1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2012 Alexander Block. All rights reserved.
6 #include <linux/bsearch.h>
8 #include <linux/file.h>
9 #include <linux/sort.h>
10 #include <linux/mount.h>
11 #include <linux/xattr.h>
12 #include <linux/posix_acl_xattr.h>
13 #include <linux/radix-tree.h>
14 #include <linux/vmalloc.h>
15 #include <linux/string.h>
16 #include <linux/compat.h>
17 #include <linux/crc32c.h>
18 #include <linux/fsverity.h>
25 #include "btrfs_inode.h"
26 #include "transaction.h"
27 #include "compression.h"
28 #include "print-tree.h"
29 #include "accessors.h"
31 #include "file-item.h"
34 #include "lru_cache.h"
37 * Maximum number of references an extent can have in order for us to attempt to
38 * issue clone operations instead of write operations. This currently exists to
39 * avoid hitting limitations of the backreference walking code (taking a lot of
40 * time and using too much memory for extents with large number of references).
42 #define SEND_MAX_EXTENT_REFS 1024
45 * A fs_path is a helper to dynamically build path names with unknown size.
46 * It reallocates the internal buffer on demand.
47 * It allows fast adding of path elements on the right side (normal path) and
48 * fast adding to the left side (reversed path). A reversed path can also be
49 * unreversed if needed.
58 unsigned short buf_len:15;
59 unsigned short reversed:1;
63 * Average path length does not exceed 200 bytes, we'll have
64 * better packing in the slab and higher chance to satisfy
65 * an allocation later during send.
70 #define FS_PATH_INLINE_SIZE \
71 (sizeof(struct fs_path) - offsetof(struct fs_path, inline_buf))
74 /* reused for each extent */
76 struct btrfs_root *root;
83 #define SEND_MAX_NAME_CACHE_SIZE 256
86 * Limit the root_ids array of struct backref_cache_entry to 17 elements.
87 * This makes the size of a cache entry to be exactly 192 bytes on x86_64, which
88 * can be satisfied from the kmalloc-192 slab, without wasting any space.
89 * The most common case is to have a single root for cloning, which corresponds
90 * to the send root. Having the user specify more than 16 clone roots is not
91 * common, and in such rare cases we simply don't use caching if the number of
92 * cloning roots that lead down to a leaf is more than 17.
94 #define SEND_MAX_BACKREF_CACHE_ROOTS 17
97 * Max number of entries in the cache.
98 * With SEND_MAX_BACKREF_CACHE_ROOTS as 17, the size in bytes, excluding
99 * maple tree's internal nodes, is 24K.
101 #define SEND_MAX_BACKREF_CACHE_SIZE 128
104 * A backref cache entry maps a leaf to a list of IDs of roots from which the
105 * leaf is accessible and we can use for clone operations.
106 * With SEND_MAX_BACKREF_CACHE_ROOTS as 12, each cache entry is 128 bytes (on
109 struct backref_cache_entry {
110 struct btrfs_lru_cache_entry entry;
111 u64 root_ids[SEND_MAX_BACKREF_CACHE_ROOTS];
112 /* Number of valid elements in the root_ids array. */
116 /* See the comment at lru_cache.h about struct btrfs_lru_cache_entry. */
117 static_assert(offsetof(struct backref_cache_entry, entry) == 0);
120 * Max number of entries in the cache that stores directories that were already
121 * created. The cache uses raw struct btrfs_lru_cache_entry entries, so it uses
122 * at most 4096 bytes - sizeof(struct btrfs_lru_cache_entry) is 48 bytes, but
123 * the kmalloc-64 slab is used, so we get 4096 bytes (64 bytes * 64).
125 #define SEND_MAX_DIR_CREATED_CACHE_SIZE 64
128 * Max number of entries in the cache that stores directories that were already
129 * created. The cache uses raw struct btrfs_lru_cache_entry entries, so it uses
130 * at most 4096 bytes - sizeof(struct btrfs_lru_cache_entry) is 48 bytes, but
131 * the kmalloc-64 slab is used, so we get 4096 bytes (64 bytes * 64).
133 #define SEND_MAX_DIR_UTIMES_CACHE_SIZE 64
136 struct file *send_filp;
142 * Whether BTRFS_SEND_A_DATA attribute was already added to current
143 * command (since protocol v2, data must be the last attribute).
146 struct page **send_buf_pages;
147 u64 flags; /* 'flags' member of btrfs_ioctl_send_args is u64 */
148 /* Protocol version compatibility requested */
151 struct btrfs_root *send_root;
152 struct btrfs_root *parent_root;
153 struct clone_root *clone_roots;
156 /* current state of the compare_tree call */
157 struct btrfs_path *left_path;
158 struct btrfs_path *right_path;
159 struct btrfs_key *cmp_key;
162 * Keep track of the generation of the last transaction that was used
163 * for relocating a block group. This is periodically checked in order
164 * to detect if a relocation happened since the last check, so that we
165 * don't operate on stale extent buffers for nodes (level >= 1) or on
166 * stale disk_bytenr values of file extent items.
168 u64 last_reloc_trans;
171 * infos of the currently processed inode. In case of deleted inodes,
172 * these are the values from the deleted inode.
179 u64 cur_inode_last_extent;
180 u64 cur_inode_next_write_offset;
182 bool cur_inode_new_gen;
183 bool cur_inode_deleted;
184 bool ignore_cur_inode;
185 bool cur_inode_needs_verity;
186 void *verity_descriptor;
190 struct list_head new_refs;
191 struct list_head deleted_refs;
193 struct btrfs_lru_cache name_cache;
196 * The inode we are currently processing. It's not NULL only when we
197 * need to issue write commands for data extents from this inode.
199 struct inode *cur_inode;
200 struct file_ra_state ra;
201 u64 page_cache_clear_start;
202 bool clean_page_cache;
205 * We process inodes by their increasing order, so if before an
206 * incremental send we reverse the parent/child relationship of
207 * directories such that a directory with a lower inode number was
208 * the parent of a directory with a higher inode number, and the one
209 * becoming the new parent got renamed too, we can't rename/move the
210 * directory with lower inode number when we finish processing it - we
211 * must process the directory with higher inode number first, then
212 * rename/move it and then rename/move the directory with lower inode
213 * number. Example follows.
215 * Tree state when the first send was performed:
227 * Tree state when the second (incremental) send is performed:
236 * The sequence of steps that lead to the second state was:
238 * mv /a/b/c/d /a/b/c2/d2
239 * mv /a/b/c /a/b/c2/d2/cc
241 * "c" has lower inode number, but we can't move it (2nd mv operation)
242 * before we move "d", which has higher inode number.
244 * So we just memorize which move/rename operations must be performed
245 * later when their respective parent is processed and moved/renamed.
248 /* Indexed by parent directory inode number. */
249 struct rb_root pending_dir_moves;
252 * Reverse index, indexed by the inode number of a directory that
253 * is waiting for the move/rename of its immediate parent before its
254 * own move/rename can be performed.
256 struct rb_root waiting_dir_moves;
259 * A directory that is going to be rm'ed might have a child directory
260 * which is in the pending directory moves index above. In this case,
261 * the directory can only be removed after the move/rename of its child
262 * is performed. Example:
282 * Sequence of steps that lead to the send snapshot:
283 * rm -f /a/b/c/foo.txt
285 * mv /a/b/c/x /a/b/YY
288 * When the child is processed, its move/rename is delayed until its
289 * parent is processed (as explained above), but all other operations
290 * like update utimes, chown, chgrp, etc, are performed and the paths
291 * that it uses for those operations must use the orphanized name of
292 * its parent (the directory we're going to rm later), so we need to
293 * memorize that name.
295 * Indexed by the inode number of the directory to be deleted.
297 struct rb_root orphan_dirs;
299 struct rb_root rbtree_new_refs;
300 struct rb_root rbtree_deleted_refs;
302 struct btrfs_lru_cache backref_cache;
303 u64 backref_cache_last_reloc_trans;
305 struct btrfs_lru_cache dir_created_cache;
306 struct btrfs_lru_cache dir_utimes_cache;
309 struct pending_dir_move {
311 struct list_head list;
315 struct list_head update_refs;
318 struct waiting_dir_move {
322 * There might be some directory that could not be removed because it
323 * was waiting for this directory inode to be moved first. Therefore
324 * after this directory is moved, we can try to rmdir the ino rmdir_ino.
331 struct orphan_dir_info {
335 u64 last_dir_index_offset;
336 u64 dir_high_seq_ino;
339 struct name_cache_entry {
341 * The key in the entry is an inode number, and the generation matches
342 * the inode's generation.
344 struct btrfs_lru_cache_entry entry;
348 int need_later_update;
349 /* Name length without NUL terminator. */
351 /* Not NUL terminated. */
352 char name[] __counted_by(name_len) __nonstring;
355 /* See the comment at lru_cache.h about struct btrfs_lru_cache_entry. */
356 static_assert(offsetof(struct name_cache_entry, entry) == 0);
359 #define ADVANCE_ONLY_NEXT -1
361 enum btrfs_compare_tree_result {
362 BTRFS_COMPARE_TREE_NEW,
363 BTRFS_COMPARE_TREE_DELETED,
364 BTRFS_COMPARE_TREE_CHANGED,
365 BTRFS_COMPARE_TREE_SAME,
369 static void inconsistent_snapshot_error(struct send_ctx *sctx,
370 enum btrfs_compare_tree_result result,
373 const char *result_string;
376 case BTRFS_COMPARE_TREE_NEW:
377 result_string = "new";
379 case BTRFS_COMPARE_TREE_DELETED:
380 result_string = "deleted";
382 case BTRFS_COMPARE_TREE_CHANGED:
383 result_string = "updated";
385 case BTRFS_COMPARE_TREE_SAME:
387 result_string = "unchanged";
391 result_string = "unexpected";
394 btrfs_err(sctx->send_root->fs_info,
395 "Send: inconsistent snapshot, found %s %s for inode %llu without updated inode item, send root is %llu, parent root is %llu",
396 result_string, what, sctx->cmp_key->objectid,
397 btrfs_root_id(sctx->send_root),
398 (sctx->parent_root ? btrfs_root_id(sctx->parent_root) : 0));
402 static bool proto_cmd_ok(const struct send_ctx *sctx, int cmd)
404 switch (sctx->proto) {
405 case 1: return cmd <= BTRFS_SEND_C_MAX_V1;
406 case 2: return cmd <= BTRFS_SEND_C_MAX_V2;
407 case 3: return cmd <= BTRFS_SEND_C_MAX_V3;
408 default: return false;
412 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino);
414 static struct waiting_dir_move *
415 get_waiting_dir_move(struct send_ctx *sctx, u64 ino);
417 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino, u64 gen);
419 static int need_send_hole(struct send_ctx *sctx)
421 return (sctx->parent_root && !sctx->cur_inode_new &&
422 !sctx->cur_inode_new_gen && !sctx->cur_inode_deleted &&
423 S_ISREG(sctx->cur_inode_mode));
426 static void fs_path_reset(struct fs_path *p)
429 p->start = p->buf + p->buf_len - 1;
439 static struct fs_path *fs_path_alloc(void)
443 p = kmalloc(sizeof(*p), GFP_KERNEL);
447 p->buf = p->inline_buf;
448 p->buf_len = FS_PATH_INLINE_SIZE;
453 static struct fs_path *fs_path_alloc_reversed(void)
465 static void fs_path_free(struct fs_path *p)
469 if (p->buf != p->inline_buf)
474 static int fs_path_len(struct fs_path *p)
476 return p->end - p->start;
479 static int fs_path_ensure_buf(struct fs_path *p, int len)
487 if (p->buf_len >= len)
490 if (len > PATH_MAX) {
495 path_len = p->end - p->start;
496 old_buf_len = p->buf_len;
499 * Allocate to the next largest kmalloc bucket size, to let
500 * the fast path happen most of the time.
502 len = kmalloc_size_roundup(len);
504 * First time the inline_buf does not suffice
506 if (p->buf == p->inline_buf) {
507 tmp_buf = kmalloc(len, GFP_KERNEL);
509 memcpy(tmp_buf, p->buf, old_buf_len);
511 tmp_buf = krealloc(p->buf, len, GFP_KERNEL);
519 tmp_buf = p->buf + old_buf_len - path_len - 1;
520 p->end = p->buf + p->buf_len - 1;
521 p->start = p->end - path_len;
522 memmove(p->start, tmp_buf, path_len + 1);
525 p->end = p->start + path_len;
530 static int fs_path_prepare_for_add(struct fs_path *p, int name_len,
536 new_len = p->end - p->start + name_len;
537 if (p->start != p->end)
539 ret = fs_path_ensure_buf(p, new_len);
544 if (p->start != p->end)
546 p->start -= name_len;
547 *prepared = p->start;
549 if (p->start != p->end)
560 static int fs_path_add(struct fs_path *p, const char *name, int name_len)
565 ret = fs_path_prepare_for_add(p, name_len, &prepared);
568 memcpy(prepared, name, name_len);
574 static int fs_path_add_path(struct fs_path *p, struct fs_path *p2)
579 ret = fs_path_prepare_for_add(p, p2->end - p2->start, &prepared);
582 memcpy(prepared, p2->start, p2->end - p2->start);
588 static int fs_path_add_from_extent_buffer(struct fs_path *p,
589 struct extent_buffer *eb,
590 unsigned long off, int len)
595 ret = fs_path_prepare_for_add(p, len, &prepared);
599 read_extent_buffer(eb, prepared, off, len);
605 static int fs_path_copy(struct fs_path *p, struct fs_path *from)
607 p->reversed = from->reversed;
610 return fs_path_add_path(p, from);
613 static void fs_path_unreverse(struct fs_path *p)
622 len = p->end - p->start;
624 p->end = p->start + len;
625 memmove(p->start, tmp, len + 1);
629 static struct btrfs_path *alloc_path_for_send(void)
631 struct btrfs_path *path;
633 path = btrfs_alloc_path();
636 path->search_commit_root = 1;
637 path->skip_locking = 1;
638 path->need_commit_sem = 1;
642 static int write_buf(struct file *filp, const void *buf, u32 len, loff_t *off)
648 ret = kernel_write(filp, buf + pos, len - pos, off);
659 static int tlv_put(struct send_ctx *sctx, u16 attr, const void *data, int len)
661 struct btrfs_tlv_header *hdr;
662 int total_len = sizeof(*hdr) + len;
663 int left = sctx->send_max_size - sctx->send_size;
665 if (WARN_ON_ONCE(sctx->put_data))
668 if (unlikely(left < total_len))
671 hdr = (struct btrfs_tlv_header *) (sctx->send_buf + sctx->send_size);
672 put_unaligned_le16(attr, &hdr->tlv_type);
673 put_unaligned_le16(len, &hdr->tlv_len);
674 memcpy(hdr + 1, data, len);
675 sctx->send_size += total_len;
680 #define TLV_PUT_DEFINE_INT(bits) \
681 static int tlv_put_u##bits(struct send_ctx *sctx, \
682 u##bits attr, u##bits value) \
684 __le##bits __tmp = cpu_to_le##bits(value); \
685 return tlv_put(sctx, attr, &__tmp, sizeof(__tmp)); \
688 TLV_PUT_DEFINE_INT(8)
689 TLV_PUT_DEFINE_INT(32)
690 TLV_PUT_DEFINE_INT(64)
692 static int tlv_put_string(struct send_ctx *sctx, u16 attr,
693 const char *str, int len)
697 return tlv_put(sctx, attr, str, len);
700 static int tlv_put_uuid(struct send_ctx *sctx, u16 attr,
703 return tlv_put(sctx, attr, uuid, BTRFS_UUID_SIZE);
706 static int tlv_put_btrfs_timespec(struct send_ctx *sctx, u16 attr,
707 struct extent_buffer *eb,
708 struct btrfs_timespec *ts)
710 struct btrfs_timespec bts;
711 read_extent_buffer(eb, &bts, (unsigned long)ts, sizeof(bts));
712 return tlv_put(sctx, attr, &bts, sizeof(bts));
716 #define TLV_PUT(sctx, attrtype, data, attrlen) \
718 ret = tlv_put(sctx, attrtype, data, attrlen); \
720 goto tlv_put_failure; \
723 #define TLV_PUT_INT(sctx, attrtype, bits, value) \
725 ret = tlv_put_u##bits(sctx, attrtype, value); \
727 goto tlv_put_failure; \
730 #define TLV_PUT_U8(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 8, data)
731 #define TLV_PUT_U16(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 16, data)
732 #define TLV_PUT_U32(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 32, data)
733 #define TLV_PUT_U64(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 64, data)
734 #define TLV_PUT_STRING(sctx, attrtype, str, len) \
736 ret = tlv_put_string(sctx, attrtype, str, len); \
738 goto tlv_put_failure; \
740 #define TLV_PUT_PATH(sctx, attrtype, p) \
742 ret = tlv_put_string(sctx, attrtype, p->start, \
743 p->end - p->start); \
745 goto tlv_put_failure; \
747 #define TLV_PUT_UUID(sctx, attrtype, uuid) \
749 ret = tlv_put_uuid(sctx, attrtype, uuid); \
751 goto tlv_put_failure; \
753 #define TLV_PUT_BTRFS_TIMESPEC(sctx, attrtype, eb, ts) \
755 ret = tlv_put_btrfs_timespec(sctx, attrtype, eb, ts); \
757 goto tlv_put_failure; \
760 static int send_header(struct send_ctx *sctx)
762 struct btrfs_stream_header hdr;
764 strcpy(hdr.magic, BTRFS_SEND_STREAM_MAGIC);
765 hdr.version = cpu_to_le32(sctx->proto);
766 return write_buf(sctx->send_filp, &hdr, sizeof(hdr),
771 * For each command/item we want to send to userspace, we call this function.
773 static int begin_cmd(struct send_ctx *sctx, int cmd)
775 struct btrfs_cmd_header *hdr;
777 if (WARN_ON(!sctx->send_buf))
780 if (unlikely(sctx->send_size != 0)) {
781 btrfs_err(sctx->send_root->fs_info,
782 "send: command header buffer not empty cmd %d offset %llu",
783 cmd, sctx->send_off);
787 sctx->send_size += sizeof(*hdr);
788 hdr = (struct btrfs_cmd_header *)sctx->send_buf;
789 put_unaligned_le16(cmd, &hdr->cmd);
794 static int send_cmd(struct send_ctx *sctx)
797 struct btrfs_cmd_header *hdr;
800 hdr = (struct btrfs_cmd_header *)sctx->send_buf;
801 put_unaligned_le32(sctx->send_size - sizeof(*hdr), &hdr->len);
802 put_unaligned_le32(0, &hdr->crc);
804 crc = crc32c(0, (unsigned char *)sctx->send_buf, sctx->send_size);
805 put_unaligned_le32(crc, &hdr->crc);
807 ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size,
811 sctx->put_data = false;
817 * Sends a move instruction to user space
819 static int send_rename(struct send_ctx *sctx,
820 struct fs_path *from, struct fs_path *to)
822 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
825 btrfs_debug(fs_info, "send_rename %s -> %s", from->start, to->start);
827 ret = begin_cmd(sctx, BTRFS_SEND_C_RENAME);
831 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, from);
832 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_TO, to);
834 ret = send_cmd(sctx);
842 * Sends a link instruction to user space
844 static int send_link(struct send_ctx *sctx,
845 struct fs_path *path, struct fs_path *lnk)
847 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
850 btrfs_debug(fs_info, "send_link %s -> %s", path->start, lnk->start);
852 ret = begin_cmd(sctx, BTRFS_SEND_C_LINK);
856 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
857 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, lnk);
859 ret = send_cmd(sctx);
867 * Sends an unlink instruction to user space
869 static int send_unlink(struct send_ctx *sctx, struct fs_path *path)
871 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
874 btrfs_debug(fs_info, "send_unlink %s", path->start);
876 ret = begin_cmd(sctx, BTRFS_SEND_C_UNLINK);
880 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
882 ret = send_cmd(sctx);
890 * Sends a rmdir instruction to user space
892 static int send_rmdir(struct send_ctx *sctx, struct fs_path *path)
894 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
897 btrfs_debug(fs_info, "send_rmdir %s", path->start);
899 ret = begin_cmd(sctx, BTRFS_SEND_C_RMDIR);
903 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
905 ret = send_cmd(sctx);
912 struct btrfs_inode_info {
924 * Helper function to retrieve some fields from an inode item.
926 static int get_inode_info(struct btrfs_root *root, u64 ino,
927 struct btrfs_inode_info *info)
930 struct btrfs_path *path;
931 struct btrfs_inode_item *ii;
932 struct btrfs_key key;
934 path = alloc_path_for_send();
939 key.type = BTRFS_INODE_ITEM_KEY;
941 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
951 ii = btrfs_item_ptr(path->nodes[0], path->slots[0],
952 struct btrfs_inode_item);
953 info->size = btrfs_inode_size(path->nodes[0], ii);
954 info->gen = btrfs_inode_generation(path->nodes[0], ii);
955 info->mode = btrfs_inode_mode(path->nodes[0], ii);
956 info->uid = btrfs_inode_uid(path->nodes[0], ii);
957 info->gid = btrfs_inode_gid(path->nodes[0], ii);
958 info->rdev = btrfs_inode_rdev(path->nodes[0], ii);
959 info->nlink = btrfs_inode_nlink(path->nodes[0], ii);
961 * Transfer the unchanged u64 value of btrfs_inode_item::flags, that's
962 * otherwise logically split to 32/32 parts.
964 info->fileattr = btrfs_inode_flags(path->nodes[0], ii);
967 btrfs_free_path(path);
971 static int get_inode_gen(struct btrfs_root *root, u64 ino, u64 *gen)
974 struct btrfs_inode_info info = { 0 };
978 ret = get_inode_info(root, ino, &info);
983 typedef int (*iterate_inode_ref_t)(u64 dir, struct fs_path *p, void *ctx);
986 * Helper function to iterate the entries in ONE btrfs_inode_ref or
987 * btrfs_inode_extref.
988 * The iterate callback may return a non zero value to stop iteration. This can
989 * be a negative value for error codes or 1 to simply stop it.
991 * path must point to the INODE_REF or INODE_EXTREF when called.
993 static int iterate_inode_ref(struct btrfs_root *root, struct btrfs_path *path,
994 struct btrfs_key *found_key, int resolve,
995 iterate_inode_ref_t iterate, void *ctx)
997 struct extent_buffer *eb = path->nodes[0];
998 struct btrfs_inode_ref *iref;
999 struct btrfs_inode_extref *extref;
1000 struct btrfs_path *tmp_path;
1004 int slot = path->slots[0];
1009 unsigned long name_off;
1010 unsigned long elem_size;
1013 p = fs_path_alloc_reversed();
1017 tmp_path = alloc_path_for_send();
1024 if (found_key->type == BTRFS_INODE_REF_KEY) {
1025 ptr = (unsigned long)btrfs_item_ptr(eb, slot,
1026 struct btrfs_inode_ref);
1027 total = btrfs_item_size(eb, slot);
1028 elem_size = sizeof(*iref);
1030 ptr = btrfs_item_ptr_offset(eb, slot);
1031 total = btrfs_item_size(eb, slot);
1032 elem_size = sizeof(*extref);
1035 while (cur < total) {
1038 if (found_key->type == BTRFS_INODE_REF_KEY) {
1039 iref = (struct btrfs_inode_ref *)(ptr + cur);
1040 name_len = btrfs_inode_ref_name_len(eb, iref);
1041 name_off = (unsigned long)(iref + 1);
1042 dir = found_key->offset;
1044 extref = (struct btrfs_inode_extref *)(ptr + cur);
1045 name_len = btrfs_inode_extref_name_len(eb, extref);
1046 name_off = (unsigned long)&extref->name;
1047 dir = btrfs_inode_extref_parent(eb, extref);
1051 start = btrfs_ref_to_path(root, tmp_path, name_len,
1053 p->buf, p->buf_len);
1054 if (IS_ERR(start)) {
1055 ret = PTR_ERR(start);
1058 if (start < p->buf) {
1059 /* overflow , try again with larger buffer */
1060 ret = fs_path_ensure_buf(p,
1061 p->buf_len + p->buf - start);
1064 start = btrfs_ref_to_path(root, tmp_path,
1067 p->buf, p->buf_len);
1068 if (IS_ERR(start)) {
1069 ret = PTR_ERR(start);
1072 if (unlikely(start < p->buf)) {
1073 btrfs_err(root->fs_info,
1074 "send: path ref buffer underflow for key (%llu %u %llu)",
1075 found_key->objectid,
1084 ret = fs_path_add_from_extent_buffer(p, eb, name_off,
1090 cur += elem_size + name_len;
1091 ret = iterate(dir, p, ctx);
1097 btrfs_free_path(tmp_path);
1102 typedef int (*iterate_dir_item_t)(int num, struct btrfs_key *di_key,
1103 const char *name, int name_len,
1104 const char *data, int data_len,
1108 * Helper function to iterate the entries in ONE btrfs_dir_item.
1109 * The iterate callback may return a non zero value to stop iteration. This can
1110 * be a negative value for error codes or 1 to simply stop it.
1112 * path must point to the dir item when called.
1114 static int iterate_dir_item(struct btrfs_root *root, struct btrfs_path *path,
1115 iterate_dir_item_t iterate, void *ctx)
1118 struct extent_buffer *eb;
1119 struct btrfs_dir_item *di;
1120 struct btrfs_key di_key;
1132 * Start with a small buffer (1 page). If later we end up needing more
1133 * space, which can happen for xattrs on a fs with a leaf size greater
1134 * than the page size, attempt to increase the buffer. Typically xattr
1138 buf = kmalloc(buf_len, GFP_KERNEL);
1144 eb = path->nodes[0];
1145 slot = path->slots[0];
1146 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
1149 total = btrfs_item_size(eb, slot);
1152 while (cur < total) {
1153 name_len = btrfs_dir_name_len(eb, di);
1154 data_len = btrfs_dir_data_len(eb, di);
1155 btrfs_dir_item_key_to_cpu(eb, di, &di_key);
1157 if (btrfs_dir_ftype(eb, di) == BTRFS_FT_XATTR) {
1158 if (name_len > XATTR_NAME_MAX) {
1159 ret = -ENAMETOOLONG;
1162 if (name_len + data_len >
1163 BTRFS_MAX_XATTR_SIZE(root->fs_info)) {
1171 if (name_len + data_len > PATH_MAX) {
1172 ret = -ENAMETOOLONG;
1177 if (name_len + data_len > buf_len) {
1178 buf_len = name_len + data_len;
1179 if (is_vmalloc_addr(buf)) {
1183 char *tmp = krealloc(buf, buf_len,
1184 GFP_KERNEL | __GFP_NOWARN);
1191 buf = kvmalloc(buf_len, GFP_KERNEL);
1199 read_extent_buffer(eb, buf, (unsigned long)(di + 1),
1200 name_len + data_len);
1202 len = sizeof(*di) + name_len + data_len;
1203 di = (struct btrfs_dir_item *)((char *)di + len);
1206 ret = iterate(num, &di_key, buf, name_len, buf + name_len,
1223 static int __copy_first_ref(u64 dir, struct fs_path *p, void *ctx)
1226 struct fs_path *pt = ctx;
1228 ret = fs_path_copy(pt, p);
1232 /* we want the first only */
1237 * Retrieve the first path of an inode. If an inode has more then one
1238 * ref/hardlink, this is ignored.
