1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2007 Oracle. All rights reserved.
6 #include <crypto/hash.h>
7 #include <linux/kernel.h>
9 #include <linux/blk-cgroup.h>
10 #include <linux/file.h>
12 #include <linux/pagemap.h>
13 #include <linux/highmem.h>
14 #include <linux/time.h>
15 #include <linux/init.h>
16 #include <linux/string.h>
17 #include <linux/backing-dev.h>
18 #include <linux/writeback.h>
19 #include <linux/compat.h>
20 #include <linux/xattr.h>
21 #include <linux/posix_acl.h>
22 #include <linux/falloc.h>
23 #include <linux/slab.h>
24 #include <linux/ratelimit.h>
25 #include <linux/btrfs.h>
26 #include <linux/blkdev.h>
27 #include <linux/posix_acl_xattr.h>
28 #include <linux/uio.h>
29 #include <linux/magic.h>
30 #include <linux/iversion.h>
31 #include <linux/swap.h>
32 #include <linux/migrate.h>
33 #include <linux/sched/mm.h>
34 #include <linux/iomap.h>
35 #include <linux/unaligned.h>
36 #include <linux/fsverity.h>
40 #include "transaction.h"
41 #include "btrfs_inode.h"
42 #include "ordered-data.h"
46 #include "compression.h"
50 #include "delalloc-space.h"
51 #include "block-group.h"
52 #include "space-info.h"
55 #include "inode-item.h"
57 #include "accessors.h"
58 #include "extent-tree.h"
59 #include "root-tree.h"
62 #include "file-item.h"
63 #include "uuid-tree.h"
67 #include "relocation.h"
72 #include "raid-stripe-tree.h"
75 struct btrfs_iget_args {
77 struct btrfs_root *root;
80 struct btrfs_rename_ctx {
81 /* Output field. Stores the index number of the old directory entry. */
86 * Used by data_reloc_print_warning_inode() to pass needed info for filename
87 * resolution and output of error message.
89 struct data_reloc_warn {
90 struct btrfs_path path;
91 struct btrfs_fs_info *fs_info;
98 * For the file_extent_tree, we want to hold the inode lock when we lookup and
99 * update the disk_i_size, but lockdep will complain because our io_tree we hold
100 * the tree lock and get the inode lock when setting delalloc. These two things
101 * are unrelated, so make a class for the file_extent_tree so we don't get the
102 * two locking patterns mixed up.
104 static struct lock_class_key file_extent_tree_class;
106 static const struct inode_operations btrfs_dir_inode_operations;
107 static const struct inode_operations btrfs_symlink_inode_operations;
108 static const struct inode_operations btrfs_special_inode_operations;
109 static const struct inode_operations btrfs_file_inode_operations;
110 static const struct address_space_operations btrfs_aops;
111 static const struct file_operations btrfs_dir_file_operations;
113 static struct kmem_cache *btrfs_inode_cachep;
115 static int btrfs_setsize(struct inode *inode, struct iattr *attr);
116 static int btrfs_truncate(struct btrfs_inode *inode, bool skip_writeback);
118 static noinline int run_delalloc_cow(struct btrfs_inode *inode,
119 struct folio *locked_folio, u64 start,
120 u64 end, struct writeback_control *wbc,
123 static int data_reloc_print_warning_inode(u64 inum, u64 offset, u64 num_bytes,
124 u64 root, void *warn_ctx)
126 struct data_reloc_warn *warn = warn_ctx;
127 struct btrfs_fs_info *fs_info = warn->fs_info;
128 struct extent_buffer *eb;
129 struct btrfs_inode_item *inode_item;
130 struct inode_fs_paths *ipath = NULL;
131 struct btrfs_root *local_root;
132 struct btrfs_key key;
133 unsigned int nofs_flag;
137 local_root = btrfs_get_fs_root(fs_info, root, true);
138 if (IS_ERR(local_root)) {
139 ret = PTR_ERR(local_root);
143 /* This makes the path point to (inum INODE_ITEM ioff). */
145 key.type = BTRFS_INODE_ITEM_KEY;
148 ret = btrfs_search_slot(NULL, local_root, &key, &warn->path, 0, 0);
150 btrfs_put_root(local_root);
151 btrfs_release_path(&warn->path);
155 eb = warn->path.nodes[0];
156 inode_item = btrfs_item_ptr(eb, warn->path.slots[0], struct btrfs_inode_item);
157 nlink = btrfs_inode_nlink(eb, inode_item);
158 btrfs_release_path(&warn->path);
160 nofs_flag = memalloc_nofs_save();
161 ipath = init_ipath(4096, local_root, &warn->path);
162 memalloc_nofs_restore(nofs_flag);
164 btrfs_put_root(local_root);
165 ret = PTR_ERR(ipath);
168 * -ENOMEM, not a critical error, just output an generic error
172 "checksum error at logical %llu mirror %u root %llu, inode %llu offset %llu",
173 warn->logical, warn->mirror_num, root, inum, offset);
176 ret = paths_from_inode(inum, ipath);
181 * We deliberately ignore the bit ipath might have been too small to
182 * hold all of the paths here
184 for (int i = 0; i < ipath->fspath->elem_cnt; i++) {
186 "checksum error at logical %llu mirror %u root %llu inode %llu offset %llu length %u links %u (path: %s)",
187 warn->logical, warn->mirror_num, root, inum, offset,
188 fs_info->sectorsize, nlink,
189 (char *)(unsigned long)ipath->fspath->val[i]);
192 btrfs_put_root(local_root);
198 "checksum error at logical %llu mirror %u root %llu inode %llu offset %llu, path resolving failed with ret=%d",
199 warn->logical, warn->mirror_num, root, inum, offset, ret);
206 * Do extra user-friendly error output (e.g. lookup all the affected files).
208 * Return true if we succeeded doing the backref lookup.
209 * Return false if such lookup failed, and has to fallback to the old error message.
211 static void print_data_reloc_error(const struct btrfs_inode *inode, u64 file_off,
212 const u8 *csum, const u8 *csum_expected,
215 struct btrfs_fs_info *fs_info = inode->root->fs_info;
216 struct btrfs_path path = { 0 };
217 struct btrfs_key found_key = { 0 };
218 struct extent_buffer *eb;
219 struct btrfs_extent_item *ei;
220 const u32 csum_size = fs_info->csum_size;
226 mutex_lock(&fs_info->reloc_mutex);
227 logical = btrfs_get_reloc_bg_bytenr(fs_info);
228 mutex_unlock(&fs_info->reloc_mutex);
230 if (logical == U64_MAX) {
231 btrfs_warn_rl(fs_info, "has data reloc tree but no running relocation");
232 btrfs_warn_rl(fs_info,
233 "csum failed root %lld ino %llu off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d",
234 btrfs_root_id(inode->root), btrfs_ino(inode), file_off,
235 CSUM_FMT_VALUE(csum_size, csum),
236 CSUM_FMT_VALUE(csum_size, csum_expected),
242 btrfs_warn_rl(fs_info,
243 "csum failed root %lld ino %llu off %llu logical %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d",
244 btrfs_root_id(inode->root),
245 btrfs_ino(inode), file_off, logical,
246 CSUM_FMT_VALUE(csum_size, csum),
247 CSUM_FMT_VALUE(csum_size, csum_expected),
250 ret = extent_from_logical(fs_info, logical, &path, &found_key, &flags);
252 btrfs_err_rl(fs_info, "failed to lookup extent item for logical %llu: %d",
257 ei = btrfs_item_ptr(eb, path.slots[0], struct btrfs_extent_item);
258 item_size = btrfs_item_size(eb, path.slots[0]);
259 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
260 unsigned long ptr = 0;
265 ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
266 item_size, &ref_root,
269 btrfs_warn_rl(fs_info,
270 "failed to resolve tree backref for logical %llu: %d",
277 btrfs_warn_rl(fs_info,
278 "csum error at logical %llu mirror %u: metadata %s (level %d) in tree %llu",
280 (ref_level ? "node" : "leaf"),
281 ref_level, ref_root);
283 btrfs_release_path(&path);
285 struct btrfs_backref_walk_ctx ctx = { 0 };
286 struct data_reloc_warn reloc_warn = { 0 };
288 btrfs_release_path(&path);
290 ctx.bytenr = found_key.objectid;
291 ctx.extent_item_pos = logical - found_key.objectid;
292 ctx.fs_info = fs_info;
294 reloc_warn.logical = logical;
295 reloc_warn.extent_item_size = found_key.offset;
296 reloc_warn.mirror_num = mirror_num;
297 reloc_warn.fs_info = fs_info;
299 iterate_extent_inodes(&ctx, true,
300 data_reloc_print_warning_inode, &reloc_warn);
304 static void __cold btrfs_print_data_csum_error(struct btrfs_inode *inode,
305 u64 logical_start, u8 *csum, u8 *csum_expected, int mirror_num)
307 struct btrfs_root *root = inode->root;
308 const u32 csum_size = root->fs_info->csum_size;
310 /* For data reloc tree, it's better to do a backref lookup instead. */
311 if (btrfs_root_id(root) == BTRFS_DATA_RELOC_TREE_OBJECTID)
312 return print_data_reloc_error(inode, logical_start, csum,
313 csum_expected, mirror_num);
315 /* Output without objectid, which is more meaningful */
316 if (btrfs_root_id(root) >= BTRFS_LAST_FREE_OBJECTID) {
317 btrfs_warn_rl(root->fs_info,
318 "csum failed root %lld ino %lld off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d",
319 btrfs_root_id(root), btrfs_ino(inode),
321 CSUM_FMT_VALUE(csum_size, csum),
322 CSUM_FMT_VALUE(csum_size, csum_expected),
325 btrfs_warn_rl(root->fs_info,
326 "csum failed root %llu ino %llu off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d",
327 btrfs_root_id(root), btrfs_ino(inode),
329 CSUM_FMT_VALUE(csum_size, csum),
330 CSUM_FMT_VALUE(csum_size, csum_expected),
336 * Lock inode i_rwsem based on arguments passed.
338 * ilock_flags can have the following bit set:
340 * BTRFS_ILOCK_SHARED - acquire a shared lock on the inode
341 * BTRFS_ILOCK_TRY - try to acquire the lock, if fails on first attempt
343 * BTRFS_ILOCK_MMAP - acquire a write lock on the i_mmap_lock
345 int btrfs_inode_lock(struct btrfs_inode *inode, unsigned int ilock_flags)
347 if (ilock_flags & BTRFS_ILOCK_SHARED) {
348 if (ilock_flags & BTRFS_ILOCK_TRY) {
349 if (!inode_trylock_shared(&inode->vfs_inode))
354 inode_lock_shared(&inode->vfs_inode);
356 if (ilock_flags & BTRFS_ILOCK_TRY) {
357 if (!inode_trylock(&inode->vfs_inode))
362 inode_lock(&inode->vfs_inode);
364 if (ilock_flags & BTRFS_ILOCK_MMAP)
365 down_write(&inode->i_mmap_lock);
370 * Unock inode i_rwsem.
372 * ilock_flags should contain the same bits set as passed to btrfs_inode_lock()
373 * to decide whether the lock acquired is shared or exclusive.
375 void btrfs_inode_unlock(struct btrfs_inode *inode, unsigned int ilock_flags)
377 if (ilock_flags & BTRFS_ILOCK_MMAP)
378 up_write(&inode->i_mmap_lock);
379 if (ilock_flags & BTRFS_ILOCK_SHARED)
380 inode_unlock_shared(&inode->vfs_inode);
382 inode_unlock(&inode->vfs_inode);
386 * Cleanup all submitted ordered extents in specified range to handle errors
387 * from the btrfs_run_delalloc_range() callback.
389 * NOTE: caller must ensure that when an error happens, it can not call
390 * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING
391 * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata
392 * to be released, which we want to happen only when finishing the ordered
393 * extent (btrfs_finish_ordered_io()).
395 static inline void btrfs_cleanup_ordered_extents(struct btrfs_inode *inode,
396 struct folio *locked_folio,
397 u64 offset, u64 bytes)
399 unsigned long index = offset >> PAGE_SHIFT;
400 unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT;
401 u64 page_start = 0, page_end = 0;
405 page_start = folio_pos(locked_folio);
406 page_end = page_start + folio_size(locked_folio) - 1;
409 while (index <= end_index) {
411 * For locked page, we will call btrfs_mark_ordered_io_finished
412 * through btrfs_mark_ordered_io_finished() on it
413 * in run_delalloc_range() for the error handling, which will
414 * clear page Ordered and run the ordered extent accounting.
416 * Here we can't just clear the Ordered bit, or
417 * btrfs_mark_ordered_io_finished() would skip the accounting
418 * for the page range, and the ordered extent will never finish.
420 if (locked_folio && index == (page_start >> PAGE_SHIFT)) {
424 folio = filemap_get_folio(inode->vfs_inode.i_mapping, index);
430 * Here we just clear all Ordered bits for every page in the
431 * range, then btrfs_mark_ordered_io_finished() will handle
432 * the ordered extent accounting for the range.
434 btrfs_folio_clamp_clear_ordered(inode->root->fs_info, folio,
440 /* The locked page covers the full range, nothing needs to be done */
441 if (bytes + offset <= page_start + folio_size(locked_folio))
444 * In case this page belongs to the delalloc range being
445 * instantiated then skip it, since the first page of a range is
446 * going to be properly cleaned up by the caller of
449 if (page_start >= offset && page_end <= (offset + bytes - 1)) {
450 bytes = offset + bytes - folio_pos(locked_folio) -
451 folio_size(locked_folio);
452 offset = folio_pos(locked_folio) + folio_size(locked_folio);
456 return btrfs_mark_ordered_io_finished(inode, NULL, offset, bytes, false);
459 static int btrfs_dirty_inode(struct btrfs_inode *inode);
461 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
462 struct btrfs_new_inode_args *args)
466 if (args->default_acl) {
467 err = __btrfs_set_acl(trans, args->inode, args->default_acl,
473 err = __btrfs_set_acl(trans, args->inode, args->acl, ACL_TYPE_ACCESS);
477 if (!args->default_acl && !args->acl)
478 cache_no_acl(args->inode);
479 return btrfs_xattr_security_init(trans, args->inode, args->dir,
480 &args->dentry->d_name);
484 * this does all the hard work for inserting an inline extent into
485 * the btree. The caller should have done a btrfs_drop_extents so that
486 * no overlapping inline items exist in the btree
488 static int insert_inline_extent(struct btrfs_trans_handle *trans,
489 struct btrfs_path *path,
490 struct btrfs_inode *inode, bool extent_inserted,
491 size_t size, size_t compressed_size,
493 struct folio *compressed_folio,
496 struct btrfs_root *root = inode->root;
497 struct extent_buffer *leaf;
498 const u32 sectorsize = trans->fs_info->sectorsize;
501 struct btrfs_file_extent_item *ei;
503 size_t cur_size = size;
507 * The decompressed size must still be no larger than a sector. Under
508 * heavy race, we can have size == 0 passed in, but that shouldn't be a
509 * big deal and we can continue the insertion.
511 ASSERT(size <= sectorsize);
514 * The compressed size also needs to be no larger than a sector.
515 * That's also why we only need one page as the parameter.
517 if (compressed_folio)
518 ASSERT(compressed_size <= sectorsize);
520 ASSERT(compressed_size == 0);
522 if (compressed_size && compressed_folio)
523 cur_size = compressed_size;
525 if (!extent_inserted) {
526 struct btrfs_key key;
529 key.objectid = btrfs_ino(inode);
531 key.type = BTRFS_EXTENT_DATA_KEY;
533 datasize = btrfs_file_extent_calc_inline_size(cur_size);
534 ret = btrfs_insert_empty_item(trans, root, path, &key,
539 leaf = path->nodes[0];
540 ei = btrfs_item_ptr(leaf, path->slots[0],
541 struct btrfs_file_extent_item);
542 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
543 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
544 btrfs_set_file_extent_encryption(leaf, ei, 0);
545 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
546 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
547 ptr = btrfs_file_extent_inline_start(ei);
549 if (compress_type != BTRFS_COMPRESS_NONE) {
550 kaddr = kmap_local_folio(compressed_folio, 0);
551 write_extent_buffer(leaf, kaddr, ptr, compressed_size);
554 btrfs_set_file_extent_compression(leaf, ei,
559 folio = filemap_get_folio(inode->vfs_inode.i_mapping, 0);
560 ASSERT(!IS_ERR(folio));
561 btrfs_set_file_extent_compression(leaf, ei, 0);
562 kaddr = kmap_local_folio(folio, 0);
563 write_extent_buffer(leaf, kaddr, ptr, size);
567 btrfs_mark_buffer_dirty(trans, leaf);
568 btrfs_release_path(path);
571 * We align size to sectorsize for inline extents just for simplicity
574 ret = btrfs_inode_set_file_extent_range(inode, 0,
575 ALIGN(size, root->fs_info->sectorsize));
580 * We're an inline extent, so nobody can extend the file past i_size
581 * without locking a page we already have locked.
583 * We must do any i_size and inode updates before we unlock the pages.
584 * Otherwise we could end up racing with unlink.
586 i_size = i_size_read(&inode->vfs_inode);
587 if (update_i_size && size > i_size) {
588 i_size_write(&inode->vfs_inode, size);
591 inode->disk_i_size = i_size;
597 static bool can_cow_file_range_inline(struct btrfs_inode *inode,
598 u64 offset, u64 size,
599 size_t compressed_size)
601 struct btrfs_fs_info *fs_info = inode->root->fs_info;
602 u64 data_len = (compressed_size ?: size);
604 /* Inline extents must start at offset 0. */
609 * Due to the page size limit, for subpage we can only trigger the
610 * writeback for the dirty sectors of page, that means data writeback
611 * is doing more writeback than what we want.
613 * This is especially unexpected for some call sites like fallocate,
614 * where we only increase i_size after everything is done.
615 * This means we can trigger inline extent even if we didn't want to.
616 * So here we skip inline extent creation completely.
618 if (fs_info->sectorsize != PAGE_SIZE)
621 /* Inline extents are limited to sectorsize. */
622 if (size > fs_info->sectorsize)
625 /* We cannot exceed the maximum inline data size. */
626 if (data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info))
629 /* We cannot exceed the user specified max_inline size. */
630 if (data_len > fs_info->max_inline)
633 /* Inline extents must be the entirety of the file. */
634 if (size < i_size_read(&inode->vfs_inode))
641 * conditionally insert an inline extent into the file. This
642 * does the checks required to make sure the data is small enough
643 * to fit as an inline extent.
645 * If being used directly, you must have already checked we're allowed to cow
646 * the range by getting true from can_cow_file_range_inline().
648 static noinline int __cow_file_range_inline(struct btrfs_inode *inode,
649 u64 size, size_t compressed_size,
651 struct folio *compressed_folio,
654 struct btrfs_drop_extents_args drop_args = { 0 };
655 struct btrfs_root *root = inode->root;
656 struct btrfs_fs_info *fs_info = root->fs_info;
657 struct btrfs_trans_handle *trans;
658 u64 data_len = (compressed_size ?: size);
660 struct btrfs_path *path;
662 path = btrfs_alloc_path();
666 trans = btrfs_join_transaction(root);
668 btrfs_free_path(path);
669 return PTR_ERR(trans);
671 trans->block_rsv = &inode->block_rsv;
673 drop_args.path = path;
675 drop_args.end = fs_info->sectorsize;
676 drop_args.drop_cache = true;
677 drop_args.replace_extent = true;
678 drop_args.extent_item_size = btrfs_file_extent_calc_inline_size(data_len);
679 ret = btrfs_drop_extents(trans, root, inode, &drop_args);
681 btrfs_abort_transaction(trans, ret);
685 ret = insert_inline_extent(trans, path, inode, drop_args.extent_inserted,
686 size, compressed_size, compress_type,
687 compressed_folio, update_i_size);
688 if (ret && ret != -ENOSPC) {
689 btrfs_abort_transaction(trans, ret);
691 } else if (ret == -ENOSPC) {
696 btrfs_update_inode_bytes(inode, size, drop_args.bytes_found);
697 ret = btrfs_update_inode(trans, inode);
698 if (ret && ret != -ENOSPC) {
699 btrfs_abort_transaction(trans, ret);
701 } else if (ret == -ENOSPC) {
706 btrfs_set_inode_full_sync(inode);
709 * Don't forget to free the reserved space, as for inlined extent
710 * it won't count as data extent, free them directly here.
711 * And at reserve time, it's always aligned to page size, so
712 * just free one page here.
714 btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE, NULL);
715 btrfs_free_path(path);
716 btrfs_end_transaction(trans);
720 static noinline int cow_file_range_inline(struct btrfs_inode *inode,
721 struct folio *locked_folio,
723 size_t compressed_size,
725 struct folio *compressed_folio,
728 struct extent_state *cached = NULL;
729 unsigned long clear_flags = EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
730 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING | EXTENT_LOCKED;
731 u64 size = min_t(u64, i_size_read(&inode->vfs_inode), end + 1);
734 if (!can_cow_file_range_inline(inode, offset, size, compressed_size))
737 lock_extent(&inode->io_tree, offset, end, &cached);
738 ret = __cow_file_range_inline(inode, size, compressed_size,
739 compress_type, compressed_folio,
742 unlock_extent(&inode->io_tree, offset, end, &cached);
747 * In the successful case (ret == 0 here), cow_file_range will return 1.
749 * Quite a bit further up the callstack in extent_writepage(), ret == 1
750 * is treated as a short circuited success and does not unlock the folio,
751 * so we must do it here.
753 * In the failure case, the locked_folio does get unlocked by
754 * btrfs_folio_end_all_writers, which asserts that it is still locked
755 * at that point, so we must *not* unlock it here.
757 * The other two callsites in compress_file_range do not have a
758 * locked_folio, so they are not relevant to this logic.
763 extent_clear_unlock_delalloc(inode, offset, end, locked_folio, &cached,
764 clear_flags, PAGE_UNLOCK |
765 PAGE_START_WRITEBACK | PAGE_END_WRITEBACK);
769 struct async_extent {
773 struct folio **folios;
774 unsigned long nr_folios;
776 struct list_head list;
780 struct btrfs_inode *inode;
781 struct folio *locked_folio;
784 blk_opf_t write_flags;
785 struct list_head extents;
786 struct cgroup_subsys_state *blkcg_css;
787 struct btrfs_work work;
788 struct async_cow *async_cow;
793 struct async_chunk chunks[];
796 static noinline int add_async_extent(struct async_chunk *cow,
797 u64 start, u64 ram_size,
799 struct folio **folios,
800 unsigned long nr_folios,
803 struct async_extent *async_extent;
805 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
808 async_extent->start = start;
809 async_extent->ram_size = ram_size;
810 async_extent->compressed_size = compressed_size;
811 async_extent->folios = folios;
812 async_extent->nr_folios = nr_folios;
813 async_extent->compress_type = compress_type;
814 list_add_tail(&async_extent->list, &cow->extents);
819 * Check if the inode needs to be submitted to compression, based on mount
820 * options, defragmentation, properties or heuristics.
822 static inline int inode_need_compress(struct btrfs_inode *inode, u64 start,
825 struct btrfs_fs_info *fs_info = inode->root->fs_info;
827 if (!btrfs_inode_can_compress(inode)) {
828 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
829 KERN_ERR "BTRFS: unexpected compression for ino %llu\n",
834 * Only enable sector perfect compression for experimental builds.
836 * This is a big feature change for subpage cases, and can hit
837 * different corner cases, so only limit this feature for
838 * experimental build for now.
840 * ETA for moving this out of experimental builds is 6.15.
842 if (fs_info->sectorsize < PAGE_SIZE &&
843 !IS_ENABLED(CONFIG_BTRFS_EXPERIMENTAL)) {
844 if (!PAGE_ALIGNED(start) ||
845 !PAGE_ALIGNED(end + 1))
850 if (btrfs_test_opt(fs_info, FORCE_COMPRESS))
853 if (inode->defrag_compress)
855 /* bad compression ratios */
856 if (inode->flags & BTRFS_INODE_NOCOMPRESS)
858 if (btrfs_test_opt(fs_info, COMPRESS) ||
859 inode->flags & BTRFS_INODE_COMPRESS ||
860 inode->prop_compress)
861 return btrfs_compress_heuristic(inode, start, end);
865 static inline void inode_should_defrag(struct btrfs_inode *inode,
866 u64 start, u64 end, u64 num_bytes, u32 small_write)
868 /* If this is a small write inside eof, kick off a defrag */
869 if (num_bytes < small_write &&
870 (start > 0 || end + 1 < inode->disk_i_size))
871 btrfs_add_inode_defrag(inode, small_write);
874 static int extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
876 unsigned long end_index = end >> PAGE_SHIFT;
880 for (unsigned long index = start >> PAGE_SHIFT;
881 index <= end_index; index++) {
882 folio = filemap_get_folio(inode->i_mapping, index);
885 ret = PTR_ERR(folio);
888 btrfs_folio_clamp_clear_dirty(inode_to_fs_info(inode), folio, start,
896 * Work queue call back to started compression on a file and pages.
898 * This is done inside an ordered work queue, and the compression is spread
899 * across many cpus. The actual IO submission is step two, and the ordered work
900 * queue takes care of making sure that happens in the same order things were
901 * put onto the queue by writepages and friends.
903 * If this code finds it can't get good compression, it puts an entry onto the
904 * work queue to write the uncompressed bytes. This makes sure that both
905 * compressed inodes and uncompressed inodes are written in the same order that
906 * the flusher thread sent them down.
908 static void compress_file_range(struct btrfs_work *work)
910 struct async_chunk *async_chunk =
911 container_of(work, struct async_chunk, work);
912 struct btrfs_inode *inode = async_chunk->inode;
913 struct btrfs_fs_info *fs_info = inode->root->fs_info;
914 struct address_space *mapping = inode->vfs_inode.i_mapping;
915 u64 blocksize = fs_info->sectorsize;
916 u64 start = async_chunk->start;
917 u64 end = async_chunk->end;
921 struct folio **folios;
922 unsigned long nr_folios;
923 unsigned long total_compressed = 0;
924 unsigned long total_in = 0;
927 int compress_type = fs_info->compress_type;
929 inode_should_defrag(inode, start, end, end - start + 1, SZ_16K);
932 * We need to call clear_page_dirty_for_io on each page in the range.
933 * Otherwise applications with the file mmap'd can wander in and change
934 * the page contents while we are compressing them.
936 ret = extent_range_clear_dirty_for_io(&inode->vfs_inode, start, end);
939 * All the folios should have been locked thus no failure.
941 * And even if some folios are missing, btrfs_compress_folios()
942 * would handle them correctly, so here just do an ASSERT() check for
943 * early logic errors.
948 * We need to save i_size before now because it could change in between
949 * us evaluating the size and assigning it. This is because we lock and
950 * unlock the page in truncate and fallocate, and then modify the i_size
953 * The barriers are to emulate READ_ONCE, remove that once i_size_read
957 i_size = i_size_read(&inode->vfs_inode);
959 actual_end = min_t(u64, i_size, end + 1);
962 nr_folios = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
963 nr_folios = min_t(unsigned long, nr_folios, BTRFS_MAX_COMPRESSED_PAGES);
966 * we don't want to send crud past the end of i_size through
967 * compression, that's just a waste of CPU time. So, if the
968 * end of the file is before the start of our current
969 * requested range of bytes, we bail out to the uncompressed
970 * cleanup code that can deal with all of this.
972 * It isn't really the fastest way to fix things, but this is a
973 * very uncommon corner.
975 if (actual_end <= start)
976 goto cleanup_and_bail_uncompressed;
978 total_compressed = actual_end - start;
981 * Skip compression for a small file range(<=blocksize) that
982 * isn't an inline extent, since it doesn't save disk space at all.
984 if (total_compressed <= blocksize &&
985 (start > 0 || end + 1 < inode->disk_i_size))
986 goto cleanup_and_bail_uncompressed;
988 total_compressed = min_t(unsigned long, total_compressed,
989 BTRFS_MAX_UNCOMPRESSED);
994 * We do compression for mount -o compress and when the inode has not
995 * been flagged as NOCOMPRESS. This flag can change at any time if we
996 * discover bad compression ratios.
998 if (!inode_need_compress(inode, start, end))
999 goto cleanup_and_bail_uncompressed;
1001 folios = kcalloc(nr_folios, sizeof(struct folio *), GFP_NOFS);
1004 * Memory allocation failure is not a fatal error, we can fall
1005 * back to uncompressed code.
1007 goto cleanup_and_bail_uncompressed;
1010 if (inode->defrag_compress)
1011 compress_type = inode->defrag_compress;
1012 else if (inode->prop_compress)
1013 compress_type = inode->prop_compress;
1015 /* Compression level is applied here. */
1016 ret = btrfs_compress_folios(compress_type | (fs_info->compress_level << 4),
1017 mapping, start, folios, &nr_folios, &total_in,
1020 goto mark_incompressible;
1023 * Zero the tail end of the last page, as we might be sending it down
1026 poff = offset_in_page(total_compressed);
1028 folio_zero_range(folios[nr_folios - 1], poff, PAGE_SIZE - poff);
1031 * Try to create an inline extent.
1033 * If we didn't compress the entire range, try to create an uncompressed
1034 * inline extent, else a compressed one.
1036 * Check cow_file_range() for why we don't even try to create inline
1037 * extent for the subpage case.
1039 if (total_in < actual_end)
1040 ret = cow_file_range_inline(inode, NULL, start, end, 0,
1041 BTRFS_COMPRESS_NONE, NULL, false);
1043 ret = cow_file_range_inline(inode, NULL, start, end, total_compressed,
1044 compress_type, folios[0], false);
1047 mapping_set_error(mapping, -EIO);
1052 * We aren't doing an inline extent. Round the compressed size up to a
1053 * block size boundary so the allocator does sane things.
1055 total_compressed = ALIGN(total_compressed, blocksize);
1058 * One last check to make sure the compression is really a win, compare
1059 * the page count read with the blocks on disk, compression must free at
1062 total_in = round_up(total_in, fs_info->sectorsize);
1063 if (total_compressed + blocksize > total_in)
1064 goto mark_incompressible;
1067 * The async work queues will take care of doing actual allocation on
1068 * disk for these compressed pages, and will submit the bios.
1070 ret = add_async_extent(async_chunk, start, total_in, total_compressed, folios,
1071 nr_folios, compress_type);
1073 if (start + total_in < end) {
1080 mark_incompressible:
1081 if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) && !inode->prop_compress)
1082 inode->flags |= BTRFS_INODE_NOCOMPRESS;
1083 cleanup_and_bail_uncompressed:
1084 ret = add_async_extent(async_chunk, start, end - start + 1, 0, NULL, 0,
1085 BTRFS_COMPRESS_NONE);
1089 for (i = 0; i < nr_folios; i++) {
1090 WARN_ON(folios[i]->mapping);
1091 btrfs_free_compr_folio(folios[i]);
1097 static void free_async_extent_pages(struct async_extent *async_extent)
1101 if (!async_extent->folios)
1104 for (i = 0; i < async_extent->nr_folios; i++) {
1105 WARN_ON(async_extent->folios[i]->mapping);
1106 btrfs_free_compr_folio(async_extent->folios[i]);
1108 kfree(async_extent->folios);
1109 async_extent->nr_folios = 0;
1110 async_extent->folios = NULL;
1113 static void submit_uncompressed_range(struct btrfs_inode *inode,
1114 struct async_extent *async_extent,
1115 struct folio *locked_folio)
1117 u64 start = async_extent->start;
1118 u64 end = async_extent->start + async_extent->ram_size - 1;
1120 struct writeback_control wbc = {
1121 .sync_mode = WB_SYNC_ALL,
1122 .range_start = start,
1124 .no_cgroup_owner = 1,
1127 wbc_attach_fdatawrite_inode(&wbc, &inode->vfs_inode);
1128 ret = run_delalloc_cow(inode, locked_folio, start, end,
1130 wbc_detach_inode(&wbc);
1132 btrfs_cleanup_ordered_extents(inode, locked_folio,
1133 start, end - start + 1);
1135 const u64 page_start = folio_pos(locked_folio);
1137 folio_start_writeback(locked_folio);
1138 folio_end_writeback(locked_folio);
1139 btrfs_mark_ordered_io_finished(inode, locked_folio,
1140 page_start, PAGE_SIZE,
1142 mapping_set_error(locked_folio->mapping, ret);
1143 folio_unlock(locked_folio);
1148 static void submit_one_async_extent(struct async_chunk *async_chunk,
1149 struct async_extent *async_extent,
1152 struct btrfs_inode *inode = async_chunk->inode;
1153 struct extent_io_tree *io_tree = &inode->io_tree;
1154 struct btrfs_root *root = inode->root;
1155 struct btrfs_fs_info *fs_info = root->fs_info;
1156 struct btrfs_ordered_extent *ordered;
1157 struct btrfs_file_extent file_extent;
1158 struct btrfs_key ins;
1159 struct folio *locked_folio = NULL;
1160 struct extent_state *cached = NULL;
1161 struct extent_map *em;
1163 u64 start = async_extent->start;
1164 u64 end = async_extent->start + async_extent->ram_size - 1;
1166 if (async_chunk->blkcg_css)
1167 kthread_associate_blkcg(async_chunk->blkcg_css);
1170 * If async_chunk->locked_folio is in the async_extent range, we need to
1173 if (async_chunk->locked_folio) {
1174 u64 locked_folio_start = folio_pos(async_chunk->locked_folio);
1175 u64 locked_folio_end = locked_folio_start +
1176 folio_size(async_chunk->locked_folio) - 1;
1178 if (!(start >= locked_folio_end || end <= locked_folio_start))
1179 locked_folio = async_chunk->locked_folio;
1182 if (async_extent->compress_type == BTRFS_COMPRESS_NONE) {
1183 submit_uncompressed_range(inode, async_extent, locked_folio);
1187 ret = btrfs_reserve_extent(root, async_extent->ram_size,
1188 async_extent->compressed_size,
1189 async_extent->compressed_size,
1190 0, *alloc_hint, &ins, 1, 1);
1193 * We can't reserve contiguous space for the compressed size.
1194 * Unlikely, but it's possible that we could have enough
1195 * non-contiguous space for the uncompressed size instead. So
1196 * fall back to uncompressed.
1198 submit_uncompressed_range(inode, async_extent, locked_folio);
1202 lock_extent(io_tree, start, end, &cached);
1204 /* Here we're doing allocation and writeback of the compressed pages */
1205 file_extent.disk_bytenr = ins.objectid;
1206 file_extent.disk_num_bytes = ins.offset;
1207 file_extent.ram_bytes = async_extent->ram_size;
1208 file_extent.num_bytes = async_extent->ram_size;
1209 file_extent.offset = 0;
1210 file_extent.compression = async_extent->compress_type;
1212 em = btrfs_create_io_em(inode, start, &file_extent, BTRFS_ORDERED_COMPRESSED);
1215 goto out_free_reserve;
1217 free_extent_map(em);
1219 ordered = btrfs_alloc_ordered_extent(inode, start, &file_extent,
1220 1 << BTRFS_ORDERED_COMPRESSED);
1221 if (IS_ERR(ordered)) {
1222 btrfs_drop_extent_map_range(inode, start, end, false);
1223 ret = PTR_ERR(ordered);
1224 goto out_free_reserve;
1226 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1228 /* Clear dirty, set writeback and unlock the pages. */
1229 extent_clear_unlock_delalloc(inode, start, end,
1230 NULL, &cached, EXTENT_LOCKED | EXTENT_DELALLOC,
1231 PAGE_UNLOCK | PAGE_START_WRITEBACK);
1232 btrfs_submit_compressed_write(ordered,
1233 async_extent->folios, /* compressed_folios */
1234 async_extent->nr_folios,
1235 async_chunk->write_flags, true);
1236 *alloc_hint = ins.objectid + ins.offset;
1238 if (async_chunk->blkcg_css)
1239 kthread_associate_blkcg(NULL);
1240 kfree(async_extent);
1244 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1245 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
1246 mapping_set_error(inode->vfs_inode.i_mapping, -EIO);
1247 extent_clear_unlock_delalloc(inode, start, end,
1249 EXTENT_LOCKED | EXTENT_DELALLOC |
1250 EXTENT_DELALLOC_NEW |
1251 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
1252 PAGE_UNLOCK | PAGE_START_WRITEBACK |
1253 PAGE_END_WRITEBACK);
1254 free_async_extent_pages(async_extent);
1255 if (async_chunk->blkcg_css)
1256 kthread_associate_blkcg(NULL);
1257 btrfs_debug(fs_info,
1258 "async extent submission failed root=%lld inode=%llu start=%llu len=%llu ret=%d",
1259 btrfs_root_id(root), btrfs_ino(inode), start,
1260 async_extent->ram_size, ret);
1261 kfree(async_extent);
1264 u64 btrfs_get_extent_allocation_hint(struct btrfs_inode *inode, u64 start,
1267 struct extent_map_tree *em_tree = &inode->extent_tree;
1268 struct extent_map *em;
1271 read_lock(&em_tree->lock);
1272 em = search_extent_mapping(em_tree, start, num_bytes);
1275 * if block start isn't an actual block number then find the
1276 * first block in this inode and use that as a hint. If that
1277 * block is also bogus then just don't worry about it.
1279 if (em->disk_bytenr >= EXTENT_MAP_LAST_BYTE) {
1280 free_extent_map(em);
1281 em = search_extent_mapping(em_tree, 0, 0);
1282 if (em && em->disk_bytenr < EXTENT_MAP_LAST_BYTE)
1283 alloc_hint = extent_map_block_start(em);
1285 free_extent_map(em);
1287 alloc_hint = extent_map_block_start(em);
1288 free_extent_map(em);
1291 read_unlock(&em_tree->lock);
1297 * when extent_io.c finds a delayed allocation range in the file,
1298 * the call backs end up in this code. The basic idea is to
1299 * allocate extents on disk for the range, and create ordered data structs
1300 * in ram to track those extents.
1302 * locked_folio is the folio that writepage had locked already. We use
1303 * it to make sure we don't do extra locks or unlocks.
1305 * When this function fails, it unlocks all pages except @locked_folio.
