]> Git Repo - J-linux.git/blob - fs/ext4/file.c
Merge tag 'vfs-6.13-rc7.fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs
[J-linux.git] / fs / ext4 / file.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/ext4/file.c
4  *
5  * Copyright (C) 1992, 1993, 1994, 1995
6  * Remy Card ([email protected])
7  * Laboratoire MASI - Institut Blaise Pascal
8  * Universite Pierre et Marie Curie (Paris VI)
9  *
10  *  from
11  *
12  *  linux/fs/minix/file.c
13  *
14  *  Copyright (C) 1991, 1992  Linus Torvalds
15  *
16  *  ext4 fs regular file handling primitives
17  *
18  *  64-bit file support on 64-bit platforms by Jakub Jelinek
19  *      ([email protected])
20  */
21
22 #include <linux/time.h>
23 #include <linux/fs.h>
24 #include <linux/iomap.h>
25 #include <linux/mount.h>
26 #include <linux/path.h>
27 #include <linux/dax.h>
28 #include <linux/quotaops.h>
29 #include <linux/pagevec.h>
30 #include <linux/uio.h>
31 #include <linux/mman.h>
32 #include <linux/backing-dev.h>
33 #include "ext4.h"
34 #include "ext4_jbd2.h"
35 #include "xattr.h"
36 #include "acl.h"
37 #include "truncate.h"
38
39 /*
40  * Returns %true if the given DIO request should be attempted with DIO, or
41  * %false if it should fall back to buffered I/O.
42  *
43  * DIO isn't well specified; when it's unsupported (either due to the request
44  * being misaligned, or due to the file not supporting DIO at all), filesystems
45  * either fall back to buffered I/O or return EINVAL.  For files that don't use
46  * any special features like encryption or verity, ext4 has traditionally
47  * returned EINVAL for misaligned DIO.  iomap_dio_rw() uses this convention too.
48  * In this case, we should attempt the DIO, *not* fall back to buffered I/O.
49  *
50  * In contrast, in cases where DIO is unsupported due to ext4 features, ext4
51  * traditionally falls back to buffered I/O.
52  *
53  * This function implements the traditional ext4 behavior in all these cases.
54  */
55 static bool ext4_should_use_dio(struct kiocb *iocb, struct iov_iter *iter)
56 {
57         struct inode *inode = file_inode(iocb->ki_filp);
58         u32 dio_align = ext4_dio_alignment(inode);
59
60         if (dio_align == 0)
61                 return false;
62
63         if (dio_align == 1)
64                 return true;
65
66         return IS_ALIGNED(iocb->ki_pos | iov_iter_alignment(iter), dio_align);
67 }
68
69 static ssize_t ext4_dio_read_iter(struct kiocb *iocb, struct iov_iter *to)
70 {
71         ssize_t ret;
72         struct inode *inode = file_inode(iocb->ki_filp);
73
74         if (iocb->ki_flags & IOCB_NOWAIT) {
75                 if (!inode_trylock_shared(inode))
76                         return -EAGAIN;
77         } else {
78                 inode_lock_shared(inode);
79         }
80
81         if (!ext4_should_use_dio(iocb, to)) {
82                 inode_unlock_shared(inode);
83                 /*
84                  * Fallback to buffered I/O if the operation being performed on
85                  * the inode is not supported by direct I/O. The IOCB_DIRECT
86                  * flag needs to be cleared here in order to ensure that the
87                  * direct I/O path within generic_file_read_iter() is not
88                  * taken.
