]> Git Repo - J-linux.git/blob - fs/btrfs/space-info.c
Merge tag 'vfs-6.13-rc7.fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs
[J-linux.git] / fs / btrfs / space-info.c
1 // SPDX-License-Identifier: GPL-2.0
2
3 #include "linux/spinlock.h"
4 #include <linux/minmax.h>
5 #include "misc.h"
6 #include "ctree.h"
7 #include "space-info.h"
8 #include "sysfs.h"
9 #include "volumes.h"
10 #include "free-space-cache.h"
11 #include "ordered-data.h"
12 #include "transaction.h"
13 #include "block-group.h"
14 #include "fs.h"
15 #include "accessors.h"
16 #include "extent-tree.h"
17
18 /*
19  * HOW DOES SPACE RESERVATION WORK
20  *
21  * If you want to know about delalloc specifically, there is a separate comment
22  * for that with the delalloc code.  This comment is about how the whole system
23  * works generally.
24  *
25  * BASIC CONCEPTS
26  *
27  *   1) space_info.  This is the ultimate arbiter of how much space we can use.
28  *   There's a description of the bytes_ fields with the struct declaration,
29  *   refer to that for specifics on each field.  Suffice it to say that for
30  *   reservations we care about total_bytes - SUM(space_info->bytes_) when
31  *   determining if there is space to make an allocation.  There is a space_info
32  *   for METADATA, SYSTEM, and DATA areas.
33  *
34  *   2) block_rsv's.  These are basically buckets for every different type of
35  *   metadata reservation we have.  You can see the comment in the block_rsv
36  *   code on the rules for each type, but generally block_rsv->reserved is how
37  *   much space is accounted for in space_info->bytes_may_use.
38  *
39  *   3) btrfs_calc*_size.  These are the worst case calculations we used based
40  *   on the number of items we will want to modify.  We have one for changing
41  *   items, and one for inserting new items.  Generally we use these helpers to
42  *   determine the size of the block reserves, and then use the actual bytes
43  *   values to adjust the space_info counters.
44  *
45  * MAKING RESERVATIONS, THE NORMAL CASE
46  *
47  *   We call into either btrfs_reserve_data_bytes() or
48  *   btrfs_reserve_metadata_bytes(), depending on which we're looking for, with
49  *   num_bytes we want to reserve.
50  *
51  *   ->reserve
52  *     space_info->bytes_may_reserve += num_bytes
53  *
54  *   ->extent allocation
55  *     Call btrfs_add_reserved_bytes() which does
56  *     space_info->bytes_may_reserve -= num_bytes
57  *     space_info->bytes_reserved += extent_bytes
58  *
59  *   ->insert reference
60  *     Call btrfs_update_block_group() which does
61  *     space_info->bytes_reserved -= extent_bytes
62  *     space_info->bytes_used += extent_bytes
63  *
64  * MAKING RESERVATIONS, FLUSHING NORMALLY (non-priority)
65  *
66  *   Assume we are unable to simply make the reservation because we do not have
67  *   enough space
68  *
69  *   -> __reserve_bytes
70  *     create a reserve_ticket with ->bytes set to our reservation, add it to
71  *     the tail of space_info->tickets, kick async flush thread
72  *
73  *   ->handle_reserve_ticket
74  *     wait on ticket->wait for ->bytes to be reduced to 0, or ->error to be set
75  *     on the ticket.
76  *
77  *   -> btrfs_async_reclaim_metadata_space/btrfs_async_reclaim_data_space
78  *     Flushes various things attempting to free up space.
79  *
80  *   -> btrfs_try_granting_tickets()
81  *     This is called by anything that either subtracts space from
82  *     space_info->bytes_may_use, ->bytes_pinned, etc, or adds to the
83  *     space_info->total_bytes.  This loops through the ->priority_tickets and
84  *     then the ->tickets list checking to see if the reservation can be
85  *     completed.  If it can the space is added to space_info->bytes_may_use and
86  *     the ticket is woken up.
87  *
88  *   -> ticket wakeup
89  *     Check if ->bytes == 0, if it does we got our reservation and we can carry
90  *     on, if not return the appropriate error (ENOSPC, but can be EINTR if we
91  *     were interrupted.)
92  *
93  * MAKING RESERVATIONS, FLUSHING HIGH PRIORITY
94  *
95  *   Same as the above, except we add ourselves to the
96  *   space_info->priority_tickets, and we do not use ticket->wait, we simply
97  *   call flush_space() ourselves for the states that are safe for us to call
98  *   without deadlocking and hope for the best.
99  *
100  * THE FLUSHING STATES
101  *
102  *   Generally speaking we will have two cases for each state, a "nice" state
103  *   and a "ALL THE THINGS" state.  In btrfs we delay a lot of work in order to
104  *   reduce the locking over head on the various trees, and even to keep from
105  *   doing any work at all in the case of delayed refs.  Each of these delayed
106  *   things however hold reservations, and so letting them run allows us to
107  *   reclaim space so we can make new reservations.
108  *
109  *   FLUSH_DELAYED_ITEMS
110  *     Every inode has a delayed item to update the inode.  Take a simple write
111  *     for example, we would update the inode item at write time to update the
112  *     mtime, and then again at finish_ordered_io() time in order to update the
113  *     isize or bytes.  We keep these delayed items to coalesce these operations
114  *     into a single operation done on demand.  These are an easy way to reclaim
115  *     metadata space.
116  *
117  *   FLUSH_DELALLOC
118  *     Look at the delalloc comment to get an idea of how much space is reserved
119  *     for delayed allocation.  We can reclaim some of this space simply by
120  *     running delalloc, but usually we need to wait for ordered extents to
121  *     reclaim the bulk of this space.
122  *
123  *   FLUSH_DELAYED_REFS
124  *     We have a block reserve for the outstanding delayed refs space, and every
125  *     delayed ref operation holds a reservation.  Running these is a quick way
126  *     to reclaim space, but we want to hold this until the end because COW can
127  *     churn a lot and we can avoid making some extent tree modifications if we
128  *     are able to delay for as long as possible.
129  *
130  *   ALLOC_CHUNK
131  *     We will skip this the first time through space reservation, because of
132  *     overcommit and we don't want to have a lot of useless metadata space when
133  *     our worst case reservations will likely never come true.
134  *
135  *   RUN_DELAYED_IPUTS
136  *     If we're freeing inodes we're likely freeing checksums, file extent
137  *     items, and extent tree items.  Loads of space could be freed up by these
138  *     operations, however they won't be usable until the transaction commits.
139  *
140  *   COMMIT_TRANS
141  *     This will commit the transaction.  Historically we had a lot of logic
142  *     surrounding whether or not we'd commit the transaction, but this waits born
143  *     out of a pre-tickets era where we could end up committing the transaction
144  *     thousands of times in a row without making progress.  Now thanks to our
145  *     ticketing system we know if we're not making progress and can error
146  *     everybody out after a few commits rather than burning the disk hoping for
147  *     a different answer.
148  *
149  * OVERCOMMIT
150  *
151  *   Because we hold so many reservations for metadata we will allow you to
152  *   reserve more space than is currently free in the currently allocate
153  *   metadata space.  This only happens with metadata, data does not allow
154  *   overcommitting.
155  *
156  *   You can see the current logic for when we allow overcommit in
157  *   btrfs_can_overcommit(), but it only applies to unallocated space.  If there
158  *   is no unallocated space to be had, all reservations are kept within the
159  *   free space in the allocated metadata chunks.
160  *
161  *   Because of overcommitting, you generally want to use the
162  *   btrfs_can_overcommit() logic for metadata allocations, as it does the right
163  *   thing with or without extra unallocated space.
164  */
165
166 u64 __pure btrfs_space_info_used(const struct btrfs_space_info *s_info,
167                           bool may_use_included)
168 {
169         ASSERT(s_info);
170         return s_info->bytes_used + s_info->bytes_reserved +
171                 s_info->bytes_pinned + s_info->bytes_readonly +
172                 s_info->bytes_zone_unusable +
173                 (may_use_included ? s_info->bytes_may_use : 0);
174 }
175
176 /*
177  * after adding space to the filesystem, we need to clear the full flags
178  * on all the space infos.
179  */
180 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
181 {
182         struct list_head *head = &info->space_info;
183         struct btrfs_space_info *found;
184
185         list_for_each_entry(found, head, list)
186                 found->full = 0;
187 }
188
189 /*
190  * Block groups with more than this value (percents) of unusable space will be
191  * scheduled for background reclaim.
192  */
193 #define BTRFS_DEFAULT_ZONED_RECLAIM_THRESH                      (75)
194
195 #define BTRFS_UNALLOC_BLOCK_GROUP_TARGET                        (10ULL)
196
197 /*
198  * Calculate chunk size depending on volume type (regular or zoned).
199  */
200 static u64 calc_chunk_size(const struct btrfs_fs_info *fs_info, u64 flags)
201 {
202         if (btrfs_is_zoned(fs_info))
203                 return fs_info->zone_size;
204
205         ASSERT(flags & BTRFS_BLOCK_GROUP_TYPE_MASK);
206
207         if (flags & BTRFS_BLOCK_GROUP_DATA)
208                 return BTRFS_MAX_DATA_CHUNK_SIZE;
209         else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
210                 return SZ_32M;
211
212         /* Handle BTRFS_BLOCK_GROUP_METADATA */
213         if (fs_info->fs_devices->total_rw_bytes > 50ULL * SZ_1G)
214                 return SZ_1G;
215
216         return SZ_256M;
217 }
218
219 /*
220  * Update default chunk size.
