]> Git Repo - J-linux.git/blob - fs/f2fs/node.c
Merge tag 'vfs-6.13-rc7.fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs
[J-linux.git] / fs / f2fs / node.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/node.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/mpage.h>
11 #include <linux/sched/mm.h>
12 #include <linux/blkdev.h>
13 #include <linux/pagevec.h>
14 #include <linux/swap.h>
15
16 #include "f2fs.h"
17 #include "node.h"
18 #include "segment.h"
19 #include "xattr.h"
20 #include "iostat.h"
21 #include <trace/events/f2fs.h>
22
23 #define on_f2fs_build_free_nids(nm_i) mutex_is_locked(&(nm_i)->build_lock)
24
25 static struct kmem_cache *nat_entry_slab;
26 static struct kmem_cache *free_nid_slab;
27 static struct kmem_cache *nat_entry_set_slab;
28 static struct kmem_cache *fsync_node_entry_slab;
29
30 /*
31  * Check whether the given nid is within node id range.
32  */
33 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
34 {
35         if (unlikely(nid < F2FS_ROOT_INO(sbi) || nid >= NM_I(sbi)->max_nid)) {
36                 set_sbi_flag(sbi, SBI_NEED_FSCK);
37                 f2fs_warn(sbi, "%s: out-of-range nid=%x, run fsck to fix.",
38                           __func__, nid);
39                 f2fs_handle_error(sbi, ERROR_CORRUPTED_INODE);
40                 return -EFSCORRUPTED;
41         }
42         return 0;
43 }
44
45 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type)
46 {
47         struct f2fs_nm_info *nm_i = NM_I(sbi);
48         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
49         struct sysinfo val;
50         unsigned long avail_ram;
51         unsigned long mem_size = 0;
52         bool res = false;
53
54         if (!nm_i)
55                 return true;
56
57         si_meminfo(&val);
58
59         /* only uses low memory */
60         avail_ram = val.totalram - val.totalhigh;
61
62         /*
63          * give 25%, 25%, 50%, 50%, 25%, 25% memory for each components respectively
64          */
65         if (type == FREE_NIDS) {
66                 mem_size = (nm_i->nid_cnt[FREE_NID] *
67                                 sizeof(struct free_nid)) >> PAGE_SHIFT;
68                 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
69         } else if (type == NAT_ENTRIES) {
70                 mem_size = (nm_i->nat_cnt[TOTAL_NAT] *
71                                 sizeof(struct nat_entry)) >> PAGE_SHIFT;
72                 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
73                 if (excess_cached_nats(sbi))
74                         res = false;
75         } else if (type == DIRTY_DENTS) {
76                 if (sbi->sb->s_bdi->wb.dirty_exceeded)
77                         return false;
78                 mem_size = get_pages(sbi, F2FS_DIRTY_DENTS);
79                 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
80         } else if (type == INO_ENTRIES) {
81                 int i;
82
83                 for (i = 0; i < MAX_INO_ENTRY; i++)
84                         mem_size += sbi->im[i].ino_num *
85                                                 sizeof(struct ino_entry);
86                 mem_size >>= PAGE_SHIFT;
87                 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
88         } else if (type == READ_EXTENT_CACHE || type == AGE_EXTENT_CACHE) {
89                 enum extent_type etype = type == READ_EXTENT_CACHE ?
90                                                 EX_READ : EX_BLOCK_AGE;
91                 struct extent_tree_info *eti = &sbi->extent_tree[etype];
92
93                 mem_size = (atomic_read(&eti->total_ext_tree) *
94                                 sizeof(struct extent_tree) +
95                                 atomic_read(&eti->total_ext_node) *
96                                 sizeof(struct extent_node)) >> PAGE_SHIFT;
97                 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
98         } else if (type == DISCARD_CACHE) {
99                 mem_size = (atomic_read(&dcc->discard_cmd_cnt) *
100                                 sizeof(struct discard_cmd)) >> PAGE_SHIFT;
101                 res = mem_size < (avail_ram * nm_i->ram_thresh / 100);
102         } else if (type == COMPRESS_PAGE) {
103 #ifdef CONFIG_F2FS_FS_COMPRESSION
104                 unsigned long free_ram = val.freeram;
105
106                 /*
107                  * free memory is lower than watermark or cached page count
108                  * exceed threshold, deny caching compress page.
109                  */
110                 res = (free_ram > avail_ram * sbi->compress_watermark / 100) &&
111                         (COMPRESS_MAPPING(sbi)->nrpages <
112                          free_ram * sbi->compress_percent / 100);
113 #else
114                 res = false;
115 #endif
116         } else {
117                 if (!sbi->sb->s_bdi->wb.dirty_exceeded)
118                         return true;
119         }
120         return res;
121 }
122
123 static void clear_node_page_dirty(struct page *page)
124 {
125         if (PageDirty(page)) {
126                 f2fs_clear_page_cache_dirty_tag(page_folio(page));
127                 clear_page_dirty_for_io(page);
128                 dec_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
129         }
130         ClearPageUptodate(page);
131 }
132
133 static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
134 {
135         return f2fs_get_meta_page_retry(sbi, current_nat_addr(sbi, nid));
136 }
137
138 static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
139 {
140         struct page *src_page;
141         struct page *dst_page;
142         pgoff_t dst_off;
143         void *src_addr;
144         void *dst_addr;
145         struct f2fs_nm_info *nm_i = NM_I(sbi);
146
147         dst_off = next_nat_addr(sbi, current_nat_addr(sbi, nid));
148
149         /* get current nat block page with lock */
150         src_page = get_current_nat_page(sbi, nid);
151         if (IS_ERR(src_page))
152                 return src_page;
153         dst_page = f2fs_grab_meta_page(sbi, dst_off);
154         f2fs_bug_on(sbi, PageDirty(src_page));
155
156         src_addr = page_address(src_page);
157         dst_addr = page_address(dst_page);
158         memcpy(dst_addr, src_addr, PAGE_SIZE);
159         set_page_dirty(dst_page);
160         f2fs_put_page(src_page, 1);
161
162         set_to_next_nat(nm_i, nid);
163
164         return dst_page;
165 }
166
167 static struct nat_entry *__alloc_nat_entry(struct f2fs_sb_info *sbi,
168                                                 nid_t nid, bool no_fail)
169 {
170         struct nat_entry *new;
171
172         new = f2fs_kmem_cache_alloc(nat_entry_slab,
173                                         GFP_F2FS_ZERO, no_fail, sbi);
174         if (new) {
175                 nat_set_nid(new, nid);
176                 nat_reset_flag(new);
177         }
178         return new;
179 }
180
181 static void __free_nat_entry(struct nat_entry *e)
182 {
183         kmem_cache_free(nat_entry_slab, e);
184 }
185
186 /* must be locked by nat_tree_lock */
187 static struct nat_entry *__init_nat_entry(struct f2fs_nm_info *nm_i,
188         struct nat_entry *ne, struct f2fs_nat_entry *raw_ne, bool no_fail)
189 {
190         if (no_fail)
191                 f2fs_radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne);
192         else if (radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne))
193                 return NULL;
194
195         if (raw_ne)
196                 node_info_from_raw_nat(&ne->ni, raw_ne);
197
198         spin_lock(&nm_i->nat_list_lock);
199         list_add_tail(&ne->list, &nm_i->nat_entries);
200         spin_unlock(&nm_i->nat_list_lock);
201
202         nm_i->nat_cnt[TOTAL_NAT]++;
203         nm_i->nat_cnt[RECLAIMABLE_NAT]++;
204         return ne;
205 }
206
207 static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
208 {
209         struct nat_entry *ne;
210
211         ne = radix_tree_lookup(&nm_i->nat_root, n);
212
213         /* for recent accessed nat entry, move it to tail of lru list */
214         if (ne && !get_nat_flag(ne, IS_DIRTY)) {
215                 spin_lock(&nm_i->nat_list_lock);
216                 if (!list_empty(&ne->list))
217                         list_move_tail(&ne->list, &nm_i->nat_entries);
218                 spin_unlock(&nm_i->nat_list_lock);
219         }
220
221         return ne;
222 }
223
224 static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
225                 nid_t start, unsigned int nr, struct nat_entry **ep)
226 {
227         return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
228 }
229
230 static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
231 {
232         radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
233         nm_i->nat_cnt[TOTAL_NAT]--;
234         nm_i->nat_cnt[RECLAIMABLE_NAT]--;
235         __free_nat_entry(e);
236 }
237
238 static struct nat_entry_set *__grab_nat_entry_set(struct f2fs_nm_info *nm_i,
239                                                         struct nat_entry *ne)
240 {
241         nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
242         struct nat_entry_set *head;
243
244         head = radix_tree_lookup(&nm_i->nat_set_root, set);
245         if (!head) {
246                 head = f2fs_kmem_cache_alloc(nat_entry_set_slab,
247                                                 GFP_NOFS, true, NULL);
248
249                 INIT_LIST_HEAD(&head->entry_list);
250                 INIT_LIST_HEAD(&head->set_list);
251                 head->set = set;
252                 head->entry_cnt = 0;
253                 f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head);
254         }
255         return head;
256 }
257
258 static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i,
259                                                 struct nat_entry *ne)
260 {
261         struct nat_entry_set *head;
262         bool new_ne = nat_get_blkaddr(ne) == NEW_ADDR;
263
264         if (!new_ne)
265                 head = __grab_nat_entry_set(nm_i, ne);
266
267         /*
268          * update entry_cnt in below condition:
269          * 1. update NEW_ADDR to valid block address;
270          * 2. update old block address to new one;
271          */
272         if (!new_ne && (get_nat_flag(ne, IS_PREALLOC) ||
273                                 !get_nat_flag(ne, IS_DIRTY)))
274                 head->entry_cnt++;
275
276         set_nat_flag(ne, IS_PREALLOC, new_ne);
277
278         if (get_nat_flag(ne, IS_DIRTY))
279                 goto refresh_list;
280
281         nm_i->nat_cnt[DIRTY_NAT]++;
282         nm_i->nat_cnt[RECLAIMABLE_NAT]--;
283         set_nat_flag(ne, IS_DIRTY, true);
284 refresh_list:
285         spin_lock(&nm_i->nat_list_lock);
286         if (new_ne)
287                 list_del_init(&ne->list);
288         else
289                 list_move_tail(&ne->list, &head->entry_list);
290         spin_unlock(&nm_i->nat_list_lock);
291 }
292
293 static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i,
294                 struct nat_entry_set *set, struct nat_entry *ne)
295 {
296         spin_lock(&nm_i->nat_list_lock);
297         list_move_tail(&ne->list, &nm_i->nat_entries);
298         spin_unlock(&nm_i->nat_list_lock);
299
300         set_nat_flag(ne, IS_DIRTY, false);
301         set->entry_cnt--;
302         nm_i->nat_cnt[DIRTY_NAT]--;
303         nm_i->nat_cnt[RECLAIMABLE_NAT]++;
304 }
305
306 static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i,
307                 nid_t start, unsigned int nr, struct nat_entry_set **ep)
308 {
309         return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep,
310                                                         start, nr);
311 }
312
313 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page)
314 {
315         return NODE_MAPPING(sbi) == page->mapping &&
316                         IS_DNODE(page) && is_cold_node(page);
317 }
318
319 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi)
320 {
321         spin_lock_init(&sbi->fsync_node_lock);
322         INIT_LIST_HEAD(&sbi->fsync_node_list);
323         sbi->fsync_seg_id = 0;
324         sbi->fsync_node_num = 0;
325 }
326
327 static unsigned int f2fs_add_fsync_node_entry(struct f2fs_sb_info *sbi,
328                                                         struct page *page)
329 {
330         struct fsync_node_entry *fn;
331         unsigned long flags;
332         unsigned int seq_id;
333
334         fn = f2fs_kmem_cache_alloc(fsync_node_entry_slab,
335                                         GFP_NOFS, true, NULL);
336
337         get_page(page);
338         fn->page = page;
339         INIT_LIST_HEAD(&fn->list);
340
341         spin_lock_irqsave(&sbi->fsync_node_lock, flags);
342         list_add_tail(&fn->list, &sbi->fsync_node_list);
343         fn->seq_id = sbi->fsync_seg_id++;
344         seq_id = fn->seq_id;
345         sbi->fsync_node_num++;
346         spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
347
348         return seq_id;
349 }
350
351 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page)
352 {
353         struct fsync_node_entry *fn;
354         unsigned long flags;
355
356         spin_lock_irqsave(&sbi->fsync_node_lock, flags);
357         list_for_each_entry(fn, &sbi->fsync_node_list, list) {
358                 if (fn->page == page) {
359                         list_del(&fn->list);
360                         sbi->fsync_node_num--;
361                         spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
362                         kmem_cache_free(fsync_node_entry_slab, fn);
363                         put_page(page);
364                         return;
365                 }
366         }
367         spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
368         f2fs_bug_on(sbi, 1);
369 }
370
371 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi)
372 {
373         unsigned long flags;
374
375         spin_lock_irqsave(&sbi->fsync_node_lock, flags);
376         sbi->fsync_seg_id = 0;
377         spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
378 }
379
380 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid)
381 {
382         struct f2fs_nm_info *nm_i = NM_I(sbi);
383         struct nat_entry *e;
384         bool need = false;
385
386         f2fs_down_read(&nm_i->nat_tree_lock);
387         e = __lookup_nat_cache(nm_i, nid);
388         if (e) {
389                 if (!get_nat_flag(e, IS_CHECKPOINTED) &&
390                                 !get_nat_flag(e, HAS_FSYNCED_INODE))
391                         need = true;
392         }
393         f2fs_up_read(&nm_i->nat_tree_lock);
394         return need;
395 }
396
397 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
398 {
399         struct f2fs_nm_info *nm_i = NM_I(sbi);
400         struct nat_entry *e;
401         bool is_cp = true;
402
403         f2fs_down_read(&nm_i->nat_tree_lock);
404         e = __lookup_nat_cache(nm_i, nid);
405         if (e && !get_nat_flag(e, IS_CHECKPOINTED))
406                 is_cp = false;
407         f2fs_up_read(&nm_i->nat_tree_lock);
408         return is_cp;
409 }
410
411 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino)
412 {
413         struct f2fs_nm_info *nm_i = NM_I(sbi);
414         struct nat_entry *e;
415         bool need_update = true;
416
417         f2fs_down_read(&nm_i->nat_tree_lock);
418         e = __lookup_nat_cache(nm_i, ino);
419         if (e && get_nat_flag(e, HAS_LAST_FSYNC) &&
420                         (get_nat_flag(e, IS_CHECKPOINTED) ||
421                          get_nat_flag(e, HAS_FSYNCED_INODE)))
422                 need_update = false;
423         f2fs_up_read(&nm_i->nat_tree_lock);
424         return need_update;
425 }
426
427 /* must be locked by nat_tree_lock */
428 static void cache_nat_entry(struct f2fs_sb_info *sbi, nid_t nid,
429                                                 struct f2fs_nat_entry *ne)
430 {
431         struct f2fs_nm_info *nm_i = NM_I(sbi);
432         struct nat_entry *new, *e;
433
434         /* Let's mitigate lock contention of nat_tree_lock during checkpoint */
435         if (f2fs_rwsem_is_locked(&sbi->cp_global_sem))
436                 return;
437
438         new = __alloc_nat_entry(sbi, nid, false);
439         if (!new)
440                 return;
441
442         f2fs_down_write(&nm_i->nat_tree_lock);
443         e = __lookup_nat_cache(nm_i, nid);
444         if (!e)
445                 e = __init_nat_entry(nm_i, new, ne, false);
446         else
447                 f2fs_bug_on(sbi, nat_get_ino(e) != le32_to_cpu(ne->ino) ||
448                                 nat_get_blkaddr(e) !=
449                                         le32_to_cpu(ne->block_addr) ||
450                                 nat_get_version(e) != ne->version);
451         f2fs_up_write(&nm_i->nat_tree_lock);
452         if (e != new)
453                 __free_nat_entry(new);
454 }
455
456 static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
457                         block_t new_blkaddr, bool fsync_done)
458 {
459         struct f2fs_nm_info *nm_i = NM_I(sbi);
460         struct nat_entry *e;
461         struct nat_entry *new = __alloc_nat_entry(sbi, ni->nid, true);
462
463         f2fs_down_write(&nm_i->nat_tree_lock);
464         e = __lookup_nat_cache(nm_i, ni->nid);
465         if (!e) {
466                 e = __init_nat_entry(nm_i, new, NULL, true);
467                 copy_node_info(&e->ni, ni);
468                 f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR);
469         } else if (new_blkaddr == NEW_ADDR) {
470                 /*
471                  * when nid is reallocated,
472                  * previous nat entry can be remained in nat cache.