89                  */
90                 iocb->ki_flags &= ~IOCB_DIRECT;
91                 return generic_file_read_iter(iocb, to);
92         }
93
94         ret = iomap_dio_rw(iocb, to, &ext4_iomap_ops, NULL, 0, NULL, 0);
95         inode_unlock_shared(inode);
96
97         file_accessed(iocb->ki_filp);
98         return ret;
99 }
100
101 #ifdef CONFIG_FS_DAX
102 static ssize_t ext4_dax_read_iter(struct kiocb *iocb, struct iov_iter *to)
103 {
104         struct inode *inode = file_inode(iocb->ki_filp);
105         ssize_t ret;
106
107         if (iocb->ki_flags & IOCB_NOWAIT) {
108                 if (!inode_trylock_shared(inode))
109                         return -EAGAIN;
110         } else {
111                 inode_lock_shared(inode);
112         }
113         /*
114          * Recheck under inode lock - at this point we are sure it cannot
115          * change anymore
116          */
117         if (!IS_DAX(inode)) {
118                 inode_unlock_shared(inode);
119                 /* Fallback to buffered IO in case we cannot support DAX */
120                 return generic_file_read_iter(iocb, to);
121         }
122         ret = dax_iomap_rw(iocb, to, &ext4_iomap_ops);
123         inode_unlock_shared(inode);
124
125         file_accessed(iocb->ki_filp);
126         return ret;
127 }
128 #endif
129
130 static ssize_t ext4_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
131 {
132         struct inode *inode = file_inode(iocb->ki_filp);
133
134         if (unlikely(ext4_forced_shutdown(inode->i_sb)))
135                 return -EIO;
136
137         if (!iov_iter_count(to))
138                 return 0; /* skip atime */
139
140 #ifdef CONFIG_FS_DAX
141         if (IS_DAX(inode))
142                 return ext4_dax_read_iter(iocb, to);
143 #endif
144         if (iocb->ki_flags & IOCB_DIRECT)
145                 return ext4_dio_read_iter(iocb, to);
146
147         return generic_file_read_iter(iocb, to);
148 }
149
150 static ssize_t ext4_file_splice_read(struct file *in, loff_t *ppos,
151                                      struct pipe_inode_info *pipe,
152                                      size_t len, unsigned int flags)
153 {
154         struct inode *inode = file_inode(in);
155
156         if (unlikely(ext4_forced_shutdown(inode->i_sb)))
157                 return -EIO;
158         return filemap_splice_read(in, ppos, pipe, len, flags);
159 }
160
161 /*
162  * Called when an inode is released. Note that this is different
163  * from ext4_file_open: open gets called at every open, but release
164  * gets called only when /all/ the files are closed.
165  */
166 static int ext4_release_file(struct inode *inode, struct file *filp)
167 {
168         if (ext4_test_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE)) {
169                 ext4_alloc_da_blocks(inode);
170                 ext4_clear_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
171         }
172         /* if we are the last writer on the inode, drop the block reservation */
173         if ((filp->f_mode & FMODE_WRITE) &&
174                         (atomic_read(&inode->i_writecount) == 1) &&
175                         !EXT4_I(inode)->i_reserved_data_blocks) {
176                 down_write(&EXT4_I(inode)->i_data_sem);
177                 ext4_discard_preallocations(inode);
178                 up_write(&EXT4_I(inode)->i_data_sem);
179         }
180         if (is_dx(inode) && filp->private_data)
181                 ext4_htree_free_dir_info(filp->private_data);
182
183         return 0;
184 }
185
186 /*
187  * This tests whether the IO in question is block-aligned or not.
188  * Ext4 utilizes unwritten extents when hole-filling during direct IO, and they
189  * are converted to written only after the IO is complete.  Until they are
190  * mapped, these blocks appear as holes, so dio_zero_block() will assume that
191  * it needs to zero out portions of the start and/or end block.  If 2 AIO
192  * threads are at work on the same unwritten block, they must be synchronized
193  * or one thread will zero the other's data, causing corruption.
194  */
195 static bool
196 ext4_unaligned_io(struct inode *inode, struct iov_iter *from, loff_t pos)
197 {
198         struct super_block *sb = inode->i_sb;
199         unsigned long blockmask = sb->s_blocksize - 1;
200
201         if ((pos | iov_iter_alignment(from)) & blockmask)
202                 return true;
203
204         return false;
205 }
206
207 static bool
208 ext4_extending_io(struct inode *inode, loff_t offset, size_t len)
209 {
210         if (offset + len > i_size_read(inode) ||
211             offset + len > EXT4_I(inode)->i_disksize)
212                 return true;
213         return false;
214 }
215
216 /* Is IO overwriting allocated or initialized blocks? */
217 static bool ext4_overwrite_io(struct inode *inode,
218                               loff_t pos, loff_t len, bool *unwritten)
219 {
220         struct ext4_map_blocks map;
221         unsigned int blkbits = inode->i_blkbits;
222         int err, blklen;
223
224         if (pos + len > i_size_read(inode))
225                 return false;
226
227         map.m_lblk = pos >> blkbits;
228         map.m_len = EXT4_MAX_BLOCKS(len, pos, blkbits);
229         blklen = map.m_len;
230
231         err = ext4_map_blocks(NULL, inode, &map, 0);
232         if (err != blklen)
233                 return false;
234         /*
235          * 'err==len' means that all of the blocks have been preallocated,
236          * regardless of whether they have been initialized or not. We need to
237          * check m_flags to distinguish the unwritten extents.
