]> Git Repo - J-linux.git/blob - fs/f2fs/data.c
Merge tag 'vfs-6.13-rc7.fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs
[J-linux.git] / fs / f2fs / data.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/data.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/sched/mm.h>
11 #include <linux/mpage.h>
12 #include <linux/writeback.h>
13 #include <linux/pagevec.h>
14 #include <linux/blkdev.h>
15 #include <linux/bio.h>
16 #include <linux/blk-crypto.h>
17 #include <linux/swap.h>
18 #include <linux/prefetch.h>
19 #include <linux/uio.h>
20 #include <linux/sched/signal.h>
21 #include <linux/fiemap.h>
22 #include <linux/iomap.h>
23
24 #include "f2fs.h"
25 #include "node.h"
26 #include "segment.h"
27 #include "iostat.h"
28 #include <trace/events/f2fs.h>
29
30 #define NUM_PREALLOC_POST_READ_CTXS     128
31
32 static struct kmem_cache *bio_post_read_ctx_cache;
33 static struct kmem_cache *bio_entry_slab;
34 static mempool_t *bio_post_read_ctx_pool;
35 static struct bio_set f2fs_bioset;
36
37 #define F2FS_BIO_POOL_SIZE      NR_CURSEG_TYPE
38
39 int __init f2fs_init_bioset(void)
40 {
41         return bioset_init(&f2fs_bioset, F2FS_BIO_POOL_SIZE,
42                                         0, BIOSET_NEED_BVECS);
43 }
44
45 void f2fs_destroy_bioset(void)
46 {
47         bioset_exit(&f2fs_bioset);
48 }
49
50 bool f2fs_is_cp_guaranteed(struct page *page)
51 {
52         struct address_space *mapping = page->mapping;
53         struct inode *inode;
54         struct f2fs_sb_info *sbi;
55
56         if (!mapping)
57                 return false;
58
59         inode = mapping->host;
60         sbi = F2FS_I_SB(inode);
61
62         if (inode->i_ino == F2FS_META_INO(sbi) ||
63                         inode->i_ino == F2FS_NODE_INO(sbi) ||
64                         S_ISDIR(inode->i_mode))
65                 return true;
66
67         if ((S_ISREG(inode->i_mode) && IS_NOQUOTA(inode)) ||
68                         page_private_gcing(page))
69                 return true;
70         return false;
71 }
72
73 static enum count_type __read_io_type(struct page *page)
74 {
75         struct address_space *mapping = page_file_mapping(page);
76
77         if (mapping) {
78                 struct inode *inode = mapping->host;
79                 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
80
81                 if (inode->i_ino == F2FS_META_INO(sbi))
82                         return F2FS_RD_META;
83
84                 if (inode->i_ino == F2FS_NODE_INO(sbi))
85                         return F2FS_RD_NODE;
86         }
87         return F2FS_RD_DATA;
88 }
89
90 /* postprocessing steps for read bios */
91 enum bio_post_read_step {
92 #ifdef CONFIG_FS_ENCRYPTION
93         STEP_DECRYPT    = BIT(0),
94 #else
95         STEP_DECRYPT    = 0,    /* compile out the decryption-related code */
96 #endif
97 #ifdef CONFIG_F2FS_FS_COMPRESSION
98         STEP_DECOMPRESS = BIT(1),
99 #else
100         STEP_DECOMPRESS = 0,    /* compile out the decompression-related code */
101 #endif
102 #ifdef CONFIG_FS_VERITY
103         STEP_VERITY     = BIT(2),
104 #else
105         STEP_VERITY     = 0,    /* compile out the verity-related code */
106 #endif
107 };
108
109 struct bio_post_read_ctx {
110         struct bio *bio;
111         struct f2fs_sb_info *sbi;
112         struct work_struct work;
113         unsigned int enabled_steps;
114         /*
115          * decompression_attempted keeps track of whether
116          * f2fs_end_read_compressed_page() has been called on the pages in the
117          * bio that belong to a compressed cluster yet.
118          */
119         bool decompression_attempted;
120         block_t fs_blkaddr;
121 };
122
123 /*
124  * Update and unlock a bio's pages, and free the bio.
125  *
126  * This marks pages up-to-date only if there was no error in the bio (I/O error,
127  * decryption error, or verity error), as indicated by bio->bi_status.
128  *
129  * "Compressed pages" (pagecache pages backed by a compressed cluster on-disk)
130  * aren't marked up-to-date here, as decompression is done on a per-compression-
131  * cluster basis rather than a per-bio basis.  Instead, we only must do two
132  * things for each compressed page here: call f2fs_end_read_compressed_page()
133  * with failed=true if an error occurred before it would have normally gotten
134  * called (i.e., I/O error or decryption error, but *not* verity error), and
135  * release the bio's reference to the decompress_io_ctx of the page's cluster.
136  */
137 static void f2fs_finish_read_bio(struct bio *bio, bool in_task)
138 {
139         struct bio_vec *bv;
140         struct bvec_iter_all iter_all;
141         struct bio_post_read_ctx *ctx = bio->bi_private;
142
143         bio_for_each_segment_all(bv, bio, iter_all) {
144                 struct page *page = bv->bv_page;
145
146                 if (f2fs_is_compressed_page(page)) {
147                         if (ctx && !ctx->decompression_attempted)
148                                 f2fs_end_read_compressed_page(page, true, 0,
149                                                         in_task);
150                         f2fs_put_page_dic(page, in_task);
151                         continue;
152                 }
153
154                 if (bio->bi_status)
155                         ClearPageUptodate(page);
156                 else
157                         SetPageUptodate(page);
158                 dec_page_count(F2FS_P_SB(page), __read_io_type(page));
159                 unlock_page(page);
160         }
161
162         if (ctx)
163                 mempool_free(ctx, bio_post_read_ctx_pool);
164         bio_put(bio);
165 }
166
167 static void f2fs_verify_bio(struct work_struct *work)
168 {
169         struct bio_post_read_ctx *ctx =
170                 container_of(work, struct bio_post_read_ctx, work);
171         struct bio *bio = ctx->bio;
172         bool may_have_compressed_pages = (ctx->enabled_steps & STEP_DECOMPRESS);
173
174         /*
175          * fsverity_verify_bio() may call readahead() again, and while verity
176          * will be disabled for this, decryption and/or decompression may still
177          * be needed, resulting in another bio_post_read_ctx being allocated.
178          * So to prevent deadlocks we need to release the current ctx to the
179          * mempool first.  This assumes that verity is the last post-read step.
180          */
181         mempool_free(ctx, bio_post_read_ctx_pool);
182         bio->bi_private = NULL;
183
184         /*
185          * Verify the bio's pages with fs-verity.  Exclude compressed pages,
186          * as those were handled separately by f2fs_end_read_compressed_page().
187          */
188         if (may_have_compressed_pages) {
189                 struct bio_vec *bv;
190                 struct bvec_iter_all iter_all;
191
192                 bio_for_each_segment_all(bv, bio, iter_all) {
193                         struct page *page = bv->bv_page;
194
195                         if (!f2fs_is_compressed_page(page) &&
196                             !fsverity_verify_page(page)) {
197                                 bio->bi_status = BLK_STS_IOERR;
198                                 break;
199                         }
200                 }
201         } else {
202                 fsverity_verify_bio(bio);
203         }
204
205         f2fs_finish_read_bio(bio, true);
206 }
207
208 /*
209  * If the bio's data needs to be verified with fs-verity, then enqueue the
210  * verity work for the bio.  Otherwise finish the bio now.
211  *
212  * Note that to avoid deadlocks, the verity work can't be done on the
213  * decryption/decompression workqueue.  This is because verifying the data pages
214  * can involve reading verity metadata pages from the file, and these verity
215  * metadata pages may be encrypted and/or compressed.
216  */
217 static void f2fs_verify_and_finish_bio(struct bio *bio, bool in_task)
218 {
219         struct bio_post_read_ctx *ctx = bio->bi_private;
220
221         if (ctx && (ctx->enabled_steps & STEP_VERITY)) {
222                 INIT_WORK(&ctx->work, f2fs_verify_bio);
223                 fsverity_enqueue_verify_work(&ctx->work);
224         } else {
225                 f2fs_finish_read_bio(bio, in_task);
226         }
227 }
228
229 /*
230  * Handle STEP_DECOMPRESS by decompressing any compressed clusters whose last
231  * remaining page was read by @ctx->bio.
232  *
233  * Note that a bio may span clusters (even a mix of compressed and uncompressed
234  * clusters) or be for just part of a cluster.  STEP_DECOMPRESS just indicates
235  * that the bio includes at least one compressed page.  The actual decompression
236  * is done on a per-cluster basis, not a per-bio basis.
237  */
238 static void f2fs_handle_step_decompress(struct bio_post_read_ctx *ctx,
239                 bool in_task)
240 {
241         struct bio_vec *bv;
242         struct bvec_iter_all iter_all;
243         bool all_compressed = true;
244         block_t blkaddr = ctx->fs_blkaddr;
245
246         bio_for_each_segment_all(bv, ctx->bio, iter_all) {
247                 struct page *page = bv->bv_page;
248
249                 if (f2fs_is_compressed_page(page))
250                         f2fs_end_read_compressed_page(page, false, blkaddr,
251                                                       in_task);
252                 else
253                         all_compressed = false;
254
255                 blkaddr++;
256         }
257
258         ctx->decompression_attempted = true;
259
260         /*
261          * Optimization: if all the bio's pages are compressed, then scheduling
262          * the per-bio verity work is unnecessary, as verity will be fully
263          * handled at the compression cluster level.
264          */
265         if (all_compressed)
266                 ctx->enabled_steps &= ~STEP_VERITY;
267 }
268
269 static void f2fs_post_read_work(struct work_struct *work)
270 {
271         struct bio_post_read_ctx *ctx =
272                 container_of(work, struct bio_post_read_ctx, work);
273         struct bio *bio = ctx->bio;
274
275         if ((ctx->enabled_steps & STEP_DECRYPT) && !fscrypt_decrypt_bio(bio)) {
276                 f2fs_finish_read_bio(bio, true);
277                 return;
278         }
279
280         if (ctx->enabled_steps & STEP_DECOMPRESS)
281                 f2fs_handle_step_decompress(ctx, true);
282
283         f2fs_verify_and_finish_bio(bio, true);
284 }
285
286 static void f2fs_read_end_io(struct bio *bio)
287 {
288         struct f2fs_sb_info *sbi = F2FS_P_SB(bio_first_page_all(bio));
289         struct bio_post_read_ctx *ctx;
290         bool intask = in_task();
291
292         iostat_update_and_unbind_ctx(bio);
293         ctx = bio->bi_private;
294
295         if (time_to_inject(sbi, FAULT_READ_IO))
296                 bio->bi_status = BLK_STS_IOERR;
297
298         if (bio->bi_status) {
299                 f2fs_finish_read_bio(bio, intask);
300                 return;
301         }
302
303         if (ctx) {
304                 unsigned int enabled_steps = ctx->enabled_steps &
305                                         (STEP_DECRYPT | STEP_DECOMPRESS);
306
307                 /*
308                  * If we have only decompression step between decompression and
309                  * decrypt, we don't need post processing for this.
310                  */
311                 if (enabled_steps == STEP_DECOMPRESS &&
312                                 !f2fs_low_mem_mode(sbi)) {
313                         f2fs_handle_step_decompress(ctx, intask);
314                 } else if (enabled_steps) {
315                         INIT_WORK(&ctx->work, f2fs_post_read_work);
316                         queue_work(ctx->sbi->post_read_wq, &ctx->work);
317                         return;
318                 }
319         }
320
321         f2fs_verify_and_finish_bio(bio, intask);
322 }
323
324 static void f2fs_write_end_io(struct bio *bio)
325 {
326         struct f2fs_sb_info *sbi;
327         struct bio_vec *bvec;
328         struct bvec_iter_all iter_all;
329
330         iostat_update_and_unbind_ctx(bio);
331         sbi = bio->bi_private;
332
333         if (time_to_inject(sbi, FAULT_WRITE_IO))
334                 bio->bi_status = BLK_STS_IOERR;
335
336         bio_for_each_segment_all(bvec, bio, iter_all) {
337                 struct page *page = bvec->bv_page;
338                 enum count_type type = WB_DATA_TYPE(page, false);
339
340                 fscrypt_finalize_bounce_page(&page);
341
342 #ifdef CONFIG_F2FS_FS_COMPRESSION
343                 if (f2fs_is_compressed_page(page)) {
344                         f2fs_compress_write_end_io(bio, page);
345                         continue;
346                 }
347 #endif
348
349                 if (unlikely(bio->bi_status)) {
350                         mapping_set_error(page->mapping, -EIO);
351                         if (type == F2FS_WB_CP_DATA)
352                                 f2fs_stop_checkpoint(sbi, true,
353                                                 STOP_CP_REASON_WRITE_FAIL);
354                 }
355
356                 f2fs_bug_on(sbi, page->mapping == NODE_MAPPING(sbi) &&
357                                 page_folio(page)->index != nid_of_node(page));
358
359                 dec_page_count(sbi, type);
360                 if (f2fs_in_warm_node_list(sbi, page))
361                         f2fs_del_fsync_node_entry(sbi, page);
362                 clear_page_private_gcing(page);
363                 end_page_writeback(page);
364         }
365         if (!get_pages(sbi, F2FS_WB_CP_DATA) &&
366                                 wq_has_sleeper(&sbi->cp_wait))
367                 wake_up(&sbi->cp_wait);
368
369         bio_put(bio);
370 }
371
372 #ifdef CONFIG_BLK_DEV_ZONED
373 static void f2fs_zone_write_end_io(struct bio *bio)
374 {
375         struct f2fs_bio_info *io = (struct f2fs_bio_info *)bio->bi_private;
376
377         bio->bi_private = io->bi_private;
378         complete(&io->zone_wait);
379         f2fs_write_end_io(bio);
380 }
381 #endif
382
383 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
384                 block_t blk_addr, sector_t *sector)
385 {
386         struct block_device *bdev = sbi->sb->s_bdev;
387         int i;
388
389         if (f2fs_is_multi_device(sbi)) {
390                 for (i = 0; i < sbi->s_ndevs; i++) {
391                         if (FDEV(i).start_blk <= blk_addr &&
392                             FDEV(i).end_blk >= blk_addr) {
393                                 blk_addr -= FDEV(i).start_blk;
394                                 bdev = FDEV(i).bdev;
395                                 break;
396                         }
397                 }
398         }
399
400         if (sector)
401                 *sector = SECTOR_FROM_BLOCK(blk_addr);
402         return bdev;
403 }
404
405 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr)
406 {
407         int i;
408
409         if (!f2fs_is_multi_device(sbi))
410                 return 0;
411
412         for (i = 0; i < sbi->s_ndevs; i++)
413                 if (FDEV(i).start_blk <= blkaddr && FDEV(i).end_blk >= blkaddr)
414                         return i;
415         return 0;
416 }
417
418 static blk_opf_t f2fs_io_flags(struct f2fs_io_info *fio)
419 {
420         unsigned int temp_mask = GENMASK(NR_TEMP_TYPE - 1, 0);
421         unsigned int fua_flag, meta_flag, io_flag;
422         blk_opf_t op_flags = 0;
423
424         if (fio->op != REQ_OP_WRITE)
425                 return 0;
426         if (fio->type == DATA)
427                 io_flag = fio->sbi->data_io_flag;
428         else if (fio->type == NODE)
429                 io_flag = fio->sbi->node_io_flag;
430         else
431                 return 0;
432
433         fua_flag = io_flag & temp_mask;
434         meta_flag = (io_flag >> NR_TEMP_TYPE) & temp_mask;
435
436         /*
437          * data/node io flag bits per temp:
438          *      REQ_META     |      REQ_FUA      |
439          *    5 |    4 |   3 |    2 |    1 |   0 |
440          * Cold | Warm | Hot | Cold | Warm | Hot |
441          */
442         if (BIT(fio->temp) & meta_flag)
443                 op_flags |= REQ_META;
444         if (BIT(fio->temp) & fua_flag)
445                 op_flags |= REQ_FUA;
446         return op_flags;
447 }
448
449 static struct bio *__bio_alloc(struct f2fs_io_info *fio, int npages)
450 {
451         struct f2fs_sb_info *sbi = fio->sbi;
452         struct block_device *bdev;
453         sector_t sector;
454         struct bio *bio;
455
456         bdev = f2fs_target_device(sbi, fio->new_blkaddr, &sector);
457         bio = bio_alloc_bioset(bdev, npages,
458                                 fio->op | fio->op_flags | f2fs_io_flags(fio),
459                                 GFP_NOIO, &f2fs_bioset);
460         bio->bi_iter.bi_sector = sector;
461         if (is_read_io(fio->op)) {
462                 bio->bi_end_io = f2fs_read_end_io;
463                 bio->bi_private = NULL;
464         } else {
465                 bio->bi_end_io = f2fs_write_end_io;
466                 bio->bi_private = sbi;
467                 bio->bi_write_hint = f2fs_io_type_to_rw_hint(sbi,
468                                                 fio->type, fio->temp);
469         }
470         iostat_alloc_and_bind_ctx(sbi, bio, NULL);
471
472         if (fio->io_wbc)
473                 wbc_init_bio(fio->io_wbc, bio);
474
475         return bio;
476 }
477
478 static void f2fs_set_bio_crypt_ctx(struct bio *bio, const struct inode *inode,
479                                   pgoff_t first_idx,
480                                   const struct f2fs_io_info *fio,
481                                   gfp_t gfp_mask)
482 {
483         /*
484          * The f2fs garbage collector sets ->encrypted_page when it wants to
485          * read/write raw data without encryption.
486          */
487         if (!fio || !fio->encrypted_page)
488                 fscrypt_set_bio_crypt_ctx(bio, inode, first_idx, gfp_mask);
489 }
490
491 static bool f2fs_crypt_mergeable_bio(struct bio *bio, const struct inode *inode,
492                                      pgoff_t next_idx,
493                                      const struct f2fs_io_info *fio)
494 {
495         /*
496          * The f2fs garbage collector sets ->encrypted_page when it wants to
497          * read/write raw data without encryption.