473                  * So, reinitialize it with new information.
474                  */
475                 copy_node_info(&e->ni, ni);
476                 f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR);
477         }
478         /* let's free early to reduce memory consumption */
479         if (e != new)
480                 __free_nat_entry(new);
481
482         /* sanity check */
483         f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr);
484         f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR &&
485                         new_blkaddr == NULL_ADDR);
486         f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR &&
487                         new_blkaddr == NEW_ADDR);
488         f2fs_bug_on(sbi, __is_valid_data_blkaddr(nat_get_blkaddr(e)) &&
489                         new_blkaddr == NEW_ADDR);
490
491         /* increment version no as node is removed */
492         if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
493                 unsigned char version = nat_get_version(e);
494
495                 nat_set_version(e, inc_node_version(version));
496         }
497
498         /* change address */
499         nat_set_blkaddr(e, new_blkaddr);
500         if (!__is_valid_data_blkaddr(new_blkaddr))
501                 set_nat_flag(e, IS_CHECKPOINTED, false);
502         __set_nat_cache_dirty(nm_i, e);
503
504         /* update fsync_mark if its inode nat entry is still alive */
505         if (ni->nid != ni->ino)
506                 e = __lookup_nat_cache(nm_i, ni->ino);
507         if (e) {
508                 if (fsync_done && ni->nid == ni->ino)
509                         set_nat_flag(e, HAS_FSYNCED_INODE, true);
510                 set_nat_flag(e, HAS_LAST_FSYNC, fsync_done);
511         }
512         f2fs_up_write(&nm_i->nat_tree_lock);
513 }
514
515 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
516 {
517         struct f2fs_nm_info *nm_i = NM_I(sbi);
518         int nr = nr_shrink;
519
520         if (!f2fs_down_write_trylock(&nm_i->nat_tree_lock))
521                 return 0;
522
523         spin_lock(&nm_i->nat_list_lock);
524         while (nr_shrink) {
525                 struct nat_entry *ne;
526
527                 if (list_empty(&nm_i->nat_entries))
528                         break;
529
530                 ne = list_first_entry(&nm_i->nat_entries,
531                                         struct nat_entry, list);
532                 list_del(&ne->list);
533                 spin_unlock(&nm_i->nat_list_lock);
534
535                 __del_from_nat_cache(nm_i, ne);
536                 nr_shrink--;
537
538                 spin_lock(&nm_i->nat_list_lock);
539         }
540         spin_unlock(&nm_i->nat_list_lock);
541
542         f2fs_up_write(&nm_i->nat_tree_lock);
543         return nr - nr_shrink;
544 }
545
546 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
547                                 struct node_info *ni, bool checkpoint_context)
548 {
549         struct f2fs_nm_info *nm_i = NM_I(sbi);
550         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
551         struct f2fs_journal *journal = curseg->journal;
552         nid_t start_nid = START_NID(nid);
553         struct f2fs_nat_block *nat_blk;
554         struct page *page = NULL;
555         struct f2fs_nat_entry ne;
556         struct nat_entry *e;
557         pgoff_t index;
558         block_t blkaddr;
559         int i;
560
561         ni->nid = nid;
562 retry:
563         /* Check nat cache */
564         f2fs_down_read(&nm_i->nat_tree_lock);
565         e = __lookup_nat_cache(nm_i, nid);
566         if (e) {
567                 ni->ino = nat_get_ino(e);
568                 ni->blk_addr = nat_get_blkaddr(e);
569                 ni->version = nat_get_version(e);
570                 f2fs_up_read(&nm_i->nat_tree_lock);
571                 return 0;
572         }
573
574         /*
575          * Check current segment summary by trying to grab journal_rwsem first.
576          * This sem is on the critical path on the checkpoint requiring the above
577          * nat_tree_lock. Therefore, we should retry, if we failed to grab here
578          * while not bothering checkpoint.
579          */
580         if (!f2fs_rwsem_is_locked(&sbi->cp_global_sem) || checkpoint_context) {
581                 down_read(&curseg->journal_rwsem);
582         } else if (f2fs_rwsem_is_contended(&nm_i->nat_tree_lock) ||
583                                 !down_read_trylock(&curseg->journal_rwsem)) {
584                 f2fs_up_read(&nm_i->nat_tree_lock);
585                 goto retry;
586         }
587
588         i = f2fs_lookup_journal_in_cursum(journal, NAT_JOURNAL, nid, 0);
589         if (i >= 0) {
590                 ne = nat_in_journal(journal, i);
591                 node_info_from_raw_nat(ni, &ne);
592         }
593         up_read(&curseg->journal_rwsem);
594         if (i >= 0) {
595                 f2fs_up_read(&nm_i->nat_tree_lock);
596                 goto cache;
597         }
598
599         /* Fill node_info from nat page */
600         index = current_nat_addr(sbi, nid);
601         f2fs_up_read(&nm_i->nat_tree_lock);
602
603         page = f2fs_get_meta_page(sbi, index);
604         if (IS_ERR(page))
605                 return PTR_ERR(page);
606
607         nat_blk = (struct f2fs_nat_block *)page_address(page);
608         ne = nat_blk->entries[nid - start_nid];
609         node_info_from_raw_nat(ni, &ne);
610         f2fs_put_page(page, 1);
611 cache:
612         blkaddr = le32_to_cpu(ne.block_addr);
613         if (__is_valid_data_blkaddr(blkaddr) &&
614                 !f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE))
615                 return -EFAULT;
616
617         /* cache nat entry */
618         cache_nat_entry(sbi, nid, &ne);
619         return 0;
620 }
621
622 /*
623  * readahead MAX_RA_NODE number of node pages.
624  */
625 static void f2fs_ra_node_pages(struct page *parent, int start, int n)
626 {
627         struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
628         struct blk_plug plug;
629         int i, end;
630         nid_t nid;
631
632         blk_start_plug(&plug);
633
634         /* Then, try readahead for siblings of the desired node */
635         end = start + n;
636         end = min(end, (int)NIDS_PER_BLOCK);
637         for (i = start; i < end; i++) {
638                 nid = get_nid(parent, i, false);
639                 f2fs_ra_node_page(sbi, nid);
640         }
641
642         blk_finish_plug(&plug);
643 }
644
645 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs)
646 {
647         const long direct_index = ADDRS_PER_INODE(dn->inode);
648         const long direct_blks = ADDRS_PER_BLOCK(dn->inode);
649         const long indirect_blks = ADDRS_PER_BLOCK(dn->inode) * NIDS_PER_BLOCK;
650         unsigned int skipped_unit = ADDRS_PER_BLOCK(dn->inode);
651         int cur_level = dn->cur_level;
652         int max_level = dn->max_level;
653         pgoff_t base = 0;
654
655         if (!dn->max_level)
656                 return pgofs + 1;
657
658         while (max_level-- > cur_level)
659                 skipped_unit *= NIDS_PER_BLOCK;
660
661         switch (dn->max_level) {
662         case 3:
663                 base += 2 * indirect_blks;
664                 fallthrough;
665         case 2:
666                 base += 2 * direct_blks;
667                 fallthrough;
668         case 1:
669                 base += direct_index;
670                 break;
671         default:
672                 f2fs_bug_on(F2FS_I_SB(dn->inode), 1);
673         }
674
675         return ((pgofs - base) / skipped_unit + 1) * skipped_unit + base;
676 }
677
678 /*
679  * The maximum depth is four.
680  * Offset[0] will have raw inode offset.
681  */
682 static int get_node_path(struct inode *inode, long block,
683                                 int offset[4], unsigned int noffset[4])
684 {
685         const long direct_index = ADDRS_PER_INODE(inode);
686         const long direct_blks = ADDRS_PER_BLOCK(inode);
687         const long dptrs_per_blk = NIDS_PER_BLOCK;
688         const long indirect_blks = ADDRS_PER_BLOCK(inode) * NIDS_PER_BLOCK;
689         const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
690         int n = 0;
691         int level = 0;
692
693         noffset[0] = 0;
694
695         if (block < direct_index) {
696                 offset[n] = block;
697                 goto got;
698         }
699         block -= direct_index;
700         if (block < direct_blks) {
701                 offset[n++] = NODE_DIR1_BLOCK;
702                 noffset[n] = 1;
703                 offset[n] = block;
704                 level = 1;
705                 goto got;
706         }
707         block -= direct_blks;
708         if (block < direct_blks) {
709                 offset[n++] = NODE_DIR2_BLOCK;
710                 noffset[n] = 2;
711                 offset[n] = block;
712                 level = 1;
713                 goto got;
714         }
715         block -= direct_blks;
716         if (block < indirect_blks) {
717                 offset[n++] = NODE_IND1_BLOCK;
718                 noffset[n] = 3;
719                 offset[n++] = block / direct_blks;
720                 noffset[n] = 4 + offset[n - 1];
721                 offset[n] = block % direct_blks;
722                 level = 2;
723                 goto got;
724         }
725         block -= indirect_blks;
726         if (block < indirect_blks) {
727                 offset[n++] = NODE_IND2_BLOCK;
728                 noffset[n] = 4 + dptrs_per_blk;
729                 offset[n++] = block / direct_blks;
730                 noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
731                 offset[n] = block % direct_blks;
732                 level = 2;
733                 goto got;
734         }
735         block -= indirect_blks;
736         if (block < dindirect_blks) {
737                 offset[n++] = NODE_DIND_BLOCK;
738                 noffset[n] = 5 + (dptrs_per_blk * 2);
739                 offset[n++] = block / indirect_blks;
740                 noffset[n] = 6 + (dptrs_per_blk * 2) +
741                               offset[n - 1] * (dptrs_per_blk + 1);
742                 offset[n++] = (block / direct_blks) % dptrs_per_blk;
743                 noffset[n] = 7 + (dptrs_per_blk * 2) +
744                               offset[n - 2] * (dptrs_per_blk + 1) +
745                               offset[n - 1];
746                 offset[n] = block % direct_blks;
747                 level = 3;
748                 goto got;
749         } else {
750                 return -E2BIG;
751         }
752 got:
753         return level;
754 }
755
756 /*
757  * Caller should call f2fs_put_dnode(dn).
758  * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
759  * f2fs_unlock_op() only if mode is set with ALLOC_NODE.
760  */
761 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
762 {
763         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
764         struct page *npage[4];
765         struct page *parent = NULL;
766         int offset[4];
767         unsigned int noffset[4];
768         nid_t nids[4];
769         int level, i = 0;
770         int err = 0;
771
772         level = get_node_path(dn->inode, index, offset, noffset);
773         if (level < 0)
774                 return level;
775
776         nids[0] = dn->inode->i_ino;
777         npage[0] = dn->inode_page;
778
779         if (!npage[0]) {
780                 npage[0] = f2fs_get_node_page(sbi, nids[0]);
781                 if (IS_ERR(npage[0]))
782                         return PTR_ERR(npage[0]);
783         }
784
785         /* if inline_data is set, should not report any block indices */
786         if (f2fs_has_inline_data(dn->inode) && index) {
787                 err = -ENOENT;
788                 f2fs_put_page(npage[0], 1);
789                 goto release_out;
790         }
791
792         parent = npage[0];
793         if (level != 0)
794                 nids[1] = get_nid(parent, offset[0], true);
795         dn->inode_page = npage[0];
796         dn->inode_page_locked = true;
797
798         /* get indirect or direct nodes */
799         for (i = 1; i <= level; i++) {
800                 bool done = false;
801
802                 if (!nids[i] && mode == ALLOC_NODE) {
803                         /* alloc new node */
804                         if (!f2fs_alloc_nid(sbi, &(nids[i]))) {
805                                 err = -ENOSPC;
806                                 goto release_pages;
807                         }
808
809                         dn->nid = nids[i];
810                         npage[i] = f2fs_new_node_page(dn, noffset[i]);
811                         if (IS_ERR(npage[i])) {
812                                 f2fs_alloc_nid_failed(sbi, nids[i]);
813                                 err = PTR_ERR(npage[i]);
814                                 goto release_pages;
815                         }
816
817                         set_nid(parent, offset[i - 1], nids[i], i == 1);
818                         f2fs_alloc_nid_done(sbi, nids[i]);
819                         done = true;
820                 } else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
821                         npage[i] = f2fs_get_node_page_ra(parent, offset[i - 1]);
822                         if (IS_ERR(npage[i])) {
823                                 err = PTR_ERR(npage[i]);
824                                 goto release_pages;
825                         }
826                         done = true;
827                 }
828                 if (i == 1) {
829                         dn->inode_page_locked = false;
830                         unlock_page(parent);
831                 } else {
832                         f2fs_put_page(parent, 1);
833                 }
834
835                 if (!done) {
836                         npage[i] = f2fs_get_node_page(sbi, nids[i]);
837                         if (IS_ERR(npage[i])) {
838                                 err = PTR_ERR(npage[i]);
839                                 f2fs_put_page(npage[0], 0);
840                                 goto release_out;
841                         }
842                 }
843                 if (i < level) {
844                         parent = npage[i];
845                         nids[i + 1] = get_nid(parent, offset[i], false);
846                 }
847         }
848         dn->nid = nids[level];
849         dn->ofs_in_node = offset[level];
850         dn->node_page = npage[level];
851         dn->data_blkaddr = f2fs_data_blkaddr(dn);
852
853         if (is_inode_flag_set(dn->inode, FI_COMPRESSED_FILE) &&
854                                         f2fs_sb_has_readonly(sbi)) {
855                 unsigned int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
856                 unsigned int ofs_in_node = dn->ofs_in_node;
857                 pgoff_t fofs = index;
858                 unsigned int c_len;
859                 block_t blkaddr;
860
861                 /* should align fofs and ofs_in_node to cluster_size */
862                 if (fofs % cluster_size) {
863                         fofs = round_down(fofs, cluster_size);
864                         ofs_in_node = round_down(ofs_in_node, cluster_size);
865                 }
866
867                 c_len = f2fs_cluster_blocks_are_contiguous(dn, ofs_in_node);
868                 if (!c_len)
869                         goto out;
870
871                 blkaddr = data_blkaddr(dn->inode, dn->node_page, ofs_in_node);
872                 if (blkaddr == COMPRESS_ADDR)
873                         blkaddr = data_blkaddr(dn->inode, dn->node_page,
874                                                 ofs_in_node + 1);
875
876                 f2fs_update_read_extent_tree_range_compressed(dn->inode,
877                                         fofs, blkaddr, cluster_size, c_len);
878         }
879 out:
880         return 0;
881
882 release_pages:
883         f2fs_put_page(parent, 1);
884         if (i > 1)
885                 f2fs_put_page(npage[0], 0);
886 release_out:
887         dn->inode_page = NULL;
888         dn->node_page = NULL;
889         if (err == -ENOENT) {
890                 dn->cur_level = i;
891                 dn->max_level = level;
892                 dn->ofs_in_node = offset[level];
893         }
894         return err;
895 }
896
897 static int truncate_node(struct dnode_of_data *dn)
898 {
899         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
900         struct node_info ni;
901         int err;
902         pgoff_t index;
903
904         err = f2fs_get_node_info(sbi, dn->nid, &ni, false);
905         if (err)
906                 return err;
907
908         if (ni.blk_addr != NEW_ADDR &&
909                 !f2fs_is_valid_blkaddr(sbi, ni.blk_addr, DATA_GENERIC_ENHANCE)) {
910                 f2fs_err_ratelimited(sbi,
911                         "nat entry is corrupted, run fsck to fix it, ino:%u, "
912                         "nid:%u, blkaddr:%u", ni.ino, ni.nid, ni.blk_addr);
913                 set_sbi_flag(sbi, SBI_NEED_FSCK);
914                 f2fs_handle_error(sbi, ERROR_INCONSISTENT_NAT);
915                 return -EFSCORRUPTED;
916         }
917
918         /* Deallocate node address */