221  */
222 void btrfs_update_space_info_chunk_size(struct btrfs_space_info *space_info,
223                                         u64 chunk_size)
224 {
225         WRITE_ONCE(space_info->chunk_size, chunk_size);
226 }
227
228 static int create_space_info(struct btrfs_fs_info *info, u64 flags)
229 {
230
231         struct btrfs_space_info *space_info;
232         int i;
233         int ret;
234
235         space_info = kzalloc(sizeof(*space_info), GFP_NOFS);
236         if (!space_info)
237                 return -ENOMEM;
238
239         space_info->fs_info = info;
240         for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
241                 INIT_LIST_HEAD(&space_info->block_groups[i]);
242         init_rwsem(&space_info->groups_sem);
243         spin_lock_init(&space_info->lock);
244         space_info->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
245         space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
246         INIT_LIST_HEAD(&space_info->ro_bgs);
247         INIT_LIST_HEAD(&space_info->tickets);
248         INIT_LIST_HEAD(&space_info->priority_tickets);
249         space_info->clamp = 1;
250         btrfs_update_space_info_chunk_size(space_info, calc_chunk_size(info, flags));
251
252         if (btrfs_is_zoned(info))
253                 space_info->bg_reclaim_threshold = BTRFS_DEFAULT_ZONED_RECLAIM_THRESH;
254
255         ret = btrfs_sysfs_add_space_info_type(info, space_info);
256         if (ret)
257                 return ret;
258
259         list_add(&space_info->list, &info->space_info);
260         if (flags & BTRFS_BLOCK_GROUP_DATA)
261                 info->data_sinfo = space_info;
262
263         return ret;
264 }
265
266 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
267 {
268         struct btrfs_super_block *disk_super;
269         u64 features;
270         u64 flags;
271         int mixed = 0;
272         int ret;
273
274         disk_super = fs_info->super_copy;
275         if (!btrfs_super_root(disk_super))
276                 return -EINVAL;
277
278         features = btrfs_super_incompat_flags(disk_super);
279         if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
280                 mixed = 1;
281
282         flags = BTRFS_BLOCK_GROUP_SYSTEM;
283         ret = create_space_info(fs_info, flags);
284         if (ret)
285                 goto out;
286
287         if (mixed) {
288                 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
289                 ret = create_space_info(fs_info, flags);
290         } else {
291                 flags = BTRFS_BLOCK_GROUP_METADATA;
292                 ret = create_space_info(fs_info, flags);
293                 if (ret)
294                         goto out;
295
296                 flags = BTRFS_BLOCK_GROUP_DATA;
297                 ret = create_space_info(fs_info, flags);
298         }
299 out:
300         return ret;
301 }
302
303 void btrfs_add_bg_to_space_info(struct btrfs_fs_info *info,
304                                 struct btrfs_block_group *block_group)
305 {
306         struct btrfs_space_info *found;
307         int factor, index;
308
309         factor = btrfs_bg_type_to_factor(block_group->flags);
310
311         found = btrfs_find_space_info(info, block_group->flags);
312         ASSERT(found);
313         spin_lock(&found->lock);
314         found->total_bytes += block_group->length;
315         found->disk_total += block_group->length * factor;
316         found->bytes_used += block_group->used;
317         found->disk_used += block_group->used * factor;
318         found->bytes_readonly += block_group->bytes_super;
319         btrfs_space_info_update_bytes_zone_unusable(info, found, block_group->zone_unusable);
320         if (block_group->length > 0)
321                 found->full = 0;
322         btrfs_try_granting_tickets(info, found);
323         spin_unlock(&found->lock);
324
325         block_group->space_info = found;
326
327         index = btrfs_bg_flags_to_raid_index(block_group->flags);
328         down_write(&found->groups_sem);
329         list_add_tail(&block_group->list, &found->block_groups[index]);
330         up_write(&found->groups_sem);
331 }
332
333 struct btrfs_space_info *btrfs_find_space_info(struct btrfs_fs_info *info,
334                                                u64 flags)
335 {
336         struct list_head *head = &info->space_info;
337         struct btrfs_space_info *found;
338
339         flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
340
341         list_for_each_entry(found, head, list) {
342                 if (found->flags & flags)
343                         return found;
344         }
345         return NULL;
346 }
347
348 static u64 calc_effective_data_chunk_size(struct btrfs_fs_info *fs_info)
349 {
350         struct btrfs_space_info *data_sinfo;
351         u64 data_chunk_size;
352
353         /*
354          * Calculate the data_chunk_size, space_info->chunk_size is the
355          * "optimal" chunk size based on the fs size.  However when we actually
356          * allocate the chunk we will strip this down further, making it no
357          * more than 10% of the disk or 1G, whichever is smaller.
358          *
359          * On the zoned mode, we need to use zone_size (= data_sinfo->chunk_size)
360          * as it is.
361          */
362         data_sinfo = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA);
363         if (btrfs_is_zoned(fs_info))
364                 return data_sinfo->chunk_size;
365         data_chunk_size = min(data_sinfo->chunk_size,
366                               mult_perc(fs_info->fs_devices->total_rw_bytes, 10));
367         return min_t(u64, data_chunk_size, SZ_1G);
368 }
369
370 static u64 calc_available_free_space(struct btrfs_fs_info *fs_info,
371                           const struct btrfs_space_info *space_info,
372                           enum btrfs_reserve_flush_enum flush)
373 {
374         u64 profile;
375         u64 avail;
376         u64 data_chunk_size;
377         int factor;
378
379         if (space_info->flags & BTRFS_BLOCK_GROUP_SYSTEM)
380                 profile = btrfs_system_alloc_profile(fs_info);
381         else
382                 profile = btrfs_metadata_alloc_profile(fs_info);
383
384         avail = atomic64_read(&fs_info->free_chunk_space);
385
386         /*
387          * If we have dup, raid1 or raid10 then only half of the free
388          * space is actually usable.  For raid56, the space info used
389          * doesn't include the parity drive, so we don't have to
390          * change the math
391          */
392         factor = btrfs_bg_type_to_factor(profile);
393         avail = div_u64(avail, factor);
394         if (avail == 0)
395                 return 0;
396
397         data_chunk_size = calc_effective_data_chunk_size(fs_info);
398
399         /*
400          * Since data allocations immediately use block groups as part of the
401          * reservation, because we assume that data reservations will == actual
402          * usage, we could potentially overcommit and then immediately have that
403          * available space used by a data allocation, which could put us in a
404          * bind when we get close to filling the file system.
405          *
406          * To handle this simply remove the data_chunk_size from the available
407          * space.  If we are relatively empty this won't affect our ability to
408          * overcommit much, and if we're very close to full it'll keep us from
409          * getting into a position where we've given ourselves very little
410          * metadata wiggle room.
411          */
412         if (avail <= data_chunk_size)
413                 return 0;
414         avail -= data_chunk_size;
415
416         /*
417          * If we aren't flushing all things, let us overcommit up to
418          * 1/2th of the space. If we can flush, don't let us overcommit
419          * too much, let it overcommit up to 1/8 of the space.
420          */
421         if (flush == BTRFS_RESERVE_FLUSH_ALL)
422                 avail >>= 3;
423         else
424                 avail >>= 1;
425
426         /*
427          * On the zoned mode, we always allocate one zone as one chunk.
428          * Returning non-zone size alingned bytes here will result in
429          * less pressure for the async metadata reclaim process, and it
430          * will over-commit too much leading to ENOSPC. Align down to the
431          * zone size to avoid that.
432          */
433         if (btrfs_is_zoned(fs_info))
434                 avail = ALIGN_DOWN(avail, fs_info->zone_size);
435
436         return avail;
437 }
438
439 int btrfs_can_overcommit(struct btrfs_fs_info *fs_info,
440                          const struct btrfs_space_info *space_info, u64 bytes,
441                          enum btrfs_reserve_flush_enum flush)
442 {
443         u64 avail;
444         u64 used;
445
446         /* Don't overcommit when in mixed mode */
447         if (space_info->flags & BTRFS_BLOCK_GROUP_DATA)
448                 return 0;
449
450         used = btrfs_space_info_used(space_info, true);
451         avail = calc_available_free_space(fs_info, space_info, flush);
452
453         if (used + bytes < space_info->total_bytes + avail)
454                 return 1;
455         return 0;
456 }
457
458 static void remove_ticket(struct btrfs_space_info *space_info,
459                           struct reserve_ticket *ticket)
460 {
461         if (!list_empty(&ticket->list)) {
462                 list_del_init(&ticket->list);
463                 ASSERT(space_info->reclaim_size >= ticket->bytes);
464                 space_info->reclaim_size -= ticket->bytes;
465         }
466 }
467
468 /*
469  * This is for space we already have accounted in space_info->bytes_may_use, so
470  * basically when we're returning space from block_rsv's.