498          */
499         if (fio && fio->encrypted_page)
500                 return !bio_has_crypt_ctx(bio);
501
502         return fscrypt_mergeable_bio(bio, inode, next_idx);
503 }
504
505 void f2fs_submit_read_bio(struct f2fs_sb_info *sbi, struct bio *bio,
506                                  enum page_type type)
507 {
508         WARN_ON_ONCE(!is_read_io(bio_op(bio)));
509         trace_f2fs_submit_read_bio(sbi->sb, type, bio);
510
511         iostat_update_submit_ctx(bio, type);
512         submit_bio(bio);
513 }
514
515 static void f2fs_submit_write_bio(struct f2fs_sb_info *sbi, struct bio *bio,
516                                   enum page_type type)
517 {
518         WARN_ON_ONCE(is_read_io(bio_op(bio)));
519
520         if (f2fs_lfs_mode(sbi) && current->plug && PAGE_TYPE_ON_MAIN(type))
521                 blk_finish_plug(current->plug);
522
523         trace_f2fs_submit_write_bio(sbi->sb, type, bio);
524         iostat_update_submit_ctx(bio, type);
525         submit_bio(bio);
526 }
527
528 static void __submit_merged_bio(struct f2fs_bio_info *io)
529 {
530         struct f2fs_io_info *fio = &io->fio;
531
532         if (!io->bio)
533                 return;
534
535         if (is_read_io(fio->op)) {
536                 trace_f2fs_prepare_read_bio(io->sbi->sb, fio->type, io->bio);
537                 f2fs_submit_read_bio(io->sbi, io->bio, fio->type);
538         } else {
539                 trace_f2fs_prepare_write_bio(io->sbi->sb, fio->type, io->bio);
540                 f2fs_submit_write_bio(io->sbi, io->bio, fio->type);
541         }
542         io->bio = NULL;
543 }
544
545 static bool __has_merged_page(struct bio *bio, struct inode *inode,
546                                                 struct page *page, nid_t ino)
547 {
548         struct bio_vec *bvec;
549         struct bvec_iter_all iter_all;
550
551         if (!bio)
552                 return false;
553
554         if (!inode && !page && !ino)
555                 return true;
556
557         bio_for_each_segment_all(bvec, bio, iter_all) {
558                 struct page *target = bvec->bv_page;
559
560                 if (fscrypt_is_bounce_page(target)) {
561                         target = fscrypt_pagecache_page(target);
562                         if (IS_ERR(target))
563                                 continue;
564                 }
565                 if (f2fs_is_compressed_page(target)) {
566                         target = f2fs_compress_control_page(target);
567                         if (IS_ERR(target))
568                                 continue;
569                 }
570
571                 if (inode && inode == target->mapping->host)
572                         return true;
573                 if (page && page == target)
574                         return true;
575                 if (ino && ino == ino_of_node(target))
576                         return true;
577         }
578
579         return false;
580 }
581
582 int f2fs_init_write_merge_io(struct f2fs_sb_info *sbi)
583 {
584         int i;
585
586         for (i = 0; i < NR_PAGE_TYPE; i++) {
587                 int n = (i == META) ? 1 : NR_TEMP_TYPE;
588                 int j;
589
590                 sbi->write_io[i] = f2fs_kmalloc(sbi,
591                                 array_size(n, sizeof(struct f2fs_bio_info)),
592                                 GFP_KERNEL);
593                 if (!sbi->write_io[i])
594                         return -ENOMEM;
595
596                 for (j = HOT; j < n; j++) {
597                         struct f2fs_bio_info *io = &sbi->write_io[i][j];
598
599                         init_f2fs_rwsem(&io->io_rwsem);
600                         io->sbi = sbi;
601                         io->bio = NULL;
602                         io->last_block_in_bio = 0;
603                         spin_lock_init(&io->io_lock);
604                         INIT_LIST_HEAD(&io->io_list);
605                         INIT_LIST_HEAD(&io->bio_list);
606                         init_f2fs_rwsem(&io->bio_list_lock);
607 #ifdef CONFIG_BLK_DEV_ZONED
608                         init_completion(&io->zone_wait);
609                         io->zone_pending_bio = NULL;
610                         io->bi_private = NULL;
611 #endif
612                 }
613         }
614
615         return 0;
616 }
617
618 static void __f2fs_submit_merged_write(struct f2fs_sb_info *sbi,
619                                 enum page_type type, enum temp_type temp)
620 {
621         enum page_type btype = PAGE_TYPE_OF_BIO(type);
622         struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
623
624         f2fs_down_write(&io->io_rwsem);
625
626         if (!io->bio)
627                 goto unlock_out;
628
629         /* change META to META_FLUSH in the checkpoint procedure */
630         if (type >= META_FLUSH) {
631                 io->fio.type = META_FLUSH;
632                 io->bio->bi_opf |= REQ_META | REQ_PRIO | REQ_SYNC;
633                 if (!test_opt(sbi, NOBARRIER))
634                         io->bio->bi_opf |= REQ_PREFLUSH | REQ_FUA;
635         }
636         __submit_merged_bio(io);
637 unlock_out:
638         f2fs_up_write(&io->io_rwsem);
639 }
640
641 static void __submit_merged_write_cond(struct f2fs_sb_info *sbi,
642                                 struct inode *inode, struct page *page,
643                                 nid_t ino, enum page_type type, bool force)
644 {
645         enum temp_type temp;
646         bool ret = true;
647
648         for (temp = HOT; temp < NR_TEMP_TYPE; temp++) {
649                 if (!force)     {
650                         enum page_type btype = PAGE_TYPE_OF_BIO(type);
651                         struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
652
653                         f2fs_down_read(&io->io_rwsem);
654                         ret = __has_merged_page(io->bio, inode, page, ino);
655                         f2fs_up_read(&io->io_rwsem);
656                 }
657                 if (ret)
658                         __f2fs_submit_merged_write(sbi, type, temp);
659
660                 /* TODO: use HOT temp only for meta pages now. */
661                 if (type >= META)
662                         break;
663         }
664 }
665
666 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type)
667 {
668         __submit_merged_write_cond(sbi, NULL, NULL, 0, type, true);
669 }
670
671 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
672                                 struct inode *inode, struct page *page,
673                                 nid_t ino, enum page_type type)
674 {
675         __submit_merged_write_cond(sbi, inode, page, ino, type, false);
676 }
677
678 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi)
679 {
680         f2fs_submit_merged_write(sbi, DATA);
681         f2fs_submit_merged_write(sbi, NODE);
682         f2fs_submit_merged_write(sbi, META);
683 }
684
685 /*
686  * Fill the locked page with data located in the block address.
687  * A caller needs to unlock the page on failure.
688  */
689 int f2fs_submit_page_bio(struct f2fs_io_info *fio)
690 {
691         struct bio *bio;
692         struct page *page = fio->encrypted_page ?
693                         fio->encrypted_page : fio->page;
694
695         if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr,
696                         fio->is_por ? META_POR : (__is_meta_io(fio) ?
697                         META_GENERIC : DATA_GENERIC_ENHANCE)))
698                 return -EFSCORRUPTED;
699
700         trace_f2fs_submit_page_bio(page, fio);
701
702         /* Allocate a new bio */
703         bio = __bio_alloc(fio, 1);
704
705         f2fs_set_bio_crypt_ctx(bio, fio->page->mapping->host,
706                         page_folio(fio->page)->index, fio, GFP_NOIO);
707
708         if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
709                 bio_put(bio);
710                 return -EFAULT;
711         }
712
713         if (fio->io_wbc && !is_read_io(fio->op))
714                 wbc_account_cgroup_owner(fio->io_wbc, page_folio(fio->page),
715                                          PAGE_SIZE);
716
717         inc_page_count(fio->sbi, is_read_io(fio->op) ?
718                         __read_io_type(page) : WB_DATA_TYPE(fio->page, false));
719
720         if (is_read_io(bio_op(bio)))
721                 f2fs_submit_read_bio(fio->sbi, bio, fio->type);
722         else
723                 f2fs_submit_write_bio(fio->sbi, bio, fio->type);
724         return 0;
725 }
726
727 static bool page_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio,
728                                 block_t last_blkaddr, block_t cur_blkaddr)
729 {
730         if (unlikely(sbi->max_io_bytes &&
731                         bio->bi_iter.bi_size >= sbi->max_io_bytes))
732                 return false;
733         if (last_blkaddr + 1 != cur_blkaddr)
734                 return false;
735         return bio->bi_bdev == f2fs_target_device(sbi, cur_blkaddr, NULL);
736 }
737
738 static bool io_type_is_mergeable(struct f2fs_bio_info *io,
739                                                 struct f2fs_io_info *fio)
740 {
741         if (io->fio.op != fio->op)
742                 return false;
743         return io->fio.op_flags == fio->op_flags;
744 }
745
746 static bool io_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio,
747                                         struct f2fs_bio_info *io,
748                                         struct f2fs_io_info *fio,
749                                         block_t last_blkaddr,
750                                         block_t cur_blkaddr)
751 {
752         if (!page_is_mergeable(sbi, bio, last_blkaddr, cur_blkaddr))
753                 return false;
754         return io_type_is_mergeable(io, fio);
755 }
756
757 static void add_bio_entry(struct f2fs_sb_info *sbi, struct bio *bio,
758                                 struct page *page, enum temp_type temp)
759 {
760         struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
761         struct bio_entry *be;
762
763         be = f2fs_kmem_cache_alloc(bio_entry_slab, GFP_NOFS, true, NULL);
764         be->bio = bio;
765         bio_get(bio);
766
767         if (bio_add_page(bio, page, PAGE_SIZE, 0) != PAGE_SIZE)
768                 f2fs_bug_on(sbi, 1);
769
770         f2fs_down_write(&io->bio_list_lock);
771         list_add_tail(&be->list, &io->bio_list);
772         f2fs_up_write(&io->bio_list_lock);
773 }
774
775 static void del_bio_entry(struct bio_entry *be)
776 {
777         list_del(&be->list);
778         kmem_cache_free(bio_entry_slab, be);
779 }
780
781 static int add_ipu_page(struct f2fs_io_info *fio, struct bio **bio,
782                                                         struct page *page)
783 {
784         struct f2fs_sb_info *sbi = fio->sbi;
785         enum temp_type temp;
786         bool found = false;
787         int ret = -EAGAIN;
788
789         for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) {
790                 struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
791                 struct list_head *head = &io->bio_list;
792                 struct bio_entry *be;
793
794                 f2fs_down_write(&io->bio_list_lock);
795                 list_for_each_entry(be, head, list) {
796                         if (be->bio != *bio)
797                                 continue;
798
799                         found = true;
800
801                         f2fs_bug_on(sbi, !page_is_mergeable(sbi, *bio,
802                                                             *fio->last_block,
803                                                             fio->new_blkaddr));
804                         if (f2fs_crypt_mergeable_bio(*bio,
805                                         fio->page->mapping->host,
806                                         page_folio(fio->page)->index, fio) &&
807                             bio_add_page(*bio, page, PAGE_SIZE, 0) ==
808                                         PAGE_SIZE) {
809                                 ret = 0;
810                                 break;
811                         }
812
813                         /* page can't be merged into bio; submit the bio */
814                         del_bio_entry(be);
815                         f2fs_submit_write_bio(sbi, *bio, DATA);
816                         break;
817                 }
818                 f2fs_up_write(&io->bio_list_lock);
819         }
820
821         if (ret) {
822                 bio_put(*bio);
823                 *bio = NULL;
824         }
825
826         return ret;
827 }
828
829 void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi,
830                                         struct bio **bio, struct page *page)
831 {
832         enum temp_type temp;
833         bool found = false;
834         struct bio *target = bio ? *bio : NULL;
835
836         f2fs_bug_on(sbi, !target && !page);
837
838         for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) {
839                 struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
840                 struct list_head *head = &io->bio_list;
841                 struct bio_entry *be;
842
843                 if (list_empty(head))
844                         continue;
845
846                 f2fs_down_read(&io->bio_list_lock);
847                 list_for_each_entry(be, head, list) {
848                         if (target)
849                                 found = (target == be->bio);
850                         else
851                                 found = __has_merged_page(be->bio, NULL,
852                                                                 page, 0);
853                         if (found)
854                                 break;
855                 }
856                 f2fs_up_read(&io->bio_list_lock);
857
858                 if (!found)
859                         continue;
860
861                 found = false;
862
863                 f2fs_down_write(&io->bio_list_lock);
864                 list_for_each_entry(be, head, list) {
865                         if (target)
866                                 found = (target == be->bio);
867                         else
868                                 found = __has_merged_page(be->bio, NULL,
869                                                                 page, 0);
870                         if (found) {
871                                 target = be->bio;
872                                 del_bio_entry(be);
873                                 break;
874                         }
875                 }
876                 f2fs_up_write(&io->bio_list_lock);
877         }
878
879         if (found)
880                 f2fs_submit_write_bio(sbi, target, DATA);
881         if (bio && *bio) {
882                 bio_put(*bio);
883                 *bio = NULL;
884         }
885 }
886
887 int f2fs_merge_page_bio(struct f2fs_io_info *fio)
888 {
889         struct bio *bio = *fio->bio;
890         struct page *page = fio->encrypted_page ?
891                         fio->encrypted_page : fio->page;
892
893         if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr,
894                         __is_meta_io(fio) ? META_GENERIC : DATA_GENERIC))
895                 return -EFSCORRUPTED;
896
897         trace_f2fs_submit_page_bio(page, fio);
898
899         if (bio && !page_is_mergeable(fio->sbi, bio, *fio->last_block,
900                                                 fio->new_blkaddr))
901                 f2fs_submit_merged_ipu_write(fio->sbi, &bio, NULL);
902 alloc_new:
903         if (!bio) {
904                 bio = __bio_alloc(fio, BIO_MAX_VECS);
905                 f2fs_set_bio_crypt_ctx(bio, fio->page->mapping->host,
906                                 page_folio(fio->page)->index, fio, GFP_NOIO);
907
908                 add_bio_entry(fio->sbi, bio, page, fio->temp);
909         } else {
910                 if (add_ipu_page(fio, &bio, page))
911                         goto alloc_new;
912         }
913
914         if (fio->io_wbc)
915                 wbc_account_cgroup_owner(fio->io_wbc, page_folio(fio->page),
916                                          PAGE_SIZE);
917
918         inc_page_count(fio->sbi, WB_DATA_TYPE(page, false));
919
920         *fio->last_block = fio->new_blkaddr;
921         *fio->bio = bio;
922
923         return 0;
924 }
925
926 #ifdef CONFIG_BLK_DEV_ZONED
927 static bool is_end_zone_blkaddr(struct f2fs_sb_info *sbi, block_t blkaddr)
928 {
929         struct block_device *bdev = sbi->sb->s_bdev;
930         int devi = 0;
931
932         if (f2fs_is_multi_device(sbi)) {
933                 devi = f2fs_target_device_index(sbi, blkaddr);
934                 if (blkaddr < FDEV(devi).start_blk ||
935                     blkaddr > FDEV(devi).end_blk) {
936                         f2fs_err(sbi, "Invalid block %x", blkaddr);
937                         return false;
938                 }
939                 blkaddr -= FDEV(devi).start_blk;
940                 bdev = FDEV(devi).bdev;
941         }
942         return bdev_is_zoned(bdev) &&
943                 f2fs_blkz_is_seq(sbi, devi, blkaddr) &&
944                 (blkaddr % sbi->blocks_per_blkz == sbi->blocks_per_blkz - 1);
945 }
946 #endif
947
948 void f2fs_submit_page_write(struct f2fs_io_info *fio)
949 {
950         struct f2fs_sb_info *sbi = fio->sbi;
951         enum page_type btype = PAGE_TYPE_OF_BIO(fio->type);
952         struct f2fs_bio_info *io = sbi->write_io[btype] + fio->temp;
953         struct page *bio_page;
954         enum count_type type;
955
956         f2fs_bug_on(sbi, is_read_io(fio->op));
957
958         f2fs_down_write(&io->io_rwsem);
959 next:
960 #ifdef CONFIG_BLK_DEV_ZONED
961         if (f2fs_sb_has_blkzoned(sbi) && btype < META && io->zone_pending_bio) {
962                 wait_for_completion_io(&io->zone_wait);
963                 bio_put(io->zone_pending_bio);
964                 io->zone_pending_bio = NULL;
965                 io->bi_private = NULL;
966         }
967 #endif
968
969         if (fio->in_list) {
970                 spin_lock(&io->io_lock);
971                 if (list_empty(&io->io_list)) {
972                         spin_unlock(&io->io_lock);
973                         goto out;
974                 }
975                 fio = list_first_entry(&io->io_list,
976                                                 struct f2fs_io_info, list);
977                 list_del(&fio->list);
978                 spin_unlock(&io->io_lock);
979         }
980
981         verify_fio_blkaddr(fio);
982
983         if (fio->encrypted_page)
984                 bio_page = fio->encrypted_page;
985         else if (fio->compressed_page)
986                 bio_page = fio->compressed_page;
987         else
988                 bio_page = fio->page;
989
990         /* set submitted = true as a return value */
991         fio->submitted = 1;
992
993         type = WB_DATA_TYPE(bio_page, fio->compressed_page);
994         inc_page_count(sbi, type);
995
996         if (io->bio &&
997             (!io_is_mergeable(sbi, io->bio, io, fio, io->last_block_in_bio,
998                               fio->new_blkaddr) ||
999              !f2fs_crypt_mergeable_bio(io->bio, fio->page->mapping->host,
1000                                 page_folio(bio_page)->index, fio)))
1001                 __submit_merged_bio(io);
1002 alloc_new:
1003         if (io->bio == NULL) {
1004                 io->bio = __bio_alloc(fio, BIO_MAX_VECS);
1005                 f2fs_set_bio_crypt_ctx(io->bio, fio->page->mapping->host,
1006                                 page_folio(bio_page)->index, fio, GFP_NOIO);
1007                 io->fio = *fio;
1008         }
1009
1010         if (bio_add_page(io->bio, bio_page, PAGE_SIZE, 0) < PAGE_SIZE) {
1011                 __submit_merged_bio(io);
1012                 goto alloc_new;
1013         }
1014
1015         if (fio->io_wbc)
1016                 wbc_account_cgroup_owner(fio->io_wbc, page_folio(fio->page),
1017                                          PAGE_SIZE);
1018
1019         io->last_block_in_bio = fio->new_blkaddr;
1020
1021         trace_f2fs_submit_page_write(fio->page, fio);
1022 #ifdef CONFIG_BLK_DEV_ZONED
1023         if (f2fs_sb_has_blkzoned(sbi) && btype < META &&
1024                         is_end_zone_blkaddr(sbi, fio->new_blkaddr)) {
1025                 bio_get(io->bio);
1026                 reinit_completion(&io->zone_wait);
1027                 io->bi_private = io->bio->bi_private;
1028                 io->bio->bi_private = io;
1029                 io->bio->bi_end_io = f2fs_zone_write_end_io;
1030                 io->zone_pending_bio = io->bio;
1031                 __submit_merged_bio(io);
1032         }
1033 #endif
1034         if (fio->in_list)
1035                 goto next;
1036 out:
1037         if (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) ||
1038                                 !f2fs_is_checkpoint_ready(sbi))
1039                 __submit_merged_bio(io);
1040         f2fs_up_write(&io->io_rwsem);
1041 }
1042
1043 static struct bio *f2fs_grab_read_bio(struct inode *inode, block_t blkaddr,
1044                                       unsigned nr_pages, blk_opf_t op_flag,
1045                                       pgoff_t first_idx, bool for_write)
1046 {
1047         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1048         struct bio *bio;
1049         struct bio_post_read_ctx *ctx = NULL;
1050         unsigned int post_read_steps = 0;
1051         sector_t sector;
1052         struct block_device *bdev = f2fs_target_device(sbi, blkaddr, &sector);
1053
1054         bio = bio_alloc_bioset(bdev, bio_max_segs(nr_pages),
1055                                REQ_OP_READ | op_flag,
1056                                for_write ? GFP_NOIO : GFP_KERNEL, &f2fs_bioset);
1057         if (!bio)
1058                 return ERR_PTR(-ENOMEM);
1059         bio->bi_iter.bi_sector = sector;
1060         f2fs_set_bio_crypt_ctx(bio, inode, first_idx, NULL, GFP_NOFS);
1061         bio->bi_end_io = f2fs_read_end_io;
1062
1063         if (fscrypt_inode_uses_fs_layer_crypto(inode))
1064                 post_read_steps |= STEP_DECRYPT;
1065
1066         if (f2fs_need_verity(inode, first_idx))
1067                 post_read_steps |= STEP_VERITY;
1068
1069         /*
1070          * STEP_DECOMPRESS is handled specially, since a compressed file might
1071          * contain both compressed and uncompressed clusters.  We'll allocate a
1072          * bio_post_read_ctx if the file is compressed, but the caller is
1073          * responsible for enabling STEP_DECOMPRESS if it's actually needed.