238          */
239         *unwritten = !(map.m_flags & EXT4_MAP_MAPPED);
240         return true;
241 }
242
243 static ssize_t ext4_generic_write_checks(struct kiocb *iocb,
244                                          struct iov_iter *from)
245 {
246         struct inode *inode = file_inode(iocb->ki_filp);
247         ssize_t ret;
248
249         if (unlikely(IS_IMMUTABLE(inode)))
250                 return -EPERM;
251
252         ret = generic_write_checks(iocb, from);
253         if (ret <= 0)
254                 return ret;
255
256         /*
257          * If we have encountered a bitmap-format file, the size limit
258          * is smaller than s_maxbytes, which is for extent-mapped files.
259          */
260         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
261                 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
262
263                 if (iocb->ki_pos >= sbi->s_bitmap_maxbytes)
264                         return -EFBIG;
265                 iov_iter_truncate(from, sbi->s_bitmap_maxbytes - iocb->ki_pos);
266         }
267
268         return iov_iter_count(from);
269 }
270
271 static ssize_t ext4_write_checks(struct kiocb *iocb, struct iov_iter *from)
272 {
273         ssize_t ret, count;
274
275         count = ext4_generic_write_checks(iocb, from);
276         if (count <= 0)
277                 return count;
278
279         ret = file_modified(iocb->ki_filp);
280         if (ret)
281                 return ret;
282         return count;
283 }
284
285 static ssize_t ext4_buffered_write_iter(struct kiocb *iocb,
286                                         struct iov_iter *from)
287 {
288         ssize_t ret;
289         struct inode *inode = file_inode(iocb->ki_filp);
290
291         if (iocb->ki_flags & IOCB_NOWAIT)
292                 return -EOPNOTSUPP;
293
294         inode_lock(inode);
295         ret = ext4_write_checks(iocb, from);
296         if (ret <= 0)
297                 goto out;
298
299         ret = generic_perform_write(iocb, from);
300
301 out:
302         inode_unlock(inode);
303         if (unlikely(ret <= 0))
304                 return ret;
305         return generic_write_sync(iocb, ret);
306 }
307
308 static ssize_t ext4_handle_inode_extension(struct inode *inode, loff_t offset,
309                                            ssize_t written, ssize_t count)
310 {
311         handle_t *handle;
312
313         lockdep_assert_held_write(&inode->i_rwsem);
314         handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
315         if (IS_ERR(handle))
316                 return PTR_ERR(handle);
317
318         if (ext4_update_inode_size(inode, offset + written)) {
319                 int ret = ext4_mark_inode_dirty(handle, inode);
320                 if (unlikely(ret)) {
321                         ext4_journal_stop(handle);
322                         return ret;
323                 }
324         }
325
326         if ((written == count) && inode->i_nlink)
327                 ext4_orphan_del(handle, inode);
328         ext4_journal_stop(handle);
329
330         return written;
331 }
332
333 /*
334  * Clean up the inode after DIO or DAX extending write has completed and the
335  * inode size has been updated using ext4_handle_inode_extension().
336  */
337 static void ext4_inode_extension_cleanup(struct inode *inode, bool need_trunc)
338 {
339         lockdep_assert_held_write(&inode->i_rwsem);
340         if (need_trunc) {
341                 ext4_truncate_failed_write(inode);
342                 /*
343                  * If the truncate operation failed early, then the inode may
344                  * still be on the orphan list. In that case, we need to try
345                  * remove the inode from the in-memory linked list.
346                  */
347                 if (inode->i_nlink)
348                         ext4_orphan_del(NULL, inode);
349                 return;
350         }
351         /*
352          * If i_disksize got extended either due to writeback of delalloc
353          * blocks or extending truncate while the DIO was running we could fail
354          * to cleanup the orphan list in ext4_handle_inode_extension(). Do it
355          * now.
356          */
357         if (!list_empty(&EXT4_I(inode)->i_orphan) && inode->i_nlink) {
358                 handle_t *handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
359
360                 if (IS_ERR(handle)) {
361                         /*
362                          * The write has successfully completed. Not much to
363                          * do with the error here so just cleanup the orphan
364                          * list and hope for the best.