919         f2fs_invalidate_blocks(sbi, ni.blk_addr);
920         dec_valid_node_count(sbi, dn->inode, dn->nid == dn->inode->i_ino);
921         set_node_addr(sbi, &ni, NULL_ADDR, false);
922
923         if (dn->nid == dn->inode->i_ino) {
924                 f2fs_remove_orphan_inode(sbi, dn->nid);
925                 dec_valid_inode_count(sbi);
926                 f2fs_inode_synced(dn->inode);
927         }
928
929         clear_node_page_dirty(dn->node_page);
930         set_sbi_flag(sbi, SBI_IS_DIRTY);
931
932         index = page_folio(dn->node_page)->index;
933         f2fs_put_page(dn->node_page, 1);
934
935         invalidate_mapping_pages(NODE_MAPPING(sbi),
936                         index, index);
937
938         dn->node_page = NULL;
939         trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
940
941         return 0;
942 }
943
944 static int truncate_dnode(struct dnode_of_data *dn)
945 {
946         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
947         struct page *page;
948         int err;
949
950         if (dn->nid == 0)
951                 return 1;
952
953         /* get direct node */
954         page = f2fs_get_node_page(sbi, dn->nid);
955         if (PTR_ERR(page) == -ENOENT)
956                 return 1;
957         else if (IS_ERR(page))
958                 return PTR_ERR(page);
959
960         if (IS_INODE(page) || ino_of_node(page) != dn->inode->i_ino) {
961                 f2fs_err(sbi, "incorrect node reference, ino: %lu, nid: %u, ino_of_node: %u",
962                                 dn->inode->i_ino, dn->nid, ino_of_node(page));
963                 set_sbi_flag(sbi, SBI_NEED_FSCK);
964                 f2fs_handle_error(sbi, ERROR_INVALID_NODE_REFERENCE);
965                 f2fs_put_page(page, 1);
966                 return -EFSCORRUPTED;
967         }
968
969         /* Make dnode_of_data for parameter */
970         dn->node_page = page;
971         dn->ofs_in_node = 0;
972         f2fs_truncate_data_blocks_range(dn, ADDRS_PER_BLOCK(dn->inode));
973         err = truncate_node(dn);
974         if (err) {
975                 f2fs_put_page(page, 1);
976                 return err;
977         }
978
979         return 1;
980 }
981
982 static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
983                                                 int ofs, int depth)
984 {
985         struct dnode_of_data rdn = *dn;
986         struct page *page;
987         struct f2fs_node *rn;
988         nid_t child_nid;
989         unsigned int child_nofs;
990         int freed = 0;
991         int i, ret;
992
993         if (dn->nid == 0)
994                 return NIDS_PER_BLOCK + 1;
995
996         trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
997
998         page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid);
999         if (IS_ERR(page)) {
1000                 trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
1001                 return PTR_ERR(page);
1002         }
1003
1004         f2fs_ra_node_pages(page, ofs, NIDS_PER_BLOCK);
1005
1006         rn = F2FS_NODE(page);
1007         if (depth < 3) {
1008                 for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
1009                         child_nid = le32_to_cpu(rn->in.nid[i]);
1010                         if (child_nid == 0)
1011                                 continue;
1012                         rdn.nid = child_nid;
1013                         ret = truncate_dnode(&rdn);
1014                         if (ret < 0)
1015                                 goto out_err;
1016                         if (set_nid(page, i, 0, false))
1017                                 dn->node_changed = true;
1018                 }
1019         } else {
1020                 child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
1021                 for (i = ofs; i < NIDS_PER_BLOCK; i++) {
1022                         child_nid = le32_to_cpu(rn->in.nid[i]);
1023                         if (child_nid == 0) {
1024                                 child_nofs += NIDS_PER_BLOCK + 1;
1025                                 continue;
1026                         }
1027                         rdn.nid = child_nid;
1028                         ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
1029                         if (ret == (NIDS_PER_BLOCK + 1)) {
1030                                 if (set_nid(page, i, 0, false))
1031                                         dn->node_changed = true;
1032                                 child_nofs += ret;
1033                         } else if (ret < 0 && ret != -ENOENT) {
1034                                 goto out_err;
1035                         }
1036                 }
1037                 freed = child_nofs;
1038         }
1039
1040         if (!ofs) {
1041                 /* remove current indirect node */
1042                 dn->node_page = page;
1043                 ret = truncate_node(dn);
1044                 if (ret)
1045                         goto out_err;
1046                 freed++;
1047         } else {
1048                 f2fs_put_page(page, 1);
1049         }
1050         trace_f2fs_truncate_nodes_exit(dn->inode, freed);
1051         return freed;
1052
1053 out_err:
1054         f2fs_put_page(page, 1);
1055         trace_f2fs_truncate_nodes_exit(dn->inode, ret);
1056         return ret;
1057 }
1058
1059 static int truncate_partial_nodes(struct dnode_of_data *dn,
1060                         struct f2fs_inode *ri, int *offset, int depth)
1061 {
1062         struct page *pages[2];
1063         nid_t nid[3];
1064         nid_t child_nid;
1065         int err = 0;
1066         int i;
1067         int idx = depth - 2;
1068
1069         nid[0] = get_nid(dn->inode_page, offset[0], true);
1070         if (!nid[0])
1071                 return 0;
1072
1073         /* get indirect nodes in the path */
1074         for (i = 0; i < idx + 1; i++) {
1075                 /* reference count'll be increased */
1076                 pages[i] = f2fs_get_node_page(F2FS_I_SB(dn->inode), nid[i]);
1077                 if (IS_ERR(pages[i])) {
1078                         err = PTR_ERR(pages[i]);
1079                         idx = i - 1;
1080                         goto fail;
1081                 }
1082                 nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
1083         }
1084
1085         f2fs_ra_node_pages(pages[idx], offset[idx + 1], NIDS_PER_BLOCK);
1086
1087         /* free direct nodes linked to a partial indirect node */
1088         for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) {
1089                 child_nid = get_nid(pages[idx], i, false);
1090                 if (!child_nid)
1091                         continue;
1092                 dn->nid = child_nid;
1093                 err = truncate_dnode(dn);
1094                 if (err < 0)
1095                         goto fail;
1096                 if (set_nid(pages[idx], i, 0, false))
1097                         dn->node_changed = true;
1098         }
1099
1100         if (offset[idx + 1] == 0) {
1101                 dn->node_page = pages[idx];
1102                 dn->nid = nid[idx];
1103                 err = truncate_node(dn);
1104                 if (err)
1105                         goto fail;
1106         } else {
1107                 f2fs_put_page(pages[idx], 1);
1108         }
1109         offset[idx]++;
1110         offset[idx + 1] = 0;
1111         idx--;
1112 fail:
1113         for (i = idx; i >= 0; i--)
1114                 f2fs_put_page(pages[i], 1);
1115
1116         trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
1117
1118         return err;
1119 }
1120
1121 /*
1122  * All the block addresses of data and nodes should be nullified.
1123  */
1124 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from)
1125 {
1126         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1127         int err = 0, cont = 1;
1128         int level, offset[4], noffset[4];
1129         unsigned int nofs = 0;
1130         struct f2fs_inode *ri;
1131         struct dnode_of_data dn;
1132         struct page *page;
1133
1134         trace_f2fs_truncate_inode_blocks_enter(inode, from);
1135
1136         level = get_node_path(inode, from, offset, noffset);
1137         if (level < 0) {
1138                 trace_f2fs_truncate_inode_blocks_exit(inode, level);
1139                 return level;
1140         }
1141
1142         page = f2fs_get_node_page(sbi, inode->i_ino);
1143         if (IS_ERR(page)) {
1144                 trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
1145                 return PTR_ERR(page);
1146         }
1147
1148         set_new_dnode(&dn, inode, page, NULL, 0);
1149         unlock_page(page);
1150
1151         ri = F2FS_INODE(page);
1152         switch (level) {
1153         case 0:
1154         case 1:
1155                 nofs = noffset[1];
1156                 break;
1157         case 2:
1158                 nofs = noffset[1];
1159                 if (!offset[level - 1])
1160                         goto skip_partial;
1161                 err = truncate_partial_nodes(&dn, ri, offset, level);
1162                 if (err < 0 && err != -ENOENT)
1163                         goto fail;
1164                 nofs += 1 + NIDS_PER_BLOCK;
1165                 break;
1166         case 3:
1167                 nofs = 5 + 2 * NIDS_PER_BLOCK;
1168                 if (!offset[level - 1])
1169                         goto skip_partial;
1170                 err = truncate_partial_nodes(&dn, ri, offset, level);
1171                 if (err < 0 && err != -ENOENT)
1172                         goto fail;
1173                 break;
1174         default:
1175                 BUG();
1176         }
1177
1178 skip_partial:
1179         while (cont) {
1180                 dn.nid = get_nid(page, offset[0], true);
1181                 switch (offset[0]) {
1182                 case NODE_DIR1_BLOCK:
1183                 case NODE_DIR2_BLOCK:
1184                         err = truncate_dnode(&dn);
1185                         break;
1186
1187                 case NODE_IND1_BLOCK:
1188                 case NODE_IND2_BLOCK:
1189                         err = truncate_nodes(&dn, nofs, offset[1], 2);
1190                         break;
1191
1192                 case NODE_DIND_BLOCK:
1193                         err = truncate_nodes(&dn, nofs, offset[1], 3);
1194                         cont = 0;
1195                         break;
1196
1197                 default:
1198                         BUG();
1199                 }
1200                 if (err == -ENOENT) {
1201                         set_sbi_flag(F2FS_P_SB(page), SBI_NEED_FSCK);
1202                         f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR);
1203                         f2fs_err_ratelimited(sbi,
1204                                 "truncate node fail, ino:%lu, nid:%u, "
1205                                 "offset[0]:%d, offset[1]:%d, nofs:%d",
1206                                 inode->i_ino, dn.nid, offset[0],
1207                                 offset[1], nofs);
1208                         err = 0;
1209                 }
1210                 if (err < 0)
1211                         goto fail;
1212                 if (offset[1] == 0 && get_nid(page, offset[0], true)) {
1213                         lock_page(page);
1214                         BUG_ON(page->mapping != NODE_MAPPING(sbi));
1215                         set_nid(page, offset[0], 0, true);
1216                         unlock_page(page);
1217                 }
1218                 offset[1] = 0;
1219                 offset[0]++;
1220                 nofs += err;
1221         }
1222 fail:
1223         f2fs_put_page(page, 0);
1224         trace_f2fs_truncate_inode_blocks_exit(inode, err);
1225         return err > 0 ? 0 : err;
1226 }
1227
1228 /* caller must lock inode page */
1229 int f2fs_truncate_xattr_node(struct inode *inode)
1230 {
1231         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1232         nid_t nid = F2FS_I(inode)->i_xattr_nid;
1233         struct dnode_of_data dn;
1234         struct page *npage;
1235         int err;
1236
1237         if (!nid)
1238                 return 0;
1239
1240         npage = f2fs_get_node_page(sbi, nid);
1241         if (IS_ERR(npage))
1242                 return PTR_ERR(npage);
1243
1244         set_new_dnode(&dn, inode, NULL, npage, nid);
1245         err = truncate_node(&dn);
1246         if (err) {
1247                 f2fs_put_page(npage, 1);
1248                 return err;
1249         }
1250
1251         f2fs_i_xnid_write(inode, 0);
1252
1253         return 0;
1254 }
1255
1256 /*
1257  * Caller should grab and release a rwsem by calling f2fs_lock_op() and
1258  * f2fs_unlock_op().
1259  */
1260 int f2fs_remove_inode_page(struct inode *inode)
1261 {
1262         struct dnode_of_data dn;
1263         int err;
1264
1265         set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1266         err = f2fs_get_dnode_of_data(&dn, 0, LOOKUP_NODE);
1267         if (err)
1268                 return err;
1269
1270         err = f2fs_truncate_xattr_node(inode);
1271         if (err) {
1272                 f2fs_put_dnode(&dn);
1273                 return err;
1274         }
1275
1276         /* remove potential inline_data blocks */
1277         if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1278                                 S_ISLNK(inode->i_mode))
1279                 f2fs_truncate_data_blocks_range(&dn, 1);
1280
1281         /* 0 is possible, after f2fs_new_inode() has failed */
1282         if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) {
1283                 f2fs_put_dnode(&dn);
1284                 return -EIO;
1285         }
1286
1287         if (unlikely(inode->i_blocks != 0 && inode->i_blocks != 8)) {
1288                 f2fs_warn(F2FS_I_SB(inode),
1289                         "f2fs_remove_inode_page: inconsistent i_blocks, ino:%lu, iblocks:%llu",
1290                         inode->i_ino, (unsigned long long)inode->i_blocks);
1291                 set_sbi_flag(F2FS_I_SB(inode), SBI_NEED_FSCK);
1292         }
1293
1294         /* will put inode & node pages */
1295         err = truncate_node(&dn);
1296         if (err) {
1297                 f2fs_put_dnode(&dn);
1298                 return err;
1299         }
1300         return 0;
1301 }
1302
1303 struct page *f2fs_new_inode_page(struct inode *inode)
1304 {
1305         struct dnode_of_data dn;
1306
1307         /* allocate inode page for new inode */
1308         set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1309
1310         /* caller should f2fs_put_page(page, 1); */
1311         return f2fs_new_node_page(&dn, 0);
1312 }
1313
1314 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs)
1315 {
1316         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1317         struct node_info new_ni;
1318         struct page *page;
1319         int err;
1320
1321         if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1322                 return ERR_PTR(-EPERM);
1323
1324         page = f2fs_grab_cache_page(NODE_MAPPING(sbi), dn->nid, false);
1325         if (!page)
1326                 return ERR_PTR(-ENOMEM);
1327
1328         if (unlikely((err = inc_valid_node_count(sbi, dn->inode, !ofs))))
1329                 goto fail;
1330
1331 #ifdef CONFIG_F2FS_CHECK_FS
1332         err = f2fs_get_node_info(sbi, dn->nid, &new_ni, false);
1333         if (err) {
1334                 dec_valid_node_count(sbi, dn->inode, !ofs);
1335                 goto fail;
1336         }
1337         if (unlikely(new_ni.blk_addr != NULL_ADDR)) {
1338                 err = -EFSCORRUPTED;
1339                 dec_valid_node_count(sbi, dn->inode, !ofs);
1340                 set_sbi_flag(sbi, SBI_NEED_FSCK);
1341                 f2fs_warn_ratelimited(sbi,
1342                         "f2fs_new_node_page: inconsistent nat entry, "
1343                         "ino:%u, nid:%u, blkaddr:%u, ver:%u, flag:%u",
1344                         new_ni.ino, new_ni.nid, new_ni.blk_addr,
1345                         new_ni.version, new_ni.flag);
1346                 f2fs_handle_error(sbi, ERROR_INCONSISTENT_NAT);
1347                 goto fail;
1348         }
1349 #endif
1350         new_ni.nid = dn->nid;
1351         new_ni.ino = dn->inode->i_ino;
1352         new_ni.blk_addr = NULL_ADDR;
1353         new_ni.flag = 0;
1354         new_ni.version = 0;
1355         set_node_addr(sbi, &new_ni, NEW_ADDR, false);
1356
1357         f2fs_wait_on_page_writeback(page, NODE, true, true);
1358         fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
1359         set_cold_node(page, S_ISDIR(dn->inode->i_mode));
1360         if (!PageUptodate(page))
1361                 SetPageUptodate(page);
1362         if (set_page_dirty(page))
1363                 dn->node_changed = true;
1364
1365         if (f2fs_has_xattr_block(ofs))
1366                 f2fs_i_xnid_write(dn->inode, dn->nid);
1367
1368         if (ofs == 0)
1369                 inc_valid_inode_count(sbi);
1370         return page;
1371 fail:
1372         clear_node_page_dirty(page);
1373         f2fs_put_page(page, 1);
1374         return ERR_PTR(err);
1375 }
1376
1377 /*
1378  * Caller should do after getting the following values.