471  */
472 void btrfs_try_granting_tickets(struct btrfs_fs_info *fs_info,
473                                 struct btrfs_space_info *space_info)
474 {
475         struct list_head *head;
476         enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH;
477
478         lockdep_assert_held(&space_info->lock);
479
480         head = &space_info->priority_tickets;
481 again:
482         while (!list_empty(head)) {
483                 struct reserve_ticket *ticket;
484                 u64 used = btrfs_space_info_used(space_info, true);
485
486                 ticket = list_first_entry(head, struct reserve_ticket, list);
487
488                 /* Check and see if our ticket can be satisfied now. */
489                 if ((used + ticket->bytes <= space_info->total_bytes) ||
490                     btrfs_can_overcommit(fs_info, space_info, ticket->bytes,
491                                          flush)) {
492                         btrfs_space_info_update_bytes_may_use(fs_info,
493                                                               space_info,
494                                                               ticket->bytes);
495                         remove_ticket(space_info, ticket);
496                         ticket->bytes = 0;
497                         space_info->tickets_id++;
498                         wake_up(&ticket->wait);
499                 } else {
500                         break;
501                 }
502         }
503
504         if (head == &space_info->priority_tickets) {
505                 head = &space_info->tickets;
506                 flush = BTRFS_RESERVE_FLUSH_ALL;
507                 goto again;
508         }
509 }
510
511 #define DUMP_BLOCK_RSV(fs_info, rsv_name)                               \
512 do {                                                                    \
513         struct btrfs_block_rsv *__rsv = &(fs_info)->rsv_name;           \
514         spin_lock(&__rsv->lock);                                        \
515         btrfs_info(fs_info, #rsv_name ": size %llu reserved %llu",      \
516                    __rsv->size, __rsv->reserved);                       \
517         spin_unlock(&__rsv->lock);                                      \
518 } while (0)
519
520 static const char *space_info_flag_to_str(const struct btrfs_space_info *space_info)
521 {
522         switch (space_info->flags) {
523         case BTRFS_BLOCK_GROUP_SYSTEM:
524                 return "SYSTEM";
525         case BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA:
526                 return "DATA+METADATA";
527         case BTRFS_BLOCK_GROUP_DATA:
528                 return "DATA";
529         case BTRFS_BLOCK_GROUP_METADATA:
530                 return "METADATA";
531         default:
532                 return "UNKNOWN";
533         }
534 }
535
536 static void dump_global_block_rsv(struct btrfs_fs_info *fs_info)
537 {
538         DUMP_BLOCK_RSV(fs_info, global_block_rsv);
539         DUMP_BLOCK_RSV(fs_info, trans_block_rsv);
540         DUMP_BLOCK_RSV(fs_info, chunk_block_rsv);
541         DUMP_BLOCK_RSV(fs_info, delayed_block_rsv);
542         DUMP_BLOCK_RSV(fs_info, delayed_refs_rsv);
543 }
544
545 static void __btrfs_dump_space_info(const struct btrfs_fs_info *fs_info,
546                                     const struct btrfs_space_info *info)
547 {
548         const char *flag_str = space_info_flag_to_str(info);
549         lockdep_assert_held(&info->lock);
550
551         /* The free space could be negative in case of overcommit */
552         btrfs_info(fs_info, "space_info %s has %lld free, is %sfull",
553                    flag_str,
554                    (s64)(info->total_bytes - btrfs_space_info_used(info, true)),
555                    info->full ? "" : "not ");
556         btrfs_info(fs_info,
557 "space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu zone_unusable=%llu",
558                 info->total_bytes, info->bytes_used, info->bytes_pinned,
559                 info->bytes_reserved, info->bytes_may_use,
560                 info->bytes_readonly, info->bytes_zone_unusable);
561 }
562
563 void btrfs_dump_space_info(struct btrfs_fs_info *fs_info,
564                            struct btrfs_space_info *info, u64 bytes,
565                            int dump_block_groups)
566 {
567         struct btrfs_block_group *cache;
568         u64 total_avail = 0;
569         int index = 0;
570
571         spin_lock(&info->lock);
572         __btrfs_dump_space_info(fs_info, info);
573         dump_global_block_rsv(fs_info);
574         spin_unlock(&info->lock);
575
576         if (!dump_block_groups)
577                 return;
578
579         down_read(&info->groups_sem);
580 again:
581         list_for_each_entry(cache, &info->block_groups[index], list) {
582                 u64 avail;
583
584                 spin_lock(&cache->lock);
585                 avail = cache->length - cache->used - cache->pinned -
586                         cache->reserved - cache->bytes_super - cache->zone_unusable;
587                 btrfs_info(fs_info,
588 "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %llu delalloc %llu super %llu zone_unusable (%llu bytes available) %s",
589                            cache->start, cache->length, cache->used, cache->pinned,
590                            cache->reserved, cache->delalloc_bytes,
591                            cache->bytes_super, cache->zone_unusable,
592                            avail, cache->ro ? "[readonly]" : "");
593                 spin_unlock(&cache->lock);
594                 btrfs_dump_free_space(cache, bytes);
595                 total_avail += avail;
596         }
597         if (++index < BTRFS_NR_RAID_TYPES)
598                 goto again;
599         up_read(&info->groups_sem);
600
601         btrfs_info(fs_info, "%llu bytes available across all block groups", total_avail);
602 }
603
604 static inline u64 calc_reclaim_items_nr(const struct btrfs_fs_info *fs_info,
605                                         u64 to_reclaim)
606 {
607         u64 bytes;
608         u64 nr;
609
610         bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
611         nr = div64_u64(to_reclaim, bytes);
612         if (!nr)
613                 nr = 1;
614         return nr;
615 }
616
617 /*
618  * shrink metadata reservation for delalloc
619  */
620 static void shrink_delalloc(struct btrfs_fs_info *fs_info,
621                             struct btrfs_space_info *space_info,
622                             u64 to_reclaim, bool wait_ordered,
623                             bool for_preempt)
624 {
625         struct btrfs_trans_handle *trans;
626         u64 delalloc_bytes;
627         u64 ordered_bytes;
628         u64 items;
629         long time_left;
630         int loops;
631
632         delalloc_bytes = percpu_counter_sum_positive(&fs_info->delalloc_bytes);
633         ordered_bytes = percpu_counter_sum_positive(&fs_info->ordered_bytes);
634         if (delalloc_bytes == 0 && ordered_bytes == 0)
635                 return;
636
637         /* Calc the number of the pages we need flush for space reservation */
638         if (to_reclaim == U64_MAX) {
639                 items = U64_MAX;
640         } else {
641                 /*
642                  * to_reclaim is set to however much metadata we need to
643                  * reclaim, but reclaiming that much data doesn't really track
644                  * exactly.  What we really want to do is reclaim full inode's
645                  * worth of reservations, however that's not available to us
646                  * here.  We will take a fraction of the delalloc bytes for our
647                  * flushing loops and hope for the best.  Delalloc will expand
648                  * the amount we write to cover an entire dirty extent, which
649                  * will reclaim the metadata reservation for that range.  If
650                  * it's not enough subsequent flush stages will be more
651                  * aggressive.
652                  */
653                 to_reclaim = max(to_reclaim, delalloc_bytes >> 3);
654                 items = calc_reclaim_items_nr(fs_info, to_reclaim) * 2;
655         }
656
657         trans = current->journal_info;
658
659         /*
660          * If we are doing more ordered than delalloc we need to just wait on
661          * ordered extents, otherwise we'll waste time trying to flush delalloc
662          * that likely won't give us the space back we need.
663          */
664         if (ordered_bytes > delalloc_bytes && !for_preempt)
665                 wait_ordered = true;
666
667         loops = 0;
668         while ((delalloc_bytes || ordered_bytes) && loops < 3) {
669                 u64 temp = min(delalloc_bytes, to_reclaim) >> PAGE_SHIFT;
670                 long nr_pages = min_t(u64, temp, LONG_MAX);
671                 int async_pages;
672
673                 btrfs_start_delalloc_roots(fs_info, nr_pages, true);
674
675                 /*
676                  * We need to make sure any outstanding async pages are now
677                  * processed before we continue.  This is because things like
678                  * sync_inode() try to be smart and skip writing if the inode is
679                  * marked clean.  We don't use filemap_fwrite for flushing
680                  * because we want to control how many pages we write out at a
681                  * time, thus this is the only safe way to make sure we've
682                  * waited for outstanding compressed workers to have started
683                  * their jobs and thus have ordered extents set up properly.
684                  *
685                  * This exists because we do not want to wait for each
686                  * individual inode to finish its async work, we simply want to
687                  * start the IO on everybody, and then come back here and wait
688                  * for all of the async work to catch up.  Once we're done with
689                  * that we know we'll have ordered extents for everything and we
690                  * can decide if we wait for that or not.
691                  *
692                  * If we choose to replace this in the future, make absolutely
693                  * sure that the proper waiting is being done in the async case,
694                  * as there have been bugs in that area before.
695                  */
696                 async_pages = atomic_read(&fs_info->async_delalloc_pages);
697                 if (!async_pages)
698                         goto skip_async;
699
700                 /*
701                  * We don't want to wait forever, if we wrote less pages in this
702                  * loop than we have outstanding, only wait for that number of
703                  * pages, otherwise we can wait for all async pages to finish
704                  * before continuing.
705                  */
706                 if (async_pages > nr_pages)
707                         async_pages -= nr_pages;
708                 else
709                         async_pages = 0;
710                 wait_event(fs_info->async_submit_wait,
711                            atomic_read(&fs_info->async_delalloc_pages) <=
712                            async_pages);
713 skip_async:
714                 loops++;
715                 if (wait_ordered && !trans) {
716                         btrfs_wait_ordered_roots(fs_info, items, NULL);
717                 } else {
718                         time_left = schedule_timeout_killable(1);
719                         if (time_left)
720                                 break;
721                 }
722
723                 /*
724                  * If we are for preemption we just want a one-shot of delalloc
725                  * flushing so we can stop flushing if we decide we don't need
726                  * to anymore.
727                  */
728                 if (for_preempt)
729                         break;
730
731                 spin_lock(&space_info->lock);
732                 if (list_empty(&space_info->tickets) &&
733                     list_empty(&space_info->priority_tickets)) {
734                         spin_unlock(&space_info->lock);
735                         break;
736                 }
737                 spin_unlock(&space_info->lock);
738
739                 delalloc_bytes = percpu_counter_sum_positive(
740                                                 &fs_info->delalloc_bytes);
741                 ordered_bytes = percpu_counter_sum_positive(
742                                                 &fs_info->ordered_bytes);
743         }
744 }
745
746 /*
747  * Try to flush some data based on policy set by @state. This is only advisory
748  * and may fail for various reasons. The caller is supposed to examine the
749  * state of @space_info to detect the outcome.
750  */
751 static void flush_space(struct btrfs_fs_info *fs_info,
752                        struct btrfs_space_info *space_info, u64 num_bytes,
753                        enum btrfs_flush_state state, bool for_preempt)
754 {
755         struct btrfs_root *root = fs_info->tree_root;
756         struct btrfs_trans_handle *trans;
757         int nr;
758         int ret = 0;
759
760         switch (state) {
761         case FLUSH_DELAYED_ITEMS_NR:
762         case FLUSH_DELAYED_ITEMS:
763                 if (state == FLUSH_DELAYED_ITEMS_NR)
764                         nr = calc_reclaim_items_nr(fs_info, num_bytes) * 2;
765                 else
766                         nr = -1;
767
768                 trans = btrfs_join_transaction_nostart(root);
769                 if (IS_ERR(trans)) {
770                         ret = PTR_ERR(trans);
771                         if (ret == -ENOENT)
772                                 ret = 0;
773                         break;
774                 }
775                 ret = btrfs_run_delayed_items_nr(trans, nr);
776                 btrfs_end_transaction(trans);
777                 break;
778         case FLUSH_DELALLOC:
779         case FLUSH_DELALLOC_WAIT:
780         case FLUSH_DELALLOC_FULL:
781                 if (state == FLUSH_DELALLOC_FULL)
782                         num_bytes = U64_MAX;
783                 shrink_delalloc(fs_info, space_info, num_bytes,
784                                 state != FLUSH_DELALLOC, for_preempt);
785                 break;
786         case FLUSH_DELAYED_REFS_NR:
787         case FLUSH_DELAYED_REFS:
788                 trans = btrfs_join_transaction_nostart(root);
789                 if (IS_ERR(trans)) {
790                         ret = PTR_ERR(trans);
791                         if (ret == -ENOENT)
792                                 ret = 0;
793                         break;
794                 }
795                 if (state == FLUSH_DELAYED_REFS_NR)
796                         btrfs_run_delayed_refs(trans, num_bytes);
797                 else
798                         btrfs_run_delayed_refs(trans, 0);
799                 btrfs_end_transaction(trans);
800                 break;
801         case ALLOC_CHUNK:
802         case ALLOC_CHUNK_FORCE:
803                 trans = btrfs_join_transaction(root);
804                 if (IS_ERR(trans)) {
805                         ret = PTR_ERR(trans);
806                         break;
807                 }
808                 ret = btrfs_chunk_alloc(trans,
809                                 btrfs_get_alloc_profile(fs_info, space_info->flags),
810                                 (state == ALLOC_CHUNK) ? CHUNK_ALLOC_NO_FORCE :
811                                         CHUNK_ALLOC_FORCE);
812                 btrfs_end_transaction(trans);
813
814                 if (ret > 0 || ret == -ENOSPC)
815                         ret = 0;
816                 break;
817         case RUN_DELAYED_IPUTS:
818                 /*
819                  * If we have pending delayed iputs then we could free up a
820                  * bunch of pinned space, so make sure we run the iputs before
821                  * we do our pinned bytes check below.
