRTY_PAGES) {
1745                 int err = write_inode(inode, wbc);
1746                 if (ret == 0)
1747                         ret = err;
1748         }
1749         wbc->unpinned_netfs_wb = false;
1750         trace_writeback_single_inode(inode, wbc, nr_to_write);
1751         return ret;
1752 }
1753
1754 /*
1755  * Write out an inode's dirty data and metadata on-demand, i.e. separately from
1756  * the regular batched writeback done by the flusher threads in
1757  * writeback_sb_inodes().  @wbc controls various aspects of the write, such as
1758  * whether it is a data-integrity sync (%WB_SYNC_ALL) or not (%WB_SYNC_NONE).
1759  *
1760  * To prevent the inode from going away, either the caller must have a reference
1761  * to the inode, or the inode must have I_WILL_FREE or I_FREEING set.
1762  */
1763 static int writeback_single_inode(struct inode *inode,
1764                                   struct writeback_control *wbc)
1765 {
1766         struct bdi_writeback *wb;
1767         int ret = 0;
1768
1769         spin_lock(&inode->i_lock);
1770         if (!atomic_read(&inode->i_count))
1771                 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
1772         else
1773                 WARN_ON(inode->i_state & I_WILL_FREE);
1774
1775         if (inode->i_state & I_SYNC) {
1776                 /*
1777                  * Writeback is already running on the inode.  For WB_SYNC_NONE,
1778                  * that's enough and we can just return.  For WB_SYNC_ALL, we
1779                  * must wait for the existing writeback to complete, then do
1780                  * writeback again if there's anything left.
1781                  */
1782                 if (wbc->sync_mode != WB_SYNC_ALL)
1783                         goto out;
1784                 inode_wait_for_writeback(inode);
1785         }
1786         WARN_ON(inode->i_state & I_SYNC);
1787         /*
1788          * If the inode is already fully clean, then there's nothing to do.
1789          *
1790          * For data-integrity syncs we also need to check whether any pages are
1791          * still under writeback, e.g. due to prior WB_SYNC_NONE writeback.  If
1792          * there are any such pages, we'll need to wait for them.
1793          */
1794         if (!(inode->i_state & I_DIRTY_ALL) &&
1795             (wbc->sync_mode != WB_SYNC_ALL ||
1796              !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
1797                 goto out;
1798         inode->i_state |= I_SYNC;
1799         wbc_attach_and_unlock_inode(wbc, inode);
1800
1801         ret = __writeback_single_inode(inode, wbc);
1802
1803         wbc_detach_inode(wbc);
1804
1805         wb = inode_to_wb_and_lock_list(inode);
1806         spin_lock(&inode->i_lock);
1807         /*
1808          * If the inode is freeing, its i_io_list shoudn't be updated
1809          * as it can be finally deleted at this moment.
1810          */
1811         if (!(inode->i_state & I_FREEING)) {
1812                 /*
1813                  * If the inode is now fully clean, then it can be safely
1814                  * removed from its writeback list (if any). Otherwise the
1815                  * flusher threads are responsible for the writeback lists.
1816                  */
1817                 if (!(inode->i_state & I_DIRTY_ALL))
1818                         inode_cgwb_move_to_attached(inode, wb);
1819                 else if (!(inode->i_state & I_SYNC_QUEUED)) {
1820                         if ((inode->i_state & I_DIRTY))
1821                                 redirty_tail_locked(inode, wb);
1822                         else if (inode->i_state & I_DIRTY_TIME) {
1823                                 inode->dirtied_when = jiffies;
1824                                 inode_io_list_move_locked(inode,
1825                                                           wb,
1826                                                           &wb->b_dirty_time);
1827                         }
1828                 }
1829         }
1830
1831         spin_unlock(&wb->list_lock);
1832         inode_sync_complete(inode);
1833 out:
1834         spin_unlock(&inode->i_lock);
1835         return ret;
1836 }
1837
1838 static long writeback_chunk_size(struct bdi_writeback *wb,
1839                                  struct wb_writeback_work *work)
1840 {
1841         long pages;
1842
1843         /*
1844          * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
1845          * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
1846          * here avoids calling into writeback_inodes_wb() more than once.
1847          *
1848          * The intended call sequence for WB_SYNC_ALL writeback is:
1849          *
1850          *      wb_writeback()
1851          *          writeback_sb_inodes()       <== called only once
1852          *              write_cache_pages()     <== called once for each inode
1853          *                   (quickly) tag currently dirty pages
1854          *                   (maybe slowly) sync all tagged pages
1855          */
1856         if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
1857                 pages = LONG_MAX;
1858         else {
1859                 pages = min(wb->avg_write_bandwidth / 2,
1860                             global_wb_domain.dirty_limit / DIRTY_SCOPE);
1861                 pages = min(pages, work->nr_pages);
1862                 pages = round_down(pages + MIN_WRITEBACK_PAGES,
1863                                    MIN_WRITEBACK_PAGES);
1864         }
1865
1866         return pages;
1867 }
1868
1869 /*
1870  * Write a portion of b_io inodes which belong to @sb.
1871  *
1872  * Return the number of pages and/or inodes written.
1873  *
1874  * NOTE! This is called with wb->list_lock held, and will
1875  * unlock and relock that for each inode it ends up doing
1876  * IO for.