1240 static int get_inode_path(struct btrfs_root *root,
1241 u64 ino, struct fs_path *path)
1244 struct btrfs_key key, found_key;
1245 struct btrfs_path *p;
1247 p = alloc_path_for_send();
1251 fs_path_reset(path);
1254 key.type = BTRFS_INODE_REF_KEY;
1257 ret = btrfs_search_slot_for_read(root, &key, p, 1, 0);
1264 btrfs_item_key_to_cpu(p->nodes[0], &found_key, p->slots[0]);
1265 if (found_key.objectid != ino ||
1266 (found_key.type != BTRFS_INODE_REF_KEY &&
1267 found_key.type != BTRFS_INODE_EXTREF_KEY)) {
1272 ret = iterate_inode_ref(root, p, &found_key, 1,
1273 __copy_first_ref, path);
1283 struct backref_ctx {
1284 struct send_ctx *sctx;
1286 /* number of total found references */
1290 * used for clones found in send_root. clones found behind cur_objectid
1291 * and cur_offset are not considered as allowed clones.
1296 /* may be truncated in case it's the last extent in a file */
1299 /* The bytenr the file extent item we are processing refers to. */
1301 /* The owner (root id) of the data backref for the current extent. */
1303 /* The offset of the data backref for the current extent. */
1307 static int __clone_root_cmp_bsearch(const void *key, const void *elt)
1309 u64 root = (u64)(uintptr_t)key;
1310 const struct clone_root *cr = elt;
1312 if (root < btrfs_root_id(cr->root))
1314 if (root > btrfs_root_id(cr->root))
1319 static int __clone_root_cmp_sort(const void *e1, const void *e2)
1321 const struct clone_root *cr1 = e1;
1322 const struct clone_root *cr2 = e2;
1324 if (btrfs_root_id(cr1->root) < btrfs_root_id(cr2->root))
1326 if (btrfs_root_id(cr1->root) > btrfs_root_id(cr2->root))
1332 * Called for every backref that is found for the current extent.
1333 * Results are collected in sctx->clone_roots->ino/offset.
1335 static int iterate_backrefs(u64 ino, u64 offset, u64 num_bytes, u64 root_id,
1338 struct backref_ctx *bctx = ctx_;
1339 struct clone_root *clone_root;
1341 /* First check if the root is in the list of accepted clone sources */
1342 clone_root = bsearch((void *)(uintptr_t)root_id, bctx->sctx->clone_roots,
1343 bctx->sctx->clone_roots_cnt,
1344 sizeof(struct clone_root),
1345 __clone_root_cmp_bsearch);
1349 /* This is our own reference, bail out as we can't clone from it. */
1350 if (clone_root->root == bctx->sctx->send_root &&
1351 ino == bctx->cur_objectid &&
1352 offset == bctx->cur_offset)
1356 * Make sure we don't consider clones from send_root that are
1357 * behind the current inode/offset.
1359 if (clone_root->root == bctx->sctx->send_root) {
1361 * If the source inode was not yet processed we can't issue a
1362 * clone operation, as the source extent does not exist yet at
1363 * the destination of the stream.
1365 if (ino > bctx->cur_objectid)
1368 * We clone from the inode currently being sent as long as the
1369 * source extent is already processed, otherwise we could try
1370 * to clone from an extent that does not exist yet at the
1371 * destination of the stream.
1373 if (ino == bctx->cur_objectid &&
1374 offset + bctx->extent_len >
1375 bctx->sctx->cur_inode_next_write_offset)
1380 clone_root->found_ref = true;
1383 * If the given backref refers to a file extent item with a larger
1384 * number of bytes than what we found before, use the new one so that
1385 * we clone more optimally and end up doing less writes and getting
1386 * less exclusive, non-shared extents at the destination.
1388 if (num_bytes > clone_root->num_bytes) {
1389 clone_root->ino = ino;
1390 clone_root->offset = offset;
1391 clone_root->num_bytes = num_bytes;
1394 * Found a perfect candidate, so there's no need to continue
1397 if (num_bytes >= bctx->extent_len)
1398 return BTRFS_ITERATE_EXTENT_INODES_STOP;
1404 static bool lookup_backref_cache(u64 leaf_bytenr, void *ctx,
1405 const u64 **root_ids_ret, int *root_count_ret)
1407 struct backref_ctx *bctx = ctx;
1408 struct send_ctx *sctx = bctx->sctx;
1409 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
1410 const u64 key = leaf_bytenr >> fs_info->sectorsize_bits;
1411 struct btrfs_lru_cache_entry *raw_entry;
1412 struct backref_cache_entry *entry;
1414 if (sctx->backref_cache.size == 0)
1418 * If relocation happened since we first filled the cache, then we must
1419 * empty the cache and can not use it, because even though we operate on
1420 * read-only roots, their leaves and nodes may have been reallocated and
1421 * now be used for different nodes/leaves of the same tree or some other
1424 * We are called from iterate_extent_inodes() while either holding a
1425 * transaction handle or holding fs_info->commit_root_sem, so no need
1426 * to take any lock here.
1428 if (fs_info->last_reloc_trans > sctx->backref_cache_last_reloc_trans) {
1429 btrfs_lru_cache_clear(&sctx->backref_cache);
1433 raw_entry = btrfs_lru_cache_lookup(&sctx->backref_cache, key, 0);
1437 entry = container_of(raw_entry, struct backref_cache_entry, entry);
1438 *root_ids_ret = entry->root_ids;
1439 *root_count_ret = entry->num_roots;
1444 static void store_backref_cache(u64 leaf_bytenr, const struct ulist *root_ids,
1447 struct backref_ctx *bctx = ctx;
1448 struct send_ctx *sctx = bctx->sctx;
1449 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
1450 struct backref_cache_entry *new_entry;
1451 struct ulist_iterator uiter;
1452 struct ulist_node *node;
1456 * We're called while holding a transaction handle or while holding
1457 * fs_info->commit_root_sem (at iterate_extent_inodes()), so must do a
1460 new_entry = kmalloc(sizeof(struct backref_cache_entry), GFP_NOFS);
1461 /* No worries, cache is optional. */
1465 new_entry->entry.key = leaf_bytenr >> fs_info->sectorsize_bits;
1466 new_entry->entry.gen = 0;
1467 new_entry->num_roots = 0;
1468 ULIST_ITER_INIT(&uiter);
1469 while ((node = ulist_next(root_ids, &uiter)) != NULL) {
1470 const u64 root_id = node->val;
1471 struct clone_root *root;
1473 root = bsearch((void *)(uintptr_t)root_id, sctx->clone_roots,
1474 sctx->clone_roots_cnt, sizeof(struct clone_root),
1475 __clone_root_cmp_bsearch);
1479 /* Too many roots, just exit, no worries as caching is optional. */
1480 if (new_entry->num_roots >= SEND_MAX_BACKREF_CACHE_ROOTS) {
1485 new_entry->root_ids[new_entry->num_roots] = root_id;
1486 new_entry->num_roots++;
1490 * We may have not added any roots to the new cache entry, which means
1491 * none of the roots is part of the list of roots from which we are
1492 * allowed to clone. Cache the new entry as it's still useful to avoid
1493 * backref walking to determine which roots have a path to the leaf.
1495 * Also use GFP_NOFS because we're called while holding a transaction
1496 * handle or while holding fs_info->commit_root_sem.
1498 ret = btrfs_lru_cache_store(&sctx->backref_cache, &new_entry->entry,
1500 ASSERT(ret == 0 || ret == -ENOMEM);
1502 /* Caching is optional, no worries. */
1508 * We are called from iterate_extent_inodes() while either holding a
1509 * transaction handle or holding fs_info->commit_root_sem, so no need
1510 * to take any lock here.
1512 if (sctx->backref_cache.size == 1)
1513 sctx->backref_cache_last_reloc_trans = fs_info->last_reloc_trans;
1516 static int check_extent_item(u64 bytenr, const struct btrfs_extent_item *ei,
1517 const struct extent_buffer *leaf, void *ctx)
1519 const u64 refs = btrfs_extent_refs(leaf, ei);
1520 const struct backref_ctx *bctx = ctx;
1521 const struct send_ctx *sctx = bctx->sctx;
1523 if (bytenr == bctx->bytenr) {
1524 const u64 flags = btrfs_extent_flags(leaf, ei);
1526 if (WARN_ON(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
1530 * If we have only one reference and only the send root as a
1531 * clone source - meaning no clone roots were given in the
1532 * struct btrfs_ioctl_send_args passed to the send ioctl - then
1533 * it's our reference and there's no point in doing backref
1534 * walking which is expensive, so exit early.
1536 if (refs == 1 && sctx->clone_roots_cnt == 1)
1541 * Backreference walking (iterate_extent_inodes() below) is currently
1542 * too expensive when an extent has a large number of references, both
1543 * in time spent and used memory. So for now just fallback to write
1544 * operations instead of clone operations when an extent has more than
1545 * a certain amount of references.
1547 if (refs > SEND_MAX_EXTENT_REFS)
1553 static bool skip_self_data_ref(u64 root, u64 ino, u64 offset, void *ctx)
1555 const struct backref_ctx *bctx = ctx;
1557 if (ino == bctx->cur_objectid &&
1558 root == bctx->backref_owner &&
1559 offset == bctx->backref_offset)
1566 * Given an inode, offset and extent item, it finds a good clone for a clone
1567 * instruction. Returns -ENOENT when none could be found. The function makes
1568 * sure that the returned clone is usable at the point where sending is at the
1569 * moment. This means, that no clones are accepted which lie behind the current
1572 * path must point to the extent item when called.
1574 static int find_extent_clone(struct send_ctx *sctx,
1575 struct btrfs_path *path,
1576 u64 ino, u64 data_offset,
1578 struct clone_root **found)
1580 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
1586 struct btrfs_file_extent_item *fi;
1587 struct extent_buffer *eb = path->nodes[0];
1588 struct backref_ctx backref_ctx = { 0 };
1589 struct btrfs_backref_walk_ctx backref_walk_ctx = { 0 };
1590 struct clone_root *cur_clone_root;
1595 * With fallocate we can get prealloc extents beyond the inode's i_size,
1596 * so we don't do anything here because clone operations can not clone
1597 * to a range beyond i_size without increasing the i_size of the
1598 * destination inode.
1600 if (data_offset >= ino_size)
1603 fi = btrfs_item_ptr(eb, path->slots[0], struct btrfs_file_extent_item);
1604 extent_type = btrfs_file_extent_type(eb, fi);
1605 if (extent_type == BTRFS_FILE_EXTENT_INLINE)
1608 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
1612 compressed = btrfs_file_extent_compression(eb, fi);
1613 num_bytes = btrfs_file_extent_num_bytes(eb, fi);
1614 logical = disk_byte + btrfs_file_extent_offset(eb, fi);
1617 * Setup the clone roots.
1619 for (i = 0; i < sctx->clone_roots_cnt; i++) {
1620 cur_clone_root = sctx->clone_roots + i;
1621 cur_clone_root->ino = (u64)-1;
1622 cur_clone_root->offset = 0;
1623 cur_clone_root->num_bytes = 0;
1624 cur_clone_root->found_ref = false;
1627 backref_ctx.sctx = sctx;
1628 backref_ctx.cur_objectid = ino;
1629 backref_ctx.cur_offset = data_offset;
1630 backref_ctx.bytenr = disk_byte;
1632 * Use the header owner and not the send root's id, because in case of a
1633 * snapshot we can have shared subtrees.
1635 backref_ctx.backref_owner = btrfs_header_owner(eb);
1636 backref_ctx.backref_offset = data_offset - btrfs_file_extent_offset(eb, fi);
1639 * The last extent of a file may be too large due to page alignment.
1640 * We need to adjust extent_len in this case so that the checks in
1641 * iterate_backrefs() work.
1643 if (data_offset + num_bytes >= ino_size)
1644 backref_ctx.extent_len = ino_size - data_offset;
1646 backref_ctx.extent_len = num_bytes;
1649 * Now collect all backrefs.
1651 backref_walk_ctx.bytenr = disk_byte;
1652 if (compressed == BTRFS_COMPRESS_NONE)
1653 backref_walk_ctx.extent_item_pos = btrfs_file_extent_offset(eb, fi);
1654 backref_walk_ctx.fs_info = fs_info;
1655 backref_walk_ctx.cache_lookup = lookup_backref_cache;
1656 backref_walk_ctx.cache_store = store_backref_cache;
1657 backref_walk_ctx.indirect_ref_iterator = iterate_backrefs;
1658 backref_walk_ctx.check_extent_item = check_extent_item;
1659 backref_walk_ctx.user_ctx = &backref_ctx;
1662 * If have a single clone root, then it's the send root and we can tell
1663 * the backref walking code to skip our own backref and not resolve it,
1664 * since we can not use it for cloning - the source and destination
1665 * ranges can't overlap and in case the leaf is shared through a subtree
1666 * due to snapshots, we can't use those other roots since they are not
1667 * in the list of clone roots.
1669 if (sctx->clone_roots_cnt == 1)
1670 backref_walk_ctx.skip_data_ref = skip_self_data_ref;
1672 ret = iterate_extent_inodes(&backref_walk_ctx, true, iterate_backrefs,
1677 down_read(&fs_info->commit_root_sem);
1678 if (fs_info->last_reloc_trans > sctx->last_reloc_trans) {
1680 * A transaction commit for a transaction in which block group
1681 * relocation was done just happened.
1682 * The disk_bytenr of the file extent item we processed is
1683 * possibly stale, referring to the extent's location before
1684 * relocation. So act as if we haven't found any clone sources
1685 * and fallback to write commands, which will read the correct
1686 * data from the new extent location. Otherwise we will fail
1687 * below because we haven't found our own back reference or we
1688 * could be getting incorrect sources in case the old extent
1689 * was already reallocated after the relocation.
1691 up_read(&fs_info->commit_root_sem);
1694 up_read(&fs_info->commit_root_sem);
1696 btrfs_debug(fs_info,
1697 "find_extent_clone: data_offset=%llu, ino=%llu, num_bytes=%llu, logical=%llu",
1698 data_offset, ino, num_bytes, logical);
1700 if (!backref_ctx.found) {
1701 btrfs_debug(fs_info, "no clones found");
1705 cur_clone_root = NULL;
1706 for (i = 0; i < sctx->clone_roots_cnt; i++) {
1707 struct clone_root *clone_root = &sctx->clone_roots[i];
1709 if (!clone_root->found_ref)
1713 * Choose the root from which we can clone more bytes, to
1714 * minimize write operations and therefore have more extent
1715 * sharing at the destination (the same as in the source).
1717 if (!cur_clone_root ||
1718 clone_root->num_bytes > cur_clone_root->num_bytes) {
1719 cur_clone_root = clone_root;
1722 * We found an optimal clone candidate (any inode from
1723 * any root is fine), so we're done.
1725 if (clone_root->num_bytes >= backref_ctx.extent_len)
1730 if (cur_clone_root) {
1731 *found = cur_clone_root;
1740 static int read_symlink(struct btrfs_root *root,
1742 struct fs_path *dest)
1745 struct btrfs_path *path;
1746 struct btrfs_key key;
1747 struct btrfs_file_extent_item *ei;
1753 path = alloc_path_for_send();
1758 key.type = BTRFS_EXTENT_DATA_KEY;
1760 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1765 * An empty symlink inode. Can happen in rare error paths when
1766 * creating a symlink (transaction committed before the inode
1767 * eviction handler removed the symlink inode items and a crash
1768 * happened in between or the subvol was snapshoted in between).
1769 * Print an informative message to dmesg/syslog so that the user
1770 * can delete the symlink.
1772 btrfs_err(root->fs_info,
1773 "Found empty symlink inode %llu at root %llu",
1774 ino, btrfs_root_id(root));
1779 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
1780 struct btrfs_file_extent_item);
1781 type = btrfs_file_extent_type(path->nodes[0], ei);
1782 if (unlikely(type != BTRFS_FILE_EXTENT_INLINE)) {
1784 btrfs_crit(root->fs_info,
1785 "send: found symlink extent that is not inline, ino %llu root %llu extent type %d",
1786 ino, btrfs_root_id(root), type);
1789 compression = btrfs_file_extent_compression(path->nodes[0], ei);
1790 if (unlikely(compression != BTRFS_COMPRESS_NONE)) {
1792 btrfs_crit(root->fs_info,
1793 "send: found symlink extent with compression, ino %llu root %llu compression type %d",
1794 ino, btrfs_root_id(root), compression);
1798 off = btrfs_file_extent_inline_start(ei);
1799 len = btrfs_file_extent_ram_bytes(path->nodes[0], ei);
1801 ret = fs_path_add_from_extent_buffer(dest, path->nodes[0], off, len);
1804 btrfs_free_path(path);
1809 * Helper function to generate a file name that is unique in the root of
1810 * send_root and parent_root. This is used to generate names for orphan inodes.
1812 static int gen_unique_name(struct send_ctx *sctx,
1814 struct fs_path *dest)
1817 struct btrfs_path *path;
1818 struct btrfs_dir_item *di;
1823 path = alloc_path_for_send();
1828 struct fscrypt_str tmp_name;
1830 len = snprintf(tmp, sizeof(tmp), "o%llu-%llu-%llu",
1832 ASSERT(len < sizeof(tmp));
1833 tmp_name.name = tmp;
1834 tmp_name.len = strlen(tmp);
1836 di = btrfs_lookup_dir_item(NULL, sctx->send_root,
1837 path, BTRFS_FIRST_FREE_OBJECTID,
1839 btrfs_release_path(path);
1845 /* not unique, try again */
1850 if (!sctx->parent_root) {
1856 di = btrfs_lookup_dir_item(NULL, sctx->parent_root,
1857 path, BTRFS_FIRST_FREE_OBJECTID,
1859 btrfs_release_path(path);
1865 /* not unique, try again */
1873 ret = fs_path_add(dest, tmp, strlen(tmp));
1876 btrfs_free_path(path);
1881 inode_state_no_change,
1882 inode_state_will_create,
1883 inode_state_did_create,
1884 inode_state_will_delete,
1885 inode_state_did_delete,
1888 static int get_cur_inode_state(struct send_ctx *sctx, u64 ino, u64 gen,
1889 u64 *send_gen, u64 *parent_gen)
1896 struct btrfs_inode_info info;
1898 ret = get_inode_info(sctx->send_root, ino, &info);
1899 if (ret < 0 && ret != -ENOENT)
1901 left_ret = (info.nlink == 0) ? -ENOENT : ret;
1902 left_gen = info.gen;
1904 *send_gen = ((left_ret == -ENOENT) ? 0 : info.gen);
1906 if (!sctx->parent_root) {
1907 right_ret = -ENOENT;
1909 ret = get_inode_info(sctx->parent_root, ino, &info);
1910 if (ret < 0 && ret != -ENOENT)
1912 right_ret = (info.nlink == 0) ? -ENOENT : ret;
1913 right_gen = info.gen;
1915 *parent_gen = ((right_ret == -ENOENT) ? 0 : info.gen);
1918 if (!left_ret && !right_ret) {
1919 if (left_gen == gen && right_gen == gen) {
1920 ret = inode_state_no_change;
1921 } else if (left_gen == gen) {
1922 if (ino < sctx->send_progress)
1923 ret = inode_state_did_create;
1925 ret = inode_state_will_create;
1926 } else if (right_gen == gen) {
1927 if (ino < sctx->send_progress)
1928 ret = inode_state_did_delete;
1930 ret = inode_state_will_delete;
1934 } else if (!left_ret) {
1935 if (left_gen == gen) {
1936 if (ino < sctx->send_progress)
1937 ret = inode_state_did_create;
1939 ret = inode_state_will_create;
1943 } else if (!right_ret) {
1944 if (right_gen == gen) {
1945 if (ino < sctx->send_progress)
1946 ret = inode_state_did_delete;
1948 ret = inode_state_will_delete;
1960 static int is_inode_existent(struct send_ctx *sctx, u64 ino, u64 gen,
1961 u64 *send_gen, u64 *parent_gen)
1965 if (ino == BTRFS_FIRST_FREE_OBJECTID)
1968 ret = get_cur_inode_state(sctx, ino, gen, send_gen, parent_gen);
1972 if (ret == inode_state_no_change ||
1973 ret == inode_state_did_create ||
1974 ret == inode_state_will_delete)
1984 * Helper function to lookup a dir item in a dir.
1986 static int lookup_dir_item_inode(struct btrfs_root *root,
1987 u64 dir, const char *name, int name_len,
1991 struct btrfs_dir_item *di;
1992 struct btrfs_key key;
1993 struct btrfs_path *path;
1994 struct fscrypt_str name_str = FSTR_INIT((char *)name, name_len);
1996 path = alloc_path_for_send();
2000 di = btrfs_lookup_dir_item(NULL, root, path, dir, &name_str, 0);
2001 if (IS_ERR_OR_NULL(di)) {
2002 ret = di ? PTR_ERR(di) : -ENOENT;
2005 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
2006 if (key.type == BTRFS_ROOT_ITEM_KEY) {
2010 *found_inode = key.objectid;
2013 btrfs_free_path(path);
2018 * Looks up the first btrfs_inode_ref of a given ino. It returns the parent dir,
2019 * generation of the parent dir and the name of the dir entry.
2021 static int get_first_ref(struct btrfs_root *root, u64 ino,
2022 u64 *dir, u64 *dir_gen, struct fs_path *name)
2025 struct btrfs_key key;
2026 struct btrfs_key found_key;
2027 struct btrfs_path *path;
2031 path = alloc_path_for_send();
2036 key.type = BTRFS_INODE_REF_KEY;
2039 ret = btrfs_search_slot_for_read(root, &key, path, 1, 0);
2043 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2045 if (ret || found_key.objectid != ino ||
2046 (found_key.type != BTRFS_INODE_REF_KEY &&
2047 found_key.type != BTRFS_INODE_EXTREF_KEY)) {
2052 if (found_key.type == BTRFS_INODE_REF_KEY) {
2053 struct btrfs_inode_ref *iref;
2054 iref = btrfs_item_ptr(path->nodes[0], path->slots[0],
2055 struct btrfs_inode_ref);
2056 len = btrfs_inode_ref_name_len(path->nodes[0], iref);
2057 ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
2058 (unsigned long)(iref + 1),
2060 parent_dir = found_key.offset;
2062 struct btrfs_inode_extref *extref;
2063 extref = btrfs_item_ptr(path->nodes[0], path->slots[0],
2064 struct btrfs_inode_extref);
2065 len = btrfs_inode_extref_name_len(path->nodes[0], extref);
2066 ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
2067 (unsigned long)&extref->name, len);
2068 parent_dir = btrfs_inode_extref_parent(path->nodes[0], extref);
2072 btrfs_release_path(path);
2075 ret = get_inode_gen(root, parent_dir, dir_gen);
2083 btrfs_free_path(path);
2087 static int is_first_ref(struct btrfs_root *root,
2089 const char *name, int name_len)
2092 struct fs_path *tmp_name;
2095 tmp_name = fs_path_alloc();
2099 ret = get_first_ref(root, ino, &tmp_dir, NULL, tmp_name);
2103 if (dir != tmp_dir || name_len != fs_path_len(tmp_name)) {
2108 ret = !memcmp(tmp_name->start, name, name_len);
2111 fs_path_free(tmp_name);
2116 * Used by process_recorded_refs to determine if a new ref would overwrite an
2117 * already existing ref. In case it detects an overwrite, it returns the
2118 * inode/gen in who_ino/who_gen.
2119 * When an overwrite is detected, process_recorded_refs does proper orphanizing
2120 * to make sure later references to the overwritten inode are possible.
2121 * Orphanizing is however only required for the first ref of an inode.
2122 * process_recorded_refs does an additional is_first_ref check to see if
2123 * orphanizing is really required.
2125 static int will_overwrite_ref(struct send_ctx *sctx, u64 dir, u64 dir_gen,
2126 const char *name, int name_len,
2127 u64 *who_ino, u64 *who_gen, u64 *who_mode)
2130 u64 parent_root_dir_gen;
2131 u64 other_inode = 0;
2132 struct btrfs_inode_info info;
2134 if (!sctx->parent_root)
2137 ret = is_inode_existent(sctx, dir, dir_gen, NULL, &parent_root_dir_gen);
2142 * If we have a parent root we need to verify that the parent dir was
2143 * not deleted and then re-created, if it was then we have no overwrite
2144 * and we can just unlink this entry.
2146 * @parent_root_dir_gen was set to 0 if the inode does not exist in the
2149 if (sctx->parent_root && dir != BTRFS_FIRST_FREE_OBJECTID &&
2150 parent_root_dir_gen != dir_gen)
2153 ret = lookup_dir_item_inode(sctx->parent_root, dir, name, name_len,
2161 * Check if the overwritten ref was already processed. If yes, the ref
2162 * was already unlinked/moved, so we can safely assume that we will not
2163 * overwrite anything at this point in time.
2165 if (other_inode > sctx->send_progress ||
2166 is_waiting_for_move(sctx, other_inode)) {
2167 ret = get_inode_info(sctx->parent_root, other_inode, &info);
2171 *who_ino = other_inode;
2172 *who_gen = info.gen;
2173 *who_mode = info.mode;
2181 * Checks if the ref was overwritten by an already processed inode. This is
2182 * used by __get_cur_name_and_parent to find out if the ref was orphanized and
2183 * thus the orphan name needs be used.
2184 * process_recorded_refs also uses it to avoid unlinking of refs that were
2187 static int did_overwrite_ref(struct send_ctx *sctx,
2188 u64 dir, u64 dir_gen,
2189 u64 ino, u64 ino_gen,
2190 const char *name, int name_len)
2195 u64 send_root_dir_gen;
2197 if (!sctx->parent_root)
2200 ret = is_inode_existent(sctx, dir, dir_gen, &send_root_dir_gen, NULL);
2205 * @send_root_dir_gen was set to 0 if the inode does not exist in the
2208 if (dir != BTRFS_FIRST_FREE_OBJECTID && send_root_dir_gen != dir_gen)
2211 /* check if the ref was overwritten by another ref */
2212 ret = lookup_dir_item_inode(sctx->send_root, dir, name, name_len,
2214 if (ret == -ENOENT) {
2215 /* was never and will never be overwritten */
2217 } else if (ret < 0) {
2221 if (ow_inode == ino) {
2222 ret = get_inode_gen(sctx->send_root, ow_inode, &ow_gen);
2226 /* It's the same inode, so no overwrite happened. */
2227 if (ow_gen == ino_gen)
2232 * We know that it is or will be overwritten. Check this now.