822                  */
823                 btrfs_run_delayed_iputs(fs_info);
824                 btrfs_wait_on_delayed_iputs(fs_info);
825                 break;
826         case COMMIT_TRANS:
827                 ASSERT(current->journal_info == NULL);
828                 /*
829                  * We don't want to start a new transaction, just attach to the
830                  * current one or wait it fully commits in case its commit is
831                  * happening at the moment. Note: we don't use a nostart join
832                  * because that does not wait for a transaction to fully commit
833                  * (only for it to be unblocked, state TRANS_STATE_UNBLOCKED).
834                  */
835                 ret = btrfs_commit_current_transaction(root);
836                 break;
837         default:
838                 ret = -ENOSPC;
839                 break;
840         }
841
842         trace_btrfs_flush_space(fs_info, space_info->flags, num_bytes, state,
843                                 ret, for_preempt);
844         return;
845 }
846
847 static u64 btrfs_calc_reclaim_metadata_size(struct btrfs_fs_info *fs_info,
848                                             const struct btrfs_space_info *space_info)
849 {
850         u64 used;
851         u64 avail;
852         u64 to_reclaim = space_info->reclaim_size;
853
854         lockdep_assert_held(&space_info->lock);
855
856         avail = calc_available_free_space(fs_info, space_info,
857                                           BTRFS_RESERVE_FLUSH_ALL);
858         used = btrfs_space_info_used(space_info, true);
859
860         /*
861          * We may be flushing because suddenly we have less space than we had
862          * before, and now we're well over-committed based on our current free
863          * space.  If that's the case add in our overage so we make sure to put
864          * appropriate pressure on the flushing state machine.
865          */
866         if (space_info->total_bytes + avail < used)
867                 to_reclaim += used - (space_info->total_bytes + avail);
868
869         return to_reclaim;
870 }
871
872 static bool need_preemptive_reclaim(struct btrfs_fs_info *fs_info,
873                                     const struct btrfs_space_info *space_info)
874 {
875         const u64 global_rsv_size = btrfs_block_rsv_reserved(&fs_info->global_block_rsv);
876         u64 ordered, delalloc;
877         u64 thresh;
878         u64 used;
879
880         thresh = mult_perc(space_info->total_bytes, 90);
881
882         lockdep_assert_held(&space_info->lock);
883
884         /* If we're just plain full then async reclaim just slows us down. */
885         if ((space_info->bytes_used + space_info->bytes_reserved +
886              global_rsv_size) >= thresh)
887                 return false;
888
889         used = space_info->bytes_may_use + space_info->bytes_pinned;
890
891         /* The total flushable belongs to the global rsv, don't flush. */
892         if (global_rsv_size >= used)
893                 return false;
894
895         /*
896          * 128MiB is 1/4 of the maximum global rsv size.  If we have less than
897          * that devoted to other reservations then there's no sense in flushing,
898          * we don't have a lot of things that need flushing.
899          */
900         if (used - global_rsv_size <= SZ_128M)
901                 return false;
902
903         /*
904          * We have tickets queued, bail so we don't compete with the async
905          * flushers.
906          */
907         if (space_info->reclaim_size)
908                 return false;
909
910         /*
911          * If we have over half of the free space occupied by reservations or
912          * pinned then we want to start flushing.
913          *
914          * We do not do the traditional thing here, which is to say
915          *
916          *   if (used >= ((total_bytes + avail) / 2))
917          *     return 1;
918          *
919          * because this doesn't quite work how we want.  If we had more than 50%
920          * of the space_info used by bytes_used and we had 0 available we'd just
921          * constantly run the background flusher.  Instead we want it to kick in
922          * if our reclaimable space exceeds our clamped free space.
923          *
924          * Our clamping range is 2^1 -> 2^8.  Practically speaking that means
925          * the following:
926          *
927          * Amount of RAM        Minimum threshold       Maximum threshold
928          *
929          *        256GiB                     1GiB                  128GiB
930          *        128GiB                   512MiB                   64GiB
931          *         64GiB                   256MiB                   32GiB
932          *         32GiB                   128MiB                   16GiB
933          *         16GiB                    64MiB                    8GiB
934          *
935          * These are the range our thresholds will fall in, corresponding to how
936          * much delalloc we need for the background flusher to kick in.
937          */
938
939         thresh = calc_available_free_space(fs_info, space_info,
940                                            BTRFS_RESERVE_FLUSH_ALL);
941         used = space_info->bytes_used + space_info->bytes_reserved +
942                space_info->bytes_readonly + global_rsv_size;
943         if (used < space_info->total_bytes)
944                 thresh += space_info->total_bytes - used;
945         thresh >>= space_info->clamp;
946
947         used = space_info->bytes_pinned;
948
949         /*
950          * If we have more ordered bytes than delalloc bytes then we're either
951          * doing a lot of DIO, or we simply don't have a lot of delalloc waiting
952          * around.  Preemptive flushing is only useful in that it can free up
953          * space before tickets need to wait for things to finish.  In the case
954          * of ordered extents, preemptively waiting on ordered extents gets us
955          * nothing, if our reservations are tied up in ordered extents we'll
956          * simply have to slow down writers by forcing them to wait on ordered
957          * extents.
958          *
959          * In the case that ordered is larger than delalloc, only include the
960          * block reserves that we would actually be able to directly reclaim
961          * from.  In this case if we're heavy on metadata operations this will
962          * clearly be heavy enough to warrant preemptive flushing.  In the case
963          * of heavy DIO or ordered reservations, preemptive flushing will just
964          * waste time and cause us to slow down.
965          *
966          * We want to make sure we truly are maxed out on ordered however, so
967          * cut ordered in half, and if it's still higher than delalloc then we
968          * can keep flushing.  This is to avoid the case where we start
969          * flushing, and now delalloc == ordered and we stop preemptively
970          * flushing when we could still have several gigs of delalloc to flush.
971          */
972         ordered = percpu_counter_read_positive(&fs_info->ordered_bytes) >> 1;
973         delalloc = percpu_counter_read_positive(&fs_info->delalloc_bytes);
974         if (ordered >= delalloc)
975                 used += btrfs_block_rsv_reserved(&fs_info->delayed_refs_rsv) +
976                         btrfs_block_rsv_reserved(&fs_info->delayed_block_rsv);
977         else
978                 used += space_info->bytes_may_use - global_rsv_size;
979
980         return (used >= thresh && !btrfs_fs_closing(fs_info) &&
981                 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
982 }
983
984 static bool steal_from_global_rsv(struct btrfs_fs_info *fs_info,
985                                   struct btrfs_space_info *space_info,
986                                   struct reserve_ticket *ticket)
987 {
988         struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
989         u64 min_bytes;
990
991         if (!ticket->steal)
992                 return false;
993
994         if (global_rsv->space_info != space_info)
995                 return false;
996
997         spin_lock(&global_rsv->lock);
998         min_bytes = mult_perc(global_rsv->size, 10);
999         if (global_rsv->reserved < min_bytes + ticket->bytes) {
1000                 spin_unlock(&global_rsv->lock);
1001                 return false;
1002         }
1003         global_rsv->reserved -= ticket->bytes;
1004         remove_ticket(space_info, ticket);
1005         ticket->bytes = 0;
1006         wake_up(&ticket->wait);
1007         space_info->tickets_id++;
1008         if (global_rsv->reserved < global_rsv->size)
1009                 global_rsv->full = 0;
1010         spin_unlock(&global_rsv->lock);
1011
1012         return true;
1013 }
1014
1015 /*
1016  * We've exhausted our flushing, start failing tickets.
1017  *
1018  * @fs_info - fs_info for this fs
1019  * @space_info - the space info we were flushing
1020  *
1021  * We call this when we've exhausted our flushing ability and haven't made
1022  * progress in satisfying tickets.  The reservation code handles tickets in
1023  * order, so if there is a large ticket first and then smaller ones we could
1024  * very well satisfy the smaller tickets.  This will attempt to wake up any
1025  * tickets in the list to catch this case.
1026  *
1027  * This function returns true if it was able to make progress by clearing out
1028  * other tickets, or if it stumbles across a ticket that was smaller than the
1029  * first ticket.
1030  */
1031 static bool maybe_fail_all_tickets(struct btrfs_fs_info *fs_info,
1032                                    struct btrfs_space_info *space_info)
1033 {
1034         struct reserve_ticket *ticket;
1035         u64 tickets_id = space_info->tickets_id;
1036         const bool aborted = BTRFS_FS_ERROR(fs_info);
1037
1038         trace_btrfs_fail_all_tickets(fs_info, space_info);
1039
1040         if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
1041                 btrfs_info(fs_info, "cannot satisfy tickets, dumping space info");
1042                 __btrfs_dump_space_info(fs_info, space_info);
1043         }
1044
1045         while (!list_empty(&space_info->tickets) &&
1046                tickets_id == space_info->tickets_id) {
1047                 ticket = list_first_entry(&space_info->tickets,
1048                                           struct reserve_ticket, list);
1049
1050                 if (!aborted && steal_from_global_rsv(fs_info, space_info, ticket))
1051                         return true;
1052
1053                 if (!aborted && btrfs_test_opt(fs_info, ENOSPC_DEBUG))
1054                         btrfs_info(fs_info, "failing ticket with %llu bytes",
1055                                    ticket->bytes);
1056
1057                 remove_ticket(space_info, ticket);
1058                 if (aborted)
1059                         ticket->error = -EIO;
1060                 else
1061                         ticket->error = -ENOSPC;
1062                 wake_up(&ticket->wait);
1063
1064                 /*
1065                  * We're just throwing tickets away, so more flushing may not
1066                  * trip over btrfs_try_granting_tickets, so we need to call it
1067                  * here to see if we can make progress with the next ticket in
1068                  * the list.
1069                  */
1070                 if (!aborted)
1071                         btrfs_try_granting_tickets(fs_info, space_info);
1072         }
1073         return (tickets_id != space_info->tickets_id);
1074 }
1075
1076 /*
1077  * This is for normal flushers, we can wait all goddamned day if we want to.  We
1078  * will loop and continuously try to flush as long as we are making progress.