1877  */
1878 static long writeback_sb_inodes(struct super_block *sb,
1879                                 struct bdi_writeback *wb,
1880                                 struct wb_writeback_work *work)
1881 {
1882         struct writeback_control wbc = {
1883                 .sync_mode              = work->sync_mode,
1884                 .tagged_writepages      = work->tagged_writepages,
1885                 .for_kupdate            = work->for_kupdate,
1886                 .for_background         = work->for_background,
1887                 .for_sync               = work->for_sync,
1888                 .range_cyclic           = work->range_cyclic,
1889                 .range_start            = 0,
1890                 .range_end              = LLONG_MAX,
1891         };
1892         unsigned long start_time = jiffies;
1893         long write_chunk;
1894         long total_wrote = 0;  /* count both pages and inodes */
1895         unsigned long dirtied_before = jiffies;
1896
1897         if (work->for_kupdate)
1898                 dirtied_before = jiffies -
1899                         msecs_to_jiffies(dirty_expire_interval * 10);
1900
1901         while (!list_empty(&wb->b_io)) {
1902                 struct inode *inode = wb_inode(wb->b_io.prev);
1903                 struct bdi_writeback *tmp_wb;
1904                 long wrote;
1905
1906                 if (inode->i_sb != sb) {
1907                         if (work->sb) {
1908                                 /*
1909                                  * We only want to write back data for this
1910                                  * superblock, move all inodes not belonging
1911                                  * to it back onto the dirty list.
1912                                  */
1913                                 redirty_tail(inode, wb);
1914                                 continue;
1915                         }
1916
1917                         /*
1918                          * The inode belongs to a different superblock.
1919                          * Bounce back to the caller to unpin this and
1920                          * pin the next superblock.
1921                          */
1922                         break;
1923                 }
1924
1925                 /*
1926                  * Don't bother with new inodes or inodes being freed, first
1927                  * kind does not need periodic writeout yet, and for the latter
1928                  * kind writeout is handled by the freer.
1929                  */
1930                 spin_lock(&inode->i_lock);
1931                 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
1932                         redirty_tail_locked(inode, wb);
1933                         spin_unlock(&inode->i_lock);
1934                         continue;
1935                 }
1936                 if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
1937                         /*
1938                          * If this inode is locked for writeback and we are not
1939                          * doing writeback-for-data-integrity, move it to
1940                          * b_more_io so that writeback can proceed with the
1941                          * other inodes on s_io.
1942                          *
1943                          * We'll have another go at writing back this inode
1944                          * when we completed a full scan of b_io.
1945                          */
1946                         requeue_io(inode, wb);
1947                         spin_unlock(&inode->i_lock);
1948                         trace_writeback_sb_inodes_requeue(inode);
1949                         continue;
1950                 }
1951                 spin_unlock(&wb->list_lock);
1952
1953                 /*
1954                  * We already requeued the inode if it had I_SYNC set and we
1955                  * are doing WB_SYNC_NONE writeback. So this catches only the
1956                  * WB_SYNC_ALL case.
1957                  */
1958                 if (inode->i_state & I_SYNC) {
1959                         /* Wait for I_SYNC. This function drops i_lock... */
1960                         inode_sleep_on_writeback(inode);
1961                         /* Inode may be gone, start again */
1962                         spin_lock(&wb->list_lock);
1963                         continue;
1964                 }
1965                 inode->i_state |= I_SYNC;
1966                 wbc_attach_and_unlock_inode(&wbc, inode);
1967
1968                 write_chunk = writeback_chunk_size(wb, work);
1969                 wbc.nr_to_write = write_chunk;
1970                 wbc.pages_skipped = 0;
1971
1972                 /*
1973                  * We use I_SYNC to pin the inode in memory. While it is set
1974                  * evict_inode() will wait so the inode cannot be freed.
1975                  */
1976                 __writeback_single_inode(inode, &wbc);
1977
1978                 wbc_detach_inode(&wbc);
1979                 work->nr_pages -= write_chunk - wbc.nr_to_write;
1980                 wrote = write_chunk - wbc.nr_to_write - wbc.pages_skipped;
1981                 wrote = wrote < 0 ? 0 : wrote;
1982                 total_wrote += wrote;
1983
1984                 if (need_resched()) {
1985                         /*
1986                          * We're trying to balance between building up a nice
1987                          * long list of IOs to improve our merge rate, and
1988                          * getting those IOs out quickly for anyone throttling
1989                          * in balance_dirty_pages().  cond_resched() doesn't
1990                          * unplug, so get our IOs out the door before we
1991                          * give up the CPU.
1992                          */
1993                         blk_flush_plug(current->plug, false);
1994                         cond_resched();
1995                 }
1996
1997                 /*
1998                  * Requeue @inode if still dirty.  Be careful as @inode may
1999                  * have been switched to another wb in the meantime.
2000                  */
2001                 tmp_wb = inode_to_wb_and_lock_list(inode);
2002                 spin_lock(&inode->i_lock);
2003                 if (!(inode->i_state & I_DIRTY_ALL))
2004                         total_wrote++;
2005                 requeue_inode(inode, tmp_wb, &wbc, dirtied_before);
2006                 inode_sync_complete(inode);
2007                 spin_unlock(&inode->i_lock);
2008
2009                 if (unlikely(tmp_wb != wb)) {
2010                         spin_unlock(&tmp_wb->list_lock);
2011                         spin_lock(&wb->list_lock);
2012                 }
2013
2014                 /*
2015                  * bail out to wb_writeback() often enough to check
2016                  * background threshold and other termination conditions.
