]> Git Repo - J-linux.git/blob - fs/f2fs/segment.h
Merge tag 'vfs-6.13-rc7.fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs
[J-linux.git] / fs / f2fs / segment.h
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * fs/f2fs/segment.h
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/blkdev.h>
9 #include <linux/backing-dev.h>
10
11 /* constant macro */
12 #define NULL_SEGNO                      ((unsigned int)(~0))
13 #define NULL_SECNO                      ((unsigned int)(~0))
14
15 #define DEF_RECLAIM_PREFREE_SEGMENTS    5       /* 5% over total segments */
16 #define DEF_MAX_RECLAIM_PREFREE_SEGMENTS        4096    /* 8GB in maximum */
17
18 #define F2FS_MIN_SEGMENTS       9 /* SB + 2 (CP + SIT + NAT) + SSA + MAIN */
19 #define F2FS_MIN_META_SEGMENTS  8 /* SB + 2 (CP + SIT + NAT) + SSA */
20
21 #define INVALID_MTIME ULLONG_MAX /* no valid blocks in a segment/section */
22
23 /* L: Logical segment # in volume, R: Relative segment # in main area */
24 #define GET_L2R_SEGNO(free_i, segno)    ((segno) - (free_i)->start_segno)
25 #define GET_R2L_SEGNO(free_i, segno)    ((segno) + (free_i)->start_segno)
26
27 #define IS_DATASEG(t)   ((t) <= CURSEG_COLD_DATA)
28 #define IS_NODESEG(t)   ((t) >= CURSEG_HOT_NODE && (t) <= CURSEG_COLD_NODE)
29 #define SE_PAGETYPE(se) ((IS_NODESEG((se)->type) ? NODE : DATA))
30
31 static inline void sanity_check_seg_type(struct f2fs_sb_info *sbi,
32                                                 unsigned short seg_type)
33 {
34         f2fs_bug_on(sbi, seg_type >= NR_PERSISTENT_LOG);
35 }
36
37 #define IS_CURSEG(sbi, seg)                                             \
38         (((seg) == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno) ||    \
39          ((seg) == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno) ||   \
40          ((seg) == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno) ||   \
41          ((seg) == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno) ||    \
42          ((seg) == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno) ||   \
43          ((seg) == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno) ||   \
44          ((seg) == CURSEG_I(sbi, CURSEG_COLD_DATA_PINNED)->segno) ||    \
45          ((seg) == CURSEG_I(sbi, CURSEG_ALL_DATA_ATGC)->segno))
46
47 #define IS_CURSEC(sbi, secno)                                           \
48         (((secno) == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno /            \
49           SEGS_PER_SEC(sbi)) || \
50          ((secno) == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno /           \
51           SEGS_PER_SEC(sbi)) || \
52          ((secno) == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno /           \
53           SEGS_PER_SEC(sbi)) || \
54          ((secno) == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno /            \
55           SEGS_PER_SEC(sbi)) || \
56          ((secno) == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno /           \
57           SEGS_PER_SEC(sbi)) || \
58          ((secno) == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno /           \
59           SEGS_PER_SEC(sbi)) || \
60          ((secno) == CURSEG_I(sbi, CURSEG_COLD_DATA_PINNED)->segno /    \
61           SEGS_PER_SEC(sbi)) || \
62          ((secno) == CURSEG_I(sbi, CURSEG_ALL_DATA_ATGC)->segno /       \
63           SEGS_PER_SEC(sbi)))
64
65 #define MAIN_BLKADDR(sbi)                                               \
66         (SM_I(sbi) ? SM_I(sbi)->main_blkaddr :                          \
67                 le32_to_cpu(F2FS_RAW_SUPER(sbi)->main_blkaddr))
68 #define SEG0_BLKADDR(sbi)                                               \
69         (SM_I(sbi) ? SM_I(sbi)->seg0_blkaddr :                          \
70                 le32_to_cpu(F2FS_RAW_SUPER(sbi)->segment0_blkaddr))
71
72 #define MAIN_SEGS(sbi)  (SM_I(sbi)->main_segments)
73 #define MAIN_SECS(sbi)  ((sbi)->total_sections)
74
75 #define TOTAL_SEGS(sbi)                                                 \
76         (SM_I(sbi) ? SM_I(sbi)->segment_count :                                 \
77                 le32_to_cpu(F2FS_RAW_SUPER(sbi)->segment_count))
78 #define TOTAL_BLKS(sbi) (SEGS_TO_BLKS(sbi, TOTAL_SEGS(sbi)))
79
80 #define MAX_BLKADDR(sbi)        (SEG0_BLKADDR(sbi) + TOTAL_BLKS(sbi))
81 #define SEGMENT_SIZE(sbi)       (1ULL << ((sbi)->log_blocksize +        \
82                                         (sbi)->log_blocks_per_seg))
83
84 #define START_BLOCK(sbi, segno) (SEG0_BLKADDR(sbi) +                    \
85          (SEGS_TO_BLKS(sbi, GET_R2L_SEGNO(FREE_I(sbi), segno))))
86
87 #define NEXT_FREE_BLKADDR(sbi, curseg)                                  \
88         (START_BLOCK(sbi, (curseg)->segno) + (curseg)->next_blkoff)
89
90 #define GET_SEGOFF_FROM_SEG0(sbi, blk_addr)     ((blk_addr) - SEG0_BLKADDR(sbi))
91 #define GET_SEGNO_FROM_SEG0(sbi, blk_addr)                              \
92         (BLKS_TO_SEGS(sbi, GET_SEGOFF_FROM_SEG0(sbi, blk_addr)))
93 #define GET_BLKOFF_FROM_SEG0(sbi, blk_addr)                             \
94         (GET_SEGOFF_FROM_SEG0(sbi, blk_addr) & (BLKS_PER_SEG(sbi) - 1))