1074          */
1075
1076         if (post_read_steps || f2fs_compressed_file(inode)) {
1077                 /* Due to the mempool, this never fails. */
1078                 ctx = mempool_alloc(bio_post_read_ctx_pool, GFP_NOFS);
1079                 ctx->bio = bio;
1080                 ctx->sbi = sbi;
1081                 ctx->enabled_steps = post_read_steps;
1082                 ctx->fs_blkaddr = blkaddr;
1083                 ctx->decompression_attempted = false;
1084                 bio->bi_private = ctx;
1085         }
1086         iostat_alloc_and_bind_ctx(sbi, bio, ctx);
1087
1088         return bio;
1089 }
1090
1091 /* This can handle encryption stuffs */
1092 static int f2fs_submit_page_read(struct inode *inode, struct folio *folio,
1093                                  block_t blkaddr, blk_opf_t op_flags,
1094                                  bool for_write)
1095 {
1096         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1097         struct bio *bio;
1098
1099         bio = f2fs_grab_read_bio(inode, blkaddr, 1, op_flags,
1100                                         folio->index, for_write);
1101         if (IS_ERR(bio))
1102                 return PTR_ERR(bio);
1103
1104         /* wait for GCed page writeback via META_MAPPING */
1105         f2fs_wait_on_block_writeback(inode, blkaddr);
1106
1107         if (!bio_add_folio(bio, folio, PAGE_SIZE, 0)) {
1108                 iostat_update_and_unbind_ctx(bio);
1109                 if (bio->bi_private)
1110                         mempool_free(bio->bi_private, bio_post_read_ctx_pool);
1111                 bio_put(bio);
1112                 return -EFAULT;
1113         }
1114         inc_page_count(sbi, F2FS_RD_DATA);
1115         f2fs_update_iostat(sbi, NULL, FS_DATA_READ_IO, F2FS_BLKSIZE);
1116         f2fs_submit_read_bio(sbi, bio, DATA);
1117         return 0;
1118 }
1119
1120 static void __set_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr)
1121 {
1122         __le32 *addr = get_dnode_addr(dn->inode, dn->node_page);
1123
1124         dn->data_blkaddr = blkaddr;
1125         addr[dn->ofs_in_node] = cpu_to_le32(dn->data_blkaddr);
1126 }
1127
1128 /*
1129  * Lock ordering for the change of data block address:
1130  * ->data_page
1131  *  ->node_page
1132  *    update block addresses in the node page
1133  */
1134 void f2fs_set_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr)
1135 {
1136         f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true);
1137         __set_data_blkaddr(dn, blkaddr);
1138         if (set_page_dirty(dn->node_page))
1139                 dn->node_changed = true;
1140 }
1141
1142 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr)
1143 {
1144         f2fs_set_data_blkaddr(dn, blkaddr);
1145         f2fs_update_read_extent_cache(dn);
1146 }
1147
1148 /* dn->ofs_in_node will be returned with up-to-date last block pointer */
1149 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count)
1150 {
1151         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1152         int err;
1153
1154         if (!count)
1155                 return 0;
1156
1157         if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1158                 return -EPERM;
1159         err = inc_valid_block_count(sbi, dn->inode, &count, true);
1160         if (unlikely(err))
1161                 return err;
1162
1163         trace_f2fs_reserve_new_blocks(dn->inode, dn->nid,
1164                                                 dn->ofs_in_node, count);
1165
1166         f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true);
1167
1168         for (; count > 0; dn->ofs_in_node++) {
1169                 block_t blkaddr = f2fs_data_blkaddr(dn);
1170
1171                 if (blkaddr == NULL_ADDR) {
1172                         __set_data_blkaddr(dn, NEW_ADDR);
1173                         count--;
1174                 }
1175         }
1176
1177         if (set_page_dirty(dn->node_page))
1178                 dn->node_changed = true;
1179         return 0;
1180 }
1181
1182 /* Should keep dn->ofs_in_node unchanged */
1183 int f2fs_reserve_new_block(struct dnode_of_data *dn)
1184 {
1185         unsigned int ofs_in_node = dn->ofs_in_node;
1186         int ret;
1187
1188         ret = f2fs_reserve_new_blocks(dn, 1);
1189         dn->ofs_in_node = ofs_in_node;
1190         return ret;
1191 }
1192
1193 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index)
1194 {
1195         bool need_put = dn->inode_page ? false : true;
1196         int err;
1197
1198         err = f2fs_get_dnode_of_data(dn, index, ALLOC_NODE);
1199         if (err)
1200                 return err;
1201
1202         if (dn->data_blkaddr == NULL_ADDR)
1203                 err = f2fs_reserve_new_block(dn);
1204         if (err || need_put)
1205                 f2fs_put_dnode(dn);
1206         return err;
1207 }
1208
1209 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
1210                                      blk_opf_t op_flags, bool for_write,
1211                                      pgoff_t *next_pgofs)
1212 {
1213         struct address_space *mapping = inode->i_mapping;
1214         struct dnode_of_data dn;
1215         struct page *page;
1216         int err;
1217
1218         page = f2fs_grab_cache_page(mapping, index, for_write);
1219         if (!page)
1220                 return ERR_PTR(-ENOMEM);
1221
1222         if (f2fs_lookup_read_extent_cache_block(inode, index,
1223                                                 &dn.data_blkaddr)) {
1224                 if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), dn.data_blkaddr,
1225                                                 DATA_GENERIC_ENHANCE_READ)) {
1226                         err = -EFSCORRUPTED;
1227                         goto put_err;
1228                 }
1229                 goto got_it;
1230         }
1231
1232         set_new_dnode(&dn, inode, NULL, NULL, 0);
1233         err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
1234         if (err) {
1235                 if (err == -ENOENT && next_pgofs)
1236                         *next_pgofs = f2fs_get_next_page_offset(&dn, index);
1237                 goto put_err;
1238         }
1239         f2fs_put_dnode(&dn);
1240
1241         if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
1242                 err = -ENOENT;
1243                 if (next_pgofs)
1244                         *next_pgofs = index + 1;
1245                 goto put_err;
1246         }
1247         if (dn.data_blkaddr != NEW_ADDR &&
1248                         !f2fs_is_valid_blkaddr(F2FS_I_SB(inode),
1249                                                 dn.data_blkaddr,
1250                                                 DATA_GENERIC_ENHANCE)) {
1251                 err = -EFSCORRUPTED;
1252                 goto put_err;
1253         }
1254 got_it:
1255         if (PageUptodate(page)) {
1256                 unlock_page(page);
1257                 return page;
1258         }
1259
1260         /*
1261          * A new dentry page is allocated but not able to be written, since its
1262          * new inode page couldn't be allocated due to -ENOSPC.
1263          * In such the case, its blkaddr can be remained as NEW_ADDR.
1264          * see, f2fs_add_link -> f2fs_get_new_data_page ->
1265          * f2fs_init_inode_metadata.
1266          */
1267         if (dn.data_blkaddr == NEW_ADDR) {
1268                 zero_user_segment(page, 0, PAGE_SIZE);
1269                 if (!PageUptodate(page))
1270                         SetPageUptodate(page);
1271                 unlock_page(page);
1272                 return page;
1273         }
1274
1275         err = f2fs_submit_page_read(inode, page_folio(page), dn.data_blkaddr,
1276                                                 op_flags, for_write);
1277         if (err)
1278                 goto put_err;
1279         return page;
1280
1281 put_err:
1282         f2fs_put_page(page, 1);
1283         return ERR_PTR(err);
1284 }
1285
1286 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index,
1287                                         pgoff_t *next_pgofs)
1288 {
1289         struct address_space *mapping = inode->i_mapping;
1290         struct page *page;
1291
1292         page = find_get_page(mapping, index);
1293         if (page && PageUptodate(page))
1294                 return page;
1295         f2fs_put_page(page, 0);
1296
1297         page = f2fs_get_read_data_page(inode, index, 0, false, next_pgofs);
1298         if (IS_ERR(page))
1299                 return page;
1300
1301         if (PageUptodate(page))
1302                 return page;
1303
1304         wait_on_page_locked(page);
1305         if (unlikely(!PageUptodate(page))) {
1306                 f2fs_put_page(page, 0);
1307                 return ERR_PTR(-EIO);
1308         }
1309         return page;
1310 }
1311
1312 /*
1313  * If it tries to access a hole, return an error.
1314  * Because, the callers, functions in dir.c and GC, should be able to know
1315  * whether this page exists or not.
1316  */
1317 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
1318                                                         bool for_write)
1319 {
1320         struct address_space *mapping = inode->i_mapping;
1321         struct page *page;
1322
1323         page = f2fs_get_read_data_page(inode, index, 0, for_write, NULL);
1324         if (IS_ERR(page))
1325                 return page;
1326
1327         /* wait for read completion */
1328         lock_page(page);
1329         if (unlikely(page->mapping != mapping || !PageUptodate(page))) {
1330                 f2fs_put_page(page, 1);
1331                 return ERR_PTR(-EIO);
1332         }
1333         return page;
1334 }
1335
1336 /*
1337  * Caller ensures that this data page is never allocated.
1338  * A new zero-filled data page is allocated in the page cache.
1339  *
1340  * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and
1341  * f2fs_unlock_op().
1342  * Note that, ipage is set only by make_empty_dir, and if any error occur,
1343  * ipage should be released by this function.
1344  */
1345 struct page *f2fs_get_new_data_page(struct inode *inode,
1346                 struct page *ipage, pgoff_t index, bool new_i_size)
1347 {
1348         struct address_space *mapping = inode->i_mapping;
1349         struct page *page;
1350         struct dnode_of_data dn;
1351         int err;
1352
1353         page = f2fs_grab_cache_page(mapping, index, true);
1354         if (!page) {
1355                 /*
1356                  * before exiting, we should make sure ipage will be released
1357                  * if any error occur.
1358                  */
1359                 f2fs_put_page(ipage, 1);
1360                 return ERR_PTR(-ENOMEM);
1361         }
1362
1363         set_new_dnode(&dn, inode, ipage, NULL, 0);
1364         err = f2fs_reserve_block(&dn, index);
1365         if (err) {
1366                 f2fs_put_page(page, 1);
1367                 return ERR_PTR(err);
1368         }
1369         if (!ipage)
1370                 f2fs_put_dnode(&dn);
1371
1372         if (PageUptodate(page))
1373                 goto got_it;
1374
1375         if (dn.data_blkaddr == NEW_ADDR) {
1376                 zero_user_segment(page, 0, PAGE_SIZE);
1377                 if (!PageUptodate(page))
1378                         SetPageUptodate(page);
1379         } else {
1380                 f2fs_put_page(page, 1);
1381
1382                 /* if ipage exists, blkaddr should be NEW_ADDR */
1383                 f2fs_bug_on(F2FS_I_SB(inode), ipage);
1384                 page = f2fs_get_lock_data_page(inode, index, true);
1385                 if (IS_ERR(page))
1386                         return page;
1387         }
1388 got_it:
1389         if (new_i_size && i_size_read(inode) <
1390                                 ((loff_t)(index + 1) << PAGE_SHIFT))
1391                 f2fs_i_size_write(inode, ((loff_t)(index + 1) << PAGE_SHIFT));
1392         return page;
1393 }
1394
1395 static int __allocate_data_block(struct dnode_of_data *dn, int seg_type)
1396 {
1397         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1398         struct f2fs_summary sum;
1399         struct node_info ni;
1400         block_t old_blkaddr;
1401         blkcnt_t count = 1;
1402         int err;
1403
1404         if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1405                 return -EPERM;
1406
1407         err = f2fs_get_node_info(sbi, dn->nid, &ni, false);
1408         if (err)
1409                 return err;
1410
1411         dn->data_blkaddr = f2fs_data_blkaddr(dn);
1412         if (dn->data_blkaddr == NULL_ADDR) {
1413                 err = inc_valid_block_count(sbi, dn->inode, &count, true);
1414                 if (unlikely(err))
1415                         return err;
1416         }
1417
1418         set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
1419         old_blkaddr = dn->data_blkaddr;
1420         err = f2fs_allocate_data_block(sbi, NULL, old_blkaddr,
1421                                 &dn->data_blkaddr, &sum, seg_type, NULL);
1422         if (err)
1423                 return err;
1424
1425         if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
1426                 f2fs_invalidate_internal_cache(sbi, old_blkaddr);
1427
1428         f2fs_update_data_blkaddr(dn, dn->data_blkaddr);
1429         return 0;
1430 }
1431
1432 static void f2fs_map_lock(struct f2fs_sb_info *sbi, int flag)
1433 {
1434         if (flag == F2FS_GET_BLOCK_PRE_AIO)
1435                 f2fs_down_read(&sbi->node_change);
1436         else
1437                 f2fs_lock_op(sbi);
1438 }
1439
1440 static void f2fs_map_unlock(struct f2fs_sb_info *sbi, int flag)
1441 {
1442         if (flag == F2FS_GET_BLOCK_PRE_AIO)
1443                 f2fs_up_read(&sbi->node_change);
1444         else
1445                 f2fs_unlock_op(sbi);
1446 }
1447
1448 int f2fs_get_block_locked(struct dnode_of_data *dn, pgoff_t index)
1449 {
1450         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1451         int err = 0;
1452
1453         f2fs_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO);
1454         if (!f2fs_lookup_read_extent_cache_block(dn->inode, index,
1455                                                 &dn->data_blkaddr))
1456                 err = f2fs_reserve_block(dn, index);
1457         f2fs_map_unlock(sbi, F2FS_GET_BLOCK_PRE_AIO);
1458
1459         return err;
1460 }
1461
1462 static int f2fs_map_no_dnode(struct inode *inode,
1463                 struct f2fs_map_blocks *map, struct dnode_of_data *dn,
1464                 pgoff_t pgoff)
1465 {
1466         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1467
1468         /*
1469          * There is one exceptional case that read_node_page() may return
1470          * -ENOENT due to filesystem has been shutdown or cp_error, return
1471          * -EIO in that case.
1472          */
1473         if (map->m_may_create &&
1474             (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) || f2fs_cp_error(sbi)))
1475                 return -EIO;
1476
1477         if (map->m_next_pgofs)
1478                 *map->m_next_pgofs = f2fs_get_next_page_offset(dn, pgoff);
1479         if (map->m_next_extent)
1480                 *map->m_next_extent = f2fs_get_next_page_offset(dn, pgoff);
1481         return 0;
1482 }
1483
1484 static bool f2fs_map_blocks_cached(struct inode *inode,
1485                 struct f2fs_map_blocks *map, int flag)
1486 {
1487         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1488         unsigned int maxblocks = map->m_len;
1489         pgoff_t pgoff = (pgoff_t)map->m_lblk;
1490         struct extent_info ei = {};
1491
1492         if (!f2fs_lookup_read_extent_cache(inode, pgoff, &ei))
1493                 return false;
1494
1495         map->m_pblk = ei.blk + pgoff - ei.fofs;
1496         map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgoff);
1497         map->m_flags = F2FS_MAP_MAPPED;
1498         if (map->m_next_extent)
1499                 *map->m_next_extent = pgoff + map->m_len;
1500
1501         /* for hardware encryption, but to avoid potential issue in future */
1502         if (flag == F2FS_GET_BLOCK_DIO)
1503                 f2fs_wait_on_block_writeback_range(inode,
1504                                         map->m_pblk, map->m_len);
1505
1506         if (f2fs_allow_multi_device_dio(sbi, flag)) {
1507                 int bidx = f2fs_target_device_index(sbi, map->m_pblk);
1508                 struct f2fs_dev_info *dev = &sbi->devs[bidx];
1509
1510                 map->m_bdev = dev->bdev;
1511                 map->m_pblk -= dev->start_blk;
1512                 map->m_len = min(map->m_len, dev->end_blk + 1 - map->m_pblk);
1513         } else {
1514                 map->m_bdev = inode->i_sb->s_bdev;
1515         }
1516         return true;
1517 }
1518
1519 static bool map_is_mergeable(struct f2fs_sb_info *sbi,
1520                                 struct f2fs_map_blocks *map,
1521                                 block_t blkaddr, int flag, int bidx,
1522                                 int ofs)
1523 {
1524         if (map->m_multidev_dio && map->m_bdev != FDEV(bidx).bdev)
1525                 return false;
1526         if (map->m_pblk != NEW_ADDR && blkaddr == (map->m_pblk + ofs))
1527                 return true;
1528         if (map->m_pblk == NEW_ADDR && blkaddr == NEW_ADDR)
1529                 return true;
1530         if (flag == F2FS_GET_BLOCK_PRE_DIO)
1531                 return true;
1532         if (flag == F2FS_GET_BLOCK_DIO &&
1533                 map->m_pblk == NULL_ADDR && blkaddr == NULL_ADDR)
1534                 return true;
1535         return false;
1536 }
1537
1538 /*
1539  * f2fs_map_blocks() tries to find or build mapping relationship which
1540  * maps continuous logical blocks to physical blocks, and return such
1541  * info via f2fs_map_blocks structure.
