1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * fs/eventpoll.c (Efficient event retrieval implementation)
4 * Copyright (C) 2001,...,2009 Davide Libenzi
9 #include <linux/init.h>
10 #include <linux/kernel.h>
11 #include <linux/sched/signal.h>
13 #include <linux/file.h>
14 #include <linux/signal.h>
15 #include <linux/errno.h>
17 #include <linux/slab.h>
18 #include <linux/poll.h>
19 #include <linux/string.h>
20 #include <linux/list.h>
21 #include <linux/hash.h>
22 #include <linux/spinlock.h>
23 #include <linux/syscalls.h>
24 #include <linux/rbtree.h>
25 #include <linux/wait.h>
26 #include <linux/eventpoll.h>
27 #include <linux/mount.h>
28 #include <linux/bitops.h>
29 #include <linux/mutex.h>
30 #include <linux/anon_inodes.h>
31 #include <linux/device.h>
32 #include <linux/uaccess.h>
35 #include <linux/atomic.h>
36 #include <linux/proc_fs.h>
37 #include <linux/seq_file.h>
38 #include <linux/compat.h>
39 #include <linux/rculist.h>
40 #include <linux/capability.h>
41 #include <net/busy_poll.h>
45 * There are three level of locking required by epoll :
47 * 1) epnested_mutex (mutex)
49 * 3) ep->lock (rwlock)
51 * The acquire order is the one listed above, from 1 to 3.
52 * We need a rwlock (ep->lock) because we manipulate objects
53 * from inside the poll callback, that might be triggered from
54 * a wake_up() that in turn might be called from IRQ context.
55 * So we can't sleep inside the poll callback and hence we need
56 * a spinlock. During the event transfer loop (from kernel to
57 * user space) we could end up sleeping due a copy_to_user(), so
58 * we need a lock that will allow us to sleep. This lock is a
59 * mutex (ep->mtx). It is acquired during the event transfer loop,
60 * during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file().
61 * The epnested_mutex is acquired when inserting an epoll fd onto another
62 * epoll fd. We do this so that we walk the epoll tree and ensure that this
63 * insertion does not create a cycle of epoll file descriptors, which
64 * could lead to deadlock. We need a global mutex to prevent two
65 * simultaneous inserts (A into B and B into A) from racing and
66 * constructing a cycle without either insert observing that it is
68 * It is necessary to acquire multiple "ep->mtx"es at once in the
69 * case when one epoll fd is added to another. In this case, we
70 * always acquire the locks in the order of nesting (i.e. after
71 * epoll_ctl(e1, EPOLL_CTL_ADD, e2), e1->mtx will always be acquired
72 * before e2->mtx). Since we disallow cycles of epoll file
73 * descriptors, this ensures that the mutexes are well-ordered. In
74 * order to communicate this nesting to lockdep, when walking a tree
75 * of epoll file descriptors, we use the current recursion depth as
77 * It is possible to drop the "ep->mtx" and to use the global
78 * mutex "epnested_mutex" (together with "ep->lock") to have it working,
79 * but having "ep->mtx" will make the interface more scalable.
80 * Events that require holding "epnested_mutex" are very rare, while for
81 * normal operations the epoll private "ep->mtx" will guarantee
82 * a better scalability.
85 /* Epoll private bits inside the event mask */
86 #define EP_PRIVATE_BITS (EPOLLWAKEUP | EPOLLONESHOT | EPOLLET | EPOLLEXCLUSIVE)
88 #define EPOLLINOUT_BITS (EPOLLIN | EPOLLOUT)
90 #define EPOLLEXCLUSIVE_OK_BITS (EPOLLINOUT_BITS | EPOLLERR | EPOLLHUP | \
91 EPOLLWAKEUP | EPOLLET | EPOLLEXCLUSIVE)
93 /* Maximum number of nesting allowed inside epoll sets */
94 #define EP_MAX_NESTS 4
96 #define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event))
98 #define EP_UNACTIVE_PTR ((void *) -1L)
100 #define EP_ITEM_COST (sizeof(struct epitem) + sizeof(struct eppoll_entry))
102 struct epoll_filefd {
107 /* Wait structure used by the poll hooks */
108 struct eppoll_entry {
109 /* List header used to link this structure to the "struct epitem" */
110 struct eppoll_entry *next;
112 /* The "base" pointer is set to the container "struct epitem" */
116 * Wait queue item that will be linked to the target file wait
119 wait_queue_entry_t wait;
121 /* The wait queue head that linked the "wait" wait queue item */
122 wait_queue_head_t *whead;
126 * Each file descriptor added to the eventpoll interface will
127 * have an entry of this type linked to the "rbr" RB tree.
128 * Avoid increasing the size of this struct, there can be many thousands
129 * of these on a server and we do not want this to take another cache line.
133 /* RB tree node links this structure to the eventpoll RB tree */
135 /* Used to free the struct epitem */
139 /* List header used to link this structure to the eventpoll ready list */
140 struct list_head rdllink;
143 * Works together "struct eventpoll"->ovflist in keeping the
144 * single linked chain of items.
148 /* The file descriptor information this item refers to */
149 struct epoll_filefd ffd;
152 * Protected by file->f_lock, true for to-be-released epitem already
153 * removed from the "struct file" items list; together with
154 * eventpoll->refcount orchestrates "struct eventpoll" disposal
158 /* List containing poll wait queues */
159 struct eppoll_entry *pwqlist;
161 /* The "container" of this item */
162 struct eventpoll *ep;
164 /* List header used to link this item to the "struct file" items list */
165 struct hlist_node fllink;
167 /* wakeup_source used when EPOLLWAKEUP is set */
168 struct wakeup_source __rcu *ws;
170 /* The structure that describe the interested events and the source fd */
171 struct epoll_event event;
175 * This structure is stored inside the "private_data" member of the file
176 * structure and represents the main data structure for the eventpoll
181 * This mutex is used to ensure that files are not removed
182 * while epoll is using them. This is held during the event
183 * collection loop, the file cleanup path, the epoll file exit
184 * code and the ctl operations.
188 /* Wait queue used by sys_epoll_wait() */
189 wait_queue_head_t wq;
191 /* Wait queue used by file->poll() */
192 wait_queue_head_t poll_wait;
194 /* List of ready file descriptors */
195 struct list_head rdllist;
197 /* Lock which protects rdllist and ovflist */
200 /* RB tree root used to store monitored fd structs */
201 struct rb_root_cached rbr;
204 * This is a single linked list that chains all the "struct epitem" that
205 * happened while transferring ready events to userspace w/out
208 struct epitem *ovflist;
210 /* wakeup_source used when ep_send_events or __ep_eventpoll_poll is running */
211 struct wakeup_source *ws;
213 /* The user that created the eventpoll descriptor */
214 struct user_struct *user;
218 /* used to optimize loop detection check */
220 struct hlist_head refs;
223 * usage count, used together with epitem->dying to
224 * orchestrate the disposal of this struct
228 #ifdef CONFIG_NET_RX_BUSY_POLL
229 /* used to track busy poll napi_id */
230 unsigned int napi_id;
231 /* busy poll timeout */
233 /* busy poll packet budget */
234 u16 busy_poll_budget;
235 bool prefer_busy_poll;
238 #ifdef CONFIG_DEBUG_LOCK_ALLOC
239 /* tracks wakeup nests for lockdep validation */
244 /* Wrapper struct used by poll queueing */
251 * Configuration options available inside /proc/sys/fs/epoll/
253 /* Maximum number of epoll watched descriptors, per user */
254 static long max_user_watches __read_mostly;
256 /* Used for cycles detection */
257 static DEFINE_MUTEX(epnested_mutex);
259 static u64 loop_check_gen = 0;
261 /* Used to check for epoll file descriptor inclusion loops */
262 static struct eventpoll *inserting_into;
264 /* Slab cache used to allocate "struct epitem" */
265 static struct kmem_cache *epi_cache __ro_after_init;
267 /* Slab cache used to allocate "struct eppoll_entry" */
268 static struct kmem_cache *pwq_cache __ro_after_init;
271 * List of files with newly added links, where we may need to limit the number
272 * of emanating paths. Protected by the epnested_mutex.