95
96 #define GET_SEGNO(sbi, blk_addr)                                        \
97         ((!__is_valid_data_blkaddr(blk_addr)) ?                 \
98         NULL_SEGNO : GET_L2R_SEGNO(FREE_I(sbi),                 \
99                 GET_SEGNO_FROM_SEG0(sbi, blk_addr)))
100 #define CAP_BLKS_PER_SEC(sbi)                                   \
101         (BLKS_PER_SEC(sbi) - (sbi)->unusable_blocks_per_sec)
102 #define CAP_SEGS_PER_SEC(sbi)                                   \
103         (SEGS_PER_SEC(sbi) -                                    \
104         BLKS_TO_SEGS(sbi, (sbi)->unusable_blocks_per_sec))
105 #define GET_SEC_FROM_SEG(sbi, segno)                            \
106         (((segno) == -1) ? -1 : (segno) / SEGS_PER_SEC(sbi))
107 #define GET_SEG_FROM_SEC(sbi, secno)                            \
108         ((secno) * SEGS_PER_SEC(sbi))
109 #define GET_ZONE_FROM_SEC(sbi, secno)                           \
110         (((secno) == -1) ? -1 : (secno) / (sbi)->secs_per_zone)
111 #define GET_ZONE_FROM_SEG(sbi, segno)                           \
112         GET_ZONE_FROM_SEC(sbi, GET_SEC_FROM_SEG(sbi, segno))
113
114 #define GET_SUM_BLOCK(sbi, segno)                               \
115         ((sbi)->sm_info->ssa_blkaddr + (segno))
116
117 #define GET_SUM_TYPE(footer) ((footer)->entry_type)
118 #define SET_SUM_TYPE(footer, type) ((footer)->entry_type = (type))
119
120 #define SIT_ENTRY_OFFSET(sit_i, segno)                                  \
121         ((segno) % (sit_i)->sents_per_block)
122 #define SIT_BLOCK_OFFSET(segno)                                 \
123         ((segno) / SIT_ENTRY_PER_BLOCK)
124 #define START_SEGNO(segno)              \
125         (SIT_BLOCK_OFFSET(segno) * SIT_ENTRY_PER_BLOCK)
126 #define SIT_BLK_CNT(sbi)                        \
127         DIV_ROUND_UP(MAIN_SEGS(sbi), SIT_ENTRY_PER_BLOCK)
128 #define f2fs_bitmap_size(nr)                    \
129         (BITS_TO_LONGS(nr) * sizeof(unsigned long))
130
131 #define SECTOR_FROM_BLOCK(blk_addr)                                     \
132         (((sector_t)blk_addr) << F2FS_LOG_SECTORS_PER_BLOCK)
133 #define SECTOR_TO_BLOCK(sectors)                                        \
134         ((sectors) >> F2FS_LOG_SECTORS_PER_BLOCK)
135
136 /*
137  * In the victim_sel_policy->alloc_mode, there are three block allocation modes.
138  * LFS writes data sequentially with cleaning operations.
139  * SSR (Slack Space Recycle) reuses obsolete space without cleaning operations.
140  * AT_SSR (Age Threshold based Slack Space Recycle) merges fragments into
141  * fragmented segment which has similar aging degree.
142  */
143 enum {
144         LFS = 0,
145         SSR,
146         AT_SSR,
147 };
148
149 /*
150  * In the victim_sel_policy->gc_mode, there are three gc, aka cleaning, modes.
151  * GC_CB is based on cost-benefit algorithm.
152  * GC_GREEDY is based on greedy algorithm.
153  * GC_AT is based on age-threshold algorithm.
154  */
155 enum {
156         GC_CB = 0,
157         GC_GREEDY,
158         GC_AT,
159         ALLOC_NEXT,
160         FLUSH_DEVICE,
161         MAX_GC_POLICY,
162 };
163
164 /*
165  * BG_GC means the background cleaning job.
166  * FG_GC means the on-demand cleaning job.
167  */
168 enum {
169         BG_GC = 0,
170         FG_GC,
171 };
172
173 /* for a function parameter to select a victim segment */
174 struct victim_sel_policy {
175         int alloc_mode;                 /* LFS or SSR */
176         int gc_mode;                    /* GC_CB or GC_GREEDY */
177         unsigned long *dirty_bitmap;    /* dirty segment/section bitmap */
178         unsigned int max_search;        /*
179                                          * maximum # of segments/sections
180                                          * to search
181                                          */
182         unsigned int offset;            /* last scanned bitmap offset */
183         unsigned int ofs_unit;          /* bitmap search unit */
184         unsigned int min_cost;          /* minimum cost */
185         unsigned long long oldest_age;  /* oldest age of segments having the same min cost */
186         unsigned int min_segno;         /* segment # having min. cost */
187         unsigned long long age;         /* mtime of GCed section*/
188         unsigned long long age_threshold;/* age threshold */
189         bool one_time_gc;               /* one time GC */
190 };
191
192 struct seg_entry {
193         unsigned int type:6;            /* segment type like CURSEG_XXX_TYPE */
194         unsigned int valid_blocks:10;   /* # of valid blocks */
195         unsigned int ckpt_valid_blocks:10;      /* # of valid blocks last cp */
196         unsigned int padding:6;         /* padding */
197         unsigned char *cur_valid_map;   /* validity bitmap of blocks */
198 #ifdef CONFIG_F2FS_CHECK_FS
199         unsigned char *cur_valid_map_mir;       /* mirror of current valid bitmap */
200 #endif
201         /*
202          * # of valid blocks and the validity bitmap stored in the last
203          * checkpoint pack. This information is used by the SSR mode.
