]> Git Repo - J-linux.git/blob - fs/f2fs/file.c
Merge tag 'vfs-6.13-rc7.fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs
[J-linux.git] / fs / f2fs / file.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/file.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/stat.h>
11 #include <linux/writeback.h>
12 #include <linux/blkdev.h>
13 #include <linux/falloc.h>
14 #include <linux/types.h>
15 #include <linux/compat.h>
16 #include <linux/uaccess.h>
17 #include <linux/mount.h>
18 #include <linux/pagevec.h>
19 #include <linux/uio.h>
20 #include <linux/uuid.h>
21 #include <linux/file.h>
22 #include <linux/nls.h>
23 #include <linux/sched/signal.h>
24 #include <linux/fileattr.h>
25 #include <linux/fadvise.h>
26 #include <linux/iomap.h>
27
28 #include "f2fs.h"
29 #include "node.h"
30 #include "segment.h"
31 #include "xattr.h"
32 #include "acl.h"
33 #include "gc.h"
34 #include "iostat.h"
35 #include <trace/events/f2fs.h>
36 #include <uapi/linux/f2fs.h>
37
38 static vm_fault_t f2fs_filemap_fault(struct vm_fault *vmf)
39 {
40         struct inode *inode = file_inode(vmf->vma->vm_file);
41         vm_flags_t flags = vmf->vma->vm_flags;
42         vm_fault_t ret;
43
44         ret = filemap_fault(vmf);
45         if (ret & VM_FAULT_LOCKED)
46                 f2fs_update_iostat(F2FS_I_SB(inode), inode,
47                                         APP_MAPPED_READ_IO, F2FS_BLKSIZE);
48
49         trace_f2fs_filemap_fault(inode, vmf->pgoff, flags, ret);
50
51         return ret;
52 }
53
54 static vm_fault_t f2fs_vm_page_mkwrite(struct vm_fault *vmf)
55 {
56         struct folio *folio = page_folio(vmf->page);
57         struct inode *inode = file_inode(vmf->vma->vm_file);
58         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
59         struct dnode_of_data dn;
60         bool need_alloc = !f2fs_is_pinned_file(inode);
61         int err = 0;
62         vm_fault_t ret;
63
64         if (unlikely(IS_IMMUTABLE(inode)))
65                 return VM_FAULT_SIGBUS;
66
67         if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
68                 err = -EIO;
69                 goto out;
70         }
71
72         if (unlikely(f2fs_cp_error(sbi))) {
73                 err = -EIO;
74                 goto out;
75         }
76
77         if (!f2fs_is_checkpoint_ready(sbi)) {
78                 err = -ENOSPC;
79                 goto out;
80         }
81
82         err = f2fs_convert_inline_inode(inode);
83         if (err)
84                 goto out;
85
86 #ifdef CONFIG_F2FS_FS_COMPRESSION
87         if (f2fs_compressed_file(inode)) {
88                 int ret = f2fs_is_compressed_cluster(inode, folio->index);
89
90                 if (ret < 0) {
91                         err = ret;
92                         goto out;
93                 } else if (ret) {
94                         need_alloc = false;
95                 }
96         }
97 #endif
98         /* should do out of any locked page */
99         if (need_alloc)
100                 f2fs_balance_fs(sbi, true);
101
102         sb_start_pagefault(inode->i_sb);
103
104         f2fs_bug_on(sbi, f2fs_has_inline_data(inode));
105
106         file_update_time(vmf->vma->vm_file);
107         filemap_invalidate_lock_shared(inode->i_mapping);
108         folio_lock(folio);
109         if (unlikely(folio->mapping != inode->i_mapping ||
110                         folio_pos(folio) > i_size_read(inode) ||
111                         !folio_test_uptodate(folio))) {
112                 folio_unlock(folio);
113                 err = -EFAULT;
114                 goto out_sem;
115         }
116
117         set_new_dnode(&dn, inode, NULL, NULL, 0);
118         if (need_alloc) {
119                 /* block allocation */
120                 err = f2fs_get_block_locked(&dn, folio->index);
121         } else {
122                 err = f2fs_get_dnode_of_data(&dn, folio->index, LOOKUP_NODE);
123                 f2fs_put_dnode(&dn);
124                 if (f2fs_is_pinned_file(inode) &&
125                     !__is_valid_data_blkaddr(dn.data_blkaddr))
126                         err = -EIO;
127         }
128
129         if (err) {
130                 folio_unlock(folio);
131                 goto out_sem;
132         }
133
134         f2fs_wait_on_page_writeback(folio_page(folio, 0), DATA, false, true);
135
136         /* wait for GCed page writeback via META_MAPPING */
137         f2fs_wait_on_block_writeback(inode, dn.data_blkaddr);
138
139         /*
140          * check to see if the page is mapped already (no holes)
141          */
142         if (folio_test_mappedtodisk(folio))
143                 goto out_sem;
144
145         /* page is wholly or partially inside EOF */
146         if (((loff_t)(folio->index + 1) << PAGE_SHIFT) >
147                                                 i_size_read(inode)) {
148                 loff_t offset;
149
150                 offset = i_size_read(inode) & ~PAGE_MASK;
151                 folio_zero_segment(folio, offset, folio_size(folio));
152         }
153         folio_mark_dirty(folio);
154
155         f2fs_update_iostat(sbi, inode, APP_MAPPED_IO, F2FS_BLKSIZE);
156         f2fs_update_time(sbi, REQ_TIME);
157
158 out_sem:
159         filemap_invalidate_unlock_shared(inode->i_mapping);
160
161         sb_end_pagefault(inode->i_sb);
162 out:
163         ret = vmf_fs_error(err);
164
165         trace_f2fs_vm_page_mkwrite(inode, folio->index, vmf->vma->vm_flags, ret);
166         return ret;
167 }
168
169 static const struct vm_operations_struct f2fs_file_vm_ops = {
170         .fault          = f2fs_filemap_fault,
171         .map_pages      = filemap_map_pages,
172         .page_mkwrite   = f2fs_vm_page_mkwrite,
173 };
174
175 static int get_parent_ino(struct inode *inode, nid_t *pino)
176 {
177         struct dentry *dentry;
178
179         /*
180          * Make sure to get the non-deleted alias.  The alias associated with
181          * the open file descriptor being fsync()'ed may be deleted already.
182          */
183         dentry = d_find_alias(inode);
184         if (!dentry)
185                 return 0;
186
187         *pino = d_parent_ino(dentry);
188         dput(dentry);
189         return 1;
190 }
191
192 static inline enum cp_reason_type need_do_checkpoint(struct inode *inode)
193 {
194         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
195         enum cp_reason_type cp_reason = CP_NO_NEEDED;
196
197         if (!S_ISREG(inode->i_mode))
198                 cp_reason = CP_NON_REGULAR;
199         else if (f2fs_compressed_file(inode))
200                 cp_reason = CP_COMPRESSED;
201         else if (inode->i_nlink != 1)
202                 cp_reason = CP_HARDLINK;
203         else if (is_sbi_flag_set(sbi, SBI_NEED_CP))
204                 cp_reason = CP_SB_NEED_CP;
205         else if (file_wrong_pino(inode))
206                 cp_reason = CP_WRONG_PINO;
207         else if (!f2fs_space_for_roll_forward(sbi))
208                 cp_reason = CP_NO_SPC_ROLL;
209         else if (!f2fs_is_checkpointed_node(sbi, F2FS_I(inode)->i_pino))
210                 cp_reason = CP_NODE_NEED_CP;
211         else if (test_opt(sbi, FASTBOOT))
212                 cp_reason = CP_FASTBOOT_MODE;
213         else if (F2FS_OPTION(sbi).active_logs == 2)
214                 cp_reason = CP_SPEC_LOG_NUM;
215         else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_STRICT &&
216                 f2fs_need_dentry_mark(sbi, inode->i_ino) &&
217                 f2fs_exist_written_data(sbi, F2FS_I(inode)->i_pino,
218                                                         TRANS_DIR_INO))
219                 cp_reason = CP_RECOVER_DIR;
220         else if (f2fs_exist_written_data(sbi, F2FS_I(inode)->i_pino,
221                                                         XATTR_DIR_INO))
222                 cp_reason = CP_XATTR_DIR;
223
224         return cp_reason;
225 }
226
227 static bool need_inode_page_update(struct f2fs_sb_info *sbi, nid_t ino)
228 {
229         struct page *i = find_get_page(NODE_MAPPING(sbi), ino);
230         bool ret = false;
231         /* But we need to avoid that there are some inode updates */
232         if ((i && PageDirty(i)) || f2fs_need_inode_block_update(sbi, ino))
233                 ret = true;
234         f2fs_put_page(i, 0);
235         return ret;
236 }
237
238 static void try_to_fix_pino(struct inode *inode)
239 {
240         struct f2fs_inode_info *fi = F2FS_I(inode);
241         nid_t pino;
242
243         f2fs_down_write(&fi->i_sem);
244         if (file_wrong_pino(inode) && inode->i_nlink == 1 &&
245                         get_parent_ino(inode, &pino)) {
246                 f2fs_i_pino_write(inode, pino);
247                 file_got_pino(inode);
248         }
249         f2fs_up_write(&fi->i_sem);
250 }
251
252 static int f2fs_do_sync_file(struct file *file, loff_t start, loff_t end,
253                                                 int datasync, bool atomic)
254 {
255         struct inode *inode = file->f_mapping->host;
256         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
257         nid_t ino = inode->i_ino;
258         int ret = 0;
259         enum cp_reason_type cp_reason = 0;
260         struct writeback_control wbc = {
261                 .sync_mode = WB_SYNC_ALL,
262                 .nr_to_write = LONG_MAX,
263                 .for_reclaim = 0,
264         };
265         unsigned int seq_id = 0;
266
267         if (unlikely(f2fs_readonly(inode->i_sb)))
268                 return 0;
269
270         trace_f2fs_sync_file_enter(inode);
271
272         if (S_ISDIR(inode->i_mode))
273                 goto go_write;
274
275         /* if fdatasync is triggered, let's do in-place-update */
276         if (datasync || get_dirty_pages(inode) <= SM_I(sbi)->min_fsync_blocks)
277                 set_inode_flag(inode, FI_NEED_IPU);
278         ret = file_write_and_wait_range(file, start, end);
279         clear_inode_flag(inode, FI_NEED_IPU);
280
281         if (ret || is_sbi_flag_set(sbi, SBI_CP_DISABLED)) {
282                 trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret);
283                 return ret;
284         }
285
286         /* if the inode is dirty, let's recover all the time */
287         if (!f2fs_skip_inode_update(inode, datasync)) {
288                 f2fs_write_inode(inode, NULL);
289                 goto go_write;
290         }
291
292         /*
293          * if there is no written data, don't waste time to write recovery info.
294          */
295         if (!is_inode_flag_set(inode, FI_APPEND_WRITE) &&
296                         !f2fs_exist_written_data(sbi, ino, APPEND_INO)) {
297
298                 /* it may call write_inode just prior to fsync */
299                 if (need_inode_page_update(sbi, ino))
300                         goto go_write;
301
302                 if (is_inode_flag_set(inode, FI_UPDATE_WRITE) ||
303                                 f2fs_exist_written_data(sbi, ino, UPDATE_INO))
304                         goto flush_out;
305                 goto out;
306         } else {
307                 /*
308                  * for OPU case, during fsync(), node can be persisted before
309                  * data when lower device doesn't support write barrier, result
310                  * in data corruption after SPO.
311                  * So for strict fsync mode, force to use atomic write semantics
312                  * to keep write order in between data/node and last node to
313                  * avoid potential data corruption.
314                  */
315                 if (F2FS_OPTION(sbi).fsync_mode ==
316                                 FSYNC_MODE_STRICT && !atomic)
317                         atomic = true;
318         }
319 go_write:
320         /*
321          * Both of fdatasync() and fsync() are able to be recovered from
322          * sudden-power-off.
323          */
324         f2fs_down_read(&F2FS_I(inode)->i_sem);
325         cp_reason = need_do_checkpoint(inode);
326         f2fs_up_read(&F2FS_I(inode)->i_sem);
327
328         if (cp_reason) {
329                 /* all the dirty node pages should be flushed for POR */
330                 ret = f2fs_sync_fs(inode->i_sb, 1);
331
332                 /*
333                  * We've secured consistency through sync_fs. Following pino
334                  * will be used only for fsynced inodes after checkpoint.
335                  */
336                 try_to_fix_pino(inode);
337                 clear_inode_flag(inode, FI_APPEND_WRITE);
338                 clear_inode_flag(inode, FI_UPDATE_WRITE);
339                 goto out;
340         }
341 sync_nodes:
342         atomic_inc(&sbi->wb_sync_req[NODE]);
343         ret = f2fs_fsync_node_pages(sbi, inode, &wbc, atomic, &seq_id);
344         atomic_dec(&sbi->wb_sync_req[NODE]);
345         if (ret)
346                 goto out;
347
348         /* if cp_error was enabled, we should avoid infinite loop */
349         if (unlikely(f2fs_cp_error(sbi))) {
350                 ret = -EIO;
351                 goto out;
352         }
353
354         if (f2fs_need_inode_block_update(sbi, ino)) {
355                 f2fs_mark_inode_dirty_sync(inode, true);
356                 f2fs_write_inode(inode, NULL);
357                 goto sync_nodes;
358         }
359
360         /*
361          * If it's atomic_write, it's just fine to keep write ordering. So
362          * here we don't need to wait for node write completion, since we use
363          * node chain which serializes node blocks. If one of node writes are
364          * reordered, we can see simply broken chain, resulting in stopping
365          * roll-forward recovery. It means we'll recover all or none node blocks
366          * given fsync mark.
367          */
368         if (!atomic) {
369                 ret = f2fs_wait_on_node_pages_writeback(sbi, seq_id);
370                 if (ret)
371                         goto out;
372         }
373
374         /* once recovery info is written, don't need to tack this */
375         f2fs_remove_ino_entry(sbi, ino, APPEND_INO);
376         clear_inode_flag(inode, FI_APPEND_WRITE);
377 flush_out:
378         if (!atomic && F2FS_OPTION(sbi).fsync_mode != FSYNC_MODE_NOBARRIER)
379                 ret = f2fs_issue_flush(sbi, inode->i_ino);
380         if (!ret) {
381                 f2fs_remove_ino_entry(sbi, ino, UPDATE_INO);
382                 clear_inode_flag(inode, FI_UPDATE_WRITE);
383                 f2fs_remove_ino_entry(sbi, ino, FLUSH_INO);
384         }
385         f2fs_update_time(sbi, REQ_TIME);
386 out:
387         trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret);
388         return ret;
389 }
390
391 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
392 {
393         if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(file)))))
394                 return -EIO;
395         return f2fs_do_sync_file(file, start, end, datasync, false);
396 }
397
398 static bool __found_offset(struct address_space *mapping,
399                 struct dnode_of_data *dn, pgoff_t index, int whence)
400 {
401         block_t blkaddr = f2fs_data_blkaddr(dn);
402         struct inode *inode = mapping->host;
403         bool compressed_cluster = false;
404
405         if (f2fs_compressed_file(inode)) {
406                 block_t first_blkaddr = data_blkaddr(dn->inode, dn->node_page,
407                     ALIGN_DOWN(dn->ofs_in_node, F2FS_I(inode)->i_cluster_size));
408
409                 compressed_cluster = first_blkaddr == COMPRESS_ADDR;
410         }
411
412         switch (whence) {
413         case SEEK_DATA:
414                 if (__is_valid_data_blkaddr(blkaddr))
415                         return true;
416                 if (blkaddr == NEW_ADDR &&
417                     xa_get_mark(&mapping->i_pages, index, PAGECACHE_TAG_DIRTY))
418                         return true;
419                 if (compressed_cluster)
420                         return true;
421                 break;
422         case SEEK_HOLE:
423                 if (compressed_cluster)
424                         return false;
425                 if (blkaddr == NULL_ADDR)
426                         return true;
427                 break;
428         }
429         return false;
430 }
431
432 static loff_t f2fs_seek_block(struct file *file, loff_t offset, int whence)
433 {
434         struct inode *inode = file->f_mapping->host;
435         loff_t maxbytes = F2FS_BLK_TO_BYTES(max_file_blocks(inode));
436         struct dnode_of_data dn;
437         pgoff_t pgofs, end_offset;
438         loff_t data_ofs = offset;
439         loff_t isize;
440         int err = 0;
441
442         inode_lock_shared(inode);
443
444         isize = i_size_read(inode);
445         if (offset >= isize)
446                 goto fail;
447
448         /* handle inline data case */
449         if (f2fs_has_inline_data(inode)) {
450                 if (whence == SEEK_HOLE) {
451                         data_ofs = isize;
452                         goto found;
453                 } else if (whence == SEEK_DATA) {
454                         data_ofs = offset;
455                         goto found;
456                 }
457         }
458
459         pgofs = (pgoff_t)(offset >> PAGE_SHIFT);
460
461         for (; data_ofs < isize; data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
462                 set_new_dnode(&dn, inode, NULL, NULL, 0);
463                 err = f2fs_get_dnode_of_data(&dn, pgofs, LOOKUP_NODE);
464                 if (err && err != -ENOENT) {
465                         goto fail;
466                 } else if (err == -ENOENT) {
467                         /* direct node does not exists */
468                         if (whence == SEEK_DATA) {
469                                 pgofs = f2fs_get_next_page_offset(&dn, pgofs);
470                                 continue;
471                         } else {
472                                 goto found;
473                         }
474                 }
475
476                 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
477
478                 /* find data/hole in dnode block */
479                 for (; dn.ofs_in_node < end_offset;
480                                 dn.ofs_in_node++, pgofs++,
481                                 data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
482                         block_t blkaddr;
483
484                         blkaddr = f2fs_data_blkaddr(&dn);
485
486                         if (__is_valid_data_blkaddr(blkaddr) &&
487                                 !f2fs_is_valid_blkaddr(F2FS_I_SB(inode),
488                                         blkaddr, DATA_GENERIC_ENHANCE)) {
489                                 f2fs_put_dnode(&dn);
490                                 goto fail;
491                         }
492
493                         if (__found_offset(file->f_mapping, &dn,
494                                                         pgofs, whence)) {
495                                 f2fs_put_dnode(&dn);
496                                 goto found;
497                         }
498                 }
499                 f2fs_put_dnode(&dn);
500         }
501
502         if (whence == SEEK_DATA)
503                 goto fail;
504 found:
505         if (whence == SEEK_HOLE && data_ofs > isize)
506                 data_ofs = isize;
507         inode_unlock_shared(inode);
508         return vfs_setpos(file, data_ofs, maxbytes);
509 fail:
510         inode_unlock_shared(inode);
511         return -ENXIO;
512 }
513
514 static loff_t f2fs_llseek(struct file *file, loff_t offset, int whence)
515 {
516         struct inode *inode = file->f_mapping->host;
517         loff_t maxbytes = F2FS_BLK_TO_BYTES(max_file_blocks(inode));
518
519         switch (whence) {
520         case SEEK_SET:
521         case SEEK_CUR:
522         case SEEK_END:
523                 return generic_file_llseek_size(file, offset, whence,
524                                                 maxbytes, i_size_read(inode));
525         case SEEK_DATA:
526         case SEEK_HOLE:
527                 if (offset < 0)
528                         return -ENXIO;
529                 return f2fs_seek_block(file, offset, whence);
530         }
531
532         return -EINVAL;
533 }
534
535 static int f2fs_file_mmap(struct file *file, struct vm_area_struct *vma)
536 {
537         struct inode *inode = file_inode(file);
538
539         if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
540                 return -EIO;
541
542         if (!f2fs_is_compress_backend_ready(inode))
543                 return -EOPNOTSUPP;
544
545         file_accessed(file);
546         vma->vm_ops = &f2fs_file_vm_ops;
547
548         f2fs_down_read(&F2FS_I(inode)->i_sem);
549         set_inode_flag(inode, FI_MMAP_FILE);
550         f2fs_up_read(&F2FS_I(inode)->i_sem);
551
552         return 0;
553 }
554
555 static int finish_preallocate_blocks(struct inode *inode)
556 {
557         int ret;
558
559         inode_lock(inode);
560         if (is_inode_flag_set(inode, FI_OPENED_FILE)) {
561                 inode_unlock(inode);
562                 return 0;
563         }
564
565         if (!file_should_truncate(inode)) {
566                 set_inode_flag(inode, FI_OPENED_FILE);
567                 inode_unlock(inode);
568                 return 0;
569         }
570
571         f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
572         filemap_invalidate_lock(inode->i_mapping);
573
574         truncate_setsize(inode, i_size_read(inode));
575         ret = f2fs_truncate(inode);
576
577         filemap_invalidate_unlock(inode->i_mapping);
578         f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
579
580         if (!ret)
581                 set_inode_flag(inode, FI_OPENED_FILE);
582
583         inode_unlock(inode);
584         if (ret)
585                 return ret;
586
587         file_dont_truncate(inode);
588         return 0;
589 }
590
591 static int f2fs_file_open(struct inode *inode, struct file *filp)
592 {
593         int err = fscrypt_file_open(inode, filp);
594
595         if (err)
596                 return err;
597
598         if (!f2fs_is_compress_backend_ready(inode))
599                 return -EOPNOTSUPP;
600
601         err = fsverity_file_open(inode, filp);
602         if (err)
603                 return err;
604
605         filp->f_mode |= FMODE_NOWAIT;
606         filp->f_mode |= FMODE_CAN_ODIRECT;
607
608         err = dquot_file_open(inode, filp);
609         if (err)
610                 return err;
611
612         return finish_preallocate_blocks(inode);
613 }
614
615 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count)
616 {
617         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
618         int nr_free = 0, ofs = dn->ofs_in_node, len = count;
619         __le32 *addr;
620         bool compressed_cluster = false;
621         int cluster_index = 0, valid_blocks = 0;
622         int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
623         bool released = !atomic_read(&F2FS_I(dn->inode)->i_compr_blocks);
624
625         addr = get_dnode_addr(dn->inode, dn->node_page) + ofs;
626
627         /* Assumption: truncation starts with cluster */
628         for (; count > 0; count--, addr++, dn->ofs_in_node++, cluster_index++) {
629                 block_t blkaddr = le32_to_cpu(*addr);
630
631                 if (f2fs_compressed_file(dn->inode) &&
632                                         !(cluster_index & (cluster_size - 1))) {
633                         if (compressed_cluster)
634                                 f2fs_i_compr_blocks_update(dn->inode,
635                                                         valid_blocks, false);
636                         compressed_cluster = (blkaddr == COMPRESS_ADDR);
637                         valid_blocks = 0;
638                 }
639
640                 if (blkaddr == NULL_ADDR)
641                         continue;
642
643                 f2fs_set_data_blkaddr(dn, NULL_ADDR);
644
645                 if (__is_valid_data_blkaddr(blkaddr)) {
646                         if (time_to_inject(sbi, FAULT_BLKADDR_CONSISTENCE))
647                                 continue;
648                         if (!f2fs_is_valid_blkaddr_raw(sbi, blkaddr,
649                                                 DATA_GENERIC_ENHANCE))
650                                 continue;
651                         if (compressed_cluster)
652                                 valid_blocks++;
653                 }
654
655                 f2fs_invalidate_blocks(sbi, blkaddr);
656
657                 if (!released || blkaddr != COMPRESS_ADDR)
658                         nr_free++;
659         }
660
661         if (compressed_cluster)
662                 f2fs_i_compr_blocks_update(dn->inode, valid_blocks, false);
663
664         if (nr_free) {
665                 pgoff_t fofs;
666                 /*
667                  * once we invalidate valid blkaddr in range [ofs, ofs + count],
668                  * we will invalidate all blkaddr in the whole range.