365                          */
366                         ext4_orphan_del(NULL, inode);
367                         return;
368                 }
369                 ext4_orphan_del(handle, inode);
370                 ext4_journal_stop(handle);
371         }
372 }
373
374 static int ext4_dio_write_end_io(struct kiocb *iocb, ssize_t size,
375                                  int error, unsigned int flags)
376 {
377         loff_t pos = iocb->ki_pos;
378         struct inode *inode = file_inode(iocb->ki_filp);
379
380         if (!error && size && flags & IOMAP_DIO_UNWRITTEN)
381                 error = ext4_convert_unwritten_extents(NULL, inode, pos, size);
382         if (error)
383                 return error;
384         /*
385          * Note that EXT4_I(inode)->i_disksize can get extended up to
386          * inode->i_size while the I/O was running due to writeback of delalloc
387          * blocks. But the code in ext4_iomap_alloc() is careful to use
388          * zeroed/unwritten extents if this is possible; thus we won't leave
389          * uninitialized blocks in a file even if we didn't succeed in writing
390          * as much as we intended. Also we can race with truncate or write
391          * expanding the file so we have to be a bit careful here.
392          */
393         if (pos + size <= READ_ONCE(EXT4_I(inode)->i_disksize) &&
394             pos + size <= i_size_read(inode))
395                 return 0;
396         error = ext4_handle_inode_extension(inode, pos, size, size);
397         return error < 0 ? error : 0;
398 }
399
400 static const struct iomap_dio_ops ext4_dio_write_ops = {
401         .end_io = ext4_dio_write_end_io,
402 };
403
404 /*
405  * The intention here is to start with shared lock acquired then see if any
406  * condition requires an exclusive inode lock. If yes, then we restart the
407  * whole operation by releasing the shared lock and acquiring exclusive lock.
408  *
409  * - For unaligned_io we never take shared lock as it may cause data corruption
410  *   when two unaligned IO tries to modify the same block e.g. while zeroing.
411  *
412  * - For extending writes case we don't take the shared lock, since it requires
413  *   updating inode i_disksize and/or orphan handling with exclusive lock.
414  *
415  * - shared locking will only be true mostly with overwrites, including
416  *   initialized blocks and unwritten blocks. For overwrite unwritten blocks
417  *   we protect splitting extents by i_data_sem in ext4_inode_info, so we can
418  *   also release exclusive i_rwsem lock.
419  *
420  * - Otherwise we will switch to exclusive i_rwsem lock.
421  */
422 static ssize_t ext4_dio_write_checks(struct kiocb *iocb, struct iov_iter *from,
423                                      bool *ilock_shared, bool *extend,
424                                      bool *unwritten, int *dio_flags)
425 {
426         struct file *file = iocb->ki_filp;
427         struct inode *inode = file_inode(file);
428         loff_t offset;
429         size_t count;
430         ssize_t ret;
431         bool overwrite, unaligned_io;
432
433 restart:
434         ret = ext4_generic_write_checks(iocb, from);
435         if (ret <= 0)
436                 goto out;
437
438         offset = iocb->ki_pos;
439         count = ret;
440
441         unaligned_io = ext4_unaligned_io(inode, from, offset);
442         *extend = ext4_extending_io(inode, offset, count);
443         overwrite = ext4_overwrite_io(inode, offset, count, unwritten);
444
445         /*
446          * Determine whether we need to upgrade to an exclusive lock. This is
447          * required to change security info in file_modified(), for extending
448          * I/O, any form of non-overwrite I/O, and unaligned I/O to unwritten
449          * extents (as partial block zeroing may be required).
450          *
451          * Note that unaligned writes are allowed under shared lock so long as
452          * they are pure overwrites. Otherwise, concurrent unaligned writes risk
453          * data corruption due to partial block zeroing in the dio layer, and so
454          * the I/O must occur exclusively.
455          */
456         if (*ilock_shared &&
457             ((!IS_NOSEC(inode) || *extend || !overwrite ||
458              (unaligned_io && *unwritten)))) {
459                 if (iocb->ki_flags & IOCB_NOWAIT) {
460                         ret = -EAGAIN;
461                         goto out;
462                 }
463                 inode_unlock_shared(inode);
464                 *ilock_shared = false;
465                 inode_lock(inode);
466                 goto restart;
467         }
468
469         /*
470          * Now that locking is settled, determine dio flags and exclusivity
471          * requirements. We don't use DIO_OVERWRITE_ONLY because we enforce
472          * behavior already. The inode lock is already held exclusive if the
473          * write is non-overwrite or extending, so drain all outstanding dio and
474          * set the force wait dio flag.