274 struct epitems_head {
275 struct hlist_head epitems;
276 struct epitems_head *next;
278 static struct epitems_head *tfile_check_list = EP_UNACTIVE_PTR;
280 static struct kmem_cache *ephead_cache __ro_after_init;
282 static inline void free_ephead(struct epitems_head *head)
285 kmem_cache_free(ephead_cache, head);
288 static void list_file(struct file *file)
290 struct epitems_head *head;
292 head = container_of(file->f_ep, struct epitems_head, epitems);
294 head->next = tfile_check_list;
295 tfile_check_list = head;
299 static void unlist_file(struct epitems_head *head)
301 struct epitems_head *to_free = head;
302 struct hlist_node *p = rcu_dereference(hlist_first_rcu(&head->epitems));
304 struct epitem *epi= container_of(p, struct epitem, fllink);
305 spin_lock(&epi->ffd.file->f_lock);
306 if (!hlist_empty(&head->epitems))
309 spin_unlock(&epi->ffd.file->f_lock);
311 free_ephead(to_free);
316 #include <linux/sysctl.h>
318 static long long_zero;
319 static long long_max = LONG_MAX;
321 static struct ctl_table epoll_table[] = {
323 .procname = "max_user_watches",
324 .data = &max_user_watches,
325 .maxlen = sizeof(max_user_watches),
327 .proc_handler = proc_doulongvec_minmax,
328 .extra1 = &long_zero,
333 static void __init epoll_sysctls_init(void)
335 register_sysctl("fs/epoll", epoll_table);
338 #define epoll_sysctls_init() do { } while (0)
339 #endif /* CONFIG_SYSCTL */
341 static const struct file_operations eventpoll_fops;
343 static inline int is_file_epoll(struct file *f)
345 return f->f_op == &eventpoll_fops;
348 /* Setup the structure that is used as key for the RB tree */
349 static inline void ep_set_ffd(struct epoll_filefd *ffd,
350 struct file *file, int fd)
356 /* Compare RB tree keys */
357 static inline int ep_cmp_ffd(struct epoll_filefd *p1,
358 struct epoll_filefd *p2)
360 return (p1->file > p2->file ? +1:
361 (p1->file < p2->file ? -1 : p1->fd - p2->fd));
364 /* Tells us if the item is currently linked */
365 static inline int ep_is_linked(struct epitem *epi)
367 return !list_empty(&epi->rdllink);
370 static inline struct eppoll_entry *ep_pwq_from_wait(wait_queue_entry_t *p)
372 return container_of(p, struct eppoll_entry, wait);
375 /* Get the "struct epitem" from a wait queue pointer */
376 static inline struct epitem *ep_item_from_wait(wait_queue_entry_t *p)
378 return container_of(p, struct eppoll_entry, wait)->base;
382 * ep_events_available - Checks if ready events might be available.
384 * @ep: Pointer to the eventpoll context.
386 * Return: a value different than %zero if ready events are available,
387 * or %zero otherwise.
389 static inline int ep_events_available(struct eventpoll *ep)
391 return !list_empty_careful(&ep->rdllist) ||
392 READ_ONCE(ep->ovflist) != EP_UNACTIVE_PTR;
395 #ifdef CONFIG_NET_RX_BUSY_POLL
397 * busy_loop_ep_timeout - check if busy poll has timed out. The timeout value
398 * from the epoll instance ep is preferred, but if it is not set fallback to
399 * the system-wide global via busy_loop_timeout.
401 * @start_time: The start time used to compute the remaining time until timeout.
402 * @ep: Pointer to the eventpoll context.
404 * Return: true if the timeout has expired, false otherwise.
406 static bool busy_loop_ep_timeout(unsigned long start_time,
407 struct eventpoll *ep)
409 unsigned long bp_usec = READ_ONCE(ep->busy_poll_usecs);
412 unsigned long end_time = start_time + bp_usec;
413 unsigned long now = busy_loop_current_time();
415 return time_after(now, end_time);
417 return busy_loop_timeout(start_time);
421 static bool ep_busy_loop_on(struct eventpoll *ep)
423 return !!READ_ONCE(ep->busy_poll_usecs) ||
424 READ_ONCE(ep->prefer_busy_poll) ||
428 static bool ep_busy_loop_end(void *p, unsigned long start_time)
430 struct eventpoll *ep = p;
432 return ep_events_available(ep) || busy_loop_ep_timeout(start_time, ep);
436 * Busy poll if globally on and supporting sockets found && no events,
437 * busy loop will return if need_resched or ep_events_available.
439 * we must do our busy polling with irqs enabled
441 static bool ep_busy_loop(struct eventpoll *ep, int nonblock)
443 unsigned int napi_id = READ_ONCE(ep->napi_id);
444 u16 budget = READ_ONCE(ep->busy_poll_budget);
445 bool prefer_busy_poll = READ_ONCE(ep->prefer_busy_poll);
448 budget = BUSY_POLL_BUDGET;
450 if (napi_id >= MIN_NAPI_ID && ep_busy_loop_on(ep)) {
451 napi_busy_loop(napi_id, nonblock ? NULL : ep_busy_loop_end,
452 ep, prefer_busy_poll, budget);
453 if (ep_events_available(ep))
456 * Busy poll timed out. Drop NAPI ID for now, we can add
457 * it back in when we have moved a socket with a valid NAPI
458 * ID onto the ready list.
460 if (prefer_busy_poll)
461 napi_resume_irqs(napi_id);
469 * Set epoll busy poll NAPI ID from sk.
471 static inline void ep_set_busy_poll_napi_id(struct epitem *epi)
473 struct eventpoll *ep = epi->ep;
474 unsigned int napi_id;
478 if (!ep_busy_loop_on(ep))
481 sock = sock_from_file(epi->ffd.file);
489 napi_id = READ_ONCE(sk->sk_napi_id);
491 /* Non-NAPI IDs can be rejected
493 * Nothing to do if we already have this ID
495 if (napi_id < MIN_NAPI_ID || napi_id == ep->napi_id)
498 /* record NAPI ID for use in next busy poll */
499 ep->napi_id = napi_id;
502 static long ep_eventpoll_bp_ioctl(struct file *file, unsigned int cmd,
505 struct eventpoll *ep = file->private_data;
506 void __user *uarg = (void __user *)arg;
507 struct epoll_params epoll_params;
511 if (copy_from_user(&epoll_params, uarg, sizeof(epoll_params)))
514 /* pad byte must be zero */
515 if (epoll_params.__pad)
518 if (epoll_params.busy_poll_usecs > S32_MAX)
521 if (epoll_params.prefer_busy_poll > 1)
524 if (epoll_params.busy_poll_budget > NAPI_POLL_WEIGHT &&
525 !capable(CAP_NET_ADMIN))
528 WRITE_ONCE(ep->busy_poll_usecs, epoll_params.busy_poll_usecs);
529 WRITE_ONCE(ep->busy_poll_budget, epoll_params.busy_poll_budget);
530 WRITE_ONCE(ep->prefer_busy_poll, epoll_params.prefer_busy_poll);
533 memset(&epoll_params, 0, sizeof(epoll_params));
534 epoll_params.busy_poll_usecs = READ_ONCE(ep->busy_poll_usecs);
535 epoll_params.busy_poll_budget = READ_ONCE(ep->busy_poll_budget);
536 epoll_params.prefer_busy_poll = READ_ONCE(ep->prefer_busy_poll);
537 if (copy_to_user(uarg, &epoll_params, sizeof(epoll_params)))
545 static void ep_suspend_napi_irqs(struct eventpoll *ep)
547 unsigned int napi_id = READ_ONCE(ep->napi_id);
549 if (napi_id >= MIN_NAPI_ID && READ_ONCE(ep->prefer_busy_poll))
550 napi_suspend_irqs(napi_id);
553 static void ep_resume_napi_irqs(struct eventpoll *ep)
555 unsigned int napi_id = READ_ONCE(ep->napi_id);
557 if (napi_id >= MIN_NAPI_ID && READ_ONCE(ep->prefer_busy_poll))
558 napi_resume_irqs(napi_id);
563 static inline bool ep_busy_loop(struct eventpoll *ep, int nonblock)
568 static inline void ep_set_busy_poll_napi_id(struct epitem *epi)
572 static long ep_eventpoll_bp_ioctl(struct file *file, unsigned int cmd,
578 static void ep_suspend_napi_irqs(struct eventpoll *ep)
582 static void ep_resume_napi_irqs(struct eventpoll *ep)
586 #endif /* CONFIG_NET_RX_BUSY_POLL */
589 * As described in commit 0ccf831cb lockdep: annotate epoll
590 * the use of wait queues used by epoll is done in a very controlled
591 * manner. Wake ups can nest inside each other, but are never done
592 * with the same locking. For example:
595 * efd1 = epoll_create();
596 * efd2 = epoll_create();
597 * epoll_ctl(efd1, EPOLL_CTL_ADD, dfd, ...);
598 * epoll_ctl(efd2, EPOLL_CTL_ADD, efd1, ...);
600 * When a packet arrives to the device underneath "dfd", the net code will
601 * issue a wake_up() on its poll wake list. Epoll (efd1) has installed a
602 * callback wakeup entry on that queue, and the wake_up() performed by the
603 * "dfd" net code will end up in ep_poll_callback(). At this point epoll
604 * (efd1) notices that it may have some event ready, so it needs to wake up
605 * the waiters on its poll wait list (efd2). So it calls ep_poll_safewake()
606 * that ends up in another wake_up(), after having checked about the
607 * recursion constraints. That are, no more than EP_MAX_NESTS, to avoid
610 * When CONFIG_DEBUG_LOCK_ALLOC is enabled, make sure lockdep can handle
611 * this special case of epoll.
613 #ifdef CONFIG_DEBUG_LOCK_ALLOC
615 static void ep_poll_safewake(struct eventpoll *ep, struct epitem *epi,
618 struct eventpoll *ep_src;
623 * To set the subclass or nesting level for spin_lock_irqsave_nested()
624 * it might be natural to create a per-cpu nest count. However, since
625 * we can recurse on ep->poll_wait.lock, and a non-raw spinlock can
626 * schedule() in the -rt kernel, the per-cpu variable are no longer
627 * protected. Thus, we are introducing a per eventpoll nest field.