1079  * We count progress as clearing off tickets each time we have to loop.
1080  */
1081 static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
1082 {
1083         struct btrfs_fs_info *fs_info;
1084         struct btrfs_space_info *space_info;
1085         u64 to_reclaim;
1086         enum btrfs_flush_state flush_state;
1087         int commit_cycles = 0;
1088         u64 last_tickets_id;
1089
1090         fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
1091         space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
1092
1093         spin_lock(&space_info->lock);
1094         to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info);
1095         if (!to_reclaim) {
1096                 space_info->flush = 0;
1097                 spin_unlock(&space_info->lock);
1098                 return;
1099         }
1100         last_tickets_id = space_info->tickets_id;
1101         spin_unlock(&space_info->lock);
1102
1103         flush_state = FLUSH_DELAYED_ITEMS_NR;
1104         do {
1105                 flush_space(fs_info, space_info, to_reclaim, flush_state, false);
1106                 spin_lock(&space_info->lock);
1107                 if (list_empty(&space_info->tickets)) {
1108                         space_info->flush = 0;
1109                         spin_unlock(&space_info->lock);
1110                         return;
1111                 }
1112                 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info,
1113                                                               space_info);
1114                 if (last_tickets_id == space_info->tickets_id) {
1115                         flush_state++;
1116                 } else {
1117                         last_tickets_id = space_info->tickets_id;
1118                         flush_state = FLUSH_DELAYED_ITEMS_NR;
1119                         if (commit_cycles)
1120                                 commit_cycles--;
1121                 }
1122
1123                 /*
1124                  * We do not want to empty the system of delalloc unless we're
1125                  * under heavy pressure, so allow one trip through the flushing
1126                  * logic before we start doing a FLUSH_DELALLOC_FULL.
1127                  */
1128                 if (flush_state == FLUSH_DELALLOC_FULL && !commit_cycles)
1129                         flush_state++;
1130
1131                 /*
1132                  * We don't want to force a chunk allocation until we've tried
1133                  * pretty hard to reclaim space.  Think of the case where we
1134                  * freed up a bunch of space and so have a lot of pinned space
1135                  * to reclaim.  We would rather use that than possibly create a
1136                  * underutilized metadata chunk.  So if this is our first run
1137                  * through the flushing state machine skip ALLOC_CHUNK_FORCE and
1138                  * commit the transaction.  If nothing has changed the next go
1139                  * around then we can force a chunk allocation.
1140                  */
1141                 if (flush_state == ALLOC_CHUNK_FORCE && !commit_cycles)
1142                         flush_state++;
1143
1144                 if (flush_state > COMMIT_TRANS) {
1145                         commit_cycles++;
1146                         if (commit_cycles > 2) {
1147                                 if (maybe_fail_all_tickets(fs_info, space_info)) {
1148                                         flush_state = FLUSH_DELAYED_ITEMS_NR;
1149                                         commit_cycles--;
1150                                 } else {
1151                                         space_info->flush = 0;
1152                                 }
1153                         } else {
1154                                 flush_state = FLUSH_DELAYED_ITEMS_NR;
1155                         }
1156                 }
1157                 spin_unlock(&space_info->lock);
1158         } while (flush_state <= COMMIT_TRANS);
1159 }
1160
1161 /*
1162  * This handles pre-flushing of metadata space before we get to the point that
1163  * we need to start blocking threads on tickets.  The logic here is different
1164  * from the other flush paths because it doesn't rely on tickets to tell us how
1165  * much we need to flush, instead it attempts to keep us below the 80% full
1166  * watermark of space by flushing whichever reservation pool is currently the
1167  * largest.
1168  */
1169 static void btrfs_preempt_reclaim_metadata_space(struct work_struct *work)
1170 {
1171         struct btrfs_fs_info *fs_info;
1172         struct btrfs_space_info *space_info;
1173         struct btrfs_block_rsv *delayed_block_rsv;
1174         struct btrfs_block_rsv *delayed_refs_rsv;
1175         struct btrfs_block_rsv *global_rsv;
1176         struct btrfs_block_rsv *trans_rsv;
1177         int loops = 0;
1178
1179         fs_info = container_of(work, struct btrfs_fs_info,
1180                                preempt_reclaim_work);
1181         space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
1182         delayed_block_rsv = &fs_info->delayed_block_rsv;
1183         delayed_refs_rsv = &fs_info->delayed_refs_rsv;
1184         global_rsv = &fs_info->global_block_rsv;
1185         trans_rsv = &fs_info->trans_block_rsv;
1186
1187         spin_lock(&space_info->lock);
1188         while (need_preemptive_reclaim(fs_info, space_info)) {
1189                 enum btrfs_flush_state flush;
1190                 u64 delalloc_size = 0;
1191                 u64 to_reclaim, block_rsv_size;
1192                 const u64 global_rsv_size = btrfs_block_rsv_reserved(global_rsv);
1193
1194                 loops++;
1195
1196                 /*
1197                  * We don't have a precise counter for the metadata being
1198                  * reserved for delalloc, so we'll approximate it by subtracting
1199                  * out the block rsv's space from the bytes_may_use.  If that
1200                  * amount is higher than the individual reserves, then we can
1201                  * assume it's tied up in delalloc reservations.
1202                  */
1203                 block_rsv_size = global_rsv_size +
1204                         btrfs_block_rsv_reserved(delayed_block_rsv) +
1205                         btrfs_block_rsv_reserved(delayed_refs_rsv) +
1206                         btrfs_block_rsv_reserved(trans_rsv);
1207                 if (block_rsv_size < space_info->bytes_may_use)
1208                         delalloc_size = space_info->bytes_may_use - block_rsv_size;
1209
1210                 /*
1211                  * We don't want to include the global_rsv in our calculation,
1212                  * because that's space we can't touch.  Subtract it from the
1213                  * block_rsv_size for the next checks.
1214                  */
1215                 block_rsv_size -= global_rsv_size;
1216
1217                 /*
1218                  * We really want to avoid flushing delalloc too much, as it
1219                  * could result in poor allocation patterns, so only flush it if
1220                  * it's larger than the rest of the pools combined.
1221                  */
1222                 if (delalloc_size > block_rsv_size) {
1223                         to_reclaim = delalloc_size;
1224                         flush = FLUSH_DELALLOC;
1225                 } else if (space_info->bytes_pinned >
1226                            (btrfs_block_rsv_reserved(delayed_block_rsv) +
1227                             btrfs_block_rsv_reserved(delayed_refs_rsv))) {
1228                         to_reclaim = space_info->bytes_pinned;
1229                         flush = COMMIT_TRANS;
1230                 } else if (btrfs_block_rsv_reserved(delayed_block_rsv) >
1231                            btrfs_block_rsv_reserved(delayed_refs_rsv)) {
1232                         to_reclaim = btrfs_block_rsv_reserved(delayed_block_rsv);
1233                         flush = FLUSH_DELAYED_ITEMS_NR;
1234                 } else {
1235                         to_reclaim = btrfs_block_rsv_reserved(delayed_refs_rsv);
1236                         flush = FLUSH_DELAYED_REFS_NR;
1237                 }
1238
1239                 spin_unlock(&space_info->lock);
1240
1241                 /*
1242                  * We don't want to reclaim everything, just a portion, so scale
1243                  * down the to_reclaim by 1/4.  If it takes us down to 0,
1244                  * reclaim 1 items worth.
1245                  */
1246                 to_reclaim >>= 2;
1247                 if (!to_reclaim)
1248                         to_reclaim = btrfs_calc_insert_metadata_size(fs_info, 1);
1249                 flush_space(fs_info, space_info, to_reclaim, flush, true);
1250                 cond_resched();
1251                 spin_lock(&space_info->lock);
1252         }
1253
1254         /* We only went through once, back off our clamping. */
1255         if (loops == 1 && !space_info->reclaim_size)
1256                 space_info->clamp = max(1, space_info->clamp - 1);
1257         trace_btrfs_done_preemptive_reclaim(fs_info, space_info);
1258         spin_unlock(&space_info->lock);
1259 }
1260
1261 /*
1262  * FLUSH_DELALLOC_WAIT:
1263  *   Space is freed from flushing delalloc in one of two ways.
1264  *
1265  *   1) compression is on and we allocate less space than we reserved
1266  *   2) we are overwriting existing space
1267  *
1268  *   For #1 that extra space is reclaimed as soon as the delalloc pages are
1269  *   COWed, by way of btrfs_add_reserved_bytes() which adds the actual extent
1270  *   length to ->bytes_reserved, and subtracts the reserved space from
1271  *   ->bytes_may_use.
1272  *
1273  *   For #2 this is trickier.  Once the ordered extent runs we will drop the
1274  *   extent in the range we are overwriting, which creates a delayed ref for
1275  *   that freed extent.  This however is not reclaimed until the transaction
1276  *   commits, thus the next stages.
1277  *
1278  * RUN_DELAYED_IPUTS
1279  *   If we are freeing inodes, we want to make sure all delayed iputs have
1280  *   completed, because they could have been on an inode with i_nlink == 0, and
1281  *   thus have been truncated and freed up space.  But again this space is not
1282  *   immediately reusable, it comes in the form of a delayed ref, which must be
1283  *   run and then the transaction must be committed.
1284  *
1285  * COMMIT_TRANS
1286  *   This is where we reclaim all of the pinned space generated by running the
1287  *   iputs
1288  *
1289  * ALLOC_CHUNK_FORCE
1290  *   For data we start with alloc chunk force, however we could have been full
1291  *   before, and then the transaction commit could have freed new block groups,
1292  *   so if we now have space to allocate do the force chunk allocation.