1542  */
1543 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map, int flag)
1544 {
1545         unsigned int maxblocks = map->m_len;
1546         struct dnode_of_data dn;
1547         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1548         int mode = map->m_may_create ? ALLOC_NODE : LOOKUP_NODE;
1549         pgoff_t pgofs, end_offset, end;
1550         int err = 0, ofs = 1;
1551         unsigned int ofs_in_node, last_ofs_in_node;
1552         blkcnt_t prealloc;
1553         block_t blkaddr;
1554         unsigned int start_pgofs;
1555         int bidx = 0;
1556         bool is_hole;
1557
1558         if (!maxblocks)
1559                 return 0;
1560
1561         if (!map->m_may_create && f2fs_map_blocks_cached(inode, map, flag))
1562                 goto out;
1563
1564         map->m_bdev = inode->i_sb->s_bdev;
1565         map->m_multidev_dio =
1566                 f2fs_allow_multi_device_dio(F2FS_I_SB(inode), flag);
1567
1568         map->m_len = 0;
1569         map->m_flags = 0;
1570
1571         /* it only supports block size == page size */
1572         pgofs = (pgoff_t)map->m_lblk;
1573         end = pgofs + maxblocks;
1574
1575 next_dnode:
1576         if (map->m_may_create)
1577                 f2fs_map_lock(sbi, flag);
1578
1579         /* When reading holes, we need its node page */
1580         set_new_dnode(&dn, inode, NULL, NULL, 0);
1581         err = f2fs_get_dnode_of_data(&dn, pgofs, mode);
1582         if (err) {
1583                 if (flag == F2FS_GET_BLOCK_BMAP)
1584                         map->m_pblk = 0;
1585                 if (err == -ENOENT)
1586                         err = f2fs_map_no_dnode(inode, map, &dn, pgofs);
1587                 goto unlock_out;
1588         }
1589
1590         start_pgofs = pgofs;
1591         prealloc = 0;
1592         last_ofs_in_node = ofs_in_node = dn.ofs_in_node;
1593         end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1594
1595 next_block:
1596         blkaddr = f2fs_data_blkaddr(&dn);
1597         is_hole = !__is_valid_data_blkaddr(blkaddr);
1598         if (!is_hole &&
1599             !f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE)) {
1600                 err = -EFSCORRUPTED;
1601                 goto sync_out;
1602         }
1603
1604         /* use out-place-update for direct IO under LFS mode */
1605         if (map->m_may_create && (is_hole ||
1606                 (flag == F2FS_GET_BLOCK_DIO && f2fs_lfs_mode(sbi) &&
1607                 !f2fs_is_pinned_file(inode)))) {
1608                 if (unlikely(f2fs_cp_error(sbi))) {
1609                         err = -EIO;
1610                         goto sync_out;
1611                 }
1612
1613                 switch (flag) {
1614                 case F2FS_GET_BLOCK_PRE_AIO:
1615                         if (blkaddr == NULL_ADDR) {
1616                                 prealloc++;
1617                                 last_ofs_in_node = dn.ofs_in_node;
1618                         }
1619                         break;
1620                 case F2FS_GET_BLOCK_PRE_DIO:
1621                 case F2FS_GET_BLOCK_DIO:
1622                         err = __allocate_data_block(&dn, map->m_seg_type);
1623                         if (err)
1624                                 goto sync_out;
1625                         if (flag == F2FS_GET_BLOCK_PRE_DIO)
1626                                 file_need_truncate(inode);
1627                         set_inode_flag(inode, FI_APPEND_WRITE);
1628                         break;
1629                 default:
1630                         WARN_ON_ONCE(1);
1631                         err = -EIO;
1632                         goto sync_out;
1633                 }
1634
1635                 blkaddr = dn.data_blkaddr;
1636                 if (is_hole)
1637                         map->m_flags |= F2FS_MAP_NEW;
1638         } else if (is_hole) {
1639                 if (f2fs_compressed_file(inode) &&
1640                     f2fs_sanity_check_cluster(&dn)) {
1641                         err = -EFSCORRUPTED;
1642                         f2fs_handle_error(sbi,
1643                                         ERROR_CORRUPTED_CLUSTER);
1644                         goto sync_out;
1645                 }
1646
1647                 switch (flag) {
1648                 case F2FS_GET_BLOCK_PRECACHE:
1649                         goto sync_out;
1650                 case F2FS_GET_BLOCK_BMAP:
1651                         map->m_pblk = 0;
1652                         goto sync_out;
1653                 case F2FS_GET_BLOCK_FIEMAP:
1654                         if (blkaddr == NULL_ADDR) {
1655                                 if (map->m_next_pgofs)
1656                                         *map->m_next_pgofs = pgofs + 1;
1657                                 goto sync_out;
1658                         }
1659                         break;
1660                 case F2FS_GET_BLOCK_DIO:
1661                         if (map->m_next_pgofs)
1662                                 *map->m_next_pgofs = pgofs + 1;
1663                         break;
1664                 default:
1665                         /* for defragment case */
1666                         if (map->m_next_pgofs)
1667                                 *map->m_next_pgofs = pgofs + 1;
1668                         goto sync_out;
1669                 }
1670         }
1671
1672         if (flag == F2FS_GET_BLOCK_PRE_AIO)
1673                 goto skip;
1674
1675         if (map->m_multidev_dio)
1676                 bidx = f2fs_target_device_index(sbi, blkaddr);
1677
1678         if (map->m_len == 0) {
1679                 /* reserved delalloc block should be mapped for fiemap. */
1680                 if (blkaddr == NEW_ADDR)
1681                         map->m_flags |= F2FS_MAP_DELALLOC;
1682                 /* DIO READ and hole case, should not map the blocks. */
1683                 if (!(flag == F2FS_GET_BLOCK_DIO && is_hole && !map->m_may_create))
1684                         map->m_flags |= F2FS_MAP_MAPPED;
1685
1686                 map->m_pblk = blkaddr;
1687                 map->m_len = 1;
1688
1689                 if (map->m_multidev_dio)
1690                         map->m_bdev = FDEV(bidx).bdev;
1691         } else if (map_is_mergeable(sbi, map, blkaddr, flag, bidx, ofs)) {
1692                 ofs++;
1693                 map->m_len++;
1694         } else {
1695                 goto sync_out;
1696         }
1697
1698 skip:
1699         dn.ofs_in_node++;
1700         pgofs++;
1701
1702         /* preallocate blocks in batch for one dnode page */
1703         if (flag == F2FS_GET_BLOCK_PRE_AIO &&
1704                         (pgofs == end || dn.ofs_in_node == end_offset)) {
1705
1706                 dn.ofs_in_node = ofs_in_node;
1707                 err = f2fs_reserve_new_blocks(&dn, prealloc);
1708                 if (err)
1709                         goto sync_out;
1710
1711                 map->m_len += dn.ofs_in_node - ofs_in_node;
1712                 if (prealloc && dn.ofs_in_node != last_ofs_in_node + 1) {
1713                         err = -ENOSPC;
1714                         goto sync_out;
1715                 }
1716                 dn.ofs_in_node = end_offset;
1717         }
1718
1719         if (flag == F2FS_GET_BLOCK_DIO && f2fs_lfs_mode(sbi) &&
1720             map->m_may_create) {
1721                 /* the next block to be allocated may not be contiguous. */
1722                 if (GET_SEGOFF_FROM_SEG0(sbi, blkaddr) % BLKS_PER_SEC(sbi) ==
1723                     CAP_BLKS_PER_SEC(sbi) - 1)
1724                         goto sync_out;
1725         }
1726
1727         if (pgofs >= end)
1728                 goto sync_out;
1729         else if (dn.ofs_in_node < end_offset)
1730                 goto next_block;
1731
1732         if (flag == F2FS_GET_BLOCK_PRECACHE) {
1733                 if (map->m_flags & F2FS_MAP_MAPPED) {
1734                         unsigned int ofs = start_pgofs - map->m_lblk;
1735
1736                         f2fs_update_read_extent_cache_range(&dn,
1737                                 start_pgofs, map->m_pblk + ofs,
1738                                 map->m_len - ofs);
1739                 }
1740         }
1741
1742         f2fs_put_dnode(&dn);
1743
1744         if (map->m_may_create) {
1745                 f2fs_map_unlock(sbi, flag);
1746                 f2fs_balance_fs(sbi, dn.node_changed);
1747         }
1748         goto next_dnode;
1749
1750 sync_out:
1751
1752         if (flag == F2FS_GET_BLOCK_DIO && map->m_flags & F2FS_MAP_MAPPED) {
1753                 /*
1754                  * for hardware encryption, but to avoid potential issue
1755                  * in future
1756                  */
1757                 f2fs_wait_on_block_writeback_range(inode,
1758                                                 map->m_pblk, map->m_len);
1759
1760                 if (map->m_multidev_dio) {
1761                         block_t blk_addr = map->m_pblk;
1762
1763                         bidx = f2fs_target_device_index(sbi, map->m_pblk);
1764
1765                         map->m_bdev = FDEV(bidx).bdev;
1766                         map->m_pblk -= FDEV(bidx).start_blk;
1767
1768                         if (map->m_may_create)
1769                                 f2fs_update_device_state(sbi, inode->i_ino,
1770                                                         blk_addr, map->m_len);
1771
1772                         f2fs_bug_on(sbi, blk_addr + map->m_len >
1773                                                 FDEV(bidx).end_blk + 1);
1774                 }
1775         }
1776
1777         if (flag == F2FS_GET_BLOCK_PRECACHE) {
1778                 if (map->m_flags & F2FS_MAP_MAPPED) {
1779                         unsigned int ofs = start_pgofs - map->m_lblk;
1780
1781                         f2fs_update_read_extent_cache_range(&dn,
1782                                 start_pgofs, map->m_pblk + ofs,
1783                                 map->m_len - ofs);
1784                 }
1785                 if (map->m_next_extent)
1786                         *map->m_next_extent = pgofs + 1;
1787         }
1788         f2fs_put_dnode(&dn);
1789 unlock_out:
1790         if (map->m_may_create) {
1791                 f2fs_map_unlock(sbi, flag);
1792                 f2fs_balance_fs(sbi, dn.node_changed);
1793         }
1794 out:
1795         trace_f2fs_map_blocks(inode, map, flag, err);
1796         return err;
1797 }
1798
1799 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len)
1800 {
1801         struct f2fs_map_blocks map;
1802         block_t last_lblk;
1803         int err;
1804
1805         if (pos + len > i_size_read(inode))
1806                 return false;
1807
1808         map.m_lblk = F2FS_BYTES_TO_BLK(pos);
1809         map.m_next_pgofs = NULL;
1810         map.m_next_extent = NULL;
1811         map.m_seg_type = NO_CHECK_TYPE;
1812         map.m_may_create = false;
1813         last_lblk = F2FS_BLK_ALIGN(pos + len);
1814
1815         while (map.m_lblk < last_lblk) {
1816                 map.m_len = last_lblk - map.m_lblk;
1817                 err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_DEFAULT);
1818                 if (err || map.m_len == 0)
1819                         return false;
1820                 map.m_lblk += map.m_len;
1821         }
1822         return true;
1823 }
1824
1825 static int f2fs_xattr_fiemap(struct inode *inode,
1826                                 struct fiemap_extent_info *fieinfo)
1827 {
1828         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1829         struct page *page;
1830         struct node_info ni;
1831         __u64 phys = 0, len;
1832         __u32 flags;
1833         nid_t xnid = F2FS_I(inode)->i_xattr_nid;
1834         int err = 0;
1835
1836         if (f2fs_has_inline_xattr(inode)) {
1837                 int offset;
1838
1839                 page = f2fs_grab_cache_page(NODE_MAPPING(sbi),
1840                                                 inode->i_ino, false);
1841                 if (!page)
1842                         return -ENOMEM;
1843
1844                 err = f2fs_get_node_info(sbi, inode->i_ino, &ni, false);
1845                 if (err) {
1846                         f2fs_put_page(page, 1);
1847                         return err;
1848                 }
1849
1850                 phys = F2FS_BLK_TO_BYTES(ni.blk_addr);
1851                 offset = offsetof(struct f2fs_inode, i_addr) +
1852                                         sizeof(__le32) * (DEF_ADDRS_PER_INODE -
1853                                         get_inline_xattr_addrs(inode));
1854
1855                 phys += offset;
1856                 len = inline_xattr_size(inode);
1857
1858                 f2fs_put_page(page, 1);
1859
1860                 flags = FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_NOT_ALIGNED;
1861
1862                 if (!xnid)
1863                         flags |= FIEMAP_EXTENT_LAST;
1864
1865                 err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1866                 trace_f2fs_fiemap(inode, 0, phys, len, flags, err);
1867                 if (err)
1868                         return err;
1869         }
1870
1871         if (xnid) {
1872                 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), xnid, false);
1873                 if (!page)
1874                         return -ENOMEM;
1875
1876                 err = f2fs_get_node_info(sbi, xnid, &ni, false);
1877                 if (err) {
1878                         f2fs_put_page(page, 1);
1879                         return err;
1880                 }
1881
1882                 phys = F2FS_BLK_TO_BYTES(ni.blk_addr);
1883                 len = inode->i_sb->s_blocksize;
1884
1885                 f2fs_put_page(page, 1);
1886
1887                 flags = FIEMAP_EXTENT_LAST;
1888         }
1889
1890         if (phys) {
1891                 err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1892                 trace_f2fs_fiemap(inode, 0, phys, len, flags, err);
1893         }
1894
1895         return (err < 0 ? err : 0);
1896 }
1897
1898 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
1899                 u64 start, u64 len)
1900 {
1901         struct f2fs_map_blocks map;
1902         sector_t start_blk, last_blk, blk_len, max_len;
1903         pgoff_t next_pgofs;
1904         u64 logical = 0, phys = 0, size = 0;
1905         u32 flags = 0;
1906         int ret = 0;
1907         bool compr_cluster = false, compr_appended;
1908         unsigned int cluster_size = F2FS_I(inode)->i_cluster_size;
1909         unsigned int count_in_cluster = 0;
1910         loff_t maxbytes;
1911
1912         if (fieinfo->fi_flags & FIEMAP_FLAG_CACHE) {
1913                 ret = f2fs_precache_extents(inode);
1914                 if (ret)
1915                         return ret;
1916         }
1917
1918         ret = fiemap_prep(inode, fieinfo, start, &len, FIEMAP_FLAG_XATTR);
1919         if (ret)
1920                 return ret;
1921
1922         inode_lock_shared(inode);
1923
1924         maxbytes = F2FS_BLK_TO_BYTES(max_file_blocks(inode));
1925         if (start > maxbytes) {
1926                 ret = -EFBIG;
1927                 goto out;
1928         }
1929
1930         if (len > maxbytes || (maxbytes - len) < start)
1931                 len = maxbytes - start;
1932
1933         if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
1934                 ret = f2fs_xattr_fiemap(inode, fieinfo);
1935                 goto out;
1936         }
1937
1938         if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) {
1939                 ret = f2fs_inline_data_fiemap(inode, fieinfo, start, len);
1940                 if (ret != -EAGAIN)
1941                         goto out;
1942         }
1943
1944         start_blk = F2FS_BYTES_TO_BLK(start);
1945         last_blk = F2FS_BYTES_TO_BLK(start + len - 1);
1946         blk_len = last_blk - start_blk + 1;
1947         max_len = F2FS_BYTES_TO_BLK(maxbytes) - start_blk;
1948
1949 next:
1950         memset(&map, 0, sizeof(map));
1951         map.m_lblk = start_blk;
1952         map.m_len = blk_len;
1953         map.m_next_pgofs = &next_pgofs;
1954         map.m_seg_type = NO_CHECK_TYPE;
1955
1956         if (compr_cluster) {
1957                 map.m_lblk += 1;
1958                 map.m_len = cluster_size - count_in_cluster;
1959         }
1960
1961         ret = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_FIEMAP);
1962         if (ret)
1963                 goto out;
1964
1965         /* HOLE */
1966         if (!compr_cluster && !(map.m_flags & F2FS_MAP_FLAGS)) {
1967                 start_blk = next_pgofs;
1968
1969                 if (F2FS_BLK_TO_BYTES(start_blk) < maxbytes)
1970                         goto prep_next;
1971
1972                 flags |= FIEMAP_EXTENT_LAST;
1973         }
1974
1975         /*
1976          * current extent may cross boundary of inquiry, increase len to
1977          * requery.
1978          */
1979         if (!compr_cluster && (map.m_flags & F2FS_MAP_MAPPED) &&
1980                                 map.m_lblk + map.m_len - 1 == last_blk &&
1981                                 blk_len != max_len) {
1982                 blk_len = max_len;
1983                 goto next;
1984         }
1985
1986         compr_appended = false;
1987         /* In a case of compressed cluster, append this to the last extent */
1988         if (compr_cluster && ((map.m_flags & F2FS_MAP_DELALLOC) ||
1989                         !(map.m_flags & F2FS_MAP_FLAGS))) {
1990                 compr_appended = true;
1991                 goto skip_fill;
1992         }
1993
1994         if (size) {
1995                 flags |= FIEMAP_EXTENT_MERGED;
1996                 if (IS_ENCRYPTED(inode))
1997                         flags |= FIEMAP_EXTENT_DATA_ENCRYPTED;
1998
1999                 ret = fiemap_fill_next_extent(fieinfo, logical,
2000                                 phys, size, flags);
2001                 trace_f2fs_fiemap(inode, logical, phys, size, flags, ret);
2002                 if (ret)
2003                         goto out;
2004                 size = 0;
2005         }
2006
2007         if (start_blk > last_blk)
2008                 goto out;
2009
2010 skip_fill:
2011         if (map.m_pblk == COMPRESS_ADDR) {
2012                 compr_cluster = true;
2013                 count_in_cluster = 1;
2014         } else if (compr_appended) {
2015                 unsigned int appended_blks = cluster_size -
2016                                                 count_in_cluster + 1;
2017                 size += F2FS_BLK_TO_BYTES(appended_blks);
2018                 start_blk += appended_blks;
2019                 compr_cluster = false;
2020         } else {
2021                 logical = F2FS_BLK_TO_BYTES(start_blk);
2022                 phys = __is_valid_data_blkaddr(map.m_pblk) ?
2023                         F2FS_BLK_TO_BYTES(map.m_pblk) : 0;
2024                 size = F2FS_BLK_TO_BYTES(map.m_len);
2025                 flags = 0;
2026
2027                 if (compr_cluster) {
2028                         flags = FIEMAP_EXTENT_ENCODED;
2029                         count_in_cluster += map.m_len;
2030                         if (count_in_cluster == cluster_size) {
2031                                 compr_cluster = false;
2032                                 size += F2FS_BLKSIZE;
2033                         }
2034                 } else if (map.m_flags & F2FS_MAP_DELALLOC) {
2035                         flags = FIEMAP_EXTENT_UNWRITTEN;
2036                 }
2037
2038                 start_blk += F2FS_BYTES_TO_BLK(size);
2039         }
2040
2041 prep_next:
2042         cond_resched();
2043         if (fatal_signal_pending(current))
2044                 ret = -EINTR;
2045         else
2046                 goto next;
2047 out:
2048         if (ret == 1)
2049                 ret = 0;
2050
2051         inode_unlock_shared(inode);
2052         return ret;
2053 }
2054
2055 static inline loff_t f2fs_readpage_limit(struct inode *inode)
2056 {
2057         if (IS_ENABLED(CONFIG_FS_VERITY) && IS_VERITY(inode))
2058                 return F2FS_BLK_TO_BYTES(max_file_blocks(inode));
2059
2060         return i_size_read(inode);
2061 }
2062
2063 static inline blk_opf_t f2fs_ra_op_flags(struct readahead_control *rac)
2064 {
2065         return rac ? REQ_RAHEAD : 0;
2066 }
2067
2068 static int f2fs_read_single_page(struct inode *inode, struct folio *folio,
2069                                         unsigned nr_pages,
2070                                         struct f2fs_map_blocks *map,
2071                                         struct bio **bio_ret,
2072                                         sector_t *last_block_in_bio,
2073                                         struct readahead_control *rac)
2074 {
2075         struct bio *bio = *bio_ret;
2076         const unsigned int blocksize = F2FS_BLKSIZE;
2077         sector_t block_in_file;
2078         sector_t last_block;
2079         sector_t last_block_in_file;
2080         sector_t block_nr;
2081         pgoff_t index = folio_index(folio);
2082         int ret = 0;
2083
2084         block_in_file = (sector_t)index;
2085         last_block = block_in_file + nr_pages;
2086         last_block_in_file = F2FS_BYTES_TO_BLK(f2fs_readpage_limit(inode) +
2087                                                         blocksize - 1);
2088         if (last_block > last_block_in_file)
2089                 last_block = last_block_in_file;
2090
2091         /* just zeroing out page which is beyond EOF */
2092         if (block_in_file >= last_block)
2093                 goto zero_out;
2094         /*
2095          * Map blocks using the previous result first.
2096          */
2097         if ((map->m_flags & F2FS_MAP_MAPPED) &&
2098                         block_in_file > map->m_lblk &&
2099                         block_in_file < (map->m_lblk + map->m_len))
2100                 goto got_it;
2101
2102         /*
2103          * Then do more f2fs_map_blocks() calls until we are
2104          * done with this page.
2105          */
2106         map->m_lblk = block_in_file;
2107         map->m_len = last_block - block_in_file;
2108
2109         ret = f2fs_map_blocks(inode, map, F2FS_GET_BLOCK_DEFAULT);
2110         if (ret)
2111                 goto out;
2112 got_it:
2113         if ((map->m_flags & F2FS_MAP_MAPPED)) {
2114                 block_nr = map->m_pblk + block_in_file - map->m_lblk;
2115                 folio_set_mappedtodisk(folio);
2116
2117                 if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), block_nr,
2118                                                 DATA_GENERIC_ENHANCE_READ)) {
2119                         ret = -EFSCORRUPTED;
2120                         goto out;
2121                 }
2122         } else {
2123 zero_out:
2124                 folio_zero_segment(folio, 0, folio_size(folio));
2125                 if (f2fs_need_verity(inode, index) &&
2126                     !fsverity_verify_folio(folio)) {
2127                         ret = -EIO;
2128                         goto out;
2129                 }
2130                 if (!folio_test_uptodate(folio))
2131                         folio_mark_uptodate(folio);
2132                 folio_unlock(folio);
2133                 goto out;
2134         }
2135
2136         /*
2137          * This page will go to BIO.  Do we need to send this
2138          * BIO off first?
2139          */
2140         if (bio && (!page_is_mergeable(F2FS_I_SB(inode), bio,
2141                                        *last_block_in_bio, block_nr) ||
2142                     !f2fs_crypt_mergeable_bio(bio, inode, index, NULL))) {
2143 submit_and_realloc:
2144                 f2fs_submit_read_bio(F2FS_I_SB(inode), bio, DATA);
2145                 bio = NULL;
2146         }
2147         if (bio == NULL) {
2148                 bio = f2fs_grab_read_bio(inode, block_nr, nr_pages,
2149                                 f2fs_ra_op_flags(rac), index,
2150                                 false);
2151                 if (IS_ERR(bio)) {
2152                         ret = PTR_ERR(bio);
2153                         bio = NULL;
2154                         goto out;
2155                 }
2156         }
2157
2158         /*
2159          * If the page is under writeback, we need to wait for
2160          * its completion to see the correct decrypted data.