669                  */
670                 fofs = f2fs_start_bidx_of_node(ofs_of_node(dn->node_page),
671                                                         dn->inode) + ofs;
672                 f2fs_update_read_extent_cache_range(dn, fofs, 0, len);
673                 f2fs_update_age_extent_cache_range(dn, fofs, len);
674                 dec_valid_block_count(sbi, dn->inode, nr_free);
675         }
676         dn->ofs_in_node = ofs;
677
678         f2fs_update_time(sbi, REQ_TIME);
679         trace_f2fs_truncate_data_blocks_range(dn->inode, dn->nid,
680                                          dn->ofs_in_node, nr_free);
681 }
682
683 static int truncate_partial_data_page(struct inode *inode, u64 from,
684                                                                 bool cache_only)
685 {
686         loff_t offset = from & (PAGE_SIZE - 1);
687         pgoff_t index = from >> PAGE_SHIFT;
688         struct address_space *mapping = inode->i_mapping;
689         struct page *page;
690
691         if (!offset && !cache_only)
692                 return 0;
693
694         if (cache_only) {
695                 page = find_lock_page(mapping, index);
696                 if (page && PageUptodate(page))
697                         goto truncate_out;
698                 f2fs_put_page(page, 1);
699                 return 0;
700         }
701
702         page = f2fs_get_lock_data_page(inode, index, true);
703         if (IS_ERR(page))
704                 return PTR_ERR(page) == -ENOENT ? 0 : PTR_ERR(page);
705 truncate_out:
706         f2fs_wait_on_page_writeback(page, DATA, true, true);
707         zero_user(page, offset, PAGE_SIZE - offset);
708
709         /* An encrypted inode should have a key and truncate the last page. */
710         f2fs_bug_on(F2FS_I_SB(inode), cache_only && IS_ENCRYPTED(inode));
711         if (!cache_only)
712                 set_page_dirty(page);
713         f2fs_put_page(page, 1);
714         return 0;
715 }
716
717 int f2fs_do_truncate_blocks(struct inode *inode, u64 from, bool lock)
718 {
719         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
720         struct dnode_of_data dn;
721         pgoff_t free_from;
722         int count = 0, err = 0;
723         struct page *ipage;
724         bool truncate_page = false;
725
726         trace_f2fs_truncate_blocks_enter(inode, from);
727
728         if (IS_DEVICE_ALIASING(inode) && from) {
729                 err = -EINVAL;
730                 goto out_err;
731         }
732
733         free_from = (pgoff_t)F2FS_BLK_ALIGN(from);
734
735         if (free_from >= max_file_blocks(inode))
736                 goto free_partial;
737
738         if (lock)
739                 f2fs_lock_op(sbi);
740
741         ipage = f2fs_get_node_page(sbi, inode->i_ino);
742         if (IS_ERR(ipage)) {
743                 err = PTR_ERR(ipage);
744                 goto out;
745         }
746
747         if (IS_DEVICE_ALIASING(inode)) {
748                 struct extent_tree *et = F2FS_I(inode)->extent_tree[EX_READ];
749                 struct extent_info ei = et->largest;
750                 unsigned int i;
751
752                 for (i = 0; i < ei.len; i++)
753                         f2fs_invalidate_blocks(sbi, ei.blk + i);
754
755                 dec_valid_block_count(sbi, inode, ei.len);
756                 f2fs_update_time(sbi, REQ_TIME);
757
758                 f2fs_put_page(ipage, 1);
759                 goto out;
760         }
761
762         if (f2fs_has_inline_data(inode)) {
763                 f2fs_truncate_inline_inode(inode, ipage, from);
764                 f2fs_put_page(ipage, 1);
765                 truncate_page = true;
766                 goto out;
767         }
768
769         set_new_dnode(&dn, inode, ipage, NULL, 0);
770         err = f2fs_get_dnode_of_data(&dn, free_from, LOOKUP_NODE_RA);
771         if (err) {
772                 if (err == -ENOENT)
773                         goto free_next;
774                 goto out;
775         }
776
777         count = ADDRS_PER_PAGE(dn.node_page, inode);
778
779         count -= dn.ofs_in_node;
780         f2fs_bug_on(sbi, count < 0);
781
782         if (dn.ofs_in_node || IS_INODE(dn.node_page)) {
783                 f2fs_truncate_data_blocks_range(&dn, count);
784                 free_from += count;
785         }
786
787         f2fs_put_dnode(&dn);
788 free_next:
789         err = f2fs_truncate_inode_blocks(inode, free_from);
790 out:
791         if (lock)
792                 f2fs_unlock_op(sbi);
793 free_partial:
794         /* lastly zero out the first data page */
795         if (!err)
796                 err = truncate_partial_data_page(inode, from, truncate_page);
797 out_err:
798         trace_f2fs_truncate_blocks_exit(inode, err);
799         return err;
800 }
801
802 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock)
803 {
804         u64 free_from = from;
805         int err;
806
807 #ifdef CONFIG_F2FS_FS_COMPRESSION
808         /*
809          * for compressed file, only support cluster size
810          * aligned truncation.
811          */
812         if (f2fs_compressed_file(inode))
813                 free_from = round_up(from,
814                                 F2FS_I(inode)->i_cluster_size << PAGE_SHIFT);
815 #endif
816
817         err = f2fs_do_truncate_blocks(inode, free_from, lock);
818         if (err)
819                 return err;
820
821 #ifdef CONFIG_F2FS_FS_COMPRESSION
822         /*
823          * For compressed file, after release compress blocks, don't allow write
824          * direct, but we should allow write direct after truncate to zero.
825          */
826         if (f2fs_compressed_file(inode) && !free_from
827                         && is_inode_flag_set(inode, FI_COMPRESS_RELEASED))
828                 clear_inode_flag(inode, FI_COMPRESS_RELEASED);
829
830         if (from != free_from) {
831                 err = f2fs_truncate_partial_cluster(inode, from, lock);
832                 if (err)
833                         return err;
834         }
835 #endif
836
837         return 0;
838 }
839
840 int f2fs_truncate(struct inode *inode)
841 {
842         int err;
843
844         if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
845                 return -EIO;
846
847         if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
848                                 S_ISLNK(inode->i_mode)))
849                 return 0;
850
851         trace_f2fs_truncate(inode);
852
853         if (time_to_inject(F2FS_I_SB(inode), FAULT_TRUNCATE))
854                 return -EIO;
855
856         err = f2fs_dquot_initialize(inode);
857         if (err)
858                 return err;
859
860         /* we should check inline_data size */
861         if (!f2fs_may_inline_data(inode)) {
862                 err = f2fs_convert_inline_inode(inode);
863                 if (err)
864                         return err;
865         }
866
867         err = f2fs_truncate_blocks(inode, i_size_read(inode), true);
868         if (err)
869                 return err;
870
871         inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
872         f2fs_mark_inode_dirty_sync(inode, false);
873         return 0;
874 }
875
876 static bool f2fs_force_buffered_io(struct inode *inode, int rw)
877 {
878         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
879
880         if (!fscrypt_dio_supported(inode))
881                 return true;
882         if (fsverity_active(inode))
883                 return true;
884         if (f2fs_compressed_file(inode))
885                 return true;
886         /*
887          * only force direct read to use buffered IO, for direct write,
888          * it expects inline data conversion before committing IO.
889          */
890         if (f2fs_has_inline_data(inode) && rw == READ)
891                 return true;
892
893         /* disallow direct IO if any of devices has unaligned blksize */
894         if (f2fs_is_multi_device(sbi) && !sbi->aligned_blksize)
895                 return true;
896         /*
897          * for blkzoned device, fallback direct IO to buffered IO, so
898          * all IOs can be serialized by log-structured write.
899          */
900         if (f2fs_sb_has_blkzoned(sbi) && (rw == WRITE) &&
901             !f2fs_is_pinned_file(inode))
902                 return true;
903         if (is_sbi_flag_set(sbi, SBI_CP_DISABLED))
904                 return true;
905
906         return false;
907 }
908
909 int f2fs_getattr(struct mnt_idmap *idmap, const struct path *path,
910                  struct kstat *stat, u32 request_mask, unsigned int query_flags)
911 {
912         struct inode *inode = d_inode(path->dentry);
913         struct f2fs_inode_info *fi = F2FS_I(inode);
914         struct f2fs_inode *ri = NULL;
915         unsigned int flags;
916
917         if (f2fs_has_extra_attr(inode) &&
918                         f2fs_sb_has_inode_crtime(F2FS_I_SB(inode)) &&
919                         F2FS_FITS_IN_INODE(ri, fi->i_extra_isize, i_crtime)) {
920                 stat->result_mask |= STATX_BTIME;
921                 stat->btime.tv_sec = fi->i_crtime.tv_sec;
922                 stat->btime.tv_nsec = fi->i_crtime.tv_nsec;
923         }
924
925         /*
926          * Return the DIO alignment restrictions if requested.  We only return
927          * this information when requested, since on encrypted files it might
928          * take a fair bit of work to get if the file wasn't opened recently.
929          *
930          * f2fs sometimes supports DIO reads but not DIO writes.  STATX_DIOALIGN
931          * cannot represent that, so in that case we report no DIO support.
932          */
933         if ((request_mask & STATX_DIOALIGN) && S_ISREG(inode->i_mode)) {
934                 unsigned int bsize = i_blocksize(inode);
935
936                 stat->result_mask |= STATX_DIOALIGN;
937                 if (!f2fs_force_buffered_io(inode, WRITE)) {
938                         stat->dio_mem_align = bsize;
939                         stat->dio_offset_align = bsize;
940                 }
941         }
942
943         flags = fi->i_flags;
944         if (flags & F2FS_COMPR_FL)
945                 stat->attributes |= STATX_ATTR_COMPRESSED;
946         if (flags & F2FS_APPEND_FL)
947                 stat->attributes |= STATX_ATTR_APPEND;
948         if (IS_ENCRYPTED(inode))
949                 stat->attributes |= STATX_ATTR_ENCRYPTED;
950         if (flags & F2FS_IMMUTABLE_FL)
951                 stat->attributes |= STATX_ATTR_IMMUTABLE;
952         if (flags & F2FS_NODUMP_FL)
953                 stat->attributes |= STATX_ATTR_NODUMP;
954         if (IS_VERITY(inode))
955                 stat->attributes |= STATX_ATTR_VERITY;
956
957         stat->attributes_mask |= (STATX_ATTR_COMPRESSED |
958                                   STATX_ATTR_APPEND |
959                                   STATX_ATTR_ENCRYPTED |
960                                   STATX_ATTR_IMMUTABLE |
961                                   STATX_ATTR_NODUMP |
962                                   STATX_ATTR_VERITY);
963
964         generic_fillattr(idmap, request_mask, inode, stat);
965
966         /* we need to show initial sectors used for inline_data/dentries */
967         if ((S_ISREG(inode->i_mode) && f2fs_has_inline_data(inode)) ||
968                                         f2fs_has_inline_dentry(inode))
969                 stat->blocks += (stat->size + 511) >> 9;
970
971         return 0;
972 }
973
974 #ifdef CONFIG_F2FS_FS_POSIX_ACL
975 static void __setattr_copy(struct mnt_idmap *idmap,
976                            struct inode *inode, const struct iattr *attr)
977 {
978         unsigned int ia_valid = attr->ia_valid;
979
980         i_uid_update(idmap, attr, inode);
981         i_gid_update(idmap, attr, inode);
982         if (ia_valid & ATTR_ATIME)
983                 inode_set_atime_to_ts(inode, attr->ia_atime);
984         if (ia_valid & ATTR_MTIME)
985                 inode_set_mtime_to_ts(inode, attr->ia_mtime);
986         if (ia_valid & ATTR_CTIME)
987                 inode_set_ctime_to_ts(inode, attr->ia_ctime);
988         if (ia_valid & ATTR_MODE) {
989                 umode_t mode = attr->ia_mode;
990
991                 if (!in_group_or_capable(idmap, inode, i_gid_into_vfsgid(idmap, inode)))
992                         mode &= ~S_ISGID;
993                 set_acl_inode(inode, mode);
994         }
995 }
996 #else
997 #define __setattr_copy setattr_copy
998 #endif
999
1000 int f2fs_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
1001                  struct iattr *attr)
1002 {
1003         struct inode *inode = d_inode(dentry);
1004         struct f2fs_inode_info *fi = F2FS_I(inode);
1005         int err;
1006
1007         if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
1008                 return -EIO;
1009
1010         if (unlikely(IS_IMMUTABLE(inode)))
1011                 return -EPERM;
1012
1013         if (unlikely(IS_APPEND(inode) &&
1014                         (attr->ia_valid & (ATTR_MODE | ATTR_UID |
1015                                   ATTR_GID | ATTR_TIMES_SET))))
1016                 return -EPERM;
1017
1018         if ((attr->ia_valid & ATTR_SIZE)) {
1019                 if (!f2fs_is_compress_backend_ready(inode) ||
1020                                 IS_DEVICE_ALIASING(inode))
1021                         return -EOPNOTSUPP;
1022                 if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED) &&
1023                         !IS_ALIGNED(attr->ia_size,
1024                         F2FS_BLK_TO_BYTES(fi->i_cluster_size)))
1025                         return -EINVAL;
1026         }
1027
1028         err = setattr_prepare(idmap, dentry, attr);
1029         if (err)
1030                 return err;
1031
1032         err = fscrypt_prepare_setattr(dentry, attr);
1033         if (err)
1034                 return err;
1035
1036         err = fsverity_prepare_setattr(dentry, attr);
1037         if (err)
1038                 return err;
1039
1040         if (is_quota_modification(idmap, inode, attr)) {
1041                 err = f2fs_dquot_initialize(inode);
1042                 if (err)
1043                         return err;
1044         }
1045         if (i_uid_needs_update(idmap, attr, inode) ||
1046             i_gid_needs_update(idmap, attr, inode)) {
1047                 f2fs_lock_op(F2FS_I_SB(inode));
1048                 err = dquot_transfer(idmap, inode, attr);
1049                 if (err) {
1050                         set_sbi_flag(F2FS_I_SB(inode),
1051                                         SBI_QUOTA_NEED_REPAIR);
1052                         f2fs_unlock_op(F2FS_I_SB(inode));
1053                         return err;
1054                 }
1055                 /*
1056                  * update uid/gid under lock_op(), so that dquot and inode can
1057                  * be updated atomically.
1058                  */
1059                 i_uid_update(idmap, attr, inode);
1060                 i_gid_update(idmap, attr, inode);
1061                 f2fs_mark_inode_dirty_sync(inode, true);
1062                 f2fs_unlock_op(F2FS_I_SB(inode));
1063         }
1064
1065         if (attr->ia_valid & ATTR_SIZE) {
1066                 loff_t old_size = i_size_read(inode);
1067
1068                 if (attr->ia_size > MAX_INLINE_DATA(inode)) {
1069                         /*
1070                          * should convert inline inode before i_size_write to
1071                          * keep smaller than inline_data size with inline flag.
1072                          */
1073                         err = f2fs_convert_inline_inode(inode);
1074                         if (err)
1075                                 return err;
1076                 }
1077
1078                 /*
1079                  * wait for inflight dio, blocks should be removed after
1080                  * IO completion.
1081                  */
1082                 if (attr->ia_size < old_size)
1083                         inode_dio_wait(inode);
1084
1085                 f2fs_down_write(&fi->i_gc_rwsem[WRITE]);
1086                 filemap_invalidate_lock(inode->i_mapping);
1087
1088                 truncate_setsize(inode, attr->ia_size);
1089
1090                 if (attr->ia_size <= old_size)
1091                         err = f2fs_truncate(inode);
1092                 /*
1093                  * do not trim all blocks after i_size if target size is
1094                  * larger than i_size.
1095                  */
1096                 filemap_invalidate_unlock(inode->i_mapping);
1097                 f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
1098                 if (err)
1099                         return err;
1100
1101                 spin_lock(&fi->i_size_lock);
1102                 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
1103                 fi->last_disk_size = i_size_read(inode);
1104                 spin_unlock(&fi->i_size_lock);
1105         }
1106
1107         __setattr_copy(idmap, inode, attr);
1108
1109         if (attr->ia_valid & ATTR_MODE) {
1110                 err = posix_acl_chmod(idmap, dentry, f2fs_get_inode_mode(inode));
1111
1112                 if (is_inode_flag_set(inode, FI_ACL_MODE)) {
1113                         if (!err)
1114                                 inode->i_mode = fi->i_acl_mode;
1115                         clear_inode_flag(inode, FI_ACL_MODE);
1116                 }
1117         }
1118
1119         /* file size may changed here */
1120         f2fs_mark_inode_dirty_sync(inode, true);
1121
1122         /* inode change will produce dirty node pages flushed by checkpoint */
1123         f2fs_balance_fs(F2FS_I_SB(inode), true);
1124
1125         return err;
1126 }
1127
1128 const struct inode_operations f2fs_file_inode_operations = {
1129         .getattr        = f2fs_getattr,
1130         .setattr        = f2fs_setattr,
1131         .get_inode_acl  = f2fs_get_acl,
1132         .set_acl        = f2fs_set_acl,
1133         .listxattr      = f2fs_listxattr,
1134         .fiemap         = f2fs_fiemap,
1135         .fileattr_get   = f2fs_fileattr_get,
1136         .fileattr_set   = f2fs_fileattr_set,
1137 };
1138
1139 static int fill_zero(struct inode *inode, pgoff_t index,
1140                                         loff_t start, loff_t len)
1141 {
1142         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1143         struct page *page;
1144
1145         if (!len)
1146                 return 0;
1147
1148         f2fs_balance_fs(sbi, true);
1149
1150         f2fs_lock_op(sbi);
1151         page = f2fs_get_new_data_page(inode, NULL, index, false);
1152         f2fs_unlock_op(sbi);
1153
1154         if (IS_ERR(page))
1155                 return PTR_ERR(page);
1156
1157         f2fs_wait_on_page_writeback(page, DATA, true, true);
1158         zero_user(page, start, len);
1159         set_page_dirty(page);
1160         f2fs_put_page(page, 1);
1161         return 0;
1162 }
1163
1164 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end)
1165 {
1166         int err;
1167
1168         while (pg_start < pg_end) {
1169                 struct dnode_of_data dn;
1170                 pgoff_t end_offset, count;
1171
1172                 set_new_dnode(&dn, inode, NULL, NULL, 0);
1173                 err = f2fs_get_dnode_of_data(&dn, pg_start, LOOKUP_NODE);
1174                 if (err) {
1175                         if (err == -ENOENT) {
1176                                 pg_start = f2fs_get_next_page_offset(&dn,
1177                                                                 pg_start);
1178                                 continue;
1179                         }
1180                         return err;
1181                 }
1182
1183                 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1184                 count = min(end_offset - dn.ofs_in_node, pg_end - pg_start);
1185
1186                 f2fs_bug_on(F2FS_I_SB(inode), count == 0 || count > end_offset);
1187
1188                 f2fs_truncate_data_blocks_range(&dn, count);
1189                 f2fs_put_dnode(&dn);
1190
1191                 pg_start += count;
1192         }
1193         return 0;
1194 }
1195
1196 static int f2fs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
1197 {
1198         pgoff_t pg_start, pg_end;
1199         loff_t off_start, off_end;
1200         int ret;
1201
1202         ret = f2fs_convert_inline_inode(inode);
1203         if (ret)
1204                 return ret;
1205
1206         pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
1207         pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
1208
1209         off_start = offset & (PAGE_SIZE - 1);
1210         off_end = (offset + len) & (PAGE_SIZE - 1);
1211
1212         if (pg_start == pg_end) {
1213                 ret = fill_zero(inode, pg_start, off_start,
1214                                                 off_end - off_start);
1215                 if (ret)
1216                         return ret;
1217         } else {
1218                 if (off_start) {
1219                         ret = fill_zero(inode, pg_start++, off_start,
1220                                                 PAGE_SIZE - off_start);
1221                         if (ret)
1222                                 return ret;
1223                 }
1224                 if (off_end) {
1225                         ret = fill_zero(inode, pg_end, 0, off_end);
1226                         if (ret)
1227                                 return ret;
1228                 }
1229
1230                 if (pg_start < pg_end) {
1231                         loff_t blk_start, blk_end;
1232                         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1233
1234                         f2fs_balance_fs(sbi, true);
1235
1236                         blk_start = (loff_t)pg_start << PAGE_SHIFT;
1237                         blk_end = (loff_t)pg_end << PAGE_SHIFT;
1238
1239                         f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1240                         filemap_invalidate_lock(inode->i_mapping);
1241
1242                         truncate_pagecache_range(inode, blk_start, blk_end - 1);
1243
1244                         f2fs_lock_op(sbi);
1245                         ret = f2fs_truncate_hole(inode, pg_start, pg_end);
1246                         f2fs_unlock_op(sbi);
1247
1248                         filemap_invalidate_unlock(inode->i_mapping);
1249                         f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1250                 }
1251         }
1252
1253         return ret;
1254 }
1255
1256 static int __read_out_blkaddrs(struct inode *inode, block_t *blkaddr,
1257                                 int *do_replace, pgoff_t off, pgoff_t len)
1258 {
1259         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1260         struct dnode_of_data dn;
1261         int ret, done, i;
1262
1263 next_dnode:
1264         set_new_dnode(&dn, inode, NULL, NULL, 0);
1265         ret = f2fs_get_dnode_of_data(&dn, off, LOOKUP_NODE_RA);
1266         if (ret && ret != -ENOENT) {
1267                 return ret;
1268         } else if (ret == -ENOENT) {
1269                 if (dn.max_level == 0)
1270                         return -ENOENT;
1271                 done = min((pgoff_t)ADDRS_PER_BLOCK(inode) -
1272                                                 dn.ofs_in_node, len);
1273                 blkaddr += done;
1274                 do_replace += done;
1275                 goto next;
1276         }
1277
1278         done = min((pgoff_t)ADDRS_PER_PAGE(dn.node_page, inode) -
1279                                                         dn.ofs_in_node, len);
1280         for (i = 0; i < done; i++, blkaddr++, do_replace++, dn.ofs_in_node++) {
1281                 *blkaddr = f2fs_data_blkaddr(&dn);
1282
1283                 if (__is_valid_data_blkaddr(*blkaddr) &&
1284                         !f2fs_is_valid_blkaddr(sbi, *blkaddr,
1285                                         DATA_GENERIC_ENHANCE)) {
1286                         f2fs_put_dnode(&dn);
1287                         return -EFSCORRUPTED;
1288                 }
1289
1290                 if (!f2fs_is_checkpointed_data(sbi, *blkaddr)) {
1291
1292                         if (f2fs_lfs_mode(sbi)) {
1293                                 f2fs_put_dnode(&dn);
1294                                 return -EOPNOTSUPP;
1295                         }
1296
1297                         /* do not invalidate this block address */
1298                         f2fs_update_data_blkaddr(&dn, NULL_ADDR);
1299                         *do_replace = 1;
1300                 }
1301         }
1302         f2fs_put_dnode(&dn);
1303 next:
1304         len -= done;
1305         off += done;
1306         if (len)
1307                 goto next_dnode;
1308         return 0;
1309 }
1310
1311 static int __roll_back_blkaddrs(struct inode *inode, block_t *blkaddr,
1312                                 int *do_replace, pgoff_t off, int len)
1313 {
1314         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1315         struct dnode_of_data dn;
1316         int ret, i;
1317
1318         for (i = 0; i < len; i++, do_replace++, blkaddr++) {
1319                 if (*do_replace == 0)
1320                         continue;
1321
1322                 set_new_dnode(&dn, inode, NULL, NULL, 0);
1323                 ret = f2fs_get_dnode_of_data(&dn, off + i, LOOKUP_NODE_RA);
1324                 if (ret) {
1325                         dec_valid_block_count(sbi, inode, 1);
1326                         f2fs_invalidate_blocks(sbi, *blkaddr);
1327                 } else {
1328                         f2fs_update_data_blkaddr(&dn, *blkaddr);
1329                 }
1330                 f2fs_put_dnode(&dn);
1331         }
1332         return 0;
1333 }
1334
1335 static int __clone_blkaddrs(struct inode *src_inode, struct inode *dst_inode,
1336                         block_t *blkaddr, int *do_replace,
1337                         pgoff_t src, pgoff_t dst, pgoff_t len, bool full)
1338 {
1339         struct f2fs_sb_info *sbi = F2FS_I_SB(src_inode);
1340         pgoff_t i = 0;
1341         int ret;
1342
1343         while (i < len) {
1344                 if (blkaddr[i] == NULL_ADDR && !full) {
1345                         i++;
1346                         continue;
1347                 }
1348
1349                 if (do_replace[i] || blkaddr[i] == NULL_ADDR) {
1350                         struct dnode_of_data dn;
1351                         struct node_info ni;
1352                         size_t new_size;
1353                         pgoff_t ilen;
1354
1355                         set_new_dnode(&dn, dst_inode, NULL, NULL, 0);
1356                         ret = f2fs_get_dnode_of_data(&dn, dst + i, ALLOC_NODE);
1357                         if (ret)
1358                                 return ret;
1359
1360                         ret = f2fs_get_node_info(sbi, dn.nid, &ni, false);
1361                         if (ret) {
1362                                 f2fs_put_dnode(&dn);
1363                                 return ret;
1364                         }
1365
1366                         ilen = min((pgoff_t)
1367                                 ADDRS_PER_PAGE(dn.node_page, dst_inode) -
1368                                                 dn.ofs_in_node, len - i);
1369                         do {
1370                                 dn.data_blkaddr = f2fs_data_blkaddr(&dn);
1371                                 f2fs_truncate_data_blocks_range(&dn, 1);
1372
1373                                 if (do_replace[i]) {
1374                                         f2fs_i_blocks_write(src_inode,
1375                                                         1, false, false);
1376                                         f2fs_i_blocks_write(dst_inode,
1377                                                         1, true, false);
1378                                         f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
1379                                         blkaddr[i], ni.version, true, false);
1380
1381                                         do_replace[i] = 0;
1382                                 }
1383                                 dn.ofs_in_node++;
1384                                 i++;
1385                                 new_size = (loff_t)(dst + i) << PAGE_SHIFT;
1386                                 if (dst_inode->i_size < new_size)
1387                                         f2fs_i_size_write(dst_inode, new_size);
1388                         } while (--ilen && (do_replace[i] || blkaddr[i] == NULL_ADDR));
1389
1390                         f2fs_put_dnode(&dn);
1391                 } else {
1392                         struct page *psrc, *pdst;
1393
1394                         psrc = f2fs_get_lock_data_page(src_inode,
1395                                                         src + i, true);
1396                         if (IS_ERR(psrc))
1397                                 return PTR_ERR(psrc);
1398                         pdst = f2fs_get_new_data_page(dst_inode, NULL, dst + i,
1399                                                                 true);
1400                         if (IS_ERR(pdst)) {
1401                                 f2fs_put_page(psrc, 1);
1402                                 return PTR_ERR(pdst);
1403                         }
1404
1405                         f2fs_wait_on_page_writeback(pdst, DATA, true, true);
1406
1407                         memcpy_page(pdst, 0, psrc, 0, PAGE_SIZE);
1408                         set_page_dirty(pdst);
1409                         set_page_private_gcing(pdst);
1410                         f2fs_put_page(pdst, 1);
1411                         f2fs_put_page(psrc, 1);
1412
1413                         ret = f2fs_truncate_hole(src_inode,
1414                                                 src + i, src + i + 1);
1415                         if (ret)
1416                                 return ret;
1417                         i++;
1418                 }
1419         }
1420         return 0;
1421 }
1422
1423 static int __exchange_data_block(struct inode *src_inode,
1424                         struct inode *dst_inode, pgoff_t src, pgoff_t dst,
1425                         pgoff_t len, bool full)
1426 {
1427         block_t *src_blkaddr;
1428         int *do_replace;
1429         pgoff_t olen;
1430         int ret;
1431
1432         while (len) {
1433                 olen = min((pgoff_t)4 * ADDRS_PER_BLOCK(src_inode), len);
1434
1435                 src_blkaddr = f2fs_kvzalloc(F2FS_I_SB(src_inode),
1436                                         array_size(olen, sizeof(block_t)),
1437                                         GFP_NOFS);
1438                 if (!src_blkaddr)
1439                         return -ENOMEM;
1440
1441                 do_replace = f2fs_kvzalloc(F2FS_I_SB(src_inode),
1442                                         array_size(olen, sizeof(int)),
1443                                         GFP_NOFS);
1444                 if (!do_replace) {
1445                         kvfree(src_blkaddr);
1446                         return -ENOMEM;
1447                 }
1448
1449                 ret = __read_out_blkaddrs(src_inode, src_blkaddr,
1450                                         do_replace, src, olen);
1451                 if (ret)
1452                         goto roll_back;
1453
1454                 ret = __clone_blkaddrs(src_inode, dst_inode, src_blkaddr,
1455                                         do_replace, src, dst, olen, full);
1456                 if (ret)
1457                         goto roll_back;
1458
1459                 src += olen;
1460                 dst += olen;
1461                 len -= olen;
1462
1463                 kvfree(src_blkaddr);
1464                 kvfree(do_replace);
1465         }
1466         return 0;
1467
1468 roll_back:
1469         __roll_back_blkaddrs(src_inode, src_blkaddr, do_replace, src, olen);
1470         kvfree(src_blkaddr);
1471         kvfree(do_replace);
1472         return ret;
1473 }
1474
1475 static int f2fs_do_collapse(struct inode *inode, loff_t offset, loff_t len)
1476 {
1477         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1478         pgoff_t nrpages = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
1479         pgoff_t start = offset >> PAGE_SHIFT;
1480         pgoff_t end = (offset + len) >> PAGE_SHIFT;
1481         int ret;
1482
1483         f2fs_balance_fs(sbi, true);
1484
1485         /* avoid gc operation during block exchange */
1486         f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1487         filemap_invalidate_lock(inode->i_mapping);
1488
1489         f2fs_lock_op(sbi);
1490         f2fs_drop_extent_tree(inode);
1491         truncate_pagecache(inode, offset);
1492         ret = __exchange_data_block(inode, inode, end, start, nrpages - end, true);
1493         f2fs_unlock_op(sbi);
1494
1495         filemap_invalidate_unlock(inode->i_mapping);
1496         f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1497         return ret;
1498 }
1499
1500 static int f2fs_collapse_range(struct inode *inode, loff_t offset, loff_t len)
1501 {
1502         loff_t new_size;
1503         int ret;
1504
1505         if (offset + len >= i_size_read(inode))
1506                 return -EINVAL;
1507
1508         /* collapse range should be aligned to block size of f2fs. */
1509         if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
1510                 return -EINVAL;
1511
1512         ret = f2fs_convert_inline_inode(inode);
1513         if (ret)
1514                 return ret;
1515
1516         /* write out all dirty pages from offset */
1517         ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1518         if (ret)
1519                 return ret;
1520
1521         ret = f2fs_do_collapse(inode, offset, len);
1522         if (ret)
1523                 return ret;
1524
1525         /* write out all moved pages, if possible */
1526         filemap_invalidate_lock(inode->i_mapping);
1527         filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1528         truncate_pagecache(inode, offset);
1529
1530         new_size = i_size_read(inode) - len;
1531         ret = f2fs_truncate_blocks(inode, new_size, true);
1532         filemap_invalidate_unlock(inode->i_mapping);
1533         if (!ret)
1534                 f2fs_i_size_write(inode, new_size);
1535         return ret;
1536 }
1537
1538 static int f2fs_do_zero_range(struct dnode_of_data *dn, pgoff_t start,
1539                                                                 pgoff_t end)
1540 {
1541         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1542         pgoff_t index = start;
1543         unsigned int ofs_in_node = dn->ofs_in_node;
1544         blkcnt_t count = 0;
1545         int ret;
1546
1547         for (; index < end; index++, dn->ofs_in_node++) {
1548                 if (f2fs_data_blkaddr(dn) == NULL_ADDR)
1549                         count++;
1550         }
1551
1552         dn->ofs_in_node = ofs_in_node;
1553         ret = f2fs_reserve_new_blocks(dn, count);
1554         if (ret)
1555                 return ret;
1556
1557         dn->ofs_in_node = ofs_in_node;
1558         for (index = start; index < end; index++, dn->ofs_in_node++) {
1559                 dn->data_blkaddr = f2fs_data_blkaddr(dn);
1560                 /*
1561                  * f2fs_reserve_new_blocks will not guarantee entire block
1562                  * allocation.