2017                  */
2018                 if (total_wrote) {
2019                         if (time_is_before_jiffies(start_time + HZ / 10UL))
2020                                 break;
2021                         if (work->nr_pages <= 0)
2022                                 break;
2023                 }
2024         }
2025         return total_wrote;
2026 }
2027
2028 static long __writeback_inodes_wb(struct bdi_writeback *wb,
2029                                   struct wb_writeback_work *work)
2030 {
2031         unsigned long start_time = jiffies;
2032         long wrote = 0;
2033
2034         while (!list_empty(&wb->b_io)) {
2035                 struct inode *inode = wb_inode(wb->b_io.prev);
2036                 struct super_block *sb = inode->i_sb;
2037
2038                 if (!super_trylock_shared(sb)) {
2039                         /*
2040                          * super_trylock_shared() may fail consistently due to
2041                          * s_umount being grabbed by someone else. Don't use
2042                          * requeue_io() to avoid busy retrying the inode/sb.
2043                          */
2044                         redirty_tail(inode, wb);
2045                         continue;
2046                 }
2047                 wrote += writeback_sb_inodes(sb, wb, work);
2048                 up_read(&sb->s_umount);
2049
2050                 /* refer to the same tests at the end of writeback_sb_inodes */
2051                 if (wrote) {
2052                         if (time_is_before_jiffies(start_time + HZ / 10UL))
2053                                 break;
2054                         if (work->nr_pages <= 0)
2055                                 break;
2056                 }
2057         }
2058         /* Leave any unwritten inodes on b_io */
2059         return wrote;
2060 }
2061
2062 static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
2063                                 enum wb_reason reason)
2064 {
2065         struct wb_writeback_work work = {
2066                 .nr_pages       = nr_pages,
2067                 .sync_mode      = WB_SYNC_NONE,
2068                 .range_cyclic   = 1,
2069                 .reason         = reason,
2070         };
2071         struct blk_plug plug;
2072
2073         blk_start_plug(&plug);
2074         spin_lock(&wb->list_lock);
2075         if (list_empty(&wb->b_io))
2076                 queue_io(wb, &work, jiffies);
2077         __writeback_inodes_wb(wb, &work);
2078         spin_unlock(&wb->list_lock);
2079         blk_finish_plug(&plug);
2080
2081         return nr_pages - work.nr_pages;
2082 }
2083
2084 /*
2085  * Explicit flushing or periodic writeback of "old" data.
2086  *
2087  * Define "old": the first time one of an inode's pages is dirtied, we mark the
2088  * dirtying-time in the inode's address_space.  So this periodic writeback code
2089  * just walks the superblock inode list, writing back any inodes which are
2090  * older than a specific point in time.
2091  *
2092  * Try to run once per dirty_writeback_interval.  But if a writeback event
2093  * takes longer than a dirty_writeback_interval interval, then leave a
2094  * one-second gap.
2095  *
2096  * dirtied_before takes precedence over nr_to_write.  So we'll only write back
2097  * all dirty pages if they are all attached to "old" mappings.
2098  */
2099 static long wb_writeback(struct bdi_writeback *wb,
2100                          struct wb_writeback_work *work)
2101 {
2102         long nr_pages = work->nr_pages;
2103         unsigned long dirtied_before = jiffies;
2104         struct inode *inode;
2105         long progress;
2106         struct blk_plug plug;
2107         bool queued = false;
2108
2109         blk_start_plug(&plug);
2110         for (;;) {
2111                 /*
2112                  * Stop writeback when nr_pages has been consumed
2113                  */
2114                 if (work->nr_pages <= 0)
2115                         break;
2116
2117                 /*
2118                  * Background writeout and kupdate-style writeback may
2119                  * run forever. Stop them if there is other work to do
2120                  * so that e.g. sync can proceed. They'll be restarted
2121                  * after the other works are all done.
2122                  */
2123                 if ((work->for_background || work->for_kupdate) &&
2124                     !list_empty(&wb->work_list))
2125                         break;
2126
2127                 /*
2128                  * For background writeout, stop when we are below the
2129                  * background dirty threshold
2130                  */
2131                 if (work->for_background && !wb_over_bg_thresh(wb))
2132                         break;
2133
2134
2135                 spin_lock(&wb->list_lock);
2136
2137                 trace_writeback_start(wb, work);
2138                 if (list_empty(&wb->b_io)) {
2139                         /*
2140                          * Kupdate and background works are special and we want
2141                          * to include all inodes that need writing. Livelock
2142                          * avoidance is handled by these works yielding to any
2143                          * other work so we are safe.
2144                          */
2145                         if (work->for_kupdate) {
2146                                 dirtied_before = jiffies -
2147                                         msecs_to_jiffies(dirty_expire_interval *
2148                                                          10);
2149                         } else if (work->for_background)
2150                                 dirtied_before = jiffies;
2151
2152                         queue_io(wb, work, dirtied_before);
2153                         queued = true;
2154                 }
2155                 if (work->sb)
2156                         progress = writeback_sb_inodes(work->sb, wb, work);
2157                 else
2158                         progress = __writeback_inodes_wb(wb, work);
2159                 trace_writeback_written(wb, work);
2160
2161                 /*
2162                  * Did we write something? Try for more
2163                  *
2164                  * Dirty inodes are moved to b_io for writeback in batches.