2161          */
2162         f2fs_wait_on_block_writeback(inode, block_nr);
2163
2164         if (!bio_add_folio(bio, folio, blocksize, 0))
2165                 goto submit_and_realloc;
2166
2167         inc_page_count(F2FS_I_SB(inode), F2FS_RD_DATA);
2168         f2fs_update_iostat(F2FS_I_SB(inode), NULL, FS_DATA_READ_IO,
2169                                                         F2FS_BLKSIZE);
2170         *last_block_in_bio = block_nr;
2171 out:
2172         *bio_ret = bio;
2173         return ret;
2174 }
2175
2176 #ifdef CONFIG_F2FS_FS_COMPRESSION
2177 int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret,
2178                                 unsigned nr_pages, sector_t *last_block_in_bio,
2179                                 struct readahead_control *rac, bool for_write)
2180 {
2181         struct dnode_of_data dn;
2182         struct inode *inode = cc->inode;
2183         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2184         struct bio *bio = *bio_ret;
2185         unsigned int start_idx = cc->cluster_idx << cc->log_cluster_size;
2186         sector_t last_block_in_file;
2187         const unsigned int blocksize = F2FS_BLKSIZE;
2188         struct decompress_io_ctx *dic = NULL;
2189         struct extent_info ei = {};
2190         bool from_dnode = true;
2191         int i;
2192         int ret = 0;
2193
2194         f2fs_bug_on(sbi, f2fs_cluster_is_empty(cc));
2195
2196         last_block_in_file = F2FS_BYTES_TO_BLK(f2fs_readpage_limit(inode) +
2197                                                         blocksize - 1);
2198
2199         /* get rid of pages beyond EOF */
2200         for (i = 0; i < cc->cluster_size; i++) {
2201                 struct page *page = cc->rpages[i];
2202                 struct folio *folio;
2203
2204                 if (!page)
2205                         continue;
2206
2207                 folio = page_folio(page);
2208                 if ((sector_t)folio->index >= last_block_in_file) {
2209                         folio_zero_segment(folio, 0, folio_size(folio));
2210                         if (!folio_test_uptodate(folio))
2211                                 folio_mark_uptodate(folio);
2212                 } else if (!folio_test_uptodate(folio)) {
2213                         continue;
2214                 }
2215                 folio_unlock(folio);
2216                 if (for_write)
2217                         folio_put(folio);
2218                 cc->rpages[i] = NULL;
2219                 cc->nr_rpages--;
2220         }
2221
2222         /* we are done since all pages are beyond EOF */
2223         if (f2fs_cluster_is_empty(cc))
2224                 goto out;
2225
2226         if (f2fs_lookup_read_extent_cache(inode, start_idx, &ei))
2227                 from_dnode = false;
2228
2229         if (!from_dnode)
2230                 goto skip_reading_dnode;
2231
2232         set_new_dnode(&dn, inode, NULL, NULL, 0);
2233         ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
2234         if (ret)
2235                 goto out;
2236
2237         if (unlikely(f2fs_cp_error(sbi))) {
2238                 ret = -EIO;
2239                 goto out_put_dnode;
2240         }
2241         f2fs_bug_on(sbi, dn.data_blkaddr != COMPRESS_ADDR);
2242
2243 skip_reading_dnode:
2244         for (i = 1; i < cc->cluster_size; i++) {
2245                 block_t blkaddr;
2246
2247                 blkaddr = from_dnode ? data_blkaddr(dn.inode, dn.node_page,
2248                                         dn.ofs_in_node + i) :
2249                                         ei.blk + i - 1;
2250
2251                 if (!__is_valid_data_blkaddr(blkaddr))
2252                         break;
2253
2254                 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC)) {
2255                         ret = -EFAULT;
2256                         goto out_put_dnode;
2257                 }
2258                 cc->nr_cpages++;
2259
2260                 if (!from_dnode && i >= ei.c_len)
2261                         break;
2262         }
2263
2264         /* nothing to decompress */
2265         if (cc->nr_cpages == 0) {
2266                 ret = 0;
2267                 goto out_put_dnode;
2268         }
2269
2270         dic = f2fs_alloc_dic(cc);
2271         if (IS_ERR(dic)) {
2272                 ret = PTR_ERR(dic);
2273                 goto out_put_dnode;
2274         }
2275
2276         for (i = 0; i < cc->nr_cpages; i++) {
2277                 struct folio *folio = page_folio(dic->cpages[i]);
2278                 block_t blkaddr;
2279                 struct bio_post_read_ctx *ctx;
2280
2281                 blkaddr = from_dnode ? data_blkaddr(dn.inode, dn.node_page,
2282                                         dn.ofs_in_node + i + 1) :
2283                                         ei.blk + i;
2284
2285                 f2fs_wait_on_block_writeback(inode, blkaddr);
2286
2287                 if (f2fs_load_compressed_page(sbi, folio_page(folio, 0),
2288                                                                 blkaddr)) {
2289                         if (atomic_dec_and_test(&dic->remaining_pages)) {
2290                                 f2fs_decompress_cluster(dic, true);
2291                                 break;
2292                         }
2293                         continue;
2294                 }
2295
2296                 if (bio && (!page_is_mergeable(sbi, bio,
2297                                         *last_block_in_bio, blkaddr) ||
2298                     !f2fs_crypt_mergeable_bio(bio, inode, folio->index, NULL))) {
2299 submit_and_realloc:
2300                         f2fs_submit_read_bio(sbi, bio, DATA);
2301                         bio = NULL;
2302                 }
2303
2304                 if (!bio) {
2305                         bio = f2fs_grab_read_bio(inode, blkaddr, nr_pages,
2306                                         f2fs_ra_op_flags(rac),
2307                                         folio->index, for_write);
2308                         if (IS_ERR(bio)) {
2309                                 ret = PTR_ERR(bio);
2310                                 f2fs_decompress_end_io(dic, ret, true);
2311                                 f2fs_put_dnode(&dn);
2312                                 *bio_ret = NULL;
2313                                 return ret;
2314                         }
2315                 }
2316
2317                 if (!bio_add_folio(bio, folio, blocksize, 0))
2318                         goto submit_and_realloc;
2319
2320                 ctx = get_post_read_ctx(bio);
2321                 ctx->enabled_steps |= STEP_DECOMPRESS;
2322                 refcount_inc(&dic->refcnt);
2323
2324                 inc_page_count(sbi, F2FS_RD_DATA);
2325                 f2fs_update_iostat(sbi, inode, FS_DATA_READ_IO, F2FS_BLKSIZE);
2326                 *last_block_in_bio = blkaddr;
2327         }
2328
2329         if (from_dnode)
2330                 f2fs_put_dnode(&dn);
2331
2332         *bio_ret = bio;
2333         return 0;
2334
2335 out_put_dnode:
2336         if (from_dnode)
2337                 f2fs_put_dnode(&dn);
2338 out:
2339         for (i = 0; i < cc->cluster_size; i++) {
2340                 if (cc->rpages[i]) {
2341                         ClearPageUptodate(cc->rpages[i]);
2342                         unlock_page(cc->rpages[i]);
2343                 }
2344         }
2345         *bio_ret = bio;
2346         return ret;
2347 }
2348 #endif
2349
2350 /*
2351  * This function was originally taken from fs/mpage.c, and customized for f2fs.
2352  * Major change was from block_size == page_size in f2fs by default.
2353  */
2354 static int f2fs_mpage_readpages(struct inode *inode,
2355                 struct readahead_control *rac, struct folio *folio)
2356 {
2357         struct bio *bio = NULL;
2358         sector_t last_block_in_bio = 0;
2359         struct f2fs_map_blocks map;
2360 #ifdef CONFIG_F2FS_FS_COMPRESSION
2361         struct compress_ctx cc = {
2362                 .inode = inode,
2363                 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
2364                 .cluster_size = F2FS_I(inode)->i_cluster_size,
2365                 .cluster_idx = NULL_CLUSTER,
2366                 .rpages = NULL,
2367                 .cpages = NULL,
2368                 .nr_rpages = 0,
2369                 .nr_cpages = 0,
2370         };
2371         pgoff_t nc_cluster_idx = NULL_CLUSTER;
2372         pgoff_t index;
2373 #endif
2374         unsigned nr_pages = rac ? readahead_count(rac) : 1;
2375         unsigned max_nr_pages = nr_pages;
2376         int ret = 0;
2377
2378         map.m_pblk = 0;
2379         map.m_lblk = 0;
2380         map.m_len = 0;
2381         map.m_flags = 0;
2382         map.m_next_pgofs = NULL;
2383         map.m_next_extent = NULL;
2384         map.m_seg_type = NO_CHECK_TYPE;
2385         map.m_may_create = false;
2386
2387         for (; nr_pages; nr_pages--) {
2388                 if (rac) {
2389                         folio = readahead_folio(rac);
2390                         prefetchw(&folio->flags);
2391                 }
2392
2393 #ifdef CONFIG_F2FS_FS_COMPRESSION
2394                 index = folio_index(folio);
2395
2396                 if (!f2fs_compressed_file(inode))
2397                         goto read_single_page;
2398
2399                 /* there are remained compressed pages, submit them */
2400                 if (!f2fs_cluster_can_merge_page(&cc, index)) {
2401                         ret = f2fs_read_multi_pages(&cc, &bio,
2402                                                 max_nr_pages,
2403                                                 &last_block_in_bio,
2404                                                 rac, false);
2405                         f2fs_destroy_compress_ctx(&cc, false);
2406                         if (ret)
2407                                 goto set_error_page;
2408                 }
2409                 if (cc.cluster_idx == NULL_CLUSTER) {
2410                         if (nc_cluster_idx == index >> cc.log_cluster_size)
2411                                 goto read_single_page;
2412
2413                         ret = f2fs_is_compressed_cluster(inode, index);
2414                         if (ret < 0)
2415                                 goto set_error_page;
2416                         else if (!ret) {
2417                                 nc_cluster_idx =
2418                                         index >> cc.log_cluster_size;
2419                                 goto read_single_page;
2420                         }
2421
2422                         nc_cluster_idx = NULL_CLUSTER;
2423                 }
2424                 ret = f2fs_init_compress_ctx(&cc);
2425                 if (ret)
2426                         goto set_error_page;
2427
2428                 f2fs_compress_ctx_add_page(&cc, folio);
2429
2430                 goto next_page;
2431 read_single_page:
2432 #endif
2433
2434                 ret = f2fs_read_single_page(inode, folio, max_nr_pages, &map,
2435                                         &bio, &last_block_in_bio, rac);
2436                 if (ret) {
2437 #ifdef CONFIG_F2FS_FS_COMPRESSION
2438 set_error_page:
2439 #endif
2440                         folio_zero_segment(folio, 0, folio_size(folio));
2441                         folio_unlock(folio);
2442                 }
2443 #ifdef CONFIG_F2FS_FS_COMPRESSION
2444 next_page:
2445 #endif
2446
2447 #ifdef CONFIG_F2FS_FS_COMPRESSION
2448                 if (f2fs_compressed_file(inode)) {
2449                         /* last page */
2450                         if (nr_pages == 1 && !f2fs_cluster_is_empty(&cc)) {
2451                                 ret = f2fs_read_multi_pages(&cc, &bio,
2452                                                         max_nr_pages,
2453                                                         &last_block_in_bio,
2454                                                         rac, false);
2455                                 f2fs_destroy_compress_ctx(&cc, false);
2456                         }
2457                 }
2458 #endif
2459         }
2460         if (bio)
2461                 f2fs_submit_read_bio(F2FS_I_SB(inode), bio, DATA);
2462         return ret;
2463 }
2464
2465 static int f2fs_read_data_folio(struct file *file, struct folio *folio)
2466 {
2467         struct inode *inode = folio_file_mapping(folio)->host;
2468         int ret = -EAGAIN;
2469
2470         trace_f2fs_readpage(folio, DATA);
2471
2472         if (!f2fs_is_compress_backend_ready(inode)) {
2473                 folio_unlock(folio);
2474                 return -EOPNOTSUPP;
2475         }
2476
2477         /* If the file has inline data, try to read it directly */
2478         if (f2fs_has_inline_data(inode))
2479                 ret = f2fs_read_inline_data(inode, folio);
2480         if (ret == -EAGAIN)
2481                 ret = f2fs_mpage_readpages(inode, NULL, folio);
2482         return ret;
2483 }
2484
2485 static void f2fs_readahead(struct readahead_control *rac)
2486 {
2487         struct inode *inode = rac->mapping->host;
2488
2489         trace_f2fs_readpages(inode, readahead_index(rac), readahead_count(rac));
2490
2491         if (!f2fs_is_compress_backend_ready(inode))
2492                 return;
2493
2494         /* If the file has inline data, skip readahead */
2495         if (f2fs_has_inline_data(inode))
2496                 return;
2497
2498         f2fs_mpage_readpages(inode, rac, NULL);
2499 }
2500
2501 int f2fs_encrypt_one_page(struct f2fs_io_info *fio)
2502 {
2503         struct inode *inode = fio->page->mapping->host;
2504         struct page *mpage, *page;
2505         gfp_t gfp_flags = GFP_NOFS;
2506
2507         if (!f2fs_encrypted_file(inode))
2508                 return 0;
2509
2510         page = fio->compressed_page ? fio->compressed_page : fio->page;
2511
2512         if (fscrypt_inode_uses_inline_crypto(inode))
2513                 return 0;
2514
2515 retry_encrypt:
2516         fio->encrypted_page = fscrypt_encrypt_pagecache_blocks(page,
2517                                         PAGE_SIZE, 0, gfp_flags);
2518         if (IS_ERR(fio->encrypted_page)) {
2519                 /* flush pending IOs and wait for a while in the ENOMEM case */
2520                 if (PTR_ERR(fio->encrypted_page) == -ENOMEM) {
2521                         f2fs_flush_merged_writes(fio->sbi);
2522                         memalloc_retry_wait(GFP_NOFS);
2523                         gfp_flags |= __GFP_NOFAIL;
2524                         goto retry_encrypt;
2525                 }
2526                 return PTR_ERR(fio->encrypted_page);
2527         }
2528
2529         mpage = find_lock_page(META_MAPPING(fio->sbi), fio->old_blkaddr);
2530         if (mpage) {
2531                 if (PageUptodate(mpage))
2532                         memcpy(page_address(mpage),
2533                                 page_address(fio->encrypted_page), PAGE_SIZE);
2534                 f2fs_put_page(mpage, 1);
2535         }
2536         return 0;
2537 }
2538
2539 static inline bool check_inplace_update_policy(struct inode *inode,
2540                                 struct f2fs_io_info *fio)
2541 {
2542         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2543
2544         if (IS_F2FS_IPU_HONOR_OPU_WRITE(sbi) &&
2545             is_inode_flag_set(inode, FI_OPU_WRITE))
2546                 return false;
2547         if (IS_F2FS_IPU_FORCE(sbi))
2548                 return true;
2549         if (IS_F2FS_IPU_SSR(sbi) && f2fs_need_SSR(sbi))
2550                 return true;
2551         if (IS_F2FS_IPU_UTIL(sbi) && utilization(sbi) > SM_I(sbi)->min_ipu_util)
2552                 return true;
2553         if (IS_F2FS_IPU_SSR_UTIL(sbi) && f2fs_need_SSR(sbi) &&
2554             utilization(sbi) > SM_I(sbi)->min_ipu_util)
2555                 return true;
2556
2557         /*
2558          * IPU for rewrite async pages
2559          */
2560         if (IS_F2FS_IPU_ASYNC(sbi) && fio && fio->op == REQ_OP_WRITE &&
2561             !(fio->op_flags & REQ_SYNC) && !IS_ENCRYPTED(inode))
2562                 return true;
2563
2564         /* this is only set during fdatasync */
2565         if (IS_F2FS_IPU_FSYNC(sbi) && is_inode_flag_set(inode, FI_NEED_IPU))
2566                 return true;
2567
2568         if (unlikely(fio && is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2569                         !f2fs_is_checkpointed_data(sbi, fio->old_blkaddr)))
2570                 return true;
2571
2572         return false;
2573 }
2574
2575 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio)
2576 {
2577         /* swap file is migrating in aligned write mode */
2578         if (is_inode_flag_set(inode, FI_ALIGNED_WRITE))
2579                 return false;
2580
2581         if (f2fs_is_pinned_file(inode))
2582                 return true;
2583
2584         /* if this is cold file, we should overwrite to avoid fragmentation */
2585         if (file_is_cold(inode) && !is_inode_flag_set(inode, FI_OPU_WRITE))
2586                 return true;
2587
2588         return check_inplace_update_policy(inode, fio);
2589 }
2590
2591 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio)
2592 {
2593         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2594
2595         /* The below cases were checked when setting it. */
2596         if (f2fs_is_pinned_file(inode))
2597                 return false;
2598         if (fio && is_sbi_flag_set(sbi, SBI_NEED_FSCK))
2599                 return true;
2600         if (f2fs_lfs_mode(sbi))
2601                 return true;
2602         if (S_ISDIR(inode->i_mode))
2603                 return true;
2604         if (IS_NOQUOTA(inode))
2605                 return true;
2606         if (f2fs_used_in_atomic_write(inode))
2607                 return true;
2608         /* rewrite low ratio compress data w/ OPU mode to avoid fragmentation */
2609         if (f2fs_compressed_file(inode) &&
2610                 F2FS_OPTION(sbi).compress_mode == COMPR_MODE_USER &&
2611                 is_inode_flag_set(inode, FI_ENABLE_COMPRESS))
2612                 return true;
2613
2614         /* swap file is migrating in aligned write mode */
2615         if (is_inode_flag_set(inode, FI_ALIGNED_WRITE))
2616                 return true;
2617
2618         if (is_inode_flag_set(inode, FI_OPU_WRITE))
2619                 return true;
2620
2621         if (fio) {
2622                 if (page_private_gcing(fio->page))
2623                         return true;
2624                 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2625                         f2fs_is_checkpointed_data(sbi, fio->old_blkaddr)))
2626                         return true;
2627         }
2628         return false;
2629 }
2630
2631 static inline bool need_inplace_update(struct f2fs_io_info *fio)
2632 {
2633         struct inode *inode = fio->page->mapping->host;
2634
2635         if (f2fs_should_update_outplace(inode, fio))
2636                 return false;
2637
2638         return f2fs_should_update_inplace(inode, fio);
2639 }
2640
2641 int f2fs_do_write_data_page(struct f2fs_io_info *fio)
2642 {
2643         struct folio *folio = page_folio(fio->page);
2644         struct inode *inode = folio->mapping->host;
2645         struct dnode_of_data dn;
2646         struct node_info ni;
2647         bool ipu_force = false;
2648         bool atomic_commit;
2649         int err = 0;
2650
2651         /* Use COW inode to make dnode_of_data for atomic write */
2652         atomic_commit = f2fs_is_atomic_file(inode) &&
2653                                 page_private_atomic(folio_page(folio, 0));
2654         if (atomic_commit)
2655                 set_new_dnode(&dn, F2FS_I(inode)->cow_inode, NULL, NULL, 0);
2656         else
2657                 set_new_dnode(&dn, inode, NULL, NULL, 0);
2658
2659         if (need_inplace_update(fio) &&
2660             f2fs_lookup_read_extent_cache_block(inode, folio->index,
2661                                                 &fio->old_blkaddr)) {
2662                 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
2663                                                 DATA_GENERIC_ENHANCE))
2664                         return -EFSCORRUPTED;
2665
2666                 ipu_force = true;
2667                 fio->need_lock = LOCK_DONE;
2668                 goto got_it;
2669         }
2670
2671         /* Deadlock due to between page->lock and f2fs_lock_op */
2672         if (fio->need_lock == LOCK_REQ && !f2fs_trylock_op(fio->sbi))
2673                 return -EAGAIN;
2674
2675         err = f2fs_get_dnode_of_data(&dn, folio->index, LOOKUP_NODE);
2676         if (err)
2677                 goto out;
2678
2679         fio->old_blkaddr = dn.data_blkaddr;
2680
2681         /* This page is already truncated */
2682         if (fio->old_blkaddr == NULL_ADDR) {
2683                 folio_clear_uptodate(folio);
2684                 clear_page_private_gcing(folio_page(folio, 0));
2685                 goto out_writepage;
2686         }
2687 got_it:
2688         if (__is_valid_data_blkaddr(fio->old_blkaddr) &&
2689                 !f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
2690                                                 DATA_GENERIC_ENHANCE)) {
2691                 err = -EFSCORRUPTED;
2692                 goto out_writepage;
2693         }
2694
2695         /* wait for GCed page writeback via META_MAPPING */
2696         if (fio->meta_gc)
2697                 f2fs_wait_on_block_writeback(inode, fio->old_blkaddr);
2698
2699         /*
2700          * If current allocation needs SSR,
2701          * it had better in-place writes for updated data.