1307 * When this function successfully creates an inline extent, it returns 1 and
1308 * unlocks all pages including locked_folio and starts I/O on them.
1309 * (In reality inline extents are limited to a single page, so locked_folio is
1310 * the only page handled anyway).
1312 * When this function succeed and creates a normal extent, the page locking
1313 * status depends on the passed in flags:
1315 * - If @keep_locked is set, all pages are kept locked.
1316 * - Else all pages except for @locked_folio are unlocked.
1318 * When a failure happens in the second or later iteration of the
1319 * while-loop, the ordered extents created in previous iterations are kept
1320 * intact. So, the caller must clean them up by calling
1321 * btrfs_cleanup_ordered_extents(). See btrfs_run_delalloc_range() for
1324 static noinline int cow_file_range(struct btrfs_inode *inode,
1325 struct folio *locked_folio, u64 start,
1326 u64 end, u64 *done_offset,
1327 bool keep_locked, bool no_inline)
1329 struct btrfs_root *root = inode->root;
1330 struct btrfs_fs_info *fs_info = root->fs_info;
1331 struct extent_state *cached = NULL;
1333 u64 orig_start = start;
1335 u64 cur_alloc_size = 0;
1337 u64 blocksize = fs_info->sectorsize;
1338 struct btrfs_key ins;
1339 struct extent_map *em;
1340 unsigned clear_bits;
1341 unsigned long page_ops;
1344 if (btrfs_is_free_space_inode(inode)) {
1349 num_bytes = ALIGN(end - start + 1, blocksize);
1350 num_bytes = max(blocksize, num_bytes);
1351 ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy));
1353 inode_should_defrag(inode, start, end, num_bytes, SZ_64K);
1356 /* lets try to make an inline extent */
1357 ret = cow_file_range_inline(inode, locked_folio, start, end, 0,
1358 BTRFS_COMPRESS_NONE, NULL, false);
1361 * We succeeded, return 1 so the caller knows we're done
1362 * with this page and already handled the IO.
1364 * If there was an error then cow_file_range_inline() has
1365 * already done the cleanup.
1373 alloc_hint = btrfs_get_extent_allocation_hint(inode, start, num_bytes);
1376 * Relocation relies on the relocated extents to have exactly the same
1377 * size as the original extents. Normally writeback for relocation data
1378 * extents follows a NOCOW path because relocation preallocates the
1379 * extents. However, due to an operation such as scrub turning a block
1380 * group to RO mode, it may fallback to COW mode, so we must make sure
1381 * an extent allocated during COW has exactly the requested size and can
1382 * not be split into smaller extents, otherwise relocation breaks and
1383 * fails during the stage where it updates the bytenr of file extent
1386 if (btrfs_is_data_reloc_root(root))
1387 min_alloc_size = num_bytes;
1389 min_alloc_size = fs_info->sectorsize;
1391 while (num_bytes > 0) {
1392 struct btrfs_ordered_extent *ordered;
1393 struct btrfs_file_extent file_extent;
1395 ret = btrfs_reserve_extent(root, num_bytes, num_bytes,
1396 min_alloc_size, 0, alloc_hint,
1398 if (ret == -EAGAIN) {
1400 * btrfs_reserve_extent only returns -EAGAIN for zoned
1401 * file systems, which is an indication that there are
1402 * no active zones to allocate from at the moment.
1404 * If this is the first loop iteration, wait for at
1405 * least one zone to finish before retrying the
1406 * allocation. Otherwise ask the caller to write out
1407 * the already allocated blocks before coming back to
1408 * us, or return -ENOSPC if it can't handle retries.
1410 ASSERT(btrfs_is_zoned(fs_info));
1411 if (start == orig_start) {
1412 wait_on_bit_io(&inode->root->fs_info->flags,
1413 BTRFS_FS_NEED_ZONE_FINISH,
1414 TASK_UNINTERRUPTIBLE);
1418 *done_offset = start - 1;
1425 cur_alloc_size = ins.offset;
1427 file_extent.disk_bytenr = ins.objectid;
1428 file_extent.disk_num_bytes = ins.offset;
1429 file_extent.num_bytes = ins.offset;
1430 file_extent.ram_bytes = ins.offset;
1431 file_extent.offset = 0;
1432 file_extent.compression = BTRFS_COMPRESS_NONE;
1434 lock_extent(&inode->io_tree, start, start + cur_alloc_size - 1,
1437 em = btrfs_create_io_em(inode, start, &file_extent,
1438 BTRFS_ORDERED_REGULAR);
1440 unlock_extent(&inode->io_tree, start,
1441 start + cur_alloc_size - 1, &cached);
1445 free_extent_map(em);
1447 ordered = btrfs_alloc_ordered_extent(inode, start, &file_extent,
1448 1 << BTRFS_ORDERED_REGULAR);
1449 if (IS_ERR(ordered)) {
1450 unlock_extent(&inode->io_tree, start,
1451 start + cur_alloc_size - 1, &cached);
1452 ret = PTR_ERR(ordered);
1453 goto out_drop_extent_cache;
1456 if (btrfs_is_data_reloc_root(root)) {
1457 ret = btrfs_reloc_clone_csums(ordered);
1460 * Only drop cache here, and process as normal.
1462 * We must not allow extent_clear_unlock_delalloc()
1463 * at out_unlock label to free meta of this ordered
1464 * extent, as its meta should be freed by
1465 * btrfs_finish_ordered_io().
1467 * So we must continue until @start is increased to
1468 * skip current ordered extent.
1471 btrfs_drop_extent_map_range(inode, start,
1472 start + cur_alloc_size - 1,
1475 btrfs_put_ordered_extent(ordered);
1477 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1480 * We're not doing compressed IO, don't unlock the first page
1481 * (which the caller expects to stay locked), don't clear any
1482 * dirty bits and don't set any writeback bits
1484 * Do set the Ordered flag so we know this page was
1485 * properly setup for writepage.
1487 page_ops = (keep_locked ? 0 : PAGE_UNLOCK);
1488 page_ops |= PAGE_SET_ORDERED;
1490 extent_clear_unlock_delalloc(inode, start, start + cur_alloc_size - 1,
1491 locked_folio, &cached,
1492 EXTENT_LOCKED | EXTENT_DELALLOC,
1494 if (num_bytes < cur_alloc_size)
1497 num_bytes -= cur_alloc_size;
1498 alloc_hint = ins.objectid + ins.offset;
1499 start += cur_alloc_size;
1503 * btrfs_reloc_clone_csums() error, since start is increased
1504 * extent_clear_unlock_delalloc() at out_unlock label won't
1505 * free metadata of current ordered extent, we're OK to exit.
1515 out_drop_extent_cache:
1516 btrfs_drop_extent_map_range(inode, start, start + cur_alloc_size - 1, false);
1518 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1519 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
1522 * Now, we have three regions to clean up:
1524 * |-------(1)----|---(2)---|-------------(3)----------|
1525 * `- orig_start `- start `- start + cur_alloc_size `- end
1527 * We process each region below.
1530 clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
1531 EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV;
1532 page_ops = PAGE_UNLOCK | PAGE_START_WRITEBACK | PAGE_END_WRITEBACK;
1535 * For the range (1). We have already instantiated the ordered extents
1536 * for this region. They are cleaned up by
1537 * btrfs_cleanup_ordered_extents() in e.g,
1538 * btrfs_run_delalloc_range(). EXTENT_LOCKED | EXTENT_DELALLOC are
1539 * already cleared in the above loop. And, EXTENT_DELALLOC_NEW |
1540 * EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV are handled by the cleanup
1543 * However, in case of @keep_locked, we still need to unlock the pages
1544 * (except @locked_folio) to ensure all the pages are unlocked.
1546 if (keep_locked && orig_start < start) {
1548 mapping_set_error(inode->vfs_inode.i_mapping, ret);
1549 extent_clear_unlock_delalloc(inode, orig_start, start - 1,
1550 locked_folio, NULL, 0, page_ops);
1554 * At this point we're unlocked, we want to make sure we're only
1555 * clearing these flags under the extent lock, so lock the rest of the
1556 * range and clear everything up.
1558 lock_extent(&inode->io_tree, start, end, NULL);
1561 * For the range (2). If we reserved an extent for our delalloc range
1562 * (or a subrange) and failed to create the respective ordered extent,
1563 * then it means that when we reserved the extent we decremented the
1564 * extent's size from the data space_info's bytes_may_use counter and
1565 * incremented the space_info's bytes_reserved counter by the same
1566 * amount. We must make sure extent_clear_unlock_delalloc() does not try
1567 * to decrement again the data space_info's bytes_may_use counter,
1568 * therefore we do not pass it the flag EXTENT_CLEAR_DATA_RESV.
1570 if (cur_alloc_size) {
1571 extent_clear_unlock_delalloc(inode, start,
1572 start + cur_alloc_size - 1,
1573 locked_folio, &cached, clear_bits,
1575 btrfs_qgroup_free_data(inode, NULL, start, cur_alloc_size, NULL);
1579 * For the range (3). We never touched the region. In addition to the
1580 * clear_bits above, we add EXTENT_CLEAR_DATA_RESV to release the data
1581 * space_info's bytes_may_use counter, reserved in
1582 * btrfs_check_data_free_space().
1584 if (start + cur_alloc_size < end) {
1585 clear_bits |= EXTENT_CLEAR_DATA_RESV;
1586 extent_clear_unlock_delalloc(inode, start + cur_alloc_size,
1588 &cached, clear_bits, page_ops);
1589 btrfs_qgroup_free_data(inode, NULL, start + cur_alloc_size,
1590 end - start - cur_alloc_size + 1, NULL);
1596 * Phase two of compressed writeback. This is the ordered portion of the code,
1597 * which only gets called in the order the work was queued. We walk all the
1598 * async extents created by compress_file_range and send them down to the disk.
1600 * If called with @do_free == true then it'll try to finish the work and free
1601 * the work struct eventually.
1603 static noinline void submit_compressed_extents(struct btrfs_work *work, bool do_free)
1605 struct async_chunk *async_chunk = container_of(work, struct async_chunk,
1607 struct btrfs_fs_info *fs_info = btrfs_work_owner(work);
1608 struct async_extent *async_extent;
1609 unsigned long nr_pages;
1613 struct async_cow *async_cow;
1615 btrfs_add_delayed_iput(async_chunk->inode);
1616 if (async_chunk->blkcg_css)
1617 css_put(async_chunk->blkcg_css);
1619 async_cow = async_chunk->async_cow;
1620 if (atomic_dec_and_test(&async_cow->num_chunks))
1625 nr_pages = (async_chunk->end - async_chunk->start + PAGE_SIZE) >>
1628 while (!list_empty(&async_chunk->extents)) {
1629 async_extent = list_entry(async_chunk->extents.next,
1630 struct async_extent, list);
1631 list_del(&async_extent->list);
1632 submit_one_async_extent(async_chunk, async_extent, &alloc_hint);
1635 /* atomic_sub_return implies a barrier */
1636 if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) <
1638 cond_wake_up_nomb(&fs_info->async_submit_wait);
1641 static bool run_delalloc_compressed(struct btrfs_inode *inode,
1642 struct folio *locked_folio, u64 start,
1643 u64 end, struct writeback_control *wbc)
1645 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1646 struct cgroup_subsys_state *blkcg_css = wbc_blkcg_css(wbc);
1647 struct async_cow *ctx;
1648 struct async_chunk *async_chunk;
1649 unsigned long nr_pages;
1650 u64 num_chunks = DIV_ROUND_UP(end - start, SZ_512K);
1653 const blk_opf_t write_flags = wbc_to_write_flags(wbc);
1655 nofs_flag = memalloc_nofs_save();
1656 ctx = kvmalloc(struct_size(ctx, chunks, num_chunks), GFP_KERNEL);
1657 memalloc_nofs_restore(nofs_flag);
1661 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, &inode->runtime_flags);
1663 async_chunk = ctx->chunks;
1664 atomic_set(&ctx->num_chunks, num_chunks);
1666 for (i = 0; i < num_chunks; i++) {
1667 u64 cur_end = min(end, start + SZ_512K - 1);
1670 * igrab is called higher up in the call chain, take only the
1671 * lightweight reference for the callback lifetime
1673 ihold(&inode->vfs_inode);
1674 async_chunk[i].async_cow = ctx;
1675 async_chunk[i].inode = inode;
1676 async_chunk[i].start = start;
1677 async_chunk[i].end = cur_end;
1678 async_chunk[i].write_flags = write_flags;
1679 INIT_LIST_HEAD(&async_chunk[i].extents);
1682 * The locked_folio comes all the way from writepage and its
1683 * the original folio we were actually given. As we spread
1684 * this large delalloc region across multiple async_chunk
1685 * structs, only the first struct needs a pointer to
1688 * This way we don't need racey decisions about who is supposed
1693 * Depending on the compressibility, the pages might or
1694 * might not go through async. We want all of them to
1695 * be accounted against wbc once. Let's do it here
1696 * before the paths diverge. wbc accounting is used
1697 * only for foreign writeback detection and doesn't
1698 * need full accuracy. Just account the whole thing
1699 * against the first page.
1701 wbc_account_cgroup_owner(wbc, locked_folio,
1703 async_chunk[i].locked_folio = locked_folio;
1704 locked_folio = NULL;
1706 async_chunk[i].locked_folio = NULL;
1709 if (blkcg_css != blkcg_root_css) {
1711 async_chunk[i].blkcg_css = blkcg_css;
1712 async_chunk[i].write_flags |= REQ_BTRFS_CGROUP_PUNT;
1714 async_chunk[i].blkcg_css = NULL;
1717 btrfs_init_work(&async_chunk[i].work, compress_file_range,
1718 submit_compressed_extents);
1720 nr_pages = DIV_ROUND_UP(cur_end - start, PAGE_SIZE);
1721 atomic_add(nr_pages, &fs_info->async_delalloc_pages);
1723 btrfs_queue_work(fs_info->delalloc_workers, &async_chunk[i].work);
1725 start = cur_end + 1;
1731 * Run the delalloc range from start to end, and write back any dirty pages
1732 * covered by the range.
1734 static noinline int run_delalloc_cow(struct btrfs_inode *inode,
1735 struct folio *locked_folio, u64 start,
1736 u64 end, struct writeback_control *wbc,
1739 u64 done_offset = end;
1742 while (start <= end) {
1743 ret = cow_file_range(inode, locked_folio, start, end,
1744 &done_offset, true, false);
1747 extent_write_locked_range(&inode->vfs_inode, locked_folio,
1748 start, done_offset, wbc, pages_dirty);
1749 start = done_offset + 1;
1755 static int fallback_to_cow(struct btrfs_inode *inode,
1756 struct folio *locked_folio, const u64 start,
1759 const bool is_space_ino = btrfs_is_free_space_inode(inode);
1760 const bool is_reloc_ino = btrfs_is_data_reloc_root(inode->root);
1761 const u64 range_bytes = end + 1 - start;
1762 struct extent_io_tree *io_tree = &inode->io_tree;
1763 struct extent_state *cached_state = NULL;
1764 u64 range_start = start;
1769 * If EXTENT_NORESERVE is set it means that when the buffered write was
1770 * made we had not enough available data space and therefore we did not
1771 * reserve data space for it, since we though we could do NOCOW for the
1772 * respective file range (either there is prealloc extent or the inode
1773 * has the NOCOW bit set).
1775 * However when we need to fallback to COW mode (because for example the
1776 * block group for the corresponding extent was turned to RO mode by a
1777 * scrub or relocation) we need to do the following:
1779 * 1) We increment the bytes_may_use counter of the data space info.
1780 * If COW succeeds, it allocates a new data extent and after doing
1781 * that it decrements the space info's bytes_may_use counter and
1782 * increments its bytes_reserved counter by the same amount (we do
1783 * this at btrfs_add_reserved_bytes()). So we need to increment the
1784 * bytes_may_use counter to compensate (when space is reserved at
1785 * buffered write time, the bytes_may_use counter is incremented);
1787 * 2) We clear the EXTENT_NORESERVE bit from the range. We do this so
1788 * that if the COW path fails for any reason, it decrements (through
1789 * extent_clear_unlock_delalloc()) the bytes_may_use counter of the
1790 * data space info, which we incremented in the step above.
1792 * If we need to fallback to cow and the inode corresponds to a free
1793 * space cache inode or an inode of the data relocation tree, we must
1794 * also increment bytes_may_use of the data space_info for the same
1795 * reason. Space caches and relocated data extents always get a prealloc
1796 * extent for them, however scrub or balance may have set the block
1797 * group that contains that extent to RO mode and therefore force COW
1798 * when starting writeback.
1800 lock_extent(io_tree, start, end, &cached_state);
1801 count = count_range_bits(io_tree, &range_start, end, range_bytes,
1802 EXTENT_NORESERVE, 0, NULL);
1803 if (count > 0 || is_space_ino || is_reloc_ino) {
1805 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1806 struct btrfs_space_info *sinfo = fs_info->data_sinfo;
1808 if (is_space_ino || is_reloc_ino)
1809 bytes = range_bytes;
1811 spin_lock(&sinfo->lock);
1812 btrfs_space_info_update_bytes_may_use(fs_info, sinfo, bytes);
1813 spin_unlock(&sinfo->lock);
1816 clear_extent_bit(io_tree, start, end, EXTENT_NORESERVE,
1819 unlock_extent(io_tree, start, end, &cached_state);
1822 * Don't try to create inline extents, as a mix of inline extent that
1823 * is written out and unlocked directly and a normal NOCOW extent
1826 ret = cow_file_range(inode, locked_folio, start, end, NULL, false,
1832 struct can_nocow_file_extent_args {
1835 /* Start file offset of the range we want to NOCOW. */
1837 /* End file offset (inclusive) of the range we want to NOCOW. */
1839 bool writeback_path;
1842 * Free the path passed to can_nocow_file_extent() once it's not needed
1848 * Output fields. Only set when can_nocow_file_extent() returns 1.
1849 * The expected file extent for the NOCOW write.
1851 struct btrfs_file_extent file_extent;
1855 * Check if we can NOCOW the file extent that the path points to.
1856 * This function may return with the path released, so the caller should check
1857 * if path->nodes[0] is NULL or not if it needs to use the path afterwards.
1859 * Returns: < 0 on error
1860 * 0 if we can not NOCOW
1863 static int can_nocow_file_extent(struct btrfs_path *path,
1864 struct btrfs_key *key,
1865 struct btrfs_inode *inode,
1866 struct can_nocow_file_extent_args *args)
1868 const bool is_freespace_inode = btrfs_is_free_space_inode(inode);
1869 struct extent_buffer *leaf = path->nodes[0];
1870 struct btrfs_root *root = inode->root;
1871 struct btrfs_file_extent_item *fi;
1872 struct btrfs_root *csum_root;
1878 bool nowait = path->nowait;
1880 fi = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
1881 extent_type = btrfs_file_extent_type(leaf, fi);
1883 if (extent_type == BTRFS_FILE_EXTENT_INLINE)
1886 if (!(inode->flags & BTRFS_INODE_NODATACOW) &&
1887 extent_type == BTRFS_FILE_EXTENT_REG)
1891 * If the extent was created before the generation where the last snapshot
1892 * for its subvolume was created, then this implies the extent is shared,
1893 * hence we must COW.
1895 if (!args->strict &&
1896 btrfs_file_extent_generation(leaf, fi) <=
1897 btrfs_root_last_snapshot(&root->root_item))
1900 /* An explicit hole, must COW. */
1901 if (btrfs_file_extent_disk_bytenr(leaf, fi) == 0)
1904 /* Compressed/encrypted/encoded extents must be COWed. */
1905 if (btrfs_file_extent_compression(leaf, fi) ||
1906 btrfs_file_extent_encryption(leaf, fi) ||
1907 btrfs_file_extent_other_encoding(leaf, fi))
1910 extent_end = btrfs_file_extent_end(path);
1912 args->file_extent.disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1913 args->file_extent.disk_num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1914 args->file_extent.ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
1915 args->file_extent.offset = btrfs_file_extent_offset(leaf, fi);
1916 args->file_extent.compression = btrfs_file_extent_compression(leaf, fi);
1919 * The following checks can be expensive, as they need to take other
1920 * locks and do btree or rbtree searches, so release the path to avoid
1921 * blocking other tasks for too long.
1923 btrfs_release_path(path);
1925 ret = btrfs_cross_ref_exist(root, btrfs_ino(inode),
1926 key->offset - args->file_extent.offset,
1927 args->file_extent.disk_bytenr, args->strict, path);
1928 WARN_ON_ONCE(ret > 0 && is_freespace_inode);
1932 if (args->free_path) {
1934 * We don't need the path anymore, plus through the
1935 * btrfs_lookup_csums_list() call below we will end up allocating
1936 * another path. So free the path to avoid unnecessary extra
1939 btrfs_free_path(path);
1943 /* If there are pending snapshots for this root, we must COW. */
1944 if (args->writeback_path && !is_freespace_inode &&
1945 atomic_read(&root->snapshot_force_cow))
1948 args->file_extent.num_bytes = min(args->end + 1, extent_end) - args->start;
1949 args->file_extent.offset += args->start - key->offset;
1950 io_start = args->file_extent.disk_bytenr + args->file_extent.offset;
1953 * Force COW if csums exist in the range. This ensures that csums for a
1954 * given extent are either valid or do not exist.
1957 csum_root = btrfs_csum_root(root->fs_info, io_start);
1958 ret = btrfs_lookup_csums_list(csum_root, io_start,
1959 io_start + args->file_extent.num_bytes - 1,
1961 WARN_ON_ONCE(ret > 0 && is_freespace_inode);
1967 if (args->free_path && path)
1968 btrfs_free_path(path);
1970 return ret < 0 ? ret : can_nocow;
1974 * when nowcow writeback call back. This checks for snapshots or COW copies
1975 * of the extents that exist in the file, and COWs the file as required.
1977 * If no cow copies or snapshots exist, we write directly to the existing
1980 static noinline int run_delalloc_nocow(struct btrfs_inode *inode,
1981 struct folio *locked_folio,
1982 const u64 start, const u64 end)
1984 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1985 struct btrfs_root *root = inode->root;
1986 struct btrfs_path *path;
1987 u64 cow_start = (u64)-1;
1988 u64 cur_offset = start;
1990 bool check_prev = true;
1991 u64 ino = btrfs_ino(inode);
1992 struct can_nocow_file_extent_args nocow_args = { 0 };
1995 * Normally on a zoned device we're only doing COW writes, but in case
1996 * of relocation on a zoned filesystem serializes I/O so that we're only
1997 * writing sequentially and can end up here as well.
1999 ASSERT(!btrfs_is_zoned(fs_info) || btrfs_is_data_reloc_root(root));
2001 path = btrfs_alloc_path();
2007 nocow_args.end = end;
2008 nocow_args.writeback_path = true;
2010 while (cur_offset <= end) {
2011 struct btrfs_block_group *nocow_bg = NULL;
2012 struct btrfs_ordered_extent *ordered;
2013 struct btrfs_key found_key;
2014 struct btrfs_file_extent_item *fi;
2015 struct extent_buffer *leaf;
2016 struct extent_state *cached_state = NULL;
2022 ret = btrfs_lookup_file_extent(NULL, root, path, ino,
2028 * If there is no extent for our range when doing the initial
2029 * search, then go back to the previous slot as it will be the
2030 * one containing the search offset
2032 if (ret > 0 && path->slots[0] > 0 && check_prev) {
2033 leaf = path->nodes[0];
2034 btrfs_item_key_to_cpu(leaf, &found_key,
2035 path->slots[0] - 1);
2036 if (found_key.objectid == ino &&
2037 found_key.type == BTRFS_EXTENT_DATA_KEY)
2042 /* Go to next leaf if we have exhausted the current one */
2043 leaf = path->nodes[0];
2044 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2045 ret = btrfs_next_leaf(root, path);
2050 leaf = path->nodes[0];
2053 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2055 /* Didn't find anything for our INO */
2056 if (found_key.objectid > ino)
2059 * Keep searching until we find an EXTENT_ITEM or there are no
2060 * more extents for this inode
2062 if (WARN_ON_ONCE(found_key.objectid < ino) ||
2063 found_key.type < BTRFS_EXTENT_DATA_KEY) {
2068 /* Found key is not EXTENT_DATA_KEY or starts after req range */
2069 if (found_key.type > BTRFS_EXTENT_DATA_KEY ||
2070 found_key.offset > end)
2074 * If the found extent starts after requested offset, then
2075 * adjust extent_end to be right before this extent begins
2077 if (found_key.offset > cur_offset) {
2078 extent_end = found_key.offset;
2084 * Found extent which begins before our range and potentially
2087 fi = btrfs_item_ptr(leaf, path->slots[0],
2088 struct btrfs_file_extent_item);
2089 extent_type = btrfs_file_extent_type(leaf, fi);
2090 /* If this is triggered then we have a memory corruption. */
2091 ASSERT(extent_type < BTRFS_NR_FILE_EXTENT_TYPES);
2092 if (WARN_ON(extent_type >= BTRFS_NR_FILE_EXTENT_TYPES)) {
2096 extent_end = btrfs_file_extent_end(path);
2099 * If the extent we got ends before our current offset, skip to
2102 if (extent_end <= cur_offset) {
2107 nocow_args.start = cur_offset;
2108 ret = can_nocow_file_extent(path, &found_key, inode, &nocow_args);
2115 nocow_bg = btrfs_inc_nocow_writers(fs_info,
2116 nocow_args.file_extent.disk_bytenr +
2117 nocow_args.file_extent.offset);
2121 * If we can't perform NOCOW writeback for the range,
2122 * then record the beginning of the range that needs to
2123 * be COWed. It will be written out before the next
2124 * NOCOW range if we find one, or when exiting this
2127 if (cow_start == (u64)-1)
2128 cow_start = cur_offset;
2129 cur_offset = extent_end;
2130 if (cur_offset > end)
2132 if (!path->nodes[0])
2139 * COW range from cow_start to found_key.offset - 1. As the key
2140 * will contain the beginning of the first extent that can be
2141 * NOCOW, following one which needs to be COW'ed
2143 if (cow_start != (u64)-1) {
2144 ret = fallback_to_cow(inode, locked_folio, cow_start,
2145 found_key.offset - 1);
2146 cow_start = (u64)-1;
2148 btrfs_dec_nocow_writers(nocow_bg);
2153 nocow_end = cur_offset + nocow_args.file_extent.num_bytes - 1;
2154 lock_extent(&inode->io_tree, cur_offset, nocow_end, &cached_state);
2156 is_prealloc = extent_type == BTRFS_FILE_EXTENT_PREALLOC;
2158 struct extent_map *em;
2160 em = btrfs_create_io_em(inode, cur_offset,
2161 &nocow_args.file_extent,
2162 BTRFS_ORDERED_PREALLOC);
2164 unlock_extent(&inode->io_tree, cur_offset,
2165 nocow_end, &cached_state);
2166 btrfs_dec_nocow_writers(nocow_bg);
2170 free_extent_map(em);
2173 ordered = btrfs_alloc_ordered_extent(inode, cur_offset,
2174 &nocow_args.file_extent,
2176 ? (1 << BTRFS_ORDERED_PREALLOC)
2177 : (1 << BTRFS_ORDERED_NOCOW));
2178 btrfs_dec_nocow_writers(nocow_bg);
2179 if (IS_ERR(ordered)) {
2181 btrfs_drop_extent_map_range(inode, cur_offset,
2184 unlock_extent(&inode->io_tree, cur_offset,
2185 nocow_end, &cached_state);
2186 ret = PTR_ERR(ordered);
2190 if (btrfs_is_data_reloc_root(root))
2192 * Error handled later, as we must prevent
2193 * extent_clear_unlock_delalloc() in error handler
2194 * from freeing metadata of created ordered extent.
2196 ret = btrfs_reloc_clone_csums(ordered);
2197 btrfs_put_ordered_extent(ordered);
2199 extent_clear_unlock_delalloc(inode, cur_offset, nocow_end,
2200 locked_folio, &cached_state,
2201 EXTENT_LOCKED | EXTENT_DELALLOC |
2202 EXTENT_CLEAR_DATA_RESV,
2203 PAGE_UNLOCK | PAGE_SET_ORDERED);
2205 cur_offset = extent_end;
2208 * btrfs_reloc_clone_csums() error, now we're OK to call error
2209 * handler, as metadata for created ordered extent will only
2210 * be freed by btrfs_finish_ordered_io().
2215 btrfs_release_path(path);
2217 if (cur_offset <= end && cow_start == (u64)-1)
2218 cow_start = cur_offset;
2220 if (cow_start != (u64)-1) {
2222 ret = fallback_to_cow(inode, locked_folio, cow_start, end);
2223 cow_start = (u64)-1;
2228 btrfs_free_path(path);
2233 * If an error happened while a COW region is outstanding, cur_offset
2234 * needs to be reset to cow_start to ensure the COW region is unlocked
2237 if (cow_start != (u64)-1)
2238 cur_offset = cow_start;
2241 * We need to lock the extent here because we're clearing DELALLOC and
2242 * we're not locked at this point.
2244 if (cur_offset < end) {
2245 struct extent_state *cached = NULL;
2247 lock_extent(&inode->io_tree, cur_offset, end, &cached);
2248 extent_clear_unlock_delalloc(inode, cur_offset, end,
2249 locked_folio, &cached,
2250 EXTENT_LOCKED | EXTENT_DELALLOC |
2252 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
2253 PAGE_START_WRITEBACK |
2254 PAGE_END_WRITEBACK);
2255 btrfs_qgroup_free_data(inode, NULL, cur_offset, end - cur_offset + 1, NULL);
2257 btrfs_free_path(path);
2261 static bool should_nocow(struct btrfs_inode *inode, u64 start, u64 end)
2263 if (inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)) {
2264 if (inode->defrag_bytes &&
2265 test_range_bit_exists(&inode->io_tree, start, end, EXTENT_DEFRAG))
2273 * Function to process delayed allocation (create CoW) for ranges which are
2274 * being touched for the first time.
2276 int btrfs_run_delalloc_range(struct btrfs_inode *inode, struct folio *locked_folio,
2277 u64 start, u64 end, struct writeback_control *wbc)
2279 const bool zoned = btrfs_is_zoned(inode->root->fs_info);
2283 * The range must cover part of the @locked_folio, or a return of 1
2284 * can confuse the caller.
2286 ASSERT(!(end <= folio_pos(locked_folio) ||
2287 start >= folio_pos(locked_folio) + folio_size(locked_folio)));
2289 if (should_nocow(inode, start, end)) {
2290 ret = run_delalloc_nocow(inode, locked_folio, start, end);
2294 if (btrfs_inode_can_compress(inode) &&
2295 inode_need_compress(inode, start, end) &&
2296 run_delalloc_compressed(inode, locked_folio, start, end, wbc))
2300 ret = run_delalloc_cow(inode, locked_folio, start, end, wbc,
2303 ret = cow_file_range(inode, locked_folio, start, end, NULL,
2308 btrfs_cleanup_ordered_extents(inode, locked_folio, start,
2313 void btrfs_split_delalloc_extent(struct btrfs_inode *inode,
2314 struct extent_state *orig, u64 split)
2316 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2319 lockdep_assert_held(&inode->io_tree.lock);
2321 /* not delalloc, ignore it */
2322 if (!(orig->state & EXTENT_DELALLOC))
2325 size = orig->end - orig->start + 1;
2326 if (size > fs_info->max_extent_size) {
2331 * See the explanation in btrfs_merge_delalloc_extent, the same
2332 * applies here, just in reverse.
2334 new_size = orig->end - split + 1;
2335 num_extents = count_max_extents(fs_info, new_size);
2336 new_size = split - orig->start;
2337 num_extents += count_max_extents(fs_info, new_size);
2338 if (count_max_extents(fs_info, size) >= num_extents)
2342 spin_lock(&inode->lock);
2343 btrfs_mod_outstanding_extents(inode, 1);
2344 spin_unlock(&inode->lock);
2348 * Handle merged delayed allocation extents so we can keep track of new extents
2349 * that are just merged onto old extents, such as when we are doing sequential
2350 * writes, so we can properly account for the metadata space we'll need.
2352 void btrfs_merge_delalloc_extent(struct btrfs_inode *inode, struct extent_state *new,
2353 struct extent_state *other)
2355 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2356 u64 new_size, old_size;
2359 lockdep_assert_held(&inode->io_tree.lock);
2361 /* not delalloc, ignore it */
2362 if (!(other->state & EXTENT_DELALLOC))
2365 if (new->start > other->start)
2366 new_size = new->end - other->start + 1;
2368 new_size = other->end - new->start + 1;
2370 /* we're not bigger than the max, unreserve the space and go */
2371 if (new_size <= fs_info->max_extent_size) {
2372 spin_lock(&inode->lock);
2373 btrfs_mod_outstanding_extents(inode, -1);
2374 spin_unlock(&inode->lock);
2379 * We have to add up either side to figure out how many extents were
2380 * accounted for before we merged into one big extent. If the number of
2381 * extents we accounted for is <= the amount we need for the new range
2382 * then we can return, otherwise drop. Think of it like this
2386 * So we've grown the extent by a MAX_SIZE extent, this would mean we
2387 * need 2 outstanding extents, on one side we have 1 and the other side
2388 * we have 1 so they are == and we can return. But in this case
2390 * [MAX_SIZE+4k][MAX_SIZE+4k]
2392 * Each range on their own accounts for 2 extents, but merged together
2393 * they are only 3 extents worth of accounting, so we need to drop in
2396 old_size = other->end - other->start + 1;
2397 num_extents = count_max_extents(fs_info, old_size);
2398 old_size = new->end - new->start + 1;
2399 num_extents += count_max_extents(fs_info, old_size);
2400 if (count_max_extents(fs_info, new_size) >= num_extents)
2403 spin_lock(&inode->lock);
2404 btrfs_mod_outstanding_extents(inode, -1);
2405 spin_unlock(&inode->lock);
2408 static void btrfs_add_delalloc_inode(struct btrfs_inode *inode)
2410 struct btrfs_root *root = inode->root;
2411 struct btrfs_fs_info *fs_info = root->fs_info;
2413 spin_lock(&root->delalloc_lock);
2414 ASSERT(list_empty(&inode->delalloc_inodes));
2415 list_add_tail(&inode->delalloc_inodes, &root->delalloc_inodes);
2416 root->nr_delalloc_inodes++;
2417 if (root->nr_delalloc_inodes == 1) {
2418 spin_lock(&fs_info->delalloc_root_lock);
2419 ASSERT(list_empty(&root->delalloc_root));
2420 list_add_tail(&root->delalloc_root, &fs_info->delalloc_roots);
2421 spin_unlock(&fs_info->delalloc_root_lock);
2423 spin_unlock(&root->delalloc_lock);
2426 void btrfs_del_delalloc_inode(struct btrfs_inode *inode)
2428 struct btrfs_root *root = inode->root;
2429 struct btrfs_fs_info *fs_info = root->fs_info;
2431 lockdep_assert_held(&root->delalloc_lock);
2434 * We may be called after the inode was already deleted from the list,
2435 * namely in the transaction abort path btrfs_destroy_delalloc_inodes(),
2436 * and then later through btrfs_clear_delalloc_extent() while the inode
2437 * still has ->delalloc_bytes > 0.
2439 if (!list_empty(&inode->delalloc_inodes)) {
2440 list_del_init(&inode->delalloc_inodes);
2441 root->nr_delalloc_inodes--;
2442 if (!root->nr_delalloc_inodes) {
2443 ASSERT(list_empty(&root->delalloc_inodes));
2444 spin_lock(&fs_info->delalloc_root_lock);
2445 ASSERT(!list_empty(&root->delalloc_root));
2446 list_del_init(&root->delalloc_root);
2447 spin_unlock(&fs_info->delalloc_root_lock);
2453 * Properly track delayed allocation bytes in the inode and to maintain the
2454 * list of inodes that have pending delalloc work to be done.
2456 void btrfs_set_delalloc_extent(struct btrfs_inode *inode, struct extent_state *state,
2459 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2461 lockdep_assert_held(&inode->io_tree.lock);
2463 if ((bits & EXTENT_DEFRAG) && !(bits & EXTENT_DELALLOC))
2466 * set_bit and clear bit hooks normally require _irqsave/restore
2467 * but in this case, we are only testing for the DELALLOC
2468 * bit, which is only set or cleared with irqs on
2470 if (!(state->state & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
2471 u64 len = state->end + 1 - state->start;
2472 u64 prev_delalloc_bytes;
2473 u32 num_extents = count_max_extents(fs_info, len);
2475 spin_lock(&inode->lock);
2476 btrfs_mod_outstanding_extents(inode, num_extents);
2477 spin_unlock(&inode->lock);
2479 /* For sanity tests */
2480 if (btrfs_is_testing(fs_info))
2483 percpu_counter_add_batch(&fs_info->delalloc_bytes, len,
2484 fs_info->delalloc_batch);
2485 spin_lock(&inode->lock);
2486 prev_delalloc_bytes = inode->delalloc_bytes;
2487 inode->delalloc_bytes += len;
2488 if (bits & EXTENT_DEFRAG)
2489 inode->defrag_bytes += len;
2490 spin_unlock(&inode->lock);
2493 * We don't need to be under the protection of the inode's lock,
2494 * because we are called while holding the inode's io_tree lock
2495 * and are therefore protected against concurrent calls of this
2496 * function and btrfs_clear_delalloc_extent().
2498 if (!btrfs_is_free_space_inode(inode) && prev_delalloc_bytes == 0)
2499 btrfs_add_delalloc_inode(inode);
2502 if (!(state->state & EXTENT_DELALLOC_NEW) &&
2503 (bits & EXTENT_DELALLOC_NEW)) {
2504 spin_lock(&inode->lock);
2505 inode->new_delalloc_bytes += state->end + 1 - state->start;
2506 spin_unlock(&inode->lock);
2511 * Once a range is no longer delalloc this function ensures that proper
2512 * accounting happens.