204          */
205         unsigned char *ckpt_valid_map;  /* validity bitmap of blocks last cp */
206         unsigned char *discard_map;
207         unsigned long long mtime;       /* modification time of the segment */
208 };
209
210 struct sec_entry {
211         unsigned int valid_blocks;      /* # of valid blocks in a section */
212 };
213
214 #define MAX_SKIP_GC_COUNT                       16
215
216 struct revoke_entry {
217         struct list_head list;
218         block_t old_addr;               /* for revoking when fail to commit */
219         pgoff_t index;
220 };
221
222 struct sit_info {
223         block_t sit_base_addr;          /* start block address of SIT area */
224         block_t sit_blocks;             /* # of blocks used by SIT area */
225         block_t written_valid_blocks;   /* # of valid blocks in main area */
226         char *bitmap;                   /* all bitmaps pointer */
227         char *sit_bitmap;               /* SIT bitmap pointer */
228 #ifdef CONFIG_F2FS_CHECK_FS
229         char *sit_bitmap_mir;           /* SIT bitmap mirror */
230
231         /* bitmap of segments to be ignored by GC in case of errors */
232         unsigned long *invalid_segmap;
233 #endif
234         unsigned int bitmap_size;       /* SIT bitmap size */
235
236         unsigned long *tmp_map;                 /* bitmap for temporal use */
237         unsigned long *dirty_sentries_bitmap;   /* bitmap for dirty sentries */
238         unsigned int dirty_sentries;            /* # of dirty sentries */
239         unsigned int sents_per_block;           /* # of SIT entries per block */
240         struct rw_semaphore sentry_lock;        /* to protect SIT cache */
241         struct seg_entry *sentries;             /* SIT segment-level cache */
242         struct sec_entry *sec_entries;          /* SIT section-level cache */
243
244         /* for cost-benefit algorithm in cleaning procedure */
245         unsigned long long elapsed_time;        /* elapsed time after mount */
246         unsigned long long mounted_time;        /* mount time */
247         unsigned long long min_mtime;           /* min. modification time */
248         unsigned long long max_mtime;           /* max. modification time */
249         unsigned long long dirty_min_mtime;     /* rerange candidates in GC_AT */
250         unsigned long long dirty_max_mtime;     /* rerange candidates in GC_AT */
251
252         unsigned int last_victim[MAX_GC_POLICY]; /* last victim segment # */
253 };
254
255 struct free_segmap_info {
256         unsigned int start_segno;       /* start segment number logically */
257         unsigned int free_segments;     /* # of free segments */
258         unsigned int free_sections;     /* # of free sections */
259         spinlock_t segmap_lock;         /* free segmap lock */
260         unsigned long *free_segmap;     /* free segment bitmap */
261         unsigned long *free_secmap;     /* free section bitmap */
262 };
263
264 /* Notice: The order of dirty type is same with CURSEG_XXX in f2fs.h */
265 enum dirty_type {
266         DIRTY_HOT_DATA,         /* dirty segments assigned as hot data logs */
267         DIRTY_WARM_DATA,        /* dirty segments assigned as warm data logs */
268         DIRTY_COLD_DATA,        /* dirty segments assigned as cold data logs */
269         DIRTY_HOT_NODE,         /* dirty segments assigned as hot node logs */
270         DIRTY_WARM_NODE,        /* dirty segments assigned as warm node logs */
271         DIRTY_COLD_NODE,        /* dirty segments assigned as cold node logs */
272         DIRTY,                  /* to count # of dirty segments */
273         PRE,                    /* to count # of entirely obsolete segments */
274         NR_DIRTY_TYPE
275 };
276
277 struct dirty_seglist_info {
278         unsigned long *dirty_segmap[NR_DIRTY_TYPE];
279         unsigned long *dirty_secmap;
280         struct mutex seglist_lock;              /* lock for segment bitmaps */
281         int nr_dirty[NR_DIRTY_TYPE];            /* # of dirty segments */
282         unsigned long *victim_secmap;           /* background GC victims */
283         unsigned long *pinned_secmap;           /* pinned victims from foreground GC */
284         unsigned int pinned_secmap_cnt;         /* count of victims which has pinned data */
285         bool enable_pin_section;                /* enable pinning section */
286 };
287
288 /* for active log information */
289 struct curseg_info {
290         struct mutex curseg_mutex;              /* lock for consistency */
291         struct f2fs_summary_block *sum_blk;     /* cached summary block */
292         struct rw_semaphore journal_rwsem;      /* protect journal area */
293         struct f2fs_journal *journal;           /* cached journal info */
294         unsigned char alloc_type;               /* current allocation type */
295         unsigned short seg_type;                /* segment type like CURSEG_XXX_TYPE */
296         unsigned int segno;                     /* current segment number */
297         unsigned short next_blkoff;             /* next block offset to write */
298         unsigned int zone;                      /* current zone number */
299         unsigned int next_segno;                /* preallocated segment */
300         int fragment_remained_chunk;            /* remained block size in a chunk for block fragmentation mode */
301         bool inited;                            /* indicate inmem log is inited */
302 };
303
304 struct sit_entry_set {
305         struct list_head set_list;      /* link with all sit sets */
306         unsigned int start_segno;       /* start segno of sits in set */
307         unsigned int entry_cnt;         /* the # of sit entries in set */
308 };
309
310 /*
311  * inline functions
312  */
313 static inline struct curseg_info *CURSEG_I(struct f2fs_sb_info *sbi, int type)
314 {
315         return (struct curseg_info *)(SM_I(sbi)->curseg_array + type);
316 }
317
318 static inline struct seg_entry *get_seg_entry(struct f2fs_sb_info *sbi,
319                                                 unsigned int segno)
320 {
321         struct sit_info *sit_i = SIT_I(sbi);
322         return &sit_i->sentries[segno];
323 }
324
325 static inline struct sec_entry *get_sec_entry(struct f2fs_sb_info *sbi,
326                                                 unsigned int segno)
327 {
328         struct sit_info *sit_i = SIT_I(sbi);
329         return &sit_i->sec_entries[GET_SEC_FROM_SEG(sbi, segno)];
330 }
331
332 static inline unsigned int get_valid_blocks(struct f2fs_sb_info *sbi,
333                                 unsigned int segno, bool use_section)
334 {
335         /*
336          * In order to get # of valid blocks in a section instantly from many
337          * segments, f2fs manages two counting structures separately.