1563                  */
1564                 if (dn->data_blkaddr == NULL_ADDR) {
1565                         ret = -ENOSPC;
1566                         break;
1567                 }
1568
1569                 if (dn->data_blkaddr == NEW_ADDR)
1570                         continue;
1571
1572                 if (!f2fs_is_valid_blkaddr(sbi, dn->data_blkaddr,
1573                                         DATA_GENERIC_ENHANCE)) {
1574                         ret = -EFSCORRUPTED;
1575                         break;
1576                 }
1577
1578                 f2fs_invalidate_blocks(sbi, dn->data_blkaddr);
1579                 f2fs_set_data_blkaddr(dn, NEW_ADDR);
1580         }
1581
1582         f2fs_update_read_extent_cache_range(dn, start, 0, index - start);
1583         f2fs_update_age_extent_cache_range(dn, start, index - start);
1584
1585         return ret;
1586 }
1587
1588 static int f2fs_zero_range(struct inode *inode, loff_t offset, loff_t len,
1589                                                                 int mode)
1590 {
1591         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1592         struct address_space *mapping = inode->i_mapping;
1593         pgoff_t index, pg_start, pg_end;
1594         loff_t new_size = i_size_read(inode);
1595         loff_t off_start, off_end;
1596         int ret = 0;
1597
1598         ret = inode_newsize_ok(inode, (len + offset));
1599         if (ret)
1600                 return ret;
1601
1602         ret = f2fs_convert_inline_inode(inode);
1603         if (ret)
1604                 return ret;
1605
1606         ret = filemap_write_and_wait_range(mapping, offset, offset + len - 1);
1607         if (ret)
1608                 return ret;
1609
1610         pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
1611         pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
1612
1613         off_start = offset & (PAGE_SIZE - 1);
1614         off_end = (offset + len) & (PAGE_SIZE - 1);
1615
1616         if (pg_start == pg_end) {
1617                 ret = fill_zero(inode, pg_start, off_start,
1618                                                 off_end - off_start);
1619                 if (ret)
1620                         return ret;
1621
1622                 new_size = max_t(loff_t, new_size, offset + len);
1623         } else {
1624                 if (off_start) {
1625                         ret = fill_zero(inode, pg_start++, off_start,
1626                                                 PAGE_SIZE - off_start);
1627                         if (ret)
1628                                 return ret;
1629
1630                         new_size = max_t(loff_t, new_size,
1631                                         (loff_t)pg_start << PAGE_SHIFT);
1632                 }
1633
1634                 for (index = pg_start; index < pg_end;) {
1635                         struct dnode_of_data dn;
1636                         unsigned int end_offset;
1637                         pgoff_t end;
1638
1639                         f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1640                         filemap_invalidate_lock(mapping);
1641
1642                         truncate_pagecache_range(inode,
1643                                 (loff_t)index << PAGE_SHIFT,
1644                                 ((loff_t)pg_end << PAGE_SHIFT) - 1);
1645
1646                         f2fs_lock_op(sbi);
1647
1648                         set_new_dnode(&dn, inode, NULL, NULL, 0);
1649                         ret = f2fs_get_dnode_of_data(&dn, index, ALLOC_NODE);
1650                         if (ret) {
1651                                 f2fs_unlock_op(sbi);
1652                                 filemap_invalidate_unlock(mapping);
1653                                 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1654                                 goto out;
1655                         }
1656
1657                         end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1658                         end = min(pg_end, end_offset - dn.ofs_in_node + index);
1659
1660                         ret = f2fs_do_zero_range(&dn, index, end);
1661                         f2fs_put_dnode(&dn);
1662
1663                         f2fs_unlock_op(sbi);
1664                         filemap_invalidate_unlock(mapping);
1665                         f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1666
1667                         f2fs_balance_fs(sbi, dn.node_changed);
1668
1669                         if (ret)
1670                                 goto out;
1671
1672                         index = end;
1673                         new_size = max_t(loff_t, new_size,
1674                                         (loff_t)index << PAGE_SHIFT);
1675                 }
1676
1677                 if (off_end) {
1678                         ret = fill_zero(inode, pg_end, 0, off_end);
1679                         if (ret)
1680                                 goto out;
1681
1682                         new_size = max_t(loff_t, new_size, offset + len);
1683                 }
1684         }
1685
1686 out:
1687         if (new_size > i_size_read(inode)) {
1688                 if (mode & FALLOC_FL_KEEP_SIZE)
1689                         file_set_keep_isize(inode);
1690                 else
1691                         f2fs_i_size_write(inode, new_size);
1692         }
1693         return ret;
1694 }
1695
1696 static int f2fs_insert_range(struct inode *inode, loff_t offset, loff_t len)
1697 {
1698         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1699         struct address_space *mapping = inode->i_mapping;
1700         pgoff_t nr, pg_start, pg_end, delta, idx;
1701         loff_t new_size;
1702         int ret = 0;
1703
1704         new_size = i_size_read(inode) + len;
1705         ret = inode_newsize_ok(inode, new_size);
1706         if (ret)
1707                 return ret;
1708
1709         if (offset >= i_size_read(inode))
1710                 return -EINVAL;
1711
1712         /* insert range should be aligned to block size of f2fs. */
1713         if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
1714                 return -EINVAL;
1715
1716         ret = f2fs_convert_inline_inode(inode);
1717         if (ret)
1718                 return ret;
1719
1720         f2fs_balance_fs(sbi, true);
1721
1722         filemap_invalidate_lock(mapping);
1723         ret = f2fs_truncate_blocks(inode, i_size_read(inode), true);
1724         filemap_invalidate_unlock(mapping);
1725         if (ret)
1726                 return ret;
1727
1728         /* write out all dirty pages from offset */
1729         ret = filemap_write_and_wait_range(mapping, offset, LLONG_MAX);
1730         if (ret)
1731                 return ret;
1732
1733         pg_start = offset >> PAGE_SHIFT;
1734         pg_end = (offset + len) >> PAGE_SHIFT;
1735         delta = pg_end - pg_start;
1736         idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
1737
1738         /* avoid gc operation during block exchange */
1739         f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1740         filemap_invalidate_lock(mapping);
1741         truncate_pagecache(inode, offset);
1742
1743         while (!ret && idx > pg_start) {
1744                 nr = idx - pg_start;
1745                 if (nr > delta)
1746                         nr = delta;
1747                 idx -= nr;
1748
1749                 f2fs_lock_op(sbi);
1750                 f2fs_drop_extent_tree(inode);
1751
1752                 ret = __exchange_data_block(inode, inode, idx,
1753                                         idx + delta, nr, false);
1754                 f2fs_unlock_op(sbi);
1755         }
1756         filemap_invalidate_unlock(mapping);
1757         f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1758         if (ret)
1759                 return ret;
1760
1761         /* write out all moved pages, if possible */
1762         filemap_invalidate_lock(mapping);
1763         ret = filemap_write_and_wait_range(mapping, offset, LLONG_MAX);
1764         truncate_pagecache(inode, offset);
1765         filemap_invalidate_unlock(mapping);
1766
1767         if (!ret)
1768                 f2fs_i_size_write(inode, new_size);
1769         return ret;
1770 }
1771
1772 static int f2fs_expand_inode_data(struct inode *inode, loff_t offset,
1773                                         loff_t len, int mode)
1774 {
1775         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1776         struct f2fs_map_blocks map = { .m_next_pgofs = NULL,
1777                         .m_next_extent = NULL, .m_seg_type = NO_CHECK_TYPE,
1778                         .m_may_create = true };
1779         struct f2fs_gc_control gc_control = { .victim_segno = NULL_SEGNO,
1780                         .init_gc_type = FG_GC,
1781                         .should_migrate_blocks = false,
1782                         .err_gc_skipped = true,
1783                         .nr_free_secs = 0 };
1784         pgoff_t pg_start, pg_end;
1785         loff_t new_size;
1786         loff_t off_end;
1787         block_t expanded = 0;
1788         int err;
1789
1790         err = inode_newsize_ok(inode, (len + offset));
1791         if (err)
1792                 return err;
1793
1794         err = f2fs_convert_inline_inode(inode);
1795         if (err)
1796                 return err;
1797
1798         f2fs_balance_fs(sbi, true);
1799
1800         pg_start = ((unsigned long long)offset) >> PAGE_SHIFT;
1801         pg_end = ((unsigned long long)offset + len) >> PAGE_SHIFT;
1802         off_end = (offset + len) & (PAGE_SIZE - 1);
1803
1804         map.m_lblk = pg_start;
1805         map.m_len = pg_end - pg_start;
1806         if (off_end)
1807                 map.m_len++;
1808
1809         if (!map.m_len)
1810                 return 0;
1811
1812         if (f2fs_is_pinned_file(inode)) {
1813                 block_t sec_blks = CAP_BLKS_PER_SEC(sbi);
1814                 block_t sec_len = roundup(map.m_len, sec_blks);
1815
1816                 map.m_len = sec_blks;
1817 next_alloc:
1818                 if (has_not_enough_free_secs(sbi, 0, f2fs_sb_has_blkzoned(sbi) ?
1819                         ZONED_PIN_SEC_REQUIRED_COUNT :
1820                         GET_SEC_FROM_SEG(sbi, overprovision_segments(sbi)))) {
1821                         f2fs_down_write(&sbi->gc_lock);
1822                         stat_inc_gc_call_count(sbi, FOREGROUND);
1823                         err = f2fs_gc(sbi, &gc_control);
1824                         if (err && err != -ENODATA)
1825                                 goto out_err;
1826                 }
1827
1828                 f2fs_down_write(&sbi->pin_sem);
1829
1830                 err = f2fs_allocate_pinning_section(sbi);
1831                 if (err) {
1832                         f2fs_up_write(&sbi->pin_sem);
1833                         goto out_err;
1834                 }
1835
1836                 map.m_seg_type = CURSEG_COLD_DATA_PINNED;
1837                 err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_PRE_DIO);
1838                 file_dont_truncate(inode);
1839
1840                 f2fs_up_write(&sbi->pin_sem);
1841
1842                 expanded += map.m_len;
1843                 sec_len -= map.m_len;
1844                 map.m_lblk += map.m_len;
1845                 if (!err && sec_len)
1846                         goto next_alloc;
1847
1848                 map.m_len = expanded;
1849         } else {
1850                 err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_PRE_AIO);
1851                 expanded = map.m_len;
1852         }
1853 out_err:
1854         if (err) {
1855                 pgoff_t last_off;
1856
1857                 if (!expanded)
1858                         return err;
1859
1860                 last_off = pg_start + expanded - 1;
1861
1862                 /* update new size to the failed position */
1863                 new_size = (last_off == pg_end) ? offset + len :
1864                                         (loff_t)(last_off + 1) << PAGE_SHIFT;
1865         } else {
1866                 new_size = ((loff_t)pg_end << PAGE_SHIFT) + off_end;
1867         }
1868
1869         if (new_size > i_size_read(inode)) {
1870                 if (mode & FALLOC_FL_KEEP_SIZE)
1871                         file_set_keep_isize(inode);
1872                 else
1873                         f2fs_i_size_write(inode, new_size);
1874         }
1875
1876         return err;
1877 }
1878
1879 static long f2fs_fallocate(struct file *file, int mode,
1880                                 loff_t offset, loff_t len)
1881 {
1882         struct inode *inode = file_inode(file);
1883         long ret = 0;
1884
1885         if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
1886                 return -EIO;
1887         if (!f2fs_is_checkpoint_ready(F2FS_I_SB(inode)))
1888                 return -ENOSPC;
1889         if (!f2fs_is_compress_backend_ready(inode) || IS_DEVICE_ALIASING(inode))
1890                 return -EOPNOTSUPP;
1891
1892         /* f2fs only support ->fallocate for regular file */
1893         if (!S_ISREG(inode->i_mode))
1894                 return -EINVAL;
1895
1896         if (IS_ENCRYPTED(inode) &&
1897                 (mode & (FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_INSERT_RANGE)))
1898                 return -EOPNOTSUPP;
1899
1900         if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
1901                         FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |
1902                         FALLOC_FL_INSERT_RANGE))
1903                 return -EOPNOTSUPP;
1904
1905         inode_lock(inode);
1906
1907         /*
1908          * Pinned file should not support partial truncation since the block
1909          * can be used by applications.
1910          */
1911         if ((f2fs_compressed_file(inode) || f2fs_is_pinned_file(inode)) &&
1912                 (mode & (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_COLLAPSE_RANGE |
1913                         FALLOC_FL_ZERO_RANGE | FALLOC_FL_INSERT_RANGE))) {
1914                 ret = -EOPNOTSUPP;
1915                 goto out;
1916         }
1917
1918         ret = file_modified(file);
1919         if (ret)
1920                 goto out;
1921
1922         /*
1923          * wait for inflight dio, blocks should be removed after IO
1924          * completion.
1925          */
1926         inode_dio_wait(inode);
1927
1928         if (mode & FALLOC_FL_PUNCH_HOLE) {
1929                 if (offset >= inode->i_size)
1930                         goto out;
1931
1932                 ret = f2fs_punch_hole(inode, offset, len);
1933         } else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
1934                 ret = f2fs_collapse_range(inode, offset, len);
1935         } else if (mode & FALLOC_FL_ZERO_RANGE) {
1936                 ret = f2fs_zero_range(inode, offset, len, mode);
1937         } else if (mode & FALLOC_FL_INSERT_RANGE) {
1938                 ret = f2fs_insert_range(inode, offset, len);
1939         } else {
1940                 ret = f2fs_expand_inode_data(inode, offset, len, mode);
1941         }
1942
1943         if (!ret) {
1944                 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
1945                 f2fs_mark_inode_dirty_sync(inode, false);
1946                 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1947         }
1948
1949 out:
1950         inode_unlock(inode);
1951
1952         trace_f2fs_fallocate(inode, mode, offset, len, ret);
1953         return ret;
1954 }
1955
1956 static int f2fs_release_file(struct inode *inode, struct file *filp)
1957 {
1958         /*
1959          * f2fs_release_file is called at every close calls. So we should
1960          * not drop any inmemory pages by close called by other process.
1961          */
1962         if (!(filp->f_mode & FMODE_WRITE) ||
1963                         atomic_read(&inode->i_writecount) != 1)
1964                 return 0;
1965
1966         inode_lock(inode);
1967         f2fs_abort_atomic_write(inode, true);
1968         inode_unlock(inode);
1969
1970         return 0;
1971 }
1972
1973 static int f2fs_file_flush(struct file *file, fl_owner_t id)
1974 {
1975         struct inode *inode = file_inode(file);
1976
1977         /*
1978          * If the process doing a transaction is crashed, we should do
1979          * roll-back. Otherwise, other reader/write can see corrupted database
1980          * until all the writers close its file. Since this should be done
1981          * before dropping file lock, it needs to do in ->flush.
1982          */
1983         if (F2FS_I(inode)->atomic_write_task == current &&
1984                                 (current->flags & PF_EXITING)) {
1985                 inode_lock(inode);
1986                 f2fs_abort_atomic_write(inode, true);
1987                 inode_unlock(inode);
1988         }
1989
1990         return 0;
1991 }
1992
1993 static int f2fs_setflags_common(struct inode *inode, u32 iflags, u32 mask)
1994 {
1995         struct f2fs_inode_info *fi = F2FS_I(inode);
1996         u32 masked_flags = fi->i_flags & mask;
1997
1998         /* mask can be shrunk by flags_valid selector */
1999         iflags &= mask;
2000
2001         /* Is it quota file? Do not allow user to mess with it */
2002         if (IS_NOQUOTA(inode))
2003                 return -EPERM;
2004
2005         if ((iflags ^ masked_flags) & F2FS_CASEFOLD_FL) {
2006                 if (!f2fs_sb_has_casefold(F2FS_I_SB(inode)))
2007                         return -EOPNOTSUPP;
2008                 if (!f2fs_empty_dir(inode))
2009                         return -ENOTEMPTY;
2010         }
2011
2012         if (iflags & (F2FS_COMPR_FL | F2FS_NOCOMP_FL)) {
2013                 if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
2014                         return -EOPNOTSUPP;
2015                 if ((iflags & F2FS_COMPR_FL) && (iflags & F2FS_NOCOMP_FL))
2016                         return -EINVAL;
2017         }
2018
2019         if ((iflags ^ masked_flags) & F2FS_COMPR_FL) {
2020                 if (masked_flags & F2FS_COMPR_FL) {
2021                         if (!f2fs_disable_compressed_file(inode))
2022                                 return -EINVAL;
2023                 } else {
2024                         /* try to convert inline_data to support compression */
2025                         int err = f2fs_convert_inline_inode(inode);
2026                         if (err)
2027                                 return err;
2028
2029                         f2fs_down_write(&fi->i_sem);
2030                         if (!f2fs_may_compress(inode) ||
2031                                         (S_ISREG(inode->i_mode) &&
2032                                         F2FS_HAS_BLOCKS(inode))) {
2033                                 f2fs_up_write(&fi->i_sem);
2034                                 return -EINVAL;
2035                         }
2036                         err = set_compress_context(inode);
2037                         f2fs_up_write(&fi->i_sem);
2038
2039                         if (err)
2040                                 return err;
2041                 }
2042         }
2043
2044         fi->i_flags = iflags | (fi->i_flags & ~mask);
2045         f2fs_bug_on(F2FS_I_SB(inode), (fi->i_flags & F2FS_COMPR_FL) &&
2046                                         (fi->i_flags & F2FS_NOCOMP_FL));
2047
2048         if (fi->i_flags & F2FS_PROJINHERIT_FL)
2049                 set_inode_flag(inode, FI_PROJ_INHERIT);
2050         else
2051                 clear_inode_flag(inode, FI_PROJ_INHERIT);
2052
2053         inode_set_ctime_current(inode);
2054         f2fs_set_inode_flags(inode);
2055         f2fs_mark_inode_dirty_sync(inode, true);
2056         return 0;
2057 }
2058
2059 /* FS_IOC_[GS]ETFLAGS and FS_IOC_FS[GS]ETXATTR support */
2060
2061 /*
2062  * To make a new on-disk f2fs i_flag gettable via FS_IOC_GETFLAGS, add an entry
2063  * for it to f2fs_fsflags_map[], and add its FS_*_FL equivalent to
2064  * F2FS_GETTABLE_FS_FL.  To also make it settable via FS_IOC_SETFLAGS, also add
2065  * its FS_*_FL equivalent to F2FS_SETTABLE_FS_FL.