628 * If we are not being call from ep_poll_callback(), epi is NULL and
629 * we are at the first level of nesting, 0. Otherwise, we are being
630 * called from ep_poll_callback() and if a previous wakeup source is
631 * not an epoll file itself, we are at depth 1 since the wakeup source
632 * is depth 0. If the wakeup source is a previous epoll file in the
633 * wakeup chain then we use its nests value and record ours as
634 * nests + 1. The previous epoll file nests value is stable since its
635 * already holding its own poll_wait.lock.
638 if ((is_file_epoll(epi->ffd.file))) {
639 ep_src = epi->ffd.file->private_data;
640 nests = ep_src->nests;
645 spin_lock_irqsave_nested(&ep->poll_wait.lock, flags, nests);
646 ep->nests = nests + 1;
647 wake_up_locked_poll(&ep->poll_wait, EPOLLIN | pollflags);
649 spin_unlock_irqrestore(&ep->poll_wait.lock, flags);
654 static void ep_poll_safewake(struct eventpoll *ep, struct epitem *epi,
657 wake_up_poll(&ep->poll_wait, EPOLLIN | pollflags);
662 static void ep_remove_wait_queue(struct eppoll_entry *pwq)
664 wait_queue_head_t *whead;
668 * If it is cleared by POLLFREE, it should be rcu-safe.
669 * If we read NULL we need a barrier paired with
670 * smp_store_release() in ep_poll_callback(), otherwise
671 * we rely on whead->lock.
673 whead = smp_load_acquire(&pwq->whead);
675 remove_wait_queue(whead, &pwq->wait);
680 * This function unregisters poll callbacks from the associated file
681 * descriptor. Must be called with "mtx" held.
683 static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi)
685 struct eppoll_entry **p = &epi->pwqlist;
686 struct eppoll_entry *pwq;
688 while ((pwq = *p) != NULL) {
690 ep_remove_wait_queue(pwq);
691 kmem_cache_free(pwq_cache, pwq);
695 /* call only when ep->mtx is held */
696 static inline struct wakeup_source *ep_wakeup_source(struct epitem *epi)
698 return rcu_dereference_check(epi->ws, lockdep_is_held(&epi->ep->mtx));
701 /* call only when ep->mtx is held */
702 static inline void ep_pm_stay_awake(struct epitem *epi)
704 struct wakeup_source *ws = ep_wakeup_source(epi);
710 static inline bool ep_has_wakeup_source(struct epitem *epi)
712 return rcu_access_pointer(epi->ws) ? true : false;
715 /* call when ep->mtx cannot be held (ep_poll_callback) */
716 static inline void ep_pm_stay_awake_rcu(struct epitem *epi)
718 struct wakeup_source *ws;
721 ws = rcu_dereference(epi->ws);
729 * ep->mutex needs to be held because we could be hit by
730 * eventpoll_release_file() and epoll_ctl().
732 static void ep_start_scan(struct eventpoll *ep, struct list_head *txlist)
735 * Steal the ready list, and re-init the original one to the
736 * empty list. Also, set ep->ovflist to NULL so that events
737 * happening while looping w/out locks, are not lost. We cannot
738 * have the poll callback to queue directly on ep->rdllist,
739 * because we want the "sproc" callback to be able to do it
742 lockdep_assert_irqs_enabled();
743 write_lock_irq(&ep->lock);
744 list_splice_init(&ep->rdllist, txlist);
745 WRITE_ONCE(ep->ovflist, NULL);
746 write_unlock_irq(&ep->lock);
749 static void ep_done_scan(struct eventpoll *ep,
750 struct list_head *txlist)
752 struct epitem *epi, *nepi;
754 write_lock_irq(&ep->lock);
756 * During the time we spent inside the "sproc" callback, some
757 * other events might have been queued by the poll callback.
758 * We re-insert them inside the main ready-list here.
760 for (nepi = READ_ONCE(ep->ovflist); (epi = nepi) != NULL;
761 nepi = epi->next, epi->next = EP_UNACTIVE_PTR) {
763 * We need to check if the item is already in the list.
764 * During the "sproc" callback execution time, items are
765 * queued into ->ovflist but the "txlist" might already
766 * contain them, and the list_splice() below takes care of them.
768 if (!ep_is_linked(epi)) {
770 * ->ovflist is LIFO, so we have to reverse it in order
773 list_add(&epi->rdllink, &ep->rdllist);
774 ep_pm_stay_awake(epi);
778 * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after
779 * releasing the lock, events will be queued in the normal way inside
782 WRITE_ONCE(ep->ovflist, EP_UNACTIVE_PTR);
785 * Quickly re-inject items left on "txlist".
787 list_splice(txlist, &ep->rdllist);
790 if (!list_empty(&ep->rdllist)) {
791 if (waitqueue_active(&ep->wq))
795 write_unlock_irq(&ep->lock);
798 static void ep_get(struct eventpoll *ep)
800 refcount_inc(&ep->refcount);
804 * Returns true if the event poll can be disposed
806 static bool ep_refcount_dec_and_test(struct eventpoll *ep)
808 if (!refcount_dec_and_test(&ep->refcount))
811 WARN_ON_ONCE(!RB_EMPTY_ROOT(&ep->rbr.rb_root));
815 static void ep_free(struct eventpoll *ep)
817 ep_resume_napi_irqs(ep);
818 mutex_destroy(&ep->mtx);
820 wakeup_source_unregister(ep->ws);
825 * Removes a "struct epitem" from the eventpoll RB tree and deallocates
826 * all the associated resources. Must be called with "mtx" held.
827 * If the dying flag is set, do the removal only if force is true.
828 * This prevents ep_clear_and_put() from dropping all the ep references
829 * while running concurrently with eventpoll_release_file().
830 * Returns true if the eventpoll can be disposed.
832 static bool __ep_remove(struct eventpoll *ep, struct epitem *epi, bool force)
834 struct file *file = epi->ffd.file;
835 struct epitems_head *to_free;
836 struct hlist_head *head;
838 lockdep_assert_irqs_enabled();
841 * Removes poll wait queue hooks.
843 ep_unregister_pollwait(ep, epi);
845 /* Remove the current item from the list of epoll hooks */
846 spin_lock(&file->f_lock);
847 if (epi->dying && !force) {
848 spin_unlock(&file->f_lock);
854 if (head->first == &epi->fllink && !epi->fllink.next) {
855 /* See eventpoll_release() for details. */
856 WRITE_ONCE(file->f_ep, NULL);
857 if (!is_file_epoll(file)) {
858 struct epitems_head *v;
859 v = container_of(head, struct epitems_head, epitems);
860 if (!smp_load_acquire(&v->next))
864 hlist_del_rcu(&epi->fllink);
865 spin_unlock(&file->f_lock);
866 free_ephead(to_free);
868 rb_erase_cached(&epi->rbn, &ep->rbr);
870 write_lock_irq(&ep->lock);
871 if (ep_is_linked(epi))
872 list_del_init(&epi->rdllink);
873 write_unlock_irq(&ep->lock);
875 wakeup_source_unregister(ep_wakeup_source(epi));
877 * At this point it is safe to free the eventpoll item. Use the union
878 * field epi->rcu, since we are trying to minimize the size of
879 * 'struct epitem'. The 'rbn' field is no longer in use. Protected by
880 * ep->mtx. The rcu read side, reverse_path_check_proc(), does not make
881 * use of the rbn field.
885 percpu_counter_dec(&ep->user->epoll_watches);
886 return ep_refcount_dec_and_test(ep);
890 * ep_remove variant for callers owing an additional reference to the ep
892 static void ep_remove_safe(struct eventpoll *ep, struct epitem *epi)
894 WARN_ON_ONCE(__ep_remove(ep, epi, false));
897 static void ep_clear_and_put(struct eventpoll *ep)
899 struct rb_node *rbp, *next;
903 /* We need to release all tasks waiting for these file */
904 if (waitqueue_active(&ep->poll_wait))
905 ep_poll_safewake(ep, NULL, 0);
907 mutex_lock(&ep->mtx);
910 * Walks through the whole tree by unregistering poll callbacks.
912 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
913 epi = rb_entry(rbp, struct epitem, rbn);
915 ep_unregister_pollwait(ep, epi);
920 * Walks through the whole tree and try to free each "struct epitem".
921 * Note that ep_remove_safe() will not remove the epitem in case of a
922 * racing eventpoll_release_file(); the latter will do the removal.
923 * At this point we are sure no poll callbacks will be lingering around.
924 * Since we still own a reference to the eventpoll struct, the loop can't
927 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = next) {
929 epi = rb_entry(rbp, struct epitem, rbn);
930 ep_remove_safe(ep, epi);
934 dispose = ep_refcount_dec_and_test(ep);
935 mutex_unlock(&ep->mtx);
941 static long ep_eventpoll_ioctl(struct file *file, unsigned int cmd,
946 if (!is_file_epoll(file))
952 ret = ep_eventpoll_bp_ioctl(file, cmd, arg);
962 static int ep_eventpoll_release(struct inode *inode, struct file *file)
964 struct eventpoll *ep = file->private_data;
967 ep_clear_and_put(ep);
972 static __poll_t ep_item_poll(const struct epitem *epi, poll_table *pt, int depth);
974 static __poll_t __ep_eventpoll_poll(struct file *file, poll_table *wait, int depth)
976 struct eventpoll *ep = file->private_data;
978 struct epitem *epi, *tmp;
982 init_poll_funcptr(&pt, NULL);
984 /* Insert inside our poll wait queue */
985 poll_wait(file, &ep->poll_wait, wait);
988 * Proceed to find out if wanted events are really available inside
991 mutex_lock_nested(&ep->mtx, depth);
992 ep_start_scan(ep, &txlist);
993 list_for_each_entry_safe(epi, tmp, &txlist, rdllink) {
994 if (ep_item_poll(epi, &pt, depth + 1)) {
995 res = EPOLLIN | EPOLLRDNORM;
999 * Item has been dropped into the ready list by the poll
1000 * callback, but it's not actually ready, as far as
1001 * caller requested events goes. We can remove it here.