2514 void btrfs_clear_delalloc_extent(struct btrfs_inode *inode,
2515 struct extent_state *state, u32 bits)
2517 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2518 u64 len = state->end + 1 - state->start;
2519 u32 num_extents = count_max_extents(fs_info, len);
2521 lockdep_assert_held(&inode->io_tree.lock);
2523 if ((state->state & EXTENT_DEFRAG) && (bits & EXTENT_DEFRAG)) {
2524 spin_lock(&inode->lock);
2525 inode->defrag_bytes -= len;
2526 spin_unlock(&inode->lock);
2530 * set_bit and clear bit hooks normally require _irqsave/restore
2531 * but in this case, we are only testing for the DELALLOC
2532 * bit, which is only set or cleared with irqs on
2534 if ((state->state & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
2535 struct btrfs_root *root = inode->root;
2536 u64 new_delalloc_bytes;
2538 spin_lock(&inode->lock);
2539 btrfs_mod_outstanding_extents(inode, -num_extents);
2540 spin_unlock(&inode->lock);
2543 * We don't reserve metadata space for space cache inodes so we
2544 * don't need to call delalloc_release_metadata if there is an
2547 if (bits & EXTENT_CLEAR_META_RESV &&
2548 root != fs_info->tree_root)
2549 btrfs_delalloc_release_metadata(inode, len, true);
2551 /* For sanity tests. */
2552 if (btrfs_is_testing(fs_info))
2555 if (!btrfs_is_data_reloc_root(root) &&
2556 !btrfs_is_free_space_inode(inode) &&
2557 !(state->state & EXTENT_NORESERVE) &&
2558 (bits & EXTENT_CLEAR_DATA_RESV))
2559 btrfs_free_reserved_data_space_noquota(fs_info, len);
2561 percpu_counter_add_batch(&fs_info->delalloc_bytes, -len,
2562 fs_info->delalloc_batch);
2563 spin_lock(&inode->lock);
2564 inode->delalloc_bytes -= len;
2565 new_delalloc_bytes = inode->delalloc_bytes;
2566 spin_unlock(&inode->lock);
2569 * We don't need to be under the protection of the inode's lock,
2570 * because we are called while holding the inode's io_tree lock
2571 * and are therefore protected against concurrent calls of this
2572 * function and btrfs_set_delalloc_extent().
2574 if (!btrfs_is_free_space_inode(inode) && new_delalloc_bytes == 0) {
2575 spin_lock(&root->delalloc_lock);
2576 btrfs_del_delalloc_inode(inode);
2577 spin_unlock(&root->delalloc_lock);
2581 if ((state->state & EXTENT_DELALLOC_NEW) &&
2582 (bits & EXTENT_DELALLOC_NEW)) {
2583 spin_lock(&inode->lock);
2584 ASSERT(inode->new_delalloc_bytes >= len);
2585 inode->new_delalloc_bytes -= len;
2586 if (bits & EXTENT_ADD_INODE_BYTES)
2587 inode_add_bytes(&inode->vfs_inode, len);
2588 spin_unlock(&inode->lock);
2593 * given a list of ordered sums record them in the inode. This happens
2594 * at IO completion time based on sums calculated at bio submission time.
2596 static int add_pending_csums(struct btrfs_trans_handle *trans,
2597 struct list_head *list)
2599 struct btrfs_ordered_sum *sum;
2600 struct btrfs_root *csum_root = NULL;
2603 list_for_each_entry(sum, list, list) {
2604 trans->adding_csums = true;
2606 csum_root = btrfs_csum_root(trans->fs_info,
2608 ret = btrfs_csum_file_blocks(trans, csum_root, sum);
2609 trans->adding_csums = false;
2616 static int btrfs_find_new_delalloc_bytes(struct btrfs_inode *inode,
2619 struct extent_state **cached_state)
2621 u64 search_start = start;
2622 const u64 end = start + len - 1;
2624 while (search_start < end) {
2625 const u64 search_len = end - search_start + 1;
2626 struct extent_map *em;
2630 em = btrfs_get_extent(inode, NULL, search_start, search_len);
2634 if (em->disk_bytenr != EXTENT_MAP_HOLE)
2638 if (em->start < search_start)
2639 em_len -= search_start - em->start;
2640 if (em_len > search_len)
2641 em_len = search_len;
2643 ret = set_extent_bit(&inode->io_tree, search_start,
2644 search_start + em_len - 1,
2645 EXTENT_DELALLOC_NEW, cached_state);
2647 search_start = extent_map_end(em);
2648 free_extent_map(em);
2655 int btrfs_set_extent_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
2656 unsigned int extra_bits,
2657 struct extent_state **cached_state)
2659 WARN_ON(PAGE_ALIGNED(end));
2661 if (start >= i_size_read(&inode->vfs_inode) &&
2662 !(inode->flags & BTRFS_INODE_PREALLOC)) {
2664 * There can't be any extents following eof in this case so just
2665 * set the delalloc new bit for the range directly.
2667 extra_bits |= EXTENT_DELALLOC_NEW;
2671 ret = btrfs_find_new_delalloc_bytes(inode, start,
2678 return set_extent_bit(&inode->io_tree, start, end,
2679 EXTENT_DELALLOC | extra_bits, cached_state);
2682 /* see btrfs_writepage_start_hook for details on why this is required */
2683 struct btrfs_writepage_fixup {
2684 struct folio *folio;
2685 struct btrfs_inode *inode;
2686 struct btrfs_work work;
2689 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
2691 struct btrfs_writepage_fixup *fixup =
2692 container_of(work, struct btrfs_writepage_fixup, work);
2693 struct btrfs_ordered_extent *ordered;
2694 struct extent_state *cached_state = NULL;
2695 struct extent_changeset *data_reserved = NULL;
2696 struct folio *folio = fixup->folio;
2697 struct btrfs_inode *inode = fixup->inode;
2698 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2699 u64 page_start = folio_pos(folio);
2700 u64 page_end = folio_pos(folio) + folio_size(folio) - 1;
2702 bool free_delalloc_space = true;
2705 * This is similar to page_mkwrite, we need to reserve the space before
2706 * we take the folio lock.
2708 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
2714 * Before we queued this fixup, we took a reference on the folio.
2715 * folio->mapping may go NULL, but it shouldn't be moved to a different
2718 if (!folio->mapping || !folio_test_dirty(folio) ||
2719 !folio_test_checked(folio)) {
2721 * Unfortunately this is a little tricky, either
2723 * 1) We got here and our folio had already been dealt with and
2724 * we reserved our space, thus ret == 0, so we need to just
2725 * drop our space reservation and bail. This can happen the
2726 * first time we come into the fixup worker, or could happen
2727 * while waiting for the ordered extent.
2728 * 2) Our folio was already dealt with, but we happened to get an
2729 * ENOSPC above from the btrfs_delalloc_reserve_space. In
2730 * this case we obviously don't have anything to release, but
2731 * because the folio was already dealt with we don't want to
2732 * mark the folio with an error, so make sure we're resetting
2733 * ret to 0. This is why we have this check _before_ the ret
2734 * check, because we do not want to have a surprise ENOSPC
2735 * when the folio was already properly dealt with.
2738 btrfs_delalloc_release_extents(inode, folio_size(folio));
2739 btrfs_delalloc_release_space(inode, data_reserved,
2740 page_start, folio_size(folio),
2748 * We can't mess with the folio state unless it is locked, so now that
2749 * it is locked bail if we failed to make our space reservation.
2754 lock_extent(&inode->io_tree, page_start, page_end, &cached_state);
2756 /* already ordered? We're done */
2757 if (folio_test_ordered(folio))
2760 ordered = btrfs_lookup_ordered_range(inode, page_start, PAGE_SIZE);
2762 unlock_extent(&inode->io_tree, page_start, page_end,
2764 folio_unlock(folio);
2765 btrfs_start_ordered_extent(ordered);
2766 btrfs_put_ordered_extent(ordered);
2770 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0,
2776 * Everything went as planned, we're now the owner of a dirty page with
2777 * delayed allocation bits set and space reserved for our COW
2780 * The page was dirty when we started, nothing should have cleaned it.
2782 BUG_ON(!folio_test_dirty(folio));
2783 free_delalloc_space = false;
2785 btrfs_delalloc_release_extents(inode, PAGE_SIZE);
2786 if (free_delalloc_space)
2787 btrfs_delalloc_release_space(inode, data_reserved, page_start,
2789 unlock_extent(&inode->io_tree, page_start, page_end, &cached_state);
2793 * We hit ENOSPC or other errors. Update the mapping and page
2794 * to reflect the errors and clean the page.
2796 mapping_set_error(folio->mapping, ret);
2797 btrfs_mark_ordered_io_finished(inode, folio, page_start,
2798 folio_size(folio), !ret);
2799 folio_clear_dirty_for_io(folio);
2801 btrfs_folio_clear_checked(fs_info, folio, page_start, PAGE_SIZE);
2802 folio_unlock(folio);
2805 extent_changeset_free(data_reserved);
2807 * As a precaution, do a delayed iput in case it would be the last iput
2808 * that could need flushing space. Recursing back to fixup worker would
2811 btrfs_add_delayed_iput(inode);
2815 * There are a few paths in the higher layers of the kernel that directly
2816 * set the folio dirty bit without asking the filesystem if it is a
2817 * good idea. This causes problems because we want to make sure COW
2818 * properly happens and the data=ordered rules are followed.
2820 * In our case any range that doesn't have the ORDERED bit set
2821 * hasn't been properly setup for IO. We kick off an async process
2822 * to fix it up. The async helper will wait for ordered extents, set
2823 * the delalloc bit and make it safe to write the folio.
2825 int btrfs_writepage_cow_fixup(struct folio *folio)
2827 struct inode *inode = folio->mapping->host;
2828 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
2829 struct btrfs_writepage_fixup *fixup;
2831 /* This folio has ordered extent covering it already */
2832 if (folio_test_ordered(folio))
2836 * folio_checked is set below when we create a fixup worker for this
2837 * folio, don't try to create another one if we're already
2838 * folio_test_checked.
2840 * The extent_io writepage code will redirty the foio if we send back
2843 if (folio_test_checked(folio))
2846 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2851 * We are already holding a reference to this inode from
2852 * write_cache_pages. We need to hold it because the space reservation
2853 * takes place outside of the folio lock, and we can't trust
2854 * page->mapping outside of the folio lock.
2857 btrfs_folio_set_checked(fs_info, folio, folio_pos(folio), folio_size(folio));
2859 btrfs_init_work(&fixup->work, btrfs_writepage_fixup_worker, NULL);
2860 fixup->folio = folio;
2861 fixup->inode = BTRFS_I(inode);
2862 btrfs_queue_work(fs_info->fixup_workers, &fixup->work);
2867 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
2868 struct btrfs_inode *inode, u64 file_pos,
2869 struct btrfs_file_extent_item *stack_fi,
2870 const bool update_inode_bytes,
2871 u64 qgroup_reserved)
2873 struct btrfs_root *root = inode->root;
2874 const u64 sectorsize = root->fs_info->sectorsize;
2875 struct btrfs_path *path;
2876 struct extent_buffer *leaf;
2877 struct btrfs_key ins;
2878 u64 disk_num_bytes = btrfs_stack_file_extent_disk_num_bytes(stack_fi);
2879 u64 disk_bytenr = btrfs_stack_file_extent_disk_bytenr(stack_fi);
2880 u64 offset = btrfs_stack_file_extent_offset(stack_fi);
2881 u64 num_bytes = btrfs_stack_file_extent_num_bytes(stack_fi);
2882 u64 ram_bytes = btrfs_stack_file_extent_ram_bytes(stack_fi);
2883 struct btrfs_drop_extents_args drop_args = { 0 };
2886 path = btrfs_alloc_path();
2891 * we may be replacing one extent in the tree with another.
2892 * The new extent is pinned in the extent map, and we don't want
2893 * to drop it from the cache until it is completely in the btree.
2895 * So, tell btrfs_drop_extents to leave this extent in the cache.
2896 * the caller is expected to unpin it and allow it to be merged
2899 drop_args.path = path;
2900 drop_args.start = file_pos;
2901 drop_args.end = file_pos + num_bytes;
2902 drop_args.replace_extent = true;
2903 drop_args.extent_item_size = sizeof(*stack_fi);
2904 ret = btrfs_drop_extents(trans, root, inode, &drop_args);
2908 if (!drop_args.extent_inserted) {
2909 ins.objectid = btrfs_ino(inode);
2910 ins.offset = file_pos;
2911 ins.type = BTRFS_EXTENT_DATA_KEY;
2913 ret = btrfs_insert_empty_item(trans, root, path, &ins,
2918 leaf = path->nodes[0];
2919 btrfs_set_stack_file_extent_generation(stack_fi, trans->transid);
2920 write_extent_buffer(leaf, stack_fi,
2921 btrfs_item_ptr_offset(leaf, path->slots[0]),
2922 sizeof(struct btrfs_file_extent_item));
2924 btrfs_mark_buffer_dirty(trans, leaf);
2925 btrfs_release_path(path);
2928 * If we dropped an inline extent here, we know the range where it is
2929 * was not marked with the EXTENT_DELALLOC_NEW bit, so we update the
2930 * number of bytes only for that range containing the inline extent.
2931 * The remaining of the range will be processed when clearning the
2932 * EXTENT_DELALLOC_BIT bit through the ordered extent completion.
2934 if (file_pos == 0 && !IS_ALIGNED(drop_args.bytes_found, sectorsize)) {
2935 u64 inline_size = round_down(drop_args.bytes_found, sectorsize);
2937 inline_size = drop_args.bytes_found - inline_size;
2938 btrfs_update_inode_bytes(inode, sectorsize, inline_size);
2939 drop_args.bytes_found -= inline_size;
2940 num_bytes -= sectorsize;
2943 if (update_inode_bytes)
2944 btrfs_update_inode_bytes(inode, num_bytes, drop_args.bytes_found);
2946 ins.objectid = disk_bytenr;
2947 ins.offset = disk_num_bytes;
2948 ins.type = BTRFS_EXTENT_ITEM_KEY;
2950 ret = btrfs_inode_set_file_extent_range(inode, file_pos, ram_bytes);
2954 ret = btrfs_alloc_reserved_file_extent(trans, root, btrfs_ino(inode),
2956 qgroup_reserved, &ins);
2958 btrfs_free_path(path);
2963 static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info,
2966 struct btrfs_block_group *cache;
2968 cache = btrfs_lookup_block_group(fs_info, start);
2971 spin_lock(&cache->lock);
2972 cache->delalloc_bytes -= len;
2973 spin_unlock(&cache->lock);
2975 btrfs_put_block_group(cache);
2978 static int insert_ordered_extent_file_extent(struct btrfs_trans_handle *trans,
2979 struct btrfs_ordered_extent *oe)
2981 struct btrfs_file_extent_item stack_fi;
2982 bool update_inode_bytes;
2983 u64 num_bytes = oe->num_bytes;
2984 u64 ram_bytes = oe->ram_bytes;
2986 memset(&stack_fi, 0, sizeof(stack_fi));
2987 btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_REG);
2988 btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, oe->disk_bytenr);
2989 btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi,
2990 oe->disk_num_bytes);
2991 btrfs_set_stack_file_extent_offset(&stack_fi, oe->offset);
2992 if (test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags))
2993 num_bytes = oe->truncated_len;
2994 btrfs_set_stack_file_extent_num_bytes(&stack_fi, num_bytes);
2995 btrfs_set_stack_file_extent_ram_bytes(&stack_fi, ram_bytes);
2996 btrfs_set_stack_file_extent_compression(&stack_fi, oe->compress_type);
2997 /* Encryption and other encoding is reserved and all 0 */
3000 * For delalloc, when completing an ordered extent we update the inode's
3001 * bytes when clearing the range in the inode's io tree, so pass false
3002 * as the argument 'update_inode_bytes' to insert_reserved_file_extent(),
3003 * except if the ordered extent was truncated.
3005 update_inode_bytes = test_bit(BTRFS_ORDERED_DIRECT, &oe->flags) ||
3006 test_bit(BTRFS_ORDERED_ENCODED, &oe->flags) ||
3007 test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags);
3009 return insert_reserved_file_extent(trans, oe->inode,
3010 oe->file_offset, &stack_fi,
3011 update_inode_bytes, oe->qgroup_rsv);
3015 * As ordered data IO finishes, this gets called so we can finish
3016 * an ordered extent if the range of bytes in the file it covers are
3019 int btrfs_finish_one_ordered(struct btrfs_ordered_extent *ordered_extent)
3021 struct btrfs_inode *inode = ordered_extent->inode;
3022 struct btrfs_root *root = inode->root;
3023 struct btrfs_fs_info *fs_info = root->fs_info;
3024 struct btrfs_trans_handle *trans = NULL;
3025 struct extent_io_tree *io_tree = &inode->io_tree;
3026 struct extent_state *cached_state = NULL;
3028 int compress_type = 0;
3030 u64 logical_len = ordered_extent->num_bytes;
3031 bool freespace_inode;
3032 bool truncated = false;
3033 bool clear_reserved_extent = true;
3034 unsigned int clear_bits = EXTENT_DEFRAG;
3036 start = ordered_extent->file_offset;
3037 end = start + ordered_extent->num_bytes - 1;
3039 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
3040 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) &&
3041 !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags) &&
3042 !test_bit(BTRFS_ORDERED_ENCODED, &ordered_extent->flags))
3043 clear_bits |= EXTENT_DELALLOC_NEW;
3045 freespace_inode = btrfs_is_free_space_inode(inode);
3046 if (!freespace_inode)
3047 btrfs_lockdep_acquire(fs_info, btrfs_ordered_extent);
3049 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
3054 if (btrfs_is_zoned(fs_info))
3055 btrfs_zone_finish_endio(fs_info, ordered_extent->disk_bytenr,
3056 ordered_extent->disk_num_bytes);
3058 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
3060 logical_len = ordered_extent->truncated_len;
3061 /* Truncated the entire extent, don't bother adding */
3067 * If it's a COW write we need to lock the extent range as we will be
3068 * inserting/replacing file extent items and unpinning an extent map.
3069 * This must be taken before joining a transaction, as it's a higher
3070 * level lock (like the inode's VFS lock), otherwise we can run into an
3071 * ABBA deadlock with other tasks (transactions work like a lock,
3072 * depending on their current state).
3074 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
3075 clear_bits |= EXTENT_LOCKED;
3076 lock_extent(io_tree, start, end, &cached_state);
3079 if (freespace_inode)
3080 trans = btrfs_join_transaction_spacecache(root);
3082 trans = btrfs_join_transaction(root);
3083 if (IS_ERR(trans)) {
3084 ret = PTR_ERR(trans);
3089 trans->block_rsv = &inode->block_rsv;
3091 ret = btrfs_insert_raid_extent(trans, ordered_extent);
3093 btrfs_abort_transaction(trans, ret);
3097 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
3099 ASSERT(list_empty(&ordered_extent->list));
3100 if (!list_empty(&ordered_extent->list)) {
3102 btrfs_abort_transaction(trans, ret);
3106 btrfs_inode_safe_disk_i_size_write(inode, 0);
3107 ret = btrfs_update_inode_fallback(trans, inode);
3109 /* -ENOMEM or corruption */
3110 btrfs_abort_transaction(trans, ret);
3115 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
3116 compress_type = ordered_extent->compress_type;
3117 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
3118 BUG_ON(compress_type);
3119 ret = btrfs_mark_extent_written(trans, inode,
3120 ordered_extent->file_offset,
3121 ordered_extent->file_offset +
3123 btrfs_zoned_release_data_reloc_bg(fs_info, ordered_extent->disk_bytenr,
3124 ordered_extent->disk_num_bytes);
3126 BUG_ON(root == fs_info->tree_root);
3127 ret = insert_ordered_extent_file_extent(trans, ordered_extent);
3129 clear_reserved_extent = false;
3130 btrfs_release_delalloc_bytes(fs_info,
3131 ordered_extent->disk_bytenr,
3132 ordered_extent->disk_num_bytes);
3136 btrfs_abort_transaction(trans, ret);
3140 ret = unpin_extent_cache(inode, ordered_extent->file_offset,
3141 ordered_extent->num_bytes, trans->transid);
3143 btrfs_abort_transaction(trans, ret);
3147 ret = add_pending_csums(trans, &ordered_extent->list);
3149 btrfs_abort_transaction(trans, ret);
3154 * If this is a new delalloc range, clear its new delalloc flag to
3155 * update the inode's number of bytes. This needs to be done first
3156 * before updating the inode item.
3158 if ((clear_bits & EXTENT_DELALLOC_NEW) &&
3159 !test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags))
3160 clear_extent_bit(&inode->io_tree, start, end,
3161 EXTENT_DELALLOC_NEW | EXTENT_ADD_INODE_BYTES,
3164 btrfs_inode_safe_disk_i_size_write(inode, 0);
3165 ret = btrfs_update_inode_fallback(trans, inode);
3166 if (ret) { /* -ENOMEM or corruption */
3167 btrfs_abort_transaction(trans, ret);
3171 clear_extent_bit(&inode->io_tree, start, end, clear_bits,
3175 btrfs_end_transaction(trans);
3177 if (ret || truncated) {
3178 u64 unwritten_start = start;
3181 * If we failed to finish this ordered extent for any reason we
3182 * need to make sure BTRFS_ORDERED_IOERR is set on the ordered
3183 * extent, and mark the inode with the error if it wasn't
3184 * already set. Any error during writeback would have already
3185 * set the mapping error, so we need to set it if we're the ones
3186 * marking this ordered extent as failed.
3189 btrfs_mark_ordered_extent_error(ordered_extent);
3192 unwritten_start += logical_len;
3193 clear_extent_uptodate(io_tree, unwritten_start, end, NULL);
3196 * Drop extent maps for the part of the extent we didn't write.
3198 * We have an exception here for the free_space_inode, this is
3199 * because when we do btrfs_get_extent() on the free space inode
3200 * we will search the commit root. If this is a new block group
3201 * we won't find anything, and we will trip over the assert in
3202 * writepage where we do ASSERT(em->block_start !=
3205 * Theoretically we could also skip this for any NOCOW extent as
3206 * we don't mess with the extent map tree in the NOCOW case, but
3207 * for now simply skip this if we are the free space inode.
3209 if (!btrfs_is_free_space_inode(inode))
3210 btrfs_drop_extent_map_range(inode, unwritten_start,
3214 * If the ordered extent had an IOERR or something else went
3215 * wrong we need to return the space for this ordered extent
3216 * back to the allocator. We only free the extent in the
3217 * truncated case if we didn't write out the extent at all.
3219 * If we made it past insert_reserved_file_extent before we
3220 * errored out then we don't need to do this as the accounting
3221 * has already been done.
3223 if ((ret || !logical_len) &&
3224 clear_reserved_extent &&
3225 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
3226 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
3228 * Discard the range before returning it back to the
3231 if (ret && btrfs_test_opt(fs_info, DISCARD_SYNC))
3232 btrfs_discard_extent(fs_info,
3233 ordered_extent->disk_bytenr,
3234 ordered_extent->disk_num_bytes,
3236 btrfs_free_reserved_extent(fs_info,
3237 ordered_extent->disk_bytenr,
3238 ordered_extent->disk_num_bytes, 1);
3240 * Actually free the qgroup rsv which was released when
3241 * the ordered extent was created.
3243 btrfs_qgroup_free_refroot(fs_info, btrfs_root_id(inode->root),
3244 ordered_extent->qgroup_rsv,
3245 BTRFS_QGROUP_RSV_DATA);
3250 * This needs to be done to make sure anybody waiting knows we are done
3251 * updating everything for this ordered extent.
3253 btrfs_remove_ordered_extent(inode, ordered_extent);
3256 btrfs_put_ordered_extent(ordered_extent);
3257 /* once for the tree */
3258 btrfs_put_ordered_extent(ordered_extent);
3263 int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered)
3265 if (btrfs_is_zoned(ordered->inode->root->fs_info) &&
3266 !test_bit(BTRFS_ORDERED_IOERR, &ordered->flags) &&
3267 list_empty(&ordered->bioc_list))
3268 btrfs_finish_ordered_zoned(ordered);
3269 return btrfs_finish_one_ordered(ordered);
3273 * Verify the checksum for a single sector without any extra action that depend
3274 * on the type of I/O.
3276 int btrfs_check_sector_csum(struct btrfs_fs_info *fs_info, struct page *page,
3277 u32 pgoff, u8 *csum, const u8 * const csum_expected)
3279 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
3282 ASSERT(pgoff + fs_info->sectorsize <= PAGE_SIZE);
3284 shash->tfm = fs_info->csum_shash;
3286 kaddr = kmap_local_page(page) + pgoff;
3287 crypto_shash_digest(shash, kaddr, fs_info->sectorsize, csum);
3288 kunmap_local(kaddr);
3290 if (memcmp(csum, csum_expected, fs_info->csum_size))
3296 * Verify the checksum of a single data sector.
3298 * @bbio: btrfs_io_bio which contains the csum
3299 * @dev: device the sector is on
3300 * @bio_offset: offset to the beginning of the bio (in bytes)
3301 * @bv: bio_vec to check
3303 * Check if the checksum on a data block is valid. When a checksum mismatch is
3304 * detected, report the error and fill the corrupted range with zero.
3306 * Return %true if the sector is ok or had no checksum to start with, else %false.
3308 bool btrfs_data_csum_ok(struct btrfs_bio *bbio, struct btrfs_device *dev,
3309 u32 bio_offset, struct bio_vec *bv)
3311 struct btrfs_inode *inode = bbio->inode;
3312 struct btrfs_fs_info *fs_info = inode->root->fs_info;
3313 u64 file_offset = bbio->file_offset + bio_offset;
3314 u64 end = file_offset + bv->bv_len - 1;
3316 u8 csum[BTRFS_CSUM_SIZE];
3318 ASSERT(bv->bv_len == fs_info->sectorsize);
3323 if (btrfs_is_data_reloc_root(inode->root) &&
3324 test_range_bit(&inode->io_tree, file_offset, end, EXTENT_NODATASUM,
3326 /* Skip the range without csum for data reloc inode */
3327 clear_extent_bits(&inode->io_tree, file_offset, end,
3332 csum_expected = bbio->csum + (bio_offset >> fs_info->sectorsize_bits) *
3334 if (btrfs_check_sector_csum(fs_info, bv->bv_page, bv->bv_offset, csum,
3340 btrfs_print_data_csum_error(inode, file_offset, csum, csum_expected,
3343 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS);
3349 * Perform a delayed iput on @inode.
3351 * @inode: The inode we want to perform iput on
3353 * This function uses the generic vfs_inode::i_count to track whether we should
3354 * just decrement it (in case it's > 1) or if this is the last iput then link
3355 * the inode to the delayed iput machinery. Delayed iputs are processed at
3356 * transaction commit time/superblock commit/cleaner kthread.
3358 void btrfs_add_delayed_iput(struct btrfs_inode *inode)
3360 struct btrfs_fs_info *fs_info = inode->root->fs_info;
3361 unsigned long flags;
3363 if (atomic_add_unless(&inode->vfs_inode.i_count, -1, 1))
3366 atomic_inc(&fs_info->nr_delayed_iputs);
3368 * Need to be irq safe here because we can be called from either an irq
3369 * context (see bio.c and btrfs_put_ordered_extent()) or a non-irq
3372 spin_lock_irqsave(&fs_info->delayed_iput_lock, flags);
3373 ASSERT(list_empty(&inode->delayed_iput));
3374 list_add_tail(&inode->delayed_iput, &fs_info->delayed_iputs);
3375 spin_unlock_irqrestore(&fs_info->delayed_iput_lock, flags);
3376 if (!test_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags))
3377 wake_up_process(fs_info->cleaner_kthread);
3380 static void run_delayed_iput_locked(struct btrfs_fs_info *fs_info,
3381 struct btrfs_inode *inode)
3383 list_del_init(&inode->delayed_iput);
3384 spin_unlock_irq(&fs_info->delayed_iput_lock);
3385 iput(&inode->vfs_inode);
3386 if (atomic_dec_and_test(&fs_info->nr_delayed_iputs))
3387 wake_up(&fs_info->delayed_iputs_wait);
3388 spin_lock_irq(&fs_info->delayed_iput_lock);
3391 static void btrfs_run_delayed_iput(struct btrfs_fs_info *fs_info,
3392 struct btrfs_inode *inode)
3394 if (!list_empty(&inode->delayed_iput)) {
3395 spin_lock_irq(&fs_info->delayed_iput_lock);
3396 if (!list_empty(&inode->delayed_iput))
3397 run_delayed_iput_locked(fs_info, inode);
3398 spin_unlock_irq(&fs_info->delayed_iput_lock);
3402 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info)
3405 * btrfs_put_ordered_extent() can run in irq context (see bio.c), which
3406 * calls btrfs_add_delayed_iput() and that needs to lock
3407 * fs_info->delayed_iput_lock. So we need to disable irqs here to
3408 * prevent a deadlock.
3410 spin_lock_irq(&fs_info->delayed_iput_lock);
3411 while (!list_empty(&fs_info->delayed_iputs)) {
3412 struct btrfs_inode *inode;
3414 inode = list_first_entry(&fs_info->delayed_iputs,
3415 struct btrfs_inode, delayed_iput);
3416 run_delayed_iput_locked(fs_info, inode);
3417 if (need_resched()) {
3418 spin_unlock_irq(&fs_info->delayed_iput_lock);
3420 spin_lock_irq(&fs_info->delayed_iput_lock);
3423 spin_unlock_irq(&fs_info->delayed_iput_lock);
3427 * Wait for flushing all delayed iputs
3429 * @fs_info: the filesystem
3431 * This will wait on any delayed iputs that are currently running with KILLABLE
3432 * set. Once they are all done running we will return, unless we are killed in
3433 * which case we return EINTR. This helps in user operations like fallocate etc
3434 * that might get blocked on the iputs.
3436 * Return EINTR if we were killed, 0 if nothing's pending
3438 int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info)
3440 int ret = wait_event_killable(fs_info->delayed_iputs_wait,
3441 atomic_read(&fs_info->nr_delayed_iputs) == 0);
3448 * This creates an orphan entry for the given inode in case something goes wrong
3449 * in the middle of an unlink.
3451 int btrfs_orphan_add(struct btrfs_trans_handle *trans,
3452 struct btrfs_inode *inode)
3456 ret = btrfs_insert_orphan_item(trans, inode->root, btrfs_ino(inode));
3457 if (ret && ret != -EEXIST) {
3458 btrfs_abort_transaction(trans, ret);
3466 * We have done the delete so we can go ahead and remove the orphan item for
3467 * this particular inode.
3469 static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3470 struct btrfs_inode *inode)
3472 return btrfs_del_orphan_item(trans, inode->root, btrfs_ino(inode));
3476 * this cleans up any orphans that may be left on the list from the last use
3479 int btrfs_orphan_cleanup(struct btrfs_root *root)
3481 struct btrfs_fs_info *fs_info = root->fs_info;
3482 struct btrfs_path *path;
3483 struct extent_buffer *leaf;
3484 struct btrfs_key key, found_key;
3485 struct btrfs_trans_handle *trans;
3486 struct inode *inode;
3487 u64 last_objectid = 0;
3488 int ret = 0, nr_unlink = 0;
3490 if (test_and_set_bit(BTRFS_ROOT_ORPHAN_CLEANUP, &root->state))
3493 path = btrfs_alloc_path();
3498 path->reada = READA_BACK;
3500 key.objectid = BTRFS_ORPHAN_OBJECTID;
3501 key.type = BTRFS_ORPHAN_ITEM_KEY;
3502 key.offset = (u64)-1;
3505 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3510 * if ret == 0 means we found what we were searching for, which
3511 * is weird, but possible, so only screw with path if we didn't
3512 * find the key and see if we have stuff that matches
3516 if (path->slots[0] == 0)
3521 /* pull out the item */
3522 leaf = path->nodes[0];
3523 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3525 /* make sure the item matches what we want */
3526 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3528 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
3531 /* release the path since we're done with it */
3532 btrfs_release_path(path);
3535 * this is where we are basically btrfs_lookup, without the
3536 * crossing root thing. we store the inode number in the
3537 * offset of the orphan item.
3540 if (found_key.offset == last_objectid) {
3542 * We found the same inode as before. This means we were
3543 * not able to remove its items via eviction triggered
3544 * by an iput(). A transaction abort may have happened,
3545 * due to -ENOSPC for example, so try to grab the error
3546 * that lead to a transaction abort, if any.
3549 "Error removing orphan entry, stopping orphan cleanup");
3550 ret = BTRFS_FS_ERROR(fs_info) ?: -EINVAL;
3554 last_objectid = found_key.offset;
3556 found_key.objectid = found_key.offset;
3557 found_key.type = BTRFS_INODE_ITEM_KEY;
3558 found_key.offset = 0;
3559 inode = btrfs_iget(last_objectid, root);
3560 if (IS_ERR(inode)) {
3561 ret = PTR_ERR(inode);
3567 if (!inode && root == fs_info->tree_root) {
3568 struct btrfs_root *dead_root;
3569 int is_dead_root = 0;
3572 * This is an orphan in the tree root. Currently these
3573 * could come from 2 sources:
3574 * a) a root (snapshot/subvolume) deletion in progress
3575 * b) a free space cache inode
3576 * We need to distinguish those two, as the orphan item
3577 * for a root must not get deleted before the deletion
3578 * of the snapshot/subvolume's tree completes.
3580 * btrfs_find_orphan_roots() ran before us, which has
3581 * found all deleted roots and loaded them into
3582 * fs_info->fs_roots_radix. So here we can find if an
3583 * orphan item corresponds to a deleted root by looking
3584 * up the root from that radix tree.
3587 spin_lock(&fs_info->fs_roots_radix_lock);
3588 dead_root = radix_tree_lookup(&fs_info->fs_roots_radix,
3589 (unsigned long)found_key.objectid);
3590 if (dead_root && btrfs_root_refs(&dead_root->root_item) == 0)
3592 spin_unlock(&fs_info->fs_roots_radix_lock);
3595 /* prevent this orphan from being found again */
3596 key.offset = found_key.objectid - 1;
3603 * If we have an inode with links, there are a couple of
3606 * 1. We were halfway through creating fsverity metadata for the
3607 * file. In that case, the orphan item represents incomplete
3608 * fsverity metadata which must be cleaned up with
3609 * btrfs_drop_verity_items and deleting the orphan item.
3611 * 2. Old kernels (before v3.12) used to create an
3612 * orphan item for truncate indicating that there were possibly
3613 * extent items past i_size that needed to be deleted. In v3.12,
3614 * truncate was changed to update i_size in sync with the extent
3615 * items, but the (useless) orphan item was still created. Since
3616 * v4.18, we don't create the orphan item for truncate at all.
3618 * So, this item could mean that we need to do a truncate, but
3619 * only if this filesystem was last used on a pre-v3.12 kernel
3620 * and was not cleanly unmounted. The odds of that are quite
3621 * slim, and it's a pain to do the truncate now, so just delete
3624 * It's also possible that this orphan item was supposed to be
3625 * deleted but wasn't. The inode number may have been reused,
3626 * but either way, we can delete the orphan item.
3628 if (!inode || inode->i_nlink) {
3630 ret = btrfs_drop_verity_items(BTRFS_I(inode));
3636 trans = btrfs_start_transaction(root, 1);
3637 if (IS_ERR(trans)) {
3638 ret = PTR_ERR(trans);
3641 btrfs_debug(fs_info, "auto deleting %Lu",
3642 found_key.objectid);
3643 ret = btrfs_del_orphan_item(trans, root,
3644 found_key.objectid);
3645 btrfs_end_transaction(trans);
3653 /* this will do delete_inode and everything for us */
3656 /* release the path since we're done with it */
3657 btrfs_release_path(path);
3659 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
3660 trans = btrfs_join_transaction(root);
3662 btrfs_end_transaction(trans);
3666 btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink);
3670 btrfs_err(fs_info, "could not do orphan cleanup %d", ret);
3671 btrfs_free_path(path);
3676 * very simple check to peek ahead in the leaf looking for xattrs. If we
3677 * don't find any xattrs, we know there can't be any acls.
3679 * slot is the slot the inode is in, objectid is the objectid of the inode
3681 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
3682 int slot, u64 objectid,
3683 int *first_xattr_slot)
3685 u32 nritems = btrfs_header_nritems(leaf);
3686 struct btrfs_key found_key;
3687 static u64 xattr_access = 0;
3688 static u64 xattr_default = 0;
3691 if (!xattr_access) {
3692 xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS,
3693 strlen(XATTR_NAME_POSIX_ACL_ACCESS));
3694 xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT,
3695 strlen(XATTR_NAME_POSIX_ACL_DEFAULT));
3699 *first_xattr_slot = -1;
3700 while (slot < nritems) {
3701 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3703 /* we found a different objectid, there must not be acls */
3704 if (found_key.objectid != objectid)
3707 /* we found an xattr, assume we've got an acl */
3708 if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
3709 if (*first_xattr_slot == -1)
3710 *first_xattr_slot = slot;
3711 if (found_key.offset == xattr_access ||
3712 found_key.offset == xattr_default)
3717 * we found a key greater than an xattr key, there can't
3718 * be any acls later on
3720 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3727 * it goes inode, inode backrefs, xattrs, extents,
3728 * so if there are a ton of hard links to an inode there can
3729 * be a lot of backrefs. Don't waste time searching too hard,
3730 * this is just an optimization
3735 /* we hit the end of the leaf before we found an xattr or
3736 * something larger than an xattr. We have to assume the inode
3739 if (*first_xattr_slot == -1)
3740 *first_xattr_slot = slot;
3744 static int btrfs_init_file_extent_tree(struct btrfs_inode *inode)
3746 struct btrfs_fs_info *fs_info = inode->root->fs_info;
3748 if (WARN_ON_ONCE(inode->file_extent_tree))
3750 if (btrfs_fs_incompat(fs_info, NO_HOLES))
3752 if (!S_ISREG(inode->vfs_inode.i_mode))
3754 if (btrfs_is_free_space_inode(inode))
3757 inode->file_extent_tree = kmalloc(sizeof(struct extent_io_tree), GFP_KERNEL);
3758 if (!inode->file_extent_tree)
3761 extent_io_tree_init(fs_info, inode->file_extent_tree, IO_TREE_INODE_FILE_EXTENT);
3762 /* Lockdep class is set only for the file extent tree. */
3763 lockdep_set_class(&inode->file_extent_tree->lock, &file_extent_tree_class);
3768 static int btrfs_add_inode_to_root(struct btrfs_inode *inode, bool prealloc)
3770 struct btrfs_root *root = inode->root;
3771 struct btrfs_inode *existing;
3772 const u64 ino = btrfs_ino(inode);
3775 if (inode_unhashed(&inode->vfs_inode))
3779 ret = xa_reserve(&root->inodes, ino, GFP_NOFS);
3784 existing = xa_store(&root->inodes, ino, inode, GFP_ATOMIC);
3786 if (xa_is_err(existing)) {
3787 ret = xa_err(existing);
3788 ASSERT(ret != -EINVAL);
3789 ASSERT(ret != -ENOMEM);
3791 } else if (existing) {
3792 WARN_ON(!(existing->vfs_inode.i_state & (I_WILL_FREE | I_FREEING)));
3799 * Read a locked inode from the btree into the in-memory inode and add it to
3800 * its root list/tree.