2165                  * The completion of the current batch does not necessarily
2166                  * mean the overall work is done. So we keep looping as long
2167                  * as made some progress on cleaning pages or inodes.
2168                  */
2169                 if (progress || !queued) {
2170                         spin_unlock(&wb->list_lock);
2171                         continue;
2172                 }
2173
2174                 /*
2175                  * No more inodes for IO, bail
2176                  */
2177                 if (list_empty(&wb->b_more_io)) {
2178                         spin_unlock(&wb->list_lock);
2179                         break;
2180                 }
2181
2182                 /*
2183                  * Nothing written. Wait for some inode to
2184                  * become available for writeback. Otherwise
2185                  * we'll just busyloop.
2186                  */
2187                 trace_writeback_wait(wb, work);
2188                 inode = wb_inode(wb->b_more_io.prev);
2189                 spin_lock(&inode->i_lock);
2190                 spin_unlock(&wb->list_lock);
2191                 /* This function drops i_lock... */
2192                 inode_sleep_on_writeback(inode);
2193         }
2194         blk_finish_plug(&plug);
2195
2196         return nr_pages - work->nr_pages;
2197 }
2198
2199 /*
2200  * Return the next wb_writeback_work struct that hasn't been processed yet.
2201  */
2202 static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb)
2203 {
2204         struct wb_writeback_work *work = NULL;
2205
2206         spin_lock_irq(&wb->work_lock);
2207         if (!list_empty(&wb->work_list)) {
2208                 work = list_entry(wb->work_list.next,
2209                                   struct wb_writeback_work, list);
2210                 list_del_init(&work->list);
2211         }
2212         spin_unlock_irq(&wb->work_lock);
2213         return work;
2214 }
2215
2216 static long wb_check_background_flush(struct bdi_writeback *wb)
2217 {
2218         if (wb_over_bg_thresh(wb)) {
2219
2220                 struct wb_writeback_work work = {
2221                         .nr_pages       = LONG_MAX,
2222                         .sync_mode      = WB_SYNC_NONE,
2223                         .for_background = 1,
2224                         .range_cyclic   = 1,
2225                         .reason         = WB_REASON_BACKGROUND,
2226                 };
2227
2228                 return wb_writeback(wb, &work);
2229         }
2230
2231         return 0;
2232 }
2233
2234 static long wb_check_old_data_flush(struct bdi_writeback *wb)
2235 {
2236         unsigned long expired;
2237         long nr_pages;
2238
2239         /*
2240          * When set to zero, disable periodic writeback
2241          */
2242         if (!dirty_writeback_interval)
2243                 return 0;
2244
2245         expired = wb->last_old_flush +
2246                         msecs_to_jiffies(dirty_writeback_interval * 10);
2247         if (time_before(jiffies, expired))
2248                 return 0;
2249
2250         wb->last_old_flush = jiffies;
2251         nr_pages = get_nr_dirty_pages();
2252
2253         if (nr_pages) {
2254                 struct wb_writeback_work work = {
2255                         .nr_pages       = nr_pages,
2256                         .sync_mode      = WB_SYNC_NONE,
2257                         .for_kupdate    = 1,
2258                         .range_cyclic   = 1,
2259                         .reason         = WB_REASON_PERIODIC,
2260                 };
2261
2262                 return wb_writeback(wb, &work);
2263         }
2264
2265         return 0;
2266 }
2267
2268 static long wb_check_start_all(struct bdi_writeback *wb)
2269 {
2270         long nr_pages;
2271
2272         if (!test_bit(WB_start_all, &wb->state))
2273                 return 0;
2274
2275         nr_pages = get_nr_dirty_pages();
2276         if (nr_pages) {
2277                 struct wb_writeback_work work = {
2278                         .nr_pages       = wb_split_bdi_pages(wb, nr_pages),
2279                         .sync_mode      = WB_SYNC_NONE,
2280                         .range_cyclic   = 1,
2281                         .reason         = wb->start_all_reason,
2282                 };
2283
2284                 nr_pages = wb_writeback(wb, &work);
2285         }
2286
2287         clear_bit(WB_start_all, &wb->state);
2288         return nr_pages;
2289 }
2290
2291
2292 /*
2293  * Retrieve work items and do the writeback they describe
2294  */
2295 static long wb_do_writeback(struct bdi_writeback *wb)
2296 {
2297         struct wb_writeback_work *work;
2298         long wrote = 0;
2299
2300         set_bit(WB_writeback_running, &wb->state);
2301         while ((work = get_next_work_item(wb)) != NULL) {
2302                 trace_writeback_exec(wb, work);
2303                 wrote += wb_writeback(wb, work);
2304                 finish_writeback_work(work);
2305         }
2306
2307         /*
2308          * Check for a flush-everything request
2309          */
2310         wrote += wb_check_start_all(wb);
2311
2312         /*
2313          * Check for periodic writeback, kupdated() style
2314          */
2315         wrote += wb_check_old_data_flush(wb);
2316         wrote += wb_check_background_flush(wb);
2317         clear_bit(WB_writeback_running, &wb->state);
2318
2319         return wrote;
2320 }
2321
2322 /*
2323  * Handle writeback of dirty data for the device backed by this bdi. Also
2324  * reschedules periodically and does kupdated style flushing.