475          */
476         if (!*ilock_shared && (unaligned_io || *extend)) {
477                 if (iocb->ki_flags & IOCB_NOWAIT) {
478                         ret = -EAGAIN;
479                         goto out;
480                 }
481                 if (unaligned_io && (!overwrite || *unwritten))
482                         inode_dio_wait(inode);
483                 *dio_flags = IOMAP_DIO_FORCE_WAIT;
484         }
485
486         ret = file_modified(file);
487         if (ret < 0)
488                 goto out;
489
490         return count;
491 out:
492         if (*ilock_shared)
493                 inode_unlock_shared(inode);
494         else
495                 inode_unlock(inode);
496         return ret;
497 }
498
499 static ssize_t ext4_dio_write_iter(struct kiocb *iocb, struct iov_iter *from)
500 {
501         ssize_t ret;
502         handle_t *handle;
503         struct inode *inode = file_inode(iocb->ki_filp);
504         loff_t offset = iocb->ki_pos;
505         size_t count = iov_iter_count(from);
506         const struct iomap_ops *iomap_ops = &ext4_iomap_ops;
507         bool extend = false, unwritten = false;
508         bool ilock_shared = true;
509         int dio_flags = 0;
510
511         /*
512          * Quick check here without any i_rwsem lock to see if it is extending
513          * IO. A more reliable check is done in ext4_dio_write_checks() with
514          * proper locking in place.
515          */
516         if (offset + count > i_size_read(inode))
517                 ilock_shared = false;
518
519         if (iocb->ki_flags & IOCB_NOWAIT) {
520                 if (ilock_shared) {
521                         if (!inode_trylock_shared(inode))
522                                 return -EAGAIN;
523                 } else {
524                         if (!inode_trylock(inode))
525                                 return -EAGAIN;
526                 }
527         } else {
528                 if (ilock_shared)
529                         inode_lock_shared(inode);
530                 else
531                         inode_lock(inode);
532         }
533
534         /* Fallback to buffered I/O if the inode does not support direct I/O. */
535         if (!ext4_should_use_dio(iocb, from)) {
536                 if (ilock_shared)
537                         inode_unlock_shared(inode);
538                 else
539                         inode_unlock(inode);
540                 return ext4_buffered_write_iter(iocb, from);
541         }
542
543         /*
544          * Prevent inline data from being created since we are going to allocate
545          * blocks for DIO. We know the inode does not currently have inline data
546          * because ext4_should_use_dio() checked for it, but we have to clear
547          * the state flag before the write checks because a lock cycle could
548          * introduce races with other writers.
549          */
550         ext4_clear_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA);
551
552         ret = ext4_dio_write_checks(iocb, from, &ilock_shared, &extend,
553                                     &unwritten, &dio_flags);
554         if (ret <= 0)
555                 return ret;
556
557         offset = iocb->ki_pos;
558         count = ret;
559
560         if (extend) {
561                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
562                 if (IS_ERR(handle)) {
563                         ret = PTR_ERR(handle);
564                         goto out;
565                 }
566
567                 ret = ext4_orphan_add(handle, inode);
568                 ext4_journal_stop(handle);
569                 if (ret)
570                         goto out;
571         }
572
573         if (ilock_shared && !unwritten)
574                 iomap_ops = &ext4_iomap_overwrite_ops;
575         ret = iomap_dio_rw(iocb, from, iomap_ops, &ext4_dio_write_ops,
576                            dio_flags, NULL, 0);
577         if (ret == -ENOTBLK)
578                 ret = 0;
579         if (extend) {
580                 /*
581                  * We always perform extending DIO write synchronously so by
582                  * now the IO is completed and ext4_handle_inode_extension()
583                  * was called. Cleanup the inode in case of error or race with
584                  * writeback of delalloc blocks.
585                  */
586                 WARN_ON_ONCE(ret == -EIOCBQUEUED);
587                 ext4_inode_extension_cleanup(inode, ret < 0);
588         }
589
590 out:
591         if (ilock_shared)
592                 inode_unlock_shared(inode);
593         else
594                 inode_unlock(inode);
595
596         if (ret >= 0 && iov_iter_count(from)) {
597                 ssize_t err;
598                 loff_t endbyte;
599
600                 /*
601                  * There is no support for atomic writes on buffered-io yet,
602                  * we should never fallback to buffered-io for DIO atomic
603                  * writes.
604                  */
605                 WARN_ON_ONCE(iocb->ki_flags & IOCB_ATOMIC);
606
607                 offset = iocb->ki_pos;
608                 err = ext4_buffered_write_iter(iocb, from);
609                 if (err < 0)
610                         return err;
611
612                 /*
613                  * We need to ensure that the pages within the page cache for
614                  * the range covered by this I/O are written to disk and
615                  * invalidated. This is in attempt to preserve the expected
616                  * direct I/O semantics in the case we fallback to buffered I/O
617                  * to complete off the I/O request.