3802 * On failure clean up the inode.
3804 static int btrfs_read_locked_inode(struct inode *inode, struct btrfs_path *path)
3806 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
3807 struct extent_buffer *leaf;
3808 struct btrfs_inode_item *inode_item;
3809 struct btrfs_root *root = BTRFS_I(inode)->root;
3810 struct btrfs_key location;
3815 bool filled = false;
3816 int first_xattr_slot;
3818 ret = btrfs_init_file_extent_tree(BTRFS_I(inode));
3822 ret = btrfs_fill_inode(inode, &rdev);
3828 btrfs_get_inode_key(BTRFS_I(inode), &location);
3830 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
3833 * ret > 0 can come from btrfs_search_slot called by
3834 * btrfs_lookup_inode(), this means the inode was not found.
3841 leaf = path->nodes[0];
3846 inode_item = btrfs_item_ptr(leaf, path->slots[0],
3847 struct btrfs_inode_item);
3848 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
3849 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
3850 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3851 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
3852 btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item));
3853 btrfs_inode_set_file_extent_range(BTRFS_I(inode), 0,
3854 round_up(i_size_read(inode), fs_info->sectorsize));
3856 inode_set_atime(inode, btrfs_timespec_sec(leaf, &inode_item->atime),
3857 btrfs_timespec_nsec(leaf, &inode_item->atime));
3859 inode_set_mtime(inode, btrfs_timespec_sec(leaf, &inode_item->mtime),
3860 btrfs_timespec_nsec(leaf, &inode_item->mtime));
3862 inode_set_ctime(inode, btrfs_timespec_sec(leaf, &inode_item->ctime),
3863 btrfs_timespec_nsec(leaf, &inode_item->ctime));
3865 BTRFS_I(inode)->i_otime_sec = btrfs_timespec_sec(leaf, &inode_item->otime);
3866 BTRFS_I(inode)->i_otime_nsec = btrfs_timespec_nsec(leaf, &inode_item->otime);
3868 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
3869 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
3870 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3872 inode_set_iversion_queried(inode,
3873 btrfs_inode_sequence(leaf, inode_item));
3874 inode->i_generation = BTRFS_I(inode)->generation;
3876 rdev = btrfs_inode_rdev(leaf, inode_item);
3878 if (S_ISDIR(inode->i_mode))
3879 BTRFS_I(inode)->index_cnt = (u64)-1;
3881 btrfs_inode_split_flags(btrfs_inode_flags(leaf, inode_item),
3882 &BTRFS_I(inode)->flags, &BTRFS_I(inode)->ro_flags);
3886 * If we were modified in the current generation and evicted from memory
3887 * and then re-read we need to do a full sync since we don't have any
3888 * idea about which extents were modified before we were evicted from
3891 * This is required for both inode re-read from disk and delayed inode
3892 * in the delayed_nodes xarray.
3894 if (BTRFS_I(inode)->last_trans == btrfs_get_fs_generation(fs_info))
3895 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3896 &BTRFS_I(inode)->runtime_flags);
3899 * We don't persist the id of the transaction where an unlink operation
3900 * against the inode was last made. So here we assume the inode might
3901 * have been evicted, and therefore the exact value of last_unlink_trans
3902 * lost, and set it to last_trans to avoid metadata inconsistencies
3903 * between the inode and its parent if the inode is fsync'ed and the log
3904 * replayed. For example, in the scenario:
3907 * ln mydir/foo mydir/bar
3910 * echo 2 > /proc/sys/vm/drop_caches # evicts inode
3911 * xfs_io -c fsync mydir/foo
3913 * mount fs, triggers fsync log replay
3915 * We must make sure that when we fsync our inode foo we also log its
3916 * parent inode, otherwise after log replay the parent still has the
3917 * dentry with the "bar" name but our inode foo has a link count of 1
3918 * and doesn't have an inode ref with the name "bar" anymore.
3920 * Setting last_unlink_trans to last_trans is a pessimistic approach,
3921 * but it guarantees correctness at the expense of occasional full
3922 * transaction commits on fsync if our inode is a directory, or if our
3923 * inode is not a directory, logging its parent unnecessarily.
3925 BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans;
3928 * Same logic as for last_unlink_trans. We don't persist the generation
3929 * of the last transaction where this inode was used for a reflink
3930 * operation, so after eviction and reloading the inode we must be
3931 * pessimistic and assume the last transaction that modified the inode.
3933 BTRFS_I(inode)->last_reflink_trans = BTRFS_I(inode)->last_trans;
3936 if (inode->i_nlink != 1 ||
3937 path->slots[0] >= btrfs_header_nritems(leaf))
3940 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
3941 if (location.objectid != btrfs_ino(BTRFS_I(inode)))
3944 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3945 if (location.type == BTRFS_INODE_REF_KEY) {
3946 struct btrfs_inode_ref *ref;
3948 ref = (struct btrfs_inode_ref *)ptr;
3949 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3950 } else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3951 struct btrfs_inode_extref *extref;
3953 extref = (struct btrfs_inode_extref *)ptr;
3954 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3959 * try to precache a NULL acl entry for files that don't have
3960 * any xattrs or acls
3962 maybe_acls = acls_after_inode_item(leaf, path->slots[0],
3963 btrfs_ino(BTRFS_I(inode)), &first_xattr_slot);
3964 if (first_xattr_slot != -1) {
3965 path->slots[0] = first_xattr_slot;
3966 ret = btrfs_load_inode_props(inode, path);
3969 "error loading props for ino %llu (root %llu): %d",
3970 btrfs_ino(BTRFS_I(inode)),
3971 btrfs_root_id(root), ret);
3975 cache_no_acl(inode);
3977 switch (inode->i_mode & S_IFMT) {
3979 inode->i_mapping->a_ops = &btrfs_aops;
3980 inode->i_fop = &btrfs_file_operations;
3981 inode->i_op = &btrfs_file_inode_operations;
3984 inode->i_fop = &btrfs_dir_file_operations;
3985 inode->i_op = &btrfs_dir_inode_operations;
3988 inode->i_op = &btrfs_symlink_inode_operations;
3989 inode_nohighmem(inode);
3990 inode->i_mapping->a_ops = &btrfs_aops;
3993 inode->i_op = &btrfs_special_inode_operations;
3994 init_special_inode(inode, inode->i_mode, rdev);
3998 btrfs_sync_inode_flags_to_i_flags(inode);
4000 ret = btrfs_add_inode_to_root(BTRFS_I(inode), true);
4011 * given a leaf and an inode, copy the inode fields into the leaf
4013 static void fill_inode_item(struct btrfs_trans_handle *trans,
4014 struct extent_buffer *leaf,
4015 struct btrfs_inode_item *item,
4016 struct inode *inode)
4018 struct btrfs_map_token token;
4021 btrfs_init_map_token(&token, leaf);
4023 btrfs_set_token_inode_uid(&token, item, i_uid_read(inode));
4024 btrfs_set_token_inode_gid(&token, item, i_gid_read(inode));
4025 btrfs_set_token_inode_size(&token, item, BTRFS_I(inode)->disk_i_size);
4026 btrfs_set_token_inode_mode(&token, item, inode->i_mode);
4027 btrfs_set_token_inode_nlink(&token, item, inode->i_nlink);
4029 btrfs_set_token_timespec_sec(&token, &item->atime,
4030 inode_get_atime_sec(inode));
4031 btrfs_set_token_timespec_nsec(&token, &item->atime,
4032 inode_get_atime_nsec(inode));
4034 btrfs_set_token_timespec_sec(&token, &item->mtime,
4035 inode_get_mtime_sec(inode));
4036 btrfs_set_token_timespec_nsec(&token, &item->mtime,
4037 inode_get_mtime_nsec(inode));
4039 btrfs_set_token_timespec_sec(&token, &item->ctime,
4040 inode_get_ctime_sec(inode));
4041 btrfs_set_token_timespec_nsec(&token, &item->ctime,
4042 inode_get_ctime_nsec(inode));
4044 btrfs_set_token_timespec_sec(&token, &item->otime, BTRFS_I(inode)->i_otime_sec);
4045 btrfs_set_token_timespec_nsec(&token, &item->otime, BTRFS_I(inode)->i_otime_nsec);
4047 btrfs_set_token_inode_nbytes(&token, item, inode_get_bytes(inode));
4048 btrfs_set_token_inode_generation(&token, item,
4049 BTRFS_I(inode)->generation);
4050 btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode));
4051 btrfs_set_token_inode_transid(&token, item, trans->transid);
4052 btrfs_set_token_inode_rdev(&token, item, inode->i_rdev);
4053 flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags,
4054 BTRFS_I(inode)->ro_flags);
4055 btrfs_set_token_inode_flags(&token, item, flags);
4056 btrfs_set_token_inode_block_group(&token, item, 0);
4060 * copy everything in the in-memory inode into the btree.
4062 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
4063 struct btrfs_inode *inode)
4065 struct btrfs_inode_item *inode_item;
4066 struct btrfs_path *path;
4067 struct extent_buffer *leaf;
4068 struct btrfs_key key;
4071 path = btrfs_alloc_path();
4075 btrfs_get_inode_key(inode, &key);
4076 ret = btrfs_lookup_inode(trans, inode->root, path, &key, 1);
4083 leaf = path->nodes[0];
4084 inode_item = btrfs_item_ptr(leaf, path->slots[0],
4085 struct btrfs_inode_item);
4087 fill_inode_item(trans, leaf, inode_item, &inode->vfs_inode);
4088 btrfs_mark_buffer_dirty(trans, leaf);
4089 btrfs_set_inode_last_trans(trans, inode);
4092 btrfs_free_path(path);
4097 * copy everything in the in-memory inode into the btree.
4099 int btrfs_update_inode(struct btrfs_trans_handle *trans,
4100 struct btrfs_inode *inode)
4102 struct btrfs_root *root = inode->root;
4103 struct btrfs_fs_info *fs_info = root->fs_info;
4107 * If the inode is a free space inode, we can deadlock during commit
4108 * if we put it into the delayed code.
4110 * The data relocation inode should also be directly updated
4113 if (!btrfs_is_free_space_inode(inode)
4114 && !btrfs_is_data_reloc_root(root)
4115 && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) {
4116 btrfs_update_root_times(trans, root);
4118 ret = btrfs_delayed_update_inode(trans, inode);
4120 btrfs_set_inode_last_trans(trans, inode);
4124 return btrfs_update_inode_item(trans, inode);
4127 int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
4128 struct btrfs_inode *inode)
4132 ret = btrfs_update_inode(trans, inode);
4134 return btrfs_update_inode_item(trans, inode);
4139 * unlink helper that gets used here in inode.c and in the tree logging
4140 * recovery code. It remove a link in a directory with a given name, and
4141 * also drops the back refs in the inode to the directory
4143 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4144 struct btrfs_inode *dir,
4145 struct btrfs_inode *inode,
4146 const struct fscrypt_str *name,
4147 struct btrfs_rename_ctx *rename_ctx)
4149 struct btrfs_root *root = dir->root;
4150 struct btrfs_fs_info *fs_info = root->fs_info;
4151 struct btrfs_path *path;
4153 struct btrfs_dir_item *di;
4155 u64 ino = btrfs_ino(inode);
4156 u64 dir_ino = btrfs_ino(dir);
4158 path = btrfs_alloc_path();
4164 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, name, -1);
4165 if (IS_ERR_OR_NULL(di)) {
4166 ret = di ? PTR_ERR(di) : -ENOENT;
4169 ret = btrfs_delete_one_dir_name(trans, root, path, di);
4172 btrfs_release_path(path);
4175 * If we don't have dir index, we have to get it by looking up
4176 * the inode ref, since we get the inode ref, remove it directly,
4177 * it is unnecessary to do delayed deletion.
4179 * But if we have dir index, needn't search inode ref to get it.
4180 * Since the inode ref is close to the inode item, it is better
4181 * that we delay to delete it, and just do this deletion when
4182 * we update the inode item.
4184 if (inode->dir_index) {
4185 ret = btrfs_delayed_delete_inode_ref(inode);
4187 index = inode->dir_index;
4192 ret = btrfs_del_inode_ref(trans, root, name, ino, dir_ino, &index);
4195 "failed to delete reference to %.*s, inode %llu parent %llu",
4196 name->len, name->name, ino, dir_ino);
4197 btrfs_abort_transaction(trans, ret);
4202 rename_ctx->index = index;
4204 ret = btrfs_delete_delayed_dir_index(trans, dir, index);
4206 btrfs_abort_transaction(trans, ret);
4211 * If we are in a rename context, we don't need to update anything in the
4212 * log. That will be done later during the rename by btrfs_log_new_name().
4213 * Besides that, doing it here would only cause extra unnecessary btree
4214 * operations on the log tree, increasing latency for applications.
4217 btrfs_del_inode_ref_in_log(trans, root, name, inode, dir_ino);
4218 btrfs_del_dir_entries_in_log(trans, root, name, dir, index);
4222 * If we have a pending delayed iput we could end up with the final iput
4223 * being run in btrfs-cleaner context. If we have enough of these built
4224 * up we can end up burning a lot of time in btrfs-cleaner without any
4225 * way to throttle the unlinks. Since we're currently holding a ref on
4226 * the inode we can run the delayed iput here without any issues as the
4227 * final iput won't be done until after we drop the ref we're currently
4230 btrfs_run_delayed_iput(fs_info, inode);
4232 btrfs_free_path(path);
4236 btrfs_i_size_write(dir, dir->vfs_inode.i_size - name->len * 2);
4237 inode_inc_iversion(&inode->vfs_inode);
4238 inode_set_ctime_current(&inode->vfs_inode);
4239 inode_inc_iversion(&dir->vfs_inode);
4240 inode_set_mtime_to_ts(&dir->vfs_inode, inode_set_ctime_current(&dir->vfs_inode));
4241 ret = btrfs_update_inode(trans, dir);
4246 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4247 struct btrfs_inode *dir, struct btrfs_inode *inode,
4248 const struct fscrypt_str *name)
4252 ret = __btrfs_unlink_inode(trans, dir, inode, name, NULL);
4254 drop_nlink(&inode->vfs_inode);
4255 ret = btrfs_update_inode(trans, inode);
4261 * helper to start transaction for unlink and rmdir.
4263 * unlink and rmdir are special in btrfs, they do not always free space, so
4264 * if we cannot make our reservations the normal way try and see if there is
4265 * plenty of slack room in the global reserve to migrate, otherwise we cannot
4266 * allow the unlink to occur.
4268 static struct btrfs_trans_handle *__unlink_start_trans(struct btrfs_inode *dir)
4270 struct btrfs_root *root = dir->root;
4272 return btrfs_start_transaction_fallback_global_rsv(root,
4273 BTRFS_UNLINK_METADATA_UNITS);
4276 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
4278 struct btrfs_trans_handle *trans;
4279 struct inode *inode = d_inode(dentry);
4281 struct fscrypt_name fname;
4283 ret = fscrypt_setup_filename(dir, &dentry->d_name, 1, &fname);
4287 /* This needs to handle no-key deletions later on */
4289 trans = __unlink_start_trans(BTRFS_I(dir));
4290 if (IS_ERR(trans)) {
4291 ret = PTR_ERR(trans);
4295 btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
4298 ret = btrfs_unlink_inode(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
4303 if (inode->i_nlink == 0) {
4304 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
4310 btrfs_end_transaction(trans);
4311 btrfs_btree_balance_dirty(BTRFS_I(dir)->root->fs_info);
4313 fscrypt_free_filename(&fname);
4317 static int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
4318 struct btrfs_inode *dir, struct dentry *dentry)
4320 struct btrfs_root *root = dir->root;
4321 struct btrfs_inode *inode = BTRFS_I(d_inode(dentry));
4322 struct btrfs_path *path;
4323 struct extent_buffer *leaf;
4324 struct btrfs_dir_item *di;
4325 struct btrfs_key key;
4329 u64 dir_ino = btrfs_ino(dir);
4330 struct fscrypt_name fname;
4332 ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 1, &fname);
4336 /* This needs to handle no-key deletions later on */
4338 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) {
4339 objectid = btrfs_root_id(inode->root);
4340 } else if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) {
4341 objectid = inode->ref_root_id;
4344 fscrypt_free_filename(&fname);
4348 path = btrfs_alloc_path();
4354 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4355 &fname.disk_name, -1);
4356 if (IS_ERR_OR_NULL(di)) {
4357 ret = di ? PTR_ERR(di) : -ENOENT;
4361 leaf = path->nodes[0];
4362 btrfs_dir_item_key_to_cpu(leaf, di, &key);
4363 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
4364 ret = btrfs_delete_one_dir_name(trans, root, path, di);
4366 btrfs_abort_transaction(trans, ret);
4369 btrfs_release_path(path);
4372 * This is a placeholder inode for a subvolume we didn't have a
4373 * reference to at the time of the snapshot creation. In the meantime
4374 * we could have renamed the real subvol link into our snapshot, so
4375 * depending on btrfs_del_root_ref to return -ENOENT here is incorrect.
4376 * Instead simply lookup the dir_index_item for this entry so we can
4377 * remove it. Otherwise we know we have a ref to the root and we can
4378 * call btrfs_del_root_ref, and it _shouldn't_ fail.
4380 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) {
4381 di = btrfs_search_dir_index_item(root, path, dir_ino, &fname.disk_name);
4384 btrfs_abort_transaction(trans, ret);
4388 leaf = path->nodes[0];
4389 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4391 btrfs_release_path(path);
4393 ret = btrfs_del_root_ref(trans, objectid,
4394 btrfs_root_id(root), dir_ino,
4395 &index, &fname.disk_name);
4397 btrfs_abort_transaction(trans, ret);
4402 ret = btrfs_delete_delayed_dir_index(trans, dir, index);
4404 btrfs_abort_transaction(trans, ret);
4408 btrfs_i_size_write(dir, dir->vfs_inode.i_size - fname.disk_name.len * 2);
4409 inode_inc_iversion(&dir->vfs_inode);
4410 inode_set_mtime_to_ts(&dir->vfs_inode, inode_set_ctime_current(&dir->vfs_inode));
4411 ret = btrfs_update_inode_fallback(trans, dir);
4413 btrfs_abort_transaction(trans, ret);
4415 btrfs_free_path(path);
4416 fscrypt_free_filename(&fname);
4421 * Helper to check if the subvolume references other subvolumes or if it's
4424 static noinline int may_destroy_subvol(struct btrfs_root *root)
4426 struct btrfs_fs_info *fs_info = root->fs_info;
4427 struct btrfs_path *path;
4428 struct btrfs_dir_item *di;
4429 struct btrfs_key key;
4430 struct fscrypt_str name = FSTR_INIT("default", 7);
4434 path = btrfs_alloc_path();
4438 /* Make sure this root isn't set as the default subvol */
4439 dir_id = btrfs_super_root_dir(fs_info->super_copy);
4440 di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path,
4442 if (di && !IS_ERR(di)) {
4443 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
4444 if (key.objectid == btrfs_root_id(root)) {
4447 "deleting default subvolume %llu is not allowed",
4451 btrfs_release_path(path);
4454 key.objectid = btrfs_root_id(root);
4455 key.type = BTRFS_ROOT_REF_KEY;
4456 key.offset = (u64)-1;
4458 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4463 * Key with offset -1 found, there would have to exist a root
4464 * with such id, but this is out of valid range.
4471 if (path->slots[0] > 0) {
4473 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
4474 if (key.objectid == btrfs_root_id(root) && key.type == BTRFS_ROOT_REF_KEY)
4478 btrfs_free_path(path);
4482 /* Delete all dentries for inodes belonging to the root */
4483 static void btrfs_prune_dentries(struct btrfs_root *root)
4485 struct btrfs_fs_info *fs_info = root->fs_info;
4486 struct btrfs_inode *inode;
4489 if (!BTRFS_FS_ERROR(fs_info))
4490 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
4492 inode = btrfs_find_first_inode(root, min_ino);
4494 if (atomic_read(&inode->vfs_inode.i_count) > 1)
4495 d_prune_aliases(&inode->vfs_inode);
4497 min_ino = btrfs_ino(inode) + 1;
4499 * btrfs_drop_inode() will have it removed from the inode
4500 * cache when its usage count hits zero.
4502 iput(&inode->vfs_inode);
4504 inode = btrfs_find_first_inode(root, min_ino);
4508 int btrfs_delete_subvolume(struct btrfs_inode *dir, struct dentry *dentry)
4510 struct btrfs_root *root = dir->root;
4511 struct btrfs_fs_info *fs_info = root->fs_info;
4512 struct inode *inode = d_inode(dentry);
4513 struct btrfs_root *dest = BTRFS_I(inode)->root;
4514 struct btrfs_trans_handle *trans;
4515 struct btrfs_block_rsv block_rsv;
4517 u64 qgroup_reserved = 0;
4520 down_write(&fs_info->subvol_sem);
4523 * Don't allow to delete a subvolume with send in progress. This is
4524 * inside the inode lock so the error handling that has to drop the bit
4525 * again is not run concurrently.
4527 spin_lock(&dest->root_item_lock);
4528 if (dest->send_in_progress) {
4529 spin_unlock(&dest->root_item_lock);
4531 "attempt to delete subvolume %llu during send",
4532 btrfs_root_id(dest));
4536 if (atomic_read(&dest->nr_swapfiles)) {
4537 spin_unlock(&dest->root_item_lock);
4539 "attempt to delete subvolume %llu with active swapfile",
4540 btrfs_root_id(root));
4544 root_flags = btrfs_root_flags(&dest->root_item);
4545 btrfs_set_root_flags(&dest->root_item,
4546 root_flags | BTRFS_ROOT_SUBVOL_DEAD);
4547 spin_unlock(&dest->root_item_lock);
4549 ret = may_destroy_subvol(dest);
4553 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
4555 * One for dir inode,
4556 * two for dir entries,
4557 * two for root ref/backref.
4559 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 5, true);
4562 qgroup_reserved = block_rsv.qgroup_rsv_reserved;
4564 trans = btrfs_start_transaction(root, 0);
4565 if (IS_ERR(trans)) {
4566 ret = PTR_ERR(trans);
4569 btrfs_qgroup_convert_reserved_meta(root, qgroup_reserved);
4570 qgroup_reserved = 0;
4571 trans->block_rsv = &block_rsv;
4572 trans->bytes_reserved = block_rsv.size;
4574 btrfs_record_snapshot_destroy(trans, dir);
4576 ret = btrfs_unlink_subvol(trans, dir, dentry);
4578 btrfs_abort_transaction(trans, ret);
4582 ret = btrfs_record_root_in_trans(trans, dest);
4584 btrfs_abort_transaction(trans, ret);
4588 memset(&dest->root_item.drop_progress, 0,
4589 sizeof(dest->root_item.drop_progress));
4590 btrfs_set_root_drop_level(&dest->root_item, 0);
4591 btrfs_set_root_refs(&dest->root_item, 0);
4593 if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) {
4594 ret = btrfs_insert_orphan_item(trans,
4596 btrfs_root_id(dest));
4598 btrfs_abort_transaction(trans, ret);
4603 ret = btrfs_uuid_tree_remove(trans, dest->root_item.uuid,
4604 BTRFS_UUID_KEY_SUBVOL, btrfs_root_id(dest));
4605 if (ret && ret != -ENOENT) {
4606 btrfs_abort_transaction(trans, ret);
4609 if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) {
4610 ret = btrfs_uuid_tree_remove(trans,
4611 dest->root_item.received_uuid,
4612 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4613 btrfs_root_id(dest));
4614 if (ret && ret != -ENOENT) {
4615 btrfs_abort_transaction(trans, ret);
4620 free_anon_bdev(dest->anon_dev);
4623 trans->block_rsv = NULL;
4624 trans->bytes_reserved = 0;
4625 ret = btrfs_end_transaction(trans);
4626 inode->i_flags |= S_DEAD;
4628 btrfs_block_rsv_release(fs_info, &block_rsv, (u64)-1, NULL);
4629 if (qgroup_reserved)
4630 btrfs_qgroup_free_meta_prealloc(root, qgroup_reserved);
4633 spin_lock(&dest->root_item_lock);
4634 root_flags = btrfs_root_flags(&dest->root_item);
4635 btrfs_set_root_flags(&dest->root_item,
4636 root_flags & ~BTRFS_ROOT_SUBVOL_DEAD);
4637 spin_unlock(&dest->root_item_lock);
4640 up_write(&fs_info->subvol_sem);
4642 d_invalidate(dentry);
4643 btrfs_prune_dentries(dest);
4644 ASSERT(dest->send_in_progress == 0);
4650 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4652 struct inode *inode = d_inode(dentry);
4653 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
4655 struct btrfs_trans_handle *trans;
4656 u64 last_unlink_trans;
4657 struct fscrypt_name fname;
4659 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
4661 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID) {
4662 if (unlikely(btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))) {
4664 "extent tree v2 doesn't support snapshot deletion yet");
4667 return btrfs_delete_subvolume(BTRFS_I(dir), dentry);
4670 ret = fscrypt_setup_filename(dir, &dentry->d_name, 1, &fname);
4674 /* This needs to handle no-key deletions later on */
4676 trans = __unlink_start_trans(BTRFS_I(dir));
4677 if (IS_ERR(trans)) {
4678 ret = PTR_ERR(trans);
4682 if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4683 ret = btrfs_unlink_subvol(trans, BTRFS_I(dir), dentry);
4687 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
4691 last_unlink_trans = BTRFS_I(inode)->last_unlink_trans;
4693 /* now the directory is empty */
4694 ret = btrfs_unlink_inode(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
4697 btrfs_i_size_write(BTRFS_I(inode), 0);
4699 * Propagate the last_unlink_trans value of the deleted dir to
4700 * its parent directory. This is to prevent an unrecoverable
4701 * log tree in the case we do something like this:
4703 * 2) create snapshot under dir foo
4704 * 3) delete the snapshot
4707 * 6) fsync foo or some file inside foo
4709 if (last_unlink_trans >= trans->transid)
4710 BTRFS_I(dir)->last_unlink_trans = last_unlink_trans;
4713 btrfs_end_transaction(trans);
4715 btrfs_btree_balance_dirty(fs_info);
4716 fscrypt_free_filename(&fname);
4722 * Read, zero a chunk and write a block.
4724 * @inode - inode that we're zeroing
4725 * @from - the offset to start zeroing
4726 * @len - the length to zero, 0 to zero the entire range respective to the
4728 * @front - zero up to the offset instead of from the offset on
4730 * This will find the block for the "from" offset and cow the block and zero the
4731 * part we want to zero. This is used with truncate and hole punching.
4733 int btrfs_truncate_block(struct btrfs_inode *inode, loff_t from, loff_t len,
4736 struct btrfs_fs_info *fs_info = inode->root->fs_info;
4737 struct address_space *mapping = inode->vfs_inode.i_mapping;
4738 struct extent_io_tree *io_tree = &inode->io_tree;
4739 struct btrfs_ordered_extent *ordered;
4740 struct extent_state *cached_state = NULL;
4741 struct extent_changeset *data_reserved = NULL;
4742 bool only_release_metadata = false;
4743 u32 blocksize = fs_info->sectorsize;
4744 pgoff_t index = from >> PAGE_SHIFT;
4745 unsigned offset = from & (blocksize - 1);
4746 struct folio *folio;
4747 gfp_t mask = btrfs_alloc_write_mask(mapping);
4748 size_t write_bytes = blocksize;
4753 if (IS_ALIGNED(offset, blocksize) &&
4754 (!len || IS_ALIGNED(len, blocksize)))
4757 block_start = round_down(from, blocksize);
4758 block_end = block_start + blocksize - 1;
4760 ret = btrfs_check_data_free_space(inode, &data_reserved, block_start,
4763 if (btrfs_check_nocow_lock(inode, block_start, &write_bytes, false) > 0) {
4764 /* For nocow case, no need to reserve data space */
4765 only_release_metadata = true;
4770 ret = btrfs_delalloc_reserve_metadata(inode, blocksize, blocksize, false);
4772 if (!only_release_metadata)
4773 btrfs_free_reserved_data_space(inode, data_reserved,
4774 block_start, blocksize);
4778 folio = __filemap_get_folio(mapping, index,
4779 FGP_LOCK | FGP_ACCESSED | FGP_CREAT, mask);
4780 if (IS_ERR(folio)) {
4781 btrfs_delalloc_release_space(inode, data_reserved, block_start,
4783 btrfs_delalloc_release_extents(inode, blocksize);
4788 if (!folio_test_uptodate(folio)) {
4789 ret = btrfs_read_folio(NULL, folio);
4791 if (folio->mapping != mapping) {
4792 folio_unlock(folio);
4796 if (!folio_test_uptodate(folio)) {
4803 * We unlock the page after the io is completed and then re-lock it
4804 * above. release_folio() could have come in between that and cleared
4805 * folio private, but left the page in the mapping. Set the page mapped
4806 * here to make sure it's properly set for the subpage stuff.
4808 ret = set_folio_extent_mapped(folio);
4812 folio_wait_writeback(folio);
4814 lock_extent(io_tree, block_start, block_end, &cached_state);
4816 ordered = btrfs_lookup_ordered_extent(inode, block_start);
4818 unlock_extent(io_tree, block_start, block_end, &cached_state);
4819 folio_unlock(folio);
4821 btrfs_start_ordered_extent(ordered);
4822 btrfs_put_ordered_extent(ordered);
4826 clear_extent_bit(&inode->io_tree, block_start, block_end,
4827 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
4830 ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 0,
4833 unlock_extent(io_tree, block_start, block_end, &cached_state);
4837 if (offset != blocksize) {
4839 len = blocksize - offset;
4841 folio_zero_range(folio, block_start - folio_pos(folio),
4844 folio_zero_range(folio,
4845 (block_start - folio_pos(folio)) + offset,
4848 btrfs_folio_clear_checked(fs_info, folio, block_start,
4849 block_end + 1 - block_start);
4850 btrfs_folio_set_dirty(fs_info, folio, block_start,
4851 block_end + 1 - block_start);
4852 unlock_extent(io_tree, block_start, block_end, &cached_state);
4854 if (only_release_metadata)
4855 set_extent_bit(&inode->io_tree, block_start, block_end,
4856 EXTENT_NORESERVE, NULL);
4860 if (only_release_metadata)
4861 btrfs_delalloc_release_metadata(inode, blocksize, true);
4863 btrfs_delalloc_release_space(inode, data_reserved,
4864 block_start, blocksize, true);
4866 btrfs_delalloc_release_extents(inode, blocksize);
4867 folio_unlock(folio);
4870 if (only_release_metadata)
4871 btrfs_check_nocow_unlock(inode);
4872 extent_changeset_free(data_reserved);
4876 static int maybe_insert_hole(struct btrfs_inode *inode, u64 offset, u64 len)
4878 struct btrfs_root *root = inode->root;
4879 struct btrfs_fs_info *fs_info = root->fs_info;
4880 struct btrfs_trans_handle *trans;
4881 struct btrfs_drop_extents_args drop_args = { 0 };
4885 * If NO_HOLES is enabled, we don't need to do anything.
4886 * Later, up in the call chain, either btrfs_set_inode_last_sub_trans()
4887 * or btrfs_update_inode() will be called, which guarantee that the next
4888 * fsync will know this inode was changed and needs to be logged.
4890 if (btrfs_fs_incompat(fs_info, NO_HOLES))
4894 * 1 - for the one we're dropping
4895 * 1 - for the one we're adding
4896 * 1 - for updating the inode.
4898 trans = btrfs_start_transaction(root, 3);
4900 return PTR_ERR(trans);
4902 drop_args.start = offset;
4903 drop_args.end = offset + len;
4904 drop_args.drop_cache = true;
4906 ret = btrfs_drop_extents(trans, root, inode, &drop_args);
4908 btrfs_abort_transaction(trans, ret);
4909 btrfs_end_transaction(trans);
4913 ret = btrfs_insert_hole_extent(trans, root, btrfs_ino(inode), offset, len);
4915 btrfs_abort_transaction(trans, ret);
4917 btrfs_update_inode_bytes(inode, 0, drop_args.bytes_found);
4918 btrfs_update_inode(trans, inode);
4920 btrfs_end_transaction(trans);
4925 * This function puts in dummy file extents for the area we're creating a hole
4926 * for. So if we are truncating this file to a larger size we need to insert
4927 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4928 * the range between oldsize and size
4930 int btrfs_cont_expand(struct btrfs_inode *inode, loff_t oldsize, loff_t size)
4932 struct btrfs_root *root = inode->root;
4933 struct btrfs_fs_info *fs_info = root->fs_info;
4934 struct extent_io_tree *io_tree = &inode->io_tree;
4935 struct extent_map *em = NULL;
4936 struct extent_state *cached_state = NULL;
4937 u64 hole_start = ALIGN(oldsize, fs_info->sectorsize);
4938 u64 block_end = ALIGN(size, fs_info->sectorsize);
4945 * If our size started in the middle of a block we need to zero out the
4946 * rest of the block before we expand the i_size, otherwise we could
4947 * expose stale data.
4949 ret = btrfs_truncate_block(inode, oldsize, 0, 0);
4953 if (size <= hole_start)
4956 btrfs_lock_and_flush_ordered_range(inode, hole_start, block_end - 1,
4958 cur_offset = hole_start;
4960 em = btrfs_get_extent(inode, NULL, cur_offset, block_end - cur_offset);
4966 last_byte = min(extent_map_end(em), block_end);
4967 last_byte = ALIGN(last_byte, fs_info->sectorsize);
4968 hole_size = last_byte - cur_offset;
4970 if (!(em->flags & EXTENT_FLAG_PREALLOC)) {
4971 struct extent_map *hole_em;
4973 ret = maybe_insert_hole(inode, cur_offset, hole_size);
4977 ret = btrfs_inode_set_file_extent_range(inode,
4978 cur_offset, hole_size);
4982 hole_em = alloc_extent_map();
4984 btrfs_drop_extent_map_range(inode, cur_offset,
4985 cur_offset + hole_size - 1,
4987 btrfs_set_inode_full_sync(inode);
4990 hole_em->start = cur_offset;
4991 hole_em->len = hole_size;
4993 hole_em->disk_bytenr = EXTENT_MAP_HOLE;
4994 hole_em->disk_num_bytes = 0;
4995 hole_em->ram_bytes = hole_size;
4996 hole_em->generation = btrfs_get_fs_generation(fs_info);
4998 ret = btrfs_replace_extent_map_range(inode, hole_em, true);
4999 free_extent_map(hole_em);
5001 ret = btrfs_inode_set_file_extent_range(inode,
5002 cur_offset, hole_size);
5007 free_extent_map(em);
5009 cur_offset = last_byte;
5010 if (cur_offset >= block_end)
5013 free_extent_map(em);
5014 unlock_extent(io_tree, hole_start, block_end - 1, &cached_state);
5018 static int btrfs_setsize(struct inode *inode, struct iattr *attr)
5020 struct btrfs_root *root = BTRFS_I(inode)->root;
5021 struct btrfs_trans_handle *trans;
5022 loff_t oldsize = i_size_read(inode);
5023 loff_t newsize = attr->ia_size;
5024 int mask = attr->ia_valid;
5028 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
5029 * special case where we need to update the times despite not having
5030 * these flags set. For all other operations the VFS set these flags
5031 * explicitly if it wants a timestamp update.
5033 if (newsize != oldsize) {
5034 inode_inc_iversion(inode);
5035 if (!(mask & (ATTR_CTIME | ATTR_MTIME))) {
5036 inode_set_mtime_to_ts(inode,
5037 inode_set_ctime_current(inode));
5041 if (newsize > oldsize) {
5043 * Don't do an expanding truncate while snapshotting is ongoing.
5044 * This is to ensure the snapshot captures a fully consistent
5045 * state of this file - if the snapshot captures this expanding
5046 * truncation, it must capture all writes that happened before
5049 btrfs_drew_write_lock(&root->snapshot_lock);
5050 ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, newsize);
5052 btrfs_drew_write_unlock(&root->snapshot_lock);
5056 trans = btrfs_start_transaction(root, 1);
5057 if (IS_ERR(trans)) {
5058 btrfs_drew_write_unlock(&root->snapshot_lock);
5059 return PTR_ERR(trans);
5062 i_size_write(inode, newsize);
5063 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
5064 pagecache_isize_extended(inode, oldsize, newsize);
5065 ret = btrfs_update_inode(trans, BTRFS_I(inode));
5066 btrfs_drew_write_unlock(&root->snapshot_lock);
5067 btrfs_end_transaction(trans);
5069 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
5071 if (btrfs_is_zoned(fs_info)) {
5072 ret = btrfs_wait_ordered_range(BTRFS_I(inode),
5073 ALIGN(newsize, fs_info->sectorsize),
5080 * We're truncating a file that used to have good data down to
5081 * zero. Make sure any new writes to the file get on disk
5085 set_bit(BTRFS_INODE_FLUSH_ON_CLOSE,
5086 &BTRFS_I(inode)->runtime_flags);
5088 truncate_setsize(inode, newsize);
5090 inode_dio_wait(inode);
5092 ret = btrfs_truncate(BTRFS_I(inode), newsize == oldsize);
5093 if (ret && inode->i_nlink) {
5097 * Truncate failed, so fix up the in-memory size. We
5098 * adjusted disk_i_size down as we removed extents, so
5099 * wait for disk_i_size to be stable and then update the
5100 * in-memory size to match.