2702          */
2703         if (ipu_force ||
2704                 (__is_valid_data_blkaddr(fio->old_blkaddr) &&
2705                                         need_inplace_update(fio))) {
2706                 err = f2fs_encrypt_one_page(fio);
2707                 if (err)
2708                         goto out_writepage;
2709
2710                 folio_start_writeback(folio);
2711                 f2fs_put_dnode(&dn);
2712                 if (fio->need_lock == LOCK_REQ)
2713                         f2fs_unlock_op(fio->sbi);
2714                 err = f2fs_inplace_write_data(fio);
2715                 if (err) {
2716                         if (fscrypt_inode_uses_fs_layer_crypto(inode))
2717                                 fscrypt_finalize_bounce_page(&fio->encrypted_page);
2718                         folio_end_writeback(folio);
2719                 } else {
2720                         set_inode_flag(inode, FI_UPDATE_WRITE);
2721                 }
2722                 trace_f2fs_do_write_data_page(folio, IPU);
2723                 return err;
2724         }
2725
2726         if (fio->need_lock == LOCK_RETRY) {
2727                 if (!f2fs_trylock_op(fio->sbi)) {
2728                         err = -EAGAIN;
2729                         goto out_writepage;
2730                 }
2731                 fio->need_lock = LOCK_REQ;
2732         }
2733
2734         err = f2fs_get_node_info(fio->sbi, dn.nid, &ni, false);
2735         if (err)
2736                 goto out_writepage;
2737
2738         fio->version = ni.version;
2739
2740         err = f2fs_encrypt_one_page(fio);
2741         if (err)
2742                 goto out_writepage;
2743
2744         folio_start_writeback(folio);
2745
2746         if (fio->compr_blocks && fio->old_blkaddr == COMPRESS_ADDR)
2747                 f2fs_i_compr_blocks_update(inode, fio->compr_blocks - 1, false);
2748
2749         /* LFS mode write path */
2750         f2fs_outplace_write_data(&dn, fio);
2751         trace_f2fs_do_write_data_page(folio, OPU);
2752         set_inode_flag(inode, FI_APPEND_WRITE);
2753         if (atomic_commit)
2754                 clear_page_private_atomic(folio_page(folio, 0));
2755 out_writepage:
2756         f2fs_put_dnode(&dn);
2757 out:
2758         if (fio->need_lock == LOCK_REQ)
2759                 f2fs_unlock_op(fio->sbi);
2760         return err;
2761 }
2762
2763 int f2fs_write_single_data_page(struct folio *folio, int *submitted,
2764                                 struct bio **bio,
2765                                 sector_t *last_block,
2766                                 struct writeback_control *wbc,
2767                                 enum iostat_type io_type,
2768                                 int compr_blocks,
2769                                 bool allow_balance)
2770 {
2771         struct inode *inode = folio->mapping->host;
2772         struct page *page = folio_page(folio, 0);
2773         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2774         loff_t i_size = i_size_read(inode);
2775         const pgoff_t end_index = ((unsigned long long)i_size)
2776                                                         >> PAGE_SHIFT;
2777         loff_t psize = (loff_t)(folio->index + 1) << PAGE_SHIFT;
2778         unsigned offset = 0;
2779         bool need_balance_fs = false;
2780         bool quota_inode = IS_NOQUOTA(inode);
2781         int err = 0;
2782         struct f2fs_io_info fio = {
2783                 .sbi = sbi,
2784                 .ino = inode->i_ino,
2785                 .type = DATA,
2786                 .op = REQ_OP_WRITE,
2787                 .op_flags = wbc_to_write_flags(wbc),
2788                 .old_blkaddr = NULL_ADDR,
2789                 .page = page,
2790                 .encrypted_page = NULL,
2791                 .submitted = 0,
2792                 .compr_blocks = compr_blocks,
2793                 .need_lock = compr_blocks ? LOCK_DONE : LOCK_RETRY,
2794                 .meta_gc = f2fs_meta_inode_gc_required(inode) ? 1 : 0,
2795                 .io_type = io_type,
2796                 .io_wbc = wbc,
2797                 .bio = bio,
2798                 .last_block = last_block,
2799         };
2800
2801         trace_f2fs_writepage(folio, DATA);
2802
2803         /* we should bypass data pages to proceed the kworker jobs */
2804         if (unlikely(f2fs_cp_error(sbi))) {
2805                 mapping_set_error(folio->mapping, -EIO);
2806                 /*
2807                  * don't drop any dirty dentry pages for keeping lastest
2808                  * directory structure.
2809                  */
2810                 if (S_ISDIR(inode->i_mode) &&
2811                                 !is_sbi_flag_set(sbi, SBI_IS_CLOSE))
2812                         goto redirty_out;
2813
2814                 /* keep data pages in remount-ro mode */
2815                 if (F2FS_OPTION(sbi).errors == MOUNT_ERRORS_READONLY)
2816                         goto redirty_out;
2817                 goto out;
2818         }
2819
2820         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
2821                 goto redirty_out;
2822
2823         if (folio->index < end_index ||
2824                         f2fs_verity_in_progress(inode) ||
2825                         compr_blocks)
2826                 goto write;
2827
2828         /*
2829          * If the offset is out-of-range of file size,
2830          * this page does not have to be written to disk.
2831          */
2832         offset = i_size & (PAGE_SIZE - 1);
2833         if ((folio->index >= end_index + 1) || !offset)
2834                 goto out;
2835
2836         folio_zero_segment(folio, offset, folio_size(folio));
2837 write:
2838         /* Dentry/quota blocks are controlled by checkpoint */
2839         if (S_ISDIR(inode->i_mode) || quota_inode) {
2840                 /*
2841                  * We need to wait for node_write to avoid block allocation during
2842                  * checkpoint. This can only happen to quota writes which can cause
2843                  * the below discard race condition.
2844                  */
2845                 if (quota_inode)
2846                         f2fs_down_read(&sbi->node_write);
2847
2848                 fio.need_lock = LOCK_DONE;
2849                 err = f2fs_do_write_data_page(&fio);
2850
2851                 if (quota_inode)
2852                         f2fs_up_read(&sbi->node_write);
2853
2854                 goto done;
2855         }
2856
2857         if (!wbc->for_reclaim)
2858                 need_balance_fs = true;
2859         else if (has_not_enough_free_secs(sbi, 0, 0))
2860                 goto redirty_out;
2861         else
2862                 set_inode_flag(inode, FI_HOT_DATA);
2863
2864         err = -EAGAIN;
2865         if (f2fs_has_inline_data(inode)) {
2866                 err = f2fs_write_inline_data(inode, folio);
2867                 if (!err)
2868                         goto out;
2869         }
2870
2871         if (err == -EAGAIN) {
2872                 err = f2fs_do_write_data_page(&fio);
2873                 if (err == -EAGAIN) {
2874                         f2fs_bug_on(sbi, compr_blocks);
2875                         fio.need_lock = LOCK_REQ;
2876                         err = f2fs_do_write_data_page(&fio);
2877                 }
2878         }
2879
2880         if (err) {
2881                 file_set_keep_isize(inode);
2882         } else {
2883                 spin_lock(&F2FS_I(inode)->i_size_lock);
2884                 if (F2FS_I(inode)->last_disk_size < psize)
2885                         F2FS_I(inode)->last_disk_size = psize;
2886                 spin_unlock(&F2FS_I(inode)->i_size_lock);
2887         }
2888
2889 done:
2890         if (err && err != -ENOENT)
2891                 goto redirty_out;
2892
2893 out:
2894         inode_dec_dirty_pages(inode);
2895         if (err) {
2896                 folio_clear_uptodate(folio);
2897                 clear_page_private_gcing(page);
2898         }
2899
2900         if (wbc->for_reclaim) {
2901                 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, DATA);
2902                 clear_inode_flag(inode, FI_HOT_DATA);
2903                 f2fs_remove_dirty_inode(inode);
2904                 submitted = NULL;
2905         }
2906         folio_unlock(folio);
2907         if (!S_ISDIR(inode->i_mode) && !IS_NOQUOTA(inode) &&
2908                         !F2FS_I(inode)->wb_task && allow_balance)
2909                 f2fs_balance_fs(sbi, need_balance_fs);
2910
2911         if (unlikely(f2fs_cp_error(sbi))) {
2912                 f2fs_submit_merged_write(sbi, DATA);
2913                 if (bio && *bio)
2914                         f2fs_submit_merged_ipu_write(sbi, bio, NULL);
2915                 submitted = NULL;
2916         }
2917
2918         if (submitted)
2919                 *submitted = fio.submitted;
2920
2921         return 0;
2922
2923 redirty_out:
2924         folio_redirty_for_writepage(wbc, folio);
2925         /*
2926          * pageout() in MM translates EAGAIN, so calls handle_write_error()
2927          * -> mapping_set_error() -> set_bit(AS_EIO, ...).
2928          * file_write_and_wait_range() will see EIO error, which is critical
2929          * to return value of fsync() followed by atomic_write failure to user.
2930          */
2931         if (!err || wbc->for_reclaim)
2932                 return AOP_WRITEPAGE_ACTIVATE;
2933         folio_unlock(folio);
2934         return err;
2935 }
2936
2937 static int f2fs_write_data_page(struct page *page,
2938                                         struct writeback_control *wbc)
2939 {
2940         struct folio *folio = page_folio(page);
2941 #ifdef CONFIG_F2FS_FS_COMPRESSION
2942         struct inode *inode = folio->mapping->host;
2943
2944         if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
2945                 goto out;
2946
2947         if (f2fs_compressed_file(inode)) {
2948                 if (f2fs_is_compressed_cluster(inode, folio->index)) {
2949                         folio_redirty_for_writepage(wbc, folio);
2950                         return AOP_WRITEPAGE_ACTIVATE;
2951                 }
2952         }
2953 out:
2954 #endif
2955
2956         return f2fs_write_single_data_page(folio, NULL, NULL, NULL,
2957                                                 wbc, FS_DATA_IO, 0, true);
2958 }
2959
2960 /*
2961  * This function was copied from write_cache_pages from mm/page-writeback.c.
2962  * The major change is making write step of cold data page separately from
2963  * warm/hot data page.
2964  */
2965 static int f2fs_write_cache_pages(struct address_space *mapping,
2966                                         struct writeback_control *wbc,
2967                                         enum iostat_type io_type)
2968 {
2969         int ret = 0;
2970         int done = 0, retry = 0;
2971         struct page *pages_local[F2FS_ONSTACK_PAGES];
2972         struct page **pages = pages_local;
2973         struct folio_batch fbatch;
2974         struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
2975         struct bio *bio = NULL;
2976         sector_t last_block;
2977 #ifdef CONFIG_F2FS_FS_COMPRESSION
2978         struct inode *inode = mapping->host;
2979         struct compress_ctx cc = {
2980                 .inode = inode,
2981                 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
2982                 .cluster_size = F2FS_I(inode)->i_cluster_size,
2983                 .cluster_idx = NULL_CLUSTER,
2984                 .rpages = NULL,
2985                 .nr_rpages = 0,
2986                 .cpages = NULL,
2987                 .valid_nr_cpages = 0,
2988                 .rbuf = NULL,
2989                 .cbuf = NULL,
2990                 .rlen = PAGE_SIZE * F2FS_I(inode)->i_cluster_size,
2991                 .private = NULL,
2992         };
2993 #endif
2994         int nr_folios, p, idx;
2995         int nr_pages;
2996         unsigned int max_pages = F2FS_ONSTACK_PAGES;
2997         pgoff_t index;
2998         pgoff_t end;            /* Inclusive */
2999         pgoff_t done_index;
3000         int range_whole = 0;
3001         xa_mark_t tag;
3002         int nwritten = 0;
3003         int submitted = 0;
3004         int i;
3005
3006 #ifdef CONFIG_F2FS_FS_COMPRESSION
3007         if (f2fs_compressed_file(inode) &&
3008                 1 << cc.log_cluster_size > F2FS_ONSTACK_PAGES) {
3009                 pages = f2fs_kzalloc(sbi, sizeof(struct page *) <<
3010                                 cc.log_cluster_size, GFP_NOFS | __GFP_NOFAIL);
3011                 max_pages = 1 << cc.log_cluster_size;
3012         }
3013 #endif
3014
3015         folio_batch_init(&fbatch);
3016
3017         if (get_dirty_pages(mapping->host) <=
3018                                 SM_I(F2FS_M_SB(mapping))->min_hot_blocks)
3019                 set_inode_flag(mapping->host, FI_HOT_DATA);
3020         else
3021                 clear_inode_flag(mapping->host, FI_HOT_DATA);
3022
3023         if (wbc->range_cyclic) {
3024                 index = mapping->writeback_index; /* prev offset */
3025                 end = -1;
3026         } else {
3027                 index = wbc->range_start >> PAGE_SHIFT;
3028                 end = wbc->range_end >> PAGE_SHIFT;
3029                 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
3030                         range_whole = 1;
3031         }
3032         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
3033                 tag = PAGECACHE_TAG_TOWRITE;
3034         else
3035                 tag = PAGECACHE_TAG_DIRTY;
3036 retry:
3037         retry = 0;
3038         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
3039                 tag_pages_for_writeback(mapping, index, end);
3040         done_index = index;
3041         while (!done && !retry && (index <= end)) {
3042                 nr_pages = 0;
3043 again:
3044                 nr_folios = filemap_get_folios_tag(mapping, &index, end,
3045                                 tag, &fbatch);
3046                 if (nr_folios == 0) {
3047                         if (nr_pages)
3048                                 goto write;
3049                         break;
3050                 }
3051
3052                 for (i = 0; i < nr_folios; i++) {
3053                         struct folio *folio = fbatch.folios[i];
3054
3055                         idx = 0;
3056                         p = folio_nr_pages(folio);
3057 add_more:
3058                         pages[nr_pages] = folio_page(folio, idx);
3059                         folio_get(folio);
3060                         if (++nr_pages == max_pages) {
3061                                 index = folio->index + idx + 1;
3062                                 folio_batch_release(&fbatch);
3063                                 goto write;
3064                         }
3065                         if (++idx < p)
3066                                 goto add_more;
3067                 }
3068                 folio_batch_release(&fbatch);
3069                 goto again;
3070 write:
3071                 for (i = 0; i < nr_pages; i++) {
3072                         struct page *page = pages[i];
3073                         struct folio *folio = page_folio(page);
3074                         bool need_readd;
3075 readd:
3076                         need_readd = false;
3077 #ifdef CONFIG_F2FS_FS_COMPRESSION
3078                         if (f2fs_compressed_file(inode)) {
3079                                 void *fsdata = NULL;
3080                                 struct page *pagep;
3081                                 int ret2;
3082
3083                                 ret = f2fs_init_compress_ctx(&cc);
3084                                 if (ret) {
3085                                         done = 1;
3086                                         break;
3087                                 }
3088
3089                                 if (!f2fs_cluster_can_merge_page(&cc,
3090                                                                 folio->index)) {
3091                                         ret = f2fs_write_multi_pages(&cc,
3092                                                 &submitted, wbc, io_type);
3093                                         if (!ret)
3094                                                 need_readd = true;
3095                                         goto result;
3096                                 }
3097
3098                                 if (unlikely(f2fs_cp_error(sbi)))
3099                                         goto lock_folio;
3100
3101                                 if (!f2fs_cluster_is_empty(&cc))
3102                                         goto lock_folio;
3103
3104                                 if (f2fs_all_cluster_page_ready(&cc,
3105                                         pages, i, nr_pages, true))
3106                                         goto lock_folio;
3107
3108                                 ret2 = f2fs_prepare_compress_overwrite(
3109                                                         inode, &pagep,
3110                                                         folio->index, &fsdata);
3111                                 if (ret2 < 0) {
3112                                         ret = ret2;
3113                                         done = 1;
3114                                         break;
3115                                 } else if (ret2 &&
3116                                         (!f2fs_compress_write_end(inode,
3117                                                 fsdata, folio->index, 1) ||
3118                                          !f2fs_all_cluster_page_ready(&cc,
3119                                                 pages, i, nr_pages,
3120                                                 false))) {
3121                                         retry = 1;
3122                                         break;
3123                                 }
3124                         }
3125 #endif
3126                         /* give a priority to WB_SYNC threads */
3127                         if (atomic_read(&sbi->wb_sync_req[DATA]) &&
3128                                         wbc->sync_mode == WB_SYNC_NONE) {
3129                                 done = 1;
3130                                 break;
3131                         }
3132 #ifdef CONFIG_F2FS_FS_COMPRESSION
3133 lock_folio:
3134 #endif
3135                         done_index = folio->index;
3136 retry_write:
3137                         folio_lock(folio);
3138
3139                         if (unlikely(folio->mapping != mapping)) {
3140 continue_unlock:
3141                                 folio_unlock(folio);
3142                                 continue;
3143                         }
3144
3145                         if (!folio_test_dirty(folio)) {
3146                                 /* someone wrote it for us */
3147                                 goto continue_unlock;
3148                         }
3149
3150                         if (folio_test_writeback(folio)) {
3151                                 if (wbc->sync_mode == WB_SYNC_NONE)
3152                                         goto continue_unlock;
3153                                 f2fs_wait_on_page_writeback(&folio->page, DATA, true, true);
3154                         }
3155
3156                         if (!folio_clear_dirty_for_io(folio))
3157                                 goto continue_unlock;
3158
3159 #ifdef CONFIG_F2FS_FS_COMPRESSION
3160                         if (f2fs_compressed_file(inode)) {
3161                                 folio_get(folio);
3162                                 f2fs_compress_ctx_add_page(&cc, folio);
3163                                 continue;
3164                         }
3165 #endif
3166                         ret = f2fs_write_single_data_page(folio,
3167                                         &submitted, &bio, &last_block,
3168                                         wbc, io_type, 0, true);
3169                         if (ret == AOP_WRITEPAGE_ACTIVATE)
3170                                 folio_unlock(folio);
3171 #ifdef CONFIG_F2FS_FS_COMPRESSION
3172 result:
3173 #endif
3174                         nwritten += submitted;
3175                         wbc->nr_to_write -= submitted;
3176
3177                         if (unlikely(ret)) {
3178                                 /*
3179                                  * keep nr_to_write, since vfs uses this to
3180                                  * get # of written pages.