1003 __pm_relax(ep_wakeup_source(epi));
1004 list_del_init(&epi->rdllink);
1007 ep_done_scan(ep, &txlist);
1008 mutex_unlock(&ep->mtx);
1013 * The ffd.file pointer may be in the process of being torn down due to
1014 * being closed, but we may not have finished eventpoll_release() yet.
1016 * Normally, even with the atomic_long_inc_not_zero, the file may have
1017 * been free'd and then gotten re-allocated to something else (since
1018 * files are not RCU-delayed, they are SLAB_TYPESAFE_BY_RCU).
1020 * But for epoll, users hold the ep->mtx mutex, and as such any file in
1021 * the process of being free'd will block in eventpoll_release_file()
1022 * and thus the underlying file allocation will not be free'd, and the
1023 * file re-use cannot happen.
1025 * For the same reason we can avoid a rcu_read_lock() around the
1026 * operation - 'ffd.file' cannot go away even if the refcount has
1027 * reached zero (but we must still not call out to ->poll() functions
1030 static struct file *epi_fget(const struct epitem *epi)
1034 file = epi->ffd.file;
1035 if (!file_ref_get(&file->f_ref))
1041 * Differs from ep_eventpoll_poll() in that internal callers already have
1042 * the ep->mtx so we need to start from depth=1, such that mutex_lock_nested()
1043 * is correctly annotated.
1045 static __poll_t ep_item_poll(const struct epitem *epi, poll_table *pt,
1048 struct file *file = epi_fget(epi);
1052 * We could return EPOLLERR | EPOLLHUP or something, but let's
1053 * treat this more as "file doesn't exist, poll didn't happen".
1058 pt->_key = epi->event.events;
1059 if (!is_file_epoll(file))
1060 res = vfs_poll(file, pt);
1062 res = __ep_eventpoll_poll(file, pt, depth);
1064 return res & epi->event.events;
1067 static __poll_t ep_eventpoll_poll(struct file *file, poll_table *wait)
1069 return __ep_eventpoll_poll(file, wait, 0);
1072 #ifdef CONFIG_PROC_FS
1073 static void ep_show_fdinfo(struct seq_file *m, struct file *f)
1075 struct eventpoll *ep = f->private_data;
1076 struct rb_node *rbp;
1078 mutex_lock(&ep->mtx);
1079 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
1080 struct epitem *epi = rb_entry(rbp, struct epitem, rbn);
1081 struct inode *inode = file_inode(epi->ffd.file);
1083 seq_printf(m, "tfd: %8d events: %8x data: %16llx "
1084 " pos:%lli ino:%lx sdev:%x\n",
1085 epi->ffd.fd, epi->event.events,
1086 (long long)epi->event.data,
1087 (long long)epi->ffd.file->f_pos,
1088 inode->i_ino, inode->i_sb->s_dev);
1089 if (seq_has_overflowed(m))
1092 mutex_unlock(&ep->mtx);
1096 /* File callbacks that implement the eventpoll file behaviour */
1097 static const struct file_operations eventpoll_fops = {
1098 #ifdef CONFIG_PROC_FS
1099 .show_fdinfo = ep_show_fdinfo,
1101 .release = ep_eventpoll_release,
1102 .poll = ep_eventpoll_poll,
1103 .llseek = noop_llseek,
1104 .unlocked_ioctl = ep_eventpoll_ioctl,
1105 .compat_ioctl = compat_ptr_ioctl,
1109 * This is called from eventpoll_release() to unlink files from the eventpoll
1110 * interface. We need to have this facility to cleanup correctly files that are
1111 * closed without being removed from the eventpoll interface.
1113 void eventpoll_release_file(struct file *file)
1115 struct eventpoll *ep;
1120 * Use the 'dying' flag to prevent a concurrent ep_clear_and_put() from
1121 * touching the epitems list before eventpoll_release_file() can access
1125 spin_lock(&file->f_lock);
1126 if (file->f_ep && file->f_ep->first) {
1127 epi = hlist_entry(file->f_ep->first, struct epitem, fllink);
1129 spin_unlock(&file->f_lock);
1132 * ep access is safe as we still own a reference to the ep
1136 mutex_lock(&ep->mtx);
1137 dispose = __ep_remove(ep, epi, true);
1138 mutex_unlock(&ep->mtx);
1144 spin_unlock(&file->f_lock);
1147 static int ep_alloc(struct eventpoll **pep)
1149 struct eventpoll *ep;
1151 ep = kzalloc(sizeof(*ep), GFP_KERNEL);
1155 mutex_init(&ep->mtx);
1156 rwlock_init(&ep->lock);
1157 init_waitqueue_head(&ep->wq);
1158 init_waitqueue_head(&ep->poll_wait);
1159 INIT_LIST_HEAD(&ep->rdllist);
1160 ep->rbr = RB_ROOT_CACHED;
1161 ep->ovflist = EP_UNACTIVE_PTR;
1162 ep->user = get_current_user();
1163 refcount_set(&ep->refcount, 1);
1171 * Search the file inside the eventpoll tree. The RB tree operations
1172 * are protected by the "mtx" mutex, and ep_find() must be called with
1175 static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd)
1178 struct rb_node *rbp;
1179 struct epitem *epi, *epir = NULL;
1180 struct epoll_filefd ffd;
1182 ep_set_ffd(&ffd, file, fd);
1183 for (rbp = ep->rbr.rb_root.rb_node; rbp; ) {
1184 epi = rb_entry(rbp, struct epitem, rbn);
1185 kcmp = ep_cmp_ffd(&ffd, &epi->ffd);
1187 rbp = rbp->rb_right;
1200 static struct epitem *ep_find_tfd(struct eventpoll *ep, int tfd, unsigned long toff)
1202 struct rb_node *rbp;
1205 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
1206 epi = rb_entry(rbp, struct epitem, rbn);
1207 if (epi->ffd.fd == tfd) {
1219 struct file *get_epoll_tfile_raw_ptr(struct file *file, int tfd,
1222 struct file *file_raw;
1223 struct eventpoll *ep;
1226 if (!is_file_epoll(file))
1227 return ERR_PTR(-EINVAL);
1229 ep = file->private_data;
1231 mutex_lock(&ep->mtx);
1232 epi = ep_find_tfd(ep, tfd, toff);
1234 file_raw = epi->ffd.file;
1236 file_raw = ERR_PTR(-ENOENT);
1237 mutex_unlock(&ep->mtx);
1241 #endif /* CONFIG_KCMP */
1244 * Adds a new entry to the tail of the list in a lockless way, i.e.
1245 * multiple CPUs are allowed to call this function concurrently.
1247 * Beware: it is necessary to prevent any other modifications of the
1248 * existing list until all changes are completed, in other words
1249 * concurrent list_add_tail_lockless() calls should be protected
1250 * with a read lock, where write lock acts as a barrier which
1251 * makes sure all list_add_tail_lockless() calls are fully
1254 * Also an element can be locklessly added to the list only in one
1255 * direction i.e. either to the tail or to the head, otherwise
1256 * concurrent access will corrupt the list.
1258 * Return: %false if element has been already added to the list, %true
1261 static inline bool list_add_tail_lockless(struct list_head *new,
1262 struct list_head *head)
1264 struct list_head *prev;
1267 * This is simple 'new->next = head' operation, but cmpxchg()
1268 * is used in order to detect that same element has been just
1269 * added to the list from another CPU: the winner observes
1272 if (!try_cmpxchg(&new->next, &new, head))
1276 * Initially ->next of a new element must be updated with the head
1277 * (we are inserting to the tail) and only then pointers are atomically
1278 * exchanged. XCHG guarantees memory ordering, thus ->next should be
1279 * updated before pointers are actually swapped and pointers are
1280 * swapped before prev->next is updated.
1283 prev = xchg(&head->prev, new);
1286 * It is safe to modify prev->next and new->prev, because a new element
1287 * is added only to the tail and new->next is updated before XCHG.
1297 * Chains a new epi entry to the tail of the ep->ovflist in a lockless way,
1298 * i.e. multiple CPUs are allowed to call this function concurrently.
1300 * Return: %false if epi element has been already chained, %true otherwise.
1302 static inline bool chain_epi_lockless(struct epitem *epi)
1304 struct eventpoll *ep = epi->ep;
1306 /* Fast preliminary check */
1307 if (epi->next != EP_UNACTIVE_PTR)
1310 /* Check that the same epi has not been just chained from another CPU */
1311 if (cmpxchg(&epi->next, EP_UNACTIVE_PTR, NULL) != EP_UNACTIVE_PTR)
1314 /* Atomically exchange tail */
1315 epi->next = xchg(&ep->ovflist, epi);
1321 * This is the callback that is passed to the wait queue wakeup
1322 * mechanism. It is called by the stored file descriptors when they
1323 * have events to report.