618                  */
619                 ret += err;
620                 endbyte = offset + err - 1;
621                 err = filemap_write_and_wait_range(iocb->ki_filp->f_mapping,
622                                                    offset, endbyte);
623                 if (!err)
624                         invalidate_mapping_pages(iocb->ki_filp->f_mapping,
625                                                  offset >> PAGE_SHIFT,
626                                                  endbyte >> PAGE_SHIFT);
627         }
628
629         return ret;
630 }
631
632 #ifdef CONFIG_FS_DAX
633 static ssize_t
634 ext4_dax_write_iter(struct kiocb *iocb, struct iov_iter *from)
635 {
636         ssize_t ret;
637         size_t count;
638         loff_t offset;
639         handle_t *handle;
640         bool extend = false;
641         struct inode *inode = file_inode(iocb->ki_filp);
642
643         if (iocb->ki_flags & IOCB_NOWAIT) {
644                 if (!inode_trylock(inode))
645                         return -EAGAIN;
646         } else {
647                 inode_lock(inode);
648         }
649
650         ret = ext4_write_checks(iocb, from);
651         if (ret <= 0)
652                 goto out;
653
654         offset = iocb->ki_pos;
655         count = iov_iter_count(from);
656
657         if (offset + count > EXT4_I(inode)->i_disksize) {
658                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
659                 if (IS_ERR(handle)) {
660                         ret = PTR_ERR(handle);
661                         goto out;
662                 }
663
664                 ret = ext4_orphan_add(handle, inode);
665                 if (ret) {
666                         ext4_journal_stop(handle);
667                         goto out;
668                 }
669
670                 extend = true;
671                 ext4_journal_stop(handle);
672         }
673
674         ret = dax_iomap_rw(iocb, from, &ext4_iomap_ops);
675
676         if (extend) {
677                 ret = ext4_handle_inode_extension(inode, offset, ret, count);
678                 ext4_inode_extension_cleanup(inode, ret < (ssize_t)count);
679         }
680 out:
681         inode_unlock(inode);
682         if (ret > 0)
683                 ret = generic_write_sync(iocb, ret);
684         return ret;
685 }
686 #endif
687
688 static ssize_t
689 ext4_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
690 {
691         struct inode *inode = file_inode(iocb->ki_filp);
692
693         if (unlikely(ext4_forced_shutdown(inode->i_sb)))
694                 return -EIO;
695
696 #ifdef CONFIG_FS_DAX
697         if (IS_DAX(inode))
698                 return ext4_dax_write_iter(iocb, from);
699 #endif
700
701         if (iocb->ki_flags & IOCB_ATOMIC) {
702                 size_t len = iov_iter_count(from);
703                 int ret;
704
705                 if (len < EXT4_SB(inode->i_sb)->s_awu_min ||
706                     len > EXT4_SB(inode->i_sb)->s_awu_max)
707                         return -EINVAL;
708
709                 ret = generic_atomic_write_valid(iocb, from);
710                 if (ret)
711                         return ret;
712         }
713
714         if (iocb->ki_flags & IOCB_DIRECT)
715                 return ext4_dio_write_iter(iocb, from);
716         else
717                 return ext4_buffered_write_iter(iocb, from);
718 }
719
720 #ifdef CONFIG_FS_DAX
721 static vm_fault_t ext4_dax_huge_fault(struct vm_fault *vmf, unsigned int order)
722 {
723         int error = 0;
724         vm_fault_t result;
725         int retries = 0;
726         handle_t *handle = NULL;
727         struct inode *inode = file_inode(vmf->vma->vm_file);
728         struct super_block *sb = inode->i_sb;
729
730         /*
731          * We have to distinguish real writes from writes which will result in a
732          * COW page; COW writes should *not* poke the journal (the file will not
733          * be changed). Doing so would cause unintended failures when mounted
734          * read-only.
735          *
736          * We check for VM_SHARED rather than vmf->cow_page since the latter is
737          * unset for order != 0 (i.e. only in do_cow_fault); for
738          * other sizes, dax_iomap_fault will handle splitting / fallback so that
739          * we eventually come back with a COW page.