1379  * 0: f2fs_put_page(page, 0)
1380  * LOCKED_PAGE or error: f2fs_put_page(page, 1)
1381  */
1382 static int read_node_page(struct page *page, blk_opf_t op_flags)
1383 {
1384         struct folio *folio = page_folio(page);
1385         struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1386         struct node_info ni;
1387         struct f2fs_io_info fio = {
1388                 .sbi = sbi,
1389                 .type = NODE,
1390                 .op = REQ_OP_READ,
1391                 .op_flags = op_flags,
1392                 .page = page,
1393                 .encrypted_page = NULL,
1394         };
1395         int err;
1396
1397         if (folio_test_uptodate(folio)) {
1398                 if (!f2fs_inode_chksum_verify(sbi, page)) {
1399                         folio_clear_uptodate(folio);
1400                         return -EFSBADCRC;
1401                 }
1402                 return LOCKED_PAGE;
1403         }
1404
1405         err = f2fs_get_node_info(sbi, folio->index, &ni, false);
1406         if (err)
1407                 return err;
1408
1409         /* NEW_ADDR can be seen, after cp_error drops some dirty node pages */
1410         if (unlikely(ni.blk_addr == NULL_ADDR || ni.blk_addr == NEW_ADDR)) {
1411                 folio_clear_uptodate(folio);
1412                 return -ENOENT;
1413         }
1414
1415         fio.new_blkaddr = fio.old_blkaddr = ni.blk_addr;
1416
1417         err = f2fs_submit_page_bio(&fio);
1418
1419         if (!err)
1420                 f2fs_update_iostat(sbi, NULL, FS_NODE_READ_IO, F2FS_BLKSIZE);
1421
1422         return err;
1423 }
1424
1425 /*
1426  * Readahead a node page
1427  */
1428 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
1429 {
1430         struct page *apage;
1431         int err;
1432
1433         if (!nid)
1434                 return;
1435         if (f2fs_check_nid_range(sbi, nid))
1436                 return;
1437
1438         apage = xa_load(&NODE_MAPPING(sbi)->i_pages, nid);
1439         if (apage)
1440                 return;
1441
1442         apage = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1443         if (!apage)
1444                 return;
1445
1446         err = read_node_page(apage, REQ_RAHEAD);
1447         f2fs_put_page(apage, err ? 1 : 0);
1448 }
1449
1450 static struct page *__get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid,
1451                                         struct page *parent, int start)
1452 {
1453         struct page *page;
1454         int err;
1455
1456         if (!nid)
1457                 return ERR_PTR(-ENOENT);
1458         if (f2fs_check_nid_range(sbi, nid))
1459                 return ERR_PTR(-EINVAL);
1460 repeat:
1461         page = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1462         if (!page)
1463                 return ERR_PTR(-ENOMEM);
1464
1465         err = read_node_page(page, 0);
1466         if (err < 0) {
1467                 goto out_put_err;
1468         } else if (err == LOCKED_PAGE) {
1469                 err = 0;
1470                 goto page_hit;
1471         }
1472
1473         if (parent)
1474                 f2fs_ra_node_pages(parent, start + 1, MAX_RA_NODE);
1475
1476         lock_page(page);
1477
1478         if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1479                 f2fs_put_page(page, 1);
1480                 goto repeat;
1481         }
1482
1483         if (unlikely(!PageUptodate(page))) {
1484                 err = -EIO;
1485                 goto out_err;
1486         }
1487
1488         if (!f2fs_inode_chksum_verify(sbi, page)) {
1489                 err = -EFSBADCRC;
1490                 goto out_err;
1491         }
1492 page_hit:
1493         if (likely(nid == nid_of_node(page)))
1494                 return page;
1495
1496         f2fs_warn(sbi, "inconsistent node block, nid:%lu, node_footer[nid:%u,ino:%u,ofs:%u,cpver:%llu,blkaddr:%u]",
1497                           nid, nid_of_node(page), ino_of_node(page),
1498                           ofs_of_node(page), cpver_of_node(page),
1499                           next_blkaddr_of_node(page));
1500         set_sbi_flag(sbi, SBI_NEED_FSCK);
1501         f2fs_handle_error(sbi, ERROR_INCONSISTENT_FOOTER);
1502         err = -EFSCORRUPTED;
1503 out_err:
1504         ClearPageUptodate(page);
1505 out_put_err:
1506         /* ENOENT comes from read_node_page which is not an error. */
1507         if (err != -ENOENT)
1508                 f2fs_handle_page_eio(sbi, page_folio(page), NODE);
1509         f2fs_put_page(page, 1);
1510         return ERR_PTR(err);
1511 }
1512
1513 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
1514 {
1515         return __get_node_page(sbi, nid, NULL, 0);
1516 }
1517
1518 struct page *f2fs_get_node_page_ra(struct page *parent, int start)
1519 {
1520         struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
1521         nid_t nid = get_nid(parent, start, false);
1522
1523         return __get_node_page(sbi, nid, parent, start);
1524 }
1525
1526 static void flush_inline_data(struct f2fs_sb_info *sbi, nid_t ino)
1527 {
1528         struct inode *inode;
1529         struct page *page;
1530         int ret;
1531
1532         /* should flush inline_data before evict_inode */
1533         inode = ilookup(sbi->sb, ino);
1534         if (!inode)
1535                 return;
1536
1537         page = f2fs_pagecache_get_page(inode->i_mapping, 0,
1538                                         FGP_LOCK|FGP_NOWAIT, 0);
1539         if (!page)
1540                 goto iput_out;
1541
1542         if (!PageUptodate(page))
1543                 goto page_out;
1544
1545         if (!PageDirty(page))
1546                 goto page_out;
1547
1548         if (!clear_page_dirty_for_io(page))
1549                 goto page_out;
1550
1551         ret = f2fs_write_inline_data(inode, page_folio(page));
1552         inode_dec_dirty_pages(inode);
1553         f2fs_remove_dirty_inode(inode);
1554         if (ret)
1555                 set_page_dirty(page);
1556 page_out:
1557         f2fs_put_page(page, 1);
1558 iput_out:
1559         iput(inode);
1560 }
1561
1562 static struct page *last_fsync_dnode(struct f2fs_sb_info *sbi, nid_t ino)
1563 {
1564         pgoff_t index;
1565         struct folio_batch fbatch;
1566         struct page *last_page = NULL;
1567         int nr_folios;
1568
1569         folio_batch_init(&fbatch);
1570         index = 0;
1571
1572         while ((nr_folios = filemap_get_folios_tag(NODE_MAPPING(sbi), &index,
1573                                         (pgoff_t)-1, PAGECACHE_TAG_DIRTY,
1574                                         &fbatch))) {
1575                 int i;
1576
1577                 for (i = 0; i < nr_folios; i++) {
1578                         struct page *page = &fbatch.folios[i]->page;
1579
1580                         if (unlikely(f2fs_cp_error(sbi))) {
1581                                 f2fs_put_page(last_page, 0);
1582                                 folio_batch_release(&fbatch);
1583                                 return ERR_PTR(-EIO);
1584                         }
1585
1586                         if (!IS_DNODE(page) || !is_cold_node(page))
1587                                 continue;
1588                         if (ino_of_node(page) != ino)
1589                                 continue;
1590
1591                         lock_page(page);
1592
1593                         if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1594 continue_unlock:
1595                                 unlock_page(page);
1596                                 continue;
1597                         }
1598                         if (ino_of_node(page) != ino)
1599                                 goto continue_unlock;
1600
1601                         if (!PageDirty(page)) {
1602                                 /* someone wrote it for us */
1603                                 goto continue_unlock;
1604                         }
1605
1606                         if (last_page)
1607                                 f2fs_put_page(last_page, 0);
1608
1609                         get_page(page);
1610                         last_page = page;
1611                         unlock_page(page);
1612                 }
1613                 folio_batch_release(&fbatch);
1614                 cond_resched();
1615         }
1616         return last_page;
1617 }
1618
1619 static int __write_node_page(struct page *page, bool atomic, bool *submitted,
1620                                 struct writeback_control *wbc, bool do_balance,
1621                                 enum iostat_type io_type, unsigned int *seq_id)
1622 {
1623         struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1624         struct folio *folio = page_folio(page);
1625         nid_t nid;
1626         struct node_info ni;
1627         struct f2fs_io_info fio = {
1628                 .sbi = sbi,
1629                 .ino = ino_of_node(page),
1630                 .type = NODE,
1631                 .op = REQ_OP_WRITE,
1632                 .op_flags = wbc_to_write_flags(wbc),
1633                 .page = page,
1634                 .encrypted_page = NULL,
1635                 .submitted = 0,
1636                 .io_type = io_type,
1637                 .io_wbc = wbc,
1638         };
1639         unsigned int seq;
1640
1641         trace_f2fs_writepage(folio, NODE);
1642
1643         if (unlikely(f2fs_cp_error(sbi))) {
1644                 /* keep node pages in remount-ro mode */
1645                 if (F2FS_OPTION(sbi).errors == MOUNT_ERRORS_READONLY)
1646                         goto redirty_out;
1647                 folio_clear_uptodate(folio);
1648                 dec_page_count(sbi, F2FS_DIRTY_NODES);
1649                 folio_unlock(folio);
1650                 return 0;
1651         }
1652
1653         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1654                 goto redirty_out;
1655
1656         if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
1657                         wbc->sync_mode == WB_SYNC_NONE &&
1658                         IS_DNODE(page) && is_cold_node(page))
1659                 goto redirty_out;
1660
1661         /* get old block addr of this node page */
1662         nid = nid_of_node(page);
1663         f2fs_bug_on(sbi, folio->index != nid);
1664
1665         if (f2fs_get_node_info(sbi, nid, &ni, !do_balance))
1666                 goto redirty_out;
1667
1668         if (wbc->for_reclaim) {
1669                 if (!f2fs_down_read_trylock(&sbi->node_write))
1670                         goto redirty_out;
1671         } else {
1672                 f2fs_down_read(&sbi->node_write);
1673         }
1674
1675         /* This page is already truncated */
1676         if (unlikely(ni.blk_addr == NULL_ADDR)) {
1677                 folio_clear_uptodate(folio);
1678                 dec_page_count(sbi, F2FS_DIRTY_NODES);
1679                 f2fs_up_read(&sbi->node_write);
1680                 folio_unlock(folio);
1681                 return 0;
1682         }
1683
1684         if (__is_valid_data_blkaddr(ni.blk_addr) &&
1685                 !f2fs_is_valid_blkaddr(sbi, ni.blk_addr,
1686                                         DATA_GENERIC_ENHANCE)) {
1687                 f2fs_up_read(&sbi->node_write);
1688                 goto redirty_out;
1689         }
1690
1691         if (atomic && !test_opt(sbi, NOBARRIER))
1692                 fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
1693
1694         /* should add to global list before clearing PAGECACHE status */
1695         if (f2fs_in_warm_node_list(sbi, page)) {
1696                 seq = f2fs_add_fsync_node_entry(sbi, page);
1697                 if (seq_id)
1698                         *seq_id = seq;
1699         }
1700
1701         folio_start_writeback(folio);
1702
1703         fio.old_blkaddr = ni.blk_addr;
1704         f2fs_do_write_node_page(nid, &fio);
1705         set_node_addr(sbi, &ni, fio.new_blkaddr, is_fsync_dnode(page));
1706         dec_page_count(sbi, F2FS_DIRTY_NODES);
1707         f2fs_up_read(&sbi->node_write);
1708
1709         if (wbc->for_reclaim) {
1710                 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, NODE);
1711                 submitted = NULL;
1712         }
1713
1714         folio_unlock(folio);
1715
1716         if (unlikely(f2fs_cp_error(sbi))) {
1717                 f2fs_submit_merged_write(sbi, NODE);
1718                 submitted = NULL;
1719         }
1720         if (submitted)
1721                 *submitted = fio.submitted;
1722
1723         if (do_balance)
1724                 f2fs_balance_fs(sbi, false);
1725         return 0;
1726
1727 redirty_out:
1728         folio_redirty_for_writepage(wbc, folio);
1729         return AOP_WRITEPAGE_ACTIVATE;
1730 }
1731
1732 int f2fs_move_node_page(struct page *node_page, int gc_type)
1733 {
1734         int err = 0;
1735
1736         if (gc_type == FG_GC) {
1737                 struct writeback_control wbc = {
1738                         .sync_mode = WB_SYNC_ALL,
1739                         .nr_to_write = 1,
1740                         .for_reclaim = 0,
1741                 };
1742
1743                 f2fs_wait_on_page_writeback(node_page, NODE, true, true);
1744
1745                 set_page_dirty(node_page);
1746
1747                 if (!clear_page_dirty_for_io(node_page)) {
1748                         err = -EAGAIN;
1749                         goto out_page;
1750                 }
1751
1752                 if (__write_node_page(node_page, false, NULL,
1753                                         &wbc, false, FS_GC_NODE_IO, NULL)) {
1754                         err = -EAGAIN;
1755                         unlock_page(node_page);
1756                 }
1757                 goto release_page;
1758         } else {
1759                 /* set page dirty and write it */
1760                 if (!folio_test_writeback(page_folio(node_page)))
1761                         set_page_dirty(node_page);
1762         }
1763 out_page:
1764         unlock_page(node_page);
1765 release_page:
1766         f2fs_put_page(node_page, 0);
1767         return err;
1768 }
1769
1770 static int f2fs_write_node_page(struct page *page,
1771                                 struct writeback_control *wbc)
1772 {
1773         return __write_node_page(page, false, NULL, wbc, false,
1774                                                 FS_NODE_IO, NULL);
1775 }
1776
1777 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
1778                         struct writeback_control *wbc, bool atomic,
1779                         unsigned int *seq_id)
1780 {
1781         pgoff_t index;
1782         struct folio_batch fbatch;
1783         int ret = 0;
1784         struct page *last_page = NULL;
1785         bool marked = false;
1786         nid_t ino = inode->i_ino;
1787         int nr_folios;
1788         int nwritten = 0;
1789
1790         if (atomic) {
1791                 last_page = last_fsync_dnode(sbi, ino);
1792                 if (IS_ERR_OR_NULL(last_page))
1793                         return PTR_ERR_OR_ZERO(last_page);
1794         }
1795 retry:
1796         folio_batch_init(&fbatch);
1797         index = 0;
1798
1799         while ((nr_folios = filemap_get_folios_tag(NODE_MAPPING(sbi), &index,
1800                                         (pgoff_t)-1, PAGECACHE_TAG_DIRTY,
1801                                         &fbatch))) {
1802                 int i;
1803
1804                 for (i = 0; i < nr_folios; i++) {
1805                         struct page *page = &fbatch.folios[i]->page;
1806                         bool submitted = false;
1807
1808                         if (unlikely(f2fs_cp_error(sbi))) {
1809                                 f2fs_put_page(last_page, 0);
1810                                 folio_batch_release(&fbatch);
1811                                 ret = -EIO;
1812                                 goto out;
1813                         }
1814
1815                         if (!IS_DNODE(page) || !is_cold_node(page))
1816                                 continue;
1817                         if (ino_of_node(page) != ino)
1818                                 continue;
1819
1820                         lock_page(page);