2066  *
2067  * Translating flags to fsx_flags value used by FS_IOC_FSGETXATTR and
2068  * FS_IOC_FSSETXATTR is done by the VFS.
2069  */
2070
2071 static const struct {
2072         u32 iflag;
2073         u32 fsflag;
2074 } f2fs_fsflags_map[] = {
2075         { F2FS_COMPR_FL,        FS_COMPR_FL },
2076         { F2FS_SYNC_FL,         FS_SYNC_FL },
2077         { F2FS_IMMUTABLE_FL,    FS_IMMUTABLE_FL },
2078         { F2FS_APPEND_FL,       FS_APPEND_FL },
2079         { F2FS_NODUMP_FL,       FS_NODUMP_FL },
2080         { F2FS_NOATIME_FL,      FS_NOATIME_FL },
2081         { F2FS_NOCOMP_FL,       FS_NOCOMP_FL },
2082         { F2FS_INDEX_FL,        FS_INDEX_FL },
2083         { F2FS_DIRSYNC_FL,      FS_DIRSYNC_FL },
2084         { F2FS_PROJINHERIT_FL,  FS_PROJINHERIT_FL },
2085         { F2FS_CASEFOLD_FL,     FS_CASEFOLD_FL },
2086 };
2087
2088 #define F2FS_GETTABLE_FS_FL (           \
2089                 FS_COMPR_FL |           \
2090                 FS_SYNC_FL |            \
2091                 FS_IMMUTABLE_FL |       \
2092                 FS_APPEND_FL |          \
2093                 FS_NODUMP_FL |          \
2094                 FS_NOATIME_FL |         \
2095                 FS_NOCOMP_FL |          \
2096                 FS_INDEX_FL |           \
2097                 FS_DIRSYNC_FL |         \
2098                 FS_PROJINHERIT_FL |     \
2099                 FS_ENCRYPT_FL |         \
2100                 FS_INLINE_DATA_FL |     \
2101                 FS_NOCOW_FL |           \
2102                 FS_VERITY_FL |          \
2103                 FS_CASEFOLD_FL)
2104
2105 #define F2FS_SETTABLE_FS_FL (           \
2106                 FS_COMPR_FL |           \
2107                 FS_SYNC_FL |            \
2108                 FS_IMMUTABLE_FL |       \
2109                 FS_APPEND_FL |          \
2110                 FS_NODUMP_FL |          \
2111                 FS_NOATIME_FL |         \
2112                 FS_NOCOMP_FL |          \
2113                 FS_DIRSYNC_FL |         \
2114                 FS_PROJINHERIT_FL |     \
2115                 FS_CASEFOLD_FL)
2116
2117 /* Convert f2fs on-disk i_flags to FS_IOC_{GET,SET}FLAGS flags */
2118 static inline u32 f2fs_iflags_to_fsflags(u32 iflags)
2119 {
2120         u32 fsflags = 0;
2121         int i;
2122
2123         for (i = 0; i < ARRAY_SIZE(f2fs_fsflags_map); i++)
2124                 if (iflags & f2fs_fsflags_map[i].iflag)
2125                         fsflags |= f2fs_fsflags_map[i].fsflag;
2126
2127         return fsflags;
2128 }
2129
2130 /* Convert FS_IOC_{GET,SET}FLAGS flags to f2fs on-disk i_flags */
2131 static inline u32 f2fs_fsflags_to_iflags(u32 fsflags)
2132 {
2133         u32 iflags = 0;
2134         int i;
2135
2136         for (i = 0; i < ARRAY_SIZE(f2fs_fsflags_map); i++)
2137                 if (fsflags & f2fs_fsflags_map[i].fsflag)
2138                         iflags |= f2fs_fsflags_map[i].iflag;
2139
2140         return iflags;
2141 }
2142
2143 static int f2fs_ioc_getversion(struct file *filp, unsigned long arg)
2144 {
2145         struct inode *inode = file_inode(filp);
2146
2147         return put_user(inode->i_generation, (int __user *)arg);
2148 }
2149
2150 static int f2fs_ioc_start_atomic_write(struct file *filp, bool truncate)
2151 {
2152         struct inode *inode = file_inode(filp);
2153         struct mnt_idmap *idmap = file_mnt_idmap(filp);
2154         struct f2fs_inode_info *fi = F2FS_I(inode);
2155         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2156         loff_t isize;
2157         int ret;
2158
2159         if (!(filp->f_mode & FMODE_WRITE))
2160                 return -EBADF;
2161
2162         if (!inode_owner_or_capable(idmap, inode))
2163                 return -EACCES;
2164
2165         if (!S_ISREG(inode->i_mode))
2166                 return -EINVAL;
2167
2168         if (filp->f_flags & O_DIRECT)
2169                 return -EINVAL;
2170
2171         ret = mnt_want_write_file(filp);
2172         if (ret)
2173                 return ret;
2174
2175         inode_lock(inode);
2176
2177         if (!f2fs_disable_compressed_file(inode) ||
2178                         f2fs_is_pinned_file(inode)) {
2179                 ret = -EINVAL;
2180                 goto out;
2181         }
2182
2183         if (f2fs_is_atomic_file(inode))
2184                 goto out;
2185
2186         ret = f2fs_convert_inline_inode(inode);
2187         if (ret)
2188                 goto out;
2189
2190         f2fs_down_write(&fi->i_gc_rwsem[WRITE]);
2191         f2fs_down_write(&fi->i_gc_rwsem[READ]);
2192
2193         /*
2194          * Should wait end_io to count F2FS_WB_CP_DATA correctly by
2195          * f2fs_is_atomic_file.
2196          */
2197         if (get_dirty_pages(inode))
2198                 f2fs_warn(sbi, "Unexpected flush for atomic writes: ino=%lu, npages=%u",
2199                           inode->i_ino, get_dirty_pages(inode));
2200         ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
2201         if (ret)
2202                 goto out_unlock;
2203
2204         /* Check if the inode already has a COW inode */
2205         if (fi->cow_inode == NULL) {
2206                 /* Create a COW inode for atomic write */
2207                 struct dentry *dentry = file_dentry(filp);
2208                 struct inode *dir = d_inode(dentry->d_parent);
2209
2210                 ret = f2fs_get_tmpfile(idmap, dir, &fi->cow_inode);
2211                 if (ret)
2212                         goto out_unlock;
2213
2214                 set_inode_flag(fi->cow_inode, FI_COW_FILE);
2215                 clear_inode_flag(fi->cow_inode, FI_INLINE_DATA);
2216
2217                 /* Set the COW inode's atomic_inode to the atomic inode */
2218                 F2FS_I(fi->cow_inode)->atomic_inode = inode;
2219         } else {
2220                 /* Reuse the already created COW inode */
2221                 f2fs_bug_on(sbi, get_dirty_pages(fi->cow_inode));
2222
2223                 invalidate_mapping_pages(fi->cow_inode->i_mapping, 0, -1);
2224
2225                 ret = f2fs_do_truncate_blocks(fi->cow_inode, 0, true);
2226                 if (ret)
2227                         goto out_unlock;
2228         }
2229
2230         f2fs_write_inode(inode, NULL);
2231
2232         stat_inc_atomic_inode(inode);
2233
2234         set_inode_flag(inode, FI_ATOMIC_FILE);
2235
2236         isize = i_size_read(inode);
2237         fi->original_i_size = isize;
2238         if (truncate) {
2239                 set_inode_flag(inode, FI_ATOMIC_REPLACE);
2240                 truncate_inode_pages_final(inode->i_mapping);
2241                 f2fs_i_size_write(inode, 0);
2242                 isize = 0;
2243         }
2244         f2fs_i_size_write(fi->cow_inode, isize);
2245
2246 out_unlock:
2247         f2fs_up_write(&fi->i_gc_rwsem[READ]);
2248         f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
2249         if (ret)
2250                 goto out;
2251
2252         f2fs_update_time(sbi, REQ_TIME);
2253         fi->atomic_write_task = current;
2254         stat_update_max_atomic_write(inode);
2255         fi->atomic_write_cnt = 0;
2256 out:
2257         inode_unlock(inode);
2258         mnt_drop_write_file(filp);
2259         return ret;
2260 }
2261
2262 static int f2fs_ioc_commit_atomic_write(struct file *filp)
2263 {
2264         struct inode *inode = file_inode(filp);
2265         struct mnt_idmap *idmap = file_mnt_idmap(filp);
2266         int ret;
2267
2268         if (!(filp->f_mode & FMODE_WRITE))
2269                 return -EBADF;
2270
2271         if (!inode_owner_or_capable(idmap, inode))
2272                 return -EACCES;
2273
2274         ret = mnt_want_write_file(filp);
2275         if (ret)
2276                 return ret;
2277
2278         f2fs_balance_fs(F2FS_I_SB(inode), true);
2279
2280         inode_lock(inode);
2281
2282         if (f2fs_is_atomic_file(inode)) {
2283                 ret = f2fs_commit_atomic_write(inode);
2284                 if (!ret)
2285                         ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true);
2286
2287                 f2fs_abort_atomic_write(inode, ret);
2288         } else {
2289                 ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 1, false);
2290         }
2291
2292         inode_unlock(inode);
2293         mnt_drop_write_file(filp);
2294         return ret;
2295 }
2296
2297 static int f2fs_ioc_abort_atomic_write(struct file *filp)
2298 {
2299         struct inode *inode = file_inode(filp);
2300         struct mnt_idmap *idmap = file_mnt_idmap(filp);
2301         int ret;
2302
2303         if (!(filp->f_mode & FMODE_WRITE))
2304                 return -EBADF;
2305
2306         if (!inode_owner_or_capable(idmap, inode))
2307                 return -EACCES;
2308
2309         ret = mnt_want_write_file(filp);
2310         if (ret)
2311                 return ret;
2312
2313         inode_lock(inode);
2314
2315         f2fs_abort_atomic_write(inode, true);
2316
2317         inode_unlock(inode);
2318
2319         mnt_drop_write_file(filp);
2320         f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2321         return ret;
2322 }
2323
2324 int f2fs_do_shutdown(struct f2fs_sb_info *sbi, unsigned int flag,
2325                                                 bool readonly, bool need_lock)
2326 {
2327         struct super_block *sb = sbi->sb;
2328         int ret = 0;
2329
2330         switch (flag) {
2331         case F2FS_GOING_DOWN_FULLSYNC:
2332                 ret = bdev_freeze(sb->s_bdev);
2333                 if (ret)
2334                         goto out;
2335                 f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_SHUTDOWN);
2336                 bdev_thaw(sb->s_bdev);
2337                 break;
2338         case F2FS_GOING_DOWN_METASYNC:
2339                 /* do checkpoint only */
2340                 ret = f2fs_sync_fs(sb, 1);
2341                 if (ret) {
2342                         if (ret == -EIO)
2343                                 ret = 0;
2344                         goto out;
2345                 }
2346                 f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_SHUTDOWN);
2347                 break;
2348         case F2FS_GOING_DOWN_NOSYNC:
2349                 f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_SHUTDOWN);
2350                 break;
2351         case F2FS_GOING_DOWN_METAFLUSH:
2352                 f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_META_IO);
2353                 f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_SHUTDOWN);
2354                 break;
2355         case F2FS_GOING_DOWN_NEED_FSCK:
2356                 set_sbi_flag(sbi, SBI_NEED_FSCK);
2357                 set_sbi_flag(sbi, SBI_CP_DISABLED_QUICK);
2358                 set_sbi_flag(sbi, SBI_IS_DIRTY);
2359                 /* do checkpoint only */
2360                 ret = f2fs_sync_fs(sb, 1);
2361                 if (ret == -EIO)
2362                         ret = 0;
2363                 goto out;
2364         default:
2365                 ret = -EINVAL;
2366                 goto out;
2367         }
2368
2369         if (readonly)
2370                 goto out;
2371
2372         /*
2373          * grab sb->s_umount to avoid racing w/ remount() and other shutdown
2374          * paths.
2375          */
2376         if (need_lock)
2377                 down_write(&sbi->sb->s_umount);
2378
2379         f2fs_stop_gc_thread(sbi);
2380         f2fs_stop_discard_thread(sbi);
2381
2382         f2fs_drop_discard_cmd(sbi);
2383         clear_opt(sbi, DISCARD);
2384
2385         if (need_lock)
2386                 up_write(&sbi->sb->s_umount);
2387
2388         f2fs_update_time(sbi, REQ_TIME);
2389 out:
2390
2391         trace_f2fs_shutdown(sbi, flag, ret);
2392
2393         return ret;
2394 }
2395
2396 static int f2fs_ioc_shutdown(struct file *filp, unsigned long arg)
2397 {
2398         struct inode *inode = file_inode(filp);
2399         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2400         __u32 in;
2401         int ret;
2402         bool need_drop = false, readonly = false;
2403
2404         if (!capable(CAP_SYS_ADMIN))
2405                 return -EPERM;
2406
2407         if (get_user(in, (__u32 __user *)arg))
2408                 return -EFAULT;
2409
2410         if (in != F2FS_GOING_DOWN_FULLSYNC) {
2411                 ret = mnt_want_write_file(filp);
2412                 if (ret) {
2413                         if (ret != -EROFS)
2414                                 return ret;
2415
2416                         /* fallback to nosync shutdown for readonly fs */
2417                         in = F2FS_GOING_DOWN_NOSYNC;
2418                         readonly = true;
2419                 } else {
2420                         need_drop = true;
2421                 }
2422         }
2423
2424         ret = f2fs_do_shutdown(sbi, in, readonly, true);
2425
2426         if (need_drop)
2427                 mnt_drop_write_file(filp);
2428
2429         return ret;
2430 }
2431
2432 static int f2fs_ioc_fitrim(struct file *filp, unsigned long arg)
2433 {
2434         struct inode *inode = file_inode(filp);
2435         struct super_block *sb = inode->i_sb;
2436         struct fstrim_range range;
2437         int ret;
2438
2439         if (!capable(CAP_SYS_ADMIN))
2440                 return -EPERM;
2441
2442         if (!f2fs_hw_support_discard(F2FS_SB(sb)))
2443                 return -EOPNOTSUPP;
2444
2445         if (copy_from_user(&range, (struct fstrim_range __user *)arg,
2446                                 sizeof(range)))
2447                 return -EFAULT;
2448
2449         ret = mnt_want_write_file(filp);
2450         if (ret)
2451                 return ret;
2452
2453         range.minlen = max((unsigned int)range.minlen,
2454                            bdev_discard_granularity(sb->s_bdev));
2455         ret = f2fs_trim_fs(F2FS_SB(sb), &range);
2456         mnt_drop_write_file(filp);
2457         if (ret < 0)
2458                 return ret;
2459
2460         if (copy_to_user((struct fstrim_range __user *)arg, &range,
2461                                 sizeof(range)))
2462                 return -EFAULT;
2463         f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2464         return 0;
2465 }
2466
2467 static bool uuid_is_nonzero(__u8 u[16])
2468 {
2469         int i;
2470
2471         for (i = 0; i < 16; i++)
2472                 if (u[i])
2473                         return true;
2474         return false;
2475 }
2476
2477 static int f2fs_ioc_set_encryption_policy(struct file *filp, unsigned long arg)
2478 {
2479         struct inode *inode = file_inode(filp);
2480         int ret;
2481
2482         if (!f2fs_sb_has_encrypt(F2FS_I_SB(inode)))
2483                 return -EOPNOTSUPP;
2484
2485         ret = fscrypt_ioctl_set_policy(filp, (const void __user *)arg);
2486         f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2487         return ret;
2488 }
2489
2490 static int f2fs_ioc_get_encryption_policy(struct file *filp, unsigned long arg)
2491 {
2492         if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2493                 return -EOPNOTSUPP;
2494         return fscrypt_ioctl_get_policy(filp, (void __user *)arg);
2495 }
2496
2497 static int f2fs_ioc_get_encryption_pwsalt(struct file *filp, unsigned long arg)
2498 {
2499         struct inode *inode = file_inode(filp);
2500         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2501         u8 encrypt_pw_salt[16];
2502         int err;
2503
2504         if (!f2fs_sb_has_encrypt(sbi))
2505                 return -EOPNOTSUPP;
2506
2507         err = mnt_want_write_file(filp);
2508         if (err)
2509                 return err;
2510
2511         f2fs_down_write(&sbi->sb_lock);
2512
2513         if (uuid_is_nonzero(sbi->raw_super->encrypt_pw_salt))
2514                 goto got_it;
2515
2516         /* update superblock with uuid */
2517         generate_random_uuid(sbi->raw_super->encrypt_pw_salt);
2518
2519         err = f2fs_commit_super(sbi, false);
2520         if (err) {
2521                 /* undo new data */
2522                 memset(sbi->raw_super->encrypt_pw_salt, 0, 16);
2523                 goto out_err;
2524         }
2525 got_it:
2526         memcpy(encrypt_pw_salt, sbi->raw_super->encrypt_pw_salt, 16);
2527 out_err:
2528         f2fs_up_write(&sbi->sb_lock);
2529         mnt_drop_write_file(filp);
2530
2531         if (!err && copy_to_user((__u8 __user *)arg, encrypt_pw_salt, 16))
2532                 err = -EFAULT;
2533
2534         return err;
2535 }
2536
2537 static int f2fs_ioc_get_encryption_policy_ex(struct file *filp,
2538                                              unsigned long arg)
2539 {
2540         if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2541                 return -EOPNOTSUPP;
2542
2543         return fscrypt_ioctl_get_policy_ex(filp, (void __user *)arg);
2544 }
2545
2546 static int f2fs_ioc_add_encryption_key(struct file *filp, unsigned long arg)
2547 {
2548         if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2549                 return -EOPNOTSUPP;
2550
2551         return fscrypt_ioctl_add_key(filp, (void __user *)arg);
2552 }
2553
2554 static int f2fs_ioc_remove_encryption_key(struct file *filp, unsigned long arg)
2555 {
2556         if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2557                 return -EOPNOTSUPP;
2558
2559         return fscrypt_ioctl_remove_key(filp, (void __user *)arg);
2560 }
2561
2562 static int f2fs_ioc_remove_encryption_key_all_users(struct file *filp,
2563                                                     unsigned long arg)
2564 {
2565         if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2566                 return -EOPNOTSUPP;
2567
2568         return fscrypt_ioctl_remove_key_all_users(filp, (void __user *)arg);
2569 }
2570
2571 static int f2fs_ioc_get_encryption_key_status(struct file *filp,
2572                                               unsigned long arg)
2573 {
2574         if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2575                 return -EOPNOTSUPP;
2576
2577         return fscrypt_ioctl_get_key_status(filp, (void __user *)arg);
2578 }
2579
2580 static int f2fs_ioc_get_encryption_nonce(struct file *filp, unsigned long arg)
2581 {
2582         if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2583                 return -EOPNOTSUPP;
2584
2585         return fscrypt_ioctl_get_nonce(filp, (void __user *)arg);
2586 }
2587
2588 static int f2fs_ioc_gc(struct file *filp, unsigned long arg)
2589 {
2590         struct inode *inode = file_inode(filp);
2591         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2592         struct f2fs_gc_control gc_control = { .victim_segno = NULL_SEGNO,
2593                         .no_bg_gc = false,
2594                         .should_migrate_blocks = false,
2595                         .nr_free_secs = 0 };
2596         __u32 sync;
2597         int ret;
2598
2599         if (!capable(CAP_SYS_ADMIN))
2600                 return -EPERM;
2601
2602         if (get_user(sync, (__u32 __user *)arg))
2603                 return -EFAULT;
2604
2605         if (f2fs_readonly(sbi->sb))
2606                 return -EROFS;
2607
2608         ret = mnt_want_write_file(filp);
2609         if (ret)
2610                 return ret;
2611
2612         if (!sync) {
2613                 if (!f2fs_down_write_trylock(&sbi->gc_lock)) {
2614                         ret = -EBUSY;
2615                         goto out;
2616                 }
2617         } else {
2618                 f2fs_down_write(&sbi->gc_lock);
2619         }
2620
2621         gc_control.init_gc_type = sync ? FG_GC : BG_GC;
2622         gc_control.err_gc_skipped = sync;
2623         stat_inc_gc_call_count(sbi, FOREGROUND);
2624         ret = f2fs_gc(sbi, &gc_control);
2625 out:
2626         mnt_drop_write_file(filp);
2627         return ret;
2628 }
2629
2630 static int __f2fs_ioc_gc_range(struct file *filp, struct f2fs_gc_range *range)
2631 {
2632         struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(filp));
2633         struct f2fs_gc_control gc_control = {
2634                         .init_gc_type = range->sync ? FG_GC : BG_GC,
2635                         .no_bg_gc = false,
2636                         .should_migrate_blocks = false,
2637                         .err_gc_skipped = range->sync,
2638                         .nr_free_secs = 0 };
2639         u64 end;
2640         int ret;
2641
2642         if (!capable(CAP_SYS_ADMIN))
2643                 return -EPERM;
2644         if (f2fs_readonly(sbi->sb))
2645                 return -EROFS;
2646
2647         end = range->start + range->len;
2648         if (end < range->start || range->start < MAIN_BLKADDR(sbi) ||
2649                                         end >= MAX_BLKADDR(sbi))
2650                 return -EINVAL;
2651
2652         ret = mnt_want_write_file(filp);
2653         if (ret)
2654                 return ret;
2655
2656 do_more:
2657         if (!range->sync) {
2658                 if (!f2fs_down_write_trylock(&sbi->gc_lock)) {
2659                         ret = -EBUSY;
2660                         goto out;
2661                 }
2662         } else {
2663                 f2fs_down_write(&sbi->gc_lock);
2664         }
2665
2666         gc_control.victim_segno = GET_SEGNO(sbi, range->start);
2667         stat_inc_gc_call_count(sbi, FOREGROUND);
2668         ret = f2fs_gc(sbi, &gc_control);
2669         if (ret) {
2670                 if (ret == -EBUSY)
2671                         ret = -EAGAIN;
2672                 goto out;
2673         }
2674         range->start += CAP_BLKS_PER_SEC(sbi);
2675         if (range->start <= end)
2676                 goto do_more;
2677 out:
2678         mnt_drop_write_file(filp);
2679         return ret;
2680 }
2681
2682 static int f2fs_ioc_gc_range(struct file *filp, unsigned long arg)
2683 {
2684         struct f2fs_gc_range range;
2685
2686         if (copy_from_user(&range, (struct f2fs_gc_range __user *)arg,
2687                                                         sizeof(range)))
2688                 return -EFAULT;
2689         return __f2fs_ioc_gc_range(filp, &range);
2690 }
2691
2692 static int f2fs_ioc_write_checkpoint(struct file *filp)
2693 {
2694         struct inode *inode = file_inode(filp);
2695         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2696         int ret;
2697
2698         if (!capable(CAP_SYS_ADMIN))
2699                 return -EPERM;
2700
2701         if (f2fs_readonly(sbi->sb))
2702                 return -EROFS;
2703
2704         if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2705                 f2fs_info(sbi, "Skipping Checkpoint. Checkpoints currently disabled.");
2706                 return -EINVAL;
2707         }
2708
2709         ret = mnt_want_write_file(filp);
2710         if (ret)
2711                 return ret;
2712
2713         ret = f2fs_sync_fs(sbi->sb, 1);
2714
2715         mnt_drop_write_file(filp);
2716         return ret;
2717 }
2718
2719 static int f2fs_defragment_range(struct f2fs_sb_info *sbi,
2720                                         struct file *filp,
2721                                         struct f2fs_defragment *range)
2722 {
2723         struct inode *inode = file_inode(filp);
2724         struct f2fs_map_blocks map = { .m_next_extent = NULL,
2725                                         .m_seg_type = NO_CHECK_TYPE,
2726                                         .m_may_create = false };
2727         struct extent_info ei = {};
2728         pgoff_t pg_start, pg_end, next_pgofs;
2729         unsigned int total = 0, sec_num;
2730         block_t blk_end = 0;
2731         bool fragmented = false;
2732         int err;
2733
2734         f2fs_balance_fs(sbi, true);
2735
2736         inode_lock(inode);
2737         pg_start = range->start >> PAGE_SHIFT;
2738         pg_end = min_t(pgoff_t,
2739                                 (range->start + range->len) >> PAGE_SHIFT,
2740                                 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE));
2741
2742         if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED) ||
2743                 f2fs_is_atomic_file(inode)) {
2744                 err = -EINVAL;
2745                 goto unlock_out;
2746         }
2747
2748         /* if in-place-update policy is enabled, don't waste time here */
2749         set_inode_flag(inode, FI_OPU_WRITE);
2750         if (f2fs_should_update_inplace(inode, NULL)) {
2751                 err = -EINVAL;
2752                 goto out;
2753         }
2754
2755         /* writeback all dirty pages in the range */
2756         err = filemap_write_and_wait_range(inode->i_mapping,
2757                                                 pg_start << PAGE_SHIFT,
2758                                                 (pg_end << PAGE_SHIFT) - 1);
2759         if (err)
2760                 goto out;
2761
2762         /*
2763          * lookup mapping info in extent cache, skip defragmenting if physical
2764          * block addresses are continuous.