5102 err = btrfs_wait_ordered_range(BTRFS_I(inode), 0, (u64)-1);
5105 i_size_write(inode, BTRFS_I(inode)->disk_i_size);
5112 static int btrfs_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
5115 struct inode *inode = d_inode(dentry);
5116 struct btrfs_root *root = BTRFS_I(inode)->root;
5119 if (btrfs_root_readonly(root))
5122 err = setattr_prepare(idmap, dentry, attr);
5126 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
5127 err = btrfs_setsize(inode, attr);
5132 if (attr->ia_valid) {
5133 setattr_copy(idmap, inode, attr);
5134 inode_inc_iversion(inode);
5135 err = btrfs_dirty_inode(BTRFS_I(inode));
5137 if (!err && attr->ia_valid & ATTR_MODE)
5138 err = posix_acl_chmod(idmap, dentry, inode->i_mode);
5145 * While truncating the inode pages during eviction, we get the VFS
5146 * calling btrfs_invalidate_folio() against each folio of the inode. This
5147 * is slow because the calls to btrfs_invalidate_folio() result in a
5148 * huge amount of calls to lock_extent() and clear_extent_bit(),
5149 * which keep merging and splitting extent_state structures over and over,
5150 * wasting lots of time.
5152 * Therefore if the inode is being evicted, let btrfs_invalidate_folio()
5153 * skip all those expensive operations on a per folio basis and do only
5154 * the ordered io finishing, while we release here the extent_map and
5155 * extent_state structures, without the excessive merging and splitting.
5157 static void evict_inode_truncate_pages(struct inode *inode)
5159 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5160 struct rb_node *node;
5162 ASSERT(inode->i_state & I_FREEING);
5163 truncate_inode_pages_final(&inode->i_data);
5165 btrfs_drop_extent_map_range(BTRFS_I(inode), 0, (u64)-1, false);
5168 * Keep looping until we have no more ranges in the io tree.
5169 * We can have ongoing bios started by readahead that have
5170 * their endio callback (extent_io.c:end_bio_extent_readpage)
5171 * still in progress (unlocked the pages in the bio but did not yet
5172 * unlocked the ranges in the io tree). Therefore this means some
5173 * ranges can still be locked and eviction started because before
5174 * submitting those bios, which are executed by a separate task (work
5175 * queue kthread), inode references (inode->i_count) were not taken
5176 * (which would be dropped in the end io callback of each bio).
5177 * Therefore here we effectively end up waiting for those bios and
5178 * anyone else holding locked ranges without having bumped the inode's
5179 * reference count - if we don't do it, when they access the inode's
5180 * io_tree to unlock a range it may be too late, leading to an
5181 * use-after-free issue.
5183 spin_lock(&io_tree->lock);
5184 while (!RB_EMPTY_ROOT(&io_tree->state)) {
5185 struct extent_state *state;
5186 struct extent_state *cached_state = NULL;
5189 unsigned state_flags;
5191 node = rb_first(&io_tree->state);
5192 state = rb_entry(node, struct extent_state, rb_node);
5193 start = state->start;
5195 state_flags = state->state;
5196 spin_unlock(&io_tree->lock);
5198 lock_extent(io_tree, start, end, &cached_state);
5201 * If still has DELALLOC flag, the extent didn't reach disk,
5202 * and its reserved space won't be freed by delayed_ref.
5203 * So we need to free its reserved space here.
5204 * (Refer to comment in btrfs_invalidate_folio, case 2)
5206 * Note, end is the bytenr of last byte, so we need + 1 here.
5208 if (state_flags & EXTENT_DELALLOC)
5209 btrfs_qgroup_free_data(BTRFS_I(inode), NULL, start,
5210 end - start + 1, NULL);
5212 clear_extent_bit(io_tree, start, end,
5213 EXTENT_CLEAR_ALL_BITS | EXTENT_DO_ACCOUNTING,
5217 spin_lock(&io_tree->lock);
5219 spin_unlock(&io_tree->lock);
5222 static struct btrfs_trans_handle *evict_refill_and_join(struct btrfs_root *root,
5223 struct btrfs_block_rsv *rsv)
5225 struct btrfs_fs_info *fs_info = root->fs_info;
5226 struct btrfs_trans_handle *trans;
5227 u64 delayed_refs_extra = btrfs_calc_delayed_ref_bytes(fs_info, 1);
5231 * Eviction should be taking place at some place safe because of our
5232 * delayed iputs. However the normal flushing code will run delayed
5233 * iputs, so we cannot use FLUSH_ALL otherwise we'll deadlock.
5235 * We reserve the delayed_refs_extra here again because we can't use
5236 * btrfs_start_transaction(root, 0) for the same deadlocky reason as
5237 * above. We reserve our extra bit here because we generate a ton of
5238 * delayed refs activity by truncating.
5240 * BTRFS_RESERVE_FLUSH_EVICT will steal from the global_rsv if it can,
5241 * if we fail to make this reservation we can re-try without the
5242 * delayed_refs_extra so we can make some forward progress.
5244 ret = btrfs_block_rsv_refill(fs_info, rsv, rsv->size + delayed_refs_extra,
5245 BTRFS_RESERVE_FLUSH_EVICT);
5247 ret = btrfs_block_rsv_refill(fs_info, rsv, rsv->size,
5248 BTRFS_RESERVE_FLUSH_EVICT);
5251 "could not allocate space for delete; will truncate on mount");
5252 return ERR_PTR(-ENOSPC);
5254 delayed_refs_extra = 0;
5257 trans = btrfs_join_transaction(root);
5261 if (delayed_refs_extra) {
5262 trans->block_rsv = &fs_info->trans_block_rsv;
5263 trans->bytes_reserved = delayed_refs_extra;
5264 btrfs_block_rsv_migrate(rsv, trans->block_rsv,
5265 delayed_refs_extra, true);
5270 void btrfs_evict_inode(struct inode *inode)
5272 struct btrfs_fs_info *fs_info;
5273 struct btrfs_trans_handle *trans;
5274 struct btrfs_root *root = BTRFS_I(inode)->root;
5275 struct btrfs_block_rsv *rsv = NULL;
5278 trace_btrfs_inode_evict(inode);
5281 fsverity_cleanup_inode(inode);
5286 fs_info = inode_to_fs_info(inode);
5287 evict_inode_truncate_pages(inode);
5289 if (inode->i_nlink &&
5290 ((btrfs_root_refs(&root->root_item) != 0 &&
5291 btrfs_root_id(root) != BTRFS_ROOT_TREE_OBJECTID) ||
5292 btrfs_is_free_space_inode(BTRFS_I(inode))))
5295 if (is_bad_inode(inode))
5298 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
5301 if (inode->i_nlink > 0) {
5302 BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
5303 btrfs_root_id(root) != BTRFS_ROOT_TREE_OBJECTID);
5308 * This makes sure the inode item in tree is uptodate and the space for
5309 * the inode update is released.
5311 ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode));
5316 * This drops any pending insert or delete operations we have for this
5317 * inode. We could have a delayed dir index deletion queued up, but
5318 * we're removing the inode completely so that'll be taken care of in
5321 btrfs_kill_delayed_inode_items(BTRFS_I(inode));
5323 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
5326 rsv->size = btrfs_calc_metadata_size(fs_info, 1);
5327 rsv->failfast = true;
5329 btrfs_i_size_write(BTRFS_I(inode), 0);
5332 struct btrfs_truncate_control control = {
5333 .inode = BTRFS_I(inode),
5334 .ino = btrfs_ino(BTRFS_I(inode)),
5339 trans = evict_refill_and_join(root, rsv);
5343 trans->block_rsv = rsv;
5345 ret = btrfs_truncate_inode_items(trans, root, &control);
5346 trans->block_rsv = &fs_info->trans_block_rsv;
5347 btrfs_end_transaction(trans);
5349 * We have not added new delayed items for our inode after we
5350 * have flushed its delayed items, so no need to throttle on
5351 * delayed items. However we have modified extent buffers.
5353 btrfs_btree_balance_dirty_nodelay(fs_info);
5354 if (ret && ret != -ENOSPC && ret != -EAGAIN)
5361 * Errors here aren't a big deal, it just means we leave orphan items in
5362 * the tree. They will be cleaned up on the next mount. If the inode
5363 * number gets reused, cleanup deletes the orphan item without doing
5364 * anything, and unlink reuses the existing orphan item.
5366 * If it turns out that we are dropping too many of these, we might want
5367 * to add a mechanism for retrying these after a commit.
5369 trans = evict_refill_and_join(root, rsv);
5370 if (!IS_ERR(trans)) {
5371 trans->block_rsv = rsv;
5372 btrfs_orphan_del(trans, BTRFS_I(inode));
5373 trans->block_rsv = &fs_info->trans_block_rsv;
5374 btrfs_end_transaction(trans);
5378 btrfs_free_block_rsv(fs_info, rsv);
5380 * If we didn't successfully delete, the orphan item will still be in
5381 * the tree and we'll retry on the next mount. Again, we might also want
5382 * to retry these periodically in the future.
5384 btrfs_remove_delayed_node(BTRFS_I(inode));
5385 fsverity_cleanup_inode(inode);
5390 * Return the key found in the dir entry in the location pointer, fill @type
5391 * with BTRFS_FT_*, and return 0.
5393 * If no dir entries were found, returns -ENOENT.
5394 * If found a corrupted location in dir entry, returns -EUCLEAN.
5396 static int btrfs_inode_by_name(struct btrfs_inode *dir, struct dentry *dentry,
5397 struct btrfs_key *location, u8 *type)
5399 struct btrfs_dir_item *di;
5400 struct btrfs_path *path;
5401 struct btrfs_root *root = dir->root;
5403 struct fscrypt_name fname;
5405 path = btrfs_alloc_path();
5409 ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 1, &fname);
5413 * fscrypt_setup_filename() should never return a positive value, but
5414 * gcc on sparc/parisc thinks it can, so assert that doesn't happen.
5418 /* This needs to handle no-key deletions later on */
5420 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir),
5421 &fname.disk_name, 0);
5422 if (IS_ERR_OR_NULL(di)) {
5423 ret = di ? PTR_ERR(di) : -ENOENT;
5427 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
5428 if (location->type != BTRFS_INODE_ITEM_KEY &&
5429 location->type != BTRFS_ROOT_ITEM_KEY) {
5431 btrfs_warn(root->fs_info,
5432 "%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))",
5433 __func__, fname.disk_name.name, btrfs_ino(dir),
5434 location->objectid, location->type, location->offset);
5437 *type = btrfs_dir_ftype(path->nodes[0], di);
5439 fscrypt_free_filename(&fname);
5440 btrfs_free_path(path);
5445 * when we hit a tree root in a directory, the btrfs part of the inode
5446 * needs to be changed to reflect the root directory of the tree root. This
5447 * is kind of like crossing a mount point.
5449 static int fixup_tree_root_location(struct btrfs_fs_info *fs_info,
5450 struct btrfs_inode *dir,
5451 struct dentry *dentry,
5452 struct btrfs_key *location,
5453 struct btrfs_root **sub_root)
5455 struct btrfs_path *path;
5456 struct btrfs_root *new_root;
5457 struct btrfs_root_ref *ref;
5458 struct extent_buffer *leaf;
5459 struct btrfs_key key;
5462 struct fscrypt_name fname;
5464 ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 0, &fname);
5468 path = btrfs_alloc_path();
5475 key.objectid = btrfs_root_id(dir->root);
5476 key.type = BTRFS_ROOT_REF_KEY;
5477 key.offset = location->objectid;
5479 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
5486 leaf = path->nodes[0];
5487 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
5488 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
5489 btrfs_root_ref_name_len(leaf, ref) != fname.disk_name.len)
5492 ret = memcmp_extent_buffer(leaf, fname.disk_name.name,
5493 (unsigned long)(ref + 1), fname.disk_name.len);
5497 btrfs_release_path(path);
5499 new_root = btrfs_get_fs_root(fs_info, location->objectid, true);
5500 if (IS_ERR(new_root)) {
5501 err = PTR_ERR(new_root);
5505 *sub_root = new_root;
5506 location->objectid = btrfs_root_dirid(&new_root->root_item);
5507 location->type = BTRFS_INODE_ITEM_KEY;
5508 location->offset = 0;
5511 btrfs_free_path(path);
5512 fscrypt_free_filename(&fname);
5518 static void btrfs_del_inode_from_root(struct btrfs_inode *inode)
5520 struct btrfs_root *root = inode->root;
5521 struct btrfs_inode *entry;
5524 xa_lock(&root->inodes);
5525 entry = __xa_erase(&root->inodes, btrfs_ino(inode));
5527 empty = xa_empty(&root->inodes);
5528 xa_unlock(&root->inodes);
5530 if (empty && btrfs_root_refs(&root->root_item) == 0) {
5531 xa_lock(&root->inodes);
5532 empty = xa_empty(&root->inodes);
5533 xa_unlock(&root->inodes);
5535 btrfs_add_dead_root(root);
5540 static int btrfs_init_locked_inode(struct inode *inode, void *p)
5542 struct btrfs_iget_args *args = p;
5544 btrfs_set_inode_number(BTRFS_I(inode), args->ino);
5545 BTRFS_I(inode)->root = btrfs_grab_root(args->root);
5547 if (args->root && args->root == args->root->fs_info->tree_root &&
5548 args->ino != BTRFS_BTREE_INODE_OBJECTID)
5549 set_bit(BTRFS_INODE_FREE_SPACE_INODE,
5550 &BTRFS_I(inode)->runtime_flags);
5554 static int btrfs_find_actor(struct inode *inode, void *opaque)
5556 struct btrfs_iget_args *args = opaque;
5558 return args->ino == btrfs_ino(BTRFS_I(inode)) &&
5559 args->root == BTRFS_I(inode)->root;
5562 static struct inode *btrfs_iget_locked(u64 ino, struct btrfs_root *root)
5564 struct inode *inode;
5565 struct btrfs_iget_args args;
5566 unsigned long hashval = btrfs_inode_hash(ino, root);
5571 inode = iget5_locked_rcu(root->fs_info->sb, hashval, btrfs_find_actor,
5572 btrfs_init_locked_inode,
5578 * Get an inode object given its inode number and corresponding root. Path is
5579 * preallocated to prevent recursing back to iget through allocator.
5581 struct inode *btrfs_iget_path(u64 ino, struct btrfs_root *root,
5582 struct btrfs_path *path)
5584 struct inode *inode;
5587 inode = btrfs_iget_locked(ino, root);
5589 return ERR_PTR(-ENOMEM);
5591 if (!(inode->i_state & I_NEW))
5594 ret = btrfs_read_locked_inode(inode, path);
5596 return ERR_PTR(ret);
5598 unlock_new_inode(inode);
5603 * Get an inode object given its inode number and corresponding root.
5605 struct inode *btrfs_iget(u64 ino, struct btrfs_root *root)
5607 struct inode *inode;
5608 struct btrfs_path *path;
5611 inode = btrfs_iget_locked(ino, root);
5613 return ERR_PTR(-ENOMEM);
5615 if (!(inode->i_state & I_NEW))
5618 path = btrfs_alloc_path();
5620 return ERR_PTR(-ENOMEM);
5622 ret = btrfs_read_locked_inode(inode, path);
5623 btrfs_free_path(path);
5625 return ERR_PTR(ret);
5627 unlock_new_inode(inode);
5631 static struct inode *new_simple_dir(struct inode *dir,
5632 struct btrfs_key *key,
5633 struct btrfs_root *root)
5635 struct timespec64 ts;
5636 struct inode *inode = new_inode(dir->i_sb);
5639 return ERR_PTR(-ENOMEM);
5641 BTRFS_I(inode)->root = btrfs_grab_root(root);
5642 BTRFS_I(inode)->ref_root_id = key->objectid;
5643 set_bit(BTRFS_INODE_ROOT_STUB, &BTRFS_I(inode)->runtime_flags);
5644 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
5646 btrfs_set_inode_number(BTRFS_I(inode), BTRFS_EMPTY_SUBVOL_DIR_OBJECTID);
5648 * We only need lookup, the rest is read-only and there's no inode
5649 * associated with the dentry
5651 inode->i_op = &simple_dir_inode_operations;
5652 inode->i_opflags &= ~IOP_XATTR;
5653 inode->i_fop = &simple_dir_operations;
5654 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
5656 ts = inode_set_ctime_current(inode);
5657 inode_set_mtime_to_ts(inode, ts);
5658 inode_set_atime_to_ts(inode, inode_get_atime(dir));
5659 BTRFS_I(inode)->i_otime_sec = ts.tv_sec;
5660 BTRFS_I(inode)->i_otime_nsec = ts.tv_nsec;
5662 inode->i_uid = dir->i_uid;
5663 inode->i_gid = dir->i_gid;
5668 static_assert(BTRFS_FT_UNKNOWN == FT_UNKNOWN);
5669 static_assert(BTRFS_FT_REG_FILE == FT_REG_FILE);
5670 static_assert(BTRFS_FT_DIR == FT_DIR);
5671 static_assert(BTRFS_FT_CHRDEV == FT_CHRDEV);
5672 static_assert(BTRFS_FT_BLKDEV == FT_BLKDEV);
5673 static_assert(BTRFS_FT_FIFO == FT_FIFO);
5674 static_assert(BTRFS_FT_SOCK == FT_SOCK);
5675 static_assert(BTRFS_FT_SYMLINK == FT_SYMLINK);
5677 static inline u8 btrfs_inode_type(struct inode *inode)
5679 return fs_umode_to_ftype(inode->i_mode);
5682 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
5684 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
5685 struct inode *inode;
5686 struct btrfs_root *root = BTRFS_I(dir)->root;
5687 struct btrfs_root *sub_root = root;
5688 struct btrfs_key location = { 0 };
5692 if (dentry->d_name.len > BTRFS_NAME_LEN)
5693 return ERR_PTR(-ENAMETOOLONG);
5695 ret = btrfs_inode_by_name(BTRFS_I(dir), dentry, &location, &di_type);
5697 return ERR_PTR(ret);
5699 if (location.type == BTRFS_INODE_ITEM_KEY) {
5700 inode = btrfs_iget(location.objectid, root);
5704 /* Do extra check against inode mode with di_type */
5705 if (btrfs_inode_type(inode) != di_type) {
5707 "inode mode mismatch with dir: inode mode=0%o btrfs type=%u dir type=%u",
5708 inode->i_mode, btrfs_inode_type(inode),
5711 return ERR_PTR(-EUCLEAN);
5716 ret = fixup_tree_root_location(fs_info, BTRFS_I(dir), dentry,
5717 &location, &sub_root);
5720 inode = ERR_PTR(ret);
5722 inode = new_simple_dir(dir, &location, root);
5724 inode = btrfs_iget(location.objectid, sub_root);
5725 btrfs_put_root(sub_root);
5730 down_read(&fs_info->cleanup_work_sem);
5731 if (!sb_rdonly(inode->i_sb))
5732 ret = btrfs_orphan_cleanup(sub_root);
5733 up_read(&fs_info->cleanup_work_sem);
5736 inode = ERR_PTR(ret);
5743 static int btrfs_dentry_delete(const struct dentry *dentry)
5745 struct btrfs_root *root;
5746 struct inode *inode = d_inode(dentry);
5748 if (!inode && !IS_ROOT(dentry))
5749 inode = d_inode(dentry->d_parent);
5752 root = BTRFS_I(inode)->root;
5753 if (btrfs_root_refs(&root->root_item) == 0)
5756 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5762 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
5765 struct inode *inode = btrfs_lookup_dentry(dir, dentry);
5767 if (inode == ERR_PTR(-ENOENT))
5769 return d_splice_alias(inode, dentry);
5773 * Find the highest existing sequence number in a directory and then set the
5774 * in-memory index_cnt variable to the first free sequence number.
5776 static int btrfs_set_inode_index_count(struct btrfs_inode *inode)
5778 struct btrfs_root *root = inode->root;
5779 struct btrfs_key key, found_key;
5780 struct btrfs_path *path;
5781 struct extent_buffer *leaf;
5784 key.objectid = btrfs_ino(inode);
5785 key.type = BTRFS_DIR_INDEX_KEY;
5786 key.offset = (u64)-1;
5788 path = btrfs_alloc_path();
5792 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5795 /* FIXME: we should be able to handle this */
5800 if (path->slots[0] == 0) {
5801 inode->index_cnt = BTRFS_DIR_START_INDEX;
5807 leaf = path->nodes[0];
5808 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5810 if (found_key.objectid != btrfs_ino(inode) ||
5811 found_key.type != BTRFS_DIR_INDEX_KEY) {
5812 inode->index_cnt = BTRFS_DIR_START_INDEX;
5816 inode->index_cnt = found_key.offset + 1;
5818 btrfs_free_path(path);
5822 static int btrfs_get_dir_last_index(struct btrfs_inode *dir, u64 *index)
5826 btrfs_inode_lock(dir, 0);
5827 if (dir->index_cnt == (u64)-1) {
5828 ret = btrfs_inode_delayed_dir_index_count(dir);
5830 ret = btrfs_set_inode_index_count(dir);
5836 /* index_cnt is the index number of next new entry, so decrement it. */
5837 *index = dir->index_cnt - 1;
5839 btrfs_inode_unlock(dir, 0);
5845 * All this infrastructure exists because dir_emit can fault, and we are holding
5846 * the tree lock when doing readdir. For now just allocate a buffer and copy
5847 * our information into that, and then dir_emit from the buffer. This is
5848 * similar to what NFS does, only we don't keep the buffer around in pagecache
5849 * because I'm afraid I'll mess that up. Long term we need to make filldir do
5850 * copy_to_user_inatomic so we don't have to worry about page faulting under the
5853 static int btrfs_opendir(struct inode *inode, struct file *file)
5855 struct btrfs_file_private *private;
5859 ret = btrfs_get_dir_last_index(BTRFS_I(inode), &last_index);
5863 private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL);
5866 private->last_index = last_index;
5867 private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL);
5868 if (!private->filldir_buf) {
5872 file->private_data = private;
5876 static loff_t btrfs_dir_llseek(struct file *file, loff_t offset, int whence)
5878 struct btrfs_file_private *private = file->private_data;
5881 ret = btrfs_get_dir_last_index(BTRFS_I(file_inode(file)),
5882 &private->last_index);
5886 return generic_file_llseek(file, offset, whence);
5896 static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx)
5899 struct dir_entry *entry = addr;
5900 char *name = (char *)(entry + 1);
5902 ctx->pos = get_unaligned(&entry->offset);
5903 if (!dir_emit(ctx, name, get_unaligned(&entry->name_len),
5904 get_unaligned(&entry->ino),
5905 get_unaligned(&entry->type)))
5907 addr += sizeof(struct dir_entry) +
5908 get_unaligned(&entry->name_len);
5914 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
5916 struct inode *inode = file_inode(file);
5917 struct btrfs_root *root = BTRFS_I(inode)->root;
5918 struct btrfs_file_private *private = file->private_data;
5919 struct btrfs_dir_item *di;
5920 struct btrfs_key key;
5921 struct btrfs_key found_key;
5922 struct btrfs_path *path;
5924 LIST_HEAD(ins_list);
5925 LIST_HEAD(del_list);
5932 struct btrfs_key location;
5934 if (!dir_emit_dots(file, ctx))
5937 path = btrfs_alloc_path();
5941 addr = private->filldir_buf;
5942 path->reada = READA_FORWARD;
5944 put = btrfs_readdir_get_delayed_items(BTRFS_I(inode), private->last_index,
5945 &ins_list, &del_list);
5948 key.type = BTRFS_DIR_INDEX_KEY;
5949 key.offset = ctx->pos;
5950 key.objectid = btrfs_ino(BTRFS_I(inode));
5952 btrfs_for_each_slot(root, &key, &found_key, path, ret) {
5953 struct dir_entry *entry;
5954 struct extent_buffer *leaf = path->nodes[0];
5957 if (found_key.objectid != key.objectid)
5959 if (found_key.type != BTRFS_DIR_INDEX_KEY)
5961 if (found_key.offset < ctx->pos)
5963 if (found_key.offset > private->last_index)
5965 if (btrfs_should_delete_dir_index(&del_list, found_key.offset))
5967 di = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dir_item);
5968 name_len = btrfs_dir_name_len(leaf, di);
5969 if ((total_len + sizeof(struct dir_entry) + name_len) >=
5971 btrfs_release_path(path);
5972 ret = btrfs_filldir(private->filldir_buf, entries, ctx);
5975 addr = private->filldir_buf;
5981 ftype = btrfs_dir_flags_to_ftype(btrfs_dir_flags(leaf, di));
5983 name_ptr = (char *)(entry + 1);
5984 read_extent_buffer(leaf, name_ptr,
5985 (unsigned long)(di + 1), name_len);
5986 put_unaligned(name_len, &entry->name_len);
5987 put_unaligned(fs_ftype_to_dtype(ftype), &entry->type);
5988 btrfs_dir_item_key_to_cpu(leaf, di, &location);
5989 put_unaligned(location.objectid, &entry->ino);
5990 put_unaligned(found_key.offset, &entry->offset);
5992 addr += sizeof(struct dir_entry) + name_len;
5993 total_len += sizeof(struct dir_entry) + name_len;
5995 /* Catch error encountered during iteration */
5999 btrfs_release_path(path);
6001 ret = btrfs_filldir(private->filldir_buf, entries, ctx);
6005 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
6010 * Stop new entries from being returned after we return the last
6013 * New directory entries are assigned a strictly increasing
6014 * offset. This means that new entries created during readdir
6015 * are *guaranteed* to be seen in the future by that readdir.
6016 * This has broken buggy programs which operate on names as
6017 * they're returned by readdir. Until we reuse freed offsets
6018 * we have this hack to stop new entries from being returned
6019 * under the assumption that they'll never reach this huge
6022 * This is being careful not to overflow 32bit loff_t unless the
6023 * last entry requires it because doing so has broken 32bit apps
6026 if (ctx->pos >= INT_MAX)
6027 ctx->pos = LLONG_MAX;
6034 btrfs_readdir_put_delayed_items(BTRFS_I(inode), &ins_list, &del_list);
6035 btrfs_free_path(path);
6040 * This is somewhat expensive, updating the tree every time the
6041 * inode changes. But, it is most likely to find the inode in cache.
6042 * FIXME, needs more benchmarking...there are no reasons other than performance
6043 * to keep or drop this code.
6045 static int btrfs_dirty_inode(struct btrfs_inode *inode)
6047 struct btrfs_root *root = inode->root;
6048 struct btrfs_fs_info *fs_info = root->fs_info;
6049 struct btrfs_trans_handle *trans;
6052 if (test_bit(BTRFS_INODE_DUMMY, &inode->runtime_flags))
6055 trans = btrfs_join_transaction(root);
6057 return PTR_ERR(trans);
6059 ret = btrfs_update_inode(trans, inode);
6060 if (ret == -ENOSPC || ret == -EDQUOT) {
6061 /* whoops, lets try again with the full transaction */
6062 btrfs_end_transaction(trans);
6063 trans = btrfs_start_transaction(root, 1);
6065 return PTR_ERR(trans);
6067 ret = btrfs_update_inode(trans, inode);
6069 btrfs_end_transaction(trans);
6070 if (inode->delayed_node)
6071 btrfs_balance_delayed_items(fs_info);
6077 * This is a copy of file_update_time. We need this so we can return error on
6078 * ENOSPC for updating the inode in the case of file write and mmap writes.
6080 static int btrfs_update_time(struct inode *inode, int flags)
6082 struct btrfs_root *root = BTRFS_I(inode)->root;
6085 if (btrfs_root_readonly(root))
6088 dirty = inode_update_timestamps(inode, flags);
6089 return dirty ? btrfs_dirty_inode(BTRFS_I(inode)) : 0;
6093 * helper to find a free sequence number in a given directory. This current
6094 * code is very simple, later versions will do smarter things in the btree
6096 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index)
6100 if (dir->index_cnt == (u64)-1) {
6101 ret = btrfs_inode_delayed_dir_index_count(dir);
6103 ret = btrfs_set_inode_index_count(dir);
6109 *index = dir->index_cnt;
6115 static int btrfs_insert_inode_locked(struct inode *inode)
6117 struct btrfs_iget_args args;
6119 args.ino = btrfs_ino(BTRFS_I(inode));
6120 args.root = BTRFS_I(inode)->root;
6122 return insert_inode_locked4(inode,
6123 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
6124 btrfs_find_actor, &args);
6127 int btrfs_new_inode_prepare(struct btrfs_new_inode_args *args,
6128 unsigned int *trans_num_items)
6130 struct inode *dir = args->dir;
6131 struct inode *inode = args->inode;
6134 if (!args->orphan) {
6135 ret = fscrypt_setup_filename(dir, &args->dentry->d_name, 0,
6141 ret = posix_acl_create(dir, &inode->i_mode, &args->default_acl, &args->acl);
6143 fscrypt_free_filename(&args->fname);
6147 /* 1 to add inode item */
6148 *trans_num_items = 1;
6149 /* 1 to add compression property */
6150 if (BTRFS_I(dir)->prop_compress)
6151 (*trans_num_items)++;
6152 /* 1 to add default ACL xattr */
6153 if (args->default_acl)
6154 (*trans_num_items)++;
6155 /* 1 to add access ACL xattr */
6157 (*trans_num_items)++;
6158 #ifdef CONFIG_SECURITY
6159 /* 1 to add LSM xattr */
6160 if (dir->i_security)
6161 (*trans_num_items)++;
6164 /* 1 to add orphan item */
6165 (*trans_num_items)++;
6169 * 1 to add dir index
6170 * 1 to update parent inode item
6172 * No need for 1 unit for the inode ref item because it is
6173 * inserted in a batch together with the inode item at
6174 * btrfs_create_new_inode().
6176 *trans_num_items += 3;
6181 void btrfs_new_inode_args_destroy(struct btrfs_new_inode_args *args)
6183 posix_acl_release(args->acl);
6184 posix_acl_release(args->default_acl);
6185 fscrypt_free_filename(&args->fname);
6189 * Inherit flags from the parent inode.
6191 * Currently only the compression flags and the cow flags are inherited.
6193 static void btrfs_inherit_iflags(struct btrfs_inode *inode, struct btrfs_inode *dir)
6199 if (flags & BTRFS_INODE_NOCOMPRESS) {
6200 inode->flags &= ~BTRFS_INODE_COMPRESS;
6201 inode->flags |= BTRFS_INODE_NOCOMPRESS;
6202 } else if (flags & BTRFS_INODE_COMPRESS) {
6203 inode->flags &= ~BTRFS_INODE_NOCOMPRESS;
6204 inode->flags |= BTRFS_INODE_COMPRESS;
6207 if (flags & BTRFS_INODE_NODATACOW) {
6208 inode->flags |= BTRFS_INODE_NODATACOW;
6209 if (S_ISREG(inode->vfs_inode.i_mode))
6210 inode->flags |= BTRFS_INODE_NODATASUM;
6213 btrfs_sync_inode_flags_to_i_flags(&inode->vfs_inode);
6216 int btrfs_create_new_inode(struct btrfs_trans_handle *trans,
6217 struct btrfs_new_inode_args *args)
6219 struct timespec64 ts;
6220 struct inode *dir = args->dir;
6221 struct inode *inode = args->inode;
6222 const struct fscrypt_str *name = args->orphan ? NULL : &args->fname.disk_name;
6223 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
6224 struct btrfs_root *root;
6225 struct btrfs_inode_item *inode_item;
6226 struct btrfs_path *path;
6228 struct btrfs_inode_ref *ref;
6229 struct btrfs_key key[2];
6231 struct btrfs_item_batch batch;
6234 bool xa_reserved = false;
6236 path = btrfs_alloc_path();
6241 BTRFS_I(inode)->root = btrfs_grab_root(BTRFS_I(dir)->root);
6242 root = BTRFS_I(inode)->root;
6244 ret = btrfs_init_file_extent_tree(BTRFS_I(inode));
6248 ret = btrfs_get_free_objectid(root, &objectid);
6251 btrfs_set_inode_number(BTRFS_I(inode), objectid);
6253 ret = xa_reserve(&root->inodes, objectid, GFP_NOFS);
6260 * O_TMPFILE, set link count to 0, so that after this point, we
6261 * fill in an inode item with the correct link count.
6263 set_nlink(inode, 0);
6265 trace_btrfs_inode_request(dir);
6267 ret = btrfs_set_inode_index(BTRFS_I(dir), &BTRFS_I(inode)->dir_index);
6272 if (S_ISDIR(inode->i_mode))
6273 BTRFS_I(inode)->index_cnt = BTRFS_DIR_START_INDEX;
6275 BTRFS_I(inode)->generation = trans->transid;
6276 inode->i_generation = BTRFS_I(inode)->generation;
6279 * We don't have any capability xattrs set here yet, shortcut any
6280 * queries for the xattrs here. If we add them later via the inode
6281 * security init path or any other path this flag will be cleared.
6283 set_bit(BTRFS_INODE_NO_CAP_XATTR, &BTRFS_I(inode)->runtime_flags);
6286 * Subvolumes don't inherit flags from their parent directory.
6287 * Originally this was probably by accident, but we probably can't
6288 * change it now without compatibility issues.
6291 btrfs_inherit_iflags(BTRFS_I(inode), BTRFS_I(dir));
6293 if (S_ISREG(inode->i_mode)) {
6294 if (btrfs_test_opt(fs_info, NODATASUM))
6295 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6296 if (btrfs_test_opt(fs_info, NODATACOW))
6297 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
6298 BTRFS_INODE_NODATASUM;
6301 ret = btrfs_insert_inode_locked(inode);
6304 BTRFS_I(dir)->index_cnt--;
6309 * We could have gotten an inode number from somebody who was fsynced
6310 * and then removed in this same transaction, so let's just set full
6311 * sync since it will be a full sync anyway and this will blow away the
6312 * old info in the log.
6314 btrfs_set_inode_full_sync(BTRFS_I(inode));
6316 key[0].objectid = objectid;
6317 key[0].type = BTRFS_INODE_ITEM_KEY;
6320 sizes[0] = sizeof(struct btrfs_inode_item);
6322 if (!args->orphan) {
6324 * Start new inodes with an inode_ref. This is slightly more
6325 * efficient for small numbers of hard links since they will
6326 * be packed into one item. Extended refs will kick in if we
6327 * add more hard links than can fit in the ref item.
6329 key[1].objectid = objectid;
6330 key[1].type = BTRFS_INODE_REF_KEY;
6332 key[1].offset = objectid;
6333 sizes[1] = 2 + sizeof(*ref);
6335 key[1].offset = btrfs_ino(BTRFS_I(dir));
6336 sizes[1] = name->len + sizeof(*ref);
6340 batch.keys = &key[0];
6341 batch.data_sizes = &sizes[0];
6342 batch.total_data_size = sizes[0] + (args->orphan ? 0 : sizes[1]);
6343 batch.nr = args->orphan ? 1 : 2;
6344 ret = btrfs_insert_empty_items(trans, root, path, &batch);
6346 btrfs_abort_transaction(trans, ret);
6350 ts = simple_inode_init_ts(inode);
6351 BTRFS_I(inode)->i_otime_sec = ts.tv_sec;
6352 BTRFS_I(inode)->i_otime_nsec = ts.tv_nsec;
6355 * We're going to fill the inode item now, so at this point the inode
6356 * must be fully initialized.
6359 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
6360 struct btrfs_inode_item);
6361 memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item,
6362 sizeof(*inode_item));
6363 fill_inode_item(trans, path->nodes[0], inode_item, inode);
6365 if (!args->orphan) {
6366 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
6367 struct btrfs_inode_ref);
6368 ptr = (unsigned long)(ref + 1);
6370 btrfs_set_inode_ref_name_len(path->nodes[0], ref, 2);
6371 btrfs_set_inode_ref_index(path->nodes[0], ref, 0);
6372 write_extent_buffer(path->nodes[0], "..", ptr, 2);
6374 btrfs_set_inode_ref_name_len(path->nodes[0], ref,
6376 btrfs_set_inode_ref_index(path->nodes[0], ref,
6377 BTRFS_I(inode)->dir_index);
6378 write_extent_buffer(path->nodes[0], name->name, ptr,
6383 btrfs_mark_buffer_dirty(trans, path->nodes[0]);
6385 * We don't need the path anymore, plus inheriting properties, adding
6386 * ACLs, security xattrs, orphan item or adding the link, will result in
6387 * allocating yet another path. So just free our path.
6389 btrfs_free_path(path);
6393 struct inode *parent;
6396 * Subvolumes inherit properties from their parent subvolume,
6397 * not the directory they were created in.
6399 parent = btrfs_iget(BTRFS_FIRST_FREE_OBJECTID, BTRFS_I(dir)->root);
6400 if (IS_ERR(parent)) {
6401 ret = PTR_ERR(parent);
6403 ret = btrfs_inode_inherit_props(trans, inode, parent);
6407 ret = btrfs_inode_inherit_props(trans, inode, dir);
6411 "error inheriting props for ino %llu (root %llu): %d",
6412 btrfs_ino(BTRFS_I(inode)), btrfs_root_id(root), ret);
6416 * Subvolumes don't inherit ACLs or get passed to the LSM. This is
6419 if (!args->subvol) {
6420 ret = btrfs_init_inode_security(trans, args);
6422 btrfs_abort_transaction(trans, ret);
6427 ret = btrfs_add_inode_to_root(BTRFS_I(inode), false);
6429 /* Shouldn't happen, we used xa_reserve() before. */
6430 btrfs_abort_transaction(trans, ret);
6434 trace_btrfs_inode_new(inode);
6435 btrfs_set_inode_last_trans(trans, BTRFS_I(inode));
6437 btrfs_update_root_times(trans, root);
6440 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
6442 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name,
6443 0, BTRFS_I(inode)->dir_index);
6446 btrfs_abort_transaction(trans, ret);
6454 * discard_new_inode() calls iput(), but the caller owns the reference
6458 discard_new_inode(inode);
6461 xa_release(&root->inodes, objectid);
6463 btrfs_free_path(path);
6468 * utility function to add 'inode' into 'parent_inode' with
6469 * a give name and a given sequence number.