2233 * The current inode being processed might have been the one that caused
2234 * inode 'ino' to be orphanized, therefore check if ow_inode matches
2235 * the current inode being processed.
2237 if (ow_inode < sctx->send_progress)
2240 if (ino != sctx->cur_ino && ow_inode == sctx->cur_ino) {
2242 ret = get_inode_gen(sctx->send_root, ow_inode, &ow_gen);
2246 if (ow_gen == sctx->cur_inode_gen)
2254 * Same as did_overwrite_ref, but also checks if it is the first ref of an inode
2255 * that got overwritten. This is used by process_recorded_refs to determine
2256 * if it has to use the path as returned by get_cur_path or the orphan name.
2258 static int did_overwrite_first_ref(struct send_ctx *sctx, u64 ino, u64 gen)
2261 struct fs_path *name = NULL;
2265 if (!sctx->parent_root)
2268 name = fs_path_alloc();
2272 ret = get_first_ref(sctx->parent_root, ino, &dir, &dir_gen, name);
2276 ret = did_overwrite_ref(sctx, dir, dir_gen, ino, gen,
2277 name->start, fs_path_len(name));
2284 static inline struct name_cache_entry *name_cache_search(struct send_ctx *sctx,
2287 struct btrfs_lru_cache_entry *entry;
2289 entry = btrfs_lru_cache_lookup(&sctx->name_cache, ino, gen);
2293 return container_of(entry, struct name_cache_entry, entry);
2297 * Used by get_cur_path for each ref up to the root.
2298 * Returns 0 if it succeeded.
2299 * Returns 1 if the inode is not existent or got overwritten. In that case, the
2300 * name is an orphan name. This instructs get_cur_path to stop iterating. If 1
2301 * is returned, parent_ino/parent_gen are not guaranteed to be valid.
2302 * Returns <0 in case of error.
2304 static int __get_cur_name_and_parent(struct send_ctx *sctx,
2308 struct fs_path *dest)
2312 struct name_cache_entry *nce;
2315 * First check if we already did a call to this function with the same
2316 * ino/gen. If yes, check if the cache entry is still up-to-date. If yes
2317 * return the cached result.
2319 nce = name_cache_search(sctx, ino, gen);
2321 if (ino < sctx->send_progress && nce->need_later_update) {
2322 btrfs_lru_cache_remove(&sctx->name_cache, &nce->entry);
2325 *parent_ino = nce->parent_ino;
2326 *parent_gen = nce->parent_gen;
2327 ret = fs_path_add(dest, nce->name, nce->name_len);
2336 * If the inode is not existent yet, add the orphan name and return 1.
2337 * This should only happen for the parent dir that we determine in
2338 * record_new_ref_if_needed().
2340 ret = is_inode_existent(sctx, ino, gen, NULL, NULL);
2345 ret = gen_unique_name(sctx, ino, gen, dest);
2353 * Depending on whether the inode was already processed or not, use
2354 * send_root or parent_root for ref lookup.
2356 if (ino < sctx->send_progress)
2357 ret = get_first_ref(sctx->send_root, ino,
2358 parent_ino, parent_gen, dest);
2360 ret = get_first_ref(sctx->parent_root, ino,
2361 parent_ino, parent_gen, dest);
2366 * Check if the ref was overwritten by an inode's ref that was processed
2367 * earlier. If yes, treat as orphan and return 1.
2369 ret = did_overwrite_ref(sctx, *parent_ino, *parent_gen, ino, gen,
2370 dest->start, dest->end - dest->start);
2374 fs_path_reset(dest);
2375 ret = gen_unique_name(sctx, ino, gen, dest);
2383 * Store the result of the lookup in the name cache.
2385 nce = kmalloc(sizeof(*nce) + fs_path_len(dest), GFP_KERNEL);
2391 nce->entry.key = ino;
2392 nce->entry.gen = gen;
2393 nce->parent_ino = *parent_ino;
2394 nce->parent_gen = *parent_gen;
2395 nce->name_len = fs_path_len(dest);
2397 memcpy(nce->name, dest->start, nce->name_len);
2399 if (ino < sctx->send_progress)
2400 nce->need_later_update = 0;
2402 nce->need_later_update = 1;
2404 nce_ret = btrfs_lru_cache_store(&sctx->name_cache, &nce->entry, GFP_KERNEL);
2415 * Magic happens here. This function returns the first ref to an inode as it
2416 * would look like while receiving the stream at this point in time.
2417 * We walk the path up to the root. For every inode in between, we check if it
2418 * was already processed/sent. If yes, we continue with the parent as found
2419 * in send_root. If not, we continue with the parent as found in parent_root.
2420 * If we encounter an inode that was deleted at this point in time, we use the
2421 * inodes "orphan" name instead of the real name and stop. Same with new inodes
2422 * that were not created yet and overwritten inodes/refs.
2424 * When do we have orphan inodes:
2425 * 1. When an inode is freshly created and thus no valid refs are available yet
2426 * 2. When a directory lost all it's refs (deleted) but still has dir items
2427 * inside which were not processed yet (pending for move/delete). If anyone
2428 * tried to get the path to the dir items, it would get a path inside that
2430 * 3. When an inode is moved around or gets new links, it may overwrite the ref
2431 * of an unprocessed inode. If in that case the first ref would be
2432 * overwritten, the overwritten inode gets "orphanized". Later when we
2433 * process this overwritten inode, it is restored at a new place by moving
2436 * sctx->send_progress tells this function at which point in time receiving
2439 static int get_cur_path(struct send_ctx *sctx, u64 ino, u64 gen,
2440 struct fs_path *dest)
2443 struct fs_path *name = NULL;
2444 u64 parent_inode = 0;
2448 name = fs_path_alloc();
2455 fs_path_reset(dest);
2457 while (!stop && ino != BTRFS_FIRST_FREE_OBJECTID) {
2458 struct waiting_dir_move *wdm;
2460 fs_path_reset(name);
2462 if (is_waiting_for_rm(sctx, ino, gen)) {
2463 ret = gen_unique_name(sctx, ino, gen, name);
2466 ret = fs_path_add_path(dest, name);
2470 wdm = get_waiting_dir_move(sctx, ino);
2471 if (wdm && wdm->orphanized) {
2472 ret = gen_unique_name(sctx, ino, gen, name);
2475 ret = get_first_ref(sctx->parent_root, ino,
2476 &parent_inode, &parent_gen, name);
2478 ret = __get_cur_name_and_parent(sctx, ino, gen,
2488 ret = fs_path_add_path(dest, name);
2499 fs_path_unreverse(dest);
2504 * Sends a BTRFS_SEND_C_SUBVOL command/item to userspace
2506 static int send_subvol_begin(struct send_ctx *sctx)
2509 struct btrfs_root *send_root = sctx->send_root;
2510 struct btrfs_root *parent_root = sctx->parent_root;
2511 struct btrfs_path *path;
2512 struct btrfs_key key;
2513 struct btrfs_root_ref *ref;
2514 struct extent_buffer *leaf;
2518 path = btrfs_alloc_path();
2522 name = kmalloc(BTRFS_PATH_NAME_MAX, GFP_KERNEL);
2524 btrfs_free_path(path);
2528 key.objectid = btrfs_root_id(send_root);
2529 key.type = BTRFS_ROOT_BACKREF_KEY;
2532 ret = btrfs_search_slot_for_read(send_root->fs_info->tree_root,
2541 leaf = path->nodes[0];
2542 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2543 if (key.type != BTRFS_ROOT_BACKREF_KEY ||
2544 key.objectid != btrfs_root_id(send_root)) {
2548 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
2549 namelen = btrfs_root_ref_name_len(leaf, ref);
2550 read_extent_buffer(leaf, name, (unsigned long)(ref + 1), namelen);
2551 btrfs_release_path(path);
2554 ret = begin_cmd(sctx, BTRFS_SEND_C_SNAPSHOT);
2558 ret = begin_cmd(sctx, BTRFS_SEND_C_SUBVOL);
2563 TLV_PUT_STRING(sctx, BTRFS_SEND_A_PATH, name, namelen);
2565 if (!btrfs_is_empty_uuid(sctx->send_root->root_item.received_uuid))
2566 TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2567 sctx->send_root->root_item.received_uuid);
2569 TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2570 sctx->send_root->root_item.uuid);
2572 TLV_PUT_U64(sctx, BTRFS_SEND_A_CTRANSID,
2573 btrfs_root_ctransid(&sctx->send_root->root_item));
2575 if (!btrfs_is_empty_uuid(parent_root->root_item.received_uuid))
2576 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2577 parent_root->root_item.received_uuid);
2579 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2580 parent_root->root_item.uuid);
2581 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
2582 btrfs_root_ctransid(&sctx->parent_root->root_item));
2585 ret = send_cmd(sctx);
2589 btrfs_free_path(path);
2594 static int send_truncate(struct send_ctx *sctx, u64 ino, u64 gen, u64 size)
2596 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2600 btrfs_debug(fs_info, "send_truncate %llu size=%llu", ino, size);
2602 p = fs_path_alloc();
2606 ret = begin_cmd(sctx, BTRFS_SEND_C_TRUNCATE);
2610 ret = get_cur_path(sctx, ino, gen, p);
2613 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2614 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, size);
2616 ret = send_cmd(sctx);
2624 static int send_chmod(struct send_ctx *sctx, u64 ino, u64 gen, u64 mode)
2626 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2630 btrfs_debug(fs_info, "send_chmod %llu mode=%llu", ino, mode);
2632 p = fs_path_alloc();
2636 ret = begin_cmd(sctx, BTRFS_SEND_C_CHMOD);
2640 ret = get_cur_path(sctx, ino, gen, p);
2643 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2644 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode & 07777);
2646 ret = send_cmd(sctx);
2654 static int send_fileattr(struct send_ctx *sctx, u64 ino, u64 gen, u64 fileattr)
2656 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2660 if (sctx->proto < 2)
2663 btrfs_debug(fs_info, "send_fileattr %llu fileattr=%llu", ino, fileattr);
2665 p = fs_path_alloc();
2669 ret = begin_cmd(sctx, BTRFS_SEND_C_FILEATTR);
2673 ret = get_cur_path(sctx, ino, gen, p);
2676 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2677 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILEATTR, fileattr);
2679 ret = send_cmd(sctx);
2687 static int send_chown(struct send_ctx *sctx, u64 ino, u64 gen, u64 uid, u64 gid)
2689 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2693 btrfs_debug(fs_info, "send_chown %llu uid=%llu, gid=%llu",
2696 p = fs_path_alloc();
2700 ret = begin_cmd(sctx, BTRFS_SEND_C_CHOWN);
2704 ret = get_cur_path(sctx, ino, gen, p);
2707 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2708 TLV_PUT_U64(sctx, BTRFS_SEND_A_UID, uid);
2709 TLV_PUT_U64(sctx, BTRFS_SEND_A_GID, gid);
2711 ret = send_cmd(sctx);
2719 static int send_utimes(struct send_ctx *sctx, u64 ino, u64 gen)
2721 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2723 struct fs_path *p = NULL;
2724 struct btrfs_inode_item *ii;
2725 struct btrfs_path *path = NULL;
2726 struct extent_buffer *eb;
2727 struct btrfs_key key;
2730 btrfs_debug(fs_info, "send_utimes %llu", ino);
2732 p = fs_path_alloc();
2736 path = alloc_path_for_send();
2743 key.type = BTRFS_INODE_ITEM_KEY;
2745 ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
2751 eb = path->nodes[0];
2752 slot = path->slots[0];
2753 ii = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
2755 ret = begin_cmd(sctx, BTRFS_SEND_C_UTIMES);
2759 ret = get_cur_path(sctx, ino, gen, p);
2762 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2763 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_ATIME, eb, &ii->atime);
2764 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_MTIME, eb, &ii->mtime);
2765 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_CTIME, eb, &ii->ctime);
2766 if (sctx->proto >= 2)
2767 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_OTIME, eb, &ii->otime);
2769 ret = send_cmd(sctx);
2774 btrfs_free_path(path);
2779 * If the cache is full, we can't remove entries from it and do a call to
2780 * send_utimes() for each respective inode, because we might be finishing
2781 * processing an inode that is a directory and it just got renamed, and existing
2782 * entries in the cache may refer to inodes that have the directory in their
2783 * full path - in which case we would generate outdated paths (pre-rename)
2784 * for the inodes that the cache entries point to. Instead of prunning the
2785 * cache when inserting, do it after we finish processing each inode at
2786 * finish_inode_if_needed().
2788 static int cache_dir_utimes(struct send_ctx *sctx, u64 dir, u64 gen)
2790 struct btrfs_lru_cache_entry *entry;
2793 entry = btrfs_lru_cache_lookup(&sctx->dir_utimes_cache, dir, gen);
2797 /* Caching is optional, don't fail if we can't allocate memory. */
2798 entry = kmalloc(sizeof(*entry), GFP_KERNEL);
2800 return send_utimes(sctx, dir, gen);
2805 ret = btrfs_lru_cache_store(&sctx->dir_utimes_cache, entry, GFP_KERNEL);
2806 ASSERT(ret != -EEXIST);
2809 return send_utimes(sctx, dir, gen);
2815 static int trim_dir_utimes_cache(struct send_ctx *sctx)
2817 while (sctx->dir_utimes_cache.size > SEND_MAX_DIR_UTIMES_CACHE_SIZE) {
2818 struct btrfs_lru_cache_entry *lru;
2821 lru = btrfs_lru_cache_lru_entry(&sctx->dir_utimes_cache);
2822 ASSERT(lru != NULL);
2824 ret = send_utimes(sctx, lru->key, lru->gen);
2828 btrfs_lru_cache_remove(&sctx->dir_utimes_cache, lru);
2835 * Sends a BTRFS_SEND_C_MKXXX or SYMLINK command to user space. We don't have
2836 * a valid path yet because we did not process the refs yet. So, the inode
2837 * is created as orphan.
2839 static int send_create_inode(struct send_ctx *sctx, u64 ino)
2841 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2845 struct btrfs_inode_info info;
2850 btrfs_debug(fs_info, "send_create_inode %llu", ino);
2852 p = fs_path_alloc();
2856 if (ino != sctx->cur_ino) {
2857 ret = get_inode_info(sctx->send_root, ino, &info);
2864 gen = sctx->cur_inode_gen;
2865 mode = sctx->cur_inode_mode;
2866 rdev = sctx->cur_inode_rdev;
2869 if (S_ISREG(mode)) {
2870 cmd = BTRFS_SEND_C_MKFILE;
2871 } else if (S_ISDIR(mode)) {
2872 cmd = BTRFS_SEND_C_MKDIR;
2873 } else if (S_ISLNK(mode)) {
2874 cmd = BTRFS_SEND_C_SYMLINK;
2875 } else if (S_ISCHR(mode) || S_ISBLK(mode)) {
2876 cmd = BTRFS_SEND_C_MKNOD;
2877 } else if (S_ISFIFO(mode)) {
2878 cmd = BTRFS_SEND_C_MKFIFO;
2879 } else if (S_ISSOCK(mode)) {
2880 cmd = BTRFS_SEND_C_MKSOCK;
2882 btrfs_warn(sctx->send_root->fs_info, "unexpected inode type %o",
2883 (int)(mode & S_IFMT));
2888 ret = begin_cmd(sctx, cmd);
2892 ret = gen_unique_name(sctx, ino, gen, p);
2896 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2897 TLV_PUT_U64(sctx, BTRFS_SEND_A_INO, ino);
2899 if (S_ISLNK(mode)) {
2901 ret = read_symlink(sctx->send_root, ino, p);
2904 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, p);
2905 } else if (S_ISCHR(mode) || S_ISBLK(mode) ||
2906 S_ISFIFO(mode) || S_ISSOCK(mode)) {
2907 TLV_PUT_U64(sctx, BTRFS_SEND_A_RDEV, new_encode_dev(rdev));
2908 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode);
2911 ret = send_cmd(sctx);
2922 static void cache_dir_created(struct send_ctx *sctx, u64 dir)
2924 struct btrfs_lru_cache_entry *entry;
2927 /* Caching is optional, ignore any failures. */
2928 entry = kmalloc(sizeof(*entry), GFP_KERNEL);
2934 ret = btrfs_lru_cache_store(&sctx->dir_created_cache, entry, GFP_KERNEL);
2940 * We need some special handling for inodes that get processed before the parent
2941 * directory got created. See process_recorded_refs for details.
2942 * This function does the check if we already created the dir out of order.
2944 static int did_create_dir(struct send_ctx *sctx, u64 dir)
2948 struct btrfs_path *path = NULL;
2949 struct btrfs_key key;
2950 struct btrfs_key found_key;
2951 struct btrfs_key di_key;
2952 struct btrfs_dir_item *di;
2954 if (btrfs_lru_cache_lookup(&sctx->dir_created_cache, dir, 0))
2957 path = alloc_path_for_send();
2962 key.type = BTRFS_DIR_INDEX_KEY;
2965 btrfs_for_each_slot(sctx->send_root, &key, &found_key, path, iter_ret) {
2966 struct extent_buffer *eb = path->nodes[0];
2968 if (found_key.objectid != key.objectid ||
2969 found_key.type != key.type) {
2974 di = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dir_item);
2975 btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2977 if (di_key.type != BTRFS_ROOT_ITEM_KEY &&
2978 di_key.objectid < sctx->send_progress) {
2980 cache_dir_created(sctx, dir);
2984 /* Catch error found during iteration */
2988 btrfs_free_path(path);
2993 * Only creates the inode if it is:
2994 * 1. Not a directory
2995 * 2. Or a directory which was not created already due to out of order
2996 * directories. See did_create_dir and process_recorded_refs for details.
2998 static int send_create_inode_if_needed(struct send_ctx *sctx)
3002 if (S_ISDIR(sctx->cur_inode_mode)) {
3003 ret = did_create_dir(sctx, sctx->cur_ino);
3010 ret = send_create_inode(sctx, sctx->cur_ino);
3012 if (ret == 0 && S_ISDIR(sctx->cur_inode_mode))
3013 cache_dir_created(sctx, sctx->cur_ino);
3018 struct recorded_ref {
3019 struct list_head list;
3021 struct fs_path *full_path;
3025 struct rb_node node;
3026 struct rb_root *root;
3029 static struct recorded_ref *recorded_ref_alloc(void)
3031 struct recorded_ref *ref;
3033 ref = kzalloc(sizeof(*ref), GFP_KERNEL);
3036 RB_CLEAR_NODE(&ref->node);
3037 INIT_LIST_HEAD(&ref->list);
3041 static void recorded_ref_free(struct recorded_ref *ref)
3045 if (!RB_EMPTY_NODE(&ref->node))
3046 rb_erase(&ref->node, ref->root);
3047 list_del(&ref->list);
3048 fs_path_free(ref->full_path);
3052 static void set_ref_path(struct recorded_ref *ref, struct fs_path *path)
3054 ref->full_path = path;
3055 ref->name = (char *)kbasename(ref->full_path->start);
3056 ref->name_len = ref->full_path->end - ref->name;
3059 static int dup_ref(struct recorded_ref *ref, struct list_head *list)
3061 struct recorded_ref *new;
3063 new = recorded_ref_alloc();
3067 new->dir = ref->dir;
3068 new->dir_gen = ref->dir_gen;
3069 list_add_tail(&new->list, list);
3073 static void __free_recorded_refs(struct list_head *head)
3075 struct recorded_ref *cur;
3077 while (!list_empty(head)) {
3078 cur = list_entry(head->next, struct recorded_ref, list);
3079 recorded_ref_free(cur);
3083 static void free_recorded_refs(struct send_ctx *sctx)
3085 __free_recorded_refs(&sctx->new_refs);
3086 __free_recorded_refs(&sctx->deleted_refs);
3090 * Renames/moves a file/dir to its orphan name. Used when the first
3091 * ref of an unprocessed inode gets overwritten and for all non empty
3094 static int orphanize_inode(struct send_ctx *sctx, u64 ino, u64 gen,
3095 struct fs_path *path)
3098 struct fs_path *orphan;
3100 orphan = fs_path_alloc();
3104 ret = gen_unique_name(sctx, ino, gen, orphan);
3108 ret = send_rename(sctx, path, orphan);
3111 fs_path_free(orphan);
3115 static struct orphan_dir_info *add_orphan_dir_info(struct send_ctx *sctx,
3116 u64 dir_ino, u64 dir_gen)
3118 struct rb_node **p = &sctx->orphan_dirs.rb_node;
3119 struct rb_node *parent = NULL;
3120 struct orphan_dir_info *entry, *odi;
3124 entry = rb_entry(parent, struct orphan_dir_info, node);
3125 if (dir_ino < entry->ino)
3127 else if (dir_ino > entry->ino)
3128 p = &(*p)->rb_right;
3129 else if (dir_gen < entry->gen)
3131 else if (dir_gen > entry->gen)
3132 p = &(*p)->rb_right;
3137 odi = kmalloc(sizeof(*odi), GFP_KERNEL);
3139 return ERR_PTR(-ENOMEM);
3142 odi->last_dir_index_offset = 0;
3143 odi->dir_high_seq_ino = 0;
3145 rb_link_node(&odi->node, parent, p);
3146 rb_insert_color(&odi->node, &sctx->orphan_dirs);
3150 static struct orphan_dir_info *get_orphan_dir_info(struct send_ctx *sctx,
3151 u64 dir_ino, u64 gen)
3153 struct rb_node *n = sctx->orphan_dirs.rb_node;
3154 struct orphan_dir_info *entry;
3157 entry = rb_entry(n, struct orphan_dir_info, node);
3158 if (dir_ino < entry->ino)
3160 else if (dir_ino > entry->ino)
3162 else if (gen < entry->gen)
3164 else if (gen > entry->gen)
3172 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino, u64 gen)
3174 struct orphan_dir_info *odi = get_orphan_dir_info(sctx, dir_ino, gen);
3179 static void free_orphan_dir_info(struct send_ctx *sctx,
3180 struct orphan_dir_info *odi)
3184 rb_erase(&odi->node, &sctx->orphan_dirs);
3189 * Returns 1 if a directory can be removed at this point in time.
3190 * We check this by iterating all dir items and checking if the inode behind
3191 * the dir item was already processed.
3193 static int can_rmdir(struct send_ctx *sctx, u64 dir, u64 dir_gen)
3197 struct btrfs_root *root = sctx->parent_root;
3198 struct btrfs_path *path;
3199 struct btrfs_key key;
3200 struct btrfs_key found_key;
3201 struct btrfs_key loc;
3202 struct btrfs_dir_item *di;
3203 struct orphan_dir_info *odi = NULL;
3204 u64 dir_high_seq_ino = 0;
3205 u64 last_dir_index_offset = 0;
3208 * Don't try to rmdir the top/root subvolume dir.
3210 if (dir == BTRFS_FIRST_FREE_OBJECTID)
3213 odi = get_orphan_dir_info(sctx, dir, dir_gen);
3214 if (odi && sctx->cur_ino < odi->dir_high_seq_ino)
3217 path = alloc_path_for_send();
3223 * Find the inode number associated with the last dir index
3224 * entry. This is very likely the inode with the highest number
3225 * of all inodes that have an entry in the directory. We can
3226 * then use it to avoid future calls to can_rmdir(), when
3227 * processing inodes with a lower number, from having to search
3228 * the parent root b+tree for dir index keys.