338          */
339         if (use_section && __is_large_section(sbi))
340                 return get_sec_entry(sbi, segno)->valid_blocks;
341         else
342                 return get_seg_entry(sbi, segno)->valid_blocks;
343 }
344
345 static inline unsigned int get_ckpt_valid_blocks(struct f2fs_sb_info *sbi,
346                                 unsigned int segno, bool use_section)
347 {
348         if (use_section && __is_large_section(sbi)) {
349                 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
350                 unsigned int start_segno = GET_SEG_FROM_SEC(sbi, secno);
351                 unsigned int blocks = 0;
352                 int i;
353
354                 for (i = 0; i < SEGS_PER_SEC(sbi); i++, start_segno++) {
355                         struct seg_entry *se = get_seg_entry(sbi, start_segno);
356
357                         blocks += se->ckpt_valid_blocks;
358                 }
359                 return blocks;
360         }
361         return get_seg_entry(sbi, segno)->ckpt_valid_blocks;
362 }
363
364 static inline void seg_info_from_raw_sit(struct seg_entry *se,
365                                         struct f2fs_sit_entry *rs)
366 {
367         se->valid_blocks = GET_SIT_VBLOCKS(rs);
368         se->ckpt_valid_blocks = GET_SIT_VBLOCKS(rs);
369         memcpy(se->cur_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
370         memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
371 #ifdef CONFIG_F2FS_CHECK_FS
372         memcpy(se->cur_valid_map_mir, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
373 #endif
374         se->type = GET_SIT_TYPE(rs);
375         se->mtime = le64_to_cpu(rs->mtime);
376 }
377
378 static inline void __seg_info_to_raw_sit(struct seg_entry *se,
379                                         struct f2fs_sit_entry *rs)
380 {
381         unsigned short raw_vblocks = (se->type << SIT_VBLOCKS_SHIFT) |
382                                         se->valid_blocks;
383         rs->vblocks = cpu_to_le16(raw_vblocks);
384         memcpy(rs->valid_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE);
385         rs->mtime = cpu_to_le64(se->mtime);
386 }
387
388 static inline void seg_info_to_sit_page(struct f2fs_sb_info *sbi,
389                                 struct page *page, unsigned int start)
390 {
391         struct f2fs_sit_block *raw_sit;
392         struct seg_entry *se;
393         struct f2fs_sit_entry *rs;
394         unsigned int end = min(start + SIT_ENTRY_PER_BLOCK,
395                                         (unsigned long)MAIN_SEGS(sbi));
396         int i;
397
398         raw_sit = (struct f2fs_sit_block *)page_address(page);
399         memset(raw_sit, 0, PAGE_SIZE);
400         for (i = 0; i < end - start; i++) {
401                 rs = &raw_sit->entries[i];
402                 se = get_seg_entry(sbi, start + i);
403                 __seg_info_to_raw_sit(se, rs);
404         }
405 }
406
407 static inline void seg_info_to_raw_sit(struct seg_entry *se,
408                                         struct f2fs_sit_entry *rs)
409 {
410         __seg_info_to_raw_sit(se, rs);
411
412         memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
413         se->ckpt_valid_blocks = se->valid_blocks;
414 }
415
416 static inline unsigned int find_next_inuse(struct free_segmap_info *free_i,
417                 unsigned int max, unsigned int segno)
418 {
419         unsigned int ret;
420         spin_lock(&free_i->segmap_lock);
421         ret = find_next_bit(free_i->free_segmap, max, segno);
422         spin_unlock(&free_i->segmap_lock);
423         return ret;
424 }
425
426 static inline void __set_free(struct f2fs_sb_info *sbi, unsigned int segno)
427 {
428         struct free_segmap_info *free_i = FREE_I(sbi);
429         unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
430         unsigned int start_segno = GET_SEG_FROM_SEC(sbi, secno);
431         unsigned int next;
432         unsigned int usable_segs = f2fs_usable_segs_in_sec(sbi);
433
434         spin_lock(&free_i->segmap_lock);
435         clear_bit(segno, free_i->free_segmap);
436         free_i->free_segments++;
437
438         next = find_next_bit(free_i->free_segmap,
439                         start_segno + SEGS_PER_SEC(sbi), start_segno);
440         if (next >= start_segno + usable_segs) {
441                 clear_bit(secno, free_i->free_secmap);
442                 free_i->free_sections++;
443         }
444         spin_unlock(&free_i->segmap_lock);
445 }
446
447 static inline void __set_inuse(struct f2fs_sb_info *sbi,
448                 unsigned int segno)
449 {
450         struct free_segmap_info *free_i = FREE_I(sbi);
451         unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
452
453         set_bit(segno, free_i->free_segmap);
454         free_i->free_segments--;
455         if (!test_and_set_bit(secno, free_i->free_secmap))
456                 free_i->free_sections--;
457 }
458
459 static inline void __set_test_and_free(struct f2fs_sb_info *sbi,