2765          */
2766         if (f2fs_lookup_read_extent_cache(inode, pg_start, &ei)) {
2767                 if ((pgoff_t)ei.fofs + ei.len >= pg_end)
2768                         goto out;
2769         }
2770
2771         map.m_lblk = pg_start;
2772         map.m_next_pgofs = &next_pgofs;
2773
2774         /*
2775          * lookup mapping info in dnode page cache, skip defragmenting if all
2776          * physical block addresses are continuous even if there are hole(s)
2777          * in logical blocks.
2778          */
2779         while (map.m_lblk < pg_end) {
2780                 map.m_len = pg_end - map.m_lblk;
2781                 err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_DEFAULT);
2782                 if (err)
2783                         goto out;
2784
2785                 if (!(map.m_flags & F2FS_MAP_FLAGS)) {
2786                         map.m_lblk = next_pgofs;
2787                         continue;
2788                 }
2789
2790                 if (blk_end && blk_end != map.m_pblk)
2791                         fragmented = true;
2792
2793                 /* record total count of block that we're going to move */
2794                 total += map.m_len;
2795
2796                 blk_end = map.m_pblk + map.m_len;
2797
2798                 map.m_lblk += map.m_len;
2799         }
2800
2801         if (!fragmented) {
2802                 total = 0;
2803                 goto out;
2804         }
2805
2806         sec_num = DIV_ROUND_UP(total, CAP_BLKS_PER_SEC(sbi));
2807
2808         /*
2809          * make sure there are enough free section for LFS allocation, this can
2810          * avoid defragment running in SSR mode when free section are allocated
2811          * intensively
2812          */
2813         if (has_not_enough_free_secs(sbi, 0, sec_num)) {
2814                 err = -EAGAIN;
2815                 goto out;
2816         }
2817
2818         map.m_lblk = pg_start;
2819         map.m_len = pg_end - pg_start;
2820         total = 0;
2821
2822         while (map.m_lblk < pg_end) {
2823                 pgoff_t idx;
2824                 int cnt = 0;
2825
2826 do_map:
2827                 map.m_len = pg_end - map.m_lblk;
2828                 err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_DEFAULT);
2829                 if (err)
2830                         goto clear_out;
2831
2832                 if (!(map.m_flags & F2FS_MAP_FLAGS)) {
2833                         map.m_lblk = next_pgofs;
2834                         goto check;
2835                 }
2836
2837                 set_inode_flag(inode, FI_SKIP_WRITES);
2838
2839                 idx = map.m_lblk;
2840                 while (idx < map.m_lblk + map.m_len &&
2841                                                 cnt < BLKS_PER_SEG(sbi)) {
2842                         struct page *page;
2843
2844                         page = f2fs_get_lock_data_page(inode, idx, true);
2845                         if (IS_ERR(page)) {
2846                                 err = PTR_ERR(page);
2847                                 goto clear_out;
2848                         }
2849
2850                         f2fs_wait_on_page_writeback(page, DATA, true, true);
2851
2852                         set_page_dirty(page);
2853                         set_page_private_gcing(page);
2854                         f2fs_put_page(page, 1);
2855
2856                         idx++;
2857                         cnt++;
2858                         total++;
2859                 }
2860
2861                 map.m_lblk = idx;
2862 check:
2863                 if (map.m_lblk < pg_end && cnt < BLKS_PER_SEG(sbi))
2864                         goto do_map;
2865
2866                 clear_inode_flag(inode, FI_SKIP_WRITES);
2867
2868                 err = filemap_fdatawrite(inode->i_mapping);
2869                 if (err)
2870                         goto out;
2871         }
2872 clear_out:
2873         clear_inode_flag(inode, FI_SKIP_WRITES);
2874 out:
2875         clear_inode_flag(inode, FI_OPU_WRITE);
2876 unlock_out:
2877         inode_unlock(inode);
2878         if (!err)
2879                 range->len = (u64)total << PAGE_SHIFT;
2880         return err;
2881 }
2882
2883 static int f2fs_ioc_defragment(struct file *filp, unsigned long arg)
2884 {
2885         struct inode *inode = file_inode(filp);
2886         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2887         struct f2fs_defragment range;
2888         int err;
2889
2890         if (!capable(CAP_SYS_ADMIN))
2891                 return -EPERM;
2892
2893         if (!S_ISREG(inode->i_mode))
2894                 return -EINVAL;
2895
2896         if (f2fs_readonly(sbi->sb))
2897                 return -EROFS;
2898
2899         if (copy_from_user(&range, (struct f2fs_defragment __user *)arg,
2900                                                         sizeof(range)))
2901                 return -EFAULT;
2902
2903         /* verify alignment of offset & size */
2904         if (range.start & (F2FS_BLKSIZE - 1) || range.len & (F2FS_BLKSIZE - 1))
2905                 return -EINVAL;
2906
2907         if (unlikely((range.start + range.len) >> PAGE_SHIFT >
2908                                         max_file_blocks(inode)))
2909                 return -EINVAL;
2910
2911         err = mnt_want_write_file(filp);
2912         if (err)
2913                 return err;
2914
2915         err = f2fs_defragment_range(sbi, filp, &range);
2916         mnt_drop_write_file(filp);
2917
2918         if (range.len)
2919                 f2fs_update_time(sbi, REQ_TIME);
2920         if (err < 0)
2921                 return err;
2922
2923         if (copy_to_user((struct f2fs_defragment __user *)arg, &range,
2924                                                         sizeof(range)))
2925                 return -EFAULT;
2926
2927         return 0;
2928 }
2929
2930 static int f2fs_move_file_range(struct file *file_in, loff_t pos_in,
2931                         struct file *file_out, loff_t pos_out, size_t len)
2932 {
2933         struct inode *src = file_inode(file_in);
2934         struct inode *dst = file_inode(file_out);
2935         struct f2fs_sb_info *sbi = F2FS_I_SB(src);
2936         size_t olen = len, dst_max_i_size = 0;
2937         size_t dst_osize;
2938         int ret;
2939
2940         if (file_in->f_path.mnt != file_out->f_path.mnt ||
2941                                 src->i_sb != dst->i_sb)
2942                 return -EXDEV;
2943
2944         if (unlikely(f2fs_readonly(src->i_sb)))
2945                 return -EROFS;
2946
2947         if (!S_ISREG(src->i_mode) || !S_ISREG(dst->i_mode))
2948                 return -EINVAL;
2949
2950         if (IS_ENCRYPTED(src) || IS_ENCRYPTED(dst))
2951                 return -EOPNOTSUPP;
2952
2953         if (pos_out < 0 || pos_in < 0)
2954                 return -EINVAL;
2955
2956         if (src == dst) {
2957                 if (pos_in == pos_out)
2958                         return 0;
2959                 if (pos_out > pos_in && pos_out < pos_in + len)
2960                         return -EINVAL;
2961         }
2962
2963         inode_lock(src);
2964         if (src != dst) {
2965                 ret = -EBUSY;
2966                 if (!inode_trylock(dst))
2967                         goto out;
2968         }
2969
2970         if (f2fs_compressed_file(src) || f2fs_compressed_file(dst) ||
2971                 f2fs_is_pinned_file(src) || f2fs_is_pinned_file(dst)) {
2972                 ret = -EOPNOTSUPP;
2973                 goto out_unlock;
2974         }
2975
2976         if (f2fs_is_atomic_file(src) || f2fs_is_atomic_file(dst)) {
2977                 ret = -EINVAL;
2978                 goto out_unlock;
2979         }
2980
2981         ret = -EINVAL;
2982         if (pos_in + len > src->i_size || pos_in + len < pos_in)
2983                 goto out_unlock;
2984         if (len == 0)
2985                 olen = len = src->i_size - pos_in;
2986         if (pos_in + len == src->i_size)
2987                 len = ALIGN(src->i_size, F2FS_BLKSIZE) - pos_in;
2988         if (len == 0) {
2989                 ret = 0;
2990                 goto out_unlock;
2991         }
2992
2993         dst_osize = dst->i_size;
2994         if (pos_out + olen > dst->i_size)
2995                 dst_max_i_size = pos_out + olen;
2996
2997         /* verify the end result is block aligned */
2998         if (!IS_ALIGNED(pos_in, F2FS_BLKSIZE) ||
2999                         !IS_ALIGNED(pos_in + len, F2FS_BLKSIZE) ||
3000                         !IS_ALIGNED(pos_out, F2FS_BLKSIZE))
3001                 goto out_unlock;
3002
3003         ret = f2fs_convert_inline_inode(src);
3004         if (ret)
3005                 goto out_unlock;
3006
3007         ret = f2fs_convert_inline_inode(dst);
3008         if (ret)
3009                 goto out_unlock;
3010
3011         /* write out all dirty pages from offset */
3012         ret = filemap_write_and_wait_range(src->i_mapping,
3013                                         pos_in, pos_in + len);
3014         if (ret)
3015                 goto out_unlock;
3016
3017         ret = filemap_write_and_wait_range(dst->i_mapping,
3018                                         pos_out, pos_out + len);
3019         if (ret)
3020                 goto out_unlock;
3021
3022         f2fs_balance_fs(sbi, true);
3023
3024         f2fs_down_write(&F2FS_I(src)->i_gc_rwsem[WRITE]);
3025         if (src != dst) {
3026                 ret = -EBUSY;
3027                 if (!f2fs_down_write_trylock(&F2FS_I(dst)->i_gc_rwsem[WRITE]))
3028                         goto out_src;
3029         }
3030
3031         f2fs_lock_op(sbi);
3032         ret = __exchange_data_block(src, dst, F2FS_BYTES_TO_BLK(pos_in),
3033                                 F2FS_BYTES_TO_BLK(pos_out),
3034                                 F2FS_BYTES_TO_BLK(len), false);
3035
3036         if (!ret) {
3037                 if (dst_max_i_size)
3038                         f2fs_i_size_write(dst, dst_max_i_size);
3039                 else if (dst_osize != dst->i_size)
3040                         f2fs_i_size_write(dst, dst_osize);
3041         }
3042         f2fs_unlock_op(sbi);
3043
3044         if (src != dst)
3045                 f2fs_up_write(&F2FS_I(dst)->i_gc_rwsem[WRITE]);
3046 out_src:
3047         f2fs_up_write(&F2FS_I(src)->i_gc_rwsem[WRITE]);
3048         if (ret)
3049                 goto out_unlock;
3050
3051         inode_set_mtime_to_ts(src, inode_set_ctime_current(src));
3052         f2fs_mark_inode_dirty_sync(src, false);
3053         if (src != dst) {
3054                 inode_set_mtime_to_ts(dst, inode_set_ctime_current(dst));
3055                 f2fs_mark_inode_dirty_sync(dst, false);
3056         }
3057         f2fs_update_time(sbi, REQ_TIME);
3058
3059 out_unlock:
3060         if (src != dst)
3061                 inode_unlock(dst);
3062 out:
3063         inode_unlock(src);
3064         return ret;
3065 }
3066
3067 static int __f2fs_ioc_move_range(struct file *filp,
3068                                 struct f2fs_move_range *range)
3069 {
3070         int err;
3071
3072         if (!(filp->f_mode & FMODE_READ) ||
3073                         !(filp->f_mode & FMODE_WRITE))
3074                 return -EBADF;
3075
3076         CLASS(fd, dst)(range->dst_fd);
3077         if (fd_empty(dst))
3078                 return -EBADF;
3079
3080         if (!(fd_file(dst)->f_mode & FMODE_WRITE))
3081                 return -EBADF;
3082
3083         err = mnt_want_write_file(filp);
3084         if (err)
3085                 return err;
3086
3087         err = f2fs_move_file_range(filp, range->pos_in, fd_file(dst),
3088                                         range->pos_out, range->len);
3089
3090         mnt_drop_write_file(filp);
3091         return err;
3092 }
3093
3094 static int f2fs_ioc_move_range(struct file *filp, unsigned long arg)
3095 {
3096         struct f2fs_move_range range;
3097
3098         if (copy_from_user(&range, (struct f2fs_move_range __user *)arg,
3099                                                         sizeof(range)))
3100                 return -EFAULT;
3101         return __f2fs_ioc_move_range(filp, &range);
3102 }
3103
3104 static int f2fs_ioc_flush_device(struct file *filp, unsigned long arg)
3105 {
3106         struct inode *inode = file_inode(filp);
3107         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3108         struct sit_info *sm = SIT_I(sbi);
3109         unsigned int start_segno = 0, end_segno = 0;
3110         unsigned int dev_start_segno = 0, dev_end_segno = 0;
3111         struct f2fs_flush_device range;
3112         struct f2fs_gc_control gc_control = {
3113                         .init_gc_type = FG_GC,
3114                         .should_migrate_blocks = true,
3115                         .err_gc_skipped = true,
3116                         .nr_free_secs = 0 };
3117         int ret;
3118
3119         if (!capable(CAP_SYS_ADMIN))
3120                 return -EPERM;
3121
3122         if (f2fs_readonly(sbi->sb))
3123                 return -EROFS;
3124
3125         if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
3126                 return -EINVAL;
3127
3128         if (copy_from_user(&range, (struct f2fs_flush_device __user *)arg,
3129                                                         sizeof(range)))
3130                 return -EFAULT;
3131
3132         if (!f2fs_is_multi_device(sbi) || sbi->s_ndevs - 1 <= range.dev_num ||
3133                         __is_large_section(sbi)) {
3134                 f2fs_warn(sbi, "Can't flush %u in %d for SEGS_PER_SEC %u != 1",
3135                           range.dev_num, sbi->s_ndevs, SEGS_PER_SEC(sbi));
3136                 return -EINVAL;
3137         }
3138
3139         ret = mnt_want_write_file(filp);
3140         if (ret)
3141                 return ret;
3142
3143         if (range.dev_num != 0)
3144                 dev_start_segno = GET_SEGNO(sbi, FDEV(range.dev_num).start_blk);
3145         dev_end_segno = GET_SEGNO(sbi, FDEV(range.dev_num).end_blk);
3146
3147         start_segno = sm->last_victim[FLUSH_DEVICE];
3148         if (start_segno < dev_start_segno || start_segno >= dev_end_segno)
3149                 start_segno = dev_start_segno;
3150         end_segno = min(start_segno + range.segments, dev_end_segno);
3151
3152         while (start_segno < end_segno) {
3153                 if (!f2fs_down_write_trylock(&sbi->gc_lock)) {
3154                         ret = -EBUSY;
3155                         goto out;
3156                 }
3157                 sm->last_victim[GC_CB] = end_segno + 1;
3158                 sm->last_victim[GC_GREEDY] = end_segno + 1;
3159                 sm->last_victim[ALLOC_NEXT] = end_segno + 1;
3160
3161                 gc_control.victim_segno = start_segno;
3162                 stat_inc_gc_call_count(sbi, FOREGROUND);
3163                 ret = f2fs_gc(sbi, &gc_control);
3164                 if (ret == -EAGAIN)
3165                         ret = 0;
3166                 else if (ret < 0)
3167                         break;
3168                 start_segno++;
3169         }
3170 out:
3171         mnt_drop_write_file(filp);
3172         return ret;
3173 }
3174
3175 static int f2fs_ioc_get_features(struct file *filp, unsigned long arg)
3176 {
3177         struct inode *inode = file_inode(filp);
3178         u32 sb_feature = le32_to_cpu(F2FS_I_SB(inode)->raw_super->feature);
3179
3180         /* Must validate to set it with SQLite behavior in Android. */
3181         sb_feature |= F2FS_FEATURE_ATOMIC_WRITE;
3182
3183         return put_user(sb_feature, (u32 __user *)arg);
3184 }
3185
3186 #ifdef CONFIG_QUOTA
3187 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid)
3188 {
3189         struct dquot *transfer_to[MAXQUOTAS] = {};
3190         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3191         struct super_block *sb = sbi->sb;
3192         int err;
3193
3194         transfer_to[PRJQUOTA] = dqget(sb, make_kqid_projid(kprojid));
3195         if (IS_ERR(transfer_to[PRJQUOTA]))
3196                 return PTR_ERR(transfer_to[PRJQUOTA]);
3197
3198         err = __dquot_transfer(inode, transfer_to);
3199         if (err)
3200                 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
3201         dqput(transfer_to[PRJQUOTA]);
3202         return err;
3203 }
3204
3205 static int f2fs_ioc_setproject(struct inode *inode, __u32 projid)
3206 {
3207         struct f2fs_inode_info *fi = F2FS_I(inode);
3208         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3209         struct f2fs_inode *ri = NULL;
3210         kprojid_t kprojid;
3211         int err;
3212
3213         if (!f2fs_sb_has_project_quota(sbi)) {
3214                 if (projid != F2FS_DEF_PROJID)
3215                         return -EOPNOTSUPP;
3216                 else
3217                         return 0;
3218         }
3219
3220         if (!f2fs_has_extra_attr(inode))
3221                 return -EOPNOTSUPP;
3222
3223         kprojid = make_kprojid(&init_user_ns, (projid_t)projid);
3224
3225         if (projid_eq(kprojid, fi->i_projid))
3226                 return 0;
3227
3228         err = -EPERM;
3229         /* Is it quota file? Do not allow user to mess with it */
3230         if (IS_NOQUOTA(inode))
3231                 return err;
3232
3233         if (!F2FS_FITS_IN_INODE(ri, fi->i_extra_isize, i_projid))
3234                 return -EOVERFLOW;
3235
3236         err = f2fs_dquot_initialize(inode);
3237         if (err)
3238                 return err;
3239
3240         f2fs_lock_op(sbi);
3241         err = f2fs_transfer_project_quota(inode, kprojid);
3242         if (err)
3243                 goto out_unlock;
3244
3245         fi->i_projid = kprojid;
3246         inode_set_ctime_current(inode);
3247         f2fs_mark_inode_dirty_sync(inode, true);
3248 out_unlock:
3249         f2fs_unlock_op(sbi);
3250         return err;
3251 }
3252 #else
3253 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid)
3254 {
3255         return 0;
3256 }
3257
3258 static int f2fs_ioc_setproject(struct inode *inode, __u32 projid)
3259 {
3260         if (projid != F2FS_DEF_PROJID)
3261                 return -EOPNOTSUPP;
3262         return 0;
3263 }
3264 #endif
3265
3266 int f2fs_fileattr_get(struct dentry *dentry, struct fileattr *fa)
3267 {
3268         struct inode *inode = d_inode(dentry);
3269         struct f2fs_inode_info *fi = F2FS_I(inode);
3270         u32 fsflags = f2fs_iflags_to_fsflags(fi->i_flags);
3271
3272         if (IS_ENCRYPTED(inode))
3273                 fsflags |= FS_ENCRYPT_FL;
3274         if (IS_VERITY(inode))
3275                 fsflags |= FS_VERITY_FL;
3276         if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode))
3277                 fsflags |= FS_INLINE_DATA_FL;
3278         if (is_inode_flag_set(inode, FI_PIN_FILE))
3279                 fsflags |= FS_NOCOW_FL;
3280
3281         fileattr_fill_flags(fa, fsflags & F2FS_GETTABLE_FS_FL);
3282
3283         if (f2fs_sb_has_project_quota(F2FS_I_SB(inode)))
3284                 fa->fsx_projid = from_kprojid(&init_user_ns, fi->i_projid);
3285
3286         return 0;
3287 }
3288
3289 int f2fs_fileattr_set(struct mnt_idmap *idmap,
3290                       struct dentry *dentry, struct fileattr *fa)
3291 {
3292         struct inode *inode = d_inode(dentry);
3293         u32 fsflags = fa->flags, mask = F2FS_SETTABLE_FS_FL;
3294         u32 iflags;
3295         int err;
3296
3297         if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
3298                 return -EIO;
3299         if (!f2fs_is_checkpoint_ready(F2FS_I_SB(inode)))
3300                 return -ENOSPC;
3301         if (fsflags & ~F2FS_GETTABLE_FS_FL)
3302                 return -EOPNOTSUPP;
3303         fsflags &= F2FS_SETTABLE_FS_FL;
3304         if (!fa->flags_valid)
3305                 mask &= FS_COMMON_FL;
3306
3307         iflags = f2fs_fsflags_to_iflags(fsflags);
3308         if (f2fs_mask_flags(inode->i_mode, iflags) != iflags)
3309                 return -EOPNOTSUPP;
3310
3311         err = f2fs_setflags_common(inode, iflags, f2fs_fsflags_to_iflags(mask));
3312         if (!err)
3313                 err = f2fs_ioc_setproject(inode, fa->fsx_projid);
3314
3315         return err;
3316 }
3317
3318 int f2fs_pin_file_control(struct inode *inode, bool inc)
3319 {
3320         struct f2fs_inode_info *fi = F2FS_I(inode);
3321         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3322
3323         if (IS_DEVICE_ALIASING(inode))
3324                 return -EINVAL;
3325
3326         if (fi->i_gc_failures >= sbi->gc_pin_file_threshold) {
3327                 f2fs_warn(sbi, "%s: Enable GC = ino %lx after %x GC trials",
3328                           __func__, inode->i_ino, fi->i_gc_failures);
3329                 clear_inode_flag(inode, FI_PIN_FILE);
3330                 return -EAGAIN;
3331         }
3332
3333         /* Use i_gc_failures for normal file as a risk signal. */
3334         if (inc)
3335                 f2fs_i_gc_failures_write(inode, fi->i_gc_failures + 1);
3336
3337         return 0;
3338 }
3339
3340 static int f2fs_ioc_set_pin_file(struct file *filp, unsigned long arg)
3341 {
3342         struct inode *inode = file_inode(filp);
3343         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3344         __u32 pin;
3345         int ret = 0;
3346
3347         if (get_user(pin, (__u32 __user *)arg))
3348                 return -EFAULT;
3349
3350         if (!S_ISREG(inode->i_mode))
3351                 return -EINVAL;
3352
3353         if (f2fs_readonly(sbi->sb))
3354                 return -EROFS;
3355
3356         if (!pin && IS_DEVICE_ALIASING(inode))
3357                 return -EOPNOTSUPP;
3358
3359         ret = mnt_want_write_file(filp);
3360         if (ret)
3361                 return ret;
3362
3363         inode_lock(inode);
3364
3365         if (f2fs_is_atomic_file(inode)) {
3366                 ret = -EINVAL;
3367                 goto out;
3368         }
3369
3370         if (!pin) {
3371                 clear_inode_flag(inode, FI_PIN_FILE);
3372                 f2fs_i_gc_failures_write(inode, 0);
3373                 goto done;
3374         } else if (f2fs_is_pinned_file(inode)) {
3375                 goto done;
3376         }
3377
3378         if (F2FS_HAS_BLOCKS(inode)) {
3379                 ret = -EFBIG;
3380                 goto out;
3381         }
3382
3383         /* Let's allow file pinning on zoned device. */
3384         if (!f2fs_sb_has_blkzoned(sbi) &&
3385             f2fs_should_update_outplace(inode, NULL)) {
3386                 ret = -EINVAL;
3387                 goto out;
3388         }
3389
3390         if (f2fs_pin_file_control(inode, false)) {
3391                 ret = -EAGAIN;
3392                 goto out;
3393         }
3394
3395         ret = f2fs_convert_inline_inode(inode);
3396         if (ret)
3397                 goto out;
3398
3399         if (!f2fs_disable_compressed_file(inode)) {
3400                 ret = -EOPNOTSUPP;
3401                 goto out;
3402         }
3403
3404         set_inode_flag(inode, FI_PIN_FILE);
3405         ret = F2FS_I(inode)->i_gc_failures;
3406 done:
3407         f2fs_update_time(sbi, REQ_TIME);
3408 out:
3409         inode_unlock(inode);
3410         mnt_drop_write_file(filp);
3411         return ret;
3412 }