3231 key.type = BTRFS_DIR_INDEX_KEY;
3232 key.offset = (u64)-1;
3234 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3237 } else if (ret > 0) {
3238 /* Can't happen, the root is never empty. */
3239 ASSERT(path->slots[0] > 0);
3240 if (WARN_ON(path->slots[0] == 0)) {
3247 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
3248 if (key.objectid != dir || key.type != BTRFS_DIR_INDEX_KEY) {
3249 /* No index keys, dir can be removed. */
3254 di = btrfs_item_ptr(path->nodes[0], path->slots[0],
3255 struct btrfs_dir_item);
3256 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc);
3257 dir_high_seq_ino = loc.objectid;
3258 if (sctx->cur_ino < dir_high_seq_ino) {
3263 btrfs_release_path(path);
3267 key.type = BTRFS_DIR_INDEX_KEY;
3268 key.offset = (odi ? odi->last_dir_index_offset : 0);
3270 btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
3271 struct waiting_dir_move *dm;
3273 if (found_key.objectid != key.objectid ||
3274 found_key.type != key.type)
3277 di = btrfs_item_ptr(path->nodes[0], path->slots[0],
3278 struct btrfs_dir_item);
3279 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc);
3281 dir_high_seq_ino = max(dir_high_seq_ino, loc.objectid);
3282 last_dir_index_offset = found_key.offset;
3284 dm = get_waiting_dir_move(sctx, loc.objectid);
3286 dm->rmdir_ino = dir;
3287 dm->rmdir_gen = dir_gen;
3292 if (loc.objectid > sctx->cur_ino) {
3301 free_orphan_dir_info(sctx, odi);
3306 btrfs_free_path(path);
3312 odi = add_orphan_dir_info(sctx, dir, dir_gen);
3314 return PTR_ERR(odi);
3319 odi->last_dir_index_offset = last_dir_index_offset;
3320 odi->dir_high_seq_ino = max(odi->dir_high_seq_ino, dir_high_seq_ino);
3325 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino)
3327 struct waiting_dir_move *entry = get_waiting_dir_move(sctx, ino);
3329 return entry != NULL;
3332 static int add_waiting_dir_move(struct send_ctx *sctx, u64 ino, bool orphanized)
3334 struct rb_node **p = &sctx->waiting_dir_moves.rb_node;
3335 struct rb_node *parent = NULL;
3336 struct waiting_dir_move *entry, *dm;
3338 dm = kmalloc(sizeof(*dm), GFP_KERNEL);
3344 dm->orphanized = orphanized;
3348 entry = rb_entry(parent, struct waiting_dir_move, node);
3349 if (ino < entry->ino) {
3351 } else if (ino > entry->ino) {
3352 p = &(*p)->rb_right;
3359 rb_link_node(&dm->node, parent, p);
3360 rb_insert_color(&dm->node, &sctx->waiting_dir_moves);
3364 static struct waiting_dir_move *
3365 get_waiting_dir_move(struct send_ctx *sctx, u64 ino)
3367 struct rb_node *n = sctx->waiting_dir_moves.rb_node;
3368 struct waiting_dir_move *entry;
3371 entry = rb_entry(n, struct waiting_dir_move, node);
3372 if (ino < entry->ino)
3374 else if (ino > entry->ino)
3382 static void free_waiting_dir_move(struct send_ctx *sctx,
3383 struct waiting_dir_move *dm)
3387 rb_erase(&dm->node, &sctx->waiting_dir_moves);
3391 static int add_pending_dir_move(struct send_ctx *sctx,
3395 struct list_head *new_refs,
3396 struct list_head *deleted_refs,
3397 const bool is_orphan)
3399 struct rb_node **p = &sctx->pending_dir_moves.rb_node;
3400 struct rb_node *parent = NULL;
3401 struct pending_dir_move *entry = NULL, *pm;
3402 struct recorded_ref *cur;
3406 pm = kmalloc(sizeof(*pm), GFP_KERNEL);
3409 pm->parent_ino = parent_ino;
3412 INIT_LIST_HEAD(&pm->list);
3413 INIT_LIST_HEAD(&pm->update_refs);
3414 RB_CLEAR_NODE(&pm->node);
3418 entry = rb_entry(parent, struct pending_dir_move, node);
3419 if (parent_ino < entry->parent_ino) {
3421 } else if (parent_ino > entry->parent_ino) {
3422 p = &(*p)->rb_right;
3429 list_for_each_entry(cur, deleted_refs, list) {
3430 ret = dup_ref(cur, &pm->update_refs);
3434 list_for_each_entry(cur, new_refs, list) {
3435 ret = dup_ref(cur, &pm->update_refs);
3440 ret = add_waiting_dir_move(sctx, pm->ino, is_orphan);
3445 list_add_tail(&pm->list, &entry->list);
3447 rb_link_node(&pm->node, parent, p);
3448 rb_insert_color(&pm->node, &sctx->pending_dir_moves);
3453 __free_recorded_refs(&pm->update_refs);
3459 static struct pending_dir_move *get_pending_dir_moves(struct send_ctx *sctx,
3462 struct rb_node *n = sctx->pending_dir_moves.rb_node;
3463 struct pending_dir_move *entry;
3466 entry = rb_entry(n, struct pending_dir_move, node);
3467 if (parent_ino < entry->parent_ino)
3469 else if (parent_ino > entry->parent_ino)
3477 static int path_loop(struct send_ctx *sctx, struct fs_path *name,
3478 u64 ino, u64 gen, u64 *ancestor_ino)
3481 u64 parent_inode = 0;
3483 u64 start_ino = ino;
3486 while (ino != BTRFS_FIRST_FREE_OBJECTID) {
3487 fs_path_reset(name);
3489 if (is_waiting_for_rm(sctx, ino, gen))
3491 if (is_waiting_for_move(sctx, ino)) {
3492 if (*ancestor_ino == 0)
3493 *ancestor_ino = ino;
3494 ret = get_first_ref(sctx->parent_root, ino,
3495 &parent_inode, &parent_gen, name);
3497 ret = __get_cur_name_and_parent(sctx, ino, gen,
3507 if (parent_inode == start_ino) {
3509 if (*ancestor_ino == 0)
3510 *ancestor_ino = ino;
3519 static int apply_dir_move(struct send_ctx *sctx, struct pending_dir_move *pm)
3521 struct fs_path *from_path = NULL;
3522 struct fs_path *to_path = NULL;
3523 struct fs_path *name = NULL;
3524 u64 orig_progress = sctx->send_progress;
3525 struct recorded_ref *cur;
3526 u64 parent_ino, parent_gen;
3527 struct waiting_dir_move *dm = NULL;
3534 name = fs_path_alloc();
3535 from_path = fs_path_alloc();
3536 if (!name || !from_path) {
3541 dm = get_waiting_dir_move(sctx, pm->ino);
3543 rmdir_ino = dm->rmdir_ino;
3544 rmdir_gen = dm->rmdir_gen;
3545 is_orphan = dm->orphanized;
3546 free_waiting_dir_move(sctx, dm);
3549 ret = gen_unique_name(sctx, pm->ino,
3550 pm->gen, from_path);
3552 ret = get_first_ref(sctx->parent_root, pm->ino,
3553 &parent_ino, &parent_gen, name);
3556 ret = get_cur_path(sctx, parent_ino, parent_gen,
3560 ret = fs_path_add_path(from_path, name);
3565 sctx->send_progress = sctx->cur_ino + 1;
3566 ret = path_loop(sctx, name, pm->ino, pm->gen, &ancestor);
3570 LIST_HEAD(deleted_refs);
3571 ASSERT(ancestor > BTRFS_FIRST_FREE_OBJECTID);
3572 ret = add_pending_dir_move(sctx, pm->ino, pm->gen, ancestor,
3573 &pm->update_refs, &deleted_refs,
3578 dm = get_waiting_dir_move(sctx, pm->ino);
3580 dm->rmdir_ino = rmdir_ino;
3581 dm->rmdir_gen = rmdir_gen;
3585 fs_path_reset(name);
3588 ret = get_cur_path(sctx, pm->ino, pm->gen, to_path);
3592 ret = send_rename(sctx, from_path, to_path);
3597 struct orphan_dir_info *odi;
3600 odi = get_orphan_dir_info(sctx, rmdir_ino, rmdir_gen);
3602 /* already deleted */
3607 ret = can_rmdir(sctx, rmdir_ino, gen);
3613 name = fs_path_alloc();
3618 ret = get_cur_path(sctx, rmdir_ino, gen, name);
3621 ret = send_rmdir(sctx, name);
3627 ret = cache_dir_utimes(sctx, pm->ino, pm->gen);
3632 * After rename/move, need to update the utimes of both new parent(s)
3633 * and old parent(s).
3635 list_for_each_entry(cur, &pm->update_refs, list) {
3637 * The parent inode might have been deleted in the send snapshot
3639 ret = get_inode_info(sctx->send_root, cur->dir, NULL);
3640 if (ret == -ENOENT) {
3647 ret = cache_dir_utimes(sctx, cur->dir, cur->dir_gen);
3654 fs_path_free(from_path);
3655 fs_path_free(to_path);
3656 sctx->send_progress = orig_progress;
3661 static void free_pending_move(struct send_ctx *sctx, struct pending_dir_move *m)
3663 if (!list_empty(&m->list))
3665 if (!RB_EMPTY_NODE(&m->node))
3666 rb_erase(&m->node, &sctx->pending_dir_moves);
3667 __free_recorded_refs(&m->update_refs);
3671 static void tail_append_pending_moves(struct send_ctx *sctx,
3672 struct pending_dir_move *moves,
3673 struct list_head *stack)
3675 if (list_empty(&moves->list)) {
3676 list_add_tail(&moves->list, stack);
3679 list_splice_init(&moves->list, &list);
3680 list_add_tail(&moves->list, stack);
3681 list_splice_tail(&list, stack);
3683 if (!RB_EMPTY_NODE(&moves->node)) {
3684 rb_erase(&moves->node, &sctx->pending_dir_moves);
3685 RB_CLEAR_NODE(&moves->node);
3689 static int apply_children_dir_moves(struct send_ctx *sctx)
3691 struct pending_dir_move *pm;
3693 u64 parent_ino = sctx->cur_ino;
3696 pm = get_pending_dir_moves(sctx, parent_ino);
3700 tail_append_pending_moves(sctx, pm, &stack);
3702 while (!list_empty(&stack)) {
3703 pm = list_first_entry(&stack, struct pending_dir_move, list);
3704 parent_ino = pm->ino;
3705 ret = apply_dir_move(sctx, pm);
3706 free_pending_move(sctx, pm);
3709 pm = get_pending_dir_moves(sctx, parent_ino);
3711 tail_append_pending_moves(sctx, pm, &stack);
3716 while (!list_empty(&stack)) {
3717 pm = list_first_entry(&stack, struct pending_dir_move, list);
3718 free_pending_move(sctx, pm);
3724 * We might need to delay a directory rename even when no ancestor directory
3725 * (in the send root) with a higher inode number than ours (sctx->cur_ino) was
3726 * renamed. This happens when we rename a directory to the old name (the name
3727 * in the parent root) of some other unrelated directory that got its rename
3728 * delayed due to some ancestor with higher number that got renamed.
3734 * |---- a/ (ino 257)
3735 * | |---- file (ino 260)
3737 * |---- b/ (ino 258)
3738 * |---- c/ (ino 259)
3742 * |---- a/ (ino 258)
3743 * |---- x/ (ino 259)
3744 * |---- y/ (ino 257)
3745 * |----- file (ino 260)
3747 * Here we can not rename 258 from 'b' to 'a' without the rename of inode 257
3748 * from 'a' to 'x/y' happening first, which in turn depends on the rename of
3749 * inode 259 from 'c' to 'x'. So the order of rename commands the send stream
3752 * 1 - rename 259 from 'c' to 'x'
3753 * 2 - rename 257 from 'a' to 'x/y'
3754 * 3 - rename 258 from 'b' to 'a'
3756 * Returns 1 if the rename of sctx->cur_ino needs to be delayed, 0 if it can
3757 * be done right away and < 0 on error.
3759 static int wait_for_dest_dir_move(struct send_ctx *sctx,
3760 struct recorded_ref *parent_ref,
3761 const bool is_orphan)
3763 struct btrfs_path *path;
3764 struct btrfs_key key;
3765 struct btrfs_key di_key;
3766 struct btrfs_dir_item *di;
3770 struct waiting_dir_move *wdm;
3772 if (RB_EMPTY_ROOT(&sctx->waiting_dir_moves))
3775 path = alloc_path_for_send();
3779 key.objectid = parent_ref->dir;
3780 key.type = BTRFS_DIR_ITEM_KEY;
3781 key.offset = btrfs_name_hash(parent_ref->name, parent_ref->name_len);
3783 ret = btrfs_search_slot(NULL, sctx->parent_root, &key, path, 0, 0);
3786 } else if (ret > 0) {
3791 di = btrfs_match_dir_item_name(path, parent_ref->name,
3792 parent_ref->name_len);
3798 * di_key.objectid has the number of the inode that has a dentry in the
3799 * parent directory with the same name that sctx->cur_ino is being
3800 * renamed to. We need to check if that inode is in the send root as
3801 * well and if it is currently marked as an inode with a pending rename,
3802 * if it is, we need to delay the rename of sctx->cur_ino as well, so
3803 * that it happens after that other inode is renamed.
3805 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &di_key);
3806 if (di_key.type != BTRFS_INODE_ITEM_KEY) {
3811 ret = get_inode_gen(sctx->parent_root, di_key.objectid, &left_gen);
3814 ret = get_inode_gen(sctx->send_root, di_key.objectid, &right_gen);
3821 /* Different inode, no need to delay the rename of sctx->cur_ino */
3822 if (right_gen != left_gen) {
3827 wdm = get_waiting_dir_move(sctx, di_key.objectid);
3828 if (wdm && !wdm->orphanized) {
3829 ret = add_pending_dir_move(sctx,
3831 sctx->cur_inode_gen,
3834 &sctx->deleted_refs,
3840 btrfs_free_path(path);
3845 * Check if inode ino2, or any of its ancestors, is inode ino1.
3846 * Return 1 if true, 0 if false and < 0 on error.
3848 static int check_ino_in_path(struct btrfs_root *root,
3853 struct fs_path *fs_path)
3858 return ino1_gen == ino2_gen;
3860 while (ino > BTRFS_FIRST_FREE_OBJECTID) {
3865 fs_path_reset(fs_path);
3866 ret = get_first_ref(root, ino, &parent, &parent_gen, fs_path);
3870 return parent_gen == ino1_gen;
3877 * Check if inode ino1 is an ancestor of inode ino2 in the given root for any
3878 * possible path (in case ino2 is not a directory and has multiple hard links).
3879 * Return 1 if true, 0 if false and < 0 on error.
3881 static int is_ancestor(struct btrfs_root *root,
3885 struct fs_path *fs_path)
3887 bool free_fs_path = false;
3890 struct btrfs_path *path = NULL;
3891 struct btrfs_key key;
3894 fs_path = fs_path_alloc();
3897 free_fs_path = true;
3900 path = alloc_path_for_send();
3906 key.objectid = ino2;
3907 key.type = BTRFS_INODE_REF_KEY;
3910 btrfs_for_each_slot(root, &key, &key, path, iter_ret) {
3911 struct extent_buffer *leaf = path->nodes[0];
3912 int slot = path->slots[0];
3916 if (key.objectid != ino2)
3918 if (key.type != BTRFS_INODE_REF_KEY &&
3919 key.type != BTRFS_INODE_EXTREF_KEY)
3922 item_size = btrfs_item_size(leaf, slot);
3923 while (cur_offset < item_size) {
3927 if (key.type == BTRFS_INODE_EXTREF_KEY) {
3929 struct btrfs_inode_extref *extref;
3931 ptr = btrfs_item_ptr_offset(leaf, slot);
3932 extref = (struct btrfs_inode_extref *)
3934 parent = btrfs_inode_extref_parent(leaf,
3936 cur_offset += sizeof(*extref);
3937 cur_offset += btrfs_inode_extref_name_len(leaf,
3940 parent = key.offset;
3941 cur_offset = item_size;
3944 ret = get_inode_gen(root, parent, &parent_gen);
3947 ret = check_ino_in_path(root, ino1, ino1_gen,
3948 parent, parent_gen, fs_path);
3958 btrfs_free_path(path);
3960 fs_path_free(fs_path);
3964 static int wait_for_parent_move(struct send_ctx *sctx,
3965 struct recorded_ref *parent_ref,
3966 const bool is_orphan)
3969 u64 ino = parent_ref->dir;
3970 u64 ino_gen = parent_ref->dir_gen;
3971 u64 parent_ino_before, parent_ino_after;
3972 struct fs_path *path_before = NULL;
3973 struct fs_path *path_after = NULL;
3976 path_after = fs_path_alloc();
3977 path_before = fs_path_alloc();
3978 if (!path_after || !path_before) {
3984 * Our current directory inode may not yet be renamed/moved because some
3985 * ancestor (immediate or not) has to be renamed/moved first. So find if
3986 * such ancestor exists and make sure our own rename/move happens after
3987 * that ancestor is processed to avoid path build infinite loops (done
3988 * at get_cur_path()).
3990 while (ino > BTRFS_FIRST_FREE_OBJECTID) {
3991 u64 parent_ino_after_gen;
3993 if (is_waiting_for_move(sctx, ino)) {
3995 * If the current inode is an ancestor of ino in the
3996 * parent root, we need to delay the rename of the
3997 * current inode, otherwise don't delayed the rename
3998 * because we can end up with a circular dependency
3999 * of renames, resulting in some directories never
4000 * getting the respective rename operations issued in
4001 * the send stream or getting into infinite path build
4004 ret = is_ancestor(sctx->parent_root,
4005 sctx->cur_ino, sctx->cur_inode_gen,
4011 fs_path_reset(path_before);
4012 fs_path_reset(path_after);
4014 ret = get_first_ref(sctx->send_root, ino, &parent_ino_after,
4015 &parent_ino_after_gen, path_after);
4018 ret = get_first_ref(sctx->parent_root, ino, &parent_ino_before,
4020 if (ret < 0 && ret != -ENOENT) {
4022 } else if (ret == -ENOENT) {
4027 len1 = fs_path_len(path_before);
4028 len2 = fs_path_len(path_after);
4029 if (ino > sctx->cur_ino &&
4030 (parent_ino_before != parent_ino_after || len1 != len2 ||
4031 memcmp(path_before->start, path_after->start, len1))) {
4034 ret = get_inode_gen(sctx->parent_root, ino, &parent_ino_gen);
4037 if (ino_gen == parent_ino_gen) {
4042 ino = parent_ino_after;
4043 ino_gen = parent_ino_after_gen;
4047 fs_path_free(path_before);
4048 fs_path_free(path_after);
4051 ret = add_pending_dir_move(sctx,
4053 sctx->cur_inode_gen,
4056 &sctx->deleted_refs,
4065 static int update_ref_path(struct send_ctx *sctx, struct recorded_ref *ref)
4068 struct fs_path *new_path;
4071 * Our reference's name member points to its full_path member string, so
4072 * we use here a new path.
4074 new_path = fs_path_alloc();
4078 ret = get_cur_path(sctx, ref->dir, ref->dir_gen, new_path);
4080 fs_path_free(new_path);
4083 ret = fs_path_add(new_path, ref->name, ref->name_len);
4085 fs_path_free(new_path);
4089 fs_path_free(ref->full_path);
4090 set_ref_path(ref, new_path);
4096 * When processing the new references for an inode we may orphanize an existing
4097 * directory inode because its old name conflicts with one of the new references
4098 * of the current inode. Later, when processing another new reference of our
4099 * inode, we might need to orphanize another inode, but the path we have in the
4100 * reference reflects the pre-orphanization name of the directory we previously
4101 * orphanized. For example:
4103 * parent snapshot looks like:
4106 * |----- f1 (ino 257)
4107 * |----- f2 (ino 258)
4108 * |----- d1/ (ino 259)
4109 * |----- d2/ (ino 260)
4111 * send snapshot looks like:
4114 * |----- d1 (ino 258)
4115 * |----- f2/ (ino 259)
4116 * |----- f2_link/ (ino 260)
4117 * | |----- f1 (ino 257)
4119 * |----- d2 (ino 258)
4121 * When processing inode 257 we compute the name for inode 259 as "d1", and we
4122 * cache it in the name cache. Later when we start processing inode 258, when
4123 * collecting all its new references we set a full path of "d1/d2" for its new
4124 * reference with name "d2". When we start processing the new references we
4125 * start by processing the new reference with name "d1", and this results in
4126 * orphanizing inode 259, since its old reference causes a conflict. Then we
4127 * move on the next new reference, with name "d2", and we find out we must
4128 * orphanize inode 260, as its old reference conflicts with ours - but for the
4129 * orphanization we use a source path corresponding to the path we stored in the
4130 * new reference, which is "d1/d2" and not "o259-6-0/d2" - this makes the
4131 * receiver fail since the path component "d1/" no longer exists, it was renamed
4132 * to "o259-6-0/" when processing the previous new reference. So in this case we
4133 * must recompute the path in the new reference and use it for the new
4134 * orphanization operation.
4136 static int refresh_ref_path(struct send_ctx *sctx, struct recorded_ref *ref)
4141 name = kmemdup(ref->name, ref->name_len, GFP_KERNEL);
4145 fs_path_reset(ref->full_path);
4146 ret = get_cur_path(sctx, ref->dir, ref->dir_gen, ref->full_path);
4150 ret = fs_path_add(ref->full_path, name, ref->name_len);
4154 /* Update the reference's base name pointer. */
4155 set_ref_path(ref, ref->full_path);
4162 * This does all the move/link/unlink/rmdir magic.
4164 static int process_recorded_refs(struct send_ctx *sctx, int *pending_move)
4166 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
4168 struct recorded_ref *cur;
4169 struct recorded_ref *cur2;
4170 LIST_HEAD(check_dirs);
4171 struct fs_path *valid_path = NULL;
4175 int did_overwrite = 0;
4177 u64 last_dir_ino_rm = 0;
4178 bool can_rename = true;
4179 bool orphanized_dir = false;
4180 bool orphanized_ancestor = false;
4182 btrfs_debug(fs_info, "process_recorded_refs %llu", sctx->cur_ino);
4185 * This should never happen as the root dir always has the same ref
4186 * which is always '..'
4188 if (unlikely(sctx->cur_ino <= BTRFS_FIRST_FREE_OBJECTID)) {
4190 "send: unexpected inode %llu in process_recorded_refs()",
4196 valid_path = fs_path_alloc();
4203 * First, check if the first ref of the current inode was overwritten
4204 * before. If yes, we know that the current inode was already orphanized
4205 * and thus use the orphan name. If not, we can use get_cur_path to
4206 * get the path of the first ref as it would like while receiving at
4207 * this point in time.
4208 * New inodes are always orphan at the beginning, so force to use the
4209 * orphan name in this case.
4210 * The first ref is stored in valid_path and will be updated if it
4211 * gets moved around.
4213 if (!sctx->cur_inode_new) {
4214 ret = did_overwrite_first_ref(sctx, sctx->cur_ino,
4215 sctx->cur_inode_gen);
4221 if (sctx->cur_inode_new || did_overwrite) {
4222 ret = gen_unique_name(sctx, sctx->cur_ino,
4223 sctx->cur_inode_gen, valid_path);
4228 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen,
4235 * Before doing any rename and link operations, do a first pass on the
4236 * new references to orphanize any unprocessed inodes that may have a
4237 * reference that conflicts with one of the new references of the current
4238 * inode. This needs to happen first because a new reference may conflict
4239 * with the old reference of a parent directory, so we must make sure
4240 * that the path used for link and rename commands don't use an
4241 * orphanized name when an ancestor was not yet orphanized.
4248 * |----- testdir/ (ino 259)
4249 * | |----- a (ino 257)
4251 * |----- b (ino 258)
4256 * |----- testdir_2/ (ino 259)
4257 * | |----- a (ino 260)
4259 * |----- testdir (ino 257)
4260 * |----- b (ino 257)
4261 * |----- b2 (ino 258)
4263 * Processing the new reference for inode 257 with name "b" may happen
4264 * before processing the new reference with name "testdir". If so, we
4265 * must make sure that by the time we send a link command to create the
4266 * hard link "b", inode 259 was already orphanized, since the generated
4267 * path in "valid_path" already contains the orphanized name for 259.
4268 * We are processing inode 257, so only later when processing 259 we do
4269 * the rename operation to change its temporary (orphanized) name to
4272 list_for_each_entry(cur, &sctx->new_refs, list) {
4273 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen, NULL, NULL);
4276 if (ret == inode_state_will_create)
4280 * Check if this new ref would overwrite the first ref of another
4281 * unprocessed inode. If yes, orphanize the overwritten inode.
4282 * If we find an overwritten ref that is not the first ref,
4285 ret = will_overwrite_ref(sctx, cur->dir, cur->dir_gen,
4286 cur->name, cur->name_len,
4287 &ow_inode, &ow_gen, &ow_mode);
4291 ret = is_first_ref(sctx->parent_root,
4292 ow_inode, cur->dir, cur->name,
4297 struct name_cache_entry *nce;
4298 struct waiting_dir_move *wdm;
4300 if (orphanized_dir) {
4301 ret = refresh_ref_path(sctx, cur);
4306 ret = orphanize_inode(sctx, ow_inode, ow_gen,
4310 if (S_ISDIR(ow_mode))
4311 orphanized_dir = true;
4314 * If ow_inode has its rename operation delayed
4315 * make sure that its orphanized name is used in
4316 * the source path when performing its rename
4319 wdm = get_waiting_dir_move(sctx, ow_inode);
4321 wdm->orphanized = true;
4324 * Make sure we clear our orphanized inode's
4325 * name from the name cache. This is because the
4326 * inode ow_inode might be an ancestor of some
4327 * other inode that will be orphanized as well
4328 * later and has an inode number greater than
4329 * sctx->send_progress. We need to prevent
4330 * future name lookups from using the old name
4331 * and get instead the orphan name.
4333 nce = name_cache_search(sctx, ow_inode, ow_gen);
4335 btrfs_lru_cache_remove(&sctx->name_cache,
4339 * ow_inode might currently be an ancestor of
4340 * cur_ino, therefore compute valid_path (the
4341 * current path of cur_ino) again because it
4342 * might contain the pre-orphanization name of
4343 * ow_inode, which is no longer valid.
4345 ret = is_ancestor(sctx->parent_root,
4347 sctx->cur_ino, NULL);
4349 orphanized_ancestor = true;
4350 fs_path_reset(valid_path);
4351 ret = get_cur_path(sctx, sctx->cur_ino,
4352 sctx->cur_inode_gen,
4359 * If we previously orphanized a directory that
4360 * collided with a new reference that we already
4361 * processed, recompute the current path because
4362 * that directory may be part of the path.
4364 if (orphanized_dir) {
4365 ret = refresh_ref_path(sctx, cur);
4369 ret = send_unlink(sctx, cur->full_path);
4377 list_for_each_entry(cur, &sctx->new_refs, list) {
4379 * We may have refs where the parent directory does not exist
4380 * yet. This happens if the parent directories inum is higher
4381 * than the current inum. To handle this case, we create the
4382 * parent directory out of order. But we need to check if this
4383 * did already happen before due to other refs in the same dir.
4385 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen, NULL, NULL);
4388 if (ret == inode_state_will_create) {
4391 * First check if any of the current inodes refs did
4392 * already create the dir.
4394 list_for_each_entry(cur2, &sctx->new_refs, list) {
4397 if (cur2->dir == cur->dir) {
4404 * If that did not happen, check if a previous inode
4405 * did already create the dir.
4408 ret = did_create_dir(sctx, cur->dir);
4412 ret = send_create_inode(sctx, cur->dir);
4415 cache_dir_created(sctx, cur->dir);
4419 if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root) {
4420 ret = wait_for_dest_dir_move(sctx, cur, is_orphan);
4429 if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root &&
4431 ret = wait_for_parent_move(sctx, cur, is_orphan);
4441 * link/move the ref to the new place. If we have an orphan
4442 * inode, move it and update valid_path. If not, link or move
4443 * it depending on the inode mode.
4445 if (is_orphan && can_rename) {
4446 ret = send_rename(sctx, valid_path, cur->full_path);
4450 ret = fs_path_copy(valid_path, cur->full_path);
4453 } else if (can_rename) {
4454 if (S_ISDIR(sctx->cur_inode_mode)) {
4456 * Dirs can't be linked, so move it. For moved
4457 * dirs, we always have one new and one deleted
4458 * ref. The deleted ref is ignored later.
4460 ret = send_rename(sctx, valid_path,
4463 ret = fs_path_copy(valid_path,
4469 * We might have previously orphanized an inode
4470 * which is an ancestor of our current inode,
4471 * so our reference's full path, which was
4472 * computed before any such orphanizations, must
4475 if (orphanized_dir) {
4476 ret = update_ref_path(sctx, cur);
4480 ret = send_link(sctx, cur->full_path,
4486 ret = dup_ref(cur, &check_dirs);
4491 if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_deleted) {
4493 * Check if we can already rmdir the directory. If not,
4494 * orphanize it. For every dir item inside that gets deleted
4495 * later, we do this check again and rmdir it then if possible.
4496 * See the use of check_dirs for more details.