460                 unsigned int segno, bool inmem)
461 {
462         struct free_segmap_info *free_i = FREE_I(sbi);
463         unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
464         unsigned int start_segno = GET_SEG_FROM_SEC(sbi, secno);
465         unsigned int next;
466         unsigned int usable_segs = f2fs_usable_segs_in_sec(sbi);
467
468         spin_lock(&free_i->segmap_lock);
469         if (test_and_clear_bit(segno, free_i->free_segmap)) {
470                 free_i->free_segments++;
471
472                 if (!inmem && IS_CURSEC(sbi, secno))
473                         goto skip_free;
474                 next = find_next_bit(free_i->free_segmap,
475                                 start_segno + SEGS_PER_SEC(sbi), start_segno);
476                 if (next >= start_segno + usable_segs) {
477                         if (test_and_clear_bit(secno, free_i->free_secmap))
478                                 free_i->free_sections++;
479                 }
480         }
481 skip_free:
482         spin_unlock(&free_i->segmap_lock);
483 }
484
485 static inline void __set_test_and_inuse(struct f2fs_sb_info *sbi,
486                 unsigned int segno)
487 {
488         struct free_segmap_info *free_i = FREE_I(sbi);
489         unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
490
491         spin_lock(&free_i->segmap_lock);
492         if (!test_and_set_bit(segno, free_i->free_segmap)) {
493                 free_i->free_segments--;
494                 if (!test_and_set_bit(secno, free_i->free_secmap))
495                         free_i->free_sections--;
496         }
497         spin_unlock(&free_i->segmap_lock);
498 }
499
500 static inline void get_sit_bitmap(struct f2fs_sb_info *sbi,
501                 void *dst_addr)
502 {
503         struct sit_info *sit_i = SIT_I(sbi);
504
505 #ifdef CONFIG_F2FS_CHECK_FS
506         if (memcmp(sit_i->sit_bitmap, sit_i->sit_bitmap_mir,
507                                                 sit_i->bitmap_size))
508                 f2fs_bug_on(sbi, 1);
509 #endif
510         memcpy(dst_addr, sit_i->sit_bitmap, sit_i->bitmap_size);
511 }
512
513 static inline block_t written_block_count(struct f2fs_sb_info *sbi)
514 {
515         return SIT_I(sbi)->written_valid_blocks;
516 }
517
518 static inline unsigned int free_segments(struct f2fs_sb_info *sbi)
519 {
520         return FREE_I(sbi)->free_segments;
521 }
522
523 static inline unsigned int reserved_segments(struct f2fs_sb_info *sbi)
524 {
525         return SM_I(sbi)->reserved_segments;
526 }
527
528 static inline unsigned int free_sections(struct f2fs_sb_info *sbi)
529 {
530         return FREE_I(sbi)->free_sections;
531 }
532
533 static inline unsigned int prefree_segments(struct f2fs_sb_info *sbi)
534 {
535         return DIRTY_I(sbi)->nr_dirty[PRE];
536 }
537
538 static inline unsigned int dirty_segments(struct f2fs_sb_info *sbi)
539 {
540         return DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_DATA] +
541                 DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_DATA] +
542                 DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_DATA] +
543                 DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_NODE] +
544                 DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_NODE] +
545                 DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_NODE];
546 }
547
548 static inline int overprovision_segments(struct f2fs_sb_info *sbi)
549 {
550         return SM_I(sbi)->ovp_segments;
551 }
552
553 static inline int reserved_sections(struct f2fs_sb_info *sbi)
554 {
555         return GET_SEC_FROM_SEG(sbi, reserved_segments(sbi));
556 }
557
558 static inline bool has_curseg_enough_space(struct f2fs_sb_info *sbi,
559                         unsigned int node_blocks, unsigned int data_blocks,
560                         unsigned int dent_blocks)
561 {
562
563         unsigned int segno, left_blocks, blocks;
564         int i;
565
566         /* check current data/node sections in the worst case. */
567         for (i = CURSEG_HOT_DATA; i < NR_PERSISTENT_LOG; i++) {
568                 segno = CURSEG_I(sbi, i)->segno;
569                 left_blocks = CAP_BLKS_PER_SEC(sbi) -
570                                 get_ckpt_valid_blocks(sbi, segno, true);
571
572                 blocks = i <= CURSEG_COLD_DATA ? data_blocks : node_blocks;
573                 if (blocks > left_blocks)
574                         return false;
575         }
576
577         /* check current data section for dentry blocks. */
578         segno = CURSEG_I(sbi, CURSEG_HOT_DATA)->segno;
579         left_blocks = CAP_BLKS_PER_SEC(sbi) -
580                         get_ckpt_valid_blocks(sbi, segno, true);
581         if (dent_blocks > left_blocks)
582                 return false;
583         return true;
584 }
585
586 /*
587  * calculate needed sections for dirty node/dentry and call
588  * has_curseg_enough_space, please note that, it needs to account
589  * dirty data as well in lfs mode when checkpoint is disabled.