1821
1822                         if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1823 continue_unlock:
1824                                 unlock_page(page);
1825                                 continue;
1826                         }
1827                         if (ino_of_node(page) != ino)
1828                                 goto continue_unlock;
1829
1830                         if (!PageDirty(page) && page != last_page) {
1831                                 /* someone wrote it for us */
1832                                 goto continue_unlock;
1833                         }
1834
1835                         f2fs_wait_on_page_writeback(page, NODE, true, true);
1836
1837                         set_fsync_mark(page, 0);
1838                         set_dentry_mark(page, 0);
1839
1840                         if (!atomic || page == last_page) {
1841                                 set_fsync_mark(page, 1);
1842                                 percpu_counter_inc(&sbi->rf_node_block_count);
1843                                 if (IS_INODE(page)) {
1844                                         if (is_inode_flag_set(inode,
1845                                                                 FI_DIRTY_INODE))
1846                                                 f2fs_update_inode(inode, page);
1847                                         set_dentry_mark(page,
1848                                                 f2fs_need_dentry_mark(sbi, ino));
1849                                 }
1850                                 /* may be written by other thread */
1851                                 if (!PageDirty(page))
1852                                         set_page_dirty(page);
1853                         }
1854
1855                         if (!clear_page_dirty_for_io(page))
1856                                 goto continue_unlock;
1857
1858                         ret = __write_node_page(page, atomic &&
1859                                                 page == last_page,
1860                                                 &submitted, wbc, true,
1861                                                 FS_NODE_IO, seq_id);
1862                         if (ret) {
1863                                 unlock_page(page);
1864                                 f2fs_put_page(last_page, 0);
1865                                 break;
1866                         } else if (submitted) {
1867                                 nwritten++;
1868                         }
1869
1870                         if (page == last_page) {
1871                                 f2fs_put_page(page, 0);
1872                                 marked = true;
1873                                 break;
1874                         }
1875                 }
1876                 folio_batch_release(&fbatch);
1877                 cond_resched();
1878
1879                 if (ret || marked)
1880                         break;
1881         }
1882         if (!ret && atomic && !marked) {
1883                 f2fs_debug(sbi, "Retry to write fsync mark: ino=%u, idx=%lx",
1884                            ino, page_folio(last_page)->index);
1885                 lock_page(last_page);
1886                 f2fs_wait_on_page_writeback(last_page, NODE, true, true);
1887                 set_page_dirty(last_page);
1888                 unlock_page(last_page);
1889                 goto retry;
1890         }
1891 out:
1892         if (nwritten)
1893                 f2fs_submit_merged_write_cond(sbi, NULL, NULL, ino, NODE);
1894         return ret ? -EIO : 0;
1895 }
1896
1897 static int f2fs_match_ino(struct inode *inode, unsigned long ino, void *data)
1898 {
1899         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1900         bool clean;
1901
1902         if (inode->i_ino != ino)
1903                 return 0;
1904
1905         if (!is_inode_flag_set(inode, FI_DIRTY_INODE))
1906                 return 0;
1907
1908         spin_lock(&sbi->inode_lock[DIRTY_META]);
1909         clean = list_empty(&F2FS_I(inode)->gdirty_list);
1910         spin_unlock(&sbi->inode_lock[DIRTY_META]);
1911
1912         if (clean)
1913                 return 0;
1914
1915         inode = igrab(inode);
1916         if (!inode)
1917                 return 0;
1918         return 1;
1919 }
1920
1921 static bool flush_dirty_inode(struct page *page)
1922 {
1923         struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1924         struct inode *inode;
1925         nid_t ino = ino_of_node(page);
1926
1927         inode = find_inode_nowait(sbi->sb, ino, f2fs_match_ino, NULL);
1928         if (!inode)
1929                 return false;
1930
1931         f2fs_update_inode(inode, page);
1932         unlock_page(page);
1933
1934         iput(inode);
1935         return true;
1936 }
1937
1938 void f2fs_flush_inline_data(struct f2fs_sb_info *sbi)
1939 {
1940         pgoff_t index = 0;
1941         struct folio_batch fbatch;
1942         int nr_folios;
1943
1944         folio_batch_init(&fbatch);
1945
1946         while ((nr_folios = filemap_get_folios_tag(NODE_MAPPING(sbi), &index,
1947                                         (pgoff_t)-1, PAGECACHE_TAG_DIRTY,
1948                                         &fbatch))) {
1949                 int i;
1950
1951                 for (i = 0; i < nr_folios; i++) {
1952                         struct page *page = &fbatch.folios[i]->page;
1953
1954                         if (!IS_INODE(page))
1955                                 continue;
1956
1957                         lock_page(page);
1958
1959                         if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1960 continue_unlock:
1961                                 unlock_page(page);
1962                                 continue;
1963                         }
1964
1965                         if (!PageDirty(page)) {
1966                                 /* someone wrote it for us */
1967                                 goto continue_unlock;
1968                         }
1969
1970                         /* flush inline_data, if it's async context. */
1971                         if (page_private_inline(page)) {
1972                                 clear_page_private_inline(page);
1973                                 unlock_page(page);
1974                                 flush_inline_data(sbi, ino_of_node(page));
1975                                 continue;
1976                         }
1977                         unlock_page(page);
1978                 }
1979                 folio_batch_release(&fbatch);
1980                 cond_resched();
1981         }
1982 }
1983
1984 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
1985                                 struct writeback_control *wbc,
1986                                 bool do_balance, enum iostat_type io_type)
1987 {
1988         pgoff_t index;
1989         struct folio_batch fbatch;
1990         int step = 0;
1991         int nwritten = 0;
1992         int ret = 0;
1993         int nr_folios, done = 0;
1994
1995         folio_batch_init(&fbatch);
1996
1997 next_step:
1998         index = 0;
1999
2000         while (!done && (nr_folios = filemap_get_folios_tag(NODE_MAPPING(sbi),
2001                                 &index, (pgoff_t)-1, PAGECACHE_TAG_DIRTY,
2002                                 &fbatch))) {
2003                 int i;
2004
2005                 for (i = 0; i < nr_folios; i++) {
2006                         struct page *page = &fbatch.folios[i]->page;
2007                         bool submitted = false;
2008
2009                         /* give a priority to WB_SYNC threads */
2010                         if (atomic_read(&sbi->wb_sync_req[NODE]) &&
2011                                         wbc->sync_mode == WB_SYNC_NONE) {
2012                                 done = 1;
2013                                 break;
2014                         }
2015
2016                         /*
2017                          * flushing sequence with step:
2018                          * 0. indirect nodes
2019                          * 1. dentry dnodes
2020                          * 2. file dnodes
2021                          */
2022                         if (step == 0 && IS_DNODE(page))
2023                                 continue;
2024                         if (step == 1 && (!IS_DNODE(page) ||
2025                                                 is_cold_node(page)))
2026                                 continue;
2027                         if (step == 2 && (!IS_DNODE(page) ||
2028                                                 !is_cold_node(page)))
2029                                 continue;
2030 lock_node:
2031                         if (wbc->sync_mode == WB_SYNC_ALL)
2032                                 lock_page(page);
2033                         else if (!trylock_page(page))
2034                                 continue;
2035
2036                         if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
2037 continue_unlock:
2038                                 unlock_page(page);
2039                                 continue;
2040                         }
2041
2042                         if (!PageDirty(page)) {
2043                                 /* someone wrote it for us */
2044                                 goto continue_unlock;
2045                         }
2046
2047                         /* flush inline_data/inode, if it's async context. */
2048                         if (!do_balance)
2049                                 goto write_node;
2050
2051                         /* flush inline_data */
2052                         if (page_private_inline(page)) {
2053                                 clear_page_private_inline(page);
2054                                 unlock_page(page);
2055                                 flush_inline_data(sbi, ino_of_node(page));
2056                                 goto lock_node;
2057                         }
2058
2059                         /* flush dirty inode */
2060                         if (IS_INODE(page) && flush_dirty_inode(page))
2061                                 goto lock_node;
2062 write_node:
2063                         f2fs_wait_on_page_writeback(page, NODE, true, true);
2064
2065                         if (!clear_page_dirty_for_io(page))
2066                                 goto continue_unlock;
2067
2068                         set_fsync_mark(page, 0);
2069                         set_dentry_mark(page, 0);
2070
2071                         ret = __write_node_page(page, false, &submitted,
2072                                                 wbc, do_balance, io_type, NULL);
2073                         if (ret)
2074                                 unlock_page(page);
2075                         else if (submitted)
2076                                 nwritten++;
2077
2078                         if (--wbc->nr_to_write == 0)
2079                                 break;
2080                 }
2081                 folio_batch_release(&fbatch);
2082                 cond_resched();
2083
2084                 if (wbc->nr_to_write == 0) {
2085                         step = 2;
2086                         break;
2087                 }
2088         }
2089
2090         if (step < 2) {
2091                 if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2092                                 wbc->sync_mode == WB_SYNC_NONE && step == 1)
2093                         goto out;
2094                 step++;
2095                 goto next_step;
2096         }
2097 out:
2098         if (nwritten)
2099                 f2fs_submit_merged_write(sbi, NODE);
2100
2101         if (unlikely(f2fs_cp_error(sbi)))
2102                 return -EIO;
2103         return ret;
2104 }
2105
2106 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
2107                                                 unsigned int seq_id)
2108 {
2109         struct fsync_node_entry *fn;
2110         struct page *page;
2111         struct list_head *head = &sbi->fsync_node_list;
2112         unsigned long flags;
2113         unsigned int cur_seq_id = 0;
2114
2115         while (seq_id && cur_seq_id < seq_id) {
2116                 spin_lock_irqsave(&sbi->fsync_node_lock, flags);
2117                 if (list_empty(head)) {
2118                         spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2119                         break;
2120                 }
2121                 fn = list_first_entry(head, struct fsync_node_entry, list);
2122                 if (fn->seq_id > seq_id) {
2123                         spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2124                         break;
2125                 }
2126                 cur_seq_id = fn->seq_id;
2127                 page = fn->page;
2128                 get_page(page);
2129                 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2130
2131                 f2fs_wait_on_page_writeback(page, NODE, true, false);
2132
2133                 put_page(page);
2134         }
2135
2136         return filemap_check_errors(NODE_MAPPING(sbi));
2137 }
2138
2139 static int f2fs_write_node_pages(struct address_space *mapping,
2140                             struct writeback_control *wbc)
2141 {
2142         struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
2143         struct blk_plug plug;
2144         long diff;
2145
2146         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
2147                 goto skip_write;
2148
2149         /* balancing f2fs's metadata in background */
2150         f2fs_balance_fs_bg(sbi, true);
2151
2152         /* collect a number of dirty node pages and write together */
2153         if (wbc->sync_mode != WB_SYNC_ALL &&
2154                         get_pages(sbi, F2FS_DIRTY_NODES) <
2155                                         nr_pages_to_skip(sbi, NODE))
2156                 goto skip_write;
2157
2158         if (wbc->sync_mode == WB_SYNC_ALL)
2159                 atomic_inc(&sbi->wb_sync_req[NODE]);
2160         else if (atomic_read(&sbi->wb_sync_req[NODE])) {
2161                 /* to avoid potential deadlock */
2162                 if (current->plug)
2163                         blk_finish_plug(current->plug);
2164                 goto skip_write;
2165         }
2166
2167         trace_f2fs_writepages(mapping->host, wbc, NODE);
2168
2169         diff = nr_pages_to_write(sbi, NODE, wbc);
2170         blk_start_plug(&plug);
2171         f2fs_sync_node_pages(sbi, wbc, true, FS_NODE_IO);
2172         blk_finish_plug(&plug);
2173         wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
2174
2175         if (wbc->sync_mode == WB_SYNC_ALL)
2176                 atomic_dec(&sbi->wb_sync_req[NODE]);
2177         return 0;
2178
2179 skip_write:
2180         wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES);
2181         trace_f2fs_writepages(mapping->host, wbc, NODE);
2182         return 0;
2183 }
2184
2185 static bool f2fs_dirty_node_folio(struct address_space *mapping,
2186                 struct folio *folio)
2187 {
2188         trace_f2fs_set_page_dirty(folio, NODE);
2189
2190         if (!folio_test_uptodate(folio))
2191                 folio_mark_uptodate(folio);
2192 #ifdef CONFIG_F2FS_CHECK_FS
2193         if (IS_INODE(&folio->page))
2194                 f2fs_inode_chksum_set(F2FS_M_SB(mapping), &folio->page);
2195 #endif
2196         if (filemap_dirty_folio(mapping, folio)) {
2197                 inc_page_count(F2FS_M_SB(mapping), F2FS_DIRTY_NODES);
2198                 set_page_private_reference(&folio->page);
2199                 return true;
2200         }
2201         return false;
2202 }
2203
2204 /*
2205  * Structure of the f2fs node operations
2206  */
2207 const struct address_space_operations f2fs_node_aops = {
2208         .writepage      = f2fs_write_node_page,
2209         .writepages     = f2fs_write_node_pages,
2210         .dirty_folio    = f2fs_dirty_node_folio,
2211         .invalidate_folio = f2fs_invalidate_folio,
2212         .release_folio  = f2fs_release_folio,
2213         .migrate_folio  = filemap_migrate_folio,
2214 };
2215
2216 static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i,