4498 ret = can_rmdir(sctx, sctx->cur_ino, sctx->cur_inode_gen);
4502 ret = send_rmdir(sctx, valid_path);
4505 } else if (!is_orphan) {
4506 ret = orphanize_inode(sctx, sctx->cur_ino,
4507 sctx->cur_inode_gen, valid_path);
4513 list_for_each_entry(cur, &sctx->deleted_refs, list) {
4514 ret = dup_ref(cur, &check_dirs);
4518 } else if (S_ISDIR(sctx->cur_inode_mode) &&
4519 !list_empty(&sctx->deleted_refs)) {
4521 * We have a moved dir. Add the old parent to check_dirs
4523 cur = list_entry(sctx->deleted_refs.next, struct recorded_ref,
4525 ret = dup_ref(cur, &check_dirs);
4528 } else if (!S_ISDIR(sctx->cur_inode_mode)) {
4530 * We have a non dir inode. Go through all deleted refs and
4531 * unlink them if they were not already overwritten by other
4534 list_for_each_entry(cur, &sctx->deleted_refs, list) {
4535 ret = did_overwrite_ref(sctx, cur->dir, cur->dir_gen,
4536 sctx->cur_ino, sctx->cur_inode_gen,
4537 cur->name, cur->name_len);
4542 * If we orphanized any ancestor before, we need
4543 * to recompute the full path for deleted names,
4544 * since any such path was computed before we
4545 * processed any references and orphanized any
4548 if (orphanized_ancestor) {
4549 ret = update_ref_path(sctx, cur);
4553 ret = send_unlink(sctx, cur->full_path);
4557 ret = dup_ref(cur, &check_dirs);
4562 * If the inode is still orphan, unlink the orphan. This may
4563 * happen when a previous inode did overwrite the first ref
4564 * of this inode and no new refs were added for the current
4565 * inode. Unlinking does not mean that the inode is deleted in
4566 * all cases. There may still be links to this inode in other
4570 ret = send_unlink(sctx, valid_path);
4577 * We did collect all parent dirs where cur_inode was once located. We
4578 * now go through all these dirs and check if they are pending for
4579 * deletion and if it's finally possible to perform the rmdir now.
4580 * We also update the inode stats of the parent dirs here.
4582 list_for_each_entry(cur, &check_dirs, list) {
4584 * In case we had refs into dirs that were not processed yet,
4585 * we don't need to do the utime and rmdir logic for these dirs.
4586 * The dir will be processed later.
4588 if (cur->dir > sctx->cur_ino)
4591 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen, NULL, NULL);
4595 if (ret == inode_state_did_create ||
4596 ret == inode_state_no_change) {
4597 ret = cache_dir_utimes(sctx, cur->dir, cur->dir_gen);
4600 } else if (ret == inode_state_did_delete &&
4601 cur->dir != last_dir_ino_rm) {
4602 ret = can_rmdir(sctx, cur->dir, cur->dir_gen);
4606 ret = get_cur_path(sctx, cur->dir,
4607 cur->dir_gen, valid_path);
4610 ret = send_rmdir(sctx, valid_path);
4613 last_dir_ino_rm = cur->dir;
4621 __free_recorded_refs(&check_dirs);
4622 free_recorded_refs(sctx);
4623 fs_path_free(valid_path);
4627 static int rbtree_ref_comp(const void *k, const struct rb_node *node)
4629 const struct recorded_ref *data = k;
4630 const struct recorded_ref *ref = rb_entry(node, struct recorded_ref, node);
4633 if (data->dir > ref->dir)
4635 if (data->dir < ref->dir)
4637 if (data->dir_gen > ref->dir_gen)
4639 if (data->dir_gen < ref->dir_gen)
4641 if (data->name_len > ref->name_len)
4643 if (data->name_len < ref->name_len)
4645 result = strcmp(data->name, ref->name);
4653 static bool rbtree_ref_less(struct rb_node *node, const struct rb_node *parent)
4655 const struct recorded_ref *entry = rb_entry(node, struct recorded_ref, node);
4657 return rbtree_ref_comp(entry, parent) < 0;
4660 static int record_ref_in_tree(struct rb_root *root, struct list_head *refs,
4661 struct fs_path *name, u64 dir, u64 dir_gen,
4662 struct send_ctx *sctx)
4665 struct fs_path *path = NULL;
4666 struct recorded_ref *ref = NULL;
4668 path = fs_path_alloc();
4674 ref = recorded_ref_alloc();
4680 ret = get_cur_path(sctx, dir, dir_gen, path);
4683 ret = fs_path_add_path(path, name);
4688 ref->dir_gen = dir_gen;
4689 set_ref_path(ref, path);
4690 list_add_tail(&ref->list, refs);
4691 rb_add(&ref->node, root, rbtree_ref_less);
4695 if (path && (!ref || !ref->full_path))
4697 recorded_ref_free(ref);
4702 static int record_new_ref_if_needed(u64 dir, struct fs_path *name, void *ctx)
4705 struct send_ctx *sctx = ctx;
4706 struct rb_node *node = NULL;
4707 struct recorded_ref data;
4708 struct recorded_ref *ref;
4711 ret = get_inode_gen(sctx->send_root, dir, &dir_gen);
4716 data.dir_gen = dir_gen;
4717 set_ref_path(&data, name);
4718 node = rb_find(&data, &sctx->rbtree_deleted_refs, rbtree_ref_comp);
4720 ref = rb_entry(node, struct recorded_ref, node);
4721 recorded_ref_free(ref);
4723 ret = record_ref_in_tree(&sctx->rbtree_new_refs,
4724 &sctx->new_refs, name, dir, dir_gen,
4731 static int record_deleted_ref_if_needed(u64 dir, struct fs_path *name, void *ctx)
4734 struct send_ctx *sctx = ctx;
4735 struct rb_node *node = NULL;
4736 struct recorded_ref data;
4737 struct recorded_ref *ref;
4740 ret = get_inode_gen(sctx->parent_root, dir, &dir_gen);
4745 data.dir_gen = dir_gen;
4746 set_ref_path(&data, name);
4747 node = rb_find(&data, &sctx->rbtree_new_refs, rbtree_ref_comp);
4749 ref = rb_entry(node, struct recorded_ref, node);
4750 recorded_ref_free(ref);
4752 ret = record_ref_in_tree(&sctx->rbtree_deleted_refs,
4753 &sctx->deleted_refs, name, dir,
4760 static int record_new_ref(struct send_ctx *sctx)
4764 ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
4765 sctx->cmp_key, 0, record_new_ref_if_needed, sctx);
4774 static int record_deleted_ref(struct send_ctx *sctx)
4778 ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
4779 sctx->cmp_key, 0, record_deleted_ref_if_needed,
4789 static int record_changed_ref(struct send_ctx *sctx)
4793 ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
4794 sctx->cmp_key, 0, record_new_ref_if_needed, sctx);
4797 ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
4798 sctx->cmp_key, 0, record_deleted_ref_if_needed, sctx);
4808 * Record and process all refs at once. Needed when an inode changes the
4809 * generation number, which means that it was deleted and recreated.
4811 static int process_all_refs(struct send_ctx *sctx,
4812 enum btrfs_compare_tree_result cmd)
4816 struct btrfs_root *root;
4817 struct btrfs_path *path;
4818 struct btrfs_key key;
4819 struct btrfs_key found_key;
4820 iterate_inode_ref_t cb;
4821 int pending_move = 0;
4823 path = alloc_path_for_send();
4827 if (cmd == BTRFS_COMPARE_TREE_NEW) {
4828 root = sctx->send_root;
4829 cb = record_new_ref_if_needed;
4830 } else if (cmd == BTRFS_COMPARE_TREE_DELETED) {
4831 root = sctx->parent_root;
4832 cb = record_deleted_ref_if_needed;
4834 btrfs_err(sctx->send_root->fs_info,
4835 "Wrong command %d in process_all_refs", cmd);
4840 key.objectid = sctx->cmp_key->objectid;
4841 key.type = BTRFS_INODE_REF_KEY;
4843 btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
4844 if (found_key.objectid != key.objectid ||
4845 (found_key.type != BTRFS_INODE_REF_KEY &&
4846 found_key.type != BTRFS_INODE_EXTREF_KEY))
4849 ret = iterate_inode_ref(root, path, &found_key, 0, cb, sctx);
4853 /* Catch error found during iteration */
4858 btrfs_release_path(path);
4861 * We don't actually care about pending_move as we are simply
4862 * re-creating this inode and will be rename'ing it into place once we
4863 * rename the parent directory.
4865 ret = process_recorded_refs(sctx, &pending_move);
4867 btrfs_free_path(path);
4871 static int send_set_xattr(struct send_ctx *sctx,
4872 struct fs_path *path,
4873 const char *name, int name_len,
4874 const char *data, int data_len)
4878 ret = begin_cmd(sctx, BTRFS_SEND_C_SET_XATTR);
4882 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4883 TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4884 TLV_PUT(sctx, BTRFS_SEND_A_XATTR_DATA, data, data_len);
4886 ret = send_cmd(sctx);
4893 static int send_remove_xattr(struct send_ctx *sctx,
4894 struct fs_path *path,
4895 const char *name, int name_len)
4899 ret = begin_cmd(sctx, BTRFS_SEND_C_REMOVE_XATTR);
4903 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4904 TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4906 ret = send_cmd(sctx);
4913 static int __process_new_xattr(int num, struct btrfs_key *di_key,
4914 const char *name, int name_len, const char *data,
4915 int data_len, void *ctx)
4918 struct send_ctx *sctx = ctx;
4920 struct posix_acl_xattr_header dummy_acl;
4922 /* Capabilities are emitted by finish_inode_if_needed */
4923 if (!strncmp(name, XATTR_NAME_CAPS, name_len))
4926 p = fs_path_alloc();
4931 * This hack is needed because empty acls are stored as zero byte
4932 * data in xattrs. Problem with that is, that receiving these zero byte
4933 * acls will fail later. To fix this, we send a dummy acl list that
4934 * only contains the version number and no entries.
4936 if (!strncmp(name, XATTR_NAME_POSIX_ACL_ACCESS, name_len) ||
4937 !strncmp(name, XATTR_NAME_POSIX_ACL_DEFAULT, name_len)) {
4938 if (data_len == 0) {
4939 dummy_acl.a_version =
4940 cpu_to_le32(POSIX_ACL_XATTR_VERSION);
4941 data = (char *)&dummy_acl;
4942 data_len = sizeof(dummy_acl);
4946 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4950 ret = send_set_xattr(sctx, p, name, name_len, data, data_len);
4957 static int __process_deleted_xattr(int num, struct btrfs_key *di_key,
4958 const char *name, int name_len,
4959 const char *data, int data_len, void *ctx)
4962 struct send_ctx *sctx = ctx;
4965 p = fs_path_alloc();
4969 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4973 ret = send_remove_xattr(sctx, p, name, name_len);
4980 static int process_new_xattr(struct send_ctx *sctx)
4984 ret = iterate_dir_item(sctx->send_root, sctx->left_path,
4985 __process_new_xattr, sctx);
4990 static int process_deleted_xattr(struct send_ctx *sctx)
4992 return iterate_dir_item(sctx->parent_root, sctx->right_path,
4993 __process_deleted_xattr, sctx);
4996 struct find_xattr_ctx {
5004 static int __find_xattr(int num, struct btrfs_key *di_key, const char *name,
5005 int name_len, const char *data, int data_len, void *vctx)
5007 struct find_xattr_ctx *ctx = vctx;
5009 if (name_len == ctx->name_len &&
5010 strncmp(name, ctx->name, name_len) == 0) {
5011 ctx->found_idx = num;
5012 ctx->found_data_len = data_len;
5013 ctx->found_data = kmemdup(data, data_len, GFP_KERNEL);
5014 if (!ctx->found_data)
5021 static int find_xattr(struct btrfs_root *root,
5022 struct btrfs_path *path,
5023 struct btrfs_key *key,
5024 const char *name, int name_len,
5025 char **data, int *data_len)
5028 struct find_xattr_ctx ctx;
5031 ctx.name_len = name_len;
5033 ctx.found_data = NULL;
5034 ctx.found_data_len = 0;
5036 ret = iterate_dir_item(root, path, __find_xattr, &ctx);
5040 if (ctx.found_idx == -1)
5043 *data = ctx.found_data;
5044 *data_len = ctx.found_data_len;
5046 kfree(ctx.found_data);
5048 return ctx.found_idx;
5052 static int __process_changed_new_xattr(int num, struct btrfs_key *di_key,
5053 const char *name, int name_len,
5054 const char *data, int data_len,
5058 struct send_ctx *sctx = ctx;
5059 char *found_data = NULL;
5060 int found_data_len = 0;
5062 ret = find_xattr(sctx->parent_root, sctx->right_path,
5063 sctx->cmp_key, name, name_len, &found_data,
5065 if (ret == -ENOENT) {
5066 ret = __process_new_xattr(num, di_key, name, name_len, data,
5068 } else if (ret >= 0) {
5069 if (data_len != found_data_len ||
5070 memcmp(data, found_data, data_len)) {
5071 ret = __process_new_xattr(num, di_key, name, name_len,
5072 data, data_len, ctx);
5082 static int __process_changed_deleted_xattr(int num, struct btrfs_key *di_key,
5083 const char *name, int name_len,
5084 const char *data, int data_len,
5088 struct send_ctx *sctx = ctx;
5090 ret = find_xattr(sctx->send_root, sctx->left_path, sctx->cmp_key,
5091 name, name_len, NULL, NULL);
5093 ret = __process_deleted_xattr(num, di_key, name, name_len, data,
5101 static int process_changed_xattr(struct send_ctx *sctx)
5105 ret = iterate_dir_item(sctx->send_root, sctx->left_path,
5106 __process_changed_new_xattr, sctx);
5109 ret = iterate_dir_item(sctx->parent_root, sctx->right_path,
5110 __process_changed_deleted_xattr, sctx);
5116 static int process_all_new_xattrs(struct send_ctx *sctx)
5120 struct btrfs_root *root;
5121 struct btrfs_path *path;
5122 struct btrfs_key key;
5123 struct btrfs_key found_key;
5125 path = alloc_path_for_send();
5129 root = sctx->send_root;
5131 key.objectid = sctx->cmp_key->objectid;
5132 key.type = BTRFS_XATTR_ITEM_KEY;
5134 btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
5135 if (found_key.objectid != key.objectid ||
5136 found_key.type != key.type) {
5141 ret = iterate_dir_item(root, path, __process_new_xattr, sctx);
5145 /* Catch error found during iteration */
5149 btrfs_free_path(path);
5153 static int send_verity(struct send_ctx *sctx, struct fs_path *path,
5154 struct fsverity_descriptor *desc)
5158 ret = begin_cmd(sctx, BTRFS_SEND_C_ENABLE_VERITY);
5162 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
5163 TLV_PUT_U8(sctx, BTRFS_SEND_A_VERITY_ALGORITHM,
5164 le8_to_cpu(desc->hash_algorithm));
5165 TLV_PUT_U32(sctx, BTRFS_SEND_A_VERITY_BLOCK_SIZE,
5166 1U << le8_to_cpu(desc->log_blocksize));
5167 TLV_PUT(sctx, BTRFS_SEND_A_VERITY_SALT_DATA, desc->salt,
5168 le8_to_cpu(desc->salt_size));
5169 TLV_PUT(sctx, BTRFS_SEND_A_VERITY_SIG_DATA, desc->signature,
5170 le32_to_cpu(desc->sig_size));
5172 ret = send_cmd(sctx);
5179 static int process_verity(struct send_ctx *sctx)
5182 struct inode *inode;
5185 inode = btrfs_iget(sctx->cur_ino, sctx->send_root);
5187 return PTR_ERR(inode);
5189 ret = btrfs_get_verity_descriptor(inode, NULL, 0);
5193 if (ret > FS_VERITY_MAX_DESCRIPTOR_SIZE) {
5197 if (!sctx->verity_descriptor) {
5198 sctx->verity_descriptor = kvmalloc(FS_VERITY_MAX_DESCRIPTOR_SIZE,
5200 if (!sctx->verity_descriptor) {
5206 ret = btrfs_get_verity_descriptor(inode, sctx->verity_descriptor, ret);
5210 p = fs_path_alloc();
5215 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5219 ret = send_verity(sctx, p, sctx->verity_descriptor);
5230 static inline u64 max_send_read_size(const struct send_ctx *sctx)
5232 return sctx->send_max_size - SZ_16K;
5235 static int put_data_header(struct send_ctx *sctx, u32 len)
5237 if (WARN_ON_ONCE(sctx->put_data))
5239 sctx->put_data = true;
5240 if (sctx->proto >= 2) {
5242 * Since v2, the data attribute header doesn't include a length,
5243 * it is implicitly to the end of the command.
5245 if (sctx->send_max_size - sctx->send_size < sizeof(__le16) + len)
5247 put_unaligned_le16(BTRFS_SEND_A_DATA, sctx->send_buf + sctx->send_size);
5248 sctx->send_size += sizeof(__le16);
5250 struct btrfs_tlv_header *hdr;
5252 if (sctx->send_max_size - sctx->send_size < sizeof(*hdr) + len)
5254 hdr = (struct btrfs_tlv_header *)(sctx->send_buf + sctx->send_size);
5255 put_unaligned_le16(BTRFS_SEND_A_DATA, &hdr->tlv_type);
5256 put_unaligned_le16(len, &hdr->tlv_len);
5257 sctx->send_size += sizeof(*hdr);
5262 static int put_file_data(struct send_ctx *sctx, u64 offset, u32 len)
5264 struct btrfs_root *root = sctx->send_root;
5265 struct btrfs_fs_info *fs_info = root->fs_info;
5266 struct folio *folio;
5267 pgoff_t index = offset >> PAGE_SHIFT;
5269 unsigned pg_offset = offset_in_page(offset);
5270 struct address_space *mapping = sctx->cur_inode->i_mapping;
5273 ret = put_data_header(sctx, len);
5277 last_index = (offset + len - 1) >> PAGE_SHIFT;
5279 while (index <= last_index) {
5280 unsigned cur_len = min_t(unsigned, len,
5281 PAGE_SIZE - pg_offset);
5284 folio = filemap_lock_folio(mapping, index);
5285 if (IS_ERR(folio)) {
5286 page_cache_sync_readahead(mapping,
5287 &sctx->ra, NULL, index,
5288 last_index + 1 - index);
5290 folio = filemap_grab_folio(mapping, index);
5291 if (IS_ERR(folio)) {
5292 ret = PTR_ERR(folio);
5297 WARN_ON(folio_order(folio));
5299 if (folio_test_readahead(folio))
5300 page_cache_async_readahead(mapping, &sctx->ra, NULL, folio,
5301 last_index + 1 - index);
5303 if (!folio_test_uptodate(folio)) {
5304 btrfs_read_folio(NULL, folio);
5306 if (!folio_test_uptodate(folio)) {
5307 folio_unlock(folio);
5309 "send: IO error at offset %llu for inode %llu root %llu",
5310 folio_pos(folio), sctx->cur_ino,
5311 btrfs_root_id(sctx->send_root));
5316 if (folio->mapping != mapping) {
5317 folio_unlock(folio);
5323 memcpy_from_folio(sctx->send_buf + sctx->send_size, folio,
5324 pg_offset, cur_len);
5325 folio_unlock(folio);
5330 sctx->send_size += cur_len;
5337 * Read some bytes from the current inode/file and send a write command to
5340 static int send_write(struct send_ctx *sctx, u64 offset, u32 len)
5342 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
5346 p = fs_path_alloc();
5350 btrfs_debug(fs_info, "send_write offset=%llu, len=%d", offset, len);
5352 ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
5356 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5360 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
5361 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5362 ret = put_file_data(sctx, offset, len);
5366 ret = send_cmd(sctx);
5375 * Send a clone command to user space.
5377 static int send_clone(struct send_ctx *sctx,
5378 u64 offset, u32 len,
5379 struct clone_root *clone_root)
5385 btrfs_debug(sctx->send_root->fs_info,
5386 "send_clone offset=%llu, len=%d, clone_root=%llu, clone_inode=%llu, clone_offset=%llu",
5387 offset, len, btrfs_root_id(clone_root->root),
5388 clone_root->ino, clone_root->offset);
5390 p = fs_path_alloc();
5394 ret = begin_cmd(sctx, BTRFS_SEND_C_CLONE);
5398 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5402 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5403 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_LEN, len);
5404 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
5406 if (clone_root->root == sctx->send_root) {
5407 ret = get_inode_gen(sctx->send_root, clone_root->ino, &gen);
5410 ret = get_cur_path(sctx, clone_root->ino, gen, p);
5412 ret = get_inode_path(clone_root->root, clone_root->ino, p);
5418 * If the parent we're using has a received_uuid set then use that as
5419 * our clone source as that is what we will look for when doing a
5422 * This covers the case that we create a snapshot off of a received
5423 * subvolume and then use that as the parent and try to receive on a
5426 if (!btrfs_is_empty_uuid(clone_root->root->root_item.received_uuid))
5427 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
5428 clone_root->root->root_item.received_uuid);
5430 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
5431 clone_root->root->root_item.uuid);
5432 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
5433 btrfs_root_ctransid(&clone_root->root->root_item));
5434 TLV_PUT_PATH(sctx, BTRFS_SEND_A_CLONE_PATH, p);
5435 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_OFFSET,
5436 clone_root->offset);
5438 ret = send_cmd(sctx);
5447 * Send an update extent command to user space.
5449 static int send_update_extent(struct send_ctx *sctx,
5450 u64 offset, u32 len)
5455 p = fs_path_alloc();
5459 ret = begin_cmd(sctx, BTRFS_SEND_C_UPDATE_EXTENT);
5463 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5467 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
5468 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5469 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, len);
5471 ret = send_cmd(sctx);
5479 static int send_hole(struct send_ctx *sctx, u64 end)
5481 struct fs_path *p = NULL;
5482 u64 read_size = max_send_read_size(sctx);
5483 u64 offset = sctx->cur_inode_last_extent;
5487 * A hole that starts at EOF or beyond it. Since we do not yet support
5488 * fallocate (for extent preallocation and hole punching), sending a
5489 * write of zeroes starting at EOF or beyond would later require issuing
5490 * a truncate operation which would undo the write and achieve nothing.
5492 if (offset >= sctx->cur_inode_size)
5496 * Don't go beyond the inode's i_size due to prealloc extents that start
5499 end = min_t(u64, end, sctx->cur_inode_size);
5501 if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA)
5502 return send_update_extent(sctx, offset, end - offset);
5504 p = fs_path_alloc();
5507 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5509 goto tlv_put_failure;
5510 while (offset < end) {
5511 u64 len = min(end - offset, read_size);
5513 ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
5516 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
5517 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5518 ret = put_data_header(sctx, len);
5521 memset(sctx->send_buf + sctx->send_size, 0, len);
5522 sctx->send_size += len;
5523 ret = send_cmd(sctx);
5528 sctx->cur_inode_next_write_offset = offset;
5534 static int send_encoded_inline_extent(struct send_ctx *sctx,
5535 struct btrfs_path *path, u64 offset,
5538 struct btrfs_root *root = sctx->send_root;
5539 struct btrfs_fs_info *fs_info = root->fs_info;
5540 struct inode *inode;
5541 struct fs_path *fspath;
5542 struct extent_buffer *leaf = path->nodes[0];
5543 struct btrfs_key key;
5544 struct btrfs_file_extent_item *ei;
5549 inode = btrfs_iget(sctx->cur_ino, root);
5551 return PTR_ERR(inode);
5553 fspath = fs_path_alloc();
5559 ret = begin_cmd(sctx, BTRFS_SEND_C_ENCODED_WRITE);
5563 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, fspath);
5567 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
5568 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
5569 ram_bytes = btrfs_file_extent_ram_bytes(leaf, ei);
5570 inline_size = btrfs_file_extent_inline_item_len(leaf, path->slots[0]);
5572 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, fspath);
5573 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5574 TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_FILE_LEN,
5575 min(key.offset + ram_bytes - offset, len));
5576 TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_LEN, ram_bytes);
5577 TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_OFFSET, offset - key.offset);
5578 ret = btrfs_encoded_io_compression_from_extent(fs_info,
5579 btrfs_file_extent_compression(leaf, ei));
5582 TLV_PUT_U32(sctx, BTRFS_SEND_A_COMPRESSION, ret);
5584 ret = put_data_header(sctx, inline_size);
5587 read_extent_buffer(leaf, sctx->send_buf + sctx->send_size,
5588 btrfs_file_extent_inline_start(ei), inline_size);
5589 sctx->send_size += inline_size;
5591 ret = send_cmd(sctx);
5595 fs_path_free(fspath);
5600 static int send_encoded_extent(struct send_ctx *sctx, struct btrfs_path *path,
5601 u64 offset, u64 len)
5603 struct btrfs_root *root = sctx->send_root;
5604 struct btrfs_fs_info *fs_info = root->fs_info;
5605 struct inode *inode;
5606 struct fs_path *fspath;
5607 struct extent_buffer *leaf = path->nodes[0];
5608 struct btrfs_key key;
5609 struct btrfs_file_extent_item *ei;
5610 u64 disk_bytenr, disk_num_bytes;
5612 struct btrfs_cmd_header *hdr;
5616 inode = btrfs_iget(sctx->cur_ino, root);
5618 return PTR_ERR(inode);
5620 fspath = fs_path_alloc();
5626 ret = begin_cmd(sctx, BTRFS_SEND_C_ENCODED_WRITE);
5630 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, fspath);
5634 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
5635 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
5636 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei);
5637 disk_num_bytes = btrfs_file_extent_disk_num_bytes(leaf, ei);
5639 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, fspath);
5640 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5641 TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_FILE_LEN,
5642 min(key.offset + btrfs_file_extent_num_bytes(leaf, ei) - offset,
5644 TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_LEN,
5645 btrfs_file_extent_ram_bytes(leaf, ei));
5646 TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_OFFSET,
5647 offset - key.offset + btrfs_file_extent_offset(leaf, ei));
5648 ret = btrfs_encoded_io_compression_from_extent(fs_info,
5649 btrfs_file_extent_compression(leaf, ei));
5652 TLV_PUT_U32(sctx, BTRFS_SEND_A_COMPRESSION, ret);
5653 TLV_PUT_U32(sctx, BTRFS_SEND_A_ENCRYPTION, 0);
5655 ret = put_data_header(sctx, disk_num_bytes);
5660 * We want to do I/O directly into the send buffer, so get the next page
5661 * boundary in the send buffer. This means that there may be a gap
5662 * between the beginning of the command and the file data.
5664 data_offset = PAGE_ALIGN(sctx->send_size);
5665 if (data_offset > sctx->send_max_size ||
5666 sctx->send_max_size - data_offset < disk_num_bytes) {
5672 * Note that send_buf is a mapping of send_buf_pages, so this is really
5673 * reading into send_buf.