590  */
591 static inline void __get_secs_required(struct f2fs_sb_info *sbi,
592                 unsigned int *lower_p, unsigned int *upper_p, bool *curseg_p)
593 {
594         unsigned int total_node_blocks = get_pages(sbi, F2FS_DIRTY_NODES) +
595                                         get_pages(sbi, F2FS_DIRTY_DENTS) +
596                                         get_pages(sbi, F2FS_DIRTY_IMETA);
597         unsigned int total_dent_blocks = get_pages(sbi, F2FS_DIRTY_DENTS);
598         unsigned int total_data_blocks = 0;
599         unsigned int node_secs = total_node_blocks / CAP_BLKS_PER_SEC(sbi);
600         unsigned int dent_secs = total_dent_blocks / CAP_BLKS_PER_SEC(sbi);
601         unsigned int data_secs = 0;
602         unsigned int node_blocks = total_node_blocks % CAP_BLKS_PER_SEC(sbi);
603         unsigned int dent_blocks = total_dent_blocks % CAP_BLKS_PER_SEC(sbi);
604         unsigned int data_blocks = 0;
605
606         if (f2fs_lfs_mode(sbi) &&
607                 unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
608                 total_data_blocks = get_pages(sbi, F2FS_DIRTY_DATA);
609                 data_secs = total_data_blocks / CAP_BLKS_PER_SEC(sbi);
610                 data_blocks = total_data_blocks % CAP_BLKS_PER_SEC(sbi);
611         }
612
613         if (lower_p)
614                 *lower_p = node_secs + dent_secs + data_secs;
615         if (upper_p)
616                 *upper_p = node_secs + dent_secs +
617                         (node_blocks ? 1 : 0) + (dent_blocks ? 1 : 0) +
618                         (data_blocks ? 1 : 0);
619         if (curseg_p)
620                 *curseg_p = has_curseg_enough_space(sbi,
621                                 node_blocks, data_blocks, dent_blocks);
622 }
623
624 static inline bool has_not_enough_free_secs(struct f2fs_sb_info *sbi,
625                                         int freed, int needed)
626 {
627         unsigned int free_secs, lower_secs, upper_secs;
628         bool curseg_space;
629
630         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
631                 return false;
632
633         __get_secs_required(sbi, &lower_secs, &upper_secs, &curseg_space);
634
635         free_secs = free_sections(sbi) + freed;
636         lower_secs += needed + reserved_sections(sbi);
637         upper_secs += needed + reserved_sections(sbi);
638
639         if (free_secs > upper_secs)
640                 return false;
641         if (free_secs <= lower_secs)
642                 return true;
643         return !curseg_space;
644 }
645
646 static inline bool has_enough_free_secs(struct f2fs_sb_info *sbi,
647                                         int freed, int needed)
648 {
649         return !has_not_enough_free_secs(sbi, freed, needed);
650 }
651
652 static inline bool has_enough_free_blks(struct f2fs_sb_info *sbi)
653 {
654         unsigned int total_free_blocks = 0;
655         unsigned int avail_user_block_count;
656
657         spin_lock(&sbi->stat_lock);
658
659         avail_user_block_count = get_available_block_count(sbi, NULL, true);
660         total_free_blocks = avail_user_block_count - (unsigned int)valid_user_blocks(sbi);
661
662         spin_unlock(&sbi->stat_lock);
663
664         return total_free_blocks > 0;
665 }
666
667 static inline bool f2fs_is_checkpoint_ready(struct f2fs_sb_info *sbi)
668 {
669         if (likely(!is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
670                 return true;
671         if (likely(has_enough_free_secs(sbi, 0, 0)))
672                 return true;
673         if (!f2fs_lfs_mode(sbi) &&
674                 likely(has_enough_free_blks(sbi)))
675                 return true;
676         return false;
677 }
678
679 static inline bool excess_prefree_segs(struct f2fs_sb_info *sbi)
680 {
681         return prefree_segments(sbi) > SM_I(sbi)->rec_prefree_segments;
682 }
683
684 static inline int utilization(struct f2fs_sb_info *sbi)
685 {
686         return div_u64((u64)valid_user_blocks(sbi) * 100,
687                                         sbi->user_block_count);
688 }
689
690 /*
691  * Sometimes f2fs may be better to drop out-of-place update policy.
692  * And, users can control the policy through sysfs entries.
693  * There are five policies with triggering conditions as follows.
694  * F2FS_IPU_FORCE - all the time,
695  * F2FS_IPU_SSR - if SSR mode is activated,
696  * F2FS_IPU_UTIL - if FS utilization is over threashold,
697  * F2FS_IPU_SSR_UTIL - if SSR mode is activated and FS utilization is over
698  *                     threashold,
699  * F2FS_IPU_FSYNC - activated in fsync path only for high performance flash
700  *                     storages. IPU will be triggered only if the # of dirty
701  *                     pages over min_fsync_blocks. (=default option)
702  * F2FS_IPU_ASYNC - do IPU given by asynchronous write requests.
703  * F2FS_IPU_NOCACHE - disable IPU bio cache.
704  * F2FS_IPU_HONOR_OPU_WRITE - use OPU write prior to IPU write if inode has
705  *                            FI_OPU_WRITE flag.