3181                                  */
3182                                 if (ret == AOP_WRITEPAGE_ACTIVATE) {
3183                                         ret = 0;
3184                                         goto next;
3185                                 } else if (ret == -EAGAIN) {
3186                                         ret = 0;
3187                                         if (wbc->sync_mode == WB_SYNC_ALL) {
3188                                                 f2fs_io_schedule_timeout(
3189                                                         DEFAULT_IO_TIMEOUT);
3190                                                 goto retry_write;
3191                                         }
3192                                         goto next;
3193                                 }
3194                                 done_index = folio_next_index(folio);
3195                                 done = 1;
3196                                 break;
3197                         }
3198
3199                         if (wbc->nr_to_write <= 0 &&
3200                                         wbc->sync_mode == WB_SYNC_NONE) {
3201                                 done = 1;
3202                                 break;
3203                         }
3204 next:
3205                         if (need_readd)
3206                                 goto readd;
3207                 }
3208                 release_pages(pages, nr_pages);
3209                 cond_resched();
3210         }
3211 #ifdef CONFIG_F2FS_FS_COMPRESSION
3212         /* flush remained pages in compress cluster */
3213         if (f2fs_compressed_file(inode) && !f2fs_cluster_is_empty(&cc)) {
3214                 ret = f2fs_write_multi_pages(&cc, &submitted, wbc, io_type);
3215                 nwritten += submitted;
3216                 wbc->nr_to_write -= submitted;
3217                 if (ret) {
3218                         done = 1;
3219                         retry = 0;
3220                 }
3221         }
3222         if (f2fs_compressed_file(inode))
3223                 f2fs_destroy_compress_ctx(&cc, false);
3224 #endif
3225         if (retry) {
3226                 index = 0;
3227                 end = -1;
3228                 goto retry;
3229         }
3230         if (wbc->range_cyclic && !done)
3231                 done_index = 0;
3232         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
3233                 mapping->writeback_index = done_index;
3234
3235         if (nwritten)
3236                 f2fs_submit_merged_write_cond(F2FS_M_SB(mapping), mapping->host,
3237                                                                 NULL, 0, DATA);
3238         /* submit cached bio of IPU write */
3239         if (bio)
3240                 f2fs_submit_merged_ipu_write(sbi, &bio, NULL);
3241
3242 #ifdef CONFIG_F2FS_FS_COMPRESSION
3243         if (pages != pages_local)
3244                 kfree(pages);
3245 #endif
3246
3247         return ret;
3248 }
3249
3250 static inline bool __should_serialize_io(struct inode *inode,
3251                                         struct writeback_control *wbc)
3252 {
3253         /* to avoid deadlock in path of data flush */
3254         if (F2FS_I(inode)->wb_task)
3255                 return false;
3256
3257         if (!S_ISREG(inode->i_mode))
3258                 return false;
3259         if (IS_NOQUOTA(inode))
3260                 return false;
3261
3262         if (f2fs_need_compress_data(inode))
3263                 return true;
3264         if (wbc->sync_mode != WB_SYNC_ALL)
3265                 return true;
3266         if (get_dirty_pages(inode) >= SM_I(F2FS_I_SB(inode))->min_seq_blocks)
3267                 return true;
3268         return false;
3269 }
3270
3271 static int __f2fs_write_data_pages(struct address_space *mapping,
3272                                                 struct writeback_control *wbc,
3273                                                 enum iostat_type io_type)
3274 {
3275         struct inode *inode = mapping->host;
3276         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3277         struct blk_plug plug;
3278         int ret;
3279         bool locked = false;
3280
3281         /* deal with chardevs and other special file */
3282         if (!mapping->a_ops->writepage)
3283                 return 0;
3284
3285         /* skip writing if there is no dirty page in this inode */
3286         if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE)
3287                 return 0;
3288
3289         /* during POR, we don't need to trigger writepage at all. */
3290         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
3291                 goto skip_write;
3292
3293         if ((S_ISDIR(inode->i_mode) || IS_NOQUOTA(inode)) &&
3294                         wbc->sync_mode == WB_SYNC_NONE &&
3295                         get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) &&
3296                         f2fs_available_free_memory(sbi, DIRTY_DENTS))
3297                 goto skip_write;
3298
3299         /* skip writing in file defragment preparing stage */
3300         if (is_inode_flag_set(inode, FI_SKIP_WRITES))
3301                 goto skip_write;
3302
3303         trace_f2fs_writepages(mapping->host, wbc, DATA);
3304
3305         /* to avoid spliting IOs due to mixed WB_SYNC_ALL and WB_SYNC_NONE */
3306         if (wbc->sync_mode == WB_SYNC_ALL)
3307                 atomic_inc(&sbi->wb_sync_req[DATA]);
3308         else if (atomic_read(&sbi->wb_sync_req[DATA])) {
3309                 /* to avoid potential deadlock */
3310                 if (current->plug)
3311                         blk_finish_plug(current->plug);
3312                 goto skip_write;
3313         }
3314
3315         if (__should_serialize_io(inode, wbc)) {
3316                 mutex_lock(&sbi->writepages);
3317                 locked = true;
3318         }
3319
3320         blk_start_plug(&plug);
3321         ret = f2fs_write_cache_pages(mapping, wbc, io_type);
3322         blk_finish_plug(&plug);
3323
3324         if (locked)
3325                 mutex_unlock(&sbi->writepages);
3326
3327         if (wbc->sync_mode == WB_SYNC_ALL)
3328                 atomic_dec(&sbi->wb_sync_req[DATA]);
3329         /*
3330          * if some pages were truncated, we cannot guarantee its mapping->host
3331          * to detect pending bios.
3332          */
3333
3334         f2fs_remove_dirty_inode(inode);
3335         return ret;
3336
3337 skip_write:
3338         wbc->pages_skipped += get_dirty_pages(inode);
3339         trace_f2fs_writepages(mapping->host, wbc, DATA);
3340         return 0;
3341 }
3342
3343 static int f2fs_write_data_pages(struct address_space *mapping,
3344                             struct writeback_control *wbc)
3345 {
3346         struct inode *inode = mapping->host;
3347
3348         return __f2fs_write_data_pages(mapping, wbc,
3349                         F2FS_I(inode)->cp_task == current ?
3350                         FS_CP_DATA_IO : FS_DATA_IO);
3351 }
3352
3353 void f2fs_write_failed(struct inode *inode, loff_t to)
3354 {
3355         loff_t i_size = i_size_read(inode);
3356
3357         if (IS_NOQUOTA(inode))
3358                 return;
3359
3360         /* In the fs-verity case, f2fs_end_enable_verity() does the truncate */
3361         if (to > i_size && !f2fs_verity_in_progress(inode)) {
3362                 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3363                 filemap_invalidate_lock(inode->i_mapping);
3364
3365                 truncate_pagecache(inode, i_size);
3366                 f2fs_truncate_blocks(inode, i_size, true);
3367
3368                 filemap_invalidate_unlock(inode->i_mapping);
3369                 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3370         }
3371 }
3372
3373 static int prepare_write_begin(struct f2fs_sb_info *sbi,
3374                         struct folio *folio, loff_t pos, unsigned int len,
3375                         block_t *blk_addr, bool *node_changed)
3376 {
3377         struct inode *inode = folio->mapping->host;
3378         pgoff_t index = folio->index;
3379         struct dnode_of_data dn;
3380         struct page *ipage;
3381         bool locked = false;
3382         int flag = F2FS_GET_BLOCK_PRE_AIO;
3383         int err = 0;
3384
3385         /*
3386          * If a whole page is being written and we already preallocated all the
3387          * blocks, then there is no need to get a block address now.
3388          */
3389         if (len == PAGE_SIZE && is_inode_flag_set(inode, FI_PREALLOCATED_ALL))
3390                 return 0;
3391
3392         /* f2fs_lock_op avoids race between write CP and convert_inline_page */
3393         if (f2fs_has_inline_data(inode)) {
3394                 if (pos + len > MAX_INLINE_DATA(inode))
3395                         flag = F2FS_GET_BLOCK_DEFAULT;
3396                 f2fs_map_lock(sbi, flag);
3397                 locked = true;
3398         } else if ((pos & PAGE_MASK) >= i_size_read(inode)) {
3399                 f2fs_map_lock(sbi, flag);
3400                 locked = true;
3401         }
3402
3403 restart:
3404         /* check inline_data */
3405         ipage = f2fs_get_node_page(sbi, inode->i_ino);
3406         if (IS_ERR(ipage)) {
3407                 err = PTR_ERR(ipage);
3408                 goto unlock_out;
3409         }
3410
3411         set_new_dnode(&dn, inode, ipage, ipage, 0);
3412
3413         if (f2fs_has_inline_data(inode)) {
3414                 if (pos + len <= MAX_INLINE_DATA(inode)) {
3415                         f2fs_do_read_inline_data(folio, ipage);
3416                         set_inode_flag(inode, FI_DATA_EXIST);
3417                         if (inode->i_nlink)
3418                                 set_page_private_inline(ipage);
3419                         goto out;
3420                 }
3421                 err = f2fs_convert_inline_page(&dn, folio_page(folio, 0));
3422                 if (err || dn.data_blkaddr != NULL_ADDR)
3423                         goto out;
3424         }
3425
3426         if (!f2fs_lookup_read_extent_cache_block(inode, index,
3427                                                  &dn.data_blkaddr)) {
3428                 if (IS_DEVICE_ALIASING(inode)) {
3429                         err = -ENODATA;
3430                         goto out;
3431                 }
3432
3433                 if (locked) {
3434                         err = f2fs_reserve_block(&dn, index);
3435                         goto out;
3436                 }
3437
3438                 /* hole case */
3439                 err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
3440                 if (!err && dn.data_blkaddr != NULL_ADDR)
3441                         goto out;
3442                 f2fs_put_dnode(&dn);
3443                 f2fs_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO);
3444                 WARN_ON(flag != F2FS_GET_BLOCK_PRE_AIO);
3445                 locked = true;
3446                 goto restart;
3447         }
3448 out:
3449         if (!err) {
3450                 /* convert_inline_page can make node_changed */
3451                 *blk_addr = dn.data_blkaddr;
3452                 *node_changed = dn.node_changed;
3453         }
3454         f2fs_put_dnode(&dn);
3455 unlock_out:
3456         if (locked)
3457                 f2fs_map_unlock(sbi, flag);
3458         return err;
3459 }
3460
3461 static int __find_data_block(struct inode *inode, pgoff_t index,
3462                                 block_t *blk_addr)
3463 {
3464         struct dnode_of_data dn;
3465         struct page *ipage;
3466         int err = 0;
3467
3468         ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino);
3469         if (IS_ERR(ipage))
3470                 return PTR_ERR(ipage);
3471
3472         set_new_dnode(&dn, inode, ipage, ipage, 0);
3473
3474         if (!f2fs_lookup_read_extent_cache_block(inode, index,
3475                                                  &dn.data_blkaddr)) {
3476                 /* hole case */
3477                 err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
3478                 if (err) {
3479                         dn.data_blkaddr = NULL_ADDR;
3480                         err = 0;
3481                 }
3482         }
3483         *blk_addr = dn.data_blkaddr;
3484         f2fs_put_dnode(&dn);
3485         return err;
3486 }
3487
3488 static int __reserve_data_block(struct inode *inode, pgoff_t index,
3489                                 block_t *blk_addr, bool *node_changed)
3490 {
3491         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3492         struct dnode_of_data dn;
3493         struct page *ipage;
3494         int err = 0;
3495
3496         f2fs_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO);
3497
3498         ipage = f2fs_get_node_page(sbi, inode->i_ino);
3499         if (IS_ERR(ipage)) {
3500                 err = PTR_ERR(ipage);
3501                 goto unlock_out;
3502         }
3503         set_new_dnode(&dn, inode, ipage, ipage, 0);
3504
3505         if (!f2fs_lookup_read_extent_cache_block(dn.inode, index,
3506                                                 &dn.data_blkaddr))
3507                 err = f2fs_reserve_block(&dn, index);
3508
3509         *blk_addr = dn.data_blkaddr;
3510         *node_changed = dn.node_changed;
3511         f2fs_put_dnode(&dn);
3512
3513 unlock_out:
3514         f2fs_map_unlock(sbi, F2FS_GET_BLOCK_PRE_AIO);
3515         return err;
3516 }
3517
3518 static int prepare_atomic_write_begin(struct f2fs_sb_info *sbi,
3519                         struct folio *folio, loff_t pos, unsigned int len,
3520                         block_t *blk_addr, bool *node_changed, bool *use_cow)
3521 {
3522         struct inode *inode = folio->mapping->host;
3523         struct inode *cow_inode = F2FS_I(inode)->cow_inode;
3524         pgoff_t index = folio->index;
3525         int err = 0;
3526         block_t ori_blk_addr = NULL_ADDR;
3527
3528         /* If pos is beyond the end of file, reserve a new block in COW inode */
3529         if ((pos & PAGE_MASK) >= i_size_read(inode))
3530                 goto reserve_block;
3531
3532         /* Look for the block in COW inode first */
3533         err = __find_data_block(cow_inode, index, blk_addr);
3534         if (err) {
3535                 return err;
3536         } else if (*blk_addr != NULL_ADDR) {
3537                 *use_cow = true;
3538                 return 0;
3539         }
3540
3541         if (is_inode_flag_set(inode, FI_ATOMIC_REPLACE))
3542                 goto reserve_block;
3543
3544         /* Look for the block in the original inode */
3545         err = __find_data_block(inode, index, &ori_blk_addr);
3546         if (err)
3547                 return err;
3548
3549 reserve_block:
3550         /* Finally, we should reserve a new block in COW inode for the update */
3551         err = __reserve_data_block(cow_inode, index, blk_addr, node_changed);
3552         if (err)
3553                 return err;
3554         inc_atomic_write_cnt(inode);
3555
3556         if (ori_blk_addr != NULL_ADDR)
3557                 *blk_addr = ori_blk_addr;
3558         return 0;
3559 }
3560
3561 static int f2fs_write_begin(struct file *file, struct address_space *mapping,
3562                 loff_t pos, unsigned len, struct folio **foliop, void **fsdata)
3563 {
3564         struct inode *inode = mapping->host;
3565         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3566         struct folio *folio;
3567         pgoff_t index = pos >> PAGE_SHIFT;
3568         bool need_balance = false;
3569         bool use_cow = false;
3570         block_t blkaddr = NULL_ADDR;
3571         int err = 0;
3572
3573         trace_f2fs_write_begin(inode, pos, len);
3574
3575         if (!f2fs_is_checkpoint_ready(sbi)) {
3576                 err = -ENOSPC;
3577                 goto fail;
3578         }
3579
3580         /*
3581          * We should check this at this moment to avoid deadlock on inode page
3582          * and #0 page. The locking rule for inline_data conversion should be:
3583          * folio_lock(folio #0) -> folio_lock(inode_page)
3584          */
3585         if (index != 0) {
3586                 err = f2fs_convert_inline_inode(inode);
3587                 if (err)
3588                         goto fail;
3589         }
3590
3591 #ifdef CONFIG_F2FS_FS_COMPRESSION
3592         if (f2fs_compressed_file(inode)) {
3593                 int ret;
3594                 struct page *page;
3595
3596                 *fsdata = NULL;
3597
3598                 if (len == PAGE_SIZE && !(f2fs_is_atomic_file(inode)))
3599                         goto repeat;
3600
3601                 ret = f2fs_prepare_compress_overwrite(inode, &page,
3602                                                         index, fsdata);
3603                 if (ret < 0) {
3604                         err = ret;
3605                         goto fail;
3606                 } else if (ret) {
3607                         *foliop = page_folio(page);
3608                         return 0;
3609                 }
3610         }
3611 #endif
3612
3613 repeat:
3614         /*
3615          * Do not use FGP_STABLE to avoid deadlock.
3616          * Will wait that below with our IO control.
3617          */
3618         folio = __filemap_get_folio(mapping, index,
3619                                 FGP_LOCK | FGP_WRITE | FGP_CREAT, GFP_NOFS);
3620         if (IS_ERR(folio)) {
3621                 err = PTR_ERR(folio);
3622                 goto fail;
3623         }
3624
3625         /* TODO: cluster can be compressed due to race with .writepage */
3626
3627         *foliop = folio;
3628
3629         if (f2fs_is_atomic_file(inode))
3630                 err = prepare_atomic_write_begin(sbi, folio, pos, len,
3631                                         &blkaddr, &need_balance, &use_cow);
3632         else
3633                 err = prepare_write_begin(sbi, folio, pos, len,
3634                                         &blkaddr, &need_balance);
3635         if (err)
3636                 goto put_folio;
3637
3638         if (need_balance && !IS_NOQUOTA(inode) &&
3639                         has_not_enough_free_secs(sbi, 0, 0)) {
3640                 folio_unlock(folio);
3641                 f2fs_balance_fs(sbi, true);
3642                 folio_lock(folio);
3643                 if (folio->mapping != mapping) {
3644                         /* The folio got truncated from under us */
3645                         folio_unlock(folio);
3646                         folio_put(folio);
3647                         goto repeat;
3648                 }
3649         }
3650
3651         f2fs_wait_on_page_writeback(&folio->page, DATA, false, true);
3652
3653         if (len == folio_size(folio) || folio_test_uptodate(folio))
3654                 return 0;
3655
3656         if (!(pos & (PAGE_SIZE - 1)) && (pos + len) >= i_size_read(inode) &&
3657             !f2fs_verity_in_progress(inode)) {
3658                 folio_zero_segment(folio, len, folio_size(folio));
3659                 return 0;
3660         }
3661
3662         if (blkaddr == NEW_ADDR) {
3663                 folio_zero_segment(folio, 0, folio_size(folio));
3664                 folio_mark_uptodate(folio);
3665         } else {
3666                 if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
3667                                 DATA_GENERIC_ENHANCE_READ)) {
3668                         err = -EFSCORRUPTED;
3669                         goto put_folio;
3670                 }
3671                 err = f2fs_submit_page_read(use_cow ?
3672                                 F2FS_I(inode)->cow_inode : inode,
3673                                 folio, blkaddr, 0, true);
3674                 if (err)
3675                         goto put_folio;
3676
3677                 folio_lock(folio);
3678                 if (unlikely(folio->mapping != mapping)) {
3679                         folio_unlock(folio);
3680                         folio_put(folio);
3681                         goto repeat;
3682                 }
3683                 if (unlikely(!folio_test_uptodate(folio))) {
3684                         err = -EIO;
3685                         goto put_folio;
3686                 }
3687         }
3688         return 0;
3689
3690 put_folio:
3691         folio_unlock(folio);
3692         folio_put(folio);
3693 fail:
3694         f2fs_write_failed(inode, pos + len);
3695         return err;
3696 }
3697
3698 static int f2fs_write_end(struct file *file,
3699                         struct address_space *mapping,
3700                         loff_t pos, unsigned len, unsigned copied,
3701                         struct folio *folio, void *fsdata)
3702 {
3703         struct inode *inode = folio->mapping->host;
3704
3705         trace_f2fs_write_end(inode, pos, len, copied);
3706
3707         /*
3708          * This should be come from len == PAGE_SIZE, and we expect copied
3709          * should be PAGE_SIZE. Otherwise, we treat it with zero copied and
3710          * let generic_perform_write() try to copy data again through copied=0.