1325 * This callback takes a read lock in order not to contend with concurrent
1326 * events from another file descriptor, thus all modifications to ->rdllist
1327 * or ->ovflist are lockless. Read lock is paired with the write lock from
1328 * ep_start/done_scan(), which stops all list modifications and guarantees
1329 * that lists state is seen correctly.
1331 * Another thing worth to mention is that ep_poll_callback() can be called
1332 * concurrently for the same @epi from different CPUs if poll table was inited
1333 * with several wait queues entries. Plural wakeup from different CPUs of a
1334 * single wait queue is serialized by wq.lock, but the case when multiple wait
1335 * queues are used should be detected accordingly. This is detected using
1336 * cmpxchg() operation.
1338 static int ep_poll_callback(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
1341 struct epitem *epi = ep_item_from_wait(wait);
1342 struct eventpoll *ep = epi->ep;
1343 __poll_t pollflags = key_to_poll(key);
1344 unsigned long flags;
1347 read_lock_irqsave(&ep->lock, flags);
1349 ep_set_busy_poll_napi_id(epi);
1352 * If the event mask does not contain any poll(2) event, we consider the
1353 * descriptor to be disabled. This condition is likely the effect of the
1354 * EPOLLONESHOT bit that disables the descriptor when an event is received,
1355 * until the next EPOLL_CTL_MOD will be issued.
1357 if (!(epi->event.events & ~EP_PRIVATE_BITS))
1361 * Check the events coming with the callback. At this stage, not
1362 * every device reports the events in the "key" parameter of the
1363 * callback. We need to be able to handle both cases here, hence the
1364 * test for "key" != NULL before the event match test.
1366 if (pollflags && !(pollflags & epi->event.events))
1370 * If we are transferring events to userspace, we can hold no locks
1371 * (because we're accessing user memory, and because of linux f_op->poll()
1372 * semantics). All the events that happen during that period of time are
1373 * chained in ep->ovflist and requeued later on.
1375 if (READ_ONCE(ep->ovflist) != EP_UNACTIVE_PTR) {
1376 if (chain_epi_lockless(epi))
1377 ep_pm_stay_awake_rcu(epi);
1378 } else if (!ep_is_linked(epi)) {
1379 /* In the usual case, add event to ready list. */
1380 if (list_add_tail_lockless(&epi->rdllink, &ep->rdllist))
1381 ep_pm_stay_awake_rcu(epi);
1385 * Wake up ( if active ) both the eventpoll wait list and the ->poll()
1388 if (waitqueue_active(&ep->wq)) {
1389 if ((epi->event.events & EPOLLEXCLUSIVE) &&
1390 !(pollflags & POLLFREE)) {
1391 switch (pollflags & EPOLLINOUT_BITS) {
1393 if (epi->event.events & EPOLLIN)
1397 if (epi->event.events & EPOLLOUT)
1406 wake_up_sync(&ep->wq);
1410 if (waitqueue_active(&ep->poll_wait))
1414 read_unlock_irqrestore(&ep->lock, flags);
1416 /* We have to call this outside the lock */
1418 ep_poll_safewake(ep, epi, pollflags & EPOLL_URING_WAKE);
1420 if (!(epi->event.events & EPOLLEXCLUSIVE))
1423 if (pollflags & POLLFREE) {
1425 * If we race with ep_remove_wait_queue() it can miss
1426 * ->whead = NULL and do another remove_wait_queue() after
1427 * us, so we can't use __remove_wait_queue().
1429 list_del_init(&wait->entry);
1431 * ->whead != NULL protects us from the race with
1432 * ep_clear_and_put() or ep_remove(), ep_remove_wait_queue()
1433 * takes whead->lock held by the caller. Once we nullify it,
1434 * nothing protects ep/epi or even wait.
1436 smp_store_release(&ep_pwq_from_wait(wait)->whead, NULL);
1443 * This is the callback that is used to add our wait queue to the
1444 * target file wakeup lists.
1446 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead,
1449 struct ep_pqueue *epq = container_of(pt, struct ep_pqueue, pt);
1450 struct epitem *epi = epq->epi;
1451 struct eppoll_entry *pwq;
1453 if (unlikely(!epi)) // an earlier allocation has failed
1456 pwq = kmem_cache_alloc(pwq_cache, GFP_KERNEL);
1457 if (unlikely(!pwq)) {
1462 init_waitqueue_func_entry(&pwq->wait, ep_poll_callback);
1465 if (epi->event.events & EPOLLEXCLUSIVE)
1466 add_wait_queue_exclusive(whead, &pwq->wait);
1468 add_wait_queue(whead, &pwq->wait);
1469 pwq->next = epi->pwqlist;
1473 static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi)
1476 struct rb_node **p = &ep->rbr.rb_root.rb_node, *parent = NULL;
1477 struct epitem *epic;
1478 bool leftmost = true;
1482 epic = rb_entry(parent, struct epitem, rbn);
1483 kcmp = ep_cmp_ffd(&epi->ffd, &epic->ffd);
1485 p = &parent->rb_right;
1488 p = &parent->rb_left;
1490 rb_link_node(&epi->rbn, parent, p);
1491 rb_insert_color_cached(&epi->rbn, &ep->rbr, leftmost);
1496 #define PATH_ARR_SIZE 5
1498 * These are the number paths of length 1 to 5, that we are allowing to emanate
1499 * from a single file of interest. For example, we allow 1000 paths of length
1500 * 1, to emanate from each file of interest. This essentially represents the
1501 * potential wakeup paths, which need to be limited in order to avoid massive
1502 * uncontrolled wakeup storms. The common use case should be a single ep which
1503 * is connected to n file sources. In this case each file source has 1 path
1504 * of length 1. Thus, the numbers below should be more than sufficient. These
1505 * path limits are enforced during an EPOLL_CTL_ADD operation, since a modify
1506 * and delete can't add additional paths. Protected by the epnested_mutex.
1508 static const int path_limits[PATH_ARR_SIZE] = { 1000, 500, 100, 50, 10 };
1509 static int path_count[PATH_ARR_SIZE];
1511 static int path_count_inc(int nests)
1513 /* Allow an arbitrary number of depth 1 paths */
1517 if (++path_count[nests] > path_limits[nests])
1522 static void path_count_init(void)
1526 for (i = 0; i < PATH_ARR_SIZE; i++)
1530 static int reverse_path_check_proc(struct hlist_head *refs, int depth)
1535 if (depth > EP_MAX_NESTS) /* too deep nesting */
1538 /* CTL_DEL can remove links here, but that can't increase our count */
1539 hlist_for_each_entry_rcu(epi, refs, fllink) {
1540 struct hlist_head *refs = &epi->ep->refs;
1541 if (hlist_empty(refs))
1542 error = path_count_inc(depth);
1544 error = reverse_path_check_proc(refs, depth + 1);
1552 * reverse_path_check - The tfile_check_list is list of epitem_head, which have
1553 * links that are proposed to be newly added. We need to
1554 * make sure that those added links don't add too many
1555 * paths such that we will spend all our time waking up
1556 * eventpoll objects.
1558 * Return: %zero if the proposed links don't create too many paths,
1561 static int reverse_path_check(void)
1563 struct epitems_head *p;
1565 for (p = tfile_check_list; p != EP_UNACTIVE_PTR; p = p->next) {
1569 error = reverse_path_check_proc(&p->epitems, 0);
1577 static int ep_create_wakeup_source(struct epitem *epi)
1579 struct name_snapshot n;
1580 struct wakeup_source *ws;
1583 epi->ep->ws = wakeup_source_register(NULL, "eventpoll");
1588 take_dentry_name_snapshot(&n, epi->ffd.file->f_path.dentry);
1589 ws = wakeup_source_register(NULL, n.name.name);
1590 release_dentry_name_snapshot(&n);
1594 rcu_assign_pointer(epi->ws, ws);
1599 /* rare code path, only used when EPOLL_CTL_MOD removes a wakeup source */
1600 static noinline void ep_destroy_wakeup_source(struct epitem *epi)
1602 struct wakeup_source *ws = ep_wakeup_source(epi);
1604 RCU_INIT_POINTER(epi->ws, NULL);
1607 * wait for ep_pm_stay_awake_rcu to finish, synchronize_rcu is
1608 * used internally by wakeup_source_remove, too (called by
1609 * wakeup_source_unregister), so we cannot use call_rcu
1612 wakeup_source_unregister(ws);
1615 static int attach_epitem(struct file *file, struct epitem *epi)
1617 struct epitems_head *to_free = NULL;
1618 struct hlist_head *head = NULL;
1619 struct eventpoll *ep = NULL;
1621 if (is_file_epoll(file))
1622 ep = file->private_data;
1626 } else if (!READ_ONCE(file->f_ep)) {
1628 to_free = kmem_cache_zalloc(ephead_cache, GFP_KERNEL);
1631 head = &to_free->epitems;
1633 spin_lock(&file->f_lock);
1635 if (unlikely(!head)) {
1636 spin_unlock(&file->f_lock);
1639 /* See eventpoll_release() for details. */
1640 WRITE_ONCE(file->f_ep, head);
1643 hlist_add_head_rcu(&epi->fllink, file->f_ep);
1644 spin_unlock(&file->f_lock);
1645 free_ephead(to_free);
1650 * Must be called with "mtx" held.