706  * F2FS_IPU_DISABLE - disable IPU. (=default option in LFS mode)
707  */
708 #define DEF_MIN_IPU_UTIL        70
709 #define DEF_MIN_FSYNC_BLOCKS    8
710 #define DEF_MIN_HOT_BLOCKS      16
711
712 #define SMALL_VOLUME_SEGMENTS   (16 * 512)      /* 16GB */
713
714 #define F2FS_IPU_DISABLE        0
715
716 /* Modification on enum should be synchronized with ipu_mode_names array */
717 enum {
718         F2FS_IPU_FORCE,
719         F2FS_IPU_SSR,
720         F2FS_IPU_UTIL,
721         F2FS_IPU_SSR_UTIL,
722         F2FS_IPU_FSYNC,
723         F2FS_IPU_ASYNC,
724         F2FS_IPU_NOCACHE,
725         F2FS_IPU_HONOR_OPU_WRITE,
726         F2FS_IPU_MAX,
727 };
728
729 static inline bool IS_F2FS_IPU_DISABLE(struct f2fs_sb_info *sbi)
730 {
731         return SM_I(sbi)->ipu_policy == F2FS_IPU_DISABLE;
732 }
733
734 #define F2FS_IPU_POLICY(name)                                   \
735 static inline bool IS_##name(struct f2fs_sb_info *sbi)          \
736 {                                                               \
737         return SM_I(sbi)->ipu_policy & BIT(name);               \
738 }
739
740 F2FS_IPU_POLICY(F2FS_IPU_FORCE);
741 F2FS_IPU_POLICY(F2FS_IPU_SSR);
742 F2FS_IPU_POLICY(F2FS_IPU_UTIL);
743 F2FS_IPU_POLICY(F2FS_IPU_SSR_UTIL);
744 F2FS_IPU_POLICY(F2FS_IPU_FSYNC);
745 F2FS_IPU_POLICY(F2FS_IPU_ASYNC);
746 F2FS_IPU_POLICY(F2FS_IPU_NOCACHE);
747 F2FS_IPU_POLICY(F2FS_IPU_HONOR_OPU_WRITE);
748
749 static inline unsigned int curseg_segno(struct f2fs_sb_info *sbi,
750                 int type)
751 {
752         struct curseg_info *curseg = CURSEG_I(sbi, type);
753         return curseg->segno;
754 }
755
756 static inline unsigned char curseg_alloc_type(struct f2fs_sb_info *sbi,
757                 int type)
758 {
759         struct curseg_info *curseg = CURSEG_I(sbi, type);
760         return curseg->alloc_type;
761 }
762
763 static inline bool valid_main_segno(struct f2fs_sb_info *sbi,
764                 unsigned int segno)
765 {
766         return segno <= (MAIN_SEGS(sbi) - 1);
767 }
768
769 static inline void verify_fio_blkaddr(struct f2fs_io_info *fio)
770 {
771         struct f2fs_sb_info *sbi = fio->sbi;
772
773         if (__is_valid_data_blkaddr(fio->old_blkaddr))
774                 verify_blkaddr(sbi, fio->old_blkaddr, __is_meta_io(fio) ?
775                                         META_GENERIC : DATA_GENERIC);
776         verify_blkaddr(sbi, fio->new_blkaddr, __is_meta_io(fio) ?
777                                         META_GENERIC : DATA_GENERIC_ENHANCE);
778 }
779
780 /*
781  * Summary block is always treated as an invalid block
782  */
783 static inline int check_block_count(struct f2fs_sb_info *sbi,
784                 int segno, struct f2fs_sit_entry *raw_sit)
785 {
786         bool is_valid  = test_bit_le(0, raw_sit->valid_map) ? true : false;
787         int valid_blocks = 0;
788         int cur_pos = 0, next_pos;
789         unsigned int usable_blks_per_seg = f2fs_usable_blks_in_seg(sbi, segno);
790
791         /* check bitmap with valid block count */
792         do {
793                 if (is_valid) {
794                         next_pos = find_next_zero_bit_le(&raw_sit->valid_map,
795                                         usable_blks_per_seg,
796                                         cur_pos);
797                         valid_blocks += next_pos - cur_pos;
798                 } else
799                         next_pos = find_next_bit_le(&raw_sit->valid_map,
800                                         usable_blks_per_seg,
801                                         cur_pos);
802                 cur_pos = next_pos;
803                 is_valid = !is_valid;
804         } while (cur_pos < usable_blks_per_seg);
805
806         if (unlikely(GET_SIT_VBLOCKS(raw_sit) != valid_blocks)) {
807                 f2fs_err(sbi, "Mismatch valid blocks %d vs. %d",
808                          GET_SIT_VBLOCKS(raw_sit), valid_blocks);
809                 set_sbi_flag(sbi, SBI_NEED_FSCK);
810                 f2fs_handle_error(sbi, ERROR_INCONSISTENT_SIT);
811                 return -EFSCORRUPTED;
812         }
813
814         if (usable_blks_per_seg < BLKS_PER_SEG(sbi))
815                 f2fs_bug_on(sbi, find_next_bit_le(&raw_sit->valid_map,
816                                 BLKS_PER_SEG(sbi),
817                                 usable_blks_per_seg) != BLKS_PER_SEG(sbi));
818
819         /* check segment usage, and check boundary of a given segment number */
820         if (unlikely(GET_SIT_VBLOCKS(raw_sit) > usable_blks_per_seg
821                                         || !valid_main_segno(sbi, segno))) {
822                 f2fs_err(sbi, "Wrong valid blocks %d or segno %u",
823                          GET_SIT_VBLOCKS(raw_sit), segno);
824                 set_sbi_flag(sbi, SBI_NEED_FSCK);
825                 f2fs_handle_error(sbi, ERROR_INCONSISTENT_SIT);
826                 return -EFSCORRUPTED;
827         }
828         return 0;
829 }
830
831 static inline pgoff_t current_sit_addr(struct f2fs_sb_info *sbi,
832                                                 unsigned int start)
833 {
834         struct sit_info *sit_i = SIT_I(sbi);
835         unsigned int offset = SIT_BLOCK_OFFSET(start);
836         block_t blk_addr = sit_i->sit_base_addr + offset;
837
838         f2fs_bug_on(sbi, !valid_main_segno(sbi, start));