6470 * if 'add_backref' is true, also insert a backref from the
6471 * inode to the parent directory.
6473 int btrfs_add_link(struct btrfs_trans_handle *trans,
6474 struct btrfs_inode *parent_inode, struct btrfs_inode *inode,
6475 const struct fscrypt_str *name, int add_backref, u64 index)
6478 struct btrfs_key key;
6479 struct btrfs_root *root = parent_inode->root;
6480 u64 ino = btrfs_ino(inode);
6481 u64 parent_ino = btrfs_ino(parent_inode);
6483 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6484 memcpy(&key, &inode->root->root_key, sizeof(key));
6487 key.type = BTRFS_INODE_ITEM_KEY;
6491 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6492 ret = btrfs_add_root_ref(trans, key.objectid,
6493 btrfs_root_id(root), parent_ino,
6495 } else if (add_backref) {
6496 ret = btrfs_insert_inode_ref(trans, root, name,
6497 ino, parent_ino, index);
6500 /* Nothing to clean up yet */
6504 ret = btrfs_insert_dir_item(trans, name, parent_inode, &key,
6505 btrfs_inode_type(&inode->vfs_inode), index);
6506 if (ret == -EEXIST || ret == -EOVERFLOW)
6509 btrfs_abort_transaction(trans, ret);
6513 btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size +
6515 inode_inc_iversion(&parent_inode->vfs_inode);
6517 * If we are replaying a log tree, we do not want to update the mtime
6518 * and ctime of the parent directory with the current time, since the
6519 * log replay procedure is responsible for setting them to their correct
6520 * values (the ones it had when the fsync was done).
6522 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &root->fs_info->flags))
6523 inode_set_mtime_to_ts(&parent_inode->vfs_inode,
6524 inode_set_ctime_current(&parent_inode->vfs_inode));
6526 ret = btrfs_update_inode(trans, parent_inode);
6528 btrfs_abort_transaction(trans, ret);
6532 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6535 err = btrfs_del_root_ref(trans, key.objectid,
6536 btrfs_root_id(root), parent_ino,
6537 &local_index, name);
6539 btrfs_abort_transaction(trans, err);
6540 } else if (add_backref) {
6544 err = btrfs_del_inode_ref(trans, root, name, ino, parent_ino,
6547 btrfs_abort_transaction(trans, err);
6550 /* Return the original error code */
6554 static int btrfs_create_common(struct inode *dir, struct dentry *dentry,
6555 struct inode *inode)
6557 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
6558 struct btrfs_root *root = BTRFS_I(dir)->root;
6559 struct btrfs_new_inode_args new_inode_args = {
6564 unsigned int trans_num_items;
6565 struct btrfs_trans_handle *trans;
6568 err = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items);
6572 trans = btrfs_start_transaction(root, trans_num_items);
6573 if (IS_ERR(trans)) {
6574 err = PTR_ERR(trans);
6575 goto out_new_inode_args;
6578 err = btrfs_create_new_inode(trans, &new_inode_args);
6580 d_instantiate_new(dentry, inode);
6582 btrfs_end_transaction(trans);
6583 btrfs_btree_balance_dirty(fs_info);
6585 btrfs_new_inode_args_destroy(&new_inode_args);
6592 static int btrfs_mknod(struct mnt_idmap *idmap, struct inode *dir,
6593 struct dentry *dentry, umode_t mode, dev_t rdev)
6595 struct inode *inode;
6597 inode = new_inode(dir->i_sb);
6600 inode_init_owner(idmap, inode, dir, mode);
6601 inode->i_op = &btrfs_special_inode_operations;
6602 init_special_inode(inode, inode->i_mode, rdev);
6603 return btrfs_create_common(dir, dentry, inode);
6606 static int btrfs_create(struct mnt_idmap *idmap, struct inode *dir,
6607 struct dentry *dentry, umode_t mode, bool excl)
6609 struct inode *inode;
6611 inode = new_inode(dir->i_sb);
6614 inode_init_owner(idmap, inode, dir, mode);
6615 inode->i_fop = &btrfs_file_operations;
6616 inode->i_op = &btrfs_file_inode_operations;
6617 inode->i_mapping->a_ops = &btrfs_aops;
6618 return btrfs_create_common(dir, dentry, inode);
6621 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6622 struct dentry *dentry)
6624 struct btrfs_trans_handle *trans = NULL;
6625 struct btrfs_root *root = BTRFS_I(dir)->root;
6626 struct inode *inode = d_inode(old_dentry);
6627 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
6628 struct fscrypt_name fname;
6633 /* do not allow sys_link's with other subvols of the same device */
6634 if (btrfs_root_id(root) != btrfs_root_id(BTRFS_I(inode)->root))
6637 if (inode->i_nlink >= BTRFS_LINK_MAX)
6640 err = fscrypt_setup_filename(dir, &dentry->d_name, 0, &fname);
6644 err = btrfs_set_inode_index(BTRFS_I(dir), &index);
6649 * 2 items for inode and inode ref
6650 * 2 items for dir items
6651 * 1 item for parent inode
6652 * 1 item for orphan item deletion if O_TMPFILE
6654 trans = btrfs_start_transaction(root, inode->i_nlink ? 5 : 6);
6655 if (IS_ERR(trans)) {
6656 err = PTR_ERR(trans);
6661 /* There are several dir indexes for this inode, clear the cache. */
6662 BTRFS_I(inode)->dir_index = 0ULL;
6664 inode_inc_iversion(inode);
6665 inode_set_ctime_current(inode);
6667 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
6669 err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
6670 &fname.disk_name, 1, index);
6675 struct dentry *parent = dentry->d_parent;
6677 err = btrfs_update_inode(trans, BTRFS_I(inode));
6680 if (inode->i_nlink == 1) {
6682 * If new hard link count is 1, it's a file created
6683 * with open(2) O_TMPFILE flag.
6685 err = btrfs_orphan_del(trans, BTRFS_I(inode));
6689 d_instantiate(dentry, inode);
6690 btrfs_log_new_name(trans, old_dentry, NULL, 0, parent);
6694 fscrypt_free_filename(&fname);
6696 btrfs_end_transaction(trans);
6698 inode_dec_link_count(inode);
6701 btrfs_btree_balance_dirty(fs_info);
6705 static int btrfs_mkdir(struct mnt_idmap *idmap, struct inode *dir,
6706 struct dentry *dentry, umode_t mode)
6708 struct inode *inode;
6710 inode = new_inode(dir->i_sb);
6713 inode_init_owner(idmap, inode, dir, S_IFDIR | mode);
6714 inode->i_op = &btrfs_dir_inode_operations;
6715 inode->i_fop = &btrfs_dir_file_operations;
6716 return btrfs_create_common(dir, dentry, inode);
6719 static noinline int uncompress_inline(struct btrfs_path *path,
6720 struct folio *folio,
6721 struct btrfs_file_extent_item *item)
6724 struct extent_buffer *leaf = path->nodes[0];
6727 unsigned long inline_size;
6731 compress_type = btrfs_file_extent_compression(leaf, item);
6732 max_size = btrfs_file_extent_ram_bytes(leaf, item);
6733 inline_size = btrfs_file_extent_inline_item_len(leaf, path->slots[0]);
6734 tmp = kmalloc(inline_size, GFP_NOFS);
6737 ptr = btrfs_file_extent_inline_start(item);
6739 read_extent_buffer(leaf, tmp, ptr, inline_size);
6741 max_size = min_t(unsigned long, PAGE_SIZE, max_size);
6742 ret = btrfs_decompress(compress_type, tmp, folio, 0, inline_size,
6746 * decompression code contains a memset to fill in any space between the end
6747 * of the uncompressed data and the end of max_size in case the decompressed
6748 * data ends up shorter than ram_bytes. That doesn't cover the hole between
6749 * the end of an inline extent and the beginning of the next block, so we
6750 * cover that region here.
6753 if (max_size < PAGE_SIZE)
6754 folio_zero_range(folio, max_size, PAGE_SIZE - max_size);
6759 static int read_inline_extent(struct btrfs_path *path, struct folio *folio)
6761 struct btrfs_file_extent_item *fi;
6765 if (!folio || folio_test_uptodate(folio))
6768 ASSERT(folio_pos(folio) == 0);
6770 fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
6771 struct btrfs_file_extent_item);
6772 if (btrfs_file_extent_compression(path->nodes[0], fi) != BTRFS_COMPRESS_NONE)
6773 return uncompress_inline(path, folio, fi);
6775 copy_size = min_t(u64, PAGE_SIZE,
6776 btrfs_file_extent_ram_bytes(path->nodes[0], fi));
6777 kaddr = kmap_local_folio(folio, 0);
6778 read_extent_buffer(path->nodes[0], kaddr,
6779 btrfs_file_extent_inline_start(fi), copy_size);
6780 kunmap_local(kaddr);
6781 if (copy_size < PAGE_SIZE)
6782 folio_zero_range(folio, copy_size, PAGE_SIZE - copy_size);
6787 * Lookup the first extent overlapping a range in a file.
6789 * @inode: file to search in
6790 * @page: page to read extent data into if the extent is inline
6791 * @start: file offset
6792 * @len: length of range starting at @start
6794 * Return the first &struct extent_map which overlaps the given range, reading
6795 * it from the B-tree and caching it if necessary. Note that there may be more
6796 * extents which overlap the given range after the returned extent_map.
6798 * If @page is not NULL and the extent is inline, this also reads the extent
6799 * data directly into the page and marks the extent up to date in the io_tree.
6801 * Return: ERR_PTR on error, non-NULL extent_map on success.
6803 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode,
6804 struct folio *folio, u64 start, u64 len)
6806 struct btrfs_fs_info *fs_info = inode->root->fs_info;
6808 u64 extent_start = 0;
6810 u64 objectid = btrfs_ino(inode);
6811 int extent_type = -1;
6812 struct btrfs_path *path = NULL;
6813 struct btrfs_root *root = inode->root;
6814 struct btrfs_file_extent_item *item;
6815 struct extent_buffer *leaf;
6816 struct btrfs_key found_key;
6817 struct extent_map *em = NULL;
6818 struct extent_map_tree *em_tree = &inode->extent_tree;
6820 read_lock(&em_tree->lock);
6821 em = lookup_extent_mapping(em_tree, start, len);
6822 read_unlock(&em_tree->lock);
6825 if (em->start > start || em->start + em->len <= start)
6826 free_extent_map(em);
6827 else if (em->disk_bytenr == EXTENT_MAP_INLINE && folio)
6828 free_extent_map(em);
6832 em = alloc_extent_map();
6837 em->start = EXTENT_MAP_HOLE;
6838 em->disk_bytenr = EXTENT_MAP_HOLE;
6841 path = btrfs_alloc_path();
6847 /* Chances are we'll be called again, so go ahead and do readahead */
6848 path->reada = READA_FORWARD;
6851 * The same explanation in load_free_space_cache applies here as well,
6852 * we only read when we're loading the free space cache, and at that
6853 * point the commit_root has everything we need.
6855 if (btrfs_is_free_space_inode(inode)) {
6856 path->search_commit_root = 1;
6857 path->skip_locking = 1;
6860 ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0);
6863 } else if (ret > 0) {
6864 if (path->slots[0] == 0)
6870 leaf = path->nodes[0];
6871 item = btrfs_item_ptr(leaf, path->slots[0],
6872 struct btrfs_file_extent_item);
6873 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6874 if (found_key.objectid != objectid ||
6875 found_key.type != BTRFS_EXTENT_DATA_KEY) {
6877 * If we backup past the first extent we want to move forward
6878 * and see if there is an extent in front of us, otherwise we'll
6879 * say there is a hole for our whole search range which can
6886 extent_type = btrfs_file_extent_type(leaf, item);
6887 extent_start = found_key.offset;
6888 extent_end = btrfs_file_extent_end(path);
6889 if (extent_type == BTRFS_FILE_EXTENT_REG ||
6890 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
6891 /* Only regular file could have regular/prealloc extent */
6892 if (!S_ISREG(inode->vfs_inode.i_mode)) {
6895 "regular/prealloc extent found for non-regular inode %llu",
6899 trace_btrfs_get_extent_show_fi_regular(inode, leaf, item,
6901 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
6902 trace_btrfs_get_extent_show_fi_inline(inode, leaf, item,
6907 if (start >= extent_end) {
6909 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6910 ret = btrfs_next_leaf(root, path);
6916 leaf = path->nodes[0];
6918 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6919 if (found_key.objectid != objectid ||
6920 found_key.type != BTRFS_EXTENT_DATA_KEY)
6922 if (start + len <= found_key.offset)
6924 if (start > found_key.offset)
6927 /* New extent overlaps with existing one */
6929 em->len = found_key.offset - start;
6930 em->disk_bytenr = EXTENT_MAP_HOLE;
6934 btrfs_extent_item_to_extent_map(inode, path, item, em);
6936 if (extent_type == BTRFS_FILE_EXTENT_REG ||
6937 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
6939 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
6941 * Inline extent can only exist at file offset 0. This is
6942 * ensured by tree-checker and inline extent creation path.
6943 * Thus all members representing file offsets should be zero.
6945 ASSERT(extent_start == 0);
6946 ASSERT(em->start == 0);
6949 * btrfs_extent_item_to_extent_map() should have properly
6950 * initialized em members already.
6952 * Other members are not utilized for inline extents.
6954 ASSERT(em->disk_bytenr == EXTENT_MAP_INLINE);
6955 ASSERT(em->len == fs_info->sectorsize);
6957 ret = read_inline_extent(path, folio);
6965 em->disk_bytenr = EXTENT_MAP_HOLE;
6968 btrfs_release_path(path);
6969 if (em->start > start || extent_map_end(em) <= start) {
6971 "bad extent! em: [%llu %llu] passed [%llu %llu]",
6972 em->start, em->len, start, len);
6977 write_lock(&em_tree->lock);
6978 ret = btrfs_add_extent_mapping(inode, &em, start, len);
6979 write_unlock(&em_tree->lock);
6981 btrfs_free_path(path);
6983 trace_btrfs_get_extent(root, inode, em);
6986 free_extent_map(em);
6987 return ERR_PTR(ret);
6992 static bool btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr)
6994 struct btrfs_block_group *block_group;
6995 bool readonly = false;
6997 block_group = btrfs_lookup_block_group(fs_info, bytenr);
6998 if (!block_group || block_group->ro)
7001 btrfs_put_block_group(block_group);
7006 * Check if we can do nocow write into the range [@offset, @offset + @len)
7008 * @offset: File offset
7009 * @len: The length to write, will be updated to the nocow writeable
7011 * @orig_start: (optional) Return the original file offset of the file extent
7012 * @orig_len: (optional) Return the original on-disk length of the file extent
7013 * @ram_bytes: (optional) Return the ram_bytes of the file extent
7014 * @strict: if true, omit optimizations that might force us into unnecessary
7015 * cow. e.g., don't trust generation number.
7018 * >0 and update @len if we can do nocow write
7019 * 0 if we can't do nocow write
7020 * <0 if error happened
7022 * NOTE: This only checks the file extents, caller is responsible to wait for
7023 * any ordered extents.
7025 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
7026 struct btrfs_file_extent *file_extent,
7027 bool nowait, bool strict)
7029 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
7030 struct can_nocow_file_extent_args nocow_args = { 0 };
7031 struct btrfs_path *path;
7033 struct extent_buffer *leaf;
7034 struct btrfs_root *root = BTRFS_I(inode)->root;
7035 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7036 struct btrfs_file_extent_item *fi;
7037 struct btrfs_key key;
7040 path = btrfs_alloc_path();
7043 path->nowait = nowait;
7045 ret = btrfs_lookup_file_extent(NULL, root, path,
7046 btrfs_ino(BTRFS_I(inode)), offset, 0);
7051 if (path->slots[0] == 0) {
7052 /* can't find the item, must cow */
7059 leaf = path->nodes[0];
7060 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
7061 if (key.objectid != btrfs_ino(BTRFS_I(inode)) ||
7062 key.type != BTRFS_EXTENT_DATA_KEY) {
7063 /* not our file or wrong item type, must cow */
7067 if (key.offset > offset) {
7068 /* Wrong offset, must cow */
7072 if (btrfs_file_extent_end(path) <= offset)
7075 fi = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
7076 found_type = btrfs_file_extent_type(leaf, fi);
7078 nocow_args.start = offset;
7079 nocow_args.end = offset + *len - 1;
7080 nocow_args.strict = strict;
7081 nocow_args.free_path = true;
7083 ret = can_nocow_file_extent(path, &key, BTRFS_I(inode), &nocow_args);
7084 /* can_nocow_file_extent() has freed the path. */
7088 /* Treat errors as not being able to NOCOW. */
7094 if (btrfs_extent_readonly(fs_info,
7095 nocow_args.file_extent.disk_bytenr +
7096 nocow_args.file_extent.offset))
7099 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7100 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7103 range_end = round_up(offset + nocow_args.file_extent.num_bytes,
7104 root->fs_info->sectorsize) - 1;
7105 ret = test_range_bit_exists(io_tree, offset, range_end, EXTENT_DELALLOC);
7113 memcpy(file_extent, &nocow_args.file_extent, sizeof(*file_extent));
7115 *len = nocow_args.file_extent.num_bytes;
7118 btrfs_free_path(path);
7122 /* The callers of this must take lock_extent() */
7123 struct extent_map *btrfs_create_io_em(struct btrfs_inode *inode, u64 start,
7124 const struct btrfs_file_extent *file_extent,
7127 struct extent_map *em;
7131 * Note the missing NOCOW type.
7133 * For pure NOCOW writes, we should not create an io extent map, but
7134 * just reusing the existing one.
7135 * Only PREALLOC writes (NOCOW write into preallocated range) can
7136 * create an io extent map.
7138 ASSERT(type == BTRFS_ORDERED_PREALLOC ||
7139 type == BTRFS_ORDERED_COMPRESSED ||
7140 type == BTRFS_ORDERED_REGULAR);
7143 case BTRFS_ORDERED_PREALLOC:
7144 /* We're only referring part of a larger preallocated extent. */
7145 ASSERT(file_extent->num_bytes <= file_extent->ram_bytes);
7147 case BTRFS_ORDERED_REGULAR:
7148 /* COW results a new extent matching our file extent size. */
7149 ASSERT(file_extent->disk_num_bytes == file_extent->num_bytes);
7150 ASSERT(file_extent->ram_bytes == file_extent->num_bytes);
7152 /* Since it's a new extent, we should not have any offset. */
7153 ASSERT(file_extent->offset == 0);
7155 case BTRFS_ORDERED_COMPRESSED:
7156 /* Must be compressed. */
7157 ASSERT(file_extent->compression != BTRFS_COMPRESS_NONE);
7160 * Encoded write can make us to refer to part of the
7161 * uncompressed extent.
7163 ASSERT(file_extent->num_bytes <= file_extent->ram_bytes);
7167 em = alloc_extent_map();
7169 return ERR_PTR(-ENOMEM);
7172 em->len = file_extent->num_bytes;
7173 em->disk_bytenr = file_extent->disk_bytenr;
7174 em->disk_num_bytes = file_extent->disk_num_bytes;
7175 em->ram_bytes = file_extent->ram_bytes;
7176 em->generation = -1;
7177 em->offset = file_extent->offset;
7178 em->flags |= EXTENT_FLAG_PINNED;
7179 if (type == BTRFS_ORDERED_COMPRESSED)
7180 extent_map_set_compression(em, file_extent->compression);
7182 ret = btrfs_replace_extent_map_range(inode, em, true);
7184 free_extent_map(em);
7185 return ERR_PTR(ret);
7188 /* em got 2 refs now, callers needs to do free_extent_map once. */
7193 * For release_folio() and invalidate_folio() we have a race window where
7194 * folio_end_writeback() is called but the subpage spinlock is not yet released.
7195 * If we continue to release/invalidate the page, we could cause use-after-free
7196 * for subpage spinlock. So this function is to spin and wait for subpage
7199 static void wait_subpage_spinlock(struct folio *folio)
7201 struct btrfs_fs_info *fs_info = folio_to_fs_info(folio);
7202 struct btrfs_subpage *subpage;
7204 if (!btrfs_is_subpage(fs_info, folio->mapping))
7207 ASSERT(folio_test_private(folio) && folio_get_private(folio));
7208 subpage = folio_get_private(folio);
7211 * This may look insane as we just acquire the spinlock and release it,
7212 * without doing anything. But we just want to make sure no one is
7213 * still holding the subpage spinlock.
7214 * And since the page is not dirty nor writeback, and we have page
7215 * locked, the only possible way to hold a spinlock is from the endio
7216 * function to clear page writeback.
7218 * Here we just acquire the spinlock so that all existing callers
7219 * should exit and we're safe to release/invalidate the page.
7221 spin_lock_irq(&subpage->lock);
7222 spin_unlock_irq(&subpage->lock);
7225 static int btrfs_launder_folio(struct folio *folio)
7227 return btrfs_qgroup_free_data(folio_to_inode(folio), NULL, folio_pos(folio),
7231 static bool __btrfs_release_folio(struct folio *folio, gfp_t gfp_flags)
7233 if (try_release_extent_mapping(folio, gfp_flags)) {
7234 wait_subpage_spinlock(folio);
7235 clear_folio_extent_mapped(folio);
7241 static bool btrfs_release_folio(struct folio *folio, gfp_t gfp_flags)
7243 if (folio_test_writeback(folio) || folio_test_dirty(folio))
7245 return __btrfs_release_folio(folio, gfp_flags);
7248 #ifdef CONFIG_MIGRATION
7249 static int btrfs_migrate_folio(struct address_space *mapping,
7250 struct folio *dst, struct folio *src,
7251 enum migrate_mode mode)
7253 int ret = filemap_migrate_folio(mapping, dst, src, mode);
7255 if (ret != MIGRATEPAGE_SUCCESS)
7258 if (folio_test_ordered(src)) {
7259 folio_clear_ordered(src);
7260 folio_set_ordered(dst);
7263 return MIGRATEPAGE_SUCCESS;
7266 #define btrfs_migrate_folio NULL
7269 static void btrfs_invalidate_folio(struct folio *folio, size_t offset,
7272 struct btrfs_inode *inode = folio_to_inode(folio);
7273 struct btrfs_fs_info *fs_info = inode->root->fs_info;
7274 struct extent_io_tree *tree = &inode->io_tree;
7275 struct extent_state *cached_state = NULL;
7276 u64 page_start = folio_pos(folio);
7277 u64 page_end = page_start + folio_size(folio) - 1;
7279 int inode_evicting = inode->vfs_inode.i_state & I_FREEING;
7282 * We have folio locked so no new ordered extent can be created on this
7283 * page, nor bio can be submitted for this folio.
7285 * But already submitted bio can still be finished on this folio.
7286 * Furthermore, endio function won't skip folio which has Ordered
7287 * already cleared, so it's possible for endio and
7288 * invalidate_folio to do the same ordered extent accounting twice
7291 * So here we wait for any submitted bios to finish, so that we won't
7292 * do double ordered extent accounting on the same folio.
7294 folio_wait_writeback(folio);
7295 wait_subpage_spinlock(folio);
7298 * For subpage case, we have call sites like
7299 * btrfs_punch_hole_lock_range() which passes range not aligned to
7301 * If the range doesn't cover the full folio, we don't need to and
7302 * shouldn't clear page extent mapped, as folio->private can still
7303 * record subpage dirty bits for other part of the range.
7305 * For cases that invalidate the full folio even the range doesn't
7306 * cover the full folio, like invalidating the last folio, we're
7307 * still safe to wait for ordered extent to finish.
7309 if (!(offset == 0 && length == folio_size(folio))) {
7310 btrfs_release_folio(folio, GFP_NOFS);
7314 if (!inode_evicting)
7315 lock_extent(tree, page_start, page_end, &cached_state);
7318 while (cur < page_end) {
7319 struct btrfs_ordered_extent *ordered;
7322 u32 extra_flags = 0;
7324 ordered = btrfs_lookup_first_ordered_range(inode, cur,
7325 page_end + 1 - cur);
7327 range_end = page_end;
7329 * No ordered extent covering this range, we are safe
7330 * to delete all extent states in the range.
7332 extra_flags = EXTENT_CLEAR_ALL_BITS;
7335 if (ordered->file_offset > cur) {
7337 * There is a range between [cur, oe->file_offset) not
7338 * covered by any ordered extent.
7339 * We are safe to delete all extent states, and handle
7340 * the ordered extent in the next iteration.
7342 range_end = ordered->file_offset - 1;
7343 extra_flags = EXTENT_CLEAR_ALL_BITS;
7347 range_end = min(ordered->file_offset + ordered->num_bytes - 1,
7349 ASSERT(range_end + 1 - cur < U32_MAX);
7350 range_len = range_end + 1 - cur;
7351 if (!btrfs_folio_test_ordered(fs_info, folio, cur, range_len)) {
7353 * If Ordered is cleared, it means endio has
7354 * already been executed for the range.
7355 * We can't delete the extent states as
7356 * btrfs_finish_ordered_io() may still use some of them.
7360 btrfs_folio_clear_ordered(fs_info, folio, cur, range_len);
7363 * IO on this page will never be started, so we need to account
7364 * for any ordered extents now. Don't clear EXTENT_DELALLOC_NEW
7365 * here, must leave that up for the ordered extent completion.
7367 * This will also unlock the range for incoming
7368 * btrfs_finish_ordered_io().
7370 if (!inode_evicting)
7371 clear_extent_bit(tree, cur, range_end,
7373 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
7374 EXTENT_DEFRAG, &cached_state);
7376 spin_lock_irq(&inode->ordered_tree_lock);
7377 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
7378 ordered->truncated_len = min(ordered->truncated_len,
7379 cur - ordered->file_offset);
7380 spin_unlock_irq(&inode->ordered_tree_lock);
7383 * If the ordered extent has finished, we're safe to delete all
7384 * the extent states of the range, otherwise
7385 * btrfs_finish_ordered_io() will get executed by endio for
7386 * other pages, so we can't delete extent states.
7388 if (btrfs_dec_test_ordered_pending(inode, &ordered,
7389 cur, range_end + 1 - cur)) {
7390 btrfs_finish_ordered_io(ordered);
7392 * The ordered extent has finished, now we're again
7393 * safe to delete all extent states of the range.
7395 extra_flags = EXTENT_CLEAR_ALL_BITS;
7399 btrfs_put_ordered_extent(ordered);
7401 * Qgroup reserved space handler
7402 * Sector(s) here will be either:
7404 * 1) Already written to disk or bio already finished
7405 * Then its QGROUP_RESERVED bit in io_tree is already cleared.
7406 * Qgroup will be handled by its qgroup_record then.
7407 * btrfs_qgroup_free_data() call will do nothing here.
7409 * 2) Not written to disk yet
7410 * Then btrfs_qgroup_free_data() call will clear the
7411 * QGROUP_RESERVED bit of its io_tree, and free the qgroup
7412 * reserved data space.
7413 * Since the IO will never happen for this page.
7415 btrfs_qgroup_free_data(inode, NULL, cur, range_end + 1 - cur, NULL);
7416 if (!inode_evicting) {
7417 clear_extent_bit(tree, cur, range_end, EXTENT_LOCKED |
7418 EXTENT_DELALLOC | EXTENT_UPTODATE |
7419 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG |
7420 extra_flags, &cached_state);
7422 cur = range_end + 1;
7425 * We have iterated through all ordered extents of the page, the page
7426 * should not have Ordered anymore, or the above iteration
7427 * did something wrong.
7429 ASSERT(!folio_test_ordered(folio));
7430 btrfs_folio_clear_checked(fs_info, folio, folio_pos(folio), folio_size(folio));
7431 if (!inode_evicting)
7432 __btrfs_release_folio(folio, GFP_NOFS);
7433 clear_folio_extent_mapped(folio);
7436 static int btrfs_truncate(struct btrfs_inode *inode, bool skip_writeback)
7438 struct btrfs_truncate_control control = {
7440 .ino = btrfs_ino(inode),
7441 .min_type = BTRFS_EXTENT_DATA_KEY,
7442 .clear_extent_range = true,
7444 struct btrfs_root *root = inode->root;
7445 struct btrfs_fs_info *fs_info = root->fs_info;
7446 struct btrfs_block_rsv *rsv;
7448 struct btrfs_trans_handle *trans;
7449 u64 mask = fs_info->sectorsize - 1;
7450 const u64 min_size = btrfs_calc_metadata_size(fs_info, 1);
7452 if (!skip_writeback) {
7453 ret = btrfs_wait_ordered_range(inode,
7454 inode->vfs_inode.i_size & (~mask),
7461 * Yes ladies and gentlemen, this is indeed ugly. We have a couple of
7462 * things going on here:
7464 * 1) We need to reserve space to update our inode.
7466 * 2) We need to have something to cache all the space that is going to
7467 * be free'd up by the truncate operation, but also have some slack
7468 * space reserved in case it uses space during the truncate (thank you
7469 * very much snapshotting).
7471 * And we need these to be separate. The fact is we can use a lot of
7472 * space doing the truncate, and we have no earthly idea how much space
7473 * we will use, so we need the truncate reservation to be separate so it
7474 * doesn't end up using space reserved for updating the inode. We also
7475 * need to be able to stop the transaction and start a new one, which
7476 * means we need to be able to update the inode several times, and we
7477 * have no idea of knowing how many times that will be, so we can't just
7478 * reserve 1 item for the entirety of the operation, so that has to be
7479 * done separately as well.
7481 * So that leaves us with
7483 * 1) rsv - for the truncate reservation, which we will steal from the
7484 * transaction reservation.
7485 * 2) fs_info->trans_block_rsv - this will have 1 items worth left for
7486 * updating the inode.
7488 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
7491 rsv->size = min_size;
7492 rsv->failfast = true;
7495 * 1 for the truncate slack space
7496 * 1 for updating the inode.
7498 trans = btrfs_start_transaction(root, 2);
7499 if (IS_ERR(trans)) {
7500 ret = PTR_ERR(trans);
7504 /* Migrate the slack space for the truncate to our reserve */
7505 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
7508 * We have reserved 2 metadata units when we started the transaction and
7509 * min_size matches 1 unit, so this should never fail, but if it does,
7510 * it's not critical we just fail truncation.
7513 btrfs_end_transaction(trans);
7517 trans->block_rsv = rsv;
7520 struct extent_state *cached_state = NULL;
7521 const u64 new_size = inode->vfs_inode.i_size;
7522 const u64 lock_start = ALIGN_DOWN(new_size, fs_info->sectorsize);
7524 control.new_size = new_size;
7525 lock_extent(&inode->io_tree, lock_start, (u64)-1, &cached_state);
7527 * We want to drop from the next block forward in case this new
7528 * size is not block aligned since we will be keeping the last
7529 * block of the extent just the way it is.
7531 btrfs_drop_extent_map_range(inode,
7532 ALIGN(new_size, fs_info->sectorsize),
7535 ret = btrfs_truncate_inode_items(trans, root, &control);
7537 inode_sub_bytes(&inode->vfs_inode, control.sub_bytes);
7538 btrfs_inode_safe_disk_i_size_write(inode, control.last_size);
7540 unlock_extent(&inode->io_tree, lock_start, (u64)-1, &cached_state);
7542 trans->block_rsv = &fs_info->trans_block_rsv;
7543 if (ret != -ENOSPC && ret != -EAGAIN)
7546 ret = btrfs_update_inode(trans, inode);
7550 btrfs_end_transaction(trans);
7551 btrfs_btree_balance_dirty(fs_info);
7553 trans = btrfs_start_transaction(root, 2);
7554 if (IS_ERR(trans)) {
7555 ret = PTR_ERR(trans);
7560 btrfs_block_rsv_release(fs_info, rsv, -1, NULL);
7561 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
7562 rsv, min_size, false);
7564 * We have reserved 2 metadata units when we started the
7565 * transaction and min_size matches 1 unit, so this should never
7566 * fail, but if it does, it's not critical we just fail truncation.
7571 trans->block_rsv = rsv;
7575 * We can't call btrfs_truncate_block inside a trans handle as we could
7576 * deadlock with freeze, if we got BTRFS_NEED_TRUNCATE_BLOCK then we
7577 * know we've truncated everything except the last little bit, and can
7578 * do btrfs_truncate_block and then update the disk_i_size.
7580 if (ret == BTRFS_NEED_TRUNCATE_BLOCK) {
7581 btrfs_end_transaction(trans);
7582 btrfs_btree_balance_dirty(fs_info);
7584 ret = btrfs_truncate_block(inode, inode->vfs_inode.i_size, 0, 0);
7587 trans = btrfs_start_transaction(root, 1);
7588 if (IS_ERR(trans)) {
7589 ret = PTR_ERR(trans);
7592 btrfs_inode_safe_disk_i_size_write(inode, 0);
7598 trans->block_rsv = &fs_info->trans_block_rsv;
7599 ret2 = btrfs_update_inode(trans, inode);
7603 ret2 = btrfs_end_transaction(trans);
7606 btrfs_btree_balance_dirty(fs_info);
7609 btrfs_free_block_rsv(fs_info, rsv);
7611 * So if we truncate and then write and fsync we normally would just
7612 * write the extents that changed, which is a problem if we need to
7613 * first truncate that entire inode. So set this flag so we write out
7614 * all of the extents in the inode to the sync log so we're completely
7617 * If no extents were dropped or trimmed we don't need to force the next
7618 * fsync to truncate all the inode's items from the log and re-log them
7619 * all. This means the truncate operation did not change the file size,
7620 * or changed it to a smaller size but there was only an implicit hole
7621 * between the old i_size and the new i_size, and there were no prealloc
7622 * extents beyond i_size to drop.
7624 if (control.extents_found > 0)
7625 btrfs_set_inode_full_sync(inode);
7630 struct inode *btrfs_new_subvol_inode(struct mnt_idmap *idmap,
7633 struct inode *inode;
7635 inode = new_inode(dir->i_sb);
7638 * Subvolumes don't inherit the sgid bit or the parent's gid if
7639 * the parent's sgid bit is set. This is probably a bug.
7641 inode_init_owner(idmap, inode, NULL,
7642 S_IFDIR | (~current_umask() & S_IRWXUGO));
7643 inode->i_op = &btrfs_dir_inode_operations;
7644 inode->i_fop = &btrfs_dir_file_operations;
7649 struct inode *btrfs_alloc_inode(struct super_block *sb)
7651 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
7652 struct btrfs_inode *ei;
7653 struct inode *inode;
7655 ei = alloc_inode_sb(sb, btrfs_inode_cachep, GFP_KERNEL);
7662 ei->last_sub_trans = 0;
7663 ei->logged_trans = 0;
7664 ei->delalloc_bytes = 0;
7665 ei->new_delalloc_bytes = 0;
7666 ei->defrag_bytes = 0;
7667 ei->disk_i_size = 0;
7671 * ->index_cnt will be properly initialized later when creating a new
7672 * inode (btrfs_create_new_inode()) or when reading an existing inode
7673 * from disk (btrfs_read_locked_inode()).