3413
3414 static int f2fs_ioc_get_pin_file(struct file *filp, unsigned long arg)
3415 {
3416         struct inode *inode = file_inode(filp);
3417         __u32 pin = 0;
3418
3419         if (is_inode_flag_set(inode, FI_PIN_FILE))
3420                 pin = F2FS_I(inode)->i_gc_failures;
3421         return put_user(pin, (u32 __user *)arg);
3422 }
3423
3424 static int f2fs_ioc_get_dev_alias_file(struct file *filp, unsigned long arg)
3425 {
3426         return put_user(IS_DEVICE_ALIASING(file_inode(filp)) ? 1 : 0,
3427                         (u32 __user *)arg);
3428 }
3429
3430 int f2fs_precache_extents(struct inode *inode)
3431 {
3432         struct f2fs_inode_info *fi = F2FS_I(inode);
3433         struct f2fs_map_blocks map;
3434         pgoff_t m_next_extent;
3435         loff_t end;
3436         int err;
3437
3438         if (is_inode_flag_set(inode, FI_NO_EXTENT))
3439                 return -EOPNOTSUPP;
3440
3441         map.m_lblk = 0;
3442         map.m_pblk = 0;
3443         map.m_next_pgofs = NULL;
3444         map.m_next_extent = &m_next_extent;
3445         map.m_seg_type = NO_CHECK_TYPE;
3446         map.m_may_create = false;
3447         end = F2FS_BLK_ALIGN(i_size_read(inode));
3448
3449         while (map.m_lblk < end) {
3450                 map.m_len = end - map.m_lblk;
3451
3452                 f2fs_down_write(&fi->i_gc_rwsem[WRITE]);
3453                 err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_PRECACHE);
3454                 f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
3455                 if (err || !map.m_len)
3456                         return err;
3457
3458                 map.m_lblk = m_next_extent;
3459         }
3460
3461         return 0;
3462 }
3463
3464 static int f2fs_ioc_precache_extents(struct file *filp)
3465 {
3466         return f2fs_precache_extents(file_inode(filp));
3467 }
3468
3469 static int f2fs_ioc_resize_fs(struct file *filp, unsigned long arg)
3470 {
3471         struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(filp));
3472         __u64 block_count;
3473
3474         if (!capable(CAP_SYS_ADMIN))
3475                 return -EPERM;
3476
3477         if (f2fs_readonly(sbi->sb))
3478                 return -EROFS;
3479
3480         if (copy_from_user(&block_count, (void __user *)arg,
3481                            sizeof(block_count)))
3482                 return -EFAULT;
3483
3484         return f2fs_resize_fs(filp, block_count);
3485 }
3486
3487 static int f2fs_ioc_enable_verity(struct file *filp, unsigned long arg)
3488 {
3489         struct inode *inode = file_inode(filp);
3490
3491         f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3492
3493         if (!f2fs_sb_has_verity(F2FS_I_SB(inode))) {
3494                 f2fs_warn(F2FS_I_SB(inode),
3495                           "Can't enable fs-verity on inode %lu: the verity feature is not enabled on this filesystem",
3496                           inode->i_ino);
3497                 return -EOPNOTSUPP;
3498         }
3499
3500         return fsverity_ioctl_enable(filp, (const void __user *)arg);
3501 }
3502
3503 static int f2fs_ioc_measure_verity(struct file *filp, unsigned long arg)
3504 {
3505         if (!f2fs_sb_has_verity(F2FS_I_SB(file_inode(filp))))
3506                 return -EOPNOTSUPP;
3507
3508         return fsverity_ioctl_measure(filp, (void __user *)arg);
3509 }
3510
3511 static int f2fs_ioc_read_verity_metadata(struct file *filp, unsigned long arg)
3512 {
3513         if (!f2fs_sb_has_verity(F2FS_I_SB(file_inode(filp))))
3514                 return -EOPNOTSUPP;
3515
3516         return fsverity_ioctl_read_metadata(filp, (const void __user *)arg);
3517 }
3518
3519 static int f2fs_ioc_getfslabel(struct file *filp, unsigned long arg)
3520 {
3521         struct inode *inode = file_inode(filp);
3522         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3523         char *vbuf;
3524         int count;
3525         int err = 0;
3526
3527         vbuf = f2fs_kzalloc(sbi, MAX_VOLUME_NAME, GFP_KERNEL);
3528         if (!vbuf)
3529                 return -ENOMEM;
3530
3531         f2fs_down_read(&sbi->sb_lock);
3532         count = utf16s_to_utf8s(sbi->raw_super->volume_name,
3533                         ARRAY_SIZE(sbi->raw_super->volume_name),
3534                         UTF16_LITTLE_ENDIAN, vbuf, MAX_VOLUME_NAME);
3535         f2fs_up_read(&sbi->sb_lock);
3536
3537         if (copy_to_user((char __user *)arg, vbuf,
3538                                 min(FSLABEL_MAX, count)))
3539                 err = -EFAULT;
3540
3541         kfree(vbuf);
3542         return err;
3543 }
3544
3545 static int f2fs_ioc_setfslabel(struct file *filp, unsigned long arg)
3546 {
3547         struct inode *inode = file_inode(filp);
3548         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3549         char *vbuf;
3550         int err = 0;
3551
3552         if (!capable(CAP_SYS_ADMIN))
3553                 return -EPERM;
3554
3555         vbuf = strndup_user((const char __user *)arg, FSLABEL_MAX);
3556         if (IS_ERR(vbuf))
3557                 return PTR_ERR(vbuf);
3558
3559         err = mnt_want_write_file(filp);
3560         if (err)
3561                 goto out;
3562
3563         f2fs_down_write(&sbi->sb_lock);
3564
3565         memset(sbi->raw_super->volume_name, 0,
3566                         sizeof(sbi->raw_super->volume_name));
3567         utf8s_to_utf16s(vbuf, strlen(vbuf), UTF16_LITTLE_ENDIAN,
3568                         sbi->raw_super->volume_name,
3569                         ARRAY_SIZE(sbi->raw_super->volume_name));
3570
3571         err = f2fs_commit_super(sbi, false);
3572
3573         f2fs_up_write(&sbi->sb_lock);
3574
3575         mnt_drop_write_file(filp);
3576 out:
3577         kfree(vbuf);
3578         return err;
3579 }
3580
3581 static int f2fs_get_compress_blocks(struct inode *inode, __u64 *blocks)
3582 {
3583         if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
3584                 return -EOPNOTSUPP;
3585
3586         if (!f2fs_compressed_file(inode))
3587                 return -EINVAL;
3588
3589         *blocks = atomic_read(&F2FS_I(inode)->i_compr_blocks);
3590
3591         return 0;
3592 }
3593
3594 static int f2fs_ioc_get_compress_blocks(struct file *filp, unsigned long arg)
3595 {
3596         struct inode *inode = file_inode(filp);
3597         __u64 blocks;
3598         int ret;
3599
3600         ret = f2fs_get_compress_blocks(inode, &blocks);
3601         if (ret < 0)
3602                 return ret;
3603
3604         return put_user(blocks, (u64 __user *)arg);
3605 }
3606
3607 static int release_compress_blocks(struct dnode_of_data *dn, pgoff_t count)
3608 {
3609         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
3610         unsigned int released_blocks = 0;
3611         int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
3612         block_t blkaddr;
3613         int i;
3614
3615         for (i = 0; i < count; i++) {
3616                 blkaddr = data_blkaddr(dn->inode, dn->node_page,
3617                                                 dn->ofs_in_node + i);
3618
3619                 if (!__is_valid_data_blkaddr(blkaddr))
3620                         continue;
3621                 if (unlikely(!f2fs_is_valid_blkaddr(sbi, blkaddr,
3622                                         DATA_GENERIC_ENHANCE)))
3623                         return -EFSCORRUPTED;
3624         }
3625
3626         while (count) {
3627                 int compr_blocks = 0;
3628
3629                 for (i = 0; i < cluster_size; i++, dn->ofs_in_node++) {
3630                         blkaddr = f2fs_data_blkaddr(dn);
3631
3632                         if (i == 0) {
3633                                 if (blkaddr == COMPRESS_ADDR)
3634                                         continue;
3635                                 dn->ofs_in_node += cluster_size;
3636                                 goto next;
3637                         }
3638
3639                         if (__is_valid_data_blkaddr(blkaddr))
3640                                 compr_blocks++;
3641
3642                         if (blkaddr != NEW_ADDR)
3643                                 continue;
3644
3645                         f2fs_set_data_blkaddr(dn, NULL_ADDR);
3646                 }
3647
3648                 f2fs_i_compr_blocks_update(dn->inode, compr_blocks, false);
3649                 dec_valid_block_count(sbi, dn->inode,
3650                                         cluster_size - compr_blocks);
3651
3652                 released_blocks += cluster_size - compr_blocks;
3653 next:
3654                 count -= cluster_size;
3655         }
3656
3657         return released_blocks;
3658 }
3659
3660 static int f2fs_release_compress_blocks(struct file *filp, unsigned long arg)
3661 {
3662         struct inode *inode = file_inode(filp);
3663         struct f2fs_inode_info *fi = F2FS_I(inode);
3664         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3665         pgoff_t page_idx = 0, last_idx;
3666         unsigned int released_blocks = 0;
3667         int ret;
3668         int writecount;
3669
3670         if (!f2fs_sb_has_compression(sbi))
3671                 return -EOPNOTSUPP;
3672
3673         if (f2fs_readonly(sbi->sb))
3674                 return -EROFS;
3675
3676         ret = mnt_want_write_file(filp);
3677         if (ret)
3678                 return ret;
3679
3680         f2fs_balance_fs(sbi, true);
3681
3682         inode_lock(inode);
3683
3684         writecount = atomic_read(&inode->i_writecount);
3685         if ((filp->f_mode & FMODE_WRITE && writecount != 1) ||
3686                         (!(filp->f_mode & FMODE_WRITE) && writecount)) {
3687                 ret = -EBUSY;
3688                 goto out;
3689         }
3690
3691         if (!f2fs_compressed_file(inode) ||
3692                 is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
3693                 ret = -EINVAL;
3694                 goto out;
3695         }
3696
3697         ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
3698         if (ret)
3699                 goto out;
3700
3701         if (!atomic_read(&fi->i_compr_blocks)) {
3702                 ret = -EPERM;
3703                 goto out;
3704         }
3705
3706         set_inode_flag(inode, FI_COMPRESS_RELEASED);
3707         inode_set_ctime_current(inode);
3708         f2fs_mark_inode_dirty_sync(inode, true);
3709
3710         f2fs_down_write(&fi->i_gc_rwsem[WRITE]);
3711         filemap_invalidate_lock(inode->i_mapping);
3712
3713         last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3714
3715         while (page_idx < last_idx) {
3716                 struct dnode_of_data dn;
3717                 pgoff_t end_offset, count;
3718
3719                 f2fs_lock_op(sbi);
3720
3721                 set_new_dnode(&dn, inode, NULL, NULL, 0);
3722                 ret = f2fs_get_dnode_of_data(&dn, page_idx, LOOKUP_NODE);
3723                 if (ret) {
3724                         f2fs_unlock_op(sbi);
3725                         if (ret == -ENOENT) {
3726                                 page_idx = f2fs_get_next_page_offset(&dn,
3727                                                                 page_idx);
3728                                 ret = 0;
3729                                 continue;
3730                         }
3731                         break;
3732                 }
3733
3734                 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
3735                 count = min(end_offset - dn.ofs_in_node, last_idx - page_idx);
3736                 count = round_up(count, fi->i_cluster_size);
3737
3738                 ret = release_compress_blocks(&dn, count);
3739
3740                 f2fs_put_dnode(&dn);
3741
3742                 f2fs_unlock_op(sbi);
3743
3744                 if (ret < 0)
3745                         break;
3746
3747                 page_idx += count;
3748                 released_blocks += ret;
3749         }
3750
3751         filemap_invalidate_unlock(inode->i_mapping);
3752         f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
3753 out:
3754         if (released_blocks)
3755                 f2fs_update_time(sbi, REQ_TIME);
3756         inode_unlock(inode);
3757
3758         mnt_drop_write_file(filp);
3759
3760         if (ret >= 0) {
3761                 ret = put_user(released_blocks, (u64 __user *)arg);
3762         } else if (released_blocks &&
3763                         atomic_read(&fi->i_compr_blocks)) {
3764                 set_sbi_flag(sbi, SBI_NEED_FSCK);
3765                 f2fs_warn(sbi, "%s: partial blocks were released i_ino=%lx "
3766                         "iblocks=%llu, released=%u, compr_blocks=%u, "
3767                         "run fsck to fix.",
3768                         __func__, inode->i_ino, inode->i_blocks,
3769                         released_blocks,
3770                         atomic_read(&fi->i_compr_blocks));
3771         }
3772
3773         return ret;
3774 }
3775
3776 static int reserve_compress_blocks(struct dnode_of_data *dn, pgoff_t count,
3777                 unsigned int *reserved_blocks)
3778 {
3779         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
3780         int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
3781         block_t blkaddr;
3782         int i;
3783
3784         for (i = 0; i < count; i++) {
3785                 blkaddr = data_blkaddr(dn->inode, dn->node_page,
3786                                                 dn->ofs_in_node + i);
3787
3788                 if (!__is_valid_data_blkaddr(blkaddr))
3789                         continue;
3790                 if (unlikely(!f2fs_is_valid_blkaddr(sbi, blkaddr,
3791                                         DATA_GENERIC_ENHANCE)))
3792                         return -EFSCORRUPTED;
3793         }
3794
3795         while (count) {
3796                 int compr_blocks = 0;
3797                 blkcnt_t reserved = 0;
3798                 blkcnt_t to_reserved;
3799                 int ret;
3800
3801                 for (i = 0; i < cluster_size; i++) {
3802                         blkaddr = data_blkaddr(dn->inode, dn->node_page,
3803                                                 dn->ofs_in_node + i);
3804
3805                         if (i == 0) {
3806                                 if (blkaddr != COMPRESS_ADDR) {
3807                                         dn->ofs_in_node += cluster_size;
3808                                         goto next;
3809                                 }
3810                                 continue;
3811                         }
3812
3813                         /*
3814                          * compressed cluster was not released due to it
3815                          * fails in release_compress_blocks(), so NEW_ADDR
3816                          * is a possible case.
3817                          */
3818                         if (blkaddr == NEW_ADDR) {
3819                                 reserved++;
3820                                 continue;
3821                         }
3822                         if (__is_valid_data_blkaddr(blkaddr)) {
3823                                 compr_blocks++;
3824                                 continue;
3825                         }
3826                 }
3827
3828                 to_reserved = cluster_size - compr_blocks - reserved;
3829
3830                 /* for the case all blocks in cluster were reserved */
3831                 if (reserved && to_reserved == 1) {
3832                         dn->ofs_in_node += cluster_size;
3833                         goto next;
3834                 }
3835
3836                 ret = inc_valid_block_count(sbi, dn->inode,
3837                                                 &to_reserved, false);
3838                 if (unlikely(ret))
3839                         return ret;
3840
3841                 for (i = 0; i < cluster_size; i++, dn->ofs_in_node++) {
3842                         if (f2fs_data_blkaddr(dn) == NULL_ADDR)
3843                                 f2fs_set_data_blkaddr(dn, NEW_ADDR);
3844                 }
3845
3846                 f2fs_i_compr_blocks_update(dn->inode, compr_blocks, true);
3847
3848                 *reserved_blocks += to_reserved;
3849 next:
3850                 count -= cluster_size;
3851         }
3852
3853         return 0;
3854 }
3855
3856 static int f2fs_reserve_compress_blocks(struct file *filp, unsigned long arg)
3857 {
3858         struct inode *inode = file_inode(filp);
3859         struct f2fs_inode_info *fi = F2FS_I(inode);
3860         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3861         pgoff_t page_idx = 0, last_idx;
3862         unsigned int reserved_blocks = 0;
3863         int ret;
3864
3865         if (!f2fs_sb_has_compression(sbi))
3866                 return -EOPNOTSUPP;
3867
3868         if (f2fs_readonly(sbi->sb))
3869                 return -EROFS;
3870
3871         ret = mnt_want_write_file(filp);
3872         if (ret)
3873                 return ret;
3874
3875         f2fs_balance_fs(sbi, true);
3876
3877         inode_lock(inode);
3878
3879         if (!f2fs_compressed_file(inode) ||
3880                 !is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
3881                 ret = -EINVAL;
3882                 goto unlock_inode;
3883         }
3884
3885         if (atomic_read(&fi->i_compr_blocks))
3886                 goto unlock_inode;
3887
3888         f2fs_down_write(&fi->i_gc_rwsem[WRITE]);
3889         filemap_invalidate_lock(inode->i_mapping);
3890
3891         last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3892
3893         while (page_idx < last_idx) {
3894                 struct dnode_of_data dn;
3895                 pgoff_t end_offset, count;
3896
3897                 f2fs_lock_op(sbi);
3898
3899                 set_new_dnode(&dn, inode, NULL, NULL, 0);
3900                 ret = f2fs_get_dnode_of_data(&dn, page_idx, LOOKUP_NODE);
3901                 if (ret) {
3902                         f2fs_unlock_op(sbi);
3903                         if (ret == -ENOENT) {
3904                                 page_idx = f2fs_get_next_page_offset(&dn,
3905                                                                 page_idx);
3906                                 ret = 0;
3907                                 continue;
3908                         }
3909                         break;
3910                 }
3911
3912                 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
3913                 count = min(end_offset - dn.ofs_in_node, last_idx - page_idx);
3914                 count = round_up(count, fi->i_cluster_size);
3915
3916                 ret = reserve_compress_blocks(&dn, count, &reserved_blocks);
3917
3918                 f2fs_put_dnode(&dn);
3919
3920                 f2fs_unlock_op(sbi);
3921
3922                 if (ret < 0)
3923                         break;
3924
3925                 page_idx += count;
3926         }
3927
3928         filemap_invalidate_unlock(inode->i_mapping);
3929         f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
3930
3931         if (!ret) {
3932                 clear_inode_flag(inode, FI_COMPRESS_RELEASED);
3933                 inode_set_ctime_current(inode);
3934                 f2fs_mark_inode_dirty_sync(inode, true);
3935         }
3936 unlock_inode:
3937         if (reserved_blocks)
3938                 f2fs_update_time(sbi, REQ_TIME);
3939         inode_unlock(inode);
3940         mnt_drop_write_file(filp);
3941
3942         if (!ret) {
3943                 ret = put_user(reserved_blocks, (u64 __user *)arg);
3944         } else if (reserved_blocks &&
3945                         atomic_read(&fi->i_compr_blocks)) {
3946                 set_sbi_flag(sbi, SBI_NEED_FSCK);
3947                 f2fs_warn(sbi, "%s: partial blocks were reserved i_ino=%lx "
3948                         "iblocks=%llu, reserved=%u, compr_blocks=%u, "
3949                         "run fsck to fix.",
3950                         __func__, inode->i_ino, inode->i_blocks,
3951                         reserved_blocks,
3952                         atomic_read(&fi->i_compr_blocks));
3953         }
3954
3955         return ret;
3956 }
3957
3958 static int f2fs_secure_erase(struct block_device *bdev, struct inode *inode,
3959                 pgoff_t off, block_t block, block_t len, u32 flags)
3960 {
3961         sector_t sector = SECTOR_FROM_BLOCK(block);
3962         sector_t nr_sects = SECTOR_FROM_BLOCK(len);
3963         int ret = 0;
3964
3965         if (flags & F2FS_TRIM_FILE_DISCARD) {
3966                 if (bdev_max_secure_erase_sectors(bdev))
3967                         ret = blkdev_issue_secure_erase(bdev, sector, nr_sects,
3968                                         GFP_NOFS);
3969                 else
3970                         ret = blkdev_issue_discard(bdev, sector, nr_sects,
3971                                         GFP_NOFS);
3972         }
3973
3974         if (!ret && (flags & F2FS_TRIM_FILE_ZEROOUT)) {
3975                 if (IS_ENCRYPTED(inode))
3976                         ret = fscrypt_zeroout_range(inode, off, block, len);
3977                 else
3978                         ret = blkdev_issue_zeroout(bdev, sector, nr_sects,
3979                                         GFP_NOFS, 0);
3980         }
3981
3982         return ret;
3983 }
3984
3985 static int f2fs_sec_trim_file(struct file *filp, unsigned long arg)
3986 {
3987         struct inode *inode = file_inode(filp);
3988         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3989         struct address_space *mapping = inode->i_mapping;
3990         struct block_device *prev_bdev = NULL;
3991         struct f2fs_sectrim_range range;
3992         pgoff_t index, pg_end, prev_index = 0;
3993         block_t prev_block = 0, len = 0;
3994         loff_t end_addr;
3995         bool to_end = false;
3996         int ret = 0;
3997
3998         if (!(filp->f_mode & FMODE_WRITE))
3999                 return -EBADF;
4000
4001         if (copy_from_user(&range, (struct f2fs_sectrim_range __user *)arg,
4002                                 sizeof(range)))
4003                 return -EFAULT;
4004
4005         if (range.flags == 0 || (range.flags & ~F2FS_TRIM_FILE_MASK) ||
4006                         !S_ISREG(inode->i_mode))
4007                 return -EINVAL;
4008
4009         if (((range.flags & F2FS_TRIM_FILE_DISCARD) &&
4010                         !f2fs_hw_support_discard(sbi)) ||
4011                         ((range.flags & F2FS_TRIM_FILE_ZEROOUT) &&
4012                          IS_ENCRYPTED(inode) && f2fs_is_multi_device(sbi)))
4013                 return -EOPNOTSUPP;
4014
4015         ret = mnt_want_write_file(filp);
4016         if (ret)
4017                 return ret;
4018         inode_lock(inode);
4019
4020         if (f2fs_is_atomic_file(inode) || f2fs_compressed_file(inode) ||
4021                         range.start >= inode->i_size) {
4022                 ret = -EINVAL;
4023                 goto err;
4024         }
4025
4026         if (range.len == 0)
4027                 goto err;
4028
4029         if (inode->i_size - range.start > range.len) {
4030                 end_addr = range.start + range.len;
4031         } else {
4032                 end_addr = range.len == (u64)-1 ?