2325  */
2326 void wb_workfn(struct work_struct *work)
2327 {
2328         struct bdi_writeback *wb = container_of(to_delayed_work(work),
2329                                                 struct bdi_writeback, dwork);
2330         long pages_written;
2331
2332         set_worker_desc("flush-%s", bdi_dev_name(wb->bdi));
2333
2334         if (likely(!current_is_workqueue_rescuer() ||
2335                    !test_bit(WB_registered, &wb->state))) {
2336                 /*
2337                  * The normal path.  Keep writing back @wb until its
2338                  * work_list is empty.  Note that this path is also taken
2339                  * if @wb is shutting down even when we're running off the
2340                  * rescuer as work_list needs to be drained.
2341                  */
2342                 do {
2343                         pages_written = wb_do_writeback(wb);
2344                         trace_writeback_pages_written(pages_written);
2345                 } while (!list_empty(&wb->work_list));
2346         } else {
2347                 /*
2348                  * bdi_wq can't get enough workers and we're running off
2349                  * the emergency worker.  Don't hog it.  Hopefully, 1024 is
2350                  * enough for efficient IO.
2351                  */
2352                 pages_written = writeback_inodes_wb(wb, 1024,
2353                                                     WB_REASON_FORKER_THREAD);
2354                 trace_writeback_pages_written(pages_written);
2355         }
2356
2357         if (!list_empty(&wb->work_list))
2358                 wb_wakeup(wb);
2359         else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
2360                 wb_wakeup_delayed(wb);
2361 }
2362
2363 /*
2364  * Start writeback of all dirty pages on this bdi.
2365  */
2366 static void __wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
2367                                          enum wb_reason reason)
2368 {
2369         struct bdi_writeback *wb;
2370
2371         if (!bdi_has_dirty_io(bdi))
2372                 return;
2373
2374         list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2375                 wb_start_writeback(wb, reason);
2376 }
2377
2378 void wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
2379                                 enum wb_reason reason)
2380 {
2381         rcu_read_lock();
2382         __wakeup_flusher_threads_bdi(bdi, reason);
2383         rcu_read_unlock();
2384 }
2385
2386 /*
2387  * Wakeup the flusher threads to start writeback of all currently dirty pages
2388  */
2389 void wakeup_flusher_threads(enum wb_reason reason)
2390 {
2391         struct backing_dev_info *bdi;
2392
2393         /*
2394          * If we are expecting writeback progress we must submit plugged IO.
2395          */
2396         blk_flush_plug(current->plug, true);
2397
2398         rcu_read_lock();
2399         list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
2400                 __wakeup_flusher_threads_bdi(bdi, reason);
2401         rcu_read_unlock();
2402 }
2403
2404 /*
2405  * Wake up bdi's periodically to make sure dirtytime inodes gets
2406  * written back periodically.  We deliberately do *not* check the
2407  * b_dirtytime list in wb_has_dirty_io(), since this would cause the
2408  * kernel to be constantly waking up once there are any dirtytime
2409  * inodes on the system.  So instead we define a separate delayed work
2410  * function which gets called much more rarely.  (By default, only
2411  * once every 12 hours.)
2412  *
2413  * If there is any other write activity going on in the file system,
2414  * this function won't be necessary.  But if the only thing that has
2415  * happened on the file system is a dirtytime inode caused by an atime
2416  * update, we need this infrastructure below to make sure that inode
2417  * eventually gets pushed out to disk.
2418  */
2419 static void wakeup_dirtytime_writeback(struct work_struct *w);
2420 static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback);
2421
2422 static void wakeup_dirtytime_writeback(struct work_struct *w)
2423 {
2424         struct backing_dev_info *bdi;
2425
2426         rcu_read_lock();
2427         list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
2428                 struct bdi_writeback *wb;
2429
2430                 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2431                         if (!list_empty(&wb->b_dirty_time))
2432                                 wb_wakeup(wb);
2433         }
2434         rcu_read_unlock();
2435         schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2436 }
2437
2438 static int __init start_dirtytime_writeback(void)
2439 {
2440         schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2441         return 0;
2442 }
2443 __initcall(start_dirtytime_writeback);
2444
2445 int dirtytime_interval_handler(const struct ctl_table *table, int write,
2446                                void *buffer, size_t *lenp, loff_t *ppos)
2447 {
2448         int ret;
2449
2450         ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2451         if (ret == 0 && write)
2452                 mod_delayed_work(system_wq, &dirtytime_work, 0);
2453         return ret;
2454 }
2455
2456 /**
2457  * __mark_inode_dirty - internal function to mark an inode dirty
2458  *
2459  * @inode: inode to mark
2460  * @flags: what kind of dirty, e.g. I_DIRTY_SYNC.  This can be a combination of
2461  *         multiple I_DIRTY_* flags, except that I_DIRTY_TIME can't be combined
2462  *         with I_DIRTY_PAGES.
2463  *
2464  * Mark an inode as dirty.  We notify the filesystem, then update the inode's
2465  * dirty flags.  Then, if needed we add the inode to the appropriate dirty list.
2466  *
2467  * Most callers should use mark_inode_dirty() or mark_inode_dirty_sync()
2468  * instead of calling this directly.