7677 ei->last_unlink_trans = 0;
7678 ei->last_reflink_trans = 0;
7679 ei->last_log_commit = 0;
7681 spin_lock_init(&ei->lock);
7682 ei->outstanding_extents = 0;
7683 if (sb->s_magic != BTRFS_TEST_MAGIC)
7684 btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv,
7685 BTRFS_BLOCK_RSV_DELALLOC);
7686 ei->runtime_flags = 0;
7687 ei->prop_compress = BTRFS_COMPRESS_NONE;
7688 ei->defrag_compress = BTRFS_COMPRESS_NONE;
7690 ei->delayed_node = NULL;
7692 ei->i_otime_sec = 0;
7693 ei->i_otime_nsec = 0;
7695 inode = &ei->vfs_inode;
7696 extent_map_tree_init(&ei->extent_tree);
7698 /* This io tree sets the valid inode. */
7699 extent_io_tree_init(fs_info, &ei->io_tree, IO_TREE_INODE_IO);
7700 ei->io_tree.inode = ei;
7702 ei->file_extent_tree = NULL;
7704 mutex_init(&ei->log_mutex);
7705 spin_lock_init(&ei->ordered_tree_lock);
7706 ei->ordered_tree = RB_ROOT;
7707 ei->ordered_tree_last = NULL;
7708 INIT_LIST_HEAD(&ei->delalloc_inodes);
7709 INIT_LIST_HEAD(&ei->delayed_iput);
7710 init_rwsem(&ei->i_mmap_lock);
7715 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
7716 void btrfs_test_destroy_inode(struct inode *inode)
7718 btrfs_drop_extent_map_range(BTRFS_I(inode), 0, (u64)-1, false);
7719 kfree(BTRFS_I(inode)->file_extent_tree);
7720 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
7724 void btrfs_free_inode(struct inode *inode)
7726 kfree(BTRFS_I(inode)->file_extent_tree);
7727 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
7730 void btrfs_destroy_inode(struct inode *vfs_inode)
7732 struct btrfs_ordered_extent *ordered;
7733 struct btrfs_inode *inode = BTRFS_I(vfs_inode);
7734 struct btrfs_root *root = inode->root;
7735 bool freespace_inode;
7737 WARN_ON(!hlist_empty(&vfs_inode->i_dentry));
7738 WARN_ON(vfs_inode->i_data.nrpages);
7739 WARN_ON(inode->block_rsv.reserved);
7740 WARN_ON(inode->block_rsv.size);
7741 WARN_ON(inode->outstanding_extents);
7742 if (!S_ISDIR(vfs_inode->i_mode)) {
7743 WARN_ON(inode->delalloc_bytes);
7744 WARN_ON(inode->new_delalloc_bytes);
7745 WARN_ON(inode->csum_bytes);
7747 if (!root || !btrfs_is_data_reloc_root(root))
7748 WARN_ON(inode->defrag_bytes);
7751 * This can happen where we create an inode, but somebody else also
7752 * created the same inode and we need to destroy the one we already
7759 * If this is a free space inode do not take the ordered extents lockdep
7762 freespace_inode = btrfs_is_free_space_inode(inode);
7765 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
7769 btrfs_err(root->fs_info,
7770 "found ordered extent %llu %llu on inode cleanup",
7771 ordered->file_offset, ordered->num_bytes);
7773 if (!freespace_inode)
7774 btrfs_lockdep_acquire(root->fs_info, btrfs_ordered_extent);
7776 btrfs_remove_ordered_extent(inode, ordered);
7777 btrfs_put_ordered_extent(ordered);
7778 btrfs_put_ordered_extent(ordered);
7781 btrfs_qgroup_check_reserved_leak(inode);
7782 btrfs_del_inode_from_root(inode);
7783 btrfs_drop_extent_map_range(inode, 0, (u64)-1, false);
7784 btrfs_inode_clear_file_extent_range(inode, 0, (u64)-1);
7785 btrfs_put_root(inode->root);
7788 int btrfs_drop_inode(struct inode *inode)
7790 struct btrfs_root *root = BTRFS_I(inode)->root;
7795 /* the snap/subvol tree is on deleting */
7796 if (btrfs_root_refs(&root->root_item) == 0)
7799 return generic_drop_inode(inode);
7802 static void init_once(void *foo)
7804 struct btrfs_inode *ei = foo;
7806 inode_init_once(&ei->vfs_inode);
7809 void __cold btrfs_destroy_cachep(void)
7812 * Make sure all delayed rcu free inodes are flushed before we
7816 kmem_cache_destroy(btrfs_inode_cachep);
7819 int __init btrfs_init_cachep(void)
7821 btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
7822 sizeof(struct btrfs_inode), 0,
7823 SLAB_RECLAIM_ACCOUNT | SLAB_ACCOUNT,
7825 if (!btrfs_inode_cachep)
7831 static int btrfs_getattr(struct mnt_idmap *idmap,
7832 const struct path *path, struct kstat *stat,
7833 u32 request_mask, unsigned int flags)
7837 struct inode *inode = d_inode(path->dentry);
7838 u32 blocksize = btrfs_sb(inode->i_sb)->sectorsize;
7839 u32 bi_flags = BTRFS_I(inode)->flags;
7840 u32 bi_ro_flags = BTRFS_I(inode)->ro_flags;
7842 stat->result_mask |= STATX_BTIME;
7843 stat->btime.tv_sec = BTRFS_I(inode)->i_otime_sec;
7844 stat->btime.tv_nsec = BTRFS_I(inode)->i_otime_nsec;
7845 if (bi_flags & BTRFS_INODE_APPEND)
7846 stat->attributes |= STATX_ATTR_APPEND;
7847 if (bi_flags & BTRFS_INODE_COMPRESS)
7848 stat->attributes |= STATX_ATTR_COMPRESSED;
7849 if (bi_flags & BTRFS_INODE_IMMUTABLE)
7850 stat->attributes |= STATX_ATTR_IMMUTABLE;
7851 if (bi_flags & BTRFS_INODE_NODUMP)
7852 stat->attributes |= STATX_ATTR_NODUMP;
7853 if (bi_ro_flags & BTRFS_INODE_RO_VERITY)
7854 stat->attributes |= STATX_ATTR_VERITY;
7856 stat->attributes_mask |= (STATX_ATTR_APPEND |
7857 STATX_ATTR_COMPRESSED |
7858 STATX_ATTR_IMMUTABLE |
7861 generic_fillattr(idmap, request_mask, inode, stat);
7862 stat->dev = BTRFS_I(inode)->root->anon_dev;
7864 stat->subvol = BTRFS_I(inode)->root->root_key.objectid;
7865 stat->result_mask |= STATX_SUBVOL;
7867 spin_lock(&BTRFS_I(inode)->lock);
7868 delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes;
7869 inode_bytes = inode_get_bytes(inode);
7870 spin_unlock(&BTRFS_I(inode)->lock);
7871 stat->blocks = (ALIGN(inode_bytes, blocksize) +
7872 ALIGN(delalloc_bytes, blocksize)) >> SECTOR_SHIFT;
7876 static int btrfs_rename_exchange(struct inode *old_dir,
7877 struct dentry *old_dentry,
7878 struct inode *new_dir,
7879 struct dentry *new_dentry)
7881 struct btrfs_fs_info *fs_info = inode_to_fs_info(old_dir);
7882 struct btrfs_trans_handle *trans;
7883 unsigned int trans_num_items;
7884 struct btrfs_root *root = BTRFS_I(old_dir)->root;
7885 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
7886 struct inode *new_inode = new_dentry->d_inode;
7887 struct inode *old_inode = old_dentry->d_inode;
7888 struct btrfs_rename_ctx old_rename_ctx;
7889 struct btrfs_rename_ctx new_rename_ctx;
7890 u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
7891 u64 new_ino = btrfs_ino(BTRFS_I(new_inode));
7896 bool need_abort = false;
7897 struct fscrypt_name old_fname, new_fname;
7898 struct fscrypt_str *old_name, *new_name;
7901 * For non-subvolumes allow exchange only within one subvolume, in the
7902 * same inode namespace. Two subvolumes (represented as directory) can
7903 * be exchanged as they're a logical link and have a fixed inode number.
7906 (old_ino != BTRFS_FIRST_FREE_OBJECTID ||
7907 new_ino != BTRFS_FIRST_FREE_OBJECTID))
7910 ret = fscrypt_setup_filename(old_dir, &old_dentry->d_name, 0, &old_fname);
7914 ret = fscrypt_setup_filename(new_dir, &new_dentry->d_name, 0, &new_fname);
7916 fscrypt_free_filename(&old_fname);
7920 old_name = &old_fname.disk_name;
7921 new_name = &new_fname.disk_name;
7923 /* close the race window with snapshot create/destroy ioctl */
7924 if (old_ino == BTRFS_FIRST_FREE_OBJECTID ||
7925 new_ino == BTRFS_FIRST_FREE_OBJECTID)
7926 down_read(&fs_info->subvol_sem);
7930 * 1 to remove old dir item
7931 * 1 to remove old dir index
7932 * 1 to add new dir item
7933 * 1 to add new dir index
7934 * 1 to update parent inode
7936 * If the parents are the same, we only need to account for one
7938 trans_num_items = (old_dir == new_dir ? 9 : 10);
7939 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
7941 * 1 to remove old root ref
7942 * 1 to remove old root backref
7943 * 1 to add new root ref
7944 * 1 to add new root backref
7946 trans_num_items += 4;
7949 * 1 to update inode item
7950 * 1 to remove old inode ref
7951 * 1 to add new inode ref
7953 trans_num_items += 3;
7955 if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
7956 trans_num_items += 4;
7958 trans_num_items += 3;
7959 trans = btrfs_start_transaction(root, trans_num_items);
7960 if (IS_ERR(trans)) {
7961 ret = PTR_ERR(trans);
7966 ret = btrfs_record_root_in_trans(trans, dest);
7972 * We need to find a free sequence number both in the source and
7973 * in the destination directory for the exchange.
7975 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx);
7978 ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx);
7982 BTRFS_I(old_inode)->dir_index = 0ULL;
7983 BTRFS_I(new_inode)->dir_index = 0ULL;
7985 /* Reference for the source. */
7986 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
7987 /* force full log commit if subvolume involved. */
7988 btrfs_set_log_full_commit(trans);
7990 ret = btrfs_insert_inode_ref(trans, dest, new_name, old_ino,
7991 btrfs_ino(BTRFS_I(new_dir)),
7998 /* And now for the dest. */
7999 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
8000 /* force full log commit if subvolume involved. */
8001 btrfs_set_log_full_commit(trans);
8003 ret = btrfs_insert_inode_ref(trans, root, old_name, new_ino,
8004 btrfs_ino(BTRFS_I(old_dir)),
8008 btrfs_abort_transaction(trans, ret);
8013 /* Update inode version and ctime/mtime. */
8014 inode_inc_iversion(old_dir);
8015 inode_inc_iversion(new_dir);
8016 inode_inc_iversion(old_inode);
8017 inode_inc_iversion(new_inode);
8018 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry);
8020 if (old_dentry->d_parent != new_dentry->d_parent) {
8021 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
8022 BTRFS_I(old_inode), true);
8023 btrfs_record_unlink_dir(trans, BTRFS_I(new_dir),
8024 BTRFS_I(new_inode), true);
8027 /* src is a subvolume */
8028 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
8029 ret = btrfs_unlink_subvol(trans, BTRFS_I(old_dir), old_dentry);
8030 } else { /* src is an inode */
8031 ret = __btrfs_unlink_inode(trans, BTRFS_I(old_dir),
8032 BTRFS_I(old_dentry->d_inode),
8033 old_name, &old_rename_ctx);
8035 ret = btrfs_update_inode(trans, BTRFS_I(old_inode));
8038 btrfs_abort_transaction(trans, ret);
8042 /* dest is a subvolume */
8043 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
8044 ret = btrfs_unlink_subvol(trans, BTRFS_I(new_dir), new_dentry);
8045 } else { /* dest is an inode */
8046 ret = __btrfs_unlink_inode(trans, BTRFS_I(new_dir),
8047 BTRFS_I(new_dentry->d_inode),
8048 new_name, &new_rename_ctx);
8050 ret = btrfs_update_inode(trans, BTRFS_I(new_inode));
8053 btrfs_abort_transaction(trans, ret);
8057 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
8058 new_name, 0, old_idx);
8060 btrfs_abort_transaction(trans, ret);
8064 ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode),
8065 old_name, 0, new_idx);
8067 btrfs_abort_transaction(trans, ret);
8071 if (old_inode->i_nlink == 1)
8072 BTRFS_I(old_inode)->dir_index = old_idx;
8073 if (new_inode->i_nlink == 1)
8074 BTRFS_I(new_inode)->dir_index = new_idx;
8077 * Now pin the logs of the roots. We do it to ensure that no other task
8078 * can sync the logs while we are in progress with the rename, because
8079 * that could result in an inconsistency in case any of the inodes that
8080 * are part of this rename operation were logged before.
8082 if (old_ino != BTRFS_FIRST_FREE_OBJECTID)
8083 btrfs_pin_log_trans(root);
8084 if (new_ino != BTRFS_FIRST_FREE_OBJECTID)
8085 btrfs_pin_log_trans(dest);
8087 /* Do the log updates for all inodes. */
8088 if (old_ino != BTRFS_FIRST_FREE_OBJECTID)
8089 btrfs_log_new_name(trans, old_dentry, BTRFS_I(old_dir),
8090 old_rename_ctx.index, new_dentry->d_parent);
8091 if (new_ino != BTRFS_FIRST_FREE_OBJECTID)
8092 btrfs_log_new_name(trans, new_dentry, BTRFS_I(new_dir),
8093 new_rename_ctx.index, old_dentry->d_parent);
8095 /* Now unpin the logs. */
8096 if (old_ino != BTRFS_FIRST_FREE_OBJECTID)
8097 btrfs_end_log_trans(root);
8098 if (new_ino != BTRFS_FIRST_FREE_OBJECTID)
8099 btrfs_end_log_trans(dest);
8101 ret2 = btrfs_end_transaction(trans);
8102 ret = ret ? ret : ret2;
8104 if (new_ino == BTRFS_FIRST_FREE_OBJECTID ||
8105 old_ino == BTRFS_FIRST_FREE_OBJECTID)
8106 up_read(&fs_info->subvol_sem);
8108 fscrypt_free_filename(&new_fname);
8109 fscrypt_free_filename(&old_fname);
8113 static struct inode *new_whiteout_inode(struct mnt_idmap *idmap,
8116 struct inode *inode;
8118 inode = new_inode(dir->i_sb);
8120 inode_init_owner(idmap, inode, dir,
8121 S_IFCHR | WHITEOUT_MODE);
8122 inode->i_op = &btrfs_special_inode_operations;
8123 init_special_inode(inode, inode->i_mode, WHITEOUT_DEV);
8128 static int btrfs_rename(struct mnt_idmap *idmap,
8129 struct inode *old_dir, struct dentry *old_dentry,
8130 struct inode *new_dir, struct dentry *new_dentry,
8133 struct btrfs_fs_info *fs_info = inode_to_fs_info(old_dir);
8134 struct btrfs_new_inode_args whiteout_args = {
8136 .dentry = old_dentry,
8138 struct btrfs_trans_handle *trans;
8139 unsigned int trans_num_items;
8140 struct btrfs_root *root = BTRFS_I(old_dir)->root;
8141 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
8142 struct inode *new_inode = d_inode(new_dentry);
8143 struct inode *old_inode = d_inode(old_dentry);
8144 struct btrfs_rename_ctx rename_ctx;
8148 u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
8149 struct fscrypt_name old_fname, new_fname;
8151 if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
8154 /* we only allow rename subvolume link between subvolumes */
8155 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
8158 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
8159 (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID))
8162 if (S_ISDIR(old_inode->i_mode) && new_inode &&
8163 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
8166 ret = fscrypt_setup_filename(old_dir, &old_dentry->d_name, 0, &old_fname);
8170 ret = fscrypt_setup_filename(new_dir, &new_dentry->d_name, 0, &new_fname);
8172 fscrypt_free_filename(&old_fname);
8176 /* check for collisions, even if the name isn't there */
8177 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino, &new_fname.disk_name);
8179 if (ret == -EEXIST) {
8181 * eexist without a new_inode */
8182 if (WARN_ON(!new_inode)) {
8183 goto out_fscrypt_names;
8186 /* maybe -EOVERFLOW */
8187 goto out_fscrypt_names;
8193 * we're using rename to replace one file with another. Start IO on it
8194 * now so we don't add too much work to the end of the transaction
8196 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
8197 filemap_flush(old_inode->i_mapping);
8199 if (flags & RENAME_WHITEOUT) {
8200 whiteout_args.inode = new_whiteout_inode(idmap, old_dir);
8201 if (!whiteout_args.inode) {
8203 goto out_fscrypt_names;
8205 ret = btrfs_new_inode_prepare(&whiteout_args, &trans_num_items);
8207 goto out_whiteout_inode;
8209 /* 1 to update the old parent inode. */
8210 trans_num_items = 1;
8213 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
8214 /* Close the race window with snapshot create/destroy ioctl */
8215 down_read(&fs_info->subvol_sem);
8217 * 1 to remove old root ref
8218 * 1 to remove old root backref
8219 * 1 to add new root ref
8220 * 1 to add new root backref
8222 trans_num_items += 4;
8226 * 1 to remove old inode ref
8227 * 1 to add new inode ref
8229 trans_num_items += 3;
8232 * 1 to remove old dir item
8233 * 1 to remove old dir index
8234 * 1 to add new dir item
8235 * 1 to add new dir index
8237 trans_num_items += 4;
8238 /* 1 to update new parent inode if it's not the same as the old parent */
8239 if (new_dir != old_dir)
8244 * 1 to remove inode ref
8245 * 1 to remove dir item
8246 * 1 to remove dir index
8247 * 1 to possibly add orphan item
8249 trans_num_items += 5;
8251 trans = btrfs_start_transaction(root, trans_num_items);
8252 if (IS_ERR(trans)) {
8253 ret = PTR_ERR(trans);
8258 ret = btrfs_record_root_in_trans(trans, dest);
8263 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index);
8267 BTRFS_I(old_inode)->dir_index = 0ULL;
8268 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
8269 /* force full log commit if subvolume involved. */
8270 btrfs_set_log_full_commit(trans);
8272 ret = btrfs_insert_inode_ref(trans, dest, &new_fname.disk_name,
8273 old_ino, btrfs_ino(BTRFS_I(new_dir)),
8279 inode_inc_iversion(old_dir);
8280 inode_inc_iversion(new_dir);
8281 inode_inc_iversion(old_inode);
8282 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry);
8284 if (old_dentry->d_parent != new_dentry->d_parent)
8285 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
8286 BTRFS_I(old_inode), true);
8288 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
8289 ret = btrfs_unlink_subvol(trans, BTRFS_I(old_dir), old_dentry);
8291 ret = __btrfs_unlink_inode(trans, BTRFS_I(old_dir),
8292 BTRFS_I(d_inode(old_dentry)),
8293 &old_fname.disk_name, &rename_ctx);
8295 ret = btrfs_update_inode(trans, BTRFS_I(old_inode));
8298 btrfs_abort_transaction(trans, ret);
8303 inode_inc_iversion(new_inode);
8304 if (unlikely(btrfs_ino(BTRFS_I(new_inode)) ==
8305 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
8306 ret = btrfs_unlink_subvol(trans, BTRFS_I(new_dir), new_dentry);
8307 BUG_ON(new_inode->i_nlink == 0);
8309 ret = btrfs_unlink_inode(trans, BTRFS_I(new_dir),
8310 BTRFS_I(d_inode(new_dentry)),
8311 &new_fname.disk_name);
8313 if (!ret && new_inode->i_nlink == 0)
8314 ret = btrfs_orphan_add(trans,
8315 BTRFS_I(d_inode(new_dentry)));
8317 btrfs_abort_transaction(trans, ret);
8322 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
8323 &new_fname.disk_name, 0, index);
8325 btrfs_abort_transaction(trans, ret);
8329 if (old_inode->i_nlink == 1)
8330 BTRFS_I(old_inode)->dir_index = index;
8332 if (old_ino != BTRFS_FIRST_FREE_OBJECTID)
8333 btrfs_log_new_name(trans, old_dentry, BTRFS_I(old_dir),
8334 rename_ctx.index, new_dentry->d_parent);
8336 if (flags & RENAME_WHITEOUT) {
8337 ret = btrfs_create_new_inode(trans, &whiteout_args);
8339 btrfs_abort_transaction(trans, ret);
8342 unlock_new_inode(whiteout_args.inode);
8343 iput(whiteout_args.inode);
8344 whiteout_args.inode = NULL;
8348 ret2 = btrfs_end_transaction(trans);
8349 ret = ret ? ret : ret2;
8351 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
8352 up_read(&fs_info->subvol_sem);
8353 if (flags & RENAME_WHITEOUT)
8354 btrfs_new_inode_args_destroy(&whiteout_args);
8356 if (flags & RENAME_WHITEOUT)
8357 iput(whiteout_args.inode);
8359 fscrypt_free_filename(&old_fname);
8360 fscrypt_free_filename(&new_fname);
8364 static int btrfs_rename2(struct mnt_idmap *idmap, struct inode *old_dir,
8365 struct dentry *old_dentry, struct inode *new_dir,
8366 struct dentry *new_dentry, unsigned int flags)
8370 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
8373 if (flags & RENAME_EXCHANGE)
8374 ret = btrfs_rename_exchange(old_dir, old_dentry, new_dir,
8377 ret = btrfs_rename(idmap, old_dir, old_dentry, new_dir,
8380 btrfs_btree_balance_dirty(BTRFS_I(new_dir)->root->fs_info);
8385 struct btrfs_delalloc_work {
8386 struct inode *inode;
8387 struct completion completion;
8388 struct list_head list;
8389 struct btrfs_work work;
8392 static void btrfs_run_delalloc_work(struct btrfs_work *work)
8394 struct btrfs_delalloc_work *delalloc_work;
8395 struct inode *inode;
8397 delalloc_work = container_of(work, struct btrfs_delalloc_work,
8399 inode = delalloc_work->inode;
8400 filemap_flush(inode->i_mapping);
8401 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
8402 &BTRFS_I(inode)->runtime_flags))
8403 filemap_flush(inode->i_mapping);
8406 complete(&delalloc_work->completion);
8409 static struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode)
8411 struct btrfs_delalloc_work *work;
8413 work = kmalloc(sizeof(*work), GFP_NOFS);
8417 init_completion(&work->completion);
8418 INIT_LIST_HEAD(&work->list);
8419 work->inode = inode;
8420 btrfs_init_work(&work->work, btrfs_run_delalloc_work, NULL);
8426 * some fairly slow code that needs optimization. This walks the list
8427 * of all the inodes with pending delalloc and forces them to disk.
8429 static int start_delalloc_inodes(struct btrfs_root *root,
8430 struct writeback_control *wbc, bool snapshot,
8431 bool in_reclaim_context)
8433 struct btrfs_inode *binode;
8434 struct inode *inode;
8435 struct btrfs_delalloc_work *work, *next;
8439 bool full_flush = wbc->nr_to_write == LONG_MAX;
8441 mutex_lock(&root->delalloc_mutex);
8442 spin_lock(&root->delalloc_lock);
8443 list_splice_init(&root->delalloc_inodes, &splice);
8444 while (!list_empty(&splice)) {
8445 binode = list_entry(splice.next, struct btrfs_inode,
8448 list_move_tail(&binode->delalloc_inodes,
8449 &root->delalloc_inodes);
8451 if (in_reclaim_context &&
8452 test_bit(BTRFS_INODE_NO_DELALLOC_FLUSH, &binode->runtime_flags))
8455 inode = igrab(&binode->vfs_inode);
8457 cond_resched_lock(&root->delalloc_lock);
8460 spin_unlock(&root->delalloc_lock);
8463 set_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
8464 &binode->runtime_flags);
8466 work = btrfs_alloc_delalloc_work(inode);
8472 list_add_tail(&work->list, &works);
8473 btrfs_queue_work(root->fs_info->flush_workers,
8476 ret = filemap_fdatawrite_wbc(inode->i_mapping, wbc);
8477 btrfs_add_delayed_iput(BTRFS_I(inode));
8478 if (ret || wbc->nr_to_write <= 0)
8482 spin_lock(&root->delalloc_lock);
8484 spin_unlock(&root->delalloc_lock);
8487 list_for_each_entry_safe(work, next, &works, list) {
8488 list_del_init(&work->list);
8489 wait_for_completion(&work->completion);
8493 if (!list_empty(&splice)) {
8494 spin_lock(&root->delalloc_lock);
8495 list_splice_tail(&splice, &root->delalloc_inodes);
8496 spin_unlock(&root->delalloc_lock);
8498 mutex_unlock(&root->delalloc_mutex);
8502 int btrfs_start_delalloc_snapshot(struct btrfs_root *root, bool in_reclaim_context)
8504 struct writeback_control wbc = {
8505 .nr_to_write = LONG_MAX,
8506 .sync_mode = WB_SYNC_NONE,
8508 .range_end = LLONG_MAX,
8510 struct btrfs_fs_info *fs_info = root->fs_info;
8512 if (BTRFS_FS_ERROR(fs_info))
8515 return start_delalloc_inodes(root, &wbc, true, in_reclaim_context);
8518 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, long nr,
8519 bool in_reclaim_context)
8521 struct writeback_control wbc = {
8523 .sync_mode = WB_SYNC_NONE,
8525 .range_end = LLONG_MAX,
8527 struct btrfs_root *root;
8531 if (BTRFS_FS_ERROR(fs_info))
8534 mutex_lock(&fs_info->delalloc_root_mutex);
8535 spin_lock(&fs_info->delalloc_root_lock);
8536 list_splice_init(&fs_info->delalloc_roots, &splice);
8537 while (!list_empty(&splice)) {
8539 * Reset nr_to_write here so we know that we're doing a full
8543 wbc.nr_to_write = LONG_MAX;
8545 root = list_first_entry(&splice, struct btrfs_root,
8547 root = btrfs_grab_root(root);
8549 list_move_tail(&root->delalloc_root,
8550 &fs_info->delalloc_roots);
8551 spin_unlock(&fs_info->delalloc_root_lock);
8553 ret = start_delalloc_inodes(root, &wbc, false, in_reclaim_context);
8554 btrfs_put_root(root);
8555 if (ret < 0 || wbc.nr_to_write <= 0)
8557 spin_lock(&fs_info->delalloc_root_lock);
8559 spin_unlock(&fs_info->delalloc_root_lock);
8563 if (!list_empty(&splice)) {
8564 spin_lock(&fs_info->delalloc_root_lock);
8565 list_splice_tail(&splice, &fs_info->delalloc_roots);
8566 spin_unlock(&fs_info->delalloc_root_lock);
8568 mutex_unlock(&fs_info->delalloc_root_mutex);
8572 static int btrfs_symlink(struct mnt_idmap *idmap, struct inode *dir,
8573 struct dentry *dentry, const char *symname)
8575 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
8576 struct btrfs_trans_handle *trans;
8577 struct btrfs_root *root = BTRFS_I(dir)->root;
8578 struct btrfs_path *path;
8579 struct btrfs_key key;
8580 struct inode *inode;
8581 struct btrfs_new_inode_args new_inode_args = {
8585 unsigned int trans_num_items;
8590 struct btrfs_file_extent_item *ei;
8591 struct extent_buffer *leaf;
8593 name_len = strlen(symname);
8594 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info))
8595 return -ENAMETOOLONG;
8597 inode = new_inode(dir->i_sb);
8600 inode_init_owner(idmap, inode, dir, S_IFLNK | S_IRWXUGO);
8601 inode->i_op = &btrfs_symlink_inode_operations;
8602 inode_nohighmem(inode);
8603 inode->i_mapping->a_ops = &btrfs_aops;
8604 btrfs_i_size_write(BTRFS_I(inode), name_len);
8605 inode_set_bytes(inode, name_len);
8607 new_inode_args.inode = inode;
8608 err = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items);
8611 /* 1 additional item for the inline extent */
8614 trans = btrfs_start_transaction(root, trans_num_items);
8615 if (IS_ERR(trans)) {
8616 err = PTR_ERR(trans);
8617 goto out_new_inode_args;
8620 err = btrfs_create_new_inode(trans, &new_inode_args);
8624 path = btrfs_alloc_path();
8627 btrfs_abort_transaction(trans, err);
8628 discard_new_inode(inode);
8632 key.objectid = btrfs_ino(BTRFS_I(inode));
8634 key.type = BTRFS_EXTENT_DATA_KEY;
8635 datasize = btrfs_file_extent_calc_inline_size(name_len);
8636 err = btrfs_insert_empty_item(trans, root, path, &key,
8639 btrfs_abort_transaction(trans, err);
8640 btrfs_free_path(path);
8641 discard_new_inode(inode);
8645 leaf = path->nodes[0];
8646 ei = btrfs_item_ptr(leaf, path->slots[0],
8647 struct btrfs_file_extent_item);
8648 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
8649 btrfs_set_file_extent_type(leaf, ei,
8650 BTRFS_FILE_EXTENT_INLINE);
8651 btrfs_set_file_extent_encryption(leaf, ei, 0);
8652 btrfs_set_file_extent_compression(leaf, ei, 0);
8653 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
8654 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
8656 ptr = btrfs_file_extent_inline_start(ei);
8657 write_extent_buffer(leaf, symname, ptr, name_len);
8658 btrfs_mark_buffer_dirty(trans, leaf);
8659 btrfs_free_path(path);
8661 d_instantiate_new(dentry, inode);
8664 btrfs_end_transaction(trans);
8665 btrfs_btree_balance_dirty(fs_info);
8667 btrfs_new_inode_args_destroy(&new_inode_args);
8674 static struct btrfs_trans_handle *insert_prealloc_file_extent(
8675 struct btrfs_trans_handle *trans_in,
8676 struct btrfs_inode *inode,
8677 struct btrfs_key *ins,
8680 struct btrfs_file_extent_item stack_fi;
8681 struct btrfs_replace_extent_info extent_info;
8682 struct btrfs_trans_handle *trans = trans_in;
8683 struct btrfs_path *path;
8684 u64 start = ins->objectid;
8685 u64 len = ins->offset;
8686 u64 qgroup_released = 0;
8689 memset(&stack_fi, 0, sizeof(stack_fi));
8691 btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_PREALLOC);
8692 btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, start);
8693 btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi, len);
8694 btrfs_set_stack_file_extent_num_bytes(&stack_fi, len);
8695 btrfs_set_stack_file_extent_ram_bytes(&stack_fi, len);
8696 btrfs_set_stack_file_extent_compression(&stack_fi, BTRFS_COMPRESS_NONE);
8697 /* Encryption and other encoding is reserved and all 0 */
8699 ret = btrfs_qgroup_release_data(inode, file_offset, len, &qgroup_released);
8701 return ERR_PTR(ret);
8704 ret = insert_reserved_file_extent(trans, inode,
8705 file_offset, &stack_fi,
8706 true, qgroup_released);
8712 extent_info.disk_offset = start;
8713 extent_info.disk_len = len;
8714 extent_info.data_offset = 0;
8715 extent_info.data_len = len;
8716 extent_info.file_offset = file_offset;
8717 extent_info.extent_buf = (char *)&stack_fi;
8718 extent_info.is_new_extent = true;
8719 extent_info.update_times = true;
8720 extent_info.qgroup_reserved = qgroup_released;
8721 extent_info.insertions = 0;
8723 path = btrfs_alloc_path();
8729 ret = btrfs_replace_file_extents(inode, path, file_offset,
8730 file_offset + len - 1, &extent_info,
8732 btrfs_free_path(path);
8739 * We have released qgroup data range at the beginning of the function,
8740 * and normally qgroup_released bytes will be freed when committing
8742 * But if we error out early, we have to free what we have released
8743 * or we leak qgroup data reservation.
8745 btrfs_qgroup_free_refroot(inode->root->fs_info,
8746 btrfs_root_id(inode->root), qgroup_released,
8747 BTRFS_QGROUP_RSV_DATA);
8748 return ERR_PTR(ret);
8751 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
8752 u64 start, u64 num_bytes, u64 min_size,
8753 loff_t actual_len, u64 *alloc_hint,
8754 struct btrfs_trans_handle *trans)
8756 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
8757 struct extent_map *em;
8758 struct btrfs_root *root = BTRFS_I(inode)->root;
8759 struct btrfs_key ins;
8760 u64 cur_offset = start;
8761 u64 clear_offset = start;
8764 u64 last_alloc = (u64)-1;
8766 bool own_trans = true;
8767 u64 end = start + num_bytes - 1;
8771 while (num_bytes > 0) {
8772 cur_bytes = min_t(u64, num_bytes, SZ_256M);
8773 cur_bytes = max(cur_bytes, min_size);
8775 * If we are severely fragmented we could end up with really
8776 * small allocations, so if the allocator is returning small
8777 * chunks lets make its job easier by only searching for those
8780 cur_bytes = min(cur_bytes, last_alloc);
8781 ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes,
8782 min_size, 0, *alloc_hint, &ins, 1, 0);
8787 * We've reserved this space, and thus converted it from
8788 * ->bytes_may_use to ->bytes_reserved. Any error that happens
8789 * from here on out we will only need to clear our reservation
8790 * for the remaining unreserved area, so advance our
8791 * clear_offset by our extent size.
8793 clear_offset += ins.offset;
8795 last_alloc = ins.offset;
8796 trans = insert_prealloc_file_extent(trans, BTRFS_I(inode),
8799 * Now that we inserted the prealloc extent we can finally
8800 * decrement the number of reservations in the block group.
8801 * If we did it before, we could race with relocation and have
8802 * relocation miss the reserved extent, making it fail later.
8804 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
8805 if (IS_ERR(trans)) {
8806 ret = PTR_ERR(trans);
8807 btrfs_free_reserved_extent(fs_info, ins.objectid,
8812 em = alloc_extent_map();
8814 btrfs_drop_extent_map_range(BTRFS_I(inode), cur_offset,
8815 cur_offset + ins.offset - 1, false);
8816 btrfs_set_inode_full_sync(BTRFS_I(inode));
8820 em->start = cur_offset;
8821 em->len = ins.offset;
8822 em->disk_bytenr = ins.objectid;
8824 em->disk_num_bytes = ins.offset;
8825 em->ram_bytes = ins.offset;
8826 em->flags |= EXTENT_FLAG_PREALLOC;
8827 em->generation = trans->transid;
8829 ret = btrfs_replace_extent_map_range(BTRFS_I(inode), em, true);
8830 free_extent_map(em);
8832 num_bytes -= ins.offset;
8833 cur_offset += ins.offset;
8834 *alloc_hint = ins.objectid + ins.offset;
8836 inode_inc_iversion(inode);
8837 inode_set_ctime_current(inode);
8838 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
8839 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
8840 (actual_len > inode->i_size) &&
8841 (cur_offset > inode->i_size)) {
8842 if (cur_offset > actual_len)
8843 i_size = actual_len;
8845 i_size = cur_offset;
8846 i_size_write(inode, i_size);
8847 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
8850 ret = btrfs_update_inode(trans, BTRFS_I(inode));
8853 btrfs_abort_transaction(trans, ret);
8855 btrfs_end_transaction(trans);
8860 btrfs_end_transaction(trans);
8864 if (clear_offset < end)
8865 btrfs_free_reserved_data_space(BTRFS_I(inode), NULL, clear_offset,
8866 end - clear_offset + 1);
8870 int btrfs_prealloc_file_range(struct inode *inode, int mode,
8871 u64 start, u64 num_bytes, u64 min_size,
8872 loff_t actual_len, u64 *alloc_hint)
8874 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
8875 min_size, actual_len, alloc_hint,
8879 int btrfs_prealloc_file_range_trans(struct inode *inode,
8880 struct btrfs_trans_handle *trans, int mode,
8881 u64 start, u64 num_bytes, u64 min_size,
8882 loff_t actual_len, u64 *alloc_hint)
8884 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
8885 min_size, actual_len, alloc_hint, trans);
8888 static int btrfs_permission(struct mnt_idmap *idmap,
8889 struct inode *inode, int mask)
8891 struct btrfs_root *root = BTRFS_I(inode)->root;
8892 umode_t mode = inode->i_mode;
8894 if (mask & MAY_WRITE &&
8895 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
8896 if (btrfs_root_readonly(root))
8898 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
8901 return generic_permission(idmap, inode, mask);
8904 static int btrfs_tmpfile(struct mnt_idmap *idmap, struct inode *dir,
8905 struct file *file, umode_t mode)
8907 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
8908 struct btrfs_trans_handle *trans;
8909 struct btrfs_root *root = BTRFS_I(dir)->root;
8910 struct inode *inode;
8911 struct btrfs_new_inode_args new_inode_args = {
8913 .dentry = file->f_path.dentry,
8916 unsigned int trans_num_items;
8919 inode = new_inode(dir->i_sb);
8922 inode_init_owner(idmap, inode, dir, mode);
8923 inode->i_fop = &btrfs_file_operations;
8924 inode->i_op = &btrfs_file_inode_operations;
8925 inode->i_mapping->a_ops = &btrfs_aops;
8927 new_inode_args.inode = inode;
8928 ret = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items);
8932 trans = btrfs_start_transaction(root, trans_num_items);
8933 if (IS_ERR(trans)) {
8934 ret = PTR_ERR(trans);
8935 goto out_new_inode_args;
8938 ret = btrfs_create_new_inode(trans, &new_inode_args);
8941 * We set number of links to 0 in btrfs_create_new_inode(), and here we
8942 * set it to 1 because d_tmpfile() will issue a warning if the count is
8945 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
8947 set_nlink(inode, 1);
8950 d_tmpfile(file, inode);
8951 unlock_new_inode(inode);
8952 mark_inode_dirty(inode);
8955 btrfs_end_transaction(trans);
8956 btrfs_btree_balance_dirty(fs_info);
8958 btrfs_new_inode_args_destroy(&new_inode_args);
8962 return finish_open_simple(file, ret);
8965 int btrfs_encoded_io_compression_from_extent(struct btrfs_fs_info *fs_info,
8968 switch (compress_type) {
8969 case BTRFS_COMPRESS_NONE:
8970 return BTRFS_ENCODED_IO_COMPRESSION_NONE;
8971 case BTRFS_COMPRESS_ZLIB:
8972 return BTRFS_ENCODED_IO_COMPRESSION_ZLIB;
8973 case BTRFS_COMPRESS_LZO:
8975 * The LZO format depends on the sector size. 64K is the maximum
8976 * sector size that we support.
8978 if (fs_info->sectorsize < SZ_4K || fs_info->sectorsize > SZ_64K)
8980 return BTRFS_ENCODED_IO_COMPRESSION_LZO_4K +
8981 (fs_info->sectorsize_bits - 12);
8982 case BTRFS_COMPRESS_ZSTD:
8983 return BTRFS_ENCODED_IO_COMPRESSION_ZSTD;
8989 static ssize_t btrfs_encoded_read_inline(
8991 struct iov_iter *iter, u64 start,
8993 struct extent_state **cached_state,
8994 u64 extent_start, size_t count,
8995 struct btrfs_ioctl_encoded_io_args *encoded,
8998 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
8999 struct btrfs_root *root = inode->root;
9000 struct btrfs_fs_info *fs_info = root->fs_info;
9001 struct extent_io_tree *io_tree = &inode->io_tree;
9002 struct btrfs_path *path;
9003 struct extent_buffer *leaf;
9004 struct btrfs_file_extent_item *item;
9009 const bool nowait = (iocb->ki_flags & IOCB_NOWAIT);
9011 path = btrfs_alloc_path();
9017 path->nowait = nowait;
9019 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode),
9023 /* The extent item disappeared? */
9028 leaf = path->nodes[0];
9029 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
9031 ram_bytes = btrfs_file_extent_ram_bytes(leaf, item);
9032 ptr = btrfs_file_extent_inline_start(item);
9034 encoded->len = min_t(u64, extent_start + ram_bytes,
9035 inode->vfs_inode.i_size) - iocb->ki_pos;
9036 ret = btrfs_encoded_io_compression_from_extent(fs_info,
9037 btrfs_file_extent_compression(leaf, item));
9040 encoded->compression = ret;
9041 if (encoded->compression) {
9044 inline_size = btrfs_file_extent_inline_item_len(leaf,
9046 if (inline_size > count) {
9050 count = inline_size;
9051 encoded->unencoded_len = ram_bytes;
9052 encoded->unencoded_offset = iocb->ki_pos - extent_start;
9054 count = min_t(u64, count, encoded->len);
9055 encoded->len = count;
9056 encoded->unencoded_len = count;
9057 ptr += iocb->ki_pos - extent_start;
9060 tmp = kmalloc(count, GFP_NOFS);
9065 read_extent_buffer(leaf, tmp, ptr, count);
9066 btrfs_release_path(path);
9067 unlock_extent(io_tree, start, lockend, cached_state);
9068 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
9071 ret = copy_to_iter(tmp, count, iter);
9076 btrfs_free_path(path);
9080 struct btrfs_encoded_read_private {
9081 struct completion done;
9083 refcount_t pending_refs;
9084 blk_status_t status;
9087 static void btrfs_encoded_read_endio(struct btrfs_bio *bbio)
9089 struct btrfs_encoded_read_private *priv = bbio->private;
9091 if (bbio->bio.bi_status) {
9093 * The memory barrier implied by the atomic_dec_return() here
9094 * pairs with the memory barrier implied by the
9095 * atomic_dec_return() or io_wait_event() in
9096 * btrfs_encoded_read_regular_fill_pages() to ensure that this
9097 * write is observed before the load of status in
9098 * btrfs_encoded_read_regular_fill_pages().