4033                         sbi->sb->s_maxbytes : inode->i_size;
4034                 to_end = true;
4035         }
4036
4037         if (!IS_ALIGNED(range.start, F2FS_BLKSIZE) ||
4038                         (!to_end && !IS_ALIGNED(end_addr, F2FS_BLKSIZE))) {
4039                 ret = -EINVAL;
4040                 goto err;
4041         }
4042
4043         index = F2FS_BYTES_TO_BLK(range.start);
4044         pg_end = DIV_ROUND_UP(end_addr, F2FS_BLKSIZE);
4045
4046         ret = f2fs_convert_inline_inode(inode);
4047         if (ret)
4048                 goto err;
4049
4050         f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
4051         filemap_invalidate_lock(mapping);
4052
4053         ret = filemap_write_and_wait_range(mapping, range.start,
4054                         to_end ? LLONG_MAX : end_addr - 1);
4055         if (ret)
4056                 goto out;
4057
4058         truncate_inode_pages_range(mapping, range.start,
4059                         to_end ? -1 : end_addr - 1);
4060
4061         while (index < pg_end) {
4062                 struct dnode_of_data dn;
4063                 pgoff_t end_offset, count;
4064                 int i;
4065
4066                 set_new_dnode(&dn, inode, NULL, NULL, 0);
4067                 ret = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
4068                 if (ret) {
4069                         if (ret == -ENOENT) {
4070                                 index = f2fs_get_next_page_offset(&dn, index);
4071                                 continue;
4072                         }
4073                         goto out;
4074                 }
4075
4076                 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
4077                 count = min(end_offset - dn.ofs_in_node, pg_end - index);
4078                 for (i = 0; i < count; i++, index++, dn.ofs_in_node++) {
4079                         struct block_device *cur_bdev;
4080                         block_t blkaddr = f2fs_data_blkaddr(&dn);
4081
4082                         if (!__is_valid_data_blkaddr(blkaddr))
4083                                 continue;
4084
4085                         if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
4086                                                 DATA_GENERIC_ENHANCE)) {
4087                                 ret = -EFSCORRUPTED;
4088                                 f2fs_put_dnode(&dn);
4089                                 goto out;
4090                         }
4091
4092                         cur_bdev = f2fs_target_device(sbi, blkaddr, NULL);
4093                         if (f2fs_is_multi_device(sbi)) {
4094                                 int di = f2fs_target_device_index(sbi, blkaddr);
4095
4096                                 blkaddr -= FDEV(di).start_blk;
4097                         }
4098
4099                         if (len) {
4100                                 if (prev_bdev == cur_bdev &&
4101                                                 index == prev_index + len &&
4102                                                 blkaddr == prev_block + len) {
4103                                         len++;
4104                                 } else {
4105                                         ret = f2fs_secure_erase(prev_bdev,
4106                                                 inode, prev_index, prev_block,
4107                                                 len, range.flags);
4108                                         if (ret) {
4109                                                 f2fs_put_dnode(&dn);
4110                                                 goto out;
4111                                         }
4112
4113                                         len = 0;
4114                                 }
4115                         }
4116
4117                         if (!len) {
4118                                 prev_bdev = cur_bdev;
4119                                 prev_index = index;
4120                                 prev_block = blkaddr;
4121                                 len = 1;
4122                         }
4123                 }
4124
4125                 f2fs_put_dnode(&dn);
4126
4127                 if (fatal_signal_pending(current)) {
4128                         ret = -EINTR;
4129                         goto out;
4130                 }
4131                 cond_resched();
4132         }
4133
4134         if (len)
4135                 ret = f2fs_secure_erase(prev_bdev, inode, prev_index,
4136                                 prev_block, len, range.flags);
4137         f2fs_update_time(sbi, REQ_TIME);
4138 out:
4139         filemap_invalidate_unlock(mapping);
4140         f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
4141 err:
4142         inode_unlock(inode);
4143         mnt_drop_write_file(filp);
4144
4145         return ret;
4146 }
4147
4148 static int f2fs_ioc_get_compress_option(struct file *filp, unsigned long arg)
4149 {
4150         struct inode *inode = file_inode(filp);
4151         struct f2fs_comp_option option;
4152
4153         if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
4154                 return -EOPNOTSUPP;
4155
4156         inode_lock_shared(inode);
4157
4158         if (!f2fs_compressed_file(inode)) {
4159                 inode_unlock_shared(inode);
4160                 return -ENODATA;
4161         }
4162
4163         option.algorithm = F2FS_I(inode)->i_compress_algorithm;
4164         option.log_cluster_size = F2FS_I(inode)->i_log_cluster_size;
4165
4166         inode_unlock_shared(inode);
4167
4168         if (copy_to_user((struct f2fs_comp_option __user *)arg, &option,
4169                                 sizeof(option)))
4170                 return -EFAULT;
4171
4172         return 0;
4173 }
4174
4175 static int f2fs_ioc_set_compress_option(struct file *filp, unsigned long arg)
4176 {
4177         struct inode *inode = file_inode(filp);
4178         struct f2fs_inode_info *fi = F2FS_I(inode);
4179         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4180         struct f2fs_comp_option option;
4181         int ret = 0;
4182
4183         if (!f2fs_sb_has_compression(sbi))
4184                 return -EOPNOTSUPP;
4185
4186         if (!(filp->f_mode & FMODE_WRITE))
4187                 return -EBADF;
4188
4189         if (copy_from_user(&option, (struct f2fs_comp_option __user *)arg,
4190                                 sizeof(option)))
4191                 return -EFAULT;
4192
4193         if (option.log_cluster_size < MIN_COMPRESS_LOG_SIZE ||
4194                 option.log_cluster_size > MAX_COMPRESS_LOG_SIZE ||
4195                 option.algorithm >= COMPRESS_MAX)
4196                 return -EINVAL;
4197
4198         ret = mnt_want_write_file(filp);
4199         if (ret)
4200                 return ret;
4201         inode_lock(inode);
4202
4203         f2fs_down_write(&F2FS_I(inode)->i_sem);
4204         if (!f2fs_compressed_file(inode)) {
4205                 ret = -EINVAL;
4206                 goto out;
4207         }
4208
4209         if (f2fs_is_mmap_file(inode) || get_dirty_pages(inode)) {
4210                 ret = -EBUSY;
4211                 goto out;
4212         }
4213
4214         if (F2FS_HAS_BLOCKS(inode)) {
4215                 ret = -EFBIG;
4216                 goto out;
4217         }
4218
4219         fi->i_compress_algorithm = option.algorithm;
4220         fi->i_log_cluster_size = option.log_cluster_size;
4221         fi->i_cluster_size = BIT(option.log_cluster_size);
4222         /* Set default level */
4223         if (fi->i_compress_algorithm == COMPRESS_ZSTD)
4224                 fi->i_compress_level = F2FS_ZSTD_DEFAULT_CLEVEL;
4225         else
4226                 fi->i_compress_level = 0;
4227         /* Adjust mount option level */
4228         if (option.algorithm == F2FS_OPTION(sbi).compress_algorithm &&
4229             F2FS_OPTION(sbi).compress_level)
4230                 fi->i_compress_level = F2FS_OPTION(sbi).compress_level;
4231         f2fs_mark_inode_dirty_sync(inode, true);
4232
4233         if (!f2fs_is_compress_backend_ready(inode))
4234                 f2fs_warn(sbi, "compression algorithm is successfully set, "
4235                         "but current kernel doesn't support this algorithm.");
4236 out:
4237         f2fs_up_write(&fi->i_sem);
4238         inode_unlock(inode);
4239         mnt_drop_write_file(filp);
4240
4241         return ret;
4242 }
4243
4244 static int redirty_blocks(struct inode *inode, pgoff_t page_idx, int len)
4245 {
4246         DEFINE_READAHEAD(ractl, NULL, NULL, inode->i_mapping, page_idx);
4247         struct address_space *mapping = inode->i_mapping;
4248         struct page *page;
4249         pgoff_t redirty_idx = page_idx;
4250         int i, page_len = 0, ret = 0;
4251
4252         page_cache_ra_unbounded(&ractl, len, 0);
4253
4254         for (i = 0; i < len; i++, page_idx++) {
4255                 page = read_cache_page(mapping, page_idx, NULL, NULL);
4256                 if (IS_ERR(page)) {
4257                         ret = PTR_ERR(page);
4258                         break;
4259                 }
4260                 page_len++;
4261         }
4262
4263         for (i = 0; i < page_len; i++, redirty_idx++) {
4264                 page = find_lock_page(mapping, redirty_idx);
4265
4266                 /* It will never fail, when page has pinned above */
4267                 f2fs_bug_on(F2FS_I_SB(inode), !page);
4268
4269                 f2fs_wait_on_page_writeback(page, DATA, true, true);
4270
4271                 set_page_dirty(page);
4272                 set_page_private_gcing(page);
4273                 f2fs_put_page(page, 1);
4274                 f2fs_put_page(page, 0);
4275         }
4276
4277         return ret;
4278 }
4279
4280 static int f2fs_ioc_decompress_file(struct file *filp)
4281 {
4282         struct inode *inode = file_inode(filp);
4283         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4284         struct f2fs_inode_info *fi = F2FS_I(inode);
4285         pgoff_t page_idx = 0, last_idx, cluster_idx;
4286         int ret;
4287
4288         if (!f2fs_sb_has_compression(sbi) ||
4289                         F2FS_OPTION(sbi).compress_mode != COMPR_MODE_USER)
4290                 return -EOPNOTSUPP;
4291
4292         if (!(filp->f_mode & FMODE_WRITE))
4293                 return -EBADF;
4294
4295         f2fs_balance_fs(sbi, true);
4296
4297         ret = mnt_want_write_file(filp);
4298         if (ret)
4299                 return ret;
4300         inode_lock(inode);
4301
4302         if (!f2fs_is_compress_backend_ready(inode)) {
4303                 ret = -EOPNOTSUPP;
4304                 goto out;
4305         }
4306
4307         if (!f2fs_compressed_file(inode) ||
4308                 is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
4309                 ret = -EINVAL;
4310                 goto out;
4311         }
4312
4313         ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
4314         if (ret)
4315                 goto out;
4316
4317         if (!atomic_read(&fi->i_compr_blocks))
4318                 goto out;
4319
4320         last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
4321         last_idx >>= fi->i_log_cluster_size;
4322
4323         for (cluster_idx = 0; cluster_idx < last_idx; cluster_idx++) {
4324                 page_idx = cluster_idx << fi->i_log_cluster_size;
4325
4326                 if (!f2fs_is_compressed_cluster(inode, page_idx))
4327                         continue;
4328
4329                 ret = redirty_blocks(inode, page_idx, fi->i_cluster_size);
4330                 if (ret < 0)
4331                         break;
4332
4333                 if (get_dirty_pages(inode) >= BLKS_PER_SEG(sbi)) {
4334                         ret = filemap_fdatawrite(inode->i_mapping);
4335                         if (ret < 0)
4336                                 break;
4337                 }
4338
4339                 cond_resched();
4340                 if (fatal_signal_pending(current)) {
4341                         ret = -EINTR;
4342                         break;
4343                 }
4344         }
4345
4346         if (!ret)
4347                 ret = filemap_write_and_wait_range(inode->i_mapping, 0,
4348                                                         LLONG_MAX);
4349
4350         if (ret)
4351                 f2fs_warn(sbi, "%s: The file might be partially decompressed (errno=%d). Please delete the file.",
4352                           __func__, ret);
4353         f2fs_update_time(sbi, REQ_TIME);
4354 out:
4355         inode_unlock(inode);
4356         mnt_drop_write_file(filp);
4357
4358         return ret;
4359 }
4360
4361 static int f2fs_ioc_compress_file(struct file *filp)
4362 {
4363         struct inode *inode = file_inode(filp);
4364         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4365         struct f2fs_inode_info *fi = F2FS_I(inode);
4366         pgoff_t page_idx = 0, last_idx, cluster_idx;
4367         int ret;
4368
4369         if (!f2fs_sb_has_compression(sbi) ||
4370                         F2FS_OPTION(sbi).compress_mode != COMPR_MODE_USER)
4371                 return -EOPNOTSUPP;
4372
4373         if (!(filp->f_mode & FMODE_WRITE))
4374                 return -EBADF;
4375
4376         f2fs_balance_fs(sbi, true);
4377
4378         ret = mnt_want_write_file(filp);
4379         if (ret)
4380                 return ret;
4381         inode_lock(inode);
4382
4383         if (!f2fs_is_compress_backend_ready(inode)) {
4384                 ret = -EOPNOTSUPP;
4385                 goto out;
4386         }
4387
4388         if (!f2fs_compressed_file(inode) ||
4389                 is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
4390                 ret = -EINVAL;
4391                 goto out;
4392         }
4393
4394         ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
4395         if (ret)
4396                 goto out;
4397
4398         set_inode_flag(inode, FI_ENABLE_COMPRESS);
4399
4400         last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
4401         last_idx >>= fi->i_log_cluster_size;
4402
4403         for (cluster_idx = 0; cluster_idx < last_idx; cluster_idx++) {
4404                 page_idx = cluster_idx << fi->i_log_cluster_size;
4405
4406                 if (f2fs_is_sparse_cluster(inode, page_idx))
4407                         continue;
4408
4409                 ret = redirty_blocks(inode, page_idx, fi->i_cluster_size);
4410                 if (ret < 0)
4411                         break;
4412
4413                 if (get_dirty_pages(inode) >= BLKS_PER_SEG(sbi)) {
4414                         ret = filemap_fdatawrite(inode->i_mapping);
4415                         if (ret < 0)
4416                                 break;
4417                 }
4418
4419                 cond_resched();
4420                 if (fatal_signal_pending(current)) {
4421                         ret = -EINTR;
4422                         break;
4423                 }
4424         }
4425
4426         if (!ret)
4427                 ret = filemap_write_and_wait_range(inode->i_mapping, 0,
4428                                                         LLONG_MAX);
4429
4430         clear_inode_flag(inode, FI_ENABLE_COMPRESS);
4431
4432         if (ret)
4433                 f2fs_warn(sbi, "%s: The file might be partially compressed (errno=%d). Please delete the file.",
4434                           __func__, ret);
4435         f2fs_update_time(sbi, REQ_TIME);
4436 out:
4437         inode_unlock(inode);
4438         mnt_drop_write_file(filp);
4439
4440         return ret;
4441 }
4442
4443 static long __f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
4444 {
4445         switch (cmd) {
4446         case FS_IOC_GETVERSION:
4447                 return f2fs_ioc_getversion(filp, arg);
4448         case F2FS_IOC_START_ATOMIC_WRITE:
4449                 return f2fs_ioc_start_atomic_write(filp, false);
4450         case F2FS_IOC_START_ATOMIC_REPLACE:
4451                 return f2fs_ioc_start_atomic_write(filp, true);
4452         case F2FS_IOC_COMMIT_ATOMIC_WRITE:
4453                 return f2fs_ioc_commit_atomic_write(filp);
4454         case F2FS_IOC_ABORT_ATOMIC_WRITE:
4455                 return f2fs_ioc_abort_atomic_write(filp);
4456         case F2FS_IOC_START_VOLATILE_WRITE:
4457         case F2FS_IOC_RELEASE_VOLATILE_WRITE:
4458                 return -EOPNOTSUPP;
4459         case F2FS_IOC_SHUTDOWN:
4460                 return f2fs_ioc_shutdown(filp, arg);
4461         case FITRIM:
4462                 return f2fs_ioc_fitrim(filp, arg);
4463         case FS_IOC_SET_ENCRYPTION_POLICY:
4464                 return f2fs_ioc_set_encryption_policy(filp, arg);
4465         case FS_IOC_GET_ENCRYPTION_POLICY:
4466                 return f2fs_ioc_get_encryption_policy(filp, arg);
4467         case FS_IOC_GET_ENCRYPTION_PWSALT:
4468                 return f2fs_ioc_get_encryption_pwsalt(filp, arg);
4469         case FS_IOC_GET_ENCRYPTION_POLICY_EX:
4470                 return f2fs_ioc_get_encryption_policy_ex(filp, arg);
4471         case FS_IOC_ADD_ENCRYPTION_KEY:
4472                 return f2fs_ioc_add_encryption_key(filp, arg);
4473         case FS_IOC_REMOVE_ENCRYPTION_KEY:
4474                 return f2fs_ioc_remove_encryption_key(filp, arg);
4475         case FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS:
4476                 return f2fs_ioc_remove_encryption_key_all_users(filp, arg);
4477         case FS_IOC_GET_ENCRYPTION_KEY_STATUS:
4478                 return f2fs_ioc_get_encryption_key_status(filp, arg);
4479         case FS_IOC_GET_ENCRYPTION_NONCE:
4480                 return f2fs_ioc_get_encryption_nonce(filp, arg);
4481         case F2FS_IOC_GARBAGE_COLLECT:
4482                 return f2fs_ioc_gc(filp, arg);
4483         case F2FS_IOC_GARBAGE_COLLECT_RANGE:
4484                 return f2fs_ioc_gc_range(filp, arg);
4485         case F2FS_IOC_WRITE_CHECKPOINT:
4486                 return f2fs_ioc_write_checkpoint(filp);
4487         case F2FS_IOC_DEFRAGMENT:
4488                 return f2fs_ioc_defragment(filp, arg);
4489         case F2FS_IOC_MOVE_RANGE:
4490                 return f2fs_ioc_move_range(filp, arg);
4491         case F2FS_IOC_FLUSH_DEVICE:
4492                 return f2fs_ioc_flush_device(filp, arg);
4493         case F2FS_IOC_GET_FEATURES:
4494                 return f2fs_ioc_get_features(filp, arg);
4495         case F2FS_IOC_GET_PIN_FILE:
4496                 return f2fs_ioc_get_pin_file(filp, arg);
4497         case F2FS_IOC_SET_PIN_FILE:
4498                 return f2fs_ioc_set_pin_file(filp, arg);
4499         case F2FS_IOC_PRECACHE_EXTENTS:
4500                 return f2fs_ioc_precache_extents(filp);
4501         case F2FS_IOC_RESIZE_FS:
4502                 return f2fs_ioc_resize_fs(filp, arg);
4503         case FS_IOC_ENABLE_VERITY:
4504                 return f2fs_ioc_enable_verity(filp, arg);
4505         case FS_IOC_MEASURE_VERITY:
4506                 return f2fs_ioc_measure_verity(filp, arg);
4507         case FS_IOC_READ_VERITY_METADATA:
4508                 return f2fs_ioc_read_verity_metadata(filp, arg);
4509         case FS_IOC_GETFSLABEL:
4510                 return f2fs_ioc_getfslabel(filp, arg);
4511         case FS_IOC_SETFSLABEL:
4512                 return f2fs_ioc_setfslabel(filp, arg);
4513         case F2FS_IOC_GET_COMPRESS_BLOCKS:
4514                 return f2fs_ioc_get_compress_blocks(filp, arg);
4515         case F2FS_IOC_RELEASE_COMPRESS_BLOCKS:
4516                 return f2fs_release_compress_blocks(filp, arg);
4517         case F2FS_IOC_RESERVE_COMPRESS_BLOCKS:
4518                 return f2fs_reserve_compress_blocks(filp, arg);
4519         case F2FS_IOC_SEC_TRIM_FILE:
4520                 return f2fs_sec_trim_file(filp, arg);
4521         case F2FS_IOC_GET_COMPRESS_OPTION:
4522                 return f2fs_ioc_get_compress_option(filp, arg);
4523         case F2FS_IOC_SET_COMPRESS_OPTION:
4524                 return f2fs_ioc_set_compress_option(filp, arg);
4525         case F2FS_IOC_DECOMPRESS_FILE:
4526                 return f2fs_ioc_decompress_file(filp);
4527         case F2FS_IOC_COMPRESS_FILE:
4528                 return f2fs_ioc_compress_file(filp);
4529         case F2FS_IOC_GET_DEV_ALIAS_FILE:
4530                 return f2fs_ioc_get_dev_alias_file(filp, arg);
4531         default:
4532                 return -ENOTTY;
4533         }
4534 }
4535
4536 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
4537 {
4538         if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(filp)))))
4539                 return -EIO;
4540         if (!f2fs_is_checkpoint_ready(F2FS_I_SB(file_inode(filp))))
4541                 return -ENOSPC;
4542
4543         return __f2fs_ioctl(filp, cmd, arg);
4544 }
4545
4546 /*
4547  * Return %true if the given read or write request should use direct I/O, or
4548  * %false if it should use buffered I/O.
4549  */
4550 static bool f2fs_should_use_dio(struct inode *inode, struct kiocb *iocb,
4551                                 struct iov_iter *iter)
4552 {
4553         unsigned int align;
4554
4555         if (!(iocb->ki_flags & IOCB_DIRECT))
4556                 return false;
4557
4558         if (f2fs_force_buffered_io(inode, iov_iter_rw(iter)))
4559                 return false;
4560
4561         /*
4562          * Direct I/O not aligned to the disk's logical_block_size will be
4563          * attempted, but will fail with -EINVAL.
4564          *
4565          * f2fs additionally requires that direct I/O be aligned to the
4566          * filesystem block size, which is often a stricter requirement.
4567          * However, f2fs traditionally falls back to buffered I/O on requests
4568          * that are logical_block_size-aligned but not fs-block aligned.
4569          *
4570          * The below logic implements this behavior.
4571          */
4572         align = iocb->ki_pos | iov_iter_alignment(iter);
4573         if (!IS_ALIGNED(align, i_blocksize(inode)) &&
4574             IS_ALIGNED(align, bdev_logical_block_size(inode->i_sb->s_bdev)))
4575                 return false;
4576
4577         return true;
4578 }
4579
4580 static int f2fs_dio_read_end_io(struct kiocb *iocb, ssize_t size, int error,
4581                                 unsigned int flags)
4582 {
4583         struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(iocb->ki_filp));
4584
4585         dec_page_count(sbi, F2FS_DIO_READ);
4586         if (error)
4587                 return error;
4588         f2fs_update_iostat(sbi, NULL, APP_DIRECT_READ_IO, size);
4589         return 0;
4590 }
4591
4592 static const struct iomap_dio_ops f2fs_iomap_dio_read_ops = {
4593         .end_io = f2fs_dio_read_end_io,
4594 };
4595
4596 static ssize_t f2fs_dio_read_iter(struct kiocb *iocb, struct iov_iter *to)
4597 {
4598         struct file *file = iocb->ki_filp;
4599         struct inode *inode = file_inode(file);
4600         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4601         struct f2fs_inode_info *fi = F2FS_I(inode);
4602         const loff_t pos = iocb->ki_pos;
4603         const size_t count = iov_iter_count(to);
4604         struct iomap_dio *dio;
4605         ssize_t ret;
4606
4607         if (count == 0)
4608                 return 0; /* skip atime update */
4609
4610         trace_f2fs_direct_IO_enter(inode, iocb, count, READ);
4611
4612         if (iocb->ki_flags & IOCB_NOWAIT) {
4613                 if (!f2fs_down_read_trylock(&fi->i_gc_rwsem[READ])) {
4614                         ret = -EAGAIN;
4615                         goto out;
4616                 }
4617         } else {
4618                 f2fs_down_read(&fi->i_gc_rwsem[READ]);
4619         }
4620
4621         /* dio is not compatible w/ atomic file */
4622         if (f2fs_is_atomic_file(inode)) {
4623                 f2fs_up_read(&fi->i_gc_rwsem[READ]);
4624                 ret = -EOPNOTSUPP;
4625                 goto out;
4626         }
4627
4628         /*
4629          * We have to use __iomap_dio_rw() and iomap_dio_complete() instead of
4630          * the higher-level function iomap_dio_rw() in order to ensure that the
4631          * F2FS_DIO_READ counter will be decremented correctly in all cases.