3711          */
3712         if (!folio_test_uptodate(folio)) {
3713                 if (unlikely(copied != len))
3714                         copied = 0;
3715                 else
3716                         folio_mark_uptodate(folio);
3717         }
3718
3719 #ifdef CONFIG_F2FS_FS_COMPRESSION
3720         /* overwrite compressed file */
3721         if (f2fs_compressed_file(inode) && fsdata) {
3722                 f2fs_compress_write_end(inode, fsdata, folio->index, copied);
3723                 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3724
3725                 if (pos + copied > i_size_read(inode) &&
3726                                 !f2fs_verity_in_progress(inode))
3727                         f2fs_i_size_write(inode, pos + copied);
3728                 return copied;
3729         }
3730 #endif
3731
3732         if (!copied)
3733                 goto unlock_out;
3734
3735         folio_mark_dirty(folio);
3736
3737         if (f2fs_is_atomic_file(inode))
3738                 set_page_private_atomic(folio_page(folio, 0));
3739
3740         if (pos + copied > i_size_read(inode) &&
3741             !f2fs_verity_in_progress(inode)) {
3742                 f2fs_i_size_write(inode, pos + copied);
3743                 if (f2fs_is_atomic_file(inode))
3744                         f2fs_i_size_write(F2FS_I(inode)->cow_inode,
3745                                         pos + copied);
3746         }
3747 unlock_out:
3748         folio_unlock(folio);
3749         folio_put(folio);
3750         f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3751         return copied;
3752 }
3753
3754 void f2fs_invalidate_folio(struct folio *folio, size_t offset, size_t length)
3755 {
3756         struct inode *inode = folio->mapping->host;
3757         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3758
3759         if (inode->i_ino >= F2FS_ROOT_INO(sbi) &&
3760                                 (offset || length != folio_size(folio)))
3761                 return;
3762
3763         if (folio_test_dirty(folio)) {
3764                 if (inode->i_ino == F2FS_META_INO(sbi)) {
3765                         dec_page_count(sbi, F2FS_DIRTY_META);
3766                 } else if (inode->i_ino == F2FS_NODE_INO(sbi)) {
3767                         dec_page_count(sbi, F2FS_DIRTY_NODES);
3768                 } else {
3769                         inode_dec_dirty_pages(inode);
3770                         f2fs_remove_dirty_inode(inode);
3771                 }
3772         }
3773         clear_page_private_all(&folio->page);
3774 }
3775
3776 bool f2fs_release_folio(struct folio *folio, gfp_t wait)
3777 {
3778         /* If this is dirty folio, keep private data */
3779         if (folio_test_dirty(folio))
3780                 return false;
3781
3782         clear_page_private_all(&folio->page);
3783         return true;
3784 }
3785
3786 static bool f2fs_dirty_data_folio(struct address_space *mapping,
3787                 struct folio *folio)
3788 {
3789         struct inode *inode = mapping->host;
3790
3791         trace_f2fs_set_page_dirty(folio, DATA);
3792
3793         if (!folio_test_uptodate(folio))
3794                 folio_mark_uptodate(folio);
3795         BUG_ON(folio_test_swapcache(folio));
3796
3797         if (filemap_dirty_folio(mapping, folio)) {
3798                 f2fs_update_dirty_folio(inode, folio);
3799                 return true;
3800         }
3801         return false;
3802 }
3803
3804
3805 static sector_t f2fs_bmap_compress(struct inode *inode, sector_t block)
3806 {
3807 #ifdef CONFIG_F2FS_FS_COMPRESSION
3808         struct dnode_of_data dn;
3809         sector_t start_idx, blknr = 0;
3810         int ret;
3811
3812         start_idx = round_down(block, F2FS_I(inode)->i_cluster_size);
3813
3814         set_new_dnode(&dn, inode, NULL, NULL, 0);
3815         ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
3816         if (ret)
3817                 return 0;
3818
3819         if (dn.data_blkaddr != COMPRESS_ADDR) {
3820                 dn.ofs_in_node += block - start_idx;
3821                 blknr = f2fs_data_blkaddr(&dn);
3822                 if (!__is_valid_data_blkaddr(blknr))
3823                         blknr = 0;
3824         }
3825
3826         f2fs_put_dnode(&dn);
3827         return blknr;
3828 #else
3829         return 0;
3830 #endif
3831 }
3832
3833
3834 static sector_t f2fs_bmap(struct address_space *mapping, sector_t block)
3835 {
3836         struct inode *inode = mapping->host;
3837         sector_t blknr = 0;
3838
3839         if (f2fs_has_inline_data(inode))
3840                 goto out;
3841
3842         /* make sure allocating whole blocks */
3843         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
3844                 filemap_write_and_wait(mapping);
3845
3846         /* Block number less than F2FS MAX BLOCKS */
3847         if (unlikely(block >= max_file_blocks(inode)))
3848                 goto out;
3849
3850         if (f2fs_compressed_file(inode)) {
3851                 blknr = f2fs_bmap_compress(inode, block);
3852         } else {
3853                 struct f2fs_map_blocks map;
3854
3855                 memset(&map, 0, sizeof(map));
3856                 map.m_lblk = block;
3857                 map.m_len = 1;
3858                 map.m_next_pgofs = NULL;
3859                 map.m_seg_type = NO_CHECK_TYPE;
3860
3861                 if (!f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_BMAP))
3862                         blknr = map.m_pblk;
3863         }
3864 out:
3865         trace_f2fs_bmap(inode, block, blknr);
3866         return blknr;
3867 }
3868
3869 #ifdef CONFIG_SWAP
3870 static int f2fs_migrate_blocks(struct inode *inode, block_t start_blk,
3871                                                         unsigned int blkcnt)
3872 {
3873         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3874         unsigned int blkofs;
3875         unsigned int blk_per_sec = BLKS_PER_SEC(sbi);
3876         unsigned int end_blk = start_blk + blkcnt - 1;
3877         unsigned int secidx = start_blk / blk_per_sec;
3878         unsigned int end_sec;
3879         int ret = 0;
3880
3881         if (!blkcnt)
3882                 return 0;
3883         end_sec = end_blk / blk_per_sec;
3884
3885         f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3886         filemap_invalidate_lock(inode->i_mapping);
3887
3888         set_inode_flag(inode, FI_ALIGNED_WRITE);
3889         set_inode_flag(inode, FI_OPU_WRITE);
3890
3891         for (; secidx <= end_sec; secidx++) {
3892                 unsigned int blkofs_end = secidx == end_sec ?
3893                                 end_blk % blk_per_sec : blk_per_sec - 1;
3894
3895                 f2fs_down_write(&sbi->pin_sem);
3896
3897                 ret = f2fs_allocate_pinning_section(sbi);
3898                 if (ret) {
3899                         f2fs_up_write(&sbi->pin_sem);
3900                         break;
3901                 }
3902
3903                 set_inode_flag(inode, FI_SKIP_WRITES);
3904
3905                 for (blkofs = 0; blkofs <= blkofs_end; blkofs++) {
3906                         struct page *page;
3907                         unsigned int blkidx = secidx * blk_per_sec + blkofs;
3908
3909                         page = f2fs_get_lock_data_page(inode, blkidx, true);
3910                         if (IS_ERR(page)) {
3911                                 f2fs_up_write(&sbi->pin_sem);
3912                                 ret = PTR_ERR(page);
3913                                 goto done;
3914                         }
3915
3916                         set_page_dirty(page);
3917                         f2fs_put_page(page, 1);
3918                 }
3919
3920                 clear_inode_flag(inode, FI_SKIP_WRITES);
3921
3922                 ret = filemap_fdatawrite(inode->i_mapping);
3923
3924                 f2fs_up_write(&sbi->pin_sem);
3925
3926                 if (ret)
3927                         break;
3928         }
3929
3930 done:
3931         clear_inode_flag(inode, FI_SKIP_WRITES);
3932         clear_inode_flag(inode, FI_OPU_WRITE);
3933         clear_inode_flag(inode, FI_ALIGNED_WRITE);
3934
3935         filemap_invalidate_unlock(inode->i_mapping);
3936         f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3937
3938         return ret;
3939 }
3940
3941 static int check_swap_activate(struct swap_info_struct *sis,
3942                                 struct file *swap_file, sector_t *span)
3943 {
3944         struct address_space *mapping = swap_file->f_mapping;
3945         struct inode *inode = mapping->host;
3946         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3947         block_t cur_lblock;
3948         block_t last_lblock;
3949         block_t pblock;
3950         block_t lowest_pblock = -1;
3951         block_t highest_pblock = 0;
3952         int nr_extents = 0;
3953         unsigned int nr_pblocks;
3954         unsigned int blks_per_sec = BLKS_PER_SEC(sbi);
3955         unsigned int not_aligned = 0;
3956         int ret = 0;
3957
3958         /*
3959          * Map all the blocks into the extent list.  This code doesn't try
3960          * to be very smart.
3961          */
3962         cur_lblock = 0;
3963         last_lblock = F2FS_BYTES_TO_BLK(i_size_read(inode));
3964
3965         while (cur_lblock < last_lblock && cur_lblock < sis->max) {
3966                 struct f2fs_map_blocks map;
3967 retry:
3968                 cond_resched();
3969
3970                 memset(&map, 0, sizeof(map));
3971                 map.m_lblk = cur_lblock;
3972                 map.m_len = last_lblock - cur_lblock;
3973                 map.m_next_pgofs = NULL;
3974                 map.m_next_extent = NULL;
3975                 map.m_seg_type = NO_CHECK_TYPE;
3976                 map.m_may_create = false;
3977
3978                 ret = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_FIEMAP);
3979                 if (ret)
3980                         goto out;
3981
3982                 /* hole */
3983                 if (!(map.m_flags & F2FS_MAP_FLAGS)) {
3984                         f2fs_err(sbi, "Swapfile has holes");
3985                         ret = -EINVAL;
3986                         goto out;
3987                 }
3988
3989                 pblock = map.m_pblk;
3990                 nr_pblocks = map.m_len;
3991
3992                 if ((pblock - SM_I(sbi)->main_blkaddr) % blks_per_sec ||
3993                                 nr_pblocks % blks_per_sec ||
3994                                 !f2fs_valid_pinned_area(sbi, pblock)) {
3995                         bool last_extent = false;
3996
3997                         not_aligned++;
3998
3999                         nr_pblocks = roundup(nr_pblocks, blks_per_sec);
4000                         if (cur_lblock + nr_pblocks > sis->max)
4001                                 nr_pblocks -= blks_per_sec;
4002
4003                         /* this extent is last one */
4004                         if (!nr_pblocks) {
4005                                 nr_pblocks = last_lblock - cur_lblock;
4006                                 last_extent = true;
4007                         }
4008
4009                         ret = f2fs_migrate_blocks(inode, cur_lblock,
4010                                                         nr_pblocks);
4011                         if (ret) {
4012                                 if (ret == -ENOENT)
4013                                         ret = -EINVAL;
4014                                 goto out;
4015                         }
4016
4017                         if (!last_extent)
4018                                 goto retry;
4019                 }
4020
4021                 if (cur_lblock + nr_pblocks >= sis->max)
4022                         nr_pblocks = sis->max - cur_lblock;
4023
4024                 if (cur_lblock) {       /* exclude the header page */
4025                         if (pblock < lowest_pblock)
4026                                 lowest_pblock = pblock;
4027                         if (pblock + nr_pblocks - 1 > highest_pblock)
4028                                 highest_pblock = pblock + nr_pblocks - 1;
4029                 }
4030
4031                 /*
4032                  * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
4033                  */
4034                 ret = add_swap_extent(sis, cur_lblock, nr_pblocks, pblock);
4035                 if (ret < 0)
4036                         goto out;
4037                 nr_extents += ret;
4038                 cur_lblock += nr_pblocks;
4039         }
4040         ret = nr_extents;
4041         *span = 1 + highest_pblock - lowest_pblock;
4042         if (cur_lblock == 0)
4043                 cur_lblock = 1; /* force Empty message */
4044         sis->max = cur_lblock;
4045         sis->pages = cur_lblock - 1;
4046         sis->highest_bit = cur_lblock - 1;
4047 out:
4048         if (not_aligned)
4049                 f2fs_warn(sbi, "Swapfile (%u) is not align to section: 1) creat(), 2) ioctl(F2FS_IOC_SET_PIN_FILE), 3) fallocate(%lu * N)",
4050                           not_aligned, blks_per_sec * F2FS_BLKSIZE);
4051         return ret;
4052 }
4053
4054 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file,
4055                                 sector_t *span)
4056 {
4057         struct inode *inode = file_inode(file);
4058         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4059         int ret;
4060
4061         if (!S_ISREG(inode->i_mode))
4062                 return -EINVAL;
4063
4064         if (f2fs_readonly(sbi->sb))
4065                 return -EROFS;
4066
4067         if (f2fs_lfs_mode(sbi) && !f2fs_sb_has_blkzoned(sbi)) {
4068                 f2fs_err(sbi, "Swapfile not supported in LFS mode");
4069                 return -EINVAL;
4070         }
4071
4072         ret = f2fs_convert_inline_inode(inode);
4073         if (ret)
4074                 return ret;
4075
4076         if (!f2fs_disable_compressed_file(inode))
4077                 return -EINVAL;
4078
4079         ret = filemap_fdatawrite(inode->i_mapping);
4080         if (ret < 0)
4081                 return ret;
4082
4083         f2fs_precache_extents(inode);
4084
4085         ret = check_swap_activate(sis, file, span);
4086         if (ret < 0)
4087                 return ret;
4088
4089         stat_inc_swapfile_inode(inode);
4090         set_inode_flag(inode, FI_PIN_FILE);
4091         f2fs_update_time(sbi, REQ_TIME);
4092         return ret;
4093 }
4094
4095 static void f2fs_swap_deactivate(struct file *file)
4096 {
4097         struct inode *inode = file_inode(file);
4098
4099         stat_dec_swapfile_inode(inode);
4100         clear_inode_flag(inode, FI_PIN_FILE);
4101 }
4102 #else
4103 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file,
4104                                 sector_t *span)
4105 {
4106         return -EOPNOTSUPP;
4107 }
4108
4109 static void f2fs_swap_deactivate(struct file *file)
4110 {
4111 }
4112 #endif
4113
4114 const struct address_space_operations f2fs_dblock_aops = {
4115         .read_folio     = f2fs_read_data_folio,
4116         .readahead      = f2fs_readahead,
4117         .writepage      = f2fs_write_data_page,
4118         .writepages     = f2fs_write_data_pages,
4119         .write_begin    = f2fs_write_begin,
4120         .write_end      = f2fs_write_end,
4121         .dirty_folio    = f2fs_dirty_data_folio,
4122         .migrate_folio  = filemap_migrate_folio,
4123         .invalidate_folio = f2fs_invalidate_folio,
4124         .release_folio  = f2fs_release_folio,
4125         .bmap           = f2fs_bmap,
4126         .swap_activate  = f2fs_swap_activate,
4127         .swap_deactivate = f2fs_swap_deactivate,
4128 };
4129
4130 void f2fs_clear_page_cache_dirty_tag(struct folio *folio)
4131 {
4132         struct address_space *mapping = folio->mapping;
4133         unsigned long flags;
4134
4135         xa_lock_irqsave(&mapping->i_pages, flags);
4136         __xa_clear_mark(&mapping->i_pages, folio->index,
4137                                                 PAGECACHE_TAG_DIRTY);
4138         xa_unlock_irqrestore(&mapping->i_pages, flags);
4139 }
4140
4141 int __init f2fs_init_post_read_processing(void)
4142 {
4143         bio_post_read_ctx_cache =
4144                 kmem_cache_create("f2fs_bio_post_read_ctx",
4145                                   sizeof(struct bio_post_read_ctx), 0, 0, NULL);
4146         if (!bio_post_read_ctx_cache)
4147                 goto fail;
4148         bio_post_read_ctx_pool =
4149                 mempool_create_slab_pool(NUM_PREALLOC_POST_READ_CTXS,
4150                                          bio_post_read_ctx_cache);
4151         if (!bio_post_read_ctx_pool)
4152                 goto fail_free_cache;
4153         return 0;
4154
4155 fail_free_cache:
4156         kmem_cache_destroy(bio_post_read_ctx_cache);
4157 fail:
4158         return -ENOMEM;
4159 }
4160
4161 void f2fs_destroy_post_read_processing(void)
4162 {
4163         mempool_destroy(bio_post_read_ctx_pool);
4164         kmem_cache_destroy(bio_post_read_ctx_cache);
4165 }
4166
4167 int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi)
4168 {
4169         if (!f2fs_sb_has_encrypt(sbi) &&
4170                 !f2fs_sb_has_verity(sbi) &&
4171                 !f2fs_sb_has_compression(sbi))
4172                 return 0;
4173
4174         sbi->post_read_wq = alloc_workqueue("f2fs_post_read_wq",
4175                                                  WQ_UNBOUND | WQ_HIGHPRI,
4176                                                  num_online_cpus());
4177         return sbi->post_read_wq ? 0 : -ENOMEM;
4178 }
4179
4180 void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi)
4181 {
4182         if (sbi->post_read_wq)
4183                 destroy_workqueue(sbi->post_read_wq);
4184 }
4185
4186 int __init f2fs_init_bio_entry_cache(void)
4187 {
4188         bio_entry_slab = f2fs_kmem_cache_create("f2fs_bio_entry_slab",
4189                         sizeof(struct bio_entry));
4190         return bio_entry_slab ? 0 : -ENOMEM;
4191 }
4192
4193 void f2fs_destroy_bio_entry_cache(void)
4194 {
4195         kmem_cache_destroy(bio_entry_slab);
4196 }
4197
4198 static int f2fs_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
4199                             unsigned int flags, struct iomap *iomap,
4200                             struct iomap *srcmap)
4201 {
4202         struct f2fs_map_blocks map = {};
4203         pgoff_t next_pgofs = 0;
4204         int err;
4205
4206         map.m_lblk = F2FS_BYTES_TO_BLK(offset);
4207         map.m_len = F2FS_BYTES_TO_BLK(offset + length - 1) - map.m_lblk + 1;
4208         map.m_next_pgofs = &next_pgofs;
4209         map.m_seg_type = f2fs_rw_hint_to_seg_type(F2FS_I_SB(inode),
4210                                                 inode->i_write_hint);
4211         if (flags & IOMAP_WRITE)
4212                 map.m_may_create = true;
4213
4214         err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_DIO);
4215         if (err)
4216                 return err;
4217
4218         iomap->offset = F2FS_BLK_TO_BYTES(map.m_lblk);
4219
4220         /*
4221          * When inline encryption is enabled, sometimes I/O to an encrypted file
4222          * has to be broken up to guarantee DUN contiguity.  Handle this by
4223          * limiting the length of the mapping returned.
4224          */
4225         map.m_len = fscrypt_limit_io_blocks(inode, map.m_lblk, map.m_len);
4226
4227         /*
4228          * We should never see delalloc or compressed extents here based on
4229          * prior flushing and checks.
4230          */
4231         if (WARN_ON_ONCE(map.m_pblk == COMPRESS_ADDR))
4232                 return -EINVAL;
4233
4234         if (map.m_flags & F2FS_MAP_MAPPED) {
4235                 if (WARN_ON_ONCE(map.m_pblk == NEW_ADDR))
4236                         return -EINVAL;
4237
4238                 iomap->length = F2FS_BLK_TO_BYTES(map.m_len);
4239                 iomap->type = IOMAP_MAPPED;
4240                 iomap->flags |= IOMAP_F_MERGED;
4241                 iomap->bdev = map.m_bdev;
4242                 iomap->addr = F2FS_BLK_TO_BYTES(map.m_pblk);
4243         } else {
4244                 if (flags & IOMAP_WRITE)
4245                         return -ENOTBLK;
4246
4247                 if (map.m_pblk == NULL_ADDR) {
4248                         iomap->length = F2FS_BLK_TO_BYTES(next_pgofs) -
4249                                                         iomap->offset;
4250                         iomap->type = IOMAP_HOLE;
4251                 } else if (map.m_pblk == NEW_ADDR) {
4252                         iomap->length = F2FS_BLK_TO_BYTES(map.m_len);
4253                         iomap->type = IOMAP_UNWRITTEN;
4254                 } else {
4255                         f2fs_bug_on(F2FS_I_SB(inode), 1);
4256                 }
4257                 iomap->addr = IOMAP_NULL_ADDR;
4258         }
4259
4260         if (map.m_flags & F2FS_MAP_NEW)
4261                 iomap->flags |= IOMAP_F_NEW;
4262         if ((inode->i_state & I_DIRTY_DATASYNC) ||
4263             offset + length > i_size_read(inode))
4264                 iomap->flags |= IOMAP_F_DIRTY;
4265
4266         return 0;
4267 }
4268
4269 const struct iomap_ops f2fs_iomap_ops = {
4270         .iomap_begin    = f2fs_iomap_begin,
4271 };
This page took 0.267866 seconds and 4 git commands to generate.