2217                                                 nid_t n)
2218 {
2219         return radix_tree_lookup(&nm_i->free_nid_root, n);
2220 }
2221
2222 static int __insert_free_nid(struct f2fs_sb_info *sbi,
2223                                 struct free_nid *i)
2224 {
2225         struct f2fs_nm_info *nm_i = NM_I(sbi);
2226         int err = radix_tree_insert(&nm_i->free_nid_root, i->nid, i);
2227
2228         if (err)
2229                 return err;
2230
2231         nm_i->nid_cnt[FREE_NID]++;
2232         list_add_tail(&i->list, &nm_i->free_nid_list);
2233         return 0;
2234 }
2235
2236 static void __remove_free_nid(struct f2fs_sb_info *sbi,
2237                         struct free_nid *i, enum nid_state state)
2238 {
2239         struct f2fs_nm_info *nm_i = NM_I(sbi);
2240
2241         f2fs_bug_on(sbi, state != i->state);
2242         nm_i->nid_cnt[state]--;
2243         if (state == FREE_NID)
2244                 list_del(&i->list);
2245         radix_tree_delete(&nm_i->free_nid_root, i->nid);
2246 }
2247
2248 static void __move_free_nid(struct f2fs_sb_info *sbi, struct free_nid *i,
2249                         enum nid_state org_state, enum nid_state dst_state)
2250 {
2251         struct f2fs_nm_info *nm_i = NM_I(sbi);
2252
2253         f2fs_bug_on(sbi, org_state != i->state);
2254         i->state = dst_state;
2255         nm_i->nid_cnt[org_state]--;
2256         nm_i->nid_cnt[dst_state]++;
2257
2258         switch (dst_state) {
2259         case PREALLOC_NID:
2260                 list_del(&i->list);
2261                 break;
2262         case FREE_NID:
2263                 list_add_tail(&i->list, &nm_i->free_nid_list);
2264                 break;
2265         default:
2266                 BUG_ON(1);
2267         }
2268 }
2269
2270 bool f2fs_nat_bitmap_enabled(struct f2fs_sb_info *sbi)
2271 {
2272         struct f2fs_nm_info *nm_i = NM_I(sbi);
2273         unsigned int i;
2274         bool ret = true;
2275
2276         f2fs_down_read(&nm_i->nat_tree_lock);
2277         for (i = 0; i < nm_i->nat_blocks; i++) {
2278                 if (!test_bit_le(i, nm_i->nat_block_bitmap)) {
2279                         ret = false;
2280                         break;
2281                 }
2282         }
2283         f2fs_up_read(&nm_i->nat_tree_lock);
2284
2285         return ret;
2286 }
2287
2288 static void update_free_nid_bitmap(struct f2fs_sb_info *sbi, nid_t nid,
2289                                                         bool set, bool build)
2290 {
2291         struct f2fs_nm_info *nm_i = NM_I(sbi);
2292         unsigned int nat_ofs = NAT_BLOCK_OFFSET(nid);
2293         unsigned int nid_ofs = nid - START_NID(nid);
2294
2295         if (!test_bit_le(nat_ofs, nm_i->nat_block_bitmap))
2296                 return;
2297
2298         if (set) {
2299                 if (test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
2300                         return;
2301                 __set_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
2302                 nm_i->free_nid_count[nat_ofs]++;
2303         } else {
2304                 if (!test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
2305                         return;
2306                 __clear_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
2307                 if (!build)
2308                         nm_i->free_nid_count[nat_ofs]--;
2309         }
2310 }
2311
2312 /* return if the nid is recognized as free */
2313 static bool add_free_nid(struct f2fs_sb_info *sbi,
2314                                 nid_t nid, bool build, bool update)
2315 {
2316         struct f2fs_nm_info *nm_i = NM_I(sbi);
2317         struct free_nid *i, *e;
2318         struct nat_entry *ne;
2319         int err = -EINVAL;
2320         bool ret = false;
2321
2322         /* 0 nid should not be used */
2323         if (unlikely(nid == 0))
2324                 return false;
2325
2326         if (unlikely(f2fs_check_nid_range(sbi, nid)))
2327                 return false;
2328
2329         i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS, true, NULL);
2330         i->nid = nid;
2331         i->state = FREE_NID;
2332
2333         radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
2334
2335         spin_lock(&nm_i->nid_list_lock);
2336
2337         if (build) {
2338                 /*
2339                  *   Thread A             Thread B
2340                  *  - f2fs_create
2341                  *   - f2fs_new_inode
2342                  *    - f2fs_alloc_nid
2343                  *     - __insert_nid_to_list(PREALLOC_NID)
2344                  *                     - f2fs_balance_fs_bg
2345                  *                      - f2fs_build_free_nids
2346                  *                       - __f2fs_build_free_nids
2347                  *                        - scan_nat_page
2348                  *                         - add_free_nid
2349                  *                          - __lookup_nat_cache
2350                  *  - f2fs_add_link
2351                  *   - f2fs_init_inode_metadata
2352                  *    - f2fs_new_inode_page
2353                  *     - f2fs_new_node_page
2354                  *      - set_node_addr
2355                  *  - f2fs_alloc_nid_done
2356                  *   - __remove_nid_from_list(PREALLOC_NID)
2357                  *                         - __insert_nid_to_list(FREE_NID)
2358                  */
2359                 ne = __lookup_nat_cache(nm_i, nid);
2360                 if (ne && (!get_nat_flag(ne, IS_CHECKPOINTED) ||
2361                                 nat_get_blkaddr(ne) != NULL_ADDR))
2362                         goto err_out;
2363
2364                 e = __lookup_free_nid_list(nm_i, nid);
2365                 if (e) {
2366                         if (e->state == FREE_NID)
2367                                 ret = true;
2368                         goto err_out;
2369                 }
2370         }
2371         ret = true;
2372         err = __insert_free_nid(sbi, i);
2373 err_out:
2374         if (update) {
2375                 update_free_nid_bitmap(sbi, nid, ret, build);
2376                 if (!build)
2377                         nm_i->available_nids++;
2378         }
2379         spin_unlock(&nm_i->nid_list_lock);
2380         radix_tree_preload_end();
2381
2382         if (err)
2383                 kmem_cache_free(free_nid_slab, i);
2384         return ret;
2385 }
2386
2387 static void remove_free_nid(struct f2fs_sb_info *sbi, nid_t nid)
2388 {
2389         struct f2fs_nm_info *nm_i = NM_I(sbi);
2390         struct free_nid *i;
2391         bool need_free = false;
2392
2393         spin_lock(&nm_i->nid_list_lock);
2394         i = __lookup_free_nid_list(nm_i, nid);
2395         if (i && i->state == FREE_NID) {
2396                 __remove_free_nid(sbi, i, FREE_NID);
2397                 need_free = true;
2398         }
2399         spin_unlock(&nm_i->nid_list_lock);
2400
2401         if (need_free)
2402                 kmem_cache_free(free_nid_slab, i);
2403 }
2404
2405 static int scan_nat_page(struct f2fs_sb_info *sbi,
2406                         struct page *nat_page, nid_t start_nid)
2407 {
2408         struct f2fs_nm_info *nm_i = NM_I(sbi);
2409         struct f2fs_nat_block *nat_blk = page_address(nat_page);
2410         block_t blk_addr;
2411         unsigned int nat_ofs = NAT_BLOCK_OFFSET(start_nid);
2412         int i;
2413
2414         __set_bit_le(nat_ofs, nm_i->nat_block_bitmap);
2415
2416         i = start_nid % NAT_ENTRY_PER_BLOCK;
2417
2418         for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
2419                 if (unlikely(start_nid >= nm_i->max_nid))
2420                         break;
2421
2422                 blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
2423
2424                 if (blk_addr == NEW_ADDR)
2425                         return -EFSCORRUPTED;
2426
2427                 if (blk_addr == NULL_ADDR) {
2428                         add_free_nid(sbi, start_nid, true, true);
2429                 } else {
2430                         spin_lock(&NM_I(sbi)->nid_list_lock);
2431                         update_free_nid_bitmap(sbi, start_nid, false, true);
2432                         spin_unlock(&NM_I(sbi)->nid_list_lock);
2433                 }
2434         }
2435
2436         return 0;
2437 }
2438
2439 static void scan_curseg_cache(struct f2fs_sb_info *sbi)
2440 {
2441         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2442         struct f2fs_journal *journal = curseg->journal;
2443         int i;
2444
2445         down_read(&curseg->journal_rwsem);
2446         for (i = 0; i < nats_in_cursum(journal); i++) {
2447                 block_t addr;
2448                 nid_t nid;
2449
2450                 addr = le32_to_cpu(nat_in_journal(journal, i).block_addr);
2451                 nid = le32_to_cpu(nid_in_journal(journal, i));
2452                 if (addr == NULL_ADDR)
2453                         add_free_nid(sbi, nid, true, false);
2454                 else
2455                         remove_free_nid(sbi, nid);
2456         }
2457         up_read(&curseg->journal_rwsem);
2458 }
2459
2460 static void scan_free_nid_bits(struct f2fs_sb_info *sbi)
2461 {
2462         struct f2fs_nm_info *nm_i = NM_I(sbi);
2463         unsigned int i, idx;
2464         nid_t nid;
2465
2466         f2fs_down_read(&nm_i->nat_tree_lock);
2467
2468         for (i = 0; i < nm_i->nat_blocks; i++) {
2469                 if (!test_bit_le(i, nm_i->nat_block_bitmap))
2470                         continue;
2471                 if (!nm_i->free_nid_count[i])
2472                         continue;
2473                 for (idx = 0; idx < NAT_ENTRY_PER_BLOCK; idx++) {
2474                         idx = find_next_bit_le(nm_i->free_nid_bitmap[i],
2475                                                 NAT_ENTRY_PER_BLOCK, idx);
2476                         if (idx >= NAT_ENTRY_PER_BLOCK)
2477                                 break;
2478
2479                         nid = i * NAT_ENTRY_PER_BLOCK + idx;
2480                         add_free_nid(sbi, nid, true, false);
2481
2482                         if (nm_i->nid_cnt[FREE_NID] >= MAX_FREE_NIDS)
2483                                 goto out;
2484                 }
2485         }
2486 out:
2487         scan_curseg_cache(sbi);
2488
2489         f2fs_up_read(&nm_i->nat_tree_lock);
2490 }
2491
2492 static int __f2fs_build_free_nids(struct f2fs_sb_info *sbi,
2493                                                 bool sync, bool mount)
2494 {
2495         struct f2fs_nm_info *nm_i = NM_I(sbi);
2496         int i = 0, ret;
2497         nid_t nid = nm_i->next_scan_nid;
2498
2499         if (unlikely(nid >= nm_i->max_nid))
2500                 nid = 0;
2501
2502         if (unlikely(nid % NAT_ENTRY_PER_BLOCK))
2503                 nid = NAT_BLOCK_OFFSET(nid) * NAT_ENTRY_PER_BLOCK;
2504
2505         /* Enough entries */
2506         if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2507                 return 0;
2508
2509         if (!sync && !f2fs_available_free_memory(sbi, FREE_NIDS))
2510                 return 0;
2511
2512         if (!mount) {
2513                 /* try to find free nids in free_nid_bitmap */
2514                 scan_free_nid_bits(sbi);
2515
2516                 if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2517                         return 0;
2518         }
2519
2520         /* readahead nat pages to be scanned */
2521         f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES,
2522                                                         META_NAT, true);
2523
2524         f2fs_down_read(&nm_i->nat_tree_lock);
2525
2526         while (1) {
2527                 if (!test_bit_le(NAT_BLOCK_OFFSET(nid),
2528                                                 nm_i->nat_block_bitmap)) {
2529                         struct page *page = get_current_nat_page(sbi, nid);
2530
2531                         if (IS_ERR(page)) {
2532                                 ret = PTR_ERR(page);
2533                         } else {
2534                                 ret = scan_nat_page(sbi, page, nid);
2535                                 f2fs_put_page(page, 1);
2536                         }
2537
2538                         if (ret) {
2539                                 f2fs_up_read(&nm_i->nat_tree_lock);
2540
2541                                 if (ret == -EFSCORRUPTED) {
2542                                         f2fs_err(sbi, "NAT is corrupt, run fsck to fix it");
2543                                         set_sbi_flag(sbi, SBI_NEED_FSCK);
2544                                         f2fs_handle_error(sbi,
2545                                                 ERROR_INCONSISTENT_NAT);
2546                                 }
2547
2548                                 return ret;
2549                         }
2550                 }
2551
2552                 nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
2553                 if (unlikely(nid >= nm_i->max_nid))
2554                         nid = 0;
2555
2556                 if (++i >= FREE_NID_PAGES)
2557                         break;
2558         }
2559
2560         /* go to the next free nat pages to find free nids abundantly */
2561         nm_i->next_scan_nid = nid;
2562
2563         /* find free nids from current sum_pages */
2564         scan_curseg_cache(sbi);
2565
2566         f2fs_up_read(&nm_i->nat_tree_lock);
2567
2568         f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nm_i->next_scan_nid),
2569                                         nm_i->ra_nid_pages, META_NAT, false);
2570
2571         return 0;
2572 }
2573
2574 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount)
2575 {
2576         int ret;
2577
2578         mutex_lock(&NM_I(sbi)->build_lock);
2579         ret = __f2fs_build_free_nids(sbi, sync, mount);
2580         mutex_unlock(&NM_I(sbi)->build_lock);
2581
2582         return ret;
2583 }
2584
2585 /*
2586  * If this function returns success, caller can obtain a new nid
2587  * from second parameter of this function.
2588  * The returned nid could be used ino as well as nid when inode is created.
2589  */
2590 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
2591 {
2592         struct f2fs_nm_info *nm_i = NM_I(sbi);
2593         struct free_nid *i = NULL;
2594 retry:
2595         if (time_to_inject(sbi, FAULT_ALLOC_NID))
2596                 return false;
2597
2598         spin_lock(&nm_i->nid_list_lock);
2599
2600         if (unlikely(nm_i->available_nids == 0)) {
2601                 spin_unlock(&nm_i->nid_list_lock);
2602                 return false;
2603         }
2604
2605         /* We should not use stale free nids created by f2fs_build_free_nids */
2606         if (nm_i->nid_cnt[FREE_NID] && !on_f2fs_build_free_nids(nm_i)) {
2607                 f2fs_bug_on(sbi, list_empty(&nm_i->free_nid_list));
2608                 i = list_first_entry(&nm_i->free_nid_list,
2609                                         struct free_nid, list);
2610                 *nid = i->nid;
2611
2612                 __move_free_nid(sbi, i, FREE_NID, PREALLOC_NID);
2613                 nm_i->available_nids--;
2614
2615                 update_free_nid_bitmap(sbi, *nid, false, false);
2616
2617                 spin_unlock(&nm_i->nid_list_lock);
2618                 return true;
2619         }
2620         spin_unlock(&nm_i->nid_list_lock);
2621
2622         /* Let's scan nat pages and its caches to get free nids */
2623         if (!f2fs_build_free_nids(sbi, true, false))
2624                 goto retry;
2625         return false;
2626 }
2627
2628 /*
2629  * f2fs_alloc_nid() should be called prior to this function.
2630  */
2631 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
2632 {
2633         struct f2fs_nm_info *nm_i = NM_I(sbi);
2634         struct free_nid *i;
2635
2636         spin_lock(&nm_i->nid_list_lock);
2637         i = __lookup_free_nid_list(nm_i, nid);
2638         f2fs_bug_on(sbi, !i);
2639         __remove_free_nid(sbi, i, PREALLOC_NID);
2640         spin_unlock(&nm_i->nid_list_lock);
2641
2642         kmem_cache_free(free_nid_slab, i);
2643 }
2644
2645 /*
2646  * f2fs_alloc_nid() should be called prior to this function.