1293  */
1294 static const enum btrfs_flush_state data_flush_states[] = {
1295         FLUSH_DELALLOC_FULL,
1296         RUN_DELAYED_IPUTS,
1297         COMMIT_TRANS,
1298         ALLOC_CHUNK_FORCE,
1299 };
1300
1301 static void btrfs_async_reclaim_data_space(struct work_struct *work)
1302 {
1303         struct btrfs_fs_info *fs_info;
1304         struct btrfs_space_info *space_info;
1305         u64 last_tickets_id;
1306         enum btrfs_flush_state flush_state = 0;
1307
1308         fs_info = container_of(work, struct btrfs_fs_info, async_data_reclaim_work);
1309         space_info = fs_info->data_sinfo;
1310
1311         spin_lock(&space_info->lock);
1312         if (list_empty(&space_info->tickets)) {
1313                 space_info->flush = 0;
1314                 spin_unlock(&space_info->lock);
1315                 return;
1316         }
1317         last_tickets_id = space_info->tickets_id;
1318         spin_unlock(&space_info->lock);
1319
1320         while (!space_info->full) {
1321                 flush_space(fs_info, space_info, U64_MAX, ALLOC_CHUNK_FORCE, false);
1322                 spin_lock(&space_info->lock);
1323                 if (list_empty(&space_info->tickets)) {
1324                         space_info->flush = 0;
1325                         spin_unlock(&space_info->lock);
1326                         return;
1327                 }
1328
1329                 /* Something happened, fail everything and bail. */
1330                 if (BTRFS_FS_ERROR(fs_info))
1331                         goto aborted_fs;
1332                 last_tickets_id = space_info->tickets_id;
1333                 spin_unlock(&space_info->lock);
1334         }
1335
1336         while (flush_state < ARRAY_SIZE(data_flush_states)) {
1337                 flush_space(fs_info, space_info, U64_MAX,
1338                             data_flush_states[flush_state], false);
1339                 spin_lock(&space_info->lock);
1340                 if (list_empty(&space_info->tickets)) {
1341                         space_info->flush = 0;
1342                         spin_unlock(&space_info->lock);
1343                         return;
1344                 }
1345
1346                 if (last_tickets_id == space_info->tickets_id) {
1347                         flush_state++;
1348                 } else {
1349                         last_tickets_id = space_info->tickets_id;
1350                         flush_state = 0;
1351                 }
1352
1353                 if (flush_state >= ARRAY_SIZE(data_flush_states)) {
1354                         if (space_info->full) {
1355                                 if (maybe_fail_all_tickets(fs_info, space_info))
1356                                         flush_state = 0;
1357                                 else
1358                                         space_info->flush = 0;
1359                         } else {
1360                                 flush_state = 0;
1361                         }
1362
1363                         /* Something happened, fail everything and bail. */
1364                         if (BTRFS_FS_ERROR(fs_info))
1365                                 goto aborted_fs;
1366
1367                 }
1368                 spin_unlock(&space_info->lock);
1369         }
1370         return;
1371
1372 aborted_fs:
1373         maybe_fail_all_tickets(fs_info, space_info);
1374         space_info->flush = 0;
1375         spin_unlock(&space_info->lock);
1376 }
1377
1378 void btrfs_init_async_reclaim_work(struct btrfs_fs_info *fs_info)
1379 {
1380         INIT_WORK(&fs_info->async_reclaim_work, btrfs_async_reclaim_metadata_space);
1381         INIT_WORK(&fs_info->async_data_reclaim_work, btrfs_async_reclaim_data_space);
1382         INIT_WORK(&fs_info->preempt_reclaim_work,
1383                   btrfs_preempt_reclaim_metadata_space);
1384 }
1385
1386 static const enum btrfs_flush_state priority_flush_states[] = {
1387         FLUSH_DELAYED_ITEMS_NR,
1388         FLUSH_DELAYED_ITEMS,
1389         ALLOC_CHUNK,
1390 };
1391
1392 static const enum btrfs_flush_state evict_flush_states[] = {
1393         FLUSH_DELAYED_ITEMS_NR,
1394         FLUSH_DELAYED_ITEMS,
1395         FLUSH_DELAYED_REFS_NR,
1396         FLUSH_DELAYED_REFS,
1397         FLUSH_DELALLOC,
1398         FLUSH_DELALLOC_WAIT,
1399         FLUSH_DELALLOC_FULL,
1400         ALLOC_CHUNK,
1401         COMMIT_TRANS,
1402 };
1403
1404 static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info,
1405                                 struct btrfs_space_info *space_info,
1406                                 struct reserve_ticket *ticket,
1407                                 const enum btrfs_flush_state *states,
1408                                 int states_nr)
1409 {
1410         u64 to_reclaim;
1411         int flush_state = 0;
1412
1413         spin_lock(&space_info->lock);
1414         to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info);
1415         /*
1416          * This is the priority reclaim path, so to_reclaim could be >0 still
1417          * because we may have only satisfied the priority tickets and still
1418          * left non priority tickets on the list.  We would then have
1419          * to_reclaim but ->bytes == 0.
1420          */
1421         if (ticket->bytes == 0) {
1422                 spin_unlock(&space_info->lock);
1423                 return;
1424         }
1425
1426         while (flush_state < states_nr) {
1427                 spin_unlock(&space_info->lock);
1428                 flush_space(fs_info, space_info, to_reclaim, states[flush_state],
1429                             false);
1430                 flush_state++;
1431                 spin_lock(&space_info->lock);
1432                 if (ticket->bytes == 0) {
1433                         spin_unlock(&space_info->lock);
1434                         return;
1435                 }
1436         }
1437
1438         /*
1439          * Attempt to steal from the global rsv if we can, except if the fs was
1440          * turned into error mode due to a transaction abort when flushing space
1441          * above, in that case fail with the abort error instead of returning
1442          * success to the caller if we can steal from the global rsv - this is
1443          * just to have caller fail immeditelly instead of later when trying to
1444          * modify the fs, making it easier to debug -ENOSPC problems.
1445          */
1446         if (BTRFS_FS_ERROR(fs_info)) {
1447                 ticket->error = BTRFS_FS_ERROR(fs_info);
1448                 remove_ticket(space_info, ticket);
1449         } else if (!steal_from_global_rsv(fs_info, space_info, ticket)) {
1450                 ticket->error = -ENOSPC;
1451                 remove_ticket(space_info, ticket);
1452         }
1453
1454         /*
1455          * We must run try_granting_tickets here because we could be a large
1456          * ticket in front of a smaller ticket that can now be satisfied with
1457          * the available space.
1458          */
1459         btrfs_try_granting_tickets(fs_info, space_info);
1460         spin_unlock(&space_info->lock);
1461 }
1462
1463 static void priority_reclaim_data_space(struct btrfs_fs_info *fs_info,
1464                                         struct btrfs_space_info *space_info,
1465                                         struct reserve_ticket *ticket)
1466 {
1467         spin_lock(&space_info->lock);
1468
1469         /* We could have been granted before we got here. */
1470         if (ticket->bytes == 0) {
1471                 spin_unlock(&space_info->lock);
1472                 return;
1473         }
1474
1475         while (!space_info->full) {
1476                 spin_unlock(&space_info->lock);
1477                 flush_space(fs_info, space_info, U64_MAX, ALLOC_CHUNK_FORCE, false);
1478                 spin_lock(&space_info->lock);
1479                 if (ticket->bytes == 0) {
1480                         spin_unlock(&space_info->lock);
1481                         return;
1482                 }
1483         }
1484
1485         ticket->error = -ENOSPC;
1486         remove_ticket(space_info, ticket);
1487         btrfs_try_granting_tickets(fs_info, space_info);
1488         spin_unlock(&space_info->lock);
1489 }
1490
1491 static void wait_reserve_ticket(struct btrfs_space_info *space_info,
1492                                 struct reserve_ticket *ticket)
1493
1494 {
1495         DEFINE_WAIT(wait);
1496         int ret = 0;
1497
1498         spin_lock(&space_info->lock);
1499         while (ticket->bytes > 0 && ticket->error == 0) {
1500                 ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE);
1501                 if (ret) {
1502                         /*
1503                          * Delete us from the list. After we unlock the space
1504                          * info, we don't want the async reclaim job to reserve
1505                          * space for this ticket. If that would happen, then the
1506                          * ticket's task would not known that space was reserved
1507                          * despite getting an error, resulting in a space leak
1508                          * (bytes_may_use counter of our space_info).
1509                          */
1510                         remove_ticket(space_info, ticket);
1511                         ticket->error = -EINTR;
1512                         break;
1513                 }
1514                 spin_unlock(&space_info->lock);
1515
1516                 schedule();
1517
1518                 finish_wait(&ticket->wait, &wait);
1519                 spin_lock(&space_info->lock);
1520         }
1521         spin_unlock(&space_info->lock);
1522 }
1523
1524 /*
1525  * Do the appropriate flushing and waiting for a ticket.
1526  *
1527  * @fs_info:    the filesystem
1528  * @space_info: space info for the reservation
1529  * @ticket:     ticket for the reservation
1530  * @start_ns:   timestamp when the reservation started
1531  * @orig_bytes: amount of bytes originally reserved
1532  * @flush:      how much we can flush
1533  *
1534  * This does the work of figuring out how to flush for the ticket, waiting for
1535  * the reservation, and returning the appropriate error if there is one.
1536  */
1537 static int handle_reserve_ticket(struct btrfs_fs_info *fs_info,
1538                                  struct btrfs_space_info *space_info,
1539                                  struct reserve_ticket *ticket,
1540                                  u64 start_ns, u64 orig_bytes,
1541                                  enum btrfs_reserve_flush_enum flush)
1542 {
1543         int ret;
1544
1545         switch (flush) {
1546         case BTRFS_RESERVE_FLUSH_DATA:
1547         case BTRFS_RESERVE_FLUSH_ALL:
1548         case BTRFS_RESERVE_FLUSH_ALL_STEAL:
1549                 wait_reserve_ticket(space_info, ticket);
1550                 break;
1551         case BTRFS_RESERVE_FLUSH_LIMIT:
1552                 priority_reclaim_metadata_space(fs_info, space_info, ticket,
1553                                                 priority_flush_states,
1554                                                 ARRAY_SIZE(priority_flush_states));
1555                 break;
1556         case BTRFS_RESERVE_FLUSH_EVICT:
1557                 priority_reclaim_metadata_space(fs_info, space_info, ticket,
1558                                                 evict_flush_states,
1559                                                 ARRAY_SIZE(evict_flush_states));
1560                 break;
1561         case BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE:
1562                 priority_reclaim_data_space(fs_info, space_info, ticket);
1563                 break;
1564         default:
1565                 ASSERT(0);
1566                 break;
1567         }
1568
1569         ret = ticket->error;
1570         ASSERT(list_empty(&ticket->list));
1571         /*
1572          * Check that we can't have an error set if the reservation succeeded,
1573          * as that would confuse tasks and lead them to error out without
1574          * releasing reserved space (if an error happens the expectation is that
1575          * space wasn't reserved at all).
1576          */
1577         ASSERT(!(ticket->bytes == 0 && ticket->error));
1578         trace_btrfs_reserve_ticket(fs_info, space_info->flags, orig_bytes,
1579                                    start_ns, flush, ticket->error);
1580         return ret;
1581 }
1582
1583 /*
1584  * This returns true if this flush state will go through the ordinary flushing
1585  * code.