9100 WRITE_ONCE(priv->status, bbio->bio.bi_status);
9102 if (refcount_dec_and_test(&priv->pending_refs)) {
9103 int err = blk_status_to_errno(READ_ONCE(priv->status));
9105 if (priv->uring_ctx) {
9106 btrfs_uring_read_extent_endio(priv->uring_ctx, err);
9109 complete(&priv->done);
9112 bio_put(&bbio->bio);
9115 int btrfs_encoded_read_regular_fill_pages(struct btrfs_inode *inode,
9116 u64 disk_bytenr, u64 disk_io_size,
9117 struct page **pages, void *uring_ctx)
9119 struct btrfs_fs_info *fs_info = inode->root->fs_info;
9120 struct btrfs_encoded_read_private *priv;
9121 unsigned long i = 0;
9122 struct btrfs_bio *bbio;
9125 priv = kmalloc(sizeof(struct btrfs_encoded_read_private), GFP_NOFS);
9129 init_completion(&priv->done);
9130 refcount_set(&priv->pending_refs, 1);
9132 priv->uring_ctx = uring_ctx;
9134 bbio = btrfs_bio_alloc(BIO_MAX_VECS, REQ_OP_READ, fs_info,
9135 btrfs_encoded_read_endio, priv);
9136 bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT;
9137 bbio->inode = inode;
9140 size_t bytes = min_t(u64, disk_io_size, PAGE_SIZE);
9142 if (bio_add_page(&bbio->bio, pages[i], bytes, 0) < bytes) {
9143 refcount_inc(&priv->pending_refs);
9144 btrfs_submit_bbio(bbio, 0);
9146 bbio = btrfs_bio_alloc(BIO_MAX_VECS, REQ_OP_READ, fs_info,
9147 btrfs_encoded_read_endio, priv);
9148 bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT;
9149 bbio->inode = inode;
9154 disk_bytenr += bytes;
9155 disk_io_size -= bytes;
9156 } while (disk_io_size);
9158 refcount_inc(&priv->pending_refs);
9159 btrfs_submit_bbio(bbio, 0);
9162 if (refcount_dec_and_test(&priv->pending_refs)) {
9163 ret = blk_status_to_errno(READ_ONCE(priv->status));
9164 btrfs_uring_read_extent_endio(uring_ctx, ret);
9169 return -EIOCBQUEUED;
9171 if (!refcount_dec_and_test(&priv->pending_refs))
9172 wait_for_completion_io(&priv->done);
9173 /* See btrfs_encoded_read_endio() for ordering. */
9174 ret = blk_status_to_errno(READ_ONCE(priv->status));
9180 ssize_t btrfs_encoded_read_regular(struct kiocb *iocb, struct iov_iter *iter,
9181 u64 start, u64 lockend,
9182 struct extent_state **cached_state,
9183 u64 disk_bytenr, u64 disk_io_size,
9184 size_t count, bool compressed, bool *unlocked)
9186 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
9187 struct extent_io_tree *io_tree = &inode->io_tree;
9188 struct page **pages;
9189 unsigned long nr_pages, i;
9194 nr_pages = DIV_ROUND_UP(disk_io_size, PAGE_SIZE);
9195 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
9198 ret = btrfs_alloc_page_array(nr_pages, pages, false);
9204 ret = btrfs_encoded_read_regular_fill_pages(inode, disk_bytenr,
9205 disk_io_size, pages, NULL);
9209 unlock_extent(io_tree, start, lockend, cached_state);
9210 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
9217 i = (iocb->ki_pos - start) >> PAGE_SHIFT;
9218 page_offset = (iocb->ki_pos - start) & (PAGE_SIZE - 1);
9221 while (cur < count) {
9222 size_t bytes = min_t(size_t, count - cur,
9223 PAGE_SIZE - page_offset);
9225 if (copy_page_to_iter(pages[i], page_offset, bytes,
9236 for (i = 0; i < nr_pages; i++) {
9238 __free_page(pages[i]);
9244 ssize_t btrfs_encoded_read(struct kiocb *iocb, struct iov_iter *iter,
9245 struct btrfs_ioctl_encoded_io_args *encoded,
9246 struct extent_state **cached_state,
9247 u64 *disk_bytenr, u64 *disk_io_size)
9249 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
9250 struct btrfs_fs_info *fs_info = inode->root->fs_info;
9251 struct extent_io_tree *io_tree = &inode->io_tree;
9253 size_t count = iov_iter_count(iter);
9255 struct extent_map *em;
9256 const bool nowait = (iocb->ki_flags & IOCB_NOWAIT);
9257 bool unlocked = false;
9259 file_accessed(iocb->ki_filp);
9261 ret = btrfs_inode_lock(inode,
9262 BTRFS_ILOCK_SHARED | (nowait ? BTRFS_ILOCK_TRY : 0));
9266 if (iocb->ki_pos >= inode->vfs_inode.i_size) {
9267 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
9270 start = ALIGN_DOWN(iocb->ki_pos, fs_info->sectorsize);
9272 * We don't know how long the extent containing iocb->ki_pos is, but if
9273 * it's compressed we know that it won't be longer than this.
9275 lockend = start + BTRFS_MAX_UNCOMPRESSED - 1;
9278 struct btrfs_ordered_extent *ordered;
9280 if (filemap_range_needs_writeback(inode->vfs_inode.i_mapping,
9283 goto out_unlock_inode;
9286 if (!try_lock_extent(io_tree, start, lockend, cached_state)) {
9288 goto out_unlock_inode;
9291 ordered = btrfs_lookup_ordered_range(inode, start,
9292 lockend - start + 1);
9294 btrfs_put_ordered_extent(ordered);
9295 unlock_extent(io_tree, start, lockend, cached_state);
9297 goto out_unlock_inode;
9301 struct btrfs_ordered_extent *ordered;
9303 ret = btrfs_wait_ordered_range(inode, start,
9304 lockend - start + 1);
9306 goto out_unlock_inode;
9308 lock_extent(io_tree, start, lockend, cached_state);
9309 ordered = btrfs_lookup_ordered_range(inode, start,
9310 lockend - start + 1);
9313 btrfs_put_ordered_extent(ordered);
9314 unlock_extent(io_tree, start, lockend, cached_state);
9319 em = btrfs_get_extent(inode, NULL, start, lockend - start + 1);
9322 goto out_unlock_extent;
9325 if (em->disk_bytenr == EXTENT_MAP_INLINE) {
9326 u64 extent_start = em->start;
9329 * For inline extents we get everything we need out of the
9332 free_extent_map(em);
9334 ret = btrfs_encoded_read_inline(iocb, iter, start, lockend,
9335 cached_state, extent_start,
9336 count, encoded, &unlocked);
9337 goto out_unlock_extent;
9341 * We only want to return up to EOF even if the extent extends beyond
9344 encoded->len = min_t(u64, extent_map_end(em),
9345 inode->vfs_inode.i_size) - iocb->ki_pos;
9346 if (em->disk_bytenr == EXTENT_MAP_HOLE ||
9347 (em->flags & EXTENT_FLAG_PREALLOC)) {
9348 *disk_bytenr = EXTENT_MAP_HOLE;
9349 count = min_t(u64, count, encoded->len);
9350 encoded->len = count;
9351 encoded->unencoded_len = count;
9352 } else if (extent_map_is_compressed(em)) {
9353 *disk_bytenr = em->disk_bytenr;
9355 * Bail if the buffer isn't large enough to return the whole
9356 * compressed extent.
9358 if (em->disk_num_bytes > count) {
9362 *disk_io_size = em->disk_num_bytes;
9363 count = em->disk_num_bytes;
9364 encoded->unencoded_len = em->ram_bytes;
9365 encoded->unencoded_offset = iocb->ki_pos - (em->start - em->offset);
9366 ret = btrfs_encoded_io_compression_from_extent(fs_info,
9367 extent_map_compression(em));
9370 encoded->compression = ret;
9372 *disk_bytenr = extent_map_block_start(em) + (start - em->start);
9373 if (encoded->len > count)
9374 encoded->len = count;
9376 * Don't read beyond what we locked. This also limits the page
9377 * allocations that we'll do.
9379 *disk_io_size = min(lockend + 1, iocb->ki_pos + encoded->len) - start;
9380 count = start + *disk_io_size - iocb->ki_pos;
9381 encoded->len = count;
9382 encoded->unencoded_len = count;
9383 *disk_io_size = ALIGN(*disk_io_size, fs_info->sectorsize);
9385 free_extent_map(em);
9388 if (*disk_bytenr == EXTENT_MAP_HOLE) {
9389 unlock_extent(io_tree, start, lockend, cached_state);
9390 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
9392 ret = iov_iter_zero(count, iter);
9397 goto out_unlock_extent;
9401 free_extent_map(em);
9403 /* Leave inode and extent locked if we need to do a read. */
9404 if (!unlocked && ret != -EIOCBQUEUED)
9405 unlock_extent(io_tree, start, lockend, cached_state);
9407 if (!unlocked && ret != -EIOCBQUEUED)
9408 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
9412 ssize_t btrfs_do_encoded_write(struct kiocb *iocb, struct iov_iter *from,
9413 const struct btrfs_ioctl_encoded_io_args *encoded)
9415 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
9416 struct btrfs_root *root = inode->root;
9417 struct btrfs_fs_info *fs_info = root->fs_info;
9418 struct extent_io_tree *io_tree = &inode->io_tree;
9419 struct extent_changeset *data_reserved = NULL;
9420 struct extent_state *cached_state = NULL;
9421 struct btrfs_ordered_extent *ordered;
9422 struct btrfs_file_extent file_extent;
9426 u64 num_bytes, ram_bytes, disk_num_bytes;
9427 unsigned long nr_folios, i;
9428 struct folio **folios;
9429 struct btrfs_key ins;
9430 bool extent_reserved = false;
9431 struct extent_map *em;
9434 switch (encoded->compression) {
9435 case BTRFS_ENCODED_IO_COMPRESSION_ZLIB:
9436 compression = BTRFS_COMPRESS_ZLIB;
9438 case BTRFS_ENCODED_IO_COMPRESSION_ZSTD:
9439 compression = BTRFS_COMPRESS_ZSTD;
9441 case BTRFS_ENCODED_IO_COMPRESSION_LZO_4K:
9442 case BTRFS_ENCODED_IO_COMPRESSION_LZO_8K:
9443 case BTRFS_ENCODED_IO_COMPRESSION_LZO_16K:
9444 case BTRFS_ENCODED_IO_COMPRESSION_LZO_32K:
9445 case BTRFS_ENCODED_IO_COMPRESSION_LZO_64K:
9446 /* The sector size must match for LZO. */
9447 if (encoded->compression -
9448 BTRFS_ENCODED_IO_COMPRESSION_LZO_4K + 12 !=
9449 fs_info->sectorsize_bits)
9451 compression = BTRFS_COMPRESS_LZO;
9456 if (encoded->encryption != BTRFS_ENCODED_IO_ENCRYPTION_NONE)
9460 * Compressed extents should always have checksums, so error out if we
9461 * have a NOCOW file or inode was created while mounted with NODATASUM.
9463 if (inode->flags & BTRFS_INODE_NODATASUM)
9466 orig_count = iov_iter_count(from);
9468 /* The extent size must be sane. */
9469 if (encoded->unencoded_len > BTRFS_MAX_UNCOMPRESSED ||
9470 orig_count > BTRFS_MAX_COMPRESSED || orig_count == 0)
9474 * The compressed data must be smaller than the decompressed data.
9476 * It's of course possible for data to compress to larger or the same
9477 * size, but the buffered I/O path falls back to no compression for such
9478 * data, and we don't want to break any assumptions by creating these
9481 * Note that this is less strict than the current check we have that the
9482 * compressed data must be at least one sector smaller than the
9483 * decompressed data. We only want to enforce the weaker requirement
9484 * from old kernels that it is at least one byte smaller.
9486 if (orig_count >= encoded->unencoded_len)
9489 /* The extent must start on a sector boundary. */
9490 start = iocb->ki_pos;
9491 if (!IS_ALIGNED(start, fs_info->sectorsize))
9495 * The extent must end on a sector boundary. However, we allow a write
9496 * which ends at or extends i_size to have an unaligned length; we round
9497 * up the extent size and set i_size to the unaligned end.
9499 if (start + encoded->len < inode->vfs_inode.i_size &&
9500 !IS_ALIGNED(start + encoded->len, fs_info->sectorsize))
9503 /* Finally, the offset in the unencoded data must be sector-aligned. */
9504 if (!IS_ALIGNED(encoded->unencoded_offset, fs_info->sectorsize))
9507 num_bytes = ALIGN(encoded->len, fs_info->sectorsize);
9508 ram_bytes = ALIGN(encoded->unencoded_len, fs_info->sectorsize);
9509 end = start + num_bytes - 1;
9512 * If the extent cannot be inline, the compressed data on disk must be
9513 * sector-aligned. For convenience, we extend it with zeroes if it
9516 disk_num_bytes = ALIGN(orig_count, fs_info->sectorsize);
9517 nr_folios = DIV_ROUND_UP(disk_num_bytes, PAGE_SIZE);
9518 folios = kvcalloc(nr_folios, sizeof(struct folio *), GFP_KERNEL_ACCOUNT);
9521 for (i = 0; i < nr_folios; i++) {
9522 size_t bytes = min_t(size_t, PAGE_SIZE, iov_iter_count(from));
9525 folios[i] = folio_alloc(GFP_KERNEL_ACCOUNT, 0);
9530 kaddr = kmap_local_folio(folios[i], 0);
9531 if (copy_from_iter(kaddr, bytes, from) != bytes) {
9532 kunmap_local(kaddr);
9536 if (bytes < PAGE_SIZE)
9537 memset(kaddr + bytes, 0, PAGE_SIZE - bytes);
9538 kunmap_local(kaddr);
9542 struct btrfs_ordered_extent *ordered;
9544 ret = btrfs_wait_ordered_range(inode, start, num_bytes);
9547 ret = invalidate_inode_pages2_range(inode->vfs_inode.i_mapping,
9548 start >> PAGE_SHIFT,
9552 lock_extent(io_tree, start, end, &cached_state);
9553 ordered = btrfs_lookup_ordered_range(inode, start, num_bytes);
9555 !filemap_range_has_page(inode->vfs_inode.i_mapping, start, end))
9558 btrfs_put_ordered_extent(ordered);
9559 unlock_extent(io_tree, start, end, &cached_state);
9564 * We don't use the higher-level delalloc space functions because our
9565 * num_bytes and disk_num_bytes are different.
9567 ret = btrfs_alloc_data_chunk_ondemand(inode, disk_num_bytes);
9570 ret = btrfs_qgroup_reserve_data(inode, &data_reserved, start, num_bytes);
9572 goto out_free_data_space;
9573 ret = btrfs_delalloc_reserve_metadata(inode, num_bytes, disk_num_bytes,
9576 goto out_qgroup_free_data;
9578 /* Try an inline extent first. */
9579 if (encoded->unencoded_len == encoded->len &&
9580 encoded->unencoded_offset == 0 &&
9581 can_cow_file_range_inline(inode, start, encoded->len, orig_count)) {
9582 ret = __cow_file_range_inline(inode, encoded->len,
9583 orig_count, compression, folios[0],
9588 goto out_delalloc_release;
9592 ret = btrfs_reserve_extent(root, disk_num_bytes, disk_num_bytes,
9593 disk_num_bytes, 0, 0, &ins, 1, 1);
9595 goto out_delalloc_release;
9596 extent_reserved = true;
9598 file_extent.disk_bytenr = ins.objectid;
9599 file_extent.disk_num_bytes = ins.offset;
9600 file_extent.num_bytes = num_bytes;
9601 file_extent.ram_bytes = ram_bytes;
9602 file_extent.offset = encoded->unencoded_offset;
9603 file_extent.compression = compression;
9604 em = btrfs_create_io_em(inode, start, &file_extent, BTRFS_ORDERED_COMPRESSED);
9607 goto out_free_reserved;
9609 free_extent_map(em);
9611 ordered = btrfs_alloc_ordered_extent(inode, start, &file_extent,
9612 (1 << BTRFS_ORDERED_ENCODED) |
9613 (1 << BTRFS_ORDERED_COMPRESSED));
9614 if (IS_ERR(ordered)) {
9615 btrfs_drop_extent_map_range(inode, start, end, false);
9616 ret = PTR_ERR(ordered);
9617 goto out_free_reserved;
9619 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
9621 if (start + encoded->len > inode->vfs_inode.i_size)
9622 i_size_write(&inode->vfs_inode, start + encoded->len);
9624 unlock_extent(io_tree, start, end, &cached_state);
9626 btrfs_delalloc_release_extents(inode, num_bytes);
9628 btrfs_submit_compressed_write(ordered, folios, nr_folios, 0, false);
9633 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
9634 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
9635 out_delalloc_release:
9636 btrfs_delalloc_release_extents(inode, num_bytes);
9637 btrfs_delalloc_release_metadata(inode, disk_num_bytes, ret < 0);
9638 out_qgroup_free_data:
9640 btrfs_qgroup_free_data(inode, data_reserved, start, num_bytes, NULL);
9641 out_free_data_space:
9643 * If btrfs_reserve_extent() succeeded, then we already decremented
9646 if (!extent_reserved)
9647 btrfs_free_reserved_data_space_noquota(fs_info, disk_num_bytes);
9649 unlock_extent(io_tree, start, end, &cached_state);
9651 for (i = 0; i < nr_folios; i++) {
9653 folio_put(folios[i]);
9658 iocb->ki_pos += encoded->len;
9664 * Add an entry indicating a block group or device which is pinned by a
9665 * swapfile. Returns 0 on success, 1 if there is already an entry for it, or a
9666 * negative errno on failure.
9668 static int btrfs_add_swapfile_pin(struct inode *inode, void *ptr,
9669 bool is_block_group)
9671 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
9672 struct btrfs_swapfile_pin *sp, *entry;
9674 struct rb_node *parent = NULL;
9676 sp = kmalloc(sizeof(*sp), GFP_NOFS);
9681 sp->is_block_group = is_block_group;
9682 sp->bg_extent_count = 1;
9684 spin_lock(&fs_info->swapfile_pins_lock);
9685 p = &fs_info->swapfile_pins.rb_node;
9688 entry = rb_entry(parent, struct btrfs_swapfile_pin, node);
9689 if (sp->ptr < entry->ptr ||
9690 (sp->ptr == entry->ptr && sp->inode < entry->inode)) {
9692 } else if (sp->ptr > entry->ptr ||
9693 (sp->ptr == entry->ptr && sp->inode > entry->inode)) {
9694 p = &(*p)->rb_right;
9697 entry->bg_extent_count++;
9698 spin_unlock(&fs_info->swapfile_pins_lock);
9703 rb_link_node(&sp->node, parent, p);
9704 rb_insert_color(&sp->node, &fs_info->swapfile_pins);
9705 spin_unlock(&fs_info->swapfile_pins_lock);
9709 /* Free all of the entries pinned by this swapfile. */
9710 static void btrfs_free_swapfile_pins(struct inode *inode)
9712 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
9713 struct btrfs_swapfile_pin *sp;
9714 struct rb_node *node, *next;
9716 spin_lock(&fs_info->swapfile_pins_lock);
9717 node = rb_first(&fs_info->swapfile_pins);
9719 next = rb_next(node);
9720 sp = rb_entry(node, struct btrfs_swapfile_pin, node);
9721 if (sp->inode == inode) {
9722 rb_erase(&sp->node, &fs_info->swapfile_pins);
9723 if (sp->is_block_group) {
9724 btrfs_dec_block_group_swap_extents(sp->ptr,
9725 sp->bg_extent_count);
9726 btrfs_put_block_group(sp->ptr);
9732 spin_unlock(&fs_info->swapfile_pins_lock);
9735 struct btrfs_swap_info {
9741 unsigned long nr_pages;
9745 static int btrfs_add_swap_extent(struct swap_info_struct *sis,
9746 struct btrfs_swap_info *bsi)
9748 unsigned long nr_pages;
9749 unsigned long max_pages;
9750 u64 first_ppage, first_ppage_reported, next_ppage;
9754 * Our swapfile may have had its size extended after the swap header was
9755 * written. In that case activating the swapfile should not go beyond
9756 * the max size set in the swap header.
9758 if (bsi->nr_pages >= sis->max)
9761 max_pages = sis->max - bsi->nr_pages;
9762 first_ppage = PAGE_ALIGN(bsi->block_start) >> PAGE_SHIFT;
9763 next_ppage = PAGE_ALIGN_DOWN(bsi->block_start + bsi->block_len) >> PAGE_SHIFT;
9765 if (first_ppage >= next_ppage)
9767 nr_pages = next_ppage - first_ppage;
9768 nr_pages = min(nr_pages, max_pages);
9770 first_ppage_reported = first_ppage;
9771 if (bsi->start == 0)
9772 first_ppage_reported++;
9773 if (bsi->lowest_ppage > first_ppage_reported)
9774 bsi->lowest_ppage = first_ppage_reported;
9775 if (bsi->highest_ppage < (next_ppage - 1))
9776 bsi->highest_ppage = next_ppage - 1;
9778 ret = add_swap_extent(sis, bsi->nr_pages, nr_pages, first_ppage);
9781 bsi->nr_extents += ret;
9782 bsi->nr_pages += nr_pages;
9786 static void btrfs_swap_deactivate(struct file *file)
9788 struct inode *inode = file_inode(file);
9790 btrfs_free_swapfile_pins(inode);
9791 atomic_dec(&BTRFS_I(inode)->root->nr_swapfiles);
9794 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
9797 struct inode *inode = file_inode(file);
9798 struct btrfs_root *root = BTRFS_I(inode)->root;
9799 struct btrfs_fs_info *fs_info = root->fs_info;
9800 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
9801 struct extent_state *cached_state = NULL;
9802 struct btrfs_chunk_map *map = NULL;
9803 struct btrfs_device *device = NULL;
9804 struct btrfs_swap_info bsi = {
9805 .lowest_ppage = (sector_t)-1ULL,
9807 struct btrfs_backref_share_check_ctx *backref_ctx = NULL;
9808 struct btrfs_path *path = NULL;
9811 u64 prev_extent_end = 0;
9814 * Acquire the inode's mmap lock to prevent races with memory mapped
9815 * writes, as they could happen after we flush delalloc below and before
9816 * we lock the extent range further below. The inode was already locked
9817 * up in the call chain.
9819 btrfs_assert_inode_locked(BTRFS_I(inode));
9820 down_write(&BTRFS_I(inode)->i_mmap_lock);
9823 * If the swap file was just created, make sure delalloc is done. If the
9824 * file changes again after this, the user is doing something stupid and
9825 * we don't really care.
9827 ret = btrfs_wait_ordered_range(BTRFS_I(inode), 0, (u64)-1);
9829 goto out_unlock_mmap;
9832 * The inode is locked, so these flags won't change after we check them.
9834 if (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS) {
9835 btrfs_warn(fs_info, "swapfile must not be compressed");
9837 goto out_unlock_mmap;
9839 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)) {
9840 btrfs_warn(fs_info, "swapfile must not be copy-on-write");
9842 goto out_unlock_mmap;
9844 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
9845 btrfs_warn(fs_info, "swapfile must not be checksummed");
9847 goto out_unlock_mmap;
9850 path = btrfs_alloc_path();
9851 backref_ctx = btrfs_alloc_backref_share_check_ctx();
9852 if (!path || !backref_ctx) {
9854 goto out_unlock_mmap;
9858 * Balance or device remove/replace/resize can move stuff around from
9859 * under us. The exclop protection makes sure they aren't running/won't
9860 * run concurrently while we are mapping the swap extents, and
9861 * fs_info->swapfile_pins prevents them from running while the swap
9862 * file is active and moving the extents. Note that this also prevents
9863 * a concurrent device add which isn't actually necessary, but it's not
9864 * really worth the trouble to allow it.
9866 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_SWAP_ACTIVATE)) {
9868 "cannot activate swapfile while exclusive operation is running");
9870 goto out_unlock_mmap;
9874 * Prevent snapshot creation while we are activating the swap file.
9875 * We do not want to race with snapshot creation. If snapshot creation
9876 * already started before we bumped nr_swapfiles from 0 to 1 and
9877 * completes before the first write into the swap file after it is
9878 * activated, than that write would fallback to COW.
9880 if (!btrfs_drew_try_write_lock(&root->snapshot_lock)) {
9881 btrfs_exclop_finish(fs_info);
9883 "cannot activate swapfile because snapshot creation is in progress");
9885 goto out_unlock_mmap;
9888 * Snapshots can create extents which require COW even if NODATACOW is
9889 * set. We use this counter to prevent snapshots. We must increment it
9890 * before walking the extents because we don't want a concurrent
9891 * snapshot to run after we've already checked the extents.
9893 * It is possible that subvolume is marked for deletion but still not
9894 * removed yet. To prevent this race, we check the root status before
9895 * activating the swapfile.
9897 spin_lock(&root->root_item_lock);
9898 if (btrfs_root_dead(root)) {
9899 spin_unlock(&root->root_item_lock);
9901 btrfs_drew_write_unlock(&root->snapshot_lock);
9902 btrfs_exclop_finish(fs_info);
9904 "cannot activate swapfile because subvolume %llu is being deleted",
9905 btrfs_root_id(root));
9907 goto out_unlock_mmap;
9909 atomic_inc(&root->nr_swapfiles);
9910 spin_unlock(&root->root_item_lock);
9912 isize = ALIGN_DOWN(inode->i_size, fs_info->sectorsize);
9914 lock_extent(io_tree, 0, isize - 1, &cached_state);
9915 while (prev_extent_end < isize) {
9916 struct btrfs_key key;
9917 struct extent_buffer *leaf;
9918 struct btrfs_file_extent_item *ei;
9919 struct btrfs_block_group *bg;
9920 u64 logical_block_start;
9921 u64 physical_block_start;
9926 key.objectid = btrfs_ino(BTRFS_I(inode));
9927 key.type = BTRFS_EXTENT_DATA_KEY;
9928 key.offset = prev_extent_end;
9930 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
9935 * If key not found it means we have an implicit hole (NO_HOLES
9939 btrfs_warn(fs_info, "swapfile must not have holes");
9944 leaf = path->nodes[0];
9945 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
9947 if (btrfs_file_extent_type(leaf, ei) == BTRFS_FILE_EXTENT_INLINE) {
9949 * It's unlikely we'll ever actually find ourselves
9950 * here, as a file small enough to fit inline won't be
9951 * big enough to store more than the swap header, but in
9952 * case something changes in the future, let's catch it
9953 * here rather than later.
9955 btrfs_warn(fs_info, "swapfile must not be inline");
9960 if (btrfs_file_extent_compression(leaf, ei) != BTRFS_COMPRESS_NONE) {
9961 btrfs_warn(fs_info, "swapfile must not be compressed");
9966 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei);
9967 if (disk_bytenr == 0) {
9968 btrfs_warn(fs_info, "swapfile must not have holes");
9973 logical_block_start = disk_bytenr + btrfs_file_extent_offset(leaf, ei);
9974 extent_gen = btrfs_file_extent_generation(leaf, ei);
9975 prev_extent_end = btrfs_file_extent_end(path);
9977 if (prev_extent_end > isize)
9978 len = isize - key.offset;
9980 len = btrfs_file_extent_num_bytes(leaf, ei);
9982 backref_ctx->curr_leaf_bytenr = leaf->start;
9985 * Don't need the path anymore, release to avoid deadlocks when
9986 * calling btrfs_is_data_extent_shared() because when joining a
9987 * transaction it can block waiting for the current one's commit
9988 * which in turn may be trying to lock the same leaf to flush
9989 * delayed items for example.
9991 btrfs_release_path(path);
9993 ret = btrfs_is_data_extent_shared(BTRFS_I(inode), disk_bytenr,
9994 extent_gen, backref_ctx);
9997 } else if (ret > 0) {
9999 "swapfile must not be copy-on-write");
10004 map = btrfs_get_chunk_map(fs_info, logical_block_start, len);
10006 ret = PTR_ERR(map);
10010 if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
10011 btrfs_warn(fs_info,
10012 "swapfile must have single data profile");
10017 if (device == NULL) {
10018 device = map->stripes[0].dev;
10019 ret = btrfs_add_swapfile_pin(inode, device, false);
10024 } else if (device != map->stripes[0].dev) {
10025 btrfs_warn(fs_info, "swapfile must be on one device");
10030 physical_block_start = (map->stripes[0].physical +
10031 (logical_block_start - map->start));
10032 btrfs_free_chunk_map(map);
10035 bg = btrfs_lookup_block_group(fs_info, logical_block_start);
10037 btrfs_warn(fs_info,
10038 "could not find block group containing swapfile");
10043 if (!btrfs_inc_block_group_swap_extents(bg)) {
10044 btrfs_warn(fs_info,
10045 "block group for swapfile at %llu is read-only%s",
10047 atomic_read(&fs_info->scrubs_running) ?
10048 " (scrub running)" : "");
10049 btrfs_put_block_group(bg);
10054 ret = btrfs_add_swapfile_pin(inode, bg, true);
10056 btrfs_put_block_group(bg);
10063 if (bsi.block_len &&
10064 bsi.block_start + bsi.block_len == physical_block_start) {
10065 bsi.block_len += len;
10067 if (bsi.block_len) {
10068 ret = btrfs_add_swap_extent(sis, &bsi);
10072 bsi.start = key.offset;
10073 bsi.block_start = physical_block_start;
10074 bsi.block_len = len;
10077 if (fatal_signal_pending(current)) {
10086 ret = btrfs_add_swap_extent(sis, &bsi);
10089 if (!IS_ERR_OR_NULL(map))
10090 btrfs_free_chunk_map(map);
10092 unlock_extent(io_tree, 0, isize - 1, &cached_state);
10095 btrfs_swap_deactivate(file);
10097 btrfs_drew_write_unlock(&root->snapshot_lock);
10099 btrfs_exclop_finish(fs_info);
10102 up_write(&BTRFS_I(inode)->i_mmap_lock);
10103 btrfs_free_backref_share_ctx(backref_ctx);
10104 btrfs_free_path(path);
10109 sis->bdev = device->bdev;
10110 *span = bsi.highest_ppage - bsi.lowest_ppage + 1;
10111 sis->max = bsi.nr_pages;
10112 sis->pages = bsi.nr_pages - 1;
10113 sis->highest_bit = bsi.nr_pages - 1;
10114 return bsi.nr_extents;
10117 static void btrfs_swap_deactivate(struct file *file)
10121 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
10124 return -EOPNOTSUPP;
10129 * Update the number of bytes used in the VFS' inode. When we replace extents in
10130 * a range (clone, dedupe, fallocate's zero range), we must update the number of
10131 * bytes used by the inode in an atomic manner, so that concurrent stat(2) calls
10132 * always get a correct value.
10134 void btrfs_update_inode_bytes(struct btrfs_inode *inode,
10135 const u64 add_bytes,
10136 const u64 del_bytes)
10138 if (add_bytes == del_bytes)
10141 spin_lock(&inode->lock);
10143 inode_sub_bytes(&inode->vfs_inode, del_bytes);
10145 inode_add_bytes(&inode->vfs_inode, add_bytes);
10146 spin_unlock(&inode->lock);
10150 * Verify that there are no ordered extents for a given file range.
10152 * @inode: The target inode.
10153 * @start: Start offset of the file range, should be sector size aligned.
10154 * @end: End offset (inclusive) of the file range, its value +1 should be
10155 * sector size aligned.
10157 * This should typically be used for cases where we locked an inode's VFS lock in
10158 * exclusive mode, we have also locked the inode's i_mmap_lock in exclusive mode,
10159 * we have flushed all delalloc in the range, we have waited for all ordered
10160 * extents in the range to complete and finally we have locked the file range in
10161 * the inode's io_tree.
10163 void btrfs_assert_inode_range_clean(struct btrfs_inode *inode, u64 start, u64 end)
10165 struct btrfs_root *root = inode->root;
10166 struct btrfs_ordered_extent *ordered;
10168 if (!IS_ENABLED(CONFIG_BTRFS_ASSERT))
10171 ordered = btrfs_lookup_first_ordered_range(inode, start, end + 1 - start);
10173 btrfs_err(root->fs_info,
10174 "found unexpected ordered extent in file range [%llu, %llu] for inode %llu root %llu (ordered range [%llu, %llu])",
10175 start, end, btrfs_ino(inode), btrfs_root_id(root),
10176 ordered->file_offset,
10177 ordered->file_offset + ordered->num_bytes - 1);
10178 btrfs_put_ordered_extent(ordered);
10181 ASSERT(ordered == NULL);
10185 * Find the first inode with a minimum number.
10187 * @root: The root to search for.
10188 * @min_ino: The minimum inode number.
10190 * Find the first inode in the @root with a number >= @min_ino and return it.
10191 * Returns NULL if no such inode found.
10193 struct btrfs_inode *btrfs_find_first_inode(struct btrfs_root *root, u64 min_ino)
10195 struct btrfs_inode *inode;
10196 unsigned long from = min_ino;
10198 xa_lock(&root->inodes);
10200 inode = xa_find(&root->inodes, &from, ULONG_MAX, XA_PRESENT);
10203 if (igrab(&inode->vfs_inode))
10206 from = btrfs_ino(inode) + 1;
10207 cond_resched_lock(&root->inodes.xa_lock);
10209 xa_unlock(&root->inodes);
10214 static const struct inode_operations btrfs_dir_inode_operations = {
10215 .getattr = btrfs_getattr,
10216 .lookup = btrfs_lookup,
10217 .create = btrfs_create,
10218 .unlink = btrfs_unlink,
10219 .link = btrfs_link,
10220 .mkdir = btrfs_mkdir,
10221 .rmdir = btrfs_rmdir,
10222 .rename = btrfs_rename2,
10223 .symlink = btrfs_symlink,
10224 .setattr = btrfs_setattr,
10225 .mknod = btrfs_mknod,
10226 .listxattr = btrfs_listxattr,
10227 .permission = btrfs_permission,
10228 .get_inode_acl = btrfs_get_acl,
10229 .set_acl = btrfs_set_acl,
10230 .update_time = btrfs_update_time,
10231 .tmpfile = btrfs_tmpfile,
10232 .fileattr_get = btrfs_fileattr_get,
10233 .fileattr_set = btrfs_fileattr_set,
10236 static const struct file_operations btrfs_dir_file_operations = {
10237 .llseek = btrfs_dir_llseek,
10238 .read = generic_read_dir,
10239 .iterate_shared = btrfs_real_readdir,
10240 .open = btrfs_opendir,
10241 .unlocked_ioctl = btrfs_ioctl,
10242 #ifdef CONFIG_COMPAT
10243 .compat_ioctl = btrfs_compat_ioctl,
10245 .release = btrfs_release_file,
10246 .fsync = btrfs_sync_file,
10250 * btrfs doesn't support the bmap operation because swapfiles
10251 * use bmap to make a mapping of extents in the file. They assume
10252 * these extents won't change over the life of the file and they
10253 * use the bmap result to do IO directly to the drive.
10255 * the btrfs bmap call would return logical addresses that aren't
10256 * suitable for IO and they also will change frequently as COW
10257 * operations happen. So, swapfile + btrfs == corruption.
10259 * For now we're avoiding this by dropping bmap.
10261 static const struct address_space_operations btrfs_aops = {
10262 .read_folio = btrfs_read_folio,
10263 .writepages = btrfs_writepages,
10264 .readahead = btrfs_readahead,
10265 .invalidate_folio = btrfs_invalidate_folio,
10266 .launder_folio = btrfs_launder_folio,
10267 .release_folio = btrfs_release_folio,
10268 .migrate_folio = btrfs_migrate_folio,
10269 .dirty_folio = filemap_dirty_folio,
10270 .error_remove_folio = generic_error_remove_folio,
10271 .swap_activate = btrfs_swap_activate,
10272 .swap_deactivate = btrfs_swap_deactivate,
10275 static const struct inode_operations btrfs_file_inode_operations = {
10276 .getattr = btrfs_getattr,
10277 .setattr = btrfs_setattr,
10278 .listxattr = btrfs_listxattr,
10279 .permission = btrfs_permission,
10280 .fiemap = btrfs_fiemap,
10281 .get_inode_acl = btrfs_get_acl,
10282 .set_acl = btrfs_set_acl,
10283 .update_time = btrfs_update_time,
10284 .fileattr_get = btrfs_fileattr_get,
10285 .fileattr_set = btrfs_fileattr_set,
10287 static const struct inode_operations btrfs_special_inode_operations = {
10288 .getattr = btrfs_getattr,
10289 .setattr = btrfs_setattr,
10290 .permission = btrfs_permission,
10291 .listxattr = btrfs_listxattr,
10292 .get_inode_acl = btrfs_get_acl,
10293 .set_acl = btrfs_set_acl,
10294 .update_time = btrfs_update_time,
10296 static const struct inode_operations btrfs_symlink_inode_operations = {
10297 .get_link = page_get_link,
10298 .getattr = btrfs_getattr,
10299 .setattr = btrfs_setattr,
10300 .permission = btrfs_permission,
10301 .listxattr = btrfs_listxattr,
10302 .update_time = btrfs_update_time,
10305 const struct dentry_operations btrfs_dentry_operations = {
10306 .d_delete = btrfs_dentry_delete,