740          */
741         bool write = (vmf->flags & FAULT_FLAG_WRITE) &&
742                 (vmf->vma->vm_flags & VM_SHARED);
743         struct address_space *mapping = vmf->vma->vm_file->f_mapping;
744         pfn_t pfn;
745
746         if (write) {
747                 sb_start_pagefault(sb);
748                 file_update_time(vmf->vma->vm_file);
749                 filemap_invalidate_lock_shared(mapping);
750 retry:
751                 handle = ext4_journal_start_sb(sb, EXT4_HT_WRITE_PAGE,
752                                                EXT4_DATA_TRANS_BLOCKS(sb));
753                 if (IS_ERR(handle)) {
754                         filemap_invalidate_unlock_shared(mapping);
755                         sb_end_pagefault(sb);
756                         return VM_FAULT_SIGBUS;
757                 }
758         } else {
759                 filemap_invalidate_lock_shared(mapping);
760         }
761         result = dax_iomap_fault(vmf, order, &pfn, &error, &ext4_iomap_ops);
762         if (write) {
763                 ext4_journal_stop(handle);
764
765                 if ((result & VM_FAULT_ERROR) && error == -ENOSPC &&
766                     ext4_should_retry_alloc(sb, &retries))
767                         goto retry;
768                 /* Handling synchronous page fault? */
769                 if (result & VM_FAULT_NEEDDSYNC)
770                         result = dax_finish_sync_fault(vmf, order, pfn);
771                 filemap_invalidate_unlock_shared(mapping);
772                 sb_end_pagefault(sb);
773         } else {
774                 filemap_invalidate_unlock_shared(mapping);
775         }
776
777         return result;
778 }
779
780 static vm_fault_t ext4_dax_fault(struct vm_fault *vmf)
781 {
782         return ext4_dax_huge_fault(vmf, 0);
783 }
784
785 static const struct vm_operations_struct ext4_dax_vm_ops = {
786         .fault          = ext4_dax_fault,
787         .huge_fault     = ext4_dax_huge_fault,
788         .page_mkwrite   = ext4_dax_fault,
789         .pfn_mkwrite    = ext4_dax_fault,
790 };
791 #else
792 #define ext4_dax_vm_ops ext4_file_vm_ops
793 #endif
794
795 static const struct vm_operations_struct ext4_file_vm_ops = {
796         .fault          = filemap_fault,
797         .map_pages      = filemap_map_pages,
798         .page_mkwrite   = ext4_page_mkwrite,
799 };
800
801 static int ext4_file_mmap(struct file *file, struct vm_area_struct *vma)
802 {
803         struct inode *inode = file->f_mapping->host;
804         struct dax_device *dax_dev = EXT4_SB(inode->i_sb)->s_daxdev;
805
806         if (unlikely(ext4_forced_shutdown(inode->i_sb)))
807                 return -EIO;
808
809         /*
810          * We don't support synchronous mappings for non-DAX files and
811          * for DAX files if underneath dax_device is not synchronous.
812          */
813         if (!daxdev_mapping_supported(vma, dax_dev))
814                 return -EOPNOTSUPP;
815
816         file_accessed(file);
817         if (IS_DAX(file_inode(file))) {
818                 vma->vm_ops = &ext4_dax_vm_ops;
819                 vm_flags_set(vma, VM_HUGEPAGE);
820         } else {
821                 vma->vm_ops = &ext4_file_vm_ops;
822         }
823         return 0;
824 }
825
826 static int ext4_sample_last_mounted(struct super_block *sb,
827                                     struct vfsmount *mnt)
828 {
829         struct ext4_sb_info *sbi = EXT4_SB(sb);
830         struct path path;
831         char buf[64], *cp;
832         handle_t *handle;
833         int err;
834
835         if (likely(ext4_test_mount_flag(sb, EXT4_MF_MNTDIR_SAMPLED)))
836                 return 0;
837
838         if (sb_rdonly(sb) || !sb_start_intwrite_trylock(sb))
839                 return 0;
840
841         ext4_set_mount_flag(sb, EXT4_MF_MNTDIR_SAMPLED);
842         /*
843          * Sample where the filesystem has been mounted and
844          * store it in the superblock for sysadmin convenience
845          * when trying to sort through large numbers of block
846          * devices or filesystem images.