1586  */
1587 static inline bool is_normal_flushing(enum btrfs_reserve_flush_enum flush)
1588 {
1589         return  (flush == BTRFS_RESERVE_FLUSH_ALL) ||
1590                 (flush == BTRFS_RESERVE_FLUSH_ALL_STEAL);
1591 }
1592
1593 static inline void maybe_clamp_preempt(struct btrfs_fs_info *fs_info,
1594                                        struct btrfs_space_info *space_info)
1595 {
1596         u64 ordered = percpu_counter_sum_positive(&fs_info->ordered_bytes);
1597         u64 delalloc = percpu_counter_sum_positive(&fs_info->delalloc_bytes);
1598
1599         /*
1600          * If we're heavy on ordered operations then clamping won't help us.  We
1601          * need to clamp specifically to keep up with dirty'ing buffered
1602          * writers, because there's not a 1:1 correlation of writing delalloc
1603          * and freeing space, like there is with flushing delayed refs or
1604          * delayed nodes.  If we're already more ordered than delalloc then
1605          * we're keeping up, otherwise we aren't and should probably clamp.
1606          */
1607         if (ordered < delalloc)
1608                 space_info->clamp = min(space_info->clamp + 1, 8);
1609 }
1610
1611 static inline bool can_steal(enum btrfs_reserve_flush_enum flush)
1612 {
1613         return (flush == BTRFS_RESERVE_FLUSH_ALL_STEAL ||
1614                 flush == BTRFS_RESERVE_FLUSH_EVICT);
1615 }
1616
1617 /*
1618  * NO_FLUSH and FLUSH_EMERGENCY don't want to create a ticket, they just want to
1619  * fail as quickly as possible.
1620  */
1621 static inline bool can_ticket(enum btrfs_reserve_flush_enum flush)
1622 {
1623         return (flush != BTRFS_RESERVE_NO_FLUSH &&
1624                 flush != BTRFS_RESERVE_FLUSH_EMERGENCY);
1625 }
1626
1627 /*
1628  * Try to reserve bytes from the block_rsv's space.
1629  *
1630  * @fs_info:    the filesystem
1631  * @space_info: space info we want to allocate from
1632  * @orig_bytes: number of bytes we want
1633  * @flush:      whether or not we can flush to make our reservation
1634  *
1635  * This will reserve orig_bytes number of bytes from the space info associated
1636  * with the block_rsv.  If there is not enough space it will make an attempt to
1637  * flush out space to make room.  It will do this by flushing delalloc if
1638  * possible or committing the transaction.  If flush is 0 then no attempts to
1639  * regain reservations will be made and this will fail if there is not enough
1640  * space already.
1641  */
1642 static int __reserve_bytes(struct btrfs_fs_info *fs_info,
1643                            struct btrfs_space_info *space_info, u64 orig_bytes,
1644                            enum btrfs_reserve_flush_enum flush)
1645 {
1646         struct work_struct *async_work;
1647         struct reserve_ticket ticket;
1648         u64 start_ns = 0;
1649         u64 used;
1650         int ret = -ENOSPC;
1651         bool pending_tickets;
1652
1653         ASSERT(orig_bytes);
1654         /*
1655          * If have a transaction handle (current->journal_info != NULL), then
1656          * the flush method can not be neither BTRFS_RESERVE_FLUSH_ALL* nor
1657          * BTRFS_RESERVE_FLUSH_EVICT, as we could deadlock because those
1658          * flushing methods can trigger transaction commits.
1659          */
1660         if (current->journal_info) {
1661                 /* One assert per line for easier debugging. */
1662                 ASSERT(flush != BTRFS_RESERVE_FLUSH_ALL);
1663                 ASSERT(flush != BTRFS_RESERVE_FLUSH_ALL_STEAL);
1664                 ASSERT(flush != BTRFS_RESERVE_FLUSH_EVICT);
1665         }
1666
1667         if (flush == BTRFS_RESERVE_FLUSH_DATA)
1668                 async_work = &fs_info->async_data_reclaim_work;
1669         else
1670                 async_work = &fs_info->async_reclaim_work;
1671
1672         spin_lock(&space_info->lock);
1673         used = btrfs_space_info_used(space_info, true);
1674
1675         /*
1676          * We don't want NO_FLUSH allocations to jump everybody, they can
1677          * generally handle ENOSPC in a different way, so treat them the same as
1678          * normal flushers when it comes to skipping pending tickets.
1679          */
1680         if (is_normal_flushing(flush) || (flush == BTRFS_RESERVE_NO_FLUSH))
1681                 pending_tickets = !list_empty(&space_info->tickets) ||
1682                         !list_empty(&space_info->priority_tickets);
1683         else
1684                 pending_tickets = !list_empty(&space_info->priority_tickets);
1685
1686         /*
1687          * Carry on if we have enough space (short-circuit) OR call
1688          * can_overcommit() to ensure we can overcommit to continue.
1689          */
1690         if (!pending_tickets &&
1691             ((used + orig_bytes <= space_info->total_bytes) ||
1692              btrfs_can_overcommit(fs_info, space_info, orig_bytes, flush))) {
1693                 btrfs_space_info_update_bytes_may_use(fs_info, space_info,
1694                                                       orig_bytes);
1695                 ret = 0;
1696         }
1697
1698         /*
1699          * Things are dire, we need to make a reservation so we don't abort.  We
1700          * will let this reservation go through as long as we have actual space
1701          * left to allocate for the block.
1702          */
1703         if (ret && unlikely(flush == BTRFS_RESERVE_FLUSH_EMERGENCY)) {
1704                 used = btrfs_space_info_used(space_info, false);
1705                 if (used + orig_bytes <= space_info->total_bytes) {
1706                         btrfs_space_info_update_bytes_may_use(fs_info, space_info,
1707                                                               orig_bytes);
1708                         ret = 0;
1709                 }
1710         }
1711
1712         /*
1713          * If we couldn't make a reservation then setup our reservation ticket
1714          * and kick the async worker if it's not already running.
1715          *
1716          * If we are a priority flusher then we just need to add our ticket to
1717          * the list and we will do our own flushing further down.
1718          */
1719         if (ret && can_ticket(flush)) {
1720                 ticket.bytes = orig_bytes;
1721                 ticket.error = 0;
1722                 space_info->reclaim_size += ticket.bytes;
1723                 init_waitqueue_head(&ticket.wait);
1724                 ticket.steal = can_steal(flush);
1725                 if (trace_btrfs_reserve_ticket_enabled())
1726                         start_ns = ktime_get_ns();
1727
1728                 if (flush == BTRFS_RESERVE_FLUSH_ALL ||
1729                     flush == BTRFS_RESERVE_FLUSH_ALL_STEAL ||
1730                     flush == BTRFS_RESERVE_FLUSH_DATA) {
1731                         list_add_tail(&ticket.list, &space_info->tickets);
1732                         if (!space_info->flush) {
1733                                 /*
1734                                  * We were forced to add a reserve ticket, so
1735                                  * our preemptive flushing is unable to keep
1736                                  * up.  Clamp down on the threshold for the
1737                                  * preemptive flushing in order to keep up with
1738                                  * the workload.
1739                                  */
1740                                 maybe_clamp_preempt(fs_info, space_info);
1741
1742                                 space_info->flush = 1;
1743                                 trace_btrfs_trigger_flush(fs_info,
1744                                                           space_info->flags,
1745                                                           orig_bytes, flush,
1746                                                           "enospc");
1747                                 queue_work(system_unbound_wq, async_work);
1748                         }
1749                 } else {
1750                         list_add_tail(&ticket.list,
1751                                       &space_info->priority_tickets);
1752                 }
1753         } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
1754                 /*
1755                  * We will do the space reservation dance during log replay,
1756                  * which means we won't have fs_info->fs_root set, so don't do
1757                  * the async reclaim as we will panic.
1758                  */
1759                 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags) &&
1760                     !work_busy(&fs_info->preempt_reclaim_work) &&
1761                     need_preemptive_reclaim(fs_info, space_info)) {
1762                         trace_btrfs_trigger_flush(fs_info, space_info->flags,
1763                                                   orig_bytes, flush, "preempt");
1764                         queue_work(system_unbound_wq,
1765                                    &fs_info->preempt_reclaim_work);
1766                 }
1767         }
1768         spin_unlock(&space_info->lock);
1769         if (!ret || !can_ticket(flush))
1770                 return ret;
1771
1772         return handle_reserve_ticket(fs_info, space_info, &ticket, start_ns,
1773                                      orig_bytes, flush);
1774 }
1775
1776 /*
1777  * Try to reserve metadata bytes from the block_rsv's space.
1778  *
1779  * @fs_info:    the filesystem
1780  * @space_info: the space_info we're allocating for
1781  * @orig_bytes: number of bytes we want
1782  * @flush:      whether or not we can flush to make our reservation
1783  *
1784  * This will reserve orig_bytes number of bytes from the space info associated
1785  * with the block_rsv.  If there is not enough space it will make an attempt to
1786  * flush out space to make room.  It will do this by flushing delalloc if
1787  * possible or committing the transaction.  If flush is 0 then no attempts to
1788  * regain reservations will be made and this will fail if there is not enough
1789  * space already.
1790  */
1791 int btrfs_reserve_metadata_bytes(struct btrfs_fs_info *fs_info,
1792                                  struct btrfs_space_info *space_info,
1793                                  u64 orig_bytes,
1794                                  enum btrfs_reserve_flush_enum flush)
1795 {
1796         int ret;
1797
1798         ret = __reserve_bytes(fs_info, space_info, orig_bytes, flush);
1799         if (ret == -ENOSPC) {
1800                 trace_btrfs_space_reservation(fs_info, "space_info:enospc",
1801                                               space_info->flags, orig_bytes, 1);
1802
1803                 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
1804                         btrfs_dump_space_info(fs_info, space_info, orig_bytes, 0);
1805         }
1806         return ret;
1807 }
1808
1809 /*
1810  * Try to reserve data bytes for an allocation.
1811  *
1812  * @fs_info: the filesystem
1813  * @bytes:   number of bytes we need
1814  * @flush:   how we are allowed to flush
1815  *
1816  * This will reserve bytes from the data space info.  If there is not enough
1817  * space then we will attempt to flush space as specified by flush.