4632          */
4633         inc_page_count(sbi, F2FS_DIO_READ);
4634         dio = __iomap_dio_rw(iocb, to, &f2fs_iomap_ops,
4635                              &f2fs_iomap_dio_read_ops, 0, NULL, 0);
4636         if (IS_ERR_OR_NULL(dio)) {
4637                 ret = PTR_ERR_OR_ZERO(dio);
4638                 if (ret != -EIOCBQUEUED)
4639                         dec_page_count(sbi, F2FS_DIO_READ);
4640         } else {
4641                 ret = iomap_dio_complete(dio);
4642         }
4643
4644         f2fs_up_read(&fi->i_gc_rwsem[READ]);
4645
4646         file_accessed(file);
4647 out:
4648         trace_f2fs_direct_IO_exit(inode, pos, count, READ, ret);
4649         return ret;
4650 }
4651
4652 static void f2fs_trace_rw_file_path(struct file *file, loff_t pos, size_t count,
4653                                     int rw)
4654 {
4655         struct inode *inode = file_inode(file);
4656         char *buf, *path;
4657
4658         buf = f2fs_getname(F2FS_I_SB(inode));
4659         if (!buf)
4660                 return;
4661         path = dentry_path_raw(file_dentry(file), buf, PATH_MAX);
4662         if (IS_ERR(path))
4663                 goto free_buf;
4664         if (rw == WRITE)
4665                 trace_f2fs_datawrite_start(inode, pos, count,
4666                                 current->pid, path, current->comm);
4667         else
4668                 trace_f2fs_dataread_start(inode, pos, count,
4669                                 current->pid, path, current->comm);
4670 free_buf:
4671         f2fs_putname(buf);
4672 }
4673
4674 static ssize_t f2fs_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
4675 {
4676         struct inode *inode = file_inode(iocb->ki_filp);
4677         const loff_t pos = iocb->ki_pos;
4678         ssize_t ret;
4679
4680         if (!f2fs_is_compress_backend_ready(inode))
4681                 return -EOPNOTSUPP;
4682
4683         if (trace_f2fs_dataread_start_enabled())
4684                 f2fs_trace_rw_file_path(iocb->ki_filp, iocb->ki_pos,
4685                                         iov_iter_count(to), READ);
4686
4687         /* In LFS mode, if there is inflight dio, wait for its completion */
4688         if (f2fs_lfs_mode(F2FS_I_SB(inode)) &&
4689             get_pages(F2FS_I_SB(inode), F2FS_DIO_WRITE))
4690                 inode_dio_wait(inode);
4691
4692         if (f2fs_should_use_dio(inode, iocb, to)) {
4693                 ret = f2fs_dio_read_iter(iocb, to);
4694         } else {
4695                 ret = filemap_read(iocb, to, 0);
4696                 if (ret > 0)
4697                         f2fs_update_iostat(F2FS_I_SB(inode), inode,
4698                                                 APP_BUFFERED_READ_IO, ret);
4699         }
4700         if (trace_f2fs_dataread_end_enabled())
4701                 trace_f2fs_dataread_end(inode, pos, ret);
4702         return ret;
4703 }
4704
4705 static ssize_t f2fs_file_splice_read(struct file *in, loff_t *ppos,
4706                                      struct pipe_inode_info *pipe,
4707                                      size_t len, unsigned int flags)
4708 {
4709         struct inode *inode = file_inode(in);
4710         const loff_t pos = *ppos;
4711         ssize_t ret;
4712
4713         if (!f2fs_is_compress_backend_ready(inode))
4714                 return -EOPNOTSUPP;
4715
4716         if (trace_f2fs_dataread_start_enabled())
4717                 f2fs_trace_rw_file_path(in, pos, len, READ);
4718
4719         ret = filemap_splice_read(in, ppos, pipe, len, flags);
4720         if (ret > 0)
4721                 f2fs_update_iostat(F2FS_I_SB(inode), inode,
4722                                    APP_BUFFERED_READ_IO, ret);
4723
4724         if (trace_f2fs_dataread_end_enabled())
4725                 trace_f2fs_dataread_end(inode, pos, ret);
4726         return ret;
4727 }
4728
4729 static ssize_t f2fs_write_checks(struct kiocb *iocb, struct iov_iter *from)
4730 {
4731         struct file *file = iocb->ki_filp;
4732         struct inode *inode = file_inode(file);
4733         ssize_t count;
4734         int err;
4735
4736         if (IS_IMMUTABLE(inode))
4737                 return -EPERM;
4738
4739         if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED))
4740                 return -EPERM;
4741
4742         count = generic_write_checks(iocb, from);
4743         if (count <= 0)
4744                 return count;
4745
4746         err = file_modified(file);
4747         if (err)
4748                 return err;
4749         return count;
4750 }
4751
4752 /*
4753  * Preallocate blocks for a write request, if it is possible and helpful to do
4754  * so.  Returns a positive number if blocks may have been preallocated, 0 if no
4755  * blocks were preallocated, or a negative errno value if something went
4756  * seriously wrong.  Also sets FI_PREALLOCATED_ALL on the inode if *all* the
4757  * requested blocks (not just some of them) have been allocated.
4758  */
4759 static int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *iter,
4760                                    bool dio)
4761 {
4762         struct inode *inode = file_inode(iocb->ki_filp);
4763         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4764         const loff_t pos = iocb->ki_pos;
4765         const size_t count = iov_iter_count(iter);
4766         struct f2fs_map_blocks map = {};
4767         int flag;
4768         int ret;
4769
4770         /* If it will be an out-of-place direct write, don't bother. */
4771         if (dio && f2fs_lfs_mode(sbi))
4772                 return 0;
4773         /*
4774          * Don't preallocate holes aligned to DIO_SKIP_HOLES which turns into
4775          * buffered IO, if DIO meets any holes.
4776          */
4777         if (dio && i_size_read(inode) &&
4778                 (F2FS_BYTES_TO_BLK(pos) < F2FS_BLK_ALIGN(i_size_read(inode))))
4779                 return 0;
4780
4781         /* No-wait I/O can't allocate blocks. */
4782         if (iocb->ki_flags & IOCB_NOWAIT)
4783                 return 0;
4784
4785         /* If it will be a short write, don't bother. */
4786         if (fault_in_iov_iter_readable(iter, count))
4787                 return 0;
4788
4789         if (f2fs_has_inline_data(inode)) {
4790                 /* If the data will fit inline, don't bother. */
4791                 if (pos + count <= MAX_INLINE_DATA(inode))
4792                         return 0;
4793                 ret = f2fs_convert_inline_inode(inode);
4794                 if (ret)
4795                         return ret;
4796         }
4797
4798         /* Do not preallocate blocks that will be written partially in 4KB. */
4799         map.m_lblk = F2FS_BLK_ALIGN(pos);
4800         map.m_len = F2FS_BYTES_TO_BLK(pos + count);
4801         if (map.m_len > map.m_lblk)
4802                 map.m_len -= map.m_lblk;
4803         else
4804                 return 0;
4805
4806         if (!IS_DEVICE_ALIASING(inode))
4807                 map.m_may_create = true;
4808         if (dio) {
4809                 map.m_seg_type = f2fs_rw_hint_to_seg_type(sbi,
4810                                                 inode->i_write_hint);
4811                 flag = F2FS_GET_BLOCK_PRE_DIO;
4812         } else {
4813                 map.m_seg_type = NO_CHECK_TYPE;
4814                 flag = F2FS_GET_BLOCK_PRE_AIO;
4815         }
4816
4817         ret = f2fs_map_blocks(inode, &map, flag);
4818         /* -ENOSPC|-EDQUOT are fine to report the number of allocated blocks. */
4819         if (ret < 0 && !((ret == -ENOSPC || ret == -EDQUOT) && map.m_len > 0))
4820                 return ret;
4821         if (ret == 0)
4822                 set_inode_flag(inode, FI_PREALLOCATED_ALL);
4823         return map.m_len;
4824 }
4825
4826 static ssize_t f2fs_buffered_write_iter(struct kiocb *iocb,
4827                                         struct iov_iter *from)
4828 {
4829         struct file *file = iocb->ki_filp;
4830         struct inode *inode = file_inode(file);
4831         ssize_t ret;
4832
4833         if (iocb->ki_flags & IOCB_NOWAIT)
4834                 return -EOPNOTSUPP;
4835
4836         ret = generic_perform_write(iocb, from);
4837
4838         if (ret > 0) {
4839                 f2fs_update_iostat(F2FS_I_SB(inode), inode,
4840                                                 APP_BUFFERED_IO, ret);
4841         }
4842         return ret;
4843 }
4844
4845 static int f2fs_dio_write_end_io(struct kiocb *iocb, ssize_t size, int error,
4846                                  unsigned int flags)
4847 {
4848         struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(iocb->ki_filp));
4849
4850         dec_page_count(sbi, F2FS_DIO_WRITE);
4851         if (error)
4852                 return error;
4853         f2fs_update_time(sbi, REQ_TIME);
4854         f2fs_update_iostat(sbi, NULL, APP_DIRECT_IO, size);
4855         return 0;
4856 }
4857
4858 static void f2fs_dio_write_submit_io(const struct iomap_iter *iter,
4859                                         struct bio *bio, loff_t file_offset)
4860 {
4861         struct inode *inode = iter->inode;
4862         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4863         enum log_type type = f2fs_rw_hint_to_seg_type(sbi, inode->i_write_hint);
4864         enum temp_type temp = f2fs_get_segment_temp(sbi, type);
4865
4866         bio->bi_write_hint = f2fs_io_type_to_rw_hint(sbi, DATA, temp);
4867         submit_bio(bio);
4868 }
4869
4870 static const struct iomap_dio_ops f2fs_iomap_dio_write_ops = {
4871         .end_io         = f2fs_dio_write_end_io,
4872         .submit_io      = f2fs_dio_write_submit_io,
4873 };
4874
4875 static void f2fs_flush_buffered_write(struct address_space *mapping,
4876                                       loff_t start_pos, loff_t end_pos)
4877 {
4878         int ret;
4879
4880         ret = filemap_write_and_wait_range(mapping, start_pos, end_pos);
4881         if (ret < 0)
4882                 return;
4883         invalidate_mapping_pages(mapping,
4884                                  start_pos >> PAGE_SHIFT,
4885                                  end_pos >> PAGE_SHIFT);
4886 }
4887
4888 static ssize_t f2fs_dio_write_iter(struct kiocb *iocb, struct iov_iter *from,
4889                                    bool *may_need_sync)
4890 {
4891         struct file *file = iocb->ki_filp;
4892         struct inode *inode = file_inode(file);
4893         struct f2fs_inode_info *fi = F2FS_I(inode);
4894         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4895         const bool do_opu = f2fs_lfs_mode(sbi);
4896         const loff_t pos = iocb->ki_pos;
4897         const ssize_t count = iov_iter_count(from);
4898         unsigned int dio_flags;
4899         struct iomap_dio *dio;
4900         ssize_t ret;
4901
4902         trace_f2fs_direct_IO_enter(inode, iocb, count, WRITE);
4903
4904         if (iocb->ki_flags & IOCB_NOWAIT) {
4905                 /* f2fs_convert_inline_inode() and block allocation can block */
4906                 if (f2fs_has_inline_data(inode) ||
4907                     !f2fs_overwrite_io(inode, pos, count)) {
4908                         ret = -EAGAIN;
4909                         goto out;
4910                 }
4911
4912                 if (!f2fs_down_read_trylock(&fi->i_gc_rwsem[WRITE])) {
4913                         ret = -EAGAIN;
4914                         goto out;
4915                 }
4916                 if (do_opu && !f2fs_down_read_trylock(&fi->i_gc_rwsem[READ])) {
4917                         f2fs_up_read(&fi->i_gc_rwsem[WRITE]);
4918                         ret = -EAGAIN;
4919                         goto out;
4920                 }
4921         } else {
4922                 ret = f2fs_convert_inline_inode(inode);
4923                 if (ret)
4924                         goto out;
4925
4926                 f2fs_down_read(&fi->i_gc_rwsem[WRITE]);
4927                 if (do_opu)
4928                         f2fs_down_read(&fi->i_gc_rwsem[READ]);
4929         }
4930
4931         /*
4932          * We have to use __iomap_dio_rw() and iomap_dio_complete() instead of
4933          * the higher-level function iomap_dio_rw() in order to ensure that the
4934          * F2FS_DIO_WRITE counter will be decremented correctly in all cases.
4935          */
4936         inc_page_count(sbi, F2FS_DIO_WRITE);
4937         dio_flags = 0;
4938         if (pos + count > inode->i_size)
4939                 dio_flags |= IOMAP_DIO_FORCE_WAIT;
4940         dio = __iomap_dio_rw(iocb, from, &f2fs_iomap_ops,
4941                              &f2fs_iomap_dio_write_ops, dio_flags, NULL, 0);
4942         if (IS_ERR_OR_NULL(dio)) {
4943                 ret = PTR_ERR_OR_ZERO(dio);
4944                 if (ret == -ENOTBLK)
4945                         ret = 0;
4946                 if (ret != -EIOCBQUEUED)
4947                         dec_page_count(sbi, F2FS_DIO_WRITE);
4948         } else {
4949                 ret = iomap_dio_complete(dio);
4950         }
4951
4952         if (do_opu)
4953                 f2fs_up_read(&fi->i_gc_rwsem[READ]);
4954         f2fs_up_read(&fi->i_gc_rwsem[WRITE]);
4955
4956         if (ret < 0)
4957                 goto out;
4958         if (pos + ret > inode->i_size)
4959                 f2fs_i_size_write(inode, pos + ret);
4960         if (!do_opu)
4961                 set_inode_flag(inode, FI_UPDATE_WRITE);
4962
4963         if (iov_iter_count(from)) {
4964                 ssize_t ret2;
4965                 loff_t bufio_start_pos = iocb->ki_pos;
4966
4967                 /*
4968                  * The direct write was partial, so we need to fall back to a
4969                  * buffered write for the remainder.
4970                  */
4971
4972                 ret2 = f2fs_buffered_write_iter(iocb, from);
4973                 if (iov_iter_count(from))
4974                         f2fs_write_failed(inode, iocb->ki_pos);
4975                 if (ret2 < 0)
4976                         goto out;
4977
4978                 /*
4979                  * Ensure that the pagecache pages are written to disk and
4980                  * invalidated to preserve the expected O_DIRECT semantics.
4981                  */
4982                 if (ret2 > 0) {
4983                         loff_t bufio_end_pos = bufio_start_pos + ret2 - 1;
4984
4985                         ret += ret2;
4986
4987                         f2fs_flush_buffered_write(file->f_mapping,
4988                                                   bufio_start_pos,
4989                                                   bufio_end_pos);
4990                 }
4991         } else {
4992                 /* iomap_dio_rw() already handled the generic_write_sync(). */
4993                 *may_need_sync = false;
4994         }
4995 out:
4996         trace_f2fs_direct_IO_exit(inode, pos, count, WRITE, ret);
4997         return ret;
4998 }
4999
5000 static ssize_t f2fs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
5001 {
5002         struct inode *inode = file_inode(iocb->ki_filp);
5003         const loff_t orig_pos = iocb->ki_pos;
5004         const size_t orig_count = iov_iter_count(from);
5005         loff_t target_size;
5006         bool dio;
5007         bool may_need_sync = true;
5008         int preallocated;
5009         const loff_t pos = iocb->ki_pos;
5010         const ssize_t count = iov_iter_count(from);
5011         ssize_t ret;
5012
5013         if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) {
5014                 ret = -EIO;
5015                 goto out;
5016         }
5017
5018         if (!f2fs_is_compress_backend_ready(inode)) {
5019                 ret = -EOPNOTSUPP;
5020                 goto out;
5021         }
5022
5023         if (iocb->ki_flags & IOCB_NOWAIT) {
5024                 if (!inode_trylock(inode)) {
5025                         ret = -EAGAIN;
5026                         goto out;
5027                 }
5028         } else {
5029                 inode_lock(inode);
5030         }
5031
5032         if (f2fs_is_pinned_file(inode) &&
5033             !f2fs_overwrite_io(inode, pos, count)) {
5034                 ret = -EIO;
5035                 goto out_unlock;
5036         }
5037
5038         ret = f2fs_write_checks(iocb, from);
5039         if (ret <= 0)
5040                 goto out_unlock;
5041
5042         /* Determine whether we will do a direct write or a buffered write. */
5043         dio = f2fs_should_use_dio(inode, iocb, from);
5044
5045         /* dio is not compatible w/ atomic write */
5046         if (dio && f2fs_is_atomic_file(inode)) {
5047                 ret = -EOPNOTSUPP;
5048                 goto out_unlock;
5049         }
5050
5051         /* Possibly preallocate the blocks for the write. */
5052         target_size = iocb->ki_pos + iov_iter_count(from);
5053         preallocated = f2fs_preallocate_blocks(iocb, from, dio);
5054         if (preallocated < 0) {
5055                 ret = preallocated;
5056         } else {
5057                 if (trace_f2fs_datawrite_start_enabled())
5058                         f2fs_trace_rw_file_path(iocb->ki_filp, iocb->ki_pos,
5059                                                 orig_count, WRITE);
5060
5061                 /* Do the actual write. */
5062                 ret = dio ?
5063                         f2fs_dio_write_iter(iocb, from, &may_need_sync) :
5064                         f2fs_buffered_write_iter(iocb, from);
5065
5066                 if (trace_f2fs_datawrite_end_enabled())
5067                         trace_f2fs_datawrite_end(inode, orig_pos, ret);
5068         }
5069
5070         /* Don't leave any preallocated blocks around past i_size. */
5071         if (preallocated && i_size_read(inode) < target_size) {
5072                 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
5073                 filemap_invalidate_lock(inode->i_mapping);
5074                 if (!f2fs_truncate(inode))
5075                         file_dont_truncate(inode);
5076                 filemap_invalidate_unlock(inode->i_mapping);
5077                 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
5078         } else {
5079                 file_dont_truncate(inode);
5080         }
5081
5082         clear_inode_flag(inode, FI_PREALLOCATED_ALL);
5083 out_unlock:
5084         inode_unlock(inode);
5085 out:
5086         trace_f2fs_file_write_iter(inode, orig_pos, orig_count, ret);
5087
5088         if (ret > 0 && may_need_sync)
5089                 ret = generic_write_sync(iocb, ret);
5090
5091         /* If buffered IO was forced, flush and drop the data from
5092          * the page cache to preserve O_DIRECT semantics
5093          */
5094         if (ret > 0 && !dio && (iocb->ki_flags & IOCB_DIRECT))
5095                 f2fs_flush_buffered_write(iocb->ki_filp->f_mapping,
5096                                           orig_pos,
5097                                           orig_pos + ret - 1);
5098
5099         return ret;
5100 }
5101
5102 static int f2fs_file_fadvise(struct file *filp, loff_t offset, loff_t len,
5103                 int advice)
5104 {
5105         struct address_space *mapping;
5106         struct backing_dev_info *bdi;
5107         struct inode *inode = file_inode(filp);
5108         int err;
5109
5110         if (advice == POSIX_FADV_SEQUENTIAL) {
5111                 if (S_ISFIFO(inode->i_mode))
5112                         return -ESPIPE;
5113
5114                 mapping = filp->f_mapping;
5115                 if (!mapping || len < 0)
5116                         return -EINVAL;
5117
5118                 bdi = inode_to_bdi(mapping->host);
5119                 filp->f_ra.ra_pages = bdi->ra_pages *
5120                         F2FS_I_SB(inode)->seq_file_ra_mul;
5121                 spin_lock(&filp->f_lock);
5122                 filp->f_mode &= ~FMODE_RANDOM;
5123                 spin_unlock(&filp->f_lock);
5124                 return 0;
5125         } else if (advice == POSIX_FADV_WILLNEED && offset == 0) {
5126                 /* Load extent cache at the first readahead. */
5127                 f2fs_precache_extents(inode);
5128         }
5129
5130         err = generic_fadvise(filp, offset, len, advice);
5131         if (!err && advice == POSIX_FADV_DONTNEED &&
5132                 test_opt(F2FS_I_SB(inode), COMPRESS_CACHE) &&
5133                 f2fs_compressed_file(inode))
5134                 f2fs_invalidate_compress_pages(F2FS_I_SB(inode), inode->i_ino);
5135
5136         return err;
5137 }
5138
5139 #ifdef CONFIG_COMPAT
5140 struct compat_f2fs_gc_range {
5141         u32 sync;
5142         compat_u64 start;
5143         compat_u64 len;
5144 };
5145 #define F2FS_IOC32_GARBAGE_COLLECT_RANGE        _IOW(F2FS_IOCTL_MAGIC, 11,\
5146                                                 struct compat_f2fs_gc_range)
5147
5148 static int f2fs_compat_ioc_gc_range(struct file *file, unsigned long arg)
5149 {
5150         struct compat_f2fs_gc_range __user *urange;
5151         struct f2fs_gc_range range;
5152         int err;
5153
5154         urange = compat_ptr(arg);
5155         err = get_user(range.sync, &urange->sync);
5156         err |= get_user(range.start, &urange->start);
5157         err |= get_user(range.len, &urange->len);
5158         if (err)
5159                 return -EFAULT;
5160
5161         return __f2fs_ioc_gc_range(file, &range);
5162 }
5163
5164 struct compat_f2fs_move_range {
5165         u32 dst_fd;
5166         compat_u64 pos_in;
5167         compat_u64 pos_out;
5168         compat_u64 len;
5169 };
5170 #define F2FS_IOC32_MOVE_RANGE           _IOWR(F2FS_IOCTL_MAGIC, 9,      \
5171                                         struct compat_f2fs_move_range)
5172
5173 static int f2fs_compat_ioc_move_range(struct file *file, unsigned long arg)
5174 {
5175         struct compat_f2fs_move_range __user *urange;
5176         struct f2fs_move_range range;
5177         int err;
5178
5179         urange = compat_ptr(arg);
5180         err = get_user(range.dst_fd, &urange->dst_fd);
5181         err |= get_user(range.pos_in, &urange->pos_in);
5182         err |= get_user(range.pos_out, &urange->pos_out);
5183         err |= get_user(range.len, &urange->len);
5184         if (err)
5185                 return -EFAULT;
5186
5187         return __f2fs_ioc_move_range(file, &range);
5188 }
5189
5190 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5191 {
5192         if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(file)))))
5193                 return -EIO;
5194         if (!f2fs_is_checkpoint_ready(F2FS_I_SB(file_inode(file))))
5195                 return -ENOSPC;
5196
5197         switch (cmd) {
5198         case FS_IOC32_GETVERSION:
5199                 cmd = FS_IOC_GETVERSION;
5200                 break;
5201         case F2FS_IOC32_GARBAGE_COLLECT_RANGE:
5202                 return f2fs_compat_ioc_gc_range(file, arg);
5203         case F2FS_IOC32_MOVE_RANGE:
5204                 return f2fs_compat_ioc_move_range(file, arg);
5205         case F2FS_IOC_START_ATOMIC_WRITE:
5206         case F2FS_IOC_START_ATOMIC_REPLACE:
5207         case F2FS_IOC_COMMIT_ATOMIC_WRITE:
5208         case F2FS_IOC_START_VOLATILE_WRITE:
5209         case F2FS_IOC_RELEASE_VOLATILE_WRITE:
5210         case F2FS_IOC_ABORT_ATOMIC_WRITE:
5211         case F2FS_IOC_SHUTDOWN:
5212         case FITRIM:
5213         case FS_IOC_SET_ENCRYPTION_POLICY:
5214         case FS_IOC_GET_ENCRYPTION_PWSALT:
5215         case FS_IOC_GET_ENCRYPTION_POLICY:
5216         case FS_IOC_GET_ENCRYPTION_POLICY_EX:
5217         case FS_IOC_ADD_ENCRYPTION_KEY:
5218         case FS_IOC_REMOVE_ENCRYPTION_KEY:
5219         case FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS:
5220         case FS_IOC_GET_ENCRYPTION_KEY_STATUS:
5221         case FS_IOC_GET_ENCRYPTION_NONCE:
5222         case F2FS_IOC_GARBAGE_COLLECT:
5223         case F2FS_IOC_WRITE_CHECKPOINT:
5224         case F2FS_IOC_DEFRAGMENT:
5225         case F2FS_IOC_FLUSH_DEVICE:
5226         case F2FS_IOC_GET_FEATURES:
5227         case F2FS_IOC_GET_PIN_FILE:
5228         case F2FS_IOC_SET_PIN_FILE:
5229         case F2FS_IOC_PRECACHE_EXTENTS:
5230         case F2FS_IOC_RESIZE_FS:
5231         case FS_IOC_ENABLE_VERITY:
5232         case FS_IOC_MEASURE_VERITY:
5233         case FS_IOC_READ_VERITY_METADATA:
5234         case FS_IOC_GETFSLABEL:
5235         case FS_IOC_SETFSLABEL:
5236         case F2FS_IOC_GET_COMPRESS_BLOCKS:
5237         case F2FS_IOC_RELEASE_COMPRESS_BLOCKS:
5238         case F2FS_IOC_RESERVE_COMPRESS_BLOCKS:
5239         case F2FS_IOC_SEC_TRIM_FILE:
5240         case F2FS_IOC_GET_COMPRESS_OPTION:
5241         case F2FS_IOC_SET_COMPRESS_OPTION:
5242         case F2FS_IOC_DECOMPRESS_FILE:
5243         case F2FS_IOC_COMPRESS_FILE:
5244         case F2FS_IOC_GET_DEV_ALIAS_FILE:
5245                 break;
5246         default:
5247                 return -ENOIOCTLCMD;
5248         }
5249         return __f2fs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
5250 }
5251 #endif
5252
5253 const struct file_operations f2fs_file_operations = {
5254         .llseek         = f2fs_llseek,
5255         .read_iter      = f2fs_file_read_iter,
5256         .write_iter     = f2fs_file_write_iter,
5257         .iopoll         = iocb_bio_iopoll,
5258         .open           = f2fs_file_open,
5259         .release        = f2fs_release_file,
5260         .mmap           = f2fs_file_mmap,
5261         .flush          = f2fs_file_flush,
5262         .fsync          = f2fs_sync_file,
5263         .fallocate      = f2fs_fallocate,
5264         .unlocked_ioctl = f2fs_ioctl,
5265 #ifdef CONFIG_COMPAT
5266         .compat_ioctl   = f2fs_compat_ioctl,
5267 #endif
5268         .splice_read    = f2fs_file_splice_read,
5269         .splice_write   = iter_file_splice_write,
5270         .fadvise        = f2fs_file_fadvise,
5271         .fop_flags      = FOP_BUFFER_RASYNC,
5272 };
This page took 0.323477 seconds and 4 git commands to generate.