2469  *
2470  * CAREFUL!  We only add the inode to the dirty list if it is hashed or if it
2471  * refers to a blockdev.  Unhashed inodes will never be added to the dirty list
2472  * even if they are later hashed, as they will have been marked dirty already.
2473  *
2474  * In short, ensure you hash any inodes _before_ you start marking them dirty.
2475  *
2476  * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
2477  * the block-special inode (/dev/hda1) itself.  And the ->dirtied_when field of
2478  * the kernel-internal blockdev inode represents the dirtying time of the
2479  * blockdev's pages.  This is why for I_DIRTY_PAGES we always use
2480  * page->mapping->host, so the page-dirtying time is recorded in the internal
2481  * blockdev inode.
2482  */
2483 void __mark_inode_dirty(struct inode *inode, int flags)
2484 {
2485         struct super_block *sb = inode->i_sb;
2486         int dirtytime = 0;
2487         struct bdi_writeback *wb = NULL;
2488
2489         trace_writeback_mark_inode_dirty(inode, flags);
2490
2491         if (flags & I_DIRTY_INODE) {
2492                 /*
2493                  * Inode timestamp update will piggback on this dirtying.
2494                  * We tell ->dirty_inode callback that timestamps need to
2495                  * be updated by setting I_DIRTY_TIME in flags.
2496                  */
2497                 if (inode->i_state & I_DIRTY_TIME) {
2498                         spin_lock(&inode->i_lock);
2499                         if (inode->i_state & I_DIRTY_TIME) {
2500                                 inode->i_state &= ~I_DIRTY_TIME;
2501                                 flags |= I_DIRTY_TIME;
2502                         }
2503                         spin_unlock(&inode->i_lock);
2504                 }
2505
2506                 /*
2507                  * Notify the filesystem about the inode being dirtied, so that
2508                  * (if needed) it can update on-disk fields and journal the
2509                  * inode.  This is only needed when the inode itself is being
2510                  * dirtied now.  I.e. it's only needed for I_DIRTY_INODE, not
2511                  * for just I_DIRTY_PAGES or I_DIRTY_TIME.
2512                  */
2513                 trace_writeback_dirty_inode_start(inode, flags);
2514                 if (sb->s_op->dirty_inode)
2515                         sb->s_op->dirty_inode(inode,
2516                                 flags & (I_DIRTY_INODE | I_DIRTY_TIME));
2517                 trace_writeback_dirty_inode(inode, flags);
2518
2519                 /* I_DIRTY_INODE supersedes I_DIRTY_TIME. */
2520                 flags &= ~I_DIRTY_TIME;
2521         } else {
2522                 /*
2523                  * Else it's either I_DIRTY_PAGES, I_DIRTY_TIME, or nothing.
2524                  * (We don't support setting both I_DIRTY_PAGES and I_DIRTY_TIME
2525                  * in one call to __mark_inode_dirty().)
2526                  */
2527                 dirtytime = flags & I_DIRTY_TIME;
2528                 WARN_ON_ONCE(dirtytime && flags != I_DIRTY_TIME);
2529         }
2530
2531         /*
2532          * Paired with smp_mb() in __writeback_single_inode() for the
2533          * following lockless i_state test.  See there for details.
2534          */
2535         smp_mb();
2536
2537         if ((inode->i_state & flags) == flags)
2538                 return;
2539
2540         spin_lock(&inode->i_lock);
2541         if ((inode->i_state & flags) != flags) {
2542                 const int was_dirty = inode->i_state & I_DIRTY;
2543
2544                 inode_attach_wb(inode, NULL);
2545
2546                 inode->i_state |= flags;
2547
2548                 /*
2549                  * Grab inode's wb early because it requires dropping i_lock and we
2550                  * need to make sure following checks happen atomically with dirty
2551                  * list handling so that we don't move inodes under flush worker's
2552                  * hands.
2553                  */
2554                 if (!was_dirty) {
2555                         wb = locked_inode_to_wb_and_lock_list(inode);
2556                         spin_lock(&inode->i_lock);
2557                 }
2558
2559                 /*
2560                  * If the inode is queued for writeback by flush worker, just
2561                  * update its dirty state. Once the flush worker is done with
2562                  * the inode it will place it on the appropriate superblock
2563                  * list, based upon its state.
2564                  */
2565                 if (inode->i_state & I_SYNC_QUEUED)
2566                         goto out_unlock;
2567
2568                 /*
2569                  * Only add valid (hashed) inodes to the superblock's
2570                  * dirty list.  Add blockdev inodes as well.
2571                  */
2572                 if (!S_ISBLK(inode->i_mode)) {
2573                         if (inode_unhashed(inode))
2574                                 goto out_unlock;
2575                 }
2576                 if (inode->i_state & I_FREEING)
2577                         goto out_unlock;
2578
2579                 /*
2580                  * If the inode was already on b_dirty/b_io/b_more_io, don't
2581                  * reposition it (that would break b_dirty time-ordering).