847          */
848         memset(buf, 0, sizeof(buf));
849         path.mnt = mnt;
850         path.dentry = mnt->mnt_root;
851         cp = d_path(&path, buf, sizeof(buf));
852         err = 0;
853         if (IS_ERR(cp))
854                 goto out;
855
856         handle = ext4_journal_start_sb(sb, EXT4_HT_MISC, 1);
857         err = PTR_ERR(handle);
858         if (IS_ERR(handle))
859                 goto out;
860         BUFFER_TRACE(sbi->s_sbh, "get_write_access");
861         err = ext4_journal_get_write_access(handle, sb, sbi->s_sbh,
862                                             EXT4_JTR_NONE);
863         if (err)
864                 goto out_journal;
865         lock_buffer(sbi->s_sbh);
866         strtomem_pad(sbi->s_es->s_last_mounted, cp, 0);
867         ext4_superblock_csum_set(sb);
868         unlock_buffer(sbi->s_sbh);
869         ext4_handle_dirty_metadata(handle, NULL, sbi->s_sbh);
870 out_journal:
871         ext4_journal_stop(handle);
872 out:
873         sb_end_intwrite(sb);
874         return err;
875 }
876
877 static int ext4_file_open(struct inode *inode, struct file *filp)
878 {
879         int ret;
880
881         if (unlikely(ext4_forced_shutdown(inode->i_sb)))
882                 return -EIO;
883
884         ret = ext4_sample_last_mounted(inode->i_sb, filp->f_path.mnt);
885         if (ret)
886                 return ret;
887
888         ret = fscrypt_file_open(inode, filp);
889         if (ret)
890                 return ret;
891
892         ret = fsverity_file_open(inode, filp);
893         if (ret)
894                 return ret;
895
896         /*
897          * Set up the jbd2_inode if we are opening the inode for
898          * writing and the journal is present
899          */
900         if (filp->f_mode & FMODE_WRITE) {
901                 ret = ext4_inode_attach_jinode(inode);
902                 if (ret < 0)
903                         return ret;
904         }
905
906         if (ext4_inode_can_atomic_write(inode))
907                 filp->f_mode |= FMODE_CAN_ATOMIC_WRITE;
908
909         filp->f_mode |= FMODE_NOWAIT | FMODE_CAN_ODIRECT;
910         return dquot_file_open(inode, filp);
911 }
912
913 /*
914  * ext4_llseek() handles both block-mapped and extent-mapped maxbytes values
915  * by calling generic_file_llseek_size() with the appropriate maxbytes
916  * value for each.
917  */
918 loff_t ext4_llseek(struct file *file, loff_t offset, int whence)
919 {
920         struct inode *inode = file->f_mapping->host;
921         loff_t maxbytes;
922
923         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
924                 maxbytes = EXT4_SB(inode->i_sb)->s_bitmap_maxbytes;
925         else
926                 maxbytes = inode->i_sb->s_maxbytes;
927
928         switch (whence) {
929         default:
930                 return generic_file_llseek_size(file, offset, whence,
931                                                 maxbytes, i_size_read(inode));
932         case SEEK_HOLE:
933                 inode_lock_shared(inode);
934                 offset = iomap_seek_hole(inode, offset,
935                                          &ext4_iomap_report_ops);
936                 inode_unlock_shared(inode);
937                 break;
938         case SEEK_DATA:
939                 inode_lock_shared(inode);
940                 offset = iomap_seek_data(inode, offset,
941                                          &ext4_iomap_report_ops);
942                 inode_unlock_shared(inode);
943                 break;
944         }
945
946         if (offset < 0)
947                 return offset;
948         return vfs_setpos(file, offset, maxbytes);
949 }
950
951 const struct file_operations ext4_file_operations = {
952         .llseek         = ext4_llseek,
953         .read_iter      = ext4_file_read_iter,
954         .write_iter     = ext4_file_write_iter,
955         .iopoll         = iocb_bio_iopoll,
956         .unlocked_ioctl = ext4_ioctl,
957 #ifdef CONFIG_COMPAT
958         .compat_ioctl   = ext4_compat_ioctl,
959 #endif
960         .mmap           = ext4_file_mmap,
961         .open           = ext4_file_open,
962         .release        = ext4_release_file,
963         .fsync          = ext4_sync_file,
964         .get_unmapped_area = thp_get_unmapped_area,
965         .splice_read    = ext4_file_splice_read,
966         .splice_write   = iter_file_splice_write,
967         .fallocate      = ext4_fallocate,
968         .fop_flags      = FOP_MMAP_SYNC | FOP_BUFFER_RASYNC |
969                           FOP_DIO_PARALLEL_WRITE,
970 };
971
972 const struct inode_operations ext4_file_inode_operations = {
973         .setattr        = ext4_setattr,
974         .getattr        = ext4_file_getattr,
975         .listxattr      = ext4_listxattr,
976         .get_inode_acl  = ext4_get_acl,
977         .set_acl        = ext4_set_acl,
978         .fiemap         = ext4_fiemap,
979         .fileattr_get   = ext4_fileattr_get,
980         .fileattr_set   = ext4_fileattr_set,
981 };
982
This page took 0.085422 seconds and 4 git commands to generate.