2647  */
2648 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
2649 {
2650         struct f2fs_nm_info *nm_i = NM_I(sbi);
2651         struct free_nid *i;
2652         bool need_free = false;
2653
2654         if (!nid)
2655                 return;
2656
2657         spin_lock(&nm_i->nid_list_lock);
2658         i = __lookup_free_nid_list(nm_i, nid);
2659         f2fs_bug_on(sbi, !i);
2660
2661         if (!f2fs_available_free_memory(sbi, FREE_NIDS)) {
2662                 __remove_free_nid(sbi, i, PREALLOC_NID);
2663                 need_free = true;
2664         } else {
2665                 __move_free_nid(sbi, i, PREALLOC_NID, FREE_NID);
2666         }
2667
2668         nm_i->available_nids++;
2669
2670         update_free_nid_bitmap(sbi, nid, true, false);
2671
2672         spin_unlock(&nm_i->nid_list_lock);
2673
2674         if (need_free)
2675                 kmem_cache_free(free_nid_slab, i);
2676 }
2677
2678 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink)
2679 {
2680         struct f2fs_nm_info *nm_i = NM_I(sbi);
2681         int nr = nr_shrink;
2682
2683         if (nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2684                 return 0;
2685
2686         if (!mutex_trylock(&nm_i->build_lock))
2687                 return 0;
2688
2689         while (nr_shrink && nm_i->nid_cnt[FREE_NID] > MAX_FREE_NIDS) {
2690                 struct free_nid *i, *next;
2691                 unsigned int batch = SHRINK_NID_BATCH_SIZE;
2692
2693                 spin_lock(&nm_i->nid_list_lock);
2694                 list_for_each_entry_safe(i, next, &nm_i->free_nid_list, list) {
2695                         if (!nr_shrink || !batch ||
2696                                 nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2697                                 break;
2698                         __remove_free_nid(sbi, i, FREE_NID);
2699                         kmem_cache_free(free_nid_slab, i);
2700                         nr_shrink--;
2701                         batch--;
2702                 }
2703                 spin_unlock(&nm_i->nid_list_lock);
2704         }
2705
2706         mutex_unlock(&nm_i->build_lock);
2707
2708         return nr - nr_shrink;
2709 }
2710
2711 int f2fs_recover_inline_xattr(struct inode *inode, struct page *page)
2712 {
2713         void *src_addr, *dst_addr;
2714         size_t inline_size;
2715         struct page *ipage;
2716         struct f2fs_inode *ri;
2717
2718         ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino);
2719         if (IS_ERR(ipage))
2720                 return PTR_ERR(ipage);
2721
2722         ri = F2FS_INODE(page);
2723         if (ri->i_inline & F2FS_INLINE_XATTR) {
2724                 if (!f2fs_has_inline_xattr(inode)) {
2725                         set_inode_flag(inode, FI_INLINE_XATTR);
2726                         stat_inc_inline_xattr(inode);
2727                 }
2728         } else {
2729                 if (f2fs_has_inline_xattr(inode)) {
2730                         stat_dec_inline_xattr(inode);
2731                         clear_inode_flag(inode, FI_INLINE_XATTR);
2732                 }
2733                 goto update_inode;
2734         }
2735
2736         dst_addr = inline_xattr_addr(inode, ipage);
2737         src_addr = inline_xattr_addr(inode, page);
2738         inline_size = inline_xattr_size(inode);
2739
2740         f2fs_wait_on_page_writeback(ipage, NODE, true, true);
2741         memcpy(dst_addr, src_addr, inline_size);
2742 update_inode:
2743         f2fs_update_inode(inode, ipage);
2744         f2fs_put_page(ipage, 1);
2745         return 0;
2746 }
2747
2748 int f2fs_recover_xattr_data(struct inode *inode, struct page *page)
2749 {
2750         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2751         nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid;
2752         nid_t new_xnid;
2753         struct dnode_of_data dn;
2754         struct node_info ni;
2755         struct page *xpage;
2756         int err;
2757
2758         if (!prev_xnid)
2759                 goto recover_xnid;
2760
2761         /* 1: invalidate the previous xattr nid */
2762         err = f2fs_get_node_info(sbi, prev_xnid, &ni, false);
2763         if (err)
2764                 return err;
2765
2766         f2fs_invalidate_blocks(sbi, ni.blk_addr);
2767         dec_valid_node_count(sbi, inode, false);
2768         set_node_addr(sbi, &ni, NULL_ADDR, false);
2769
2770 recover_xnid:
2771         /* 2: update xattr nid in inode */
2772         if (!f2fs_alloc_nid(sbi, &new_xnid))
2773                 return -ENOSPC;
2774
2775         set_new_dnode(&dn, inode, NULL, NULL, new_xnid);
2776         xpage = f2fs_new_node_page(&dn, XATTR_NODE_OFFSET);
2777         if (IS_ERR(xpage)) {
2778                 f2fs_alloc_nid_failed(sbi, new_xnid);
2779                 return PTR_ERR(xpage);
2780         }
2781
2782         f2fs_alloc_nid_done(sbi, new_xnid);
2783         f2fs_update_inode_page(inode);
2784
2785         /* 3: update and set xattr node page dirty */
2786         if (page) {
2787                 memcpy(F2FS_NODE(xpage), F2FS_NODE(page),
2788                                 VALID_XATTR_BLOCK_SIZE);
2789                 set_page_dirty(xpage);
2790         }
2791         f2fs_put_page(xpage, 1);
2792
2793         return 0;
2794 }
2795
2796 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
2797 {
2798         struct f2fs_inode *src, *dst;
2799         nid_t ino = ino_of_node(page);
2800         struct node_info old_ni, new_ni;
2801         struct page *ipage;
2802         int err;
2803
2804         err = f2fs_get_node_info(sbi, ino, &old_ni, false);
2805         if (err)
2806                 return err;
2807
2808         if (unlikely(old_ni.blk_addr != NULL_ADDR))
2809                 return -EINVAL;
2810 retry:
2811         ipage = f2fs_grab_cache_page(NODE_MAPPING(sbi), ino, false);
2812         if (!ipage) {
2813                 memalloc_retry_wait(GFP_NOFS);
2814                 goto retry;
2815         }
2816
2817         /* Should not use this inode from free nid list */
2818         remove_free_nid(sbi, ino);
2819
2820         if (!PageUptodate(ipage))
2821                 SetPageUptodate(ipage);
2822         fill_node_footer(ipage, ino, ino, 0, true);
2823         set_cold_node(ipage, false);
2824
2825         src = F2FS_INODE(page);
2826         dst = F2FS_INODE(ipage);
2827
2828         memcpy(dst, src, offsetof(struct f2fs_inode, i_ext));
2829         dst->i_size = 0;
2830         dst->i_blocks = cpu_to_le64(1);
2831         dst->i_links = cpu_to_le32(1);
2832         dst->i_xattr_nid = 0;
2833         dst->i_inline = src->i_inline & (F2FS_INLINE_XATTR | F2FS_EXTRA_ATTR);
2834         if (dst->i_inline & F2FS_EXTRA_ATTR) {
2835                 dst->i_extra_isize = src->i_extra_isize;
2836
2837                 if (f2fs_sb_has_flexible_inline_xattr(sbi) &&
2838                         F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2839                                                         i_inline_xattr_size))
2840                         dst->i_inline_xattr_size = src->i_inline_xattr_size;
2841
2842                 if (f2fs_sb_has_project_quota(sbi) &&
2843                         F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2844                                                                 i_projid))
2845                         dst->i_projid = src->i_projid;
2846
2847                 if (f2fs_sb_has_inode_crtime(sbi) &&
2848                         F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2849                                                         i_crtime_nsec)) {
2850                         dst->i_crtime = src->i_crtime;
2851                         dst->i_crtime_nsec = src->i_crtime_nsec;
2852                 }
2853         }
2854
2855         new_ni = old_ni;
2856         new_ni.ino = ino;
2857
2858         if (unlikely(inc_valid_node_count(sbi, NULL, true)))
2859                 WARN_ON(1);
2860         set_node_addr(sbi, &new_ni, NEW_ADDR, false);
2861         inc_valid_inode_count(sbi);
2862         set_page_dirty(ipage);
2863         f2fs_put_page(ipage, 1);
2864         return 0;
2865 }
2866
2867 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
2868                         unsigned int segno, struct f2fs_summary_block *sum)
2869 {
2870         struct f2fs_node *rn;
2871         struct f2fs_summary *sum_entry;
2872         block_t addr;
2873         int i, idx, last_offset, nrpages;
2874
2875         /* scan the node segment */
2876         last_offset = BLKS_PER_SEG(sbi);
2877         addr = START_BLOCK(sbi, segno);
2878         sum_entry = &sum->entries[0];
2879
2880         for (i = 0; i < last_offset; i += nrpages, addr += nrpages) {
2881                 nrpages = bio_max_segs(last_offset - i);
2882
2883                 /* readahead node pages */
2884                 f2fs_ra_meta_pages(sbi, addr, nrpages, META_POR, true);
2885
2886                 for (idx = addr; idx < addr + nrpages; idx++) {
2887                         struct page *page = f2fs_get_tmp_page(sbi, idx);
2888
2889                         if (IS_ERR(page))
2890                                 return PTR_ERR(page);
2891
2892                         rn = F2FS_NODE(page);
2893                         sum_entry->nid = rn->footer.nid;
2894                         sum_entry->version = 0;
2895                         sum_entry->ofs_in_node = 0;
2896                         sum_entry++;
2897                         f2fs_put_page(page, 1);
2898                 }
2899
2900                 invalidate_mapping_pages(META_MAPPING(sbi), addr,
2901                                                         addr + nrpages);
2902         }
2903         return 0;
2904 }
2905
2906 static void remove_nats_in_journal(struct f2fs_sb_info *sbi)
2907 {
2908         struct f2fs_nm_info *nm_i = NM_I(sbi);
2909         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2910         struct f2fs_journal *journal = curseg->journal;
2911         int i;
2912
2913         down_write(&curseg->journal_rwsem);
2914         for (i = 0; i < nats_in_cursum(journal); i++) {
2915                 struct nat_entry *ne;
2916                 struct f2fs_nat_entry raw_ne;
2917                 nid_t nid = le32_to_cpu(nid_in_journal(journal, i));
2918
2919                 if (f2fs_check_nid_range(sbi, nid))
2920                         continue;
2921
2922                 raw_ne = nat_in_journal(journal, i);
2923
2924                 ne = __lookup_nat_cache(nm_i, nid);
2925                 if (!ne) {
2926                         ne = __alloc_nat_entry(sbi, nid, true);
2927                         __init_nat_entry(nm_i, ne, &raw_ne, true);
2928                 }
2929
2930                 /*
2931                  * if a free nat in journal has not been used after last
2932                  * checkpoint, we should remove it from available nids,
2933                  * since later we will add it again.
2934                  */
2935                 if (!get_nat_flag(ne, IS_DIRTY) &&
2936                                 le32_to_cpu(raw_ne.block_addr) == NULL_ADDR) {
2937                         spin_lock(&nm_i->nid_list_lock);
2938                         nm_i->available_nids--;
2939                         spin_unlock(&nm_i->nid_list_lock);
2940                 }
2941
2942                 __set_nat_cache_dirty(nm_i, ne);
2943         }
2944         update_nats_in_cursum(journal, -i);
2945         up_write(&curseg->journal_rwsem);
2946 }
2947
2948 static void __adjust_nat_entry_set(struct nat_entry_set *nes,
2949                                                 struct list_head *head, int max)
2950 {
2951         struct nat_entry_set *cur;
2952
2953         if (nes->entry_cnt >= max)
2954                 goto add_out;
2955
2956         list_for_each_entry(cur, head, set_list) {
2957                 if (cur->entry_cnt >= nes->entry_cnt) {
2958                         list_add(&nes->set_list, cur->set_list.prev);
2959                         return;
2960                 }
2961         }
2962 add_out:
2963         list_add_tail(&nes->set_list, head);
2964 }
2965
2966 static void __update_nat_bits(struct f2fs_nm_info *nm_i, unsigned int nat_ofs,
2967                                                         unsigned int valid)
2968 {
2969         if (valid == 0) {
2970                 __set_bit_le(nat_ofs, nm_i->empty_nat_bits);
2971                 __clear_bit_le(nat_ofs, nm_i->full_nat_bits);
2972                 return;
2973         }
2974
2975         __clear_bit_le(nat_ofs, nm_i->empty_nat_bits);
2976         if (valid == NAT_ENTRY_PER_BLOCK)
2977                 __set_bit_le(nat_ofs, nm_i->full_nat_bits);
2978         else
2979                 __clear_bit_le(nat_ofs, nm_i->full_nat_bits);
2980 }
2981
2982 static void update_nat_bits(struct f2fs_sb_info *sbi, nid_t start_nid,
2983                                                 struct page *page)
2984 {
2985         struct f2fs_nm_info *nm_i = NM_I(sbi);
2986         unsigned int nat_index = start_nid / NAT_ENTRY_PER_BLOCK;
2987         struct f2fs_nat_block *nat_blk = page_address(page);
2988         int valid = 0;
2989         int i = 0;
2990
2991         if (!is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG))
2992                 return;
2993
2994         if (nat_index == 0) {
2995                 valid = 1;
2996                 i = 1;
2997         }
2998         for (; i < NAT_ENTRY_PER_BLOCK; i++) {
2999                 if (le32_to_cpu(nat_blk->entries[i].block_addr) != NULL_ADDR)
3000                         valid++;
3001         }
3002
3003         __update_nat_bits(nm_i, nat_index, valid);
3004 }
3005
3006 void f2fs_enable_nat_bits(struct f2fs_sb_info *sbi)
3007 {
3008         struct f2fs_nm_info *nm_i = NM_I(sbi);
3009         unsigned int nat_ofs;
3010
3011         f2fs_down_read(&nm_i->nat_tree_lock);
3012
3013         for (nat_ofs = 0; nat_ofs < nm_i->nat_blocks; nat_ofs++) {
3014                 unsigned int valid = 0, nid_ofs = 0;
3015
3016                 /* handle nid zero due to it should never be used */
3017                 if (unlikely(nat_ofs == 0)) {
3018                         valid = 1;
3019                         nid_ofs = 1;
3020                 }
3021
3022                 for (; nid_ofs < NAT_ENTRY_PER_BLOCK; nid_ofs++) {
3023                         if (!test_bit_le(nid_ofs,
3024                                         nm_i->free_nid_bitmap[nat_ofs]))
3025                                 valid++;
3026                 }
3027
3028                 __update_nat_bits(nm_i, nat_ofs, valid);
3029         }
3030
3031         f2fs_up_read(&nm_i->nat_tree_lock);
3032 }
3033
3034 static int __flush_nat_entry_set(struct f2fs_sb_info *sbi,
3035                 struct nat_entry_set *set, struct cp_control *cpc)
3036 {
3037         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
3038         struct f2fs_journal *journal = curseg->journal;
3039         nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK;
3040         bool to_journal = true;
3041         struct f2fs_nat_block *nat_blk;
3042         struct nat_entry *ne, *cur;
3043         struct page *page = NULL;
3044
3045         /*
3046          * there are two steps to flush nat entries:
3047          * #1, flush nat entries to journal in current hot data summary block.
3048          * #2, flush nat entries to nat page.
3049          */
3050         if ((cpc->reason & CP_UMOUNT) ||
3051                 !__has_cursum_space(journal, set->entry_cnt, NAT_JOURNAL))
3052                 to_journal = false;
3053
3054         if (to_journal) {
3055                 down_write(&curseg->journal_rwsem);
3056         } else {
3057                 page = get_next_nat_page(sbi, start_nid);
3058                 if (IS_ERR(page))
3059                         return PTR_ERR(page);
3060
3061                 nat_blk = page_address(page);
3062                 f2fs_bug_on(sbi, !nat_blk);
3063         }
3064
3065         /* flush dirty nats in nat entry set */
3066         list_for_each_entry_safe(ne, cur, &set->entry_list, list) {
3067                 struct f2fs_nat_entry *raw_ne;
3068                 nid_t nid = nat_get_nid(ne);
3069                 int offset;
3070
3071                 f2fs_bug_on(sbi, nat_get_blkaddr(ne) == NEW_ADDR);
3072
3073                 if (to_journal) {
3074                         offset = f2fs_lookup_journal_in_cursum(journal,
3075                                                         NAT_JOURNAL, nid, 1);
3076                         f2fs_bug_on(sbi, offset < 0);
3077                         raw_ne = &nat_in_journal(journal, offset);
3078                         nid_in_journal(journal, offset) = cpu_to_le32(nid);
3079                 } else {
3080                         raw_ne = &nat_blk->entries[nid - start_nid];
3081                 }
3082                 raw_nat_from_node_info(raw_ne, &ne->ni);
3083                 nat_reset_flag(ne);
3084                 __clear_nat_cache_dirty(NM_I(sbi), set, ne);
3085                 if (nat_get_blkaddr(ne) == NULL_ADDR) {
3086                         add_free_nid(sbi, nid, false, true);
3087                 } else {
3088                         spin_lock(&NM_I(sbi)->nid_list_lock);
3089                         update_free_nid_bitmap(sbi, nid, false, false);
3090                         spin_unlock(&NM_I(sbi)->nid_list_lock);
3091                 }
3092         }
3093
3094         if (to_journal) {
3095                 up_write(&curseg->journal_rwsem);
3096         } else {
3097                 update_nat_bits(sbi, start_nid, page);
3098                 f2fs_put_page(page, 1);
3099         }
3100
3101         /* Allow dirty nats by node block allocation in write_begin */
3102         if (!set->entry_cnt) {
3103                 radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set);
3104                 kmem_cache_free(nat_entry_set_slab, set);
3105         }
3106         return 0;
3107 }
3108
3109 /*
3110  * This function is called during the checkpointing process.