2582                  */
2583                 if (!was_dirty) {
2584                         struct list_head *dirty_list;
2585                         bool wakeup_bdi = false;
2586
2587                         inode->dirtied_when = jiffies;
2588                         if (dirtytime)
2589                                 inode->dirtied_time_when = jiffies;
2590
2591                         if (inode->i_state & I_DIRTY)
2592                                 dirty_list = &wb->b_dirty;
2593                         else
2594                                 dirty_list = &wb->b_dirty_time;
2595
2596                         wakeup_bdi = inode_io_list_move_locked(inode, wb,
2597                                                                dirty_list);
2598
2599                         spin_unlock(&wb->list_lock);
2600                         spin_unlock(&inode->i_lock);
2601                         trace_writeback_dirty_inode_enqueue(inode);
2602
2603                         /*
2604                          * If this is the first dirty inode for this bdi,
2605                          * we have to wake-up the corresponding bdi thread
2606                          * to make sure background write-back happens
2607                          * later.
2608                          */
2609                         if (wakeup_bdi &&
2610                             (wb->bdi->capabilities & BDI_CAP_WRITEBACK))
2611                                 wb_wakeup_delayed(wb);
2612                         return;
2613                 }
2614         }
2615 out_unlock:
2616         if (wb)
2617                 spin_unlock(&wb->list_lock);
2618         spin_unlock(&inode->i_lock);
2619 }
2620 EXPORT_SYMBOL(__mark_inode_dirty);
2621
2622 /*
2623  * The @s_sync_lock is used to serialise concurrent sync operations
2624  * to avoid lock contention problems with concurrent wait_sb_inodes() calls.
2625  * Concurrent callers will block on the s_sync_lock rather than doing contending
2626  * walks. The queueing maintains sync(2) required behaviour as all the IO that
2627  * has been issued up to the time this function is enter is guaranteed to be
2628  * completed by the time we have gained the lock and waited for all IO that is
2629  * in progress regardless of the order callers are granted the lock.
2630  */
2631 static void wait_sb_inodes(struct super_block *sb)
2632 {
2633         LIST_HEAD(sync_list);
2634
2635         /*
2636          * We need to be protected against the filesystem going from
2637          * r/o to r/w or vice versa.
2638          */
2639         WARN_ON(!rwsem_is_locked(&sb->s_umount));
2640
2641         mutex_lock(&sb->s_sync_lock);
2642
2643         /*
2644          * Splice the writeback list onto a temporary list to avoid waiting on
2645          * inodes that have started writeback after this point.
2646          *
2647          * Use rcu_read_lock() to keep the inodes around until we have a
2648          * reference. s_inode_wblist_lock protects sb->s_inodes_wb as well as
2649          * the local list because inodes can be dropped from either by writeback
2650          * completion.
2651          */
2652         rcu_read_lock();
2653         spin_lock_irq(&sb->s_inode_wblist_lock);
2654         list_splice_init(&sb->s_inodes_wb, &sync_list);
2655
2656         /*
2657          * Data integrity sync. Must wait for all pages under writeback, because
2658          * there may have been pages dirtied before our sync call, but which had
2659          * writeout started before we write it out.  In which case, the inode
2660          * may not be on the dirty list, but we still have to wait for that
2661          * writeout.
2662          */
2663         while (!list_empty(&sync_list)) {
2664                 struct inode *inode = list_first_entry(&sync_list, struct inode,
2665                                                        i_wb_list);
2666                 struct address_space *mapping = inode->i_mapping;
2667
2668                 /*
2669                  * Move each inode back to the wb list before we drop the lock
2670                  * to preserve consistency between i_wb_list and the mapping
2671                  * writeback tag. Writeback completion is responsible to remove
2672                  * the inode from either list once the writeback tag is cleared.
2673                  */
2674                 list_move_tail(&inode->i_wb_list, &sb->s_inodes_wb);
2675
2676                 /*
2677                  * The mapping can appear untagged while still on-list since we
2678                  * do not have the mapping lock. Skip it here, wb completion
2679                  * will remove it.
2680                  */
2681                 if (!mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK))
2682                         continue;
2683
2684                 spin_unlock_irq(&sb->s_inode_wblist_lock);
2685
2686                 spin_lock(&inode->i_lock);
2687                 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) {
2688                         spin_unlock(&inode->i_lock);
2689
2690                         spin_lock_irq(&sb->s_inode_wblist_lock);
2691                         continue;
2692                 }
2693                 __iget(inode);
2694                 spin_unlock(&inode->i_lock);
2695                 rcu_read_unlock();
2696
2697                 /*
2698                  * We keep the error status of individual mapping so that
2699                  * applications can catch the writeback error using fsync(2).
2700                  * See filemap_fdatawait_keep_errors() for details.
2701                  */
2702                 filemap_fdatawait_keep_errors(mapping);
2703
2704                 cond_resched();
2705
2706                 iput(inode);
2707
2708                 rcu_read_lock();
2709                 spin_lock_irq(&sb->s_inode_wblist_lock);
2710         }
2711         spin_unlock_irq(&sb->s_inode_wblist_lock);
2712         rcu_read_unlock();
2713         mutex_unlock(&sb->s_sync_lock);
2714 }
2715
2716 static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2717                                      enum wb_reason reason, bool skip_if_busy)
2718 {
2719         struct backing_dev_info *bdi = sb->s_bdi;
2720         DEFINE_WB_COMPLETION(done, bdi);
2721         struct wb_writeback_work work = {
2722                 .sb                     = sb,
2723                 .sync_mode              = WB_SYNC_NONE,
2724                 .tagged_writepages      = 1,
2725                 .done                   = &done,
2726                 .nr_pages               = nr,
2727                 .reason                 = reason,
2728         };
2729
2730         if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
2731                 return;
2732         WARN_ON(!rwsem_is_locked(&sb->s_umount));
2733
2734         bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy);
2735         wb_wait_for_completion(&done);
2736 }
2737
2738 /**
2739  * writeback_inodes_sb_nr -     writeback dirty inodes from given super_block
2740  * @sb: the superblock
2741  * @nr: the number of pages to write
2742  * @reason: reason why some writeback work initiated
2743  *
2744  * Start writeback on some inodes on this super_block. No guarantees are made
2745  * on how many (if any) will be written, and this function does not wait
2746  * for IO completion of submitted IO.