1652 static int ep_insert(struct eventpoll *ep, const struct epoll_event *event,
1653 struct file *tfile, int fd, int full_check)
1655 int error, pwake = 0;
1658 struct ep_pqueue epq;
1659 struct eventpoll *tep = NULL;
1661 if (is_file_epoll(tfile))
1662 tep = tfile->private_data;
1664 lockdep_assert_irqs_enabled();
1666 if (unlikely(percpu_counter_compare(&ep->user->epoll_watches,
1667 max_user_watches) >= 0))
1669 percpu_counter_inc(&ep->user->epoll_watches);
1671 if (!(epi = kmem_cache_zalloc(epi_cache, GFP_KERNEL))) {
1672 percpu_counter_dec(&ep->user->epoll_watches);
1676 /* Item initialization follow here ... */
1677 INIT_LIST_HEAD(&epi->rdllink);
1679 ep_set_ffd(&epi->ffd, tfile, fd);
1680 epi->event = *event;
1681 epi->next = EP_UNACTIVE_PTR;
1684 mutex_lock_nested(&tep->mtx, 1);
1685 /* Add the current item to the list of active epoll hook for this file */
1686 if (unlikely(attach_epitem(tfile, epi) < 0)) {
1688 mutex_unlock(&tep->mtx);
1689 kmem_cache_free(epi_cache, epi);
1690 percpu_counter_dec(&ep->user->epoll_watches);
1694 if (full_check && !tep)
1698 * Add the current item to the RB tree. All RB tree operations are
1699 * protected by "mtx", and ep_insert() is called with "mtx" held.
1701 ep_rbtree_insert(ep, epi);
1703 mutex_unlock(&tep->mtx);
1706 * ep_remove_safe() calls in the later error paths can't lead to
1707 * ep_free() as the ep file itself still holds an ep reference.
1711 /* now check if we've created too many backpaths */
1712 if (unlikely(full_check && reverse_path_check())) {
1713 ep_remove_safe(ep, epi);
1717 if (epi->event.events & EPOLLWAKEUP) {
1718 error = ep_create_wakeup_source(epi);
1720 ep_remove_safe(ep, epi);
1725 /* Initialize the poll table using the queue callback */
1727 init_poll_funcptr(&epq.pt, ep_ptable_queue_proc);
1730 * Attach the item to the poll hooks and get current event bits.
1731 * We can safely use the file* here because its usage count has
1732 * been increased by the caller of this function. Note that after
1733 * this operation completes, the poll callback can start hitting
1736 revents = ep_item_poll(epi, &epq.pt, 1);
1739 * We have to check if something went wrong during the poll wait queue
1740 * install process. Namely an allocation for a wait queue failed due
1741 * high memory pressure.
1743 if (unlikely(!epq.epi)) {
1744 ep_remove_safe(ep, epi);
1748 /* We have to drop the new item inside our item list to keep track of it */
1749 write_lock_irq(&ep->lock);
1751 /* record NAPI ID of new item if present */
1752 ep_set_busy_poll_napi_id(epi);
1754 /* If the file is already "ready" we drop it inside the ready list */
1755 if (revents && !ep_is_linked(epi)) {
1756 list_add_tail(&epi->rdllink, &ep->rdllist);
1757 ep_pm_stay_awake(epi);
1759 /* Notify waiting tasks that events are available */
1760 if (waitqueue_active(&ep->wq))
1762 if (waitqueue_active(&ep->poll_wait))
1766 write_unlock_irq(&ep->lock);
1768 /* We have to call this outside the lock */
1770 ep_poll_safewake(ep, NULL, 0);
1776 * Modify the interest event mask by dropping an event if the new mask
1777 * has a match in the current file status. Must be called with "mtx" held.
1779 static int ep_modify(struct eventpoll *ep, struct epitem *epi,
1780 const struct epoll_event *event)
1785 lockdep_assert_irqs_enabled();
1787 init_poll_funcptr(&pt, NULL);
1790 * Set the new event interest mask before calling f_op->poll();
1791 * otherwise we might miss an event that happens between the
1792 * f_op->poll() call and the new event set registering.
1794 epi->event.events = event->events; /* need barrier below */
1795 epi->event.data = event->data; /* protected by mtx */
1796 if (epi->event.events & EPOLLWAKEUP) {
1797 if (!ep_has_wakeup_source(epi))
1798 ep_create_wakeup_source(epi);
1799 } else if (ep_has_wakeup_source(epi)) {
1800 ep_destroy_wakeup_source(epi);
1804 * The following barrier has two effects:
1806 * 1) Flush epi changes above to other CPUs. This ensures
1807 * we do not miss events from ep_poll_callback if an
1808 * event occurs immediately after we call f_op->poll().
1809 * We need this because we did not take ep->lock while
1810 * changing epi above (but ep_poll_callback does take
1813 * 2) We also need to ensure we do not miss _past_ events
1814 * when calling f_op->poll(). This barrier also
1815 * pairs with the barrier in wq_has_sleeper (see
1816 * comments for wq_has_sleeper).
1818 * This barrier will now guarantee ep_poll_callback or f_op->poll
1819 * (or both) will notice the readiness of an item.
1824 * Get current event bits. We can safely use the file* here because
1825 * its usage count has been increased by the caller of this function.
1826 * If the item is "hot" and it is not registered inside the ready
1827 * list, push it inside.
1829 if (ep_item_poll(epi, &pt, 1)) {
1830 write_lock_irq(&ep->lock);
1831 if (!ep_is_linked(epi)) {
1832 list_add_tail(&epi->rdllink, &ep->rdllist);
1833 ep_pm_stay_awake(epi);
1835 /* Notify waiting tasks that events are available */
1836 if (waitqueue_active(&ep->wq))
1838 if (waitqueue_active(&ep->poll_wait))
1841 write_unlock_irq(&ep->lock);
1844 /* We have to call this outside the lock */
1846 ep_poll_safewake(ep, NULL, 0);
1851 static int ep_send_events(struct eventpoll *ep,
1852 struct epoll_event __user *events, int maxevents)
1854 struct epitem *epi, *tmp;
1860 * Always short-circuit for fatal signals to allow threads to make a
1861 * timely exit without the chance of finding more events available and
1862 * fetching repeatedly.
1864 if (fatal_signal_pending(current))
1867 init_poll_funcptr(&pt, NULL);
1869 mutex_lock(&ep->mtx);
1870 ep_start_scan(ep, &txlist);
1873 * We can loop without lock because we are passed a task private list.
1874 * Items cannot vanish during the loop we are holding ep->mtx.
1876 list_for_each_entry_safe(epi, tmp, &txlist, rdllink) {
1877 struct wakeup_source *ws;
1880 if (res >= maxevents)
1884 * Activate ep->ws before deactivating epi->ws to prevent
1885 * triggering auto-suspend here (in case we reactive epi->ws
1888 * This could be rearranged to delay the deactivation of epi->ws
1889 * instead, but then epi->ws would temporarily be out of sync
1890 * with ep_is_linked().
1892 ws = ep_wakeup_source(epi);
1895 __pm_stay_awake(ep->ws);
1899 list_del_init(&epi->rdllink);
1902 * If the event mask intersect the caller-requested one,
1903 * deliver the event to userspace. Again, we are holding ep->mtx,
1904 * so no operations coming from userspace can change the item.
1906 revents = ep_item_poll(epi, &pt, 1);
1910 events = epoll_put_uevent(revents, epi->event.data, events);
1912 list_add(&epi->rdllink, &txlist);
1913 ep_pm_stay_awake(epi);
1919 if (epi->event.events & EPOLLONESHOT)
1920 epi->event.events &= EP_PRIVATE_BITS;
1921 else if (!(epi->event.events & EPOLLET)) {
1923 * If this file has been added with Level
1924 * Trigger mode, we need to insert back inside
1925 * the ready list, so that the next call to
1926 * epoll_wait() will check again the events
1927 * availability. At this point, no one can insert
1928 * into ep->rdllist besides us. The epoll_ctl()
1929 * callers are locked out by
1930 * ep_send_events() holding "mtx" and the
1931 * poll callback will queue them in ep->ovflist.
1933 list_add_tail(&epi->rdllink, &ep->rdllist);
1934 ep_pm_stay_awake(epi);
1937 ep_done_scan(ep, &txlist);
1938 mutex_unlock(&ep->mtx);
1943 static struct timespec64 *ep_timeout_to_timespec(struct timespec64 *to, long ms)
1945 struct timespec64 now;
1956 to->tv_sec = ms / MSEC_PER_SEC;
1957 to->tv_nsec = NSEC_PER_MSEC * (ms % MSEC_PER_SEC);
1959 ktime_get_ts64(&now);
1960 *to = timespec64_add_safe(now, *to);
1965 * autoremove_wake_function, but remove even on failure to wake up, because we
1966 * know that default_wake_function/ttwu will only fail if the thread is already
1967 * woken, and in that case the ep_poll loop will remove the entry anyways, not
1970 static int ep_autoremove_wake_function(struct wait_queue_entry *wq_entry,
1971 unsigned int mode, int sync, void *key)
1973 int ret = default_wake_function(wq_entry, mode, sync, key);
1976 * Pairs with list_empty_careful in ep_poll, and ensures future loop
1977 * iterations see the cause of this wakeup.