839
840 #ifdef CONFIG_F2FS_CHECK_FS
841         if (f2fs_test_bit(offset, sit_i->sit_bitmap) !=
842                         f2fs_test_bit(offset, sit_i->sit_bitmap_mir))
843                 f2fs_bug_on(sbi, 1);
844 #endif
845
846         /* calculate sit block address */
847         if (f2fs_test_bit(offset, sit_i->sit_bitmap))
848                 blk_addr += sit_i->sit_blocks;
849
850         return blk_addr;
851 }
852
853 static inline pgoff_t next_sit_addr(struct f2fs_sb_info *sbi,
854                                                 pgoff_t block_addr)
855 {
856         struct sit_info *sit_i = SIT_I(sbi);
857         block_addr -= sit_i->sit_base_addr;
858         if (block_addr < sit_i->sit_blocks)
859                 block_addr += sit_i->sit_blocks;
860         else
861                 block_addr -= sit_i->sit_blocks;
862
863         return block_addr + sit_i->sit_base_addr;
864 }
865
866 static inline void set_to_next_sit(struct sit_info *sit_i, unsigned int start)
867 {
868         unsigned int block_off = SIT_BLOCK_OFFSET(start);
869
870         f2fs_change_bit(block_off, sit_i->sit_bitmap);
871 #ifdef CONFIG_F2FS_CHECK_FS
872         f2fs_change_bit(block_off, sit_i->sit_bitmap_mir);
873 #endif
874 }
875
876 static inline unsigned long long get_mtime(struct f2fs_sb_info *sbi,
877                                                 bool base_time)
878 {
879         struct sit_info *sit_i = SIT_I(sbi);
880         time64_t diff, now = ktime_get_boottime_seconds();
881
882         if (now >= sit_i->mounted_time)
883                 return sit_i->elapsed_time + now - sit_i->mounted_time;
884
885         /* system time is set to the past */
886         if (!base_time) {
887                 diff = sit_i->mounted_time - now;
888                 if (sit_i->elapsed_time >= diff)
889                         return sit_i->elapsed_time - diff;
890                 return 0;
891         }
892         return sit_i->elapsed_time;
893 }
894
895 static inline void set_summary(struct f2fs_summary *sum, nid_t nid,
896                         unsigned int ofs_in_node, unsigned char version)
897 {
898         sum->nid = cpu_to_le32(nid);
899         sum->ofs_in_node = cpu_to_le16(ofs_in_node);
900         sum->version = version;
901 }
902
903 static inline block_t start_sum_block(struct f2fs_sb_info *sbi)
904 {
905         return __start_cp_addr(sbi) +
906                 le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
907 }
908
909 static inline block_t sum_blk_addr(struct f2fs_sb_info *sbi, int base, int type)
910 {
911         return __start_cp_addr(sbi) +
912                 le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_total_block_count)
913                                 - (base + 1) + type;
914 }
915
916 static inline bool sec_usage_check(struct f2fs_sb_info *sbi, unsigned int secno)
917 {
918         if (IS_CURSEC(sbi, secno) || (sbi->cur_victim_sec == secno))
919                 return true;
920         return false;
921 }
922
923 /*
924  * It is very important to gather dirty pages and write at once, so that we can
925  * submit a big bio without interfering other data writes.
926  * By default, 512 pages for directory data,
927  * 512 pages (2MB) * 8 for nodes, and
928  * 256 pages * 8 for meta are set.
929  */
930 static inline int nr_pages_to_skip(struct f2fs_sb_info *sbi, int type)
931 {
932         if (sbi->sb->s_bdi->wb.dirty_exceeded)
933                 return 0;
934
935         if (type == DATA)
936                 return BLKS_PER_SEG(sbi);
937         else if (type == NODE)
938                 return SEGS_TO_BLKS(sbi, 8);
939         else if (type == META)
940                 return 8 * BIO_MAX_VECS;
941         else
942                 return 0;
943 }
944
945 /*
946  * When writing pages, it'd better align nr_to_write for segment size.
947  */
948 static inline long nr_pages_to_write(struct f2fs_sb_info *sbi, int type,
949                                         struct writeback_control *wbc)
950 {
951         long nr_to_write, desired;
952
953         if (wbc->sync_mode != WB_SYNC_NONE)
954                 return 0;
955
956         nr_to_write = wbc->nr_to_write;
957         desired = BIO_MAX_VECS;
958         if (type == NODE)
959                 desired <<= 1;
960
961         wbc->nr_to_write = desired;
962         return desired - nr_to_write;
963 }
964
965 static inline void wake_up_discard_thread(struct f2fs_sb_info *sbi, bool force)
966 {
967         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
968         bool wakeup = false;
969         int i;
970
971         if (force)
972                 goto wake_up;
973
974         mutex_lock(&dcc->cmd_lock);
975         for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
976                 if (i + 1 < dcc->discard_granularity)
977                         break;
978                 if (!list_empty(&dcc->pend_list[i])) {
979                         wakeup = true;
980                         break;
981                 }
982         }
983         mutex_unlock(&dcc->cmd_lock);
984         if (!wakeup || !is_idle(sbi, DISCARD_TIME))
985                 return;
986 wake_up:
987         dcc->discard_wake = true;
988         wake_up_interruptible_all(&dcc->discard_wait_queue);
989 }
This page took 0.08257 seconds and 4 git commands to generate.