5675 ret = btrfs_encoded_read_regular_fill_pages(BTRFS_I(inode),
5676 disk_bytenr, disk_num_bytes,
5677 sctx->send_buf_pages +
5678 (data_offset >> PAGE_SHIFT),
5683 hdr = (struct btrfs_cmd_header *)sctx->send_buf;
5684 hdr->len = cpu_to_le32(sctx->send_size + disk_num_bytes - sizeof(*hdr));
5686 crc = crc32c(0, sctx->send_buf, sctx->send_size);
5687 crc = crc32c(crc, sctx->send_buf + data_offset, disk_num_bytes);
5688 hdr->crc = cpu_to_le32(crc);
5690 ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size,
5693 ret = write_buf(sctx->send_filp, sctx->send_buf + data_offset,
5694 disk_num_bytes, &sctx->send_off);
5696 sctx->send_size = 0;
5697 sctx->put_data = false;
5701 fs_path_free(fspath);
5706 static int send_extent_data(struct send_ctx *sctx, struct btrfs_path *path,
5707 const u64 offset, const u64 len)
5709 const u64 end = offset + len;
5710 struct extent_buffer *leaf = path->nodes[0];
5711 struct btrfs_file_extent_item *ei;
5712 u64 read_size = max_send_read_size(sctx);
5715 if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA)
5716 return send_update_extent(sctx, offset, len);
5718 ei = btrfs_item_ptr(leaf, path->slots[0],
5719 struct btrfs_file_extent_item);
5720 if ((sctx->flags & BTRFS_SEND_FLAG_COMPRESSED) &&
5721 btrfs_file_extent_compression(leaf, ei) != BTRFS_COMPRESS_NONE) {
5722 bool is_inline = (btrfs_file_extent_type(leaf, ei) ==
5723 BTRFS_FILE_EXTENT_INLINE);
5726 * Send the compressed extent unless the compressed data is
5727 * larger than the decompressed data. This can happen if we're
5728 * not sending the entire extent, either because it has been
5729 * partially overwritten/truncated or because this is a part of
5730 * the extent that we couldn't clone in clone_range().
5733 btrfs_file_extent_inline_item_len(leaf,
5734 path->slots[0]) <= len) {
5735 return send_encoded_inline_extent(sctx, path, offset,
5737 } else if (!is_inline &&
5738 btrfs_file_extent_disk_num_bytes(leaf, ei) <= len) {
5739 return send_encoded_extent(sctx, path, offset, len);
5743 if (sctx->cur_inode == NULL) {
5744 struct btrfs_root *root = sctx->send_root;
5746 sctx->cur_inode = btrfs_iget(sctx->cur_ino, root);
5747 if (IS_ERR(sctx->cur_inode)) {
5748 int err = PTR_ERR(sctx->cur_inode);
5750 sctx->cur_inode = NULL;
5753 memset(&sctx->ra, 0, sizeof(struct file_ra_state));
5754 file_ra_state_init(&sctx->ra, sctx->cur_inode->i_mapping);
5757 * It's very likely there are no pages from this inode in the page
5758 * cache, so after reading extents and sending their data, we clean
5759 * the page cache to avoid trashing the page cache (adding pressure
5760 * to the page cache and forcing eviction of other data more useful
5761 * for applications).
5763 * We decide if we should clean the page cache simply by checking
5764 * if the inode's mapping nrpages is 0 when we first open it, and
5765 * not by using something like filemap_range_has_page() before
5766 * reading an extent because when we ask the readahead code to
5767 * read a given file range, it may (and almost always does) read
5768 * pages from beyond that range (see the documentation for
5769 * page_cache_sync_readahead()), so it would not be reliable,
5770 * because after reading the first extent future calls to
5771 * filemap_range_has_page() would return true because the readahead
5772 * on the previous extent resulted in reading pages of the current
5775 sctx->clean_page_cache = (sctx->cur_inode->i_mapping->nrpages == 0);
5776 sctx->page_cache_clear_start = round_down(offset, PAGE_SIZE);
5779 while (sent < len) {
5780 u64 size = min(len - sent, read_size);
5783 ret = send_write(sctx, offset + sent, size);
5789 if (sctx->clean_page_cache && PAGE_ALIGNED(end)) {
5791 * Always operate only on ranges that are a multiple of the page
5792 * size. This is not only to prevent zeroing parts of a page in
5793 * the case of subpage sector size, but also to guarantee we evict
5794 * pages, as passing a range that is smaller than page size does
5795 * not evict the respective page (only zeroes part of its content).
5797 * Always start from the end offset of the last range cleared.
5798 * This is because the readahead code may (and very often does)
5799 * reads pages beyond the range we request for readahead. So if
5800 * we have an extent layout like this:
5802 * [ extent A ] [ extent B ] [ extent C ]
5804 * When we ask page_cache_sync_readahead() to read extent A, it
5805 * may also trigger reads for pages of extent B. If we are doing
5806 * an incremental send and extent B has not changed between the
5807 * parent and send snapshots, some or all of its pages may end
5808 * up being read and placed in the page cache. So when truncating
5809 * the page cache we always start from the end offset of the
5810 * previously processed extent up to the end of the current
5813 truncate_inode_pages_range(&sctx->cur_inode->i_data,
5814 sctx->page_cache_clear_start,
5816 sctx->page_cache_clear_start = end;
5823 * Search for a capability xattr related to sctx->cur_ino. If the capability is
5824 * found, call send_set_xattr function to emit it.
5826 * Return 0 if there isn't a capability, or when the capability was emitted
5827 * successfully, or < 0 if an error occurred.
5829 static int send_capabilities(struct send_ctx *sctx)
5831 struct fs_path *fspath = NULL;
5832 struct btrfs_path *path;
5833 struct btrfs_dir_item *di;
5834 struct extent_buffer *leaf;
5835 unsigned long data_ptr;
5840 path = alloc_path_for_send();
5844 di = btrfs_lookup_xattr(NULL, sctx->send_root, path, sctx->cur_ino,
5845 XATTR_NAME_CAPS, strlen(XATTR_NAME_CAPS), 0);
5847 /* There is no xattr for this inode */
5849 } else if (IS_ERR(di)) {
5854 leaf = path->nodes[0];
5855 buf_len = btrfs_dir_data_len(leaf, di);
5857 fspath = fs_path_alloc();
5858 buf = kmalloc(buf_len, GFP_KERNEL);
5859 if (!fspath || !buf) {
5864 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, fspath);
5868 data_ptr = (unsigned long)(di + 1) + btrfs_dir_name_len(leaf, di);
5869 read_extent_buffer(leaf, buf, data_ptr, buf_len);
5871 ret = send_set_xattr(sctx, fspath, XATTR_NAME_CAPS,
5872 strlen(XATTR_NAME_CAPS), buf, buf_len);
5875 fs_path_free(fspath);
5876 btrfs_free_path(path);
5880 static int clone_range(struct send_ctx *sctx, struct btrfs_path *dst_path,
5881 struct clone_root *clone_root, const u64 disk_byte,
5882 u64 data_offset, u64 offset, u64 len)
5884 struct btrfs_path *path;
5885 struct btrfs_key key;
5887 struct btrfs_inode_info info;
5888 u64 clone_src_i_size = 0;
5891 * Prevent cloning from a zero offset with a length matching the sector
5892 * size because in some scenarios this will make the receiver fail.
5894 * For example, if in the source filesystem the extent at offset 0
5895 * has a length of sectorsize and it was written using direct IO, then
5896 * it can never be an inline extent (even if compression is enabled).
5897 * Then this extent can be cloned in the original filesystem to a non
5898 * zero file offset, but it may not be possible to clone in the
5899 * destination filesystem because it can be inlined due to compression
5900 * on the destination filesystem (as the receiver's write operations are
5901 * always done using buffered IO). The same happens when the original
5902 * filesystem does not have compression enabled but the destination
5905 if (clone_root->offset == 0 &&
5906 len == sctx->send_root->fs_info->sectorsize)
5907 return send_extent_data(sctx, dst_path, offset, len);
5909 path = alloc_path_for_send();
5914 * There are inodes that have extents that lie behind its i_size. Don't
5915 * accept clones from these extents.
5917 ret = get_inode_info(clone_root->root, clone_root->ino, &info);
5918 btrfs_release_path(path);
5921 clone_src_i_size = info.size;
5924 * We can't send a clone operation for the entire range if we find
5925 * extent items in the respective range in the source file that
5926 * refer to different extents or if we find holes.
5927 * So check for that and do a mix of clone and regular write/copy
5928 * operations if needed.
5932 * mkfs.btrfs -f /dev/sda
5933 * mount /dev/sda /mnt
5934 * xfs_io -f -c "pwrite -S 0xaa 0K 100K" /mnt/foo
5935 * cp --reflink=always /mnt/foo /mnt/bar
5936 * xfs_io -c "pwrite -S 0xbb 50K 50K" /mnt/foo
5937 * btrfs subvolume snapshot -r /mnt /mnt/snap
5939 * If when we send the snapshot and we are processing file bar (which
5940 * has a higher inode number than foo) we blindly send a clone operation
5941 * for the [0, 100K[ range from foo to bar, the receiver ends up getting
5942 * a file bar that matches the content of file foo - iow, doesn't match
5943 * the content from bar in the original filesystem.
5945 key.objectid = clone_root->ino;
5946 key.type = BTRFS_EXTENT_DATA_KEY;
5947 key.offset = clone_root->offset;
5948 ret = btrfs_search_slot(NULL, clone_root->root, &key, path, 0, 0);
5951 if (ret > 0 && path->slots[0] > 0) {
5952 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
5953 if (key.objectid == clone_root->ino &&
5954 key.type == BTRFS_EXTENT_DATA_KEY)
5959 struct extent_buffer *leaf = path->nodes[0];
5960 int slot = path->slots[0];
5961 struct btrfs_file_extent_item *ei;
5965 u64 clone_data_offset;
5966 bool crossed_src_i_size = false;
5968 if (slot >= btrfs_header_nritems(leaf)) {
5969 ret = btrfs_next_leaf(clone_root->root, path);
5977 btrfs_item_key_to_cpu(leaf, &key, slot);
5980 * We might have an implicit trailing hole (NO_HOLES feature
5981 * enabled). We deal with it after leaving this loop.
5983 if (key.objectid != clone_root->ino ||
5984 key.type != BTRFS_EXTENT_DATA_KEY)
5987 ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5988 type = btrfs_file_extent_type(leaf, ei);
5989 if (type == BTRFS_FILE_EXTENT_INLINE) {
5990 ext_len = btrfs_file_extent_ram_bytes(leaf, ei);
5991 ext_len = PAGE_ALIGN(ext_len);
5993 ext_len = btrfs_file_extent_num_bytes(leaf, ei);
5996 if (key.offset + ext_len <= clone_root->offset)
5999 if (key.offset > clone_root->offset) {
6000 /* Implicit hole, NO_HOLES feature enabled. */
6001 u64 hole_len = key.offset - clone_root->offset;
6005 ret = send_extent_data(sctx, dst_path, offset,
6014 clone_root->offset += hole_len;
6015 data_offset += hole_len;
6018 if (key.offset >= clone_root->offset + len)
6021 if (key.offset >= clone_src_i_size)
6024 if (key.offset + ext_len > clone_src_i_size) {
6025 ext_len = clone_src_i_size - key.offset;
6026 crossed_src_i_size = true;
6029 clone_data_offset = btrfs_file_extent_offset(leaf, ei);
6030 if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte) {
6031 clone_root->offset = key.offset;
6032 if (clone_data_offset < data_offset &&
6033 clone_data_offset + ext_len > data_offset) {
6036 extent_offset = data_offset - clone_data_offset;
6037 ext_len -= extent_offset;
6038 clone_data_offset += extent_offset;
6039 clone_root->offset += extent_offset;
6043 clone_len = min_t(u64, ext_len, len);
6045 if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte &&
6046 clone_data_offset == data_offset) {
6047 const u64 src_end = clone_root->offset + clone_len;
6048 const u64 sectorsize = SZ_64K;
6051 * We can't clone the last block, when its size is not
6052 * sector size aligned, into the middle of a file. If we
6053 * do so, the receiver will get a failure (-EINVAL) when
6054 * trying to clone or will silently corrupt the data in
6055 * the destination file if it's on a kernel without the
6056 * fix introduced by commit ac765f83f1397646
6057 * ("Btrfs: fix data corruption due to cloning of eof
6060 * So issue a clone of the aligned down range plus a
6061 * regular write for the eof block, if we hit that case.
6063 * Also, we use the maximum possible sector size, 64K,
6064 * because we don't know what's the sector size of the
6065 * filesystem that receives the stream, so we have to
6066 * assume the largest possible sector size.
6068 if (src_end == clone_src_i_size &&
6069 !IS_ALIGNED(src_end, sectorsize) &&
6070 offset + clone_len < sctx->cur_inode_size) {
6073 slen = ALIGN_DOWN(src_end - clone_root->offset,
6076 ret = send_clone(sctx, offset, slen,
6081 ret = send_extent_data(sctx, dst_path,
6085 ret = send_clone(sctx, offset, clone_len,
6088 } else if (crossed_src_i_size && clone_len < len) {
6090 * If we are at i_size of the clone source inode and we
6091 * can not clone from it, terminate the loop. This is
6092 * to avoid sending two write operations, one with a
6093 * length matching clone_len and the final one after
6094 * this loop with a length of len - clone_len.
6096 * When using encoded writes (BTRFS_SEND_FLAG_COMPRESSED
6097 * was passed to the send ioctl), this helps avoid
6098 * sending an encoded write for an offset that is not
6099 * sector size aligned, in case the i_size of the source
6100 * inode is not sector size aligned. That will make the
6101 * receiver fallback to decompression of the data and
6102 * writing it using regular buffered IO, therefore while
6103 * not incorrect, it's not optimal due decompression and
6104 * possible re-compression at the receiver.
6108 ret = send_extent_data(sctx, dst_path, offset,
6118 offset += clone_len;
6119 clone_root->offset += clone_len;
6122 * If we are cloning from the file we are currently processing,
6123 * and using the send root as the clone root, we must stop once
6124 * the current clone offset reaches the current eof of the file
6125 * at the receiver, otherwise we would issue an invalid clone
6126 * operation (source range going beyond eof) and cause the
6127 * receiver to fail. So if we reach the current eof, bail out
6128 * and fallback to a regular write.
6130 if (clone_root->root == sctx->send_root &&
6131 clone_root->ino == sctx->cur_ino &&
6132 clone_root->offset >= sctx->cur_inode_next_write_offset)
6135 data_offset += clone_len;
6141 ret = send_extent_data(sctx, dst_path, offset, len);
6145 btrfs_free_path(path);
6149 static int send_write_or_clone(struct send_ctx *sctx,
6150 struct btrfs_path *path,
6151 struct btrfs_key *key,
6152 struct clone_root *clone_root)
6155 u64 offset = key->offset;
6157 u64 bs = sctx->send_root->fs_info->sectorsize;
6158 struct btrfs_file_extent_item *ei;
6162 struct btrfs_inode_info info = { 0 };
6164 end = min_t(u64, btrfs_file_extent_end(path), sctx->cur_inode_size);
6168 num_bytes = end - offset;
6173 if (IS_ALIGNED(end, bs))
6177 * If the extent end is not aligned, we can clone if the extent ends at
6178 * the i_size of the inode and the clone range ends at the i_size of the
6179 * source inode, otherwise the clone operation fails with -EINVAL.
6181 if (end != sctx->cur_inode_size)
6184 ret = get_inode_info(clone_root->root, clone_root->ino, &info);
6188 if (clone_root->offset + num_bytes == info.size) {
6190 * The final size of our file matches the end offset, but it may
6191 * be that its current size is larger, so we have to truncate it
6192 * to any value between the start offset of the range and the
6193 * final i_size, otherwise the clone operation is invalid
6194 * because it's unaligned and it ends before the current EOF.
6195 * We do this truncate to the final i_size when we finish
6196 * processing the inode, but it's too late by then. And here we
6197 * truncate to the start offset of the range because it's always
6198 * sector size aligned while if it were the final i_size it
6199 * would result in dirtying part of a page, filling part of a
6200 * page with zeroes and then having the clone operation at the
6201 * receiver trigger IO and wait for it due to the dirty page.
6203 if (sctx->parent_root != NULL) {
6204 ret = send_truncate(sctx, sctx->cur_ino,
6205 sctx->cur_inode_gen, offset);
6213 ret = send_extent_data(sctx, path, offset, num_bytes);
6214 sctx->cur_inode_next_write_offset = end;
6218 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
6219 struct btrfs_file_extent_item);
6220 disk_byte = btrfs_file_extent_disk_bytenr(path->nodes[0], ei);
6221 data_offset = btrfs_file_extent_offset(path->nodes[0], ei);
6222 ret = clone_range(sctx, path, clone_root, disk_byte, data_offset, offset,
6224 sctx->cur_inode_next_write_offset = end;
6228 static int is_extent_unchanged(struct send_ctx *sctx,
6229 struct btrfs_path *left_path,
6230 struct btrfs_key *ekey)
6233 struct btrfs_key key;
6234 struct btrfs_path *path = NULL;
6235 struct extent_buffer *eb;
6237 struct btrfs_key found_key;
6238 struct btrfs_file_extent_item *ei;
6243 u64 left_offset_fixed;
6251 path = alloc_path_for_send();
6255 eb = left_path->nodes[0];
6256 slot = left_path->slots[0];
6257 ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
6258 left_type = btrfs_file_extent_type(eb, ei);
6260 if (left_type != BTRFS_FILE_EXTENT_REG) {
6264 left_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
6265 left_len = btrfs_file_extent_num_bytes(eb, ei);
6266 left_offset = btrfs_file_extent_offset(eb, ei);
6267 left_gen = btrfs_file_extent_generation(eb, ei);
6270 * Following comments will refer to these graphics. L is the left
6271 * extents which we are checking at the moment. 1-8 are the right
6272 * extents that we iterate.
6275 * |-1-|-2a-|-3-|-4-|-5-|-6-|
6278 * |--1--|-2b-|...(same as above)
6280 * Alternative situation. Happens on files where extents got split.
6282 * |-----------7-----------|-6-|
6284 * Alternative situation. Happens on files which got larger.
6287 * Nothing follows after 8.
6290 key.objectid = ekey->objectid;
6291 key.type = BTRFS_EXTENT_DATA_KEY;
6292 key.offset = ekey->offset;
6293 ret = btrfs_search_slot_for_read(sctx->parent_root, &key, path, 0, 0);
6302 * Handle special case where the right side has no extents at all.
6304 eb = path->nodes[0];
6305 slot = path->slots[0];
6306 btrfs_item_key_to_cpu(eb, &found_key, slot);
6307 if (found_key.objectid != key.objectid ||
6308 found_key.type != key.type) {
6309 /* If we're a hole then just pretend nothing changed */
6310 ret = (left_disknr) ? 0 : 1;
6315 * We're now on 2a, 2b or 7.
6318 while (key.offset < ekey->offset + left_len) {
6319 ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
6320 right_type = btrfs_file_extent_type(eb, ei);
6321 if (right_type != BTRFS_FILE_EXTENT_REG &&
6322 right_type != BTRFS_FILE_EXTENT_INLINE) {
6327 if (right_type == BTRFS_FILE_EXTENT_INLINE) {
6328 right_len = btrfs_file_extent_ram_bytes(eb, ei);
6329 right_len = PAGE_ALIGN(right_len);
6331 right_len = btrfs_file_extent_num_bytes(eb, ei);
6335 * Are we at extent 8? If yes, we know the extent is changed.
6336 * This may only happen on the first iteration.
6338 if (found_key.offset + right_len <= ekey->offset) {
6339 /* If we're a hole just pretend nothing changed */
6340 ret = (left_disknr) ? 0 : 1;
6345 * We just wanted to see if when we have an inline extent, what
6346 * follows it is a regular extent (wanted to check the above
6347 * condition for inline extents too). This should normally not
6348 * happen but it's possible for example when we have an inline
6349 * compressed extent representing data with a size matching
6350 * the page size (currently the same as sector size).
6352 if (right_type == BTRFS_FILE_EXTENT_INLINE) {
6357 right_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
6358 right_offset = btrfs_file_extent_offset(eb, ei);
6359 right_gen = btrfs_file_extent_generation(eb, ei);
6361 left_offset_fixed = left_offset;
6362 if (key.offset < ekey->offset) {
6363 /* Fix the right offset for 2a and 7. */
6364 right_offset += ekey->offset - key.offset;
6366 /* Fix the left offset for all behind 2a and 2b */
6367 left_offset_fixed += key.offset - ekey->offset;
6371 * Check if we have the same extent.
6373 if (left_disknr != right_disknr ||
6374 left_offset_fixed != right_offset ||
6375 left_gen != right_gen) {
6381 * Go to the next extent.
6383 ret = btrfs_next_item(sctx->parent_root, path);
6387 eb = path->nodes[0];
6388 slot = path->slots[0];
6389 btrfs_item_key_to_cpu(eb, &found_key, slot);
6391 if (ret || found_key.objectid != key.objectid ||
6392 found_key.type != key.type) {
6393 key.offset += right_len;
6396 if (found_key.offset != key.offset + right_len) {
6404 * We're now behind the left extent (treat as unchanged) or at the end
6405 * of the right side (treat as changed).
6407 if (key.offset >= ekey->offset + left_len)
6414 btrfs_free_path(path);
6418 static int get_last_extent(struct send_ctx *sctx, u64 offset)
6420 struct btrfs_path *path;
6421 struct btrfs_root *root = sctx->send_root;
6422 struct btrfs_key key;
6425 path = alloc_path_for_send();
6429 sctx->cur_inode_last_extent = 0;
6431 key.objectid = sctx->cur_ino;
6432 key.type = BTRFS_EXTENT_DATA_KEY;
6433 key.offset = offset;
6434 ret = btrfs_search_slot_for_read(root, &key, path, 0, 1);
6438 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
6439 if (key.objectid != sctx->cur_ino || key.type != BTRFS_EXTENT_DATA_KEY)
6442 sctx->cur_inode_last_extent = btrfs_file_extent_end(path);
6444 btrfs_free_path(path);
6448 static int range_is_hole_in_parent(struct send_ctx *sctx,
6452 struct btrfs_path *path;
6453 struct btrfs_key key;
6454 struct btrfs_root *root = sctx->parent_root;
6455 u64 search_start = start;
6458 path = alloc_path_for_send();
6462 key.objectid = sctx->cur_ino;
6463 key.type = BTRFS_EXTENT_DATA_KEY;
6464 key.offset = search_start;
6465 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6468 if (ret > 0 && path->slots[0] > 0)
6471 while (search_start < end) {
6472 struct extent_buffer *leaf = path->nodes[0];
6473 int slot = path->slots[0];
6474 struct btrfs_file_extent_item *fi;
6477 if (slot >= btrfs_header_nritems(leaf)) {
6478 ret = btrfs_next_leaf(root, path);
6486 btrfs_item_key_to_cpu(leaf, &key, slot);
6487 if (key.objectid < sctx->cur_ino ||
6488 key.type < BTRFS_EXTENT_DATA_KEY)
6490 if (key.objectid > sctx->cur_ino ||
6491 key.type > BTRFS_EXTENT_DATA_KEY ||
6495 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
6496 extent_end = btrfs_file_extent_end(path);
6497 if (extent_end <= start)
6499 if (btrfs_file_extent_disk_bytenr(leaf, fi) == 0) {
6500 search_start = extent_end;
6510 btrfs_free_path(path);
6514 static int maybe_send_hole(struct send_ctx *sctx, struct btrfs_path *path,
6515 struct btrfs_key *key)
6519 if (sctx->cur_ino != key->objectid || !need_send_hole(sctx))
6523 * Get last extent's end offset (exclusive) if we haven't determined it
6524 * yet (we're processing the first file extent item that is new), or if
6525 * we're at the first slot of a leaf and the last extent's end is less
6526 * than the current extent's offset, because we might have skipped
6527 * entire leaves that contained only file extent items for our current
6528 * inode. These leaves have a generation number smaller (older) than the
6529 * one in the current leaf and the leaf our last extent came from, and
6530 * are located between these 2 leaves.
6532 if ((sctx->cur_inode_last_extent == (u64)-1) ||
6533 (path->slots[0] == 0 && sctx->cur_inode_last_extent < key->offset)) {
6534 ret = get_last_extent(sctx, key->offset - 1);
6539 if (sctx->cur_inode_last_extent < key->offset) {
6540 ret = range_is_hole_in_parent(sctx,
6541 sctx->cur_inode_last_extent,
6546 ret = send_hole(sctx, key->offset);
6550 sctx->cur_inode_last_extent = btrfs_file_extent_end(path);
6554 static int process_extent(struct send_ctx *sctx,
6555 struct btrfs_path *path,
6556 struct btrfs_key *key)
6558 struct clone_root *found_clone = NULL;
6561 if (S_ISLNK(sctx->cur_inode_mode))
6564 if (sctx->parent_root && !sctx->cur_inode_new) {
6565 ret = is_extent_unchanged(sctx, path, key);
6573 struct btrfs_file_extent_item *ei;
6576 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
6577 struct btrfs_file_extent_item);
6578 type = btrfs_file_extent_type(path->nodes[0], ei);
6579 if (type == BTRFS_FILE_EXTENT_PREALLOC ||
6580 type == BTRFS_FILE_EXTENT_REG) {
6582 * The send spec does not have a prealloc command yet,
6583 * so just leave a hole for prealloc'ed extents until
6584 * we have enough commands queued up to justify rev'ing
6587 if (type == BTRFS_FILE_EXTENT_PREALLOC) {
6592 /* Have a hole, just skip it. */
6593 if (btrfs_file_extent_disk_bytenr(path->nodes[0], ei) == 0) {
6600 ret = find_extent_clone(sctx, path, key->objectid, key->offset,
6601 sctx->cur_inode_size, &found_clone);
6602 if (ret != -ENOENT && ret < 0)
6605 ret = send_write_or_clone(sctx, path, key, found_clone);
6609 ret = maybe_send_hole(sctx, path, key);
6614 static int process_all_extents(struct send_ctx *sctx)
6618 struct btrfs_root *root;
6619 struct btrfs_path *path;
6620 struct btrfs_key key;
6621 struct btrfs_key found_key;
6623 root = sctx->send_root;
6624 path = alloc_path_for_send();
6628 key.objectid = sctx->cmp_key->objectid;
6629 key.type = BTRFS_EXTENT_DATA_KEY;
6631 btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
6632 if (found_key.objectid != key.objectid ||
6633 found_key.type != key.type) {
6638 ret = process_extent(sctx, path, &found_key);
6642 /* Catch error found during iteration */
6646 btrfs_free_path(path);
6650 static int process_recorded_refs_if_needed(struct send_ctx *sctx, int at_end,
6652 int *refs_processed)
6656 if (sctx->cur_ino == 0)
6658 if (!at_end && sctx->cur_ino == sctx->cmp_key->objectid &&
6659 sctx->cmp_key->type <= BTRFS_INODE_EXTREF_KEY)
6661 if (list_empty(&sctx->new_refs) && list_empty(&sctx->deleted_refs))
6664 ret = process_recorded_refs(sctx, pending_move);
6668 *refs_processed = 1;
6673 static int finish_inode_if_needed(struct send_ctx *sctx, int at_end)
6676 struct btrfs_inode_info info;
6687 bool need_fileattr = false;
6688 int need_truncate = 1;
6689 int pending_move = 0;
6690 int refs_processed = 0;
6692 if (sctx->ignore_cur_inode)
6695 ret = process_recorded_refs_if_needed(sctx, at_end, &pending_move,
6701 * We have processed the refs and thus need to advance send_progress.