1979 list_del_init_careful(&wq_entry->entry);
1984 * ep_poll - Retrieves ready events, and delivers them to the caller-supplied
1987 * @ep: Pointer to the eventpoll context.
1988 * @events: Pointer to the userspace buffer where the ready events should be
1990 * @maxevents: Size (in terms of number of events) of the caller event buffer.
1991 * @timeout: Maximum timeout for the ready events fetch operation, in
1992 * timespec. If the timeout is zero, the function will not block,
1993 * while if the @timeout ptr is NULL, the function will block
1994 * until at least one event has been retrieved (or an error
1997 * Return: the number of ready events which have been fetched, or an
1998 * error code, in case of error.
2000 static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events,
2001 int maxevents, struct timespec64 *timeout)
2003 int res, eavail, timed_out = 0;
2005 wait_queue_entry_t wait;
2006 ktime_t expires, *to = NULL;
2008 lockdep_assert_irqs_enabled();
2010 if (timeout && (timeout->tv_sec | timeout->tv_nsec)) {
2011 slack = select_estimate_accuracy(timeout);
2013 *to = timespec64_to_ktime(*timeout);
2014 } else if (timeout) {
2016 * Avoid the unnecessary trip to the wait queue loop, if the
2017 * caller specified a non blocking operation.
2023 * This call is racy: We may or may not see events that are being added
2024 * to the ready list under the lock (e.g., in IRQ callbacks). For cases
2025 * with a non-zero timeout, this thread will check the ready list under
2026 * lock and will add to the wait queue. For cases with a zero
2027 * timeout, the user by definition should not care and will have to
2030 eavail = ep_events_available(ep);
2035 * Try to transfer events to user space. In case we get
2036 * 0 events and there's still timeout left over, we go
2037 * trying again in search of more luck.
2039 res = ep_send_events(ep, events, maxevents);
2042 ep_suspend_napi_irqs(ep);
2050 eavail = ep_busy_loop(ep, timed_out);
2054 if (signal_pending(current))
2058 * Internally init_wait() uses autoremove_wake_function(),
2059 * thus wait entry is removed from the wait queue on each
2060 * wakeup. Why it is important? In case of several waiters
2061 * each new wakeup will hit the next waiter, giving it the
2062 * chance to harvest new event. Otherwise wakeup can be
2063 * lost. This is also good performance-wise, because on
2064 * normal wakeup path no need to call __remove_wait_queue()
2065 * explicitly, thus ep->lock is not taken, which halts the
2068 * In fact, we now use an even more aggressive function that
2069 * unconditionally removes, because we don't reuse the wait
2070 * entry between loop iterations. This lets us also avoid the
2071 * performance issue if a process is killed, causing all of its
2072 * threads to wake up without being removed normally.
2075 wait.func = ep_autoremove_wake_function;
2077 write_lock_irq(&ep->lock);
2079 * Barrierless variant, waitqueue_active() is called under
2080 * the same lock on wakeup ep_poll_callback() side, so it
2081 * is safe to avoid an explicit barrier.
2083 __set_current_state(TASK_INTERRUPTIBLE);
2086 * Do the final check under the lock. ep_start/done_scan()
2087 * plays with two lists (->rdllist and ->ovflist) and there
2088 * is always a race when both lists are empty for short
2089 * period of time although events are pending, so lock is
2092 eavail = ep_events_available(ep);
2094 __add_wait_queue_exclusive(&ep->wq, &wait);
2096 write_unlock_irq(&ep->lock);
2099 timed_out = !schedule_hrtimeout_range(to, slack,
2101 __set_current_state(TASK_RUNNING);
2104 * We were woken up, thus go and try to harvest some events.
2105 * If timed out and still on the wait queue, recheck eavail
2106 * carefully under lock, below.
2110 if (!list_empty_careful(&wait.entry)) {
2111 write_lock_irq(&ep->lock);
2113 * If the thread timed out and is not on the wait queue,
2114 * it means that the thread was woken up after its
2115 * timeout expired before it could reacquire the lock.
2116 * Thus, when wait.entry is empty, it needs to harvest
2120 eavail = list_empty(&wait.entry);
2121 __remove_wait_queue(&ep->wq, &wait);
2122 write_unlock_irq(&ep->lock);
2128 * ep_loop_check_proc - verify that adding an epoll file inside another
2129 * epoll structure does not violate the constraints, in
2130 * terms of closed loops, or too deep chains (which can
2131 * result in excessive stack usage).
2133 * @ep: the &struct eventpoll to be currently checked.
2134 * @depth: Current depth of the path being checked.
2136 * Return: %zero if adding the epoll @file inside current epoll
2137 * structure @ep does not violate the constraints, or %-1 otherwise.
2139 static int ep_loop_check_proc(struct eventpoll *ep, int depth)
2142 struct rb_node *rbp;
2145 mutex_lock_nested(&ep->mtx, depth + 1);
2146 ep->gen = loop_check_gen;
2147 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
2148 epi = rb_entry(rbp, struct epitem, rbn);
2149 if (unlikely(is_file_epoll(epi->ffd.file))) {
2150 struct eventpoll *ep_tovisit;
2151 ep_tovisit = epi->ffd.file->private_data;
2152 if (ep_tovisit->gen == loop_check_gen)
2154 if (ep_tovisit == inserting_into || depth > EP_MAX_NESTS)
2157 error = ep_loop_check_proc(ep_tovisit, depth + 1);
2162 * If we've reached a file that is not associated with
2163 * an ep, then we need to check if the newly added
2164 * links are going to add too many wakeup paths. We do
2165 * this by adding it to the tfile_check_list, if it's
2166 * not already there, and calling reverse_path_check()
2167 * during ep_insert().
2169 list_file(epi->ffd.file);
2172 mutex_unlock(&ep->mtx);
2178 * ep_loop_check - Performs a check to verify that adding an epoll file (@to)
2179 * into another epoll file (represented by @ep) does not create
2180 * closed loops or too deep chains.
2182 * @ep: Pointer to the epoll we are inserting into.
2183 * @to: Pointer to the epoll to be inserted.
2185 * Return: %zero if adding the epoll @to inside the epoll @from
2186 * does not violate the constraints, or %-1 otherwise.
2188 static int ep_loop_check(struct eventpoll *ep, struct eventpoll *to)
2190 inserting_into = ep;
2191 return ep_loop_check_proc(to, 0);
2194 static void clear_tfile_check_list(void)
2197 while (tfile_check_list != EP_UNACTIVE_PTR) {
2198 struct epitems_head *head = tfile_check_list;
2199 tfile_check_list = head->next;
2206 * Open an eventpoll file descriptor.
2208 static int do_epoll_create(int flags)
2211 struct eventpoll *ep = NULL;
2214 /* Check the EPOLL_* constant for consistency. */
2215 BUILD_BUG_ON(EPOLL_CLOEXEC != O_CLOEXEC);
2217 if (flags & ~EPOLL_CLOEXEC)
2220 * Create the internal data structure ("struct eventpoll").
2222 error = ep_alloc(&ep);
2226 * Creates all the items needed to setup an eventpoll file. That is,
2227 * a file structure and a free file descriptor.
2229 fd = get_unused_fd_flags(O_RDWR | (flags & O_CLOEXEC));
2234 file = anon_inode_getfile("[eventpoll]", &eventpoll_fops, ep,
2235 O_RDWR | (flags & O_CLOEXEC));
2237 error = PTR_ERR(file);
2241 fd_install(fd, file);
2247 ep_clear_and_put(ep);
2251 SYSCALL_DEFINE1(epoll_create1, int, flags)
2253 return do_epoll_create(flags);
2256 SYSCALL_DEFINE1(epoll_create, int, size)
2261 return do_epoll_create(0);
2264 #ifdef CONFIG_PM_SLEEP
2265 static inline void ep_take_care_of_epollwakeup(struct epoll_event *epev)
2267 if ((epev->events & EPOLLWAKEUP) && !capable(CAP_BLOCK_SUSPEND))
2268 epev->events &= ~EPOLLWAKEUP;
2271 static inline void ep_take_care_of_epollwakeup(struct epoll_event *epev)
2273 epev->events &= ~EPOLLWAKEUP;
2277 static inline int epoll_mutex_lock(struct mutex *mutex, int depth,
2281 mutex_lock_nested(mutex, depth);
2284 if (mutex_trylock(mutex))
2289 int do_epoll_ctl(int epfd, int op, int fd, struct epoll_event *epds,
2294 struct eventpoll *ep;
2296 struct eventpoll *tep = NULL;
2302 /* Get the "struct file *" for the target file */
2307 /* The target file descriptor must support poll */
2308 if (!file_can_poll(fd_file(tf)))
2311 /* Check if EPOLLWAKEUP is allowed */
2312 if (ep_op_has_event(op))
2313 ep_take_care_of_epollwakeup(epds);
2316 * We have to check that the file structure underneath the file descriptor
2317 * the user passed to us _is_ an eventpoll file. And also we do not permit
2318 * adding an epoll file descriptor inside itself.
2321 if (fd_file(f) == fd_file(tf) || !is_file_epoll(fd_file(f)))
2322 goto error_tgt_fput;
2325 * epoll adds to the wakeup queue at EPOLL_CTL_ADD time only,
2326 * so EPOLLEXCLUSIVE is not allowed for a EPOLL_CTL_MOD operation.