1818  */
1819 int btrfs_reserve_data_bytes(struct btrfs_fs_info *fs_info, u64 bytes,
1820                              enum btrfs_reserve_flush_enum flush)
1821 {
1822         struct btrfs_space_info *data_sinfo = fs_info->data_sinfo;
1823         int ret;
1824
1825         ASSERT(flush == BTRFS_RESERVE_FLUSH_DATA ||
1826                flush == BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE ||
1827                flush == BTRFS_RESERVE_NO_FLUSH);
1828         ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_DATA);
1829
1830         ret = __reserve_bytes(fs_info, data_sinfo, bytes, flush);
1831         if (ret == -ENOSPC) {
1832                 trace_btrfs_space_reservation(fs_info, "space_info:enospc",
1833                                               data_sinfo->flags, bytes, 1);
1834                 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
1835                         btrfs_dump_space_info(fs_info, data_sinfo, bytes, 0);
1836         }
1837         return ret;
1838 }
1839
1840 /* Dump all the space infos when we abort a transaction due to ENOSPC. */
1841 __cold void btrfs_dump_space_info_for_trans_abort(struct btrfs_fs_info *fs_info)
1842 {
1843         struct btrfs_space_info *space_info;
1844
1845         btrfs_info(fs_info, "dumping space info:");
1846         list_for_each_entry(space_info, &fs_info->space_info, list) {
1847                 spin_lock(&space_info->lock);
1848                 __btrfs_dump_space_info(fs_info, space_info);
1849                 spin_unlock(&space_info->lock);
1850         }
1851         dump_global_block_rsv(fs_info);
1852 }
1853
1854 /*
1855  * Account the unused space of all the readonly block group in the space_info.
1856  * takes mirrors into account.
1857  */
1858 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
1859 {
1860         struct btrfs_block_group *block_group;
1861         u64 free_bytes = 0;
1862         int factor;
1863
1864         /* It's df, we don't care if it's racy */
1865         if (list_empty(&sinfo->ro_bgs))
1866                 return 0;
1867
1868         spin_lock(&sinfo->lock);
1869         list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
1870                 spin_lock(&block_group->lock);
1871
1872                 if (!block_group->ro) {
1873                         spin_unlock(&block_group->lock);
1874                         continue;
1875                 }
1876
1877                 factor = btrfs_bg_type_to_factor(block_group->flags);
1878                 free_bytes += (block_group->length -
1879                                block_group->used) * factor;
1880
1881                 spin_unlock(&block_group->lock);
1882         }
1883         spin_unlock(&sinfo->lock);
1884
1885         return free_bytes;
1886 }
1887
1888 static u64 calc_pct_ratio(u64 x, u64 y)
1889 {
1890         int err;
1891
1892         if (!y)
1893                 return 0;
1894 again:
1895         err = check_mul_overflow(100, x, &x);
1896         if (err)
1897                 goto lose_precision;
1898         return div64_u64(x, y);
1899 lose_precision:
1900         x >>= 10;
1901         y >>= 10;
1902         if (!y)
1903                 y = 1;
1904         goto again;
1905 }
1906
1907 /*
1908  * A reasonable buffer for unallocated space is 10 data block_groups.
1909  * If we claw this back repeatedly, we can still achieve efficient
1910  * utilization when near full, and not do too much reclaim while
1911  * always maintaining a solid buffer for workloads that quickly
1912  * allocate and pressure the unallocated space.
1913  */
1914 static u64 calc_unalloc_target(struct btrfs_fs_info *fs_info)
1915 {
1916         u64 chunk_sz = calc_effective_data_chunk_size(fs_info);
1917
1918         return BTRFS_UNALLOC_BLOCK_GROUP_TARGET * chunk_sz;
1919 }
1920
1921 /*
1922  * The fundamental goal of automatic reclaim is to protect the filesystem's
1923  * unallocated space and thus minimize the probability of the filesystem going
1924  * read only when a metadata allocation failure causes a transaction abort.
1925  *
1926  * However, relocations happen into the space_info's unused space, therefore
1927  * automatic reclaim must also back off as that space runs low. There is no
1928  * value in doing trivial "relocations" of re-writing the same block group
1929  * into a fresh one.
1930  *
1931  * Furthermore, we want to avoid doing too much reclaim even if there are good
1932  * candidates. This is because the allocator is pretty good at filling up the
1933  * holes with writes. So we want to do just enough reclaim to try and stay
1934  * safe from running out of unallocated space but not be wasteful about it.
1935  *
1936  * Therefore, the dynamic reclaim threshold is calculated as follows:
1937  * - calculate a target unallocated amount of 5 block group sized chunks
1938  * - ratchet up the intensity of reclaim depending on how far we are from
1939  *   that target by using a formula of unalloc / target to set the threshold.
1940  *
1941  * Typically with 10 block groups as the target, the discrete values this comes
1942  * out to are 0, 10, 20, ... , 80, 90, and 99.
1943  */
1944 static int calc_dynamic_reclaim_threshold(const struct btrfs_space_info *space_info)
1945 {
1946         struct btrfs_fs_info *fs_info = space_info->fs_info;
1947         u64 unalloc = atomic64_read(&fs_info->free_chunk_space);
1948         u64 target = calc_unalloc_target(fs_info);
1949         u64 alloc = space_info->total_bytes;
1950         u64 used = btrfs_space_info_used(space_info, false);
1951         u64 unused = alloc - used;
1952         u64 want = target > unalloc ? target - unalloc : 0;
1953         u64 data_chunk_size = calc_effective_data_chunk_size(fs_info);
1954
1955         /* If we have no unused space, don't bother, it won't work anyway. */
1956         if (unused < data_chunk_size)
1957                 return 0;
1958
1959         /* Cast to int is OK because want <= target. */
1960         return calc_pct_ratio(want, target);
1961 }
1962
1963 int btrfs_calc_reclaim_threshold(const struct btrfs_space_info *space_info)
1964 {
1965         lockdep_assert_held(&space_info->lock);
1966
1967         if (READ_ONCE(space_info->dynamic_reclaim))
1968                 return calc_dynamic_reclaim_threshold(space_info);
1969         return READ_ONCE(space_info->bg_reclaim_threshold);
1970 }
1971
1972 /*
1973  * Under "urgent" reclaim, we will reclaim even fresh block groups that have
1974  * recently seen successful allocations, as we are desperate to reclaim
1975  * whatever we can to avoid ENOSPC in a transaction leading to a readonly fs.
1976  */
1977 static bool is_reclaim_urgent(struct btrfs_space_info *space_info)
1978 {
1979         struct btrfs_fs_info *fs_info = space_info->fs_info;
1980         u64 unalloc = atomic64_read(&fs_info->free_chunk_space);
1981         u64 data_chunk_size = calc_effective_data_chunk_size(fs_info);
1982
1983         return unalloc < data_chunk_size;
1984 }
1985
1986 static void do_reclaim_sweep(struct btrfs_space_info *space_info, int raid)
1987 {
1988         struct btrfs_block_group *bg;
1989         int thresh_pct;
1990         bool try_again = true;
1991         bool urgent;
1992
1993         spin_lock(&space_info->lock);
1994         urgent = is_reclaim_urgent(space_info);
1995         thresh_pct = btrfs_calc_reclaim_threshold(space_info);
1996         spin_unlock(&space_info->lock);
1997
1998         down_read(&space_info->groups_sem);
1999 again:
2000         list_for_each_entry(bg, &space_info->block_groups[raid], list) {
2001                 u64 thresh;
2002                 bool reclaim = false;
2003
2004                 btrfs_get_block_group(bg);
2005                 spin_lock(&bg->lock);
2006                 thresh = mult_perc(bg->length, thresh_pct);
2007                 if (bg->used < thresh && bg->reclaim_mark) {
2008                         try_again = false;
2009                         reclaim = true;
2010                 }
2011                 bg->reclaim_mark++;
2012                 spin_unlock(&bg->lock);
2013                 if (reclaim)
2014                         btrfs_mark_bg_to_reclaim(bg);
2015                 btrfs_put_block_group(bg);
2016         }
2017
2018         /*
2019          * In situations where we are very motivated to reclaim (low unalloc)
2020          * use two passes to make the reclaim mark check best effort.
2021          *
2022          * If we have any staler groups, we don't touch the fresher ones, but if we
2023          * really need a block group, do take a fresh one.
2024          */
2025         if (try_again && urgent) {
2026                 try_again = false;
2027                 goto again;
2028         }
2029
2030         up_read(&space_info->groups_sem);
2031 }
2032
2033 void btrfs_space_info_update_reclaimable(struct btrfs_space_info *space_info, s64 bytes)
2034 {
2035         u64 chunk_sz = calc_effective_data_chunk_size(space_info->fs_info);
2036
2037         lockdep_assert_held(&space_info->lock);
2038         space_info->reclaimable_bytes += bytes;
2039
2040         if (space_info->reclaimable_bytes >= chunk_sz)
2041                 btrfs_set_periodic_reclaim_ready(space_info, true);
2042 }
2043
2044 void btrfs_set_periodic_reclaim_ready(struct btrfs_space_info *space_info, bool ready)
2045 {
2046         lockdep_assert_held(&space_info->lock);
2047         if (!READ_ONCE(space_info->periodic_reclaim))
2048                 return;
2049         if (ready != space_info->periodic_reclaim_ready) {
2050                 space_info->periodic_reclaim_ready = ready;
2051                 if (!ready)
2052                         space_info->reclaimable_bytes = 0;
2053         }
2054 }
2055
2056 bool btrfs_should_periodic_reclaim(struct btrfs_space_info *space_info)
2057 {
2058         bool ret;
2059
2060         if (space_info->flags & BTRFS_BLOCK_GROUP_SYSTEM)
2061                 return false;
2062         if (!READ_ONCE(space_info->periodic_reclaim))
2063                 return false;
2064
2065         spin_lock(&space_info->lock);
2066         ret = space_info->periodic_reclaim_ready;
2067         btrfs_set_periodic_reclaim_ready(space_info, false);
2068         spin_unlock(&space_info->lock);
2069
2070         return ret;
2071 }
2072
2073 void btrfs_reclaim_sweep(const struct btrfs_fs_info *fs_info)
2074 {
2075         int raid;
2076         struct btrfs_space_info *space_info;
2077
2078         list_for_each_entry(space_info, &fs_info->space_info, list) {
2079                 if (!btrfs_should_periodic_reclaim(space_info))
2080                         continue;
2081                 for (raid = 0; raid < BTRFS_NR_RAID_TYPES; raid++)
2082                         do_reclaim_sweep(space_info, raid);
2083         }
2084 }
This page took 0.145712 seconds and 4 git commands to generate.