6702 * Now, calls to get_cur_xxx will take the updated refs of the current
6703 * inode into account.
6705 * On the other hand, if our current inode is a directory and couldn't
6706 * be moved/renamed because its parent was renamed/moved too and it has
6707 * a higher inode number, we can only move/rename our current inode
6708 * after we moved/renamed its parent. Therefore in this case operate on
6709 * the old path (pre move/rename) of our current inode, and the
6710 * move/rename will be performed later.
6712 if (refs_processed && !pending_move)
6713 sctx->send_progress = sctx->cur_ino + 1;
6715 if (sctx->cur_ino == 0 || sctx->cur_inode_deleted)
6717 if (!at_end && sctx->cmp_key->objectid == sctx->cur_ino)
6719 ret = get_inode_info(sctx->send_root, sctx->cur_ino, &info);
6722 left_mode = info.mode;
6723 left_uid = info.uid;
6724 left_gid = info.gid;
6725 left_fileattr = info.fileattr;
6727 if (!sctx->parent_root || sctx->cur_inode_new) {
6729 if (!S_ISLNK(sctx->cur_inode_mode))
6731 if (sctx->cur_inode_next_write_offset == sctx->cur_inode_size)
6736 ret = get_inode_info(sctx->parent_root, sctx->cur_ino, &info);
6739 old_size = info.size;
6740 right_mode = info.mode;
6741 right_uid = info.uid;
6742 right_gid = info.gid;
6743 right_fileattr = info.fileattr;
6745 if (left_uid != right_uid || left_gid != right_gid)
6747 if (!S_ISLNK(sctx->cur_inode_mode) && left_mode != right_mode)
6749 if (!S_ISLNK(sctx->cur_inode_mode) && left_fileattr != right_fileattr)
6750 need_fileattr = true;
6751 if ((old_size == sctx->cur_inode_size) ||
6752 (sctx->cur_inode_size > old_size &&
6753 sctx->cur_inode_next_write_offset == sctx->cur_inode_size))
6757 if (S_ISREG(sctx->cur_inode_mode)) {
6758 if (need_send_hole(sctx)) {
6759 if (sctx->cur_inode_last_extent == (u64)-1 ||
6760 sctx->cur_inode_last_extent <
6761 sctx->cur_inode_size) {
6762 ret = get_last_extent(sctx, (u64)-1);
6766 if (sctx->cur_inode_last_extent < sctx->cur_inode_size) {
6767 ret = range_is_hole_in_parent(sctx,
6768 sctx->cur_inode_last_extent,
6769 sctx->cur_inode_size);
6772 } else if (ret == 0) {
6773 ret = send_hole(sctx, sctx->cur_inode_size);
6777 /* Range is already a hole, skip. */
6782 if (need_truncate) {
6783 ret = send_truncate(sctx, sctx->cur_ino,
6784 sctx->cur_inode_gen,
6785 sctx->cur_inode_size);
6792 ret = send_chown(sctx, sctx->cur_ino, sctx->cur_inode_gen,
6793 left_uid, left_gid);
6798 ret = send_chmod(sctx, sctx->cur_ino, sctx->cur_inode_gen,
6803 if (need_fileattr) {
6804 ret = send_fileattr(sctx, sctx->cur_ino, sctx->cur_inode_gen,
6810 if (proto_cmd_ok(sctx, BTRFS_SEND_C_ENABLE_VERITY)
6811 && sctx->cur_inode_needs_verity) {
6812 ret = process_verity(sctx);
6817 ret = send_capabilities(sctx);
6822 * If other directory inodes depended on our current directory
6823 * inode's move/rename, now do their move/rename operations.
6825 if (!is_waiting_for_move(sctx, sctx->cur_ino)) {
6826 ret = apply_children_dir_moves(sctx);
6830 * Need to send that every time, no matter if it actually
6831 * changed between the two trees as we have done changes to
6832 * the inode before. If our inode is a directory and it's
6833 * waiting to be moved/renamed, we will send its utimes when
6834 * it's moved/renamed, therefore we don't need to do it here.
6836 sctx->send_progress = sctx->cur_ino + 1;
6839 * If the current inode is a non-empty directory, delay issuing
6840 * the utimes command for it, as it's very likely we have inodes
6841 * with an higher number inside it. We want to issue the utimes
6842 * command only after adding all dentries to it.
6844 if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_size > 0)
6845 ret = cache_dir_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen);
6847 ret = send_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen);
6855 ret = trim_dir_utimes_cache(sctx);
6860 static void close_current_inode(struct send_ctx *sctx)
6864 if (sctx->cur_inode == NULL)
6867 i_size = i_size_read(sctx->cur_inode);
6870 * If we are doing an incremental send, we may have extents between the
6871 * last processed extent and the i_size that have not been processed
6872 * because they haven't changed but we may have read some of their pages
6873 * through readahead, see the comments at send_extent_data().
6875 if (sctx->clean_page_cache && sctx->page_cache_clear_start < i_size)
6876 truncate_inode_pages_range(&sctx->cur_inode->i_data,
6877 sctx->page_cache_clear_start,
6878 round_up(i_size, PAGE_SIZE) - 1);
6880 iput(sctx->cur_inode);
6881 sctx->cur_inode = NULL;
6884 static int changed_inode(struct send_ctx *sctx,
6885 enum btrfs_compare_tree_result result)
6888 struct btrfs_key *key = sctx->cmp_key;
6889 struct btrfs_inode_item *left_ii = NULL;
6890 struct btrfs_inode_item *right_ii = NULL;
6894 close_current_inode(sctx);
6896 sctx->cur_ino = key->objectid;
6897 sctx->cur_inode_new_gen = false;
6898 sctx->cur_inode_last_extent = (u64)-1;
6899 sctx->cur_inode_next_write_offset = 0;
6900 sctx->ignore_cur_inode = false;
6903 * Set send_progress to current inode. This will tell all get_cur_xxx
6904 * functions that the current inode's refs are not updated yet. Later,
6905 * when process_recorded_refs is finished, it is set to cur_ino + 1.
6907 sctx->send_progress = sctx->cur_ino;
6909 if (result == BTRFS_COMPARE_TREE_NEW ||
6910 result == BTRFS_COMPARE_TREE_CHANGED) {
6911 left_ii = btrfs_item_ptr(sctx->left_path->nodes[0],
6912 sctx->left_path->slots[0],
6913 struct btrfs_inode_item);
6914 left_gen = btrfs_inode_generation(sctx->left_path->nodes[0],
6917 right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
6918 sctx->right_path->slots[0],
6919 struct btrfs_inode_item);
6920 right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
6923 if (result == BTRFS_COMPARE_TREE_CHANGED) {
6924 right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
6925 sctx->right_path->slots[0],
6926 struct btrfs_inode_item);
6928 right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
6932 * The cur_ino = root dir case is special here. We can't treat
6933 * the inode as deleted+reused because it would generate a
6934 * stream that tries to delete/mkdir the root dir.
6936 if (left_gen != right_gen &&
6937 sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
6938 sctx->cur_inode_new_gen = true;
6942 * Normally we do not find inodes with a link count of zero (orphans)
6943 * because the most common case is to create a snapshot and use it
6944 * for a send operation. However other less common use cases involve
6945 * using a subvolume and send it after turning it to RO mode just
6946 * after deleting all hard links of a file while holding an open
6947 * file descriptor against it or turning a RO snapshot into RW mode,
6948 * keep an open file descriptor against a file, delete it and then
6949 * turn the snapshot back to RO mode before using it for a send
6950 * operation. The former is what the receiver operation does.
6951 * Therefore, if we want to send these snapshots soon after they're
6952 * received, we need to handle orphan inodes as well. Moreover, orphans
6953 * can appear not only in the send snapshot but also in the parent
6954 * snapshot. Here are several cases:
6956 * Case 1: BTRFS_COMPARE_TREE_NEW
6957 * | send snapshot | action
6958 * --------------------------------
6959 * nlink | 0 | ignore
6961 * Case 2: BTRFS_COMPARE_TREE_DELETED
6962 * | parent snapshot | action
6963 * ----------------------------------
6964 * nlink | 0 | as usual
6965 * Note: No unlinks will be sent because there're no paths for it.
6967 * Case 3: BTRFS_COMPARE_TREE_CHANGED
6968 * | | parent snapshot | send snapshot | action
6969 * -----------------------------------------------------------------------
6970 * subcase 1 | nlink | 0 | 0 | ignore
6971 * subcase 2 | nlink | >0 | 0 | new_gen(deletion)
6972 * subcase 3 | nlink | 0 | >0 | new_gen(creation)
6975 if (result == BTRFS_COMPARE_TREE_NEW) {
6976 if (btrfs_inode_nlink(sctx->left_path->nodes[0], left_ii) == 0) {
6977 sctx->ignore_cur_inode = true;
6980 sctx->cur_inode_gen = left_gen;
6981 sctx->cur_inode_new = true;
6982 sctx->cur_inode_deleted = false;
6983 sctx->cur_inode_size = btrfs_inode_size(
6984 sctx->left_path->nodes[0], left_ii);
6985 sctx->cur_inode_mode = btrfs_inode_mode(
6986 sctx->left_path->nodes[0], left_ii);
6987 sctx->cur_inode_rdev = btrfs_inode_rdev(
6988 sctx->left_path->nodes[0], left_ii);
6989 if (sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
6990 ret = send_create_inode_if_needed(sctx);
6991 } else if (result == BTRFS_COMPARE_TREE_DELETED) {
6992 sctx->cur_inode_gen = right_gen;
6993 sctx->cur_inode_new = false;
6994 sctx->cur_inode_deleted = true;
6995 sctx->cur_inode_size = btrfs_inode_size(
6996 sctx->right_path->nodes[0], right_ii);
6997 sctx->cur_inode_mode = btrfs_inode_mode(
6998 sctx->right_path->nodes[0], right_ii);
6999 } else if (result == BTRFS_COMPARE_TREE_CHANGED) {
7000 u32 new_nlinks, old_nlinks;
7002 new_nlinks = btrfs_inode_nlink(sctx->left_path->nodes[0], left_ii);
7003 old_nlinks = btrfs_inode_nlink(sctx->right_path->nodes[0], right_ii);
7004 if (new_nlinks == 0 && old_nlinks == 0) {
7005 sctx->ignore_cur_inode = true;
7007 } else if (new_nlinks == 0 || old_nlinks == 0) {
7008 sctx->cur_inode_new_gen = 1;
7011 * We need to do some special handling in case the inode was
7012 * reported as changed with a changed generation number. This
7013 * means that the original inode was deleted and new inode
7014 * reused the same inum. So we have to treat the old inode as
7015 * deleted and the new one as new.
7017 if (sctx->cur_inode_new_gen) {
7019 * First, process the inode as if it was deleted.
7021 if (old_nlinks > 0) {
7022 sctx->cur_inode_gen = right_gen;
7023 sctx->cur_inode_new = false;
7024 sctx->cur_inode_deleted = true;
7025 sctx->cur_inode_size = btrfs_inode_size(
7026 sctx->right_path->nodes[0], right_ii);
7027 sctx->cur_inode_mode = btrfs_inode_mode(
7028 sctx->right_path->nodes[0], right_ii);
7029 ret = process_all_refs(sctx,
7030 BTRFS_COMPARE_TREE_DELETED);
7036 * Now process the inode as if it was new.
7038 if (new_nlinks > 0) {
7039 sctx->cur_inode_gen = left_gen;
7040 sctx->cur_inode_new = true;
7041 sctx->cur_inode_deleted = false;
7042 sctx->cur_inode_size = btrfs_inode_size(
7043 sctx->left_path->nodes[0],
7045 sctx->cur_inode_mode = btrfs_inode_mode(
7046 sctx->left_path->nodes[0],
7048 sctx->cur_inode_rdev = btrfs_inode_rdev(
7049 sctx->left_path->nodes[0],
7051 ret = send_create_inode_if_needed(sctx);
7055 ret = process_all_refs(sctx, BTRFS_COMPARE_TREE_NEW);
7059 * Advance send_progress now as we did not get
7060 * into process_recorded_refs_if_needed in the
7063 sctx->send_progress = sctx->cur_ino + 1;
7066 * Now process all extents and xattrs of the
7067 * inode as if they were all new.
7069 ret = process_all_extents(sctx);
7072 ret = process_all_new_xattrs(sctx);
7077 sctx->cur_inode_gen = left_gen;
7078 sctx->cur_inode_new = false;
7079 sctx->cur_inode_new_gen = false;
7080 sctx->cur_inode_deleted = false;
7081 sctx->cur_inode_size = btrfs_inode_size(
7082 sctx->left_path->nodes[0], left_ii);
7083 sctx->cur_inode_mode = btrfs_inode_mode(
7084 sctx->left_path->nodes[0], left_ii);
7093 * We have to process new refs before deleted refs, but compare_trees gives us
7094 * the new and deleted refs mixed. To fix this, we record the new/deleted refs
7095 * first and later process them in process_recorded_refs.
7096 * For the cur_inode_new_gen case, we skip recording completely because
7097 * changed_inode did already initiate processing of refs. The reason for this is
7098 * that in this case, compare_tree actually compares the refs of 2 different
7099 * inodes. To fix this, process_all_refs is used in changed_inode to handle all
7100 * refs of the right tree as deleted and all refs of the left tree as new.
7102 static int changed_ref(struct send_ctx *sctx,
7103 enum btrfs_compare_tree_result result)
7107 if (sctx->cur_ino != sctx->cmp_key->objectid) {
7108 inconsistent_snapshot_error(sctx, result, "reference");
7112 if (!sctx->cur_inode_new_gen &&
7113 sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) {
7114 if (result == BTRFS_COMPARE_TREE_NEW)
7115 ret = record_new_ref(sctx);
7116 else if (result == BTRFS_COMPARE_TREE_DELETED)
7117 ret = record_deleted_ref(sctx);
7118 else if (result == BTRFS_COMPARE_TREE_CHANGED)
7119 ret = record_changed_ref(sctx);
7126 * Process new/deleted/changed xattrs. We skip processing in the
7127 * cur_inode_new_gen case because changed_inode did already initiate processing
7128 * of xattrs. The reason is the same as in changed_ref
7130 static int changed_xattr(struct send_ctx *sctx,
7131 enum btrfs_compare_tree_result result)
7135 if (sctx->cur_ino != sctx->cmp_key->objectid) {
7136 inconsistent_snapshot_error(sctx, result, "xattr");
7140 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
7141 if (result == BTRFS_COMPARE_TREE_NEW)
7142 ret = process_new_xattr(sctx);
7143 else if (result == BTRFS_COMPARE_TREE_DELETED)
7144 ret = process_deleted_xattr(sctx);
7145 else if (result == BTRFS_COMPARE_TREE_CHANGED)
7146 ret = process_changed_xattr(sctx);
7153 * Process new/deleted/changed extents. We skip processing in the
7154 * cur_inode_new_gen case because changed_inode did already initiate processing
7155 * of extents. The reason is the same as in changed_ref
7157 static int changed_extent(struct send_ctx *sctx,
7158 enum btrfs_compare_tree_result result)
7163 * We have found an extent item that changed without the inode item
7164 * having changed. This can happen either after relocation (where the
7165 * disk_bytenr of an extent item is replaced at
7166 * relocation.c:replace_file_extents()) or after deduplication into a
7167 * file in both the parent and send snapshots (where an extent item can
7168 * get modified or replaced with a new one). Note that deduplication
7169 * updates the inode item, but it only changes the iversion (sequence
7170 * field in the inode item) of the inode, so if a file is deduplicated
7171 * the same amount of times in both the parent and send snapshots, its
7172 * iversion becomes the same in both snapshots, whence the inode item is
7173 * the same on both snapshots.
7175 if (sctx->cur_ino != sctx->cmp_key->objectid)
7178 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
7179 if (result != BTRFS_COMPARE_TREE_DELETED)
7180 ret = process_extent(sctx, sctx->left_path,
7187 static int changed_verity(struct send_ctx *sctx, enum btrfs_compare_tree_result result)
7189 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
7190 if (result == BTRFS_COMPARE_TREE_NEW)
7191 sctx->cur_inode_needs_verity = true;
7196 static int dir_changed(struct send_ctx *sctx, u64 dir)
7198 u64 orig_gen, new_gen;
7201 ret = get_inode_gen(sctx->send_root, dir, &new_gen);
7205 ret = get_inode_gen(sctx->parent_root, dir, &orig_gen);
7209 return (orig_gen != new_gen) ? 1 : 0;
7212 static int compare_refs(struct send_ctx *sctx, struct btrfs_path *path,
7213 struct btrfs_key *key)
7215 struct btrfs_inode_extref *extref;
7216 struct extent_buffer *leaf;
7217 u64 dirid = 0, last_dirid = 0;
7224 /* Easy case, just check this one dirid */
7225 if (key->type == BTRFS_INODE_REF_KEY) {
7226 dirid = key->offset;
7228 ret = dir_changed(sctx, dirid);
7232 leaf = path->nodes[0];
7233 item_size = btrfs_item_size(leaf, path->slots[0]);
7234 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
7235 while (cur_offset < item_size) {
7236 extref = (struct btrfs_inode_extref *)(ptr +
7238 dirid = btrfs_inode_extref_parent(leaf, extref);
7239 ref_name_len = btrfs_inode_extref_name_len(leaf, extref);
7240 cur_offset += ref_name_len + sizeof(*extref);
7241 if (dirid == last_dirid)
7243 ret = dir_changed(sctx, dirid);
7253 * Updates compare related fields in sctx and simply forwards to the actual
7254 * changed_xxx functions.
7256 static int changed_cb(struct btrfs_path *left_path,
7257 struct btrfs_path *right_path,
7258 struct btrfs_key *key,
7259 enum btrfs_compare_tree_result result,
7260 struct send_ctx *sctx)
7265 * We can not hold the commit root semaphore here. This is because in
7266 * the case of sending and receiving to the same filesystem, using a
7267 * pipe, could result in a deadlock:
7269 * 1) The task running send blocks on the pipe because it's full;
7271 * 2) The task running receive, which is the only consumer of the pipe,
7272 * is waiting for a transaction commit (for example due to a space
7273 * reservation when doing a write or triggering a transaction commit
7274 * when creating a subvolume);
7276 * 3) The transaction is waiting to write lock the commit root semaphore,
7277 * but can not acquire it since it's being held at 1).
7279 * Down this call chain we write to the pipe through kernel_write().
7280 * The same type of problem can also happen when sending to a file that
7281 * is stored in the same filesystem - when reserving space for a write
7282 * into the file, we can trigger a transaction commit.
7284 * Our caller has supplied us with clones of leaves from the send and
7285 * parent roots, so we're safe here from a concurrent relocation and
7286 * further reallocation of metadata extents while we are here. Below we
7287 * also assert that the leaves are clones.
7289 lockdep_assert_not_held(&sctx->send_root->fs_info->commit_root_sem);
7292 * We always have a send root, so left_path is never NULL. We will not
7293 * have a leaf when we have reached the end of the send root but have
7294 * not yet reached the end of the parent root.
7296 if (left_path->nodes[0])
7297 ASSERT(test_bit(EXTENT_BUFFER_UNMAPPED,
7298 &left_path->nodes[0]->bflags));
7300 * When doing a full send we don't have a parent root, so right_path is
7301 * NULL. When doing an incremental send, we may have reached the end of
7302 * the parent root already, so we don't have a leaf at right_path.
7304 if (right_path && right_path->nodes[0])
7305 ASSERT(test_bit(EXTENT_BUFFER_UNMAPPED,
7306 &right_path->nodes[0]->bflags));
7308 if (result == BTRFS_COMPARE_TREE_SAME) {
7309 if (key->type == BTRFS_INODE_REF_KEY ||
7310 key->type == BTRFS_INODE_EXTREF_KEY) {
7311 ret = compare_refs(sctx, left_path, key);
7316 } else if (key->type == BTRFS_EXTENT_DATA_KEY) {
7317 return maybe_send_hole(sctx, left_path, key);
7321 result = BTRFS_COMPARE_TREE_CHANGED;
7325 sctx->left_path = left_path;
7326 sctx->right_path = right_path;
7327 sctx->cmp_key = key;
7329 ret = finish_inode_if_needed(sctx, 0);
7333 /* Ignore non-FS objects */
7334 if (key->objectid == BTRFS_FREE_INO_OBJECTID ||
7335 key->objectid == BTRFS_FREE_SPACE_OBJECTID)
7338 if (key->type == BTRFS_INODE_ITEM_KEY) {
7339 ret = changed_inode(sctx, result);
7340 } else if (!sctx->ignore_cur_inode) {
7341 if (key->type == BTRFS_INODE_REF_KEY ||
7342 key->type == BTRFS_INODE_EXTREF_KEY)
7343 ret = changed_ref(sctx, result);
7344 else if (key->type == BTRFS_XATTR_ITEM_KEY)
7345 ret = changed_xattr(sctx, result);
7346 else if (key->type == BTRFS_EXTENT_DATA_KEY)
7347 ret = changed_extent(sctx, result);
7348 else if (key->type == BTRFS_VERITY_DESC_ITEM_KEY &&
7350 ret = changed_verity(sctx, result);
7357 static int search_key_again(const struct send_ctx *sctx,
7358 struct btrfs_root *root,
7359 struct btrfs_path *path,
7360 const struct btrfs_key *key)
7364 if (!path->need_commit_sem)
7365 lockdep_assert_held_read(&root->fs_info->commit_root_sem);
7368 * Roots used for send operations are readonly and no one can add,
7369 * update or remove keys from them, so we should be able to find our
7370 * key again. The only exception is deduplication, which can operate on
7371 * readonly roots and add, update or remove keys to/from them - but at
7372 * the moment we don't allow it to run in parallel with send.
7374 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
7377 btrfs_print_tree(path->nodes[path->lowest_level], false);
7378 btrfs_err(root->fs_info,
7379 "send: key (%llu %u %llu) not found in %s root %llu, lowest_level %d, slot %d",
7380 key->objectid, key->type, key->offset,
7381 (root == sctx->parent_root ? "parent" : "send"),
7382 btrfs_root_id(root), path->lowest_level,
7383 path->slots[path->lowest_level]);
7390 static int full_send_tree(struct send_ctx *sctx)
7393 struct btrfs_root *send_root = sctx->send_root;
7394 struct btrfs_key key;
7395 struct btrfs_fs_info *fs_info = send_root->fs_info;
7396 struct btrfs_path *path;
7398 path = alloc_path_for_send();
7401 path->reada = READA_FORWARD_ALWAYS;
7403 key.objectid = BTRFS_FIRST_FREE_OBJECTID;
7404 key.type = BTRFS_INODE_ITEM_KEY;
7407 down_read(&fs_info->commit_root_sem);
7408 sctx->last_reloc_trans = fs_info->last_reloc_trans;
7409 up_read(&fs_info->commit_root_sem);
7411 ret = btrfs_search_slot_for_read(send_root, &key, path, 1, 0);
7418 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
7420 ret = changed_cb(path, NULL, &key,
7421 BTRFS_COMPARE_TREE_NEW, sctx);
7425 down_read(&fs_info->commit_root_sem);
7426 if (fs_info->last_reloc_trans > sctx->last_reloc_trans) {
7427 sctx->last_reloc_trans = fs_info->last_reloc_trans;
7428 up_read(&fs_info->commit_root_sem);
7430 * A transaction used for relocating a block group was
7431 * committed or is about to finish its commit. Release
7432 * our path (leaf) and restart the search, so that we
7433 * avoid operating on any file extent items that are
7434 * stale, with a disk_bytenr that reflects a pre
7435 * relocation value. This way we avoid as much as
7436 * possible to fallback to regular writes when checking
7437 * if we can clone file ranges.
7439 btrfs_release_path(path);
7440 ret = search_key_again(sctx, send_root, path, &key);
7444 up_read(&fs_info->commit_root_sem);
7447 ret = btrfs_next_item(send_root, path);
7457 ret = finish_inode_if_needed(sctx, 1);
7460 btrfs_free_path(path);
7464 static int replace_node_with_clone(struct btrfs_path *path, int level)
7466 struct extent_buffer *clone;
7468 clone = btrfs_clone_extent_buffer(path->nodes[level]);
7472 free_extent_buffer(path->nodes[level]);
7473 path->nodes[level] = clone;
7478 static int tree_move_down(struct btrfs_path *path, int *level, u64 reada_min_gen)
7480 struct extent_buffer *eb;
7481 struct extent_buffer *parent = path->nodes[*level];
7482 int slot = path->slots[*level];
7483 const int nritems = btrfs_header_nritems(parent);
7487 lockdep_assert_held_read(&parent->fs_info->commit_root_sem);
7488 ASSERT(*level != 0);
7490 eb = btrfs_read_node_slot(parent, slot);
7495 * Trigger readahead for the next leaves we will process, so that it is
7496 * very likely that when we need them they are already in memory and we
7497 * will not block on disk IO. For nodes we only do readahead for one,
7498 * since the time window between processing nodes is typically larger.
7500 reada_max = (*level == 1 ? SZ_128K : eb->fs_info->nodesize);
7502 for (slot++; slot < nritems && reada_done < reada_max; slot++) {
7503 if (btrfs_node_ptr_generation(parent, slot) > reada_min_gen) {
7504 btrfs_readahead_node_child(parent, slot);
7505 reada_done += eb->fs_info->nodesize;
7509 path->nodes[*level - 1] = eb;
7510 path->slots[*level - 1] = 0;
7514 return replace_node_with_clone(path, 0);
7519 static int tree_move_next_or_upnext(struct btrfs_path *path,
7520 int *level, int root_level)
7524 nritems = btrfs_header_nritems(path->nodes[*level]);
7526 path->slots[*level]++;
7528 while (path->slots[*level] >= nritems) {
7529 if (*level == root_level) {
7530 path->slots[*level] = nritems - 1;
7535 path->slots[*level] = 0;
7536 free_extent_buffer(path->nodes[*level]);
7537 path->nodes[*level] = NULL;
7539 path->slots[*level]++;
7541 nritems = btrfs_header_nritems(path->nodes[*level]);
7548 * Returns 1 if it had to move up and next. 0 is returned if it moved only next
7551 static int tree_advance(struct btrfs_path *path,
7552 int *level, int root_level,
7554 struct btrfs_key *key,
7559 if (*level == 0 || !allow_down) {
7560 ret = tree_move_next_or_upnext(path, level, root_level);
7562 ret = tree_move_down(path, level, reada_min_gen);
7566 * Even if we have reached the end of a tree, ret is -1, update the key
7567 * anyway, so that in case we need to restart due to a block group
7568 * relocation, we can assert that the last key of the root node still
7569 * exists in the tree.