2327 * Also, we do not currently supported nested exclusive wakeups.
2329 if (ep_op_has_event(op) && (epds->events & EPOLLEXCLUSIVE)) {
2330 if (op == EPOLL_CTL_MOD)
2331 goto error_tgt_fput;
2332 if (op == EPOLL_CTL_ADD && (is_file_epoll(fd_file(tf)) ||
2333 (epds->events & ~EPOLLEXCLUSIVE_OK_BITS)))
2334 goto error_tgt_fput;
2338 * At this point it is safe to assume that the "private_data" contains
2339 * our own data structure.
2341 ep = fd_file(f)->private_data;
2344 * When we insert an epoll file descriptor inside another epoll file
2345 * descriptor, there is the chance of creating closed loops, which are
2346 * better be handled here, than in more critical paths. While we are
2347 * checking for loops we also determine the list of files reachable
2348 * and hang them on the tfile_check_list, so we can check that we
2349 * haven't created too many possible wakeup paths.
2351 * We do not need to take the global 'epumutex' on EPOLL_CTL_ADD when
2352 * the epoll file descriptor is attaching directly to a wakeup source,
2353 * unless the epoll file descriptor is nested. The purpose of taking the
2354 * 'epnested_mutex' on add is to prevent complex toplogies such as loops and
2355 * deep wakeup paths from forming in parallel through multiple
2356 * EPOLL_CTL_ADD operations.
2358 error = epoll_mutex_lock(&ep->mtx, 0, nonblock);
2360 goto error_tgt_fput;
2361 if (op == EPOLL_CTL_ADD) {
2362 if (READ_ONCE(fd_file(f)->f_ep) || ep->gen == loop_check_gen ||
2363 is_file_epoll(fd_file(tf))) {
2364 mutex_unlock(&ep->mtx);
2365 error = epoll_mutex_lock(&epnested_mutex, 0, nonblock);
2367 goto error_tgt_fput;
2370 if (is_file_epoll(fd_file(tf))) {
2371 tep = fd_file(tf)->private_data;
2373 if (ep_loop_check(ep, tep) != 0)
2374 goto error_tgt_fput;
2376 error = epoll_mutex_lock(&ep->mtx, 0, nonblock);
2378 goto error_tgt_fput;
2383 * Try to lookup the file inside our RB tree. Since we grabbed "mtx"
2384 * above, we can be sure to be able to use the item looked up by
2385 * ep_find() till we release the mutex.
2387 epi = ep_find(ep, fd_file(tf), fd);
2393 epds->events |= EPOLLERR | EPOLLHUP;
2394 error = ep_insert(ep, epds, fd_file(tf), fd, full_check);
2401 * The eventpoll itself is still alive: the refcount
2402 * can't go to zero here.
2404 ep_remove_safe(ep, epi);
2412 if (!(epi->event.events & EPOLLEXCLUSIVE)) {
2413 epds->events |= EPOLLERR | EPOLLHUP;
2414 error = ep_modify(ep, epi, epds);
2420 mutex_unlock(&ep->mtx);
2424 clear_tfile_check_list();
2426 mutex_unlock(&epnested_mutex);
2432 * The following function implements the controller interface for
2433 * the eventpoll file that enables the insertion/removal/change of
2434 * file descriptors inside the interest set.
2436 SYSCALL_DEFINE4(epoll_ctl, int, epfd, int, op, int, fd,
2437 struct epoll_event __user *, event)
2439 struct epoll_event epds;
2441 if (ep_op_has_event(op) &&
2442 copy_from_user(&epds, event, sizeof(struct epoll_event)))
2445 return do_epoll_ctl(epfd, op, fd, &epds, false);
2449 * Implement the event wait interface for the eventpoll file. It is the kernel
2450 * part of the user space epoll_wait(2).
2452 static int do_epoll_wait(int epfd, struct epoll_event __user *events,
2453 int maxevents, struct timespec64 *to)
2455 struct eventpoll *ep;
2457 /* The maximum number of event must be greater than zero */
2458 if (maxevents <= 0 || maxevents > EP_MAX_EVENTS)
2461 /* Verify that the area passed by the user is writeable */
2462 if (!access_ok(events, maxevents * sizeof(struct epoll_event)))
2465 /* Get the "struct file *" for the eventpoll file */
2471 * We have to check that the file structure underneath the fd
2472 * the user passed to us _is_ an eventpoll file.
2474 if (!is_file_epoll(fd_file(f)))
2478 * At this point it is safe to assume that the "private_data" contains
2479 * our own data structure.
2481 ep = fd_file(f)->private_data;
2483 /* Time to fish for events ... */
2484 return ep_poll(ep, events, maxevents, to);
2487 SYSCALL_DEFINE4(epoll_wait, int, epfd, struct epoll_event __user *, events,
2488 int, maxevents, int, timeout)
2490 struct timespec64 to;
2492 return do_epoll_wait(epfd, events, maxevents,
2493 ep_timeout_to_timespec(&to, timeout));
2497 * Implement the event wait interface for the eventpoll file. It is the kernel
2498 * part of the user space epoll_pwait(2).
2500 static int do_epoll_pwait(int epfd, struct epoll_event __user *events,
2501 int maxevents, struct timespec64 *to,
2502 const sigset_t __user *sigmask, size_t sigsetsize)
2507 * If the caller wants a certain signal mask to be set during the wait,
2510 error = set_user_sigmask(sigmask, sigsetsize);
2514 error = do_epoll_wait(epfd, events, maxevents, to);
2516 restore_saved_sigmask_unless(error == -EINTR);
2521 SYSCALL_DEFINE6(epoll_pwait, int, epfd, struct epoll_event __user *, events,
2522 int, maxevents, int, timeout, const sigset_t __user *, sigmask,
2525 struct timespec64 to;
2527 return do_epoll_pwait(epfd, events, maxevents,
2528 ep_timeout_to_timespec(&to, timeout),
2529 sigmask, sigsetsize);
2532 SYSCALL_DEFINE6(epoll_pwait2, int, epfd, struct epoll_event __user *, events,
2533 int, maxevents, const struct __kernel_timespec __user *, timeout,
2534 const sigset_t __user *, sigmask, size_t, sigsetsize)
2536 struct timespec64 ts, *to = NULL;
2539 if (get_timespec64(&ts, timeout))
2542 if (poll_select_set_timeout(to, ts.tv_sec, ts.tv_nsec))
2546 return do_epoll_pwait(epfd, events, maxevents, to,
2547 sigmask, sigsetsize);
2550 #ifdef CONFIG_COMPAT
2551 static int do_compat_epoll_pwait(int epfd, struct epoll_event __user *events,
2552 int maxevents, struct timespec64 *timeout,
2553 const compat_sigset_t __user *sigmask,
2554 compat_size_t sigsetsize)
2559 * If the caller wants a certain signal mask to be set during the wait,
2562 err = set_compat_user_sigmask(sigmask, sigsetsize);
2566 err = do_epoll_wait(epfd, events, maxevents, timeout);
2568 restore_saved_sigmask_unless(err == -EINTR);
2573 COMPAT_SYSCALL_DEFINE6(epoll_pwait, int, epfd,
2574 struct epoll_event __user *, events,
2575 int, maxevents, int, timeout,
2576 const compat_sigset_t __user *, sigmask,
2577 compat_size_t, sigsetsize)
2579 struct timespec64 to;
2581 return do_compat_epoll_pwait(epfd, events, maxevents,
2582 ep_timeout_to_timespec(&to, timeout),
2583 sigmask, sigsetsize);
2586 COMPAT_SYSCALL_DEFINE6(epoll_pwait2, int, epfd,
2587 struct epoll_event __user *, events,
2589 const struct __kernel_timespec __user *, timeout,
2590 const compat_sigset_t __user *, sigmask,
2591 compat_size_t, sigsetsize)
2593 struct timespec64 ts, *to = NULL;
2596 if (get_timespec64(&ts, timeout))
2599 if (poll_select_set_timeout(to, ts.tv_sec, ts.tv_nsec))
2603 return do_compat_epoll_pwait(epfd, events, maxevents, to,
2604 sigmask, sigsetsize);
2609 static int __init eventpoll_init(void)
2615 * Allows top 4% of lomem to be allocated for epoll watches (per user).
2617 max_user_watches = (((si.totalram - si.totalhigh) / 25) << PAGE_SHIFT) /
2619 BUG_ON(max_user_watches < 0);
2622 * We can have many thousands of epitems, so prevent this from
2623 * using an extra cache line on 64-bit (and smaller) CPUs
2625 BUILD_BUG_ON(sizeof(void *) <= 8 && sizeof(struct epitem) > 128);
2627 /* Allocates slab cache used to allocate "struct epitem" items */
2628 epi_cache = kmem_cache_create("eventpoll_epi", sizeof(struct epitem),
2629 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, NULL);
2631 /* Allocates slab cache used to allocate "struct eppoll_entry" */
2632 pwq_cache = kmem_cache_create("eventpoll_pwq",
2633 sizeof(struct eppoll_entry), 0, SLAB_PANIC|SLAB_ACCOUNT, NULL);
2634 epoll_sysctls_init();
2636 ephead_cache = kmem_cache_create("ep_head",
2637 sizeof(struct epitems_head), 0, SLAB_PANIC|SLAB_ACCOUNT, NULL);
2641 fs_initcall(eventpoll_init);