3111  */
3112 int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
3113 {
3114         struct f2fs_nm_info *nm_i = NM_I(sbi);
3115         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
3116         struct f2fs_journal *journal = curseg->journal;
3117         struct nat_entry_set *setvec[NAT_VEC_SIZE];
3118         struct nat_entry_set *set, *tmp;
3119         unsigned int found;
3120         nid_t set_idx = 0;
3121         LIST_HEAD(sets);
3122         int err = 0;
3123
3124         /*
3125          * during unmount, let's flush nat_bits before checking
3126          * nat_cnt[DIRTY_NAT].
3127          */
3128         if (cpc->reason & CP_UMOUNT) {
3129                 f2fs_down_write(&nm_i->nat_tree_lock);
3130                 remove_nats_in_journal(sbi);
3131                 f2fs_up_write(&nm_i->nat_tree_lock);
3132         }
3133
3134         if (!nm_i->nat_cnt[DIRTY_NAT])
3135                 return 0;
3136
3137         f2fs_down_write(&nm_i->nat_tree_lock);
3138
3139         /*
3140          * if there are no enough space in journal to store dirty nat
3141          * entries, remove all entries from journal and merge them
3142          * into nat entry set.
3143          */
3144         if (cpc->reason & CP_UMOUNT ||
3145                 !__has_cursum_space(journal,
3146                         nm_i->nat_cnt[DIRTY_NAT], NAT_JOURNAL))
3147                 remove_nats_in_journal(sbi);
3148
3149         while ((found = __gang_lookup_nat_set(nm_i,
3150                                         set_idx, NAT_VEC_SIZE, setvec))) {
3151                 unsigned idx;
3152
3153                 set_idx = setvec[found - 1]->set + 1;
3154                 for (idx = 0; idx < found; idx++)
3155                         __adjust_nat_entry_set(setvec[idx], &sets,
3156                                                 MAX_NAT_JENTRIES(journal));
3157         }
3158
3159         /* flush dirty nats in nat entry set */
3160         list_for_each_entry_safe(set, tmp, &sets, set_list) {
3161                 err = __flush_nat_entry_set(sbi, set, cpc);
3162                 if (err)
3163                         break;
3164         }
3165
3166         f2fs_up_write(&nm_i->nat_tree_lock);
3167         /* Allow dirty nats by node block allocation in write_begin */
3168
3169         return err;
3170 }
3171
3172 static int __get_nat_bitmaps(struct f2fs_sb_info *sbi)
3173 {
3174         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3175         struct f2fs_nm_info *nm_i = NM_I(sbi);
3176         unsigned int nat_bits_bytes = nm_i->nat_blocks / BITS_PER_BYTE;
3177         unsigned int i;
3178         __u64 cp_ver = cur_cp_version(ckpt);
3179         block_t nat_bits_addr;
3180
3181         nm_i->nat_bits_blocks = F2FS_BLK_ALIGN((nat_bits_bytes << 1) + 8);
3182         nm_i->nat_bits = f2fs_kvzalloc(sbi,
3183                         F2FS_BLK_TO_BYTES(nm_i->nat_bits_blocks), GFP_KERNEL);
3184         if (!nm_i->nat_bits)
3185                 return -ENOMEM;
3186
3187         nm_i->full_nat_bits = nm_i->nat_bits + 8;
3188         nm_i->empty_nat_bits = nm_i->full_nat_bits + nat_bits_bytes;
3189
3190         if (!is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG))
3191                 return 0;
3192
3193         nat_bits_addr = __start_cp_addr(sbi) + BLKS_PER_SEG(sbi) -
3194                                                 nm_i->nat_bits_blocks;
3195         for (i = 0; i < nm_i->nat_bits_blocks; i++) {
3196                 struct page *page;
3197
3198                 page = f2fs_get_meta_page(sbi, nat_bits_addr++);
3199                 if (IS_ERR(page))
3200                         return PTR_ERR(page);
3201
3202                 memcpy(nm_i->nat_bits + F2FS_BLK_TO_BYTES(i),
3203                                         page_address(page), F2FS_BLKSIZE);
3204                 f2fs_put_page(page, 1);
3205         }
3206
3207         cp_ver |= (cur_cp_crc(ckpt) << 32);
3208         if (cpu_to_le64(cp_ver) != *(__le64 *)nm_i->nat_bits) {
3209                 clear_ckpt_flags(sbi, CP_NAT_BITS_FLAG);
3210                 f2fs_notice(sbi, "Disable nat_bits due to incorrect cp_ver (%llu, %llu)",
3211                         cp_ver, le64_to_cpu(*(__le64 *)nm_i->nat_bits));
3212                 return 0;
3213         }
3214
3215         f2fs_notice(sbi, "Found nat_bits in checkpoint");
3216         return 0;
3217 }
3218
3219 static inline void load_free_nid_bitmap(struct f2fs_sb_info *sbi)
3220 {
3221         struct f2fs_nm_info *nm_i = NM_I(sbi);
3222         unsigned int i = 0;
3223         nid_t nid, last_nid;
3224
3225         if (!is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG))
3226                 return;
3227
3228         for (i = 0; i < nm_i->nat_blocks; i++) {
3229                 i = find_next_bit_le(nm_i->empty_nat_bits, nm_i->nat_blocks, i);
3230                 if (i >= nm_i->nat_blocks)
3231                         break;
3232
3233                 __set_bit_le(i, nm_i->nat_block_bitmap);
3234
3235                 nid = i * NAT_ENTRY_PER_BLOCK;
3236                 last_nid = nid + NAT_ENTRY_PER_BLOCK;
3237
3238                 spin_lock(&NM_I(sbi)->nid_list_lock);
3239                 for (; nid < last_nid; nid++)
3240                         update_free_nid_bitmap(sbi, nid, true, true);
3241                 spin_unlock(&NM_I(sbi)->nid_list_lock);
3242         }
3243
3244         for (i = 0; i < nm_i->nat_blocks; i++) {
3245                 i = find_next_bit_le(nm_i->full_nat_bits, nm_i->nat_blocks, i);
3246                 if (i >= nm_i->nat_blocks)
3247                         break;
3248
3249                 __set_bit_le(i, nm_i->nat_block_bitmap);
3250         }
3251 }
3252
3253 static int init_node_manager(struct f2fs_sb_info *sbi)
3254 {
3255         struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
3256         struct f2fs_nm_info *nm_i = NM_I(sbi);
3257         unsigned char *version_bitmap;
3258         unsigned int nat_segs;
3259         int err;
3260
3261         nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
3262
3263         /* segment_count_nat includes pair segment so divide to 2. */
3264         nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
3265         nm_i->nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
3266         nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nm_i->nat_blocks;
3267
3268         /* not used nids: 0, node, meta, (and root counted as valid node) */
3269         nm_i->available_nids = nm_i->max_nid - sbi->total_valid_node_count -
3270                                                 F2FS_RESERVED_NODE_NUM;
3271         nm_i->nid_cnt[FREE_NID] = 0;
3272         nm_i->nid_cnt[PREALLOC_NID] = 0;
3273         nm_i->ram_thresh = DEF_RAM_THRESHOLD;
3274         nm_i->ra_nid_pages = DEF_RA_NID_PAGES;
3275         nm_i->dirty_nats_ratio = DEF_DIRTY_NAT_RATIO_THRESHOLD;
3276         nm_i->max_rf_node_blocks = DEF_RF_NODE_BLOCKS;
3277
3278         INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC);
3279         INIT_LIST_HEAD(&nm_i->free_nid_list);
3280         INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO);
3281         INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO);
3282         INIT_LIST_HEAD(&nm_i->nat_entries);
3283         spin_lock_init(&nm_i->nat_list_lock);
3284
3285         mutex_init(&nm_i->build_lock);
3286         spin_lock_init(&nm_i->nid_list_lock);
3287         init_f2fs_rwsem(&nm_i->nat_tree_lock);
3288
3289         nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
3290         nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
3291         version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
3292         nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
3293                                         GFP_KERNEL);
3294         if (!nm_i->nat_bitmap)
3295                 return -ENOMEM;
3296
3297         err = __get_nat_bitmaps(sbi);
3298         if (err)
3299                 return err;
3300
3301 #ifdef CONFIG_F2FS_CHECK_FS
3302         nm_i->nat_bitmap_mir = kmemdup(version_bitmap, nm_i->bitmap_size,
3303                                         GFP_KERNEL);
3304         if (!nm_i->nat_bitmap_mir)
3305                 return -ENOMEM;
3306 #endif
3307
3308         return 0;
3309 }
3310
3311 static int init_free_nid_cache(struct f2fs_sb_info *sbi)
3312 {
3313         struct f2fs_nm_info *nm_i = NM_I(sbi);
3314         int i;
3315
3316         nm_i->free_nid_bitmap =
3317                 f2fs_kvzalloc(sbi, array_size(sizeof(unsigned char *),
3318                                               nm_i->nat_blocks),
3319                               GFP_KERNEL);
3320         if (!nm_i->free_nid_bitmap)
3321                 return -ENOMEM;
3322
3323         for (i = 0; i < nm_i->nat_blocks; i++) {
3324                 nm_i->free_nid_bitmap[i] = f2fs_kvzalloc(sbi,
3325                         f2fs_bitmap_size(NAT_ENTRY_PER_BLOCK), GFP_KERNEL);
3326                 if (!nm_i->free_nid_bitmap[i])
3327                         return -ENOMEM;
3328         }
3329
3330         nm_i->nat_block_bitmap = f2fs_kvzalloc(sbi, nm_i->nat_blocks / 8,
3331                                                                 GFP_KERNEL);
3332         if (!nm_i->nat_block_bitmap)
3333                 return -ENOMEM;
3334
3335         nm_i->free_nid_count =
3336                 f2fs_kvzalloc(sbi, array_size(sizeof(unsigned short),
3337                                               nm_i->nat_blocks),
3338                               GFP_KERNEL);
3339         if (!nm_i->free_nid_count)
3340                 return -ENOMEM;
3341         return 0;
3342 }
3343
3344 int f2fs_build_node_manager(struct f2fs_sb_info *sbi)
3345 {
3346         int err;
3347
3348         sbi->nm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_nm_info),
3349                                                         GFP_KERNEL);
3350         if (!sbi->nm_info)
3351                 return -ENOMEM;
3352
3353         err = init_node_manager(sbi);
3354         if (err)
3355                 return err;
3356
3357         err = init_free_nid_cache(sbi);
3358         if (err)
3359                 return err;
3360
3361         /* load free nid status from nat_bits table */
3362         load_free_nid_bitmap(sbi);
3363
3364         return f2fs_build_free_nids(sbi, true, true);
3365 }
3366
3367 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi)
3368 {
3369         struct f2fs_nm_info *nm_i = NM_I(sbi);
3370         struct free_nid *i, *next_i;
3371         void *vec[NAT_VEC_SIZE];
3372         struct nat_entry **natvec = (struct nat_entry **)vec;
3373         struct nat_entry_set **setvec = (struct nat_entry_set **)vec;
3374         nid_t nid = 0;
3375         unsigned int found;
3376
3377         if (!nm_i)
3378                 return;
3379
3380         /* destroy free nid list */
3381         spin_lock(&nm_i->nid_list_lock);
3382         list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
3383                 __remove_free_nid(sbi, i, FREE_NID);
3384                 spin_unlock(&nm_i->nid_list_lock);
3385                 kmem_cache_free(free_nid_slab, i);
3386                 spin_lock(&nm_i->nid_list_lock);
3387         }
3388         f2fs_bug_on(sbi, nm_i->nid_cnt[FREE_NID]);
3389         f2fs_bug_on(sbi, nm_i->nid_cnt[PREALLOC_NID]);
3390         f2fs_bug_on(sbi, !list_empty(&nm_i->free_nid_list));
3391         spin_unlock(&nm_i->nid_list_lock);
3392
3393         /* destroy nat cache */
3394         f2fs_down_write(&nm_i->nat_tree_lock);
3395         while ((found = __gang_lookup_nat_cache(nm_i,
3396                                         nid, NAT_VEC_SIZE, natvec))) {
3397                 unsigned idx;
3398
3399                 nid = nat_get_nid(natvec[found - 1]) + 1;
3400                 for (idx = 0; idx < found; idx++) {
3401                         spin_lock(&nm_i->nat_list_lock);
3402                         list_del(&natvec[idx]->list);
3403                         spin_unlock(&nm_i->nat_list_lock);
3404
3405                         __del_from_nat_cache(nm_i, natvec[idx]);
3406                 }
3407         }
3408         f2fs_bug_on(sbi, nm_i->nat_cnt[TOTAL_NAT]);
3409
3410         /* destroy nat set cache */
3411         nid = 0;
3412         memset(vec, 0, sizeof(void *) * NAT_VEC_SIZE);
3413         while ((found = __gang_lookup_nat_set(nm_i,
3414                                         nid, NAT_VEC_SIZE, setvec))) {
3415                 unsigned idx;
3416
3417                 nid = setvec[found - 1]->set + 1;
3418                 for (idx = 0; idx < found; idx++) {
3419                         /* entry_cnt is not zero, when cp_error was occurred */
3420                         f2fs_bug_on(sbi, !list_empty(&setvec[idx]->entry_list));
3421                         radix_tree_delete(&nm_i->nat_set_root, setvec[idx]->set);
3422                         kmem_cache_free(nat_entry_set_slab, setvec[idx]);
3423                 }
3424         }
3425         f2fs_up_write(&nm_i->nat_tree_lock);
3426
3427         kvfree(nm_i->nat_block_bitmap);
3428         if (nm_i->free_nid_bitmap) {
3429                 int i;
3430
3431                 for (i = 0; i < nm_i->nat_blocks; i++)
3432                         kvfree(nm_i->free_nid_bitmap[i]);
3433                 kvfree(nm_i->free_nid_bitmap);
3434         }
3435         kvfree(nm_i->free_nid_count);
3436
3437         kvfree(nm_i->nat_bitmap);
3438         kvfree(nm_i->nat_bits);
3439 #ifdef CONFIG_F2FS_CHECK_FS
3440         kvfree(nm_i->nat_bitmap_mir);
3441 #endif
3442         sbi->nm_info = NULL;
3443         kfree(nm_i);
3444 }
3445
3446 int __init f2fs_create_node_manager_caches(void)
3447 {
3448         nat_entry_slab = f2fs_kmem_cache_create("f2fs_nat_entry",
3449                         sizeof(struct nat_entry));
3450         if (!nat_entry_slab)
3451                 goto fail;
3452
3453         free_nid_slab = f2fs_kmem_cache_create("f2fs_free_nid",
3454                         sizeof(struct free_nid));
3455         if (!free_nid_slab)
3456                 goto destroy_nat_entry;
3457
3458         nat_entry_set_slab = f2fs_kmem_cache_create("f2fs_nat_entry_set",
3459                         sizeof(struct nat_entry_set));
3460         if (!nat_entry_set_slab)
3461                 goto destroy_free_nid;
3462
3463         fsync_node_entry_slab = f2fs_kmem_cache_create("f2fs_fsync_node_entry",
3464                         sizeof(struct fsync_node_entry));
3465         if (!fsync_node_entry_slab)
3466                 goto destroy_nat_entry_set;
3467         return 0;
3468
3469 destroy_nat_entry_set:
3470         kmem_cache_destroy(nat_entry_set_slab);
3471 destroy_free_nid:
3472         kmem_cache_destroy(free_nid_slab);
3473 destroy_nat_entry:
3474         kmem_cache_destroy(nat_entry_slab);
3475 fail:
3476         return -ENOMEM;
3477 }
3478
3479 void f2fs_destroy_node_manager_caches(void)
3480 {
3481         kmem_cache_destroy(fsync_node_entry_slab);
3482         kmem_cache_destroy(nat_entry_set_slab);
3483         kmem_cache_destroy(free_nid_slab);
3484         kmem_cache_destroy(nat_entry_slab);
3485 }
This page took 0.223927 seconds and 4 git commands to generate.