2747  */
2748 void writeback_inodes_sb_nr(struct super_block *sb,
2749                             unsigned long nr,
2750                             enum wb_reason reason)
2751 {
2752         __writeback_inodes_sb_nr(sb, nr, reason, false);
2753 }
2754 EXPORT_SYMBOL(writeback_inodes_sb_nr);
2755
2756 /**
2757  * writeback_inodes_sb  -       writeback dirty inodes from given super_block
2758  * @sb: the superblock
2759  * @reason: reason why some writeback work was initiated
2760  *
2761  * Start writeback on some inodes on this super_block. No guarantees are made
2762  * on how many (if any) will be written, and this function does not wait
2763  * for IO completion of submitted IO.
2764  */
2765 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2766 {
2767         writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
2768 }
2769 EXPORT_SYMBOL(writeback_inodes_sb);
2770
2771 /**
2772  * try_to_writeback_inodes_sb - try to start writeback if none underway
2773  * @sb: the superblock
2774  * @reason: reason why some writeback work was initiated
2775  *
2776  * Invoke __writeback_inodes_sb_nr if no writeback is currently underway.
2777  */
2778 void try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2779 {
2780         if (!down_read_trylock(&sb->s_umount))
2781                 return;
2782
2783         __writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason, true);
2784         up_read(&sb->s_umount);
2785 }
2786 EXPORT_SYMBOL(try_to_writeback_inodes_sb);
2787
2788 /**
2789  * sync_inodes_sb       -       sync sb inode pages
2790  * @sb: the superblock
2791  *
2792  * This function writes and waits on any dirty inode belonging to this
2793  * super_block.
2794  */
2795 void sync_inodes_sb(struct super_block *sb)
2796 {
2797         struct backing_dev_info *bdi = sb->s_bdi;
2798         DEFINE_WB_COMPLETION(done, bdi);
2799         struct wb_writeback_work work = {
2800                 .sb             = sb,
2801                 .sync_mode      = WB_SYNC_ALL,
2802                 .nr_pages       = LONG_MAX,
2803                 .range_cyclic   = 0,
2804                 .done           = &done,
2805                 .reason         = WB_REASON_SYNC,
2806                 .for_sync       = 1,
2807         };
2808
2809         /*
2810          * Can't skip on !bdi_has_dirty() because we should wait for !dirty
2811          * inodes under writeback and I_DIRTY_TIME inodes ignored by
2812          * bdi_has_dirty() need to be written out too.
2813          */
2814         if (bdi == &noop_backing_dev_info)
2815                 return;
2816         WARN_ON(!rwsem_is_locked(&sb->s_umount));
2817
2818         /* protect against inode wb switch, see inode_switch_wbs_work_fn() */
2819         bdi_down_write_wb_switch_rwsem(bdi);
2820         bdi_split_work_to_wbs(bdi, &work, false);
2821         wb_wait_for_completion(&done);
2822         bdi_up_write_wb_switch_rwsem(bdi);
2823
2824         wait_sb_inodes(sb);
2825 }
2826 EXPORT_SYMBOL(sync_inodes_sb);
2827
2828 /**
2829  * write_inode_now      -       write an inode to disk
2830  * @inode: inode to write to disk
2831  * @sync: whether the write should be synchronous or not
2832  *
2833  * This function commits an inode to disk immediately if it is dirty. This is
2834  * primarily needed by knfsd.
2835  *
2836  * The caller must either have a ref on the inode or must have set I_WILL_FREE.
2837  */
2838 int write_inode_now(struct inode *inode, int sync)
2839 {
2840         struct writeback_control wbc = {
2841                 .nr_to_write = LONG_MAX,
2842                 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
2843                 .range_start = 0,
2844                 .range_end = LLONG_MAX,
2845         };
2846
2847         if (!mapping_can_writeback(inode->i_mapping))
2848                 wbc.nr_to_write = 0;
2849
2850         might_sleep();
2851         return writeback_single_inode(inode, &wbc);
2852 }
2853 EXPORT_SYMBOL(write_inode_now);
2854
2855 /**
2856  * sync_inode_metadata - write an inode to disk
2857  * @inode: the inode to sync
2858  * @wait: wait for I/O to complete.
2859  *
2860  * Write an inode to disk and adjust its dirty state after completion.
2861  *
2862  * Note: only writes the actual inode, no associated data or other metadata.
2863  */
2864 int sync_inode_metadata(struct inode *inode, int wait)
2865 {
2866         struct writeback_control wbc = {
2867                 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
2868                 .nr_to_write = 0, /* metadata-only */
2869         };
2870
2871         return writeback_single_inode(inode, &wbc);
2872 }
2873 EXPORT_SYMBOL(sync_inode_metadata);
This page took 0.184807 seconds and 4 git commands to generate.