7572 btrfs_item_key_to_cpu(path->nodes[*level], key,
7573 path->slots[*level]);
7575 btrfs_node_key_to_cpu(path->nodes[*level], key,
7576 path->slots[*level]);
7581 static int tree_compare_item(struct btrfs_path *left_path,
7582 struct btrfs_path *right_path,
7587 unsigned long off1, off2;
7589 len1 = btrfs_item_size(left_path->nodes[0], left_path->slots[0]);
7590 len2 = btrfs_item_size(right_path->nodes[0], right_path->slots[0]);
7594 off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]);
7595 off2 = btrfs_item_ptr_offset(right_path->nodes[0],
7596 right_path->slots[0]);
7598 read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1);
7600 cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1);
7607 * A transaction used for relocating a block group was committed or is about to
7608 * finish its commit. Release our paths and restart the search, so that we are
7609 * not using stale extent buffers:
7611 * 1) For levels > 0, we are only holding references of extent buffers, without
7612 * any locks on them, which does not prevent them from having been relocated
7613 * and reallocated after the last time we released the commit root semaphore.
7614 * The exception are the root nodes, for which we always have a clone, see
7615 * the comment at btrfs_compare_trees();
7617 * 2) For leaves, level 0, we are holding copies (clones) of extent buffers, so
7618 * we are safe from the concurrent relocation and reallocation. However they
7619 * can have file extent items with a pre relocation disk_bytenr value, so we
7620 * restart the start from the current commit roots and clone the new leaves so
7621 * that we get the post relocation disk_bytenr values. Not doing so, could
7622 * make us clone the wrong data in case there are new extents using the old
7623 * disk_bytenr that happen to be shared.
7625 static int restart_after_relocation(struct btrfs_path *left_path,
7626 struct btrfs_path *right_path,
7627 const struct btrfs_key *left_key,
7628 const struct btrfs_key *right_key,
7631 const struct send_ctx *sctx)
7636 lockdep_assert_held_read(&sctx->send_root->fs_info->commit_root_sem);
7638 btrfs_release_path(left_path);
7639 btrfs_release_path(right_path);
7642 * Since keys can not be added or removed to/from our roots because they
7643 * are readonly and we do not allow deduplication to run in parallel
7644 * (which can add, remove or change keys), the layout of the trees should
7647 left_path->lowest_level = left_level;
7648 ret = search_key_again(sctx, sctx->send_root, left_path, left_key);
7652 right_path->lowest_level = right_level;
7653 ret = search_key_again(sctx, sctx->parent_root, right_path, right_key);
7658 * If the lowest level nodes are leaves, clone them so that they can be
7659 * safely used by changed_cb() while not under the protection of the
7660 * commit root semaphore, even if relocation and reallocation happens in
7663 if (left_level == 0) {
7664 ret = replace_node_with_clone(left_path, 0);
7669 if (right_level == 0) {
7670 ret = replace_node_with_clone(right_path, 0);
7676 * Now clone the root nodes (unless they happen to be the leaves we have
7677 * already cloned). This is to protect against concurrent snapshotting of
7678 * the send and parent roots (see the comment at btrfs_compare_trees()).
7680 root_level = btrfs_header_level(sctx->send_root->commit_root);
7681 if (root_level > 0) {
7682 ret = replace_node_with_clone(left_path, root_level);
7687 root_level = btrfs_header_level(sctx->parent_root->commit_root);
7688 if (root_level > 0) {
7689 ret = replace_node_with_clone(right_path, root_level);
7698 * This function compares two trees and calls the provided callback for
7699 * every changed/new/deleted item it finds.
7700 * If shared tree blocks are encountered, whole subtrees are skipped, making
7701 * the compare pretty fast on snapshotted subvolumes.
7703 * This currently works on commit roots only. As commit roots are read only,
7704 * we don't do any locking. The commit roots are protected with transactions.
7705 * Transactions are ended and rejoined when a commit is tried in between.
7707 * This function checks for modifications done to the trees while comparing.
7708 * If it detects a change, it aborts immediately.
7710 static int btrfs_compare_trees(struct btrfs_root *left_root,
7711 struct btrfs_root *right_root, struct send_ctx *sctx)
7713 struct btrfs_fs_info *fs_info = left_root->fs_info;
7716 struct btrfs_path *left_path = NULL;
7717 struct btrfs_path *right_path = NULL;
7718 struct btrfs_key left_key;
7719 struct btrfs_key right_key;
7720 char *tmp_buf = NULL;
7721 int left_root_level;
7722 int right_root_level;
7725 int left_end_reached = 0;
7726 int right_end_reached = 0;
7727 int advance_left = 0;
7728 int advance_right = 0;
7735 left_path = btrfs_alloc_path();
7740 right_path = btrfs_alloc_path();
7746 tmp_buf = kvmalloc(fs_info->nodesize, GFP_KERNEL);
7752 left_path->search_commit_root = 1;
7753 left_path->skip_locking = 1;
7754 right_path->search_commit_root = 1;
7755 right_path->skip_locking = 1;
7758 * Strategy: Go to the first items of both trees. Then do
7760 * If both trees are at level 0
7761 * Compare keys of current items
7762 * If left < right treat left item as new, advance left tree
7764 * If left > right treat right item as deleted, advance right tree
7766 * If left == right do deep compare of items, treat as changed if
7767 * needed, advance both trees and repeat
7768 * If both trees are at the same level but not at level 0
7769 * Compare keys of current nodes/leafs
7770 * If left < right advance left tree and repeat
7771 * If left > right advance right tree and repeat
7772 * If left == right compare blockptrs of the next nodes/leafs
7773 * If they match advance both trees but stay at the same level
7775 * If they don't match advance both trees while allowing to go
7777 * If tree levels are different
7778 * Advance the tree that needs it and repeat
7780 * Advancing a tree means:
7781 * If we are at level 0, try to go to the next slot. If that's not
7782 * possible, go one level up and repeat. Stop when we found a level
7783 * where we could go to the next slot. We may at this point be on a
7786 * If we are not at level 0 and not on shared tree blocks, go one
7789 * If we are not at level 0 and on shared tree blocks, go one slot to
7790 * the right if possible or go up and right.
7793 down_read(&fs_info->commit_root_sem);
7794 left_level = btrfs_header_level(left_root->commit_root);
7795 left_root_level = left_level;
7797 * We clone the root node of the send and parent roots to prevent races
7798 * with snapshot creation of these roots. Snapshot creation COWs the
7799 * root node of a tree, so after the transaction is committed the old
7800 * extent can be reallocated while this send operation is still ongoing.
7801 * So we clone them, under the commit root semaphore, to be race free.
7803 left_path->nodes[left_level] =
7804 btrfs_clone_extent_buffer(left_root->commit_root);
7805 if (!left_path->nodes[left_level]) {
7810 right_level = btrfs_header_level(right_root->commit_root);
7811 right_root_level = right_level;
7812 right_path->nodes[right_level] =
7813 btrfs_clone_extent_buffer(right_root->commit_root);
7814 if (!right_path->nodes[right_level]) {
7819 * Our right root is the parent root, while the left root is the "send"
7820 * root. We know that all new nodes/leaves in the left root must have
7821 * a generation greater than the right root's generation, so we trigger
7822 * readahead for those nodes and leaves of the left root, as we know we
7823 * will need to read them at some point.
7825 reada_min_gen = btrfs_header_generation(right_root->commit_root);
7827 if (left_level == 0)
7828 btrfs_item_key_to_cpu(left_path->nodes[left_level],
7829 &left_key, left_path->slots[left_level]);
7831 btrfs_node_key_to_cpu(left_path->nodes[left_level],
7832 &left_key, left_path->slots[left_level]);
7833 if (right_level == 0)
7834 btrfs_item_key_to_cpu(right_path->nodes[right_level],
7835 &right_key, right_path->slots[right_level]);
7837 btrfs_node_key_to_cpu(right_path->nodes[right_level],
7838 &right_key, right_path->slots[right_level]);
7840 sctx->last_reloc_trans = fs_info->last_reloc_trans;
7843 if (need_resched() ||
7844 rwsem_is_contended(&fs_info->commit_root_sem)) {
7845 up_read(&fs_info->commit_root_sem);
7847 down_read(&fs_info->commit_root_sem);
7850 if (fs_info->last_reloc_trans > sctx->last_reloc_trans) {
7851 ret = restart_after_relocation(left_path, right_path,
7852 &left_key, &right_key,
7853 left_level, right_level,
7857 sctx->last_reloc_trans = fs_info->last_reloc_trans;
7860 if (advance_left && !left_end_reached) {
7861 ret = tree_advance(left_path, &left_level,
7863 advance_left != ADVANCE_ONLY_NEXT,
7864 &left_key, reada_min_gen);
7866 left_end_reached = ADVANCE;
7871 if (advance_right && !right_end_reached) {
7872 ret = tree_advance(right_path, &right_level,
7874 advance_right != ADVANCE_ONLY_NEXT,
7875 &right_key, reada_min_gen);
7877 right_end_reached = ADVANCE;
7883 if (left_end_reached && right_end_reached) {
7886 } else if (left_end_reached) {
7887 if (right_level == 0) {
7888 up_read(&fs_info->commit_root_sem);
7889 ret = changed_cb(left_path, right_path,
7891 BTRFS_COMPARE_TREE_DELETED,
7895 down_read(&fs_info->commit_root_sem);
7897 advance_right = ADVANCE;
7899 } else if (right_end_reached) {
7900 if (left_level == 0) {
7901 up_read(&fs_info->commit_root_sem);
7902 ret = changed_cb(left_path, right_path,
7904 BTRFS_COMPARE_TREE_NEW,
7908 down_read(&fs_info->commit_root_sem);
7910 advance_left = ADVANCE;
7914 if (left_level == 0 && right_level == 0) {
7915 up_read(&fs_info->commit_root_sem);
7916 cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
7918 ret = changed_cb(left_path, right_path,
7920 BTRFS_COMPARE_TREE_NEW,
7922 advance_left = ADVANCE;
7923 } else if (cmp > 0) {
7924 ret = changed_cb(left_path, right_path,
7926 BTRFS_COMPARE_TREE_DELETED,
7928 advance_right = ADVANCE;
7930 enum btrfs_compare_tree_result result;
7932 WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
7933 ret = tree_compare_item(left_path, right_path,
7936 result = BTRFS_COMPARE_TREE_CHANGED;
7938 result = BTRFS_COMPARE_TREE_SAME;
7939 ret = changed_cb(left_path, right_path,
7940 &left_key, result, sctx);
7941 advance_left = ADVANCE;
7942 advance_right = ADVANCE;
7947 down_read(&fs_info->commit_root_sem);
7948 } else if (left_level == right_level) {
7949 cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
7951 advance_left = ADVANCE;
7952 } else if (cmp > 0) {
7953 advance_right = ADVANCE;
7955 left_blockptr = btrfs_node_blockptr(
7956 left_path->nodes[left_level],
7957 left_path->slots[left_level]);
7958 right_blockptr = btrfs_node_blockptr(
7959 right_path->nodes[right_level],
7960 right_path->slots[right_level]);
7961 left_gen = btrfs_node_ptr_generation(
7962 left_path->nodes[left_level],
7963 left_path->slots[left_level]);
7964 right_gen = btrfs_node_ptr_generation(
7965 right_path->nodes[right_level],
7966 right_path->slots[right_level]);
7967 if (left_blockptr == right_blockptr &&
7968 left_gen == right_gen) {
7970 * As we're on a shared block, don't
7971 * allow to go deeper.
7973 advance_left = ADVANCE_ONLY_NEXT;
7974 advance_right = ADVANCE_ONLY_NEXT;
7976 advance_left = ADVANCE;
7977 advance_right = ADVANCE;
7980 } else if (left_level < right_level) {
7981 advance_right = ADVANCE;
7983 advance_left = ADVANCE;
7988 up_read(&fs_info->commit_root_sem);
7990 btrfs_free_path(left_path);
7991 btrfs_free_path(right_path);
7996 static int send_subvol(struct send_ctx *sctx)
8000 if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_STREAM_HEADER)) {
8001 ret = send_header(sctx);
8006 ret = send_subvol_begin(sctx);
8010 if (sctx->parent_root) {
8011 ret = btrfs_compare_trees(sctx->send_root, sctx->parent_root, sctx);
8014 ret = finish_inode_if_needed(sctx, 1);
8018 ret = full_send_tree(sctx);
8024 free_recorded_refs(sctx);
8029 * If orphan cleanup did remove any orphans from a root, it means the tree
8030 * was modified and therefore the commit root is not the same as the current
8031 * root anymore. This is a problem, because send uses the commit root and
8032 * therefore can see inode items that don't exist in the current root anymore,
8033 * and for example make calls to btrfs_iget, which will do tree lookups based
8034 * on the current root and not on the commit root. Those lookups will fail,
8035 * returning a -ESTALE error, and making send fail with that error. So make
8036 * sure a send does not see any orphans we have just removed, and that it will
8037 * see the same inodes regardless of whether a transaction commit happened
8038 * before it started (meaning that the commit root will be the same as the
8039 * current root) or not.
8041 static int ensure_commit_roots_uptodate(struct send_ctx *sctx)
8043 struct btrfs_root *root = sctx->parent_root;
8045 if (root && root->node != root->commit_root)
8046 return btrfs_commit_current_transaction(root);
8048 for (int i = 0; i < sctx->clone_roots_cnt; i++) {
8049 root = sctx->clone_roots[i].root;
8050 if (root->node != root->commit_root)
8051 return btrfs_commit_current_transaction(root);
8058 * Make sure any existing dellaloc is flushed for any root used by a send
8059 * operation so that we do not miss any data and we do not race with writeback
8060 * finishing and changing a tree while send is using the tree. This could
8061 * happen if a subvolume is in RW mode, has delalloc, is turned to RO mode and
8062 * a send operation then uses the subvolume.
8063 * After flushing delalloc ensure_commit_roots_uptodate() must be called.
8065 static int flush_delalloc_roots(struct send_ctx *sctx)
8067 struct btrfs_root *root = sctx->parent_root;
8072 ret = btrfs_start_delalloc_snapshot(root, false);
8075 btrfs_wait_ordered_extents(root, U64_MAX, NULL);
8078 for (i = 0; i < sctx->clone_roots_cnt; i++) {
8079 root = sctx->clone_roots[i].root;
8080 ret = btrfs_start_delalloc_snapshot(root, false);
8083 btrfs_wait_ordered_extents(root, U64_MAX, NULL);
8089 static void btrfs_root_dec_send_in_progress(struct btrfs_root* root)
8091 spin_lock(&root->root_item_lock);
8092 root->send_in_progress--;
8094 * Not much left to do, we don't know why it's unbalanced and
8095 * can't blindly reset it to 0.
8097 if (root->send_in_progress < 0)
8098 btrfs_err(root->fs_info,
8099 "send_in_progress unbalanced %d root %llu",
8100 root->send_in_progress, btrfs_root_id(root));
8101 spin_unlock(&root->root_item_lock);
8104 static void dedupe_in_progress_warn(const struct btrfs_root *root)
8106 btrfs_warn_rl(root->fs_info,
8107 "cannot use root %llu for send while deduplications on it are in progress (%d in progress)",
8108 btrfs_root_id(root), root->dedupe_in_progress);
8111 long btrfs_ioctl_send(struct btrfs_inode *inode, const struct btrfs_ioctl_send_args *arg)
8114 struct btrfs_root *send_root = inode->root;
8115 struct btrfs_fs_info *fs_info = send_root->fs_info;
8116 struct btrfs_root *clone_root;
8117 struct send_ctx *sctx = NULL;
8119 u64 *clone_sources_tmp = NULL;
8120 int clone_sources_to_rollback = 0;
8122 int sort_clone_roots = 0;
8123 struct btrfs_lru_cache_entry *entry;
8124 struct btrfs_lru_cache_entry *tmp;
8126 if (!capable(CAP_SYS_ADMIN))
8130 * The subvolume must remain read-only during send, protect against
8131 * making it RW. This also protects against deletion.
8133 spin_lock(&send_root->root_item_lock);
8135 * Unlikely but possible, if the subvolume is marked for deletion but
8136 * is slow to remove the directory entry, send can still be started.
8138 if (btrfs_root_dead(send_root)) {
8139 spin_unlock(&send_root->root_item_lock);
8142 /* Userspace tools do the checks and warn the user if it's not RO. */
8143 if (!btrfs_root_readonly(send_root)) {
8144 spin_unlock(&send_root->root_item_lock);
8147 if (send_root->dedupe_in_progress) {
8148 dedupe_in_progress_warn(send_root);
8149 spin_unlock(&send_root->root_item_lock);
8152 send_root->send_in_progress++;
8153 spin_unlock(&send_root->root_item_lock);
8156 * Check that we don't overflow at later allocations, we request
8157 * clone_sources_count + 1 items, and compare to unsigned long inside
8158 * access_ok. Also set an upper limit for allocation size so this can't
8159 * easily exhaust memory. Max number of clone sources is about 200K.
8161 if (arg->clone_sources_count > SZ_8M / sizeof(struct clone_root)) {
8166 if (arg->flags & ~BTRFS_SEND_FLAG_MASK) {
8171 sctx = kzalloc(sizeof(struct send_ctx), GFP_KERNEL);
8177 INIT_LIST_HEAD(&sctx->new_refs);
8178 INIT_LIST_HEAD(&sctx->deleted_refs);
8180 btrfs_lru_cache_init(&sctx->name_cache, SEND_MAX_NAME_CACHE_SIZE);
8181 btrfs_lru_cache_init(&sctx->backref_cache, SEND_MAX_BACKREF_CACHE_SIZE);
8182 btrfs_lru_cache_init(&sctx->dir_created_cache,
8183 SEND_MAX_DIR_CREATED_CACHE_SIZE);
8185 * This cache is periodically trimmed to a fixed size elsewhere, see
8186 * cache_dir_utimes() and trim_dir_utimes_cache().
8188 btrfs_lru_cache_init(&sctx->dir_utimes_cache, 0);
8190 sctx->pending_dir_moves = RB_ROOT;
8191 sctx->waiting_dir_moves = RB_ROOT;
8192 sctx->orphan_dirs = RB_ROOT;
8193 sctx->rbtree_new_refs = RB_ROOT;
8194 sctx->rbtree_deleted_refs = RB_ROOT;
8196 sctx->flags = arg->flags;
8198 if (arg->flags & BTRFS_SEND_FLAG_VERSION) {
8199 if (arg->version > BTRFS_SEND_STREAM_VERSION) {
8203 /* Zero means "use the highest version" */
8204 sctx->proto = arg->version ?: BTRFS_SEND_STREAM_VERSION;
8208 if ((arg->flags & BTRFS_SEND_FLAG_COMPRESSED) && sctx->proto < 2) {
8213 sctx->send_filp = fget(arg->send_fd);
8214 if (!sctx->send_filp || !(sctx->send_filp->f_mode & FMODE_WRITE)) {
8219 sctx->send_root = send_root;
8220 sctx->clone_roots_cnt = arg->clone_sources_count;
8222 if (sctx->proto >= 2) {
8223 u32 send_buf_num_pages;
8225 sctx->send_max_size = BTRFS_SEND_BUF_SIZE_V2;
8226 sctx->send_buf = vmalloc(sctx->send_max_size);
8227 if (!sctx->send_buf) {
8231 send_buf_num_pages = sctx->send_max_size >> PAGE_SHIFT;
8232 sctx->send_buf_pages = kcalloc(send_buf_num_pages,
8233 sizeof(*sctx->send_buf_pages),
8235 if (!sctx->send_buf_pages) {
8239 for (i = 0; i < send_buf_num_pages; i++) {
8240 sctx->send_buf_pages[i] =
8241 vmalloc_to_page(sctx->send_buf + (i << PAGE_SHIFT));
8244 sctx->send_max_size = BTRFS_SEND_BUF_SIZE_V1;
8245 sctx->send_buf = kvmalloc(sctx->send_max_size, GFP_KERNEL);
8247 if (!sctx->send_buf) {
8252 sctx->clone_roots = kvcalloc(arg->clone_sources_count + 1,
8253 sizeof(*sctx->clone_roots),
8255 if (!sctx->clone_roots) {
8260 alloc_size = array_size(sizeof(*arg->clone_sources),
8261 arg->clone_sources_count);
8263 if (arg->clone_sources_count) {
8264 clone_sources_tmp = kvmalloc(alloc_size, GFP_KERNEL);
8265 if (!clone_sources_tmp) {
8270 ret = copy_from_user(clone_sources_tmp, arg->clone_sources,
8277 for (i = 0; i < arg->clone_sources_count; i++) {
8278 clone_root = btrfs_get_fs_root(fs_info,
8279 clone_sources_tmp[i], true);
8280 if (IS_ERR(clone_root)) {
8281 ret = PTR_ERR(clone_root);
8284 spin_lock(&clone_root->root_item_lock);
8285 if (!btrfs_root_readonly(clone_root) ||
8286 btrfs_root_dead(clone_root)) {
8287 spin_unlock(&clone_root->root_item_lock);
8288 btrfs_put_root(clone_root);
8292 if (clone_root->dedupe_in_progress) {
8293 dedupe_in_progress_warn(clone_root);
8294 spin_unlock(&clone_root->root_item_lock);
8295 btrfs_put_root(clone_root);
8299 clone_root->send_in_progress++;
8300 spin_unlock(&clone_root->root_item_lock);
8302 sctx->clone_roots[i].root = clone_root;
8303 clone_sources_to_rollback = i + 1;
8305 kvfree(clone_sources_tmp);
8306 clone_sources_tmp = NULL;
8309 if (arg->parent_root) {
8310 sctx->parent_root = btrfs_get_fs_root(fs_info, arg->parent_root,
8312 if (IS_ERR(sctx->parent_root)) {
8313 ret = PTR_ERR(sctx->parent_root);
8317 spin_lock(&sctx->parent_root->root_item_lock);
8318 sctx->parent_root->send_in_progress++;
8319 if (!btrfs_root_readonly(sctx->parent_root) ||
8320 btrfs_root_dead(sctx->parent_root)) {
8321 spin_unlock(&sctx->parent_root->root_item_lock);
8325 if (sctx->parent_root->dedupe_in_progress) {
8326 dedupe_in_progress_warn(sctx->parent_root);
8327 spin_unlock(&sctx->parent_root->root_item_lock);
8331 spin_unlock(&sctx->parent_root->root_item_lock);
8335 * Clones from send_root are allowed, but only if the clone source
8336 * is behind the current send position. This is checked while searching
8337 * for possible clone sources.
8339 sctx->clone_roots[sctx->clone_roots_cnt++].root =
8340 btrfs_grab_root(sctx->send_root);
8342 /* We do a bsearch later */
8343 sort(sctx->clone_roots, sctx->clone_roots_cnt,
8344 sizeof(*sctx->clone_roots), __clone_root_cmp_sort,
8346 sort_clone_roots = 1;
8348 ret = flush_delalloc_roots(sctx);
8352 ret = ensure_commit_roots_uptodate(sctx);
8356 ret = send_subvol(sctx);
8360 btrfs_lru_cache_for_each_entry_safe(&sctx->dir_utimes_cache, entry, tmp) {
8361 ret = send_utimes(sctx, entry->key, entry->gen);
8364 btrfs_lru_cache_remove(&sctx->dir_utimes_cache, entry);
8367 if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_END_CMD)) {
8368 ret = begin_cmd(sctx, BTRFS_SEND_C_END);
8371 ret = send_cmd(sctx);
8377 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->pending_dir_moves));
8378 while (sctx && !RB_EMPTY_ROOT(&sctx->pending_dir_moves)) {
8380 struct pending_dir_move *pm;
8382 n = rb_first(&sctx->pending_dir_moves);
8383 pm = rb_entry(n, struct pending_dir_move, node);
8384 while (!list_empty(&pm->list)) {
8385 struct pending_dir_move *pm2;
8387 pm2 = list_first_entry(&pm->list,
8388 struct pending_dir_move, list);
8389 free_pending_move(sctx, pm2);
8391 free_pending_move(sctx, pm);
8394 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves));
8395 while (sctx && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves)) {
8397 struct waiting_dir_move *dm;
8399 n = rb_first(&sctx->waiting_dir_moves);
8400 dm = rb_entry(n, struct waiting_dir_move, node);
8401 rb_erase(&dm->node, &sctx->waiting_dir_moves);
8405 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->orphan_dirs));
8406 while (sctx && !RB_EMPTY_ROOT(&sctx->orphan_dirs)) {
8408 struct orphan_dir_info *odi;
8410 n = rb_first(&sctx->orphan_dirs);
8411 odi = rb_entry(n, struct orphan_dir_info, node);
8412 free_orphan_dir_info(sctx, odi);
8415 if (sort_clone_roots) {
8416 for (i = 0; i < sctx->clone_roots_cnt; i++) {
8417 btrfs_root_dec_send_in_progress(
8418 sctx->clone_roots[i].root);
8419 btrfs_put_root(sctx->clone_roots[i].root);
8422 for (i = 0; sctx && i < clone_sources_to_rollback; i++) {
8423 btrfs_root_dec_send_in_progress(
8424 sctx->clone_roots[i].root);
8425 btrfs_put_root(sctx->clone_roots[i].root);
8428 btrfs_root_dec_send_in_progress(send_root);
8430 if (sctx && !IS_ERR_OR_NULL(sctx->parent_root)) {
8431 btrfs_root_dec_send_in_progress(sctx->parent_root);
8432 btrfs_put_root(sctx->parent_root);
8435 kvfree(clone_sources_tmp);
8438 if (sctx->send_filp)
8439 fput(sctx->send_filp);
8441 kvfree(sctx->clone_roots);
8442 kfree(sctx->send_buf_pages);
8443 kvfree(sctx->send_buf);
8444 kvfree(sctx->verity_descriptor);
8446 close_current_inode(sctx);
8448 btrfs_lru_cache_clear(&sctx->name_cache);
8449 btrfs_lru_cache_clear(&sctx->backref_cache);
8450 btrfs_lru_cache_clear(&sctx->dir_created_cache);
8451 btrfs_lru_cache_clear(&sctx->dir_utimes_cache);