]> Git Repo - J-linux.git/blob - fs/btrfs/disk-io.c
Merge tag 'vfs-6.13-rc7.fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs
[J-linux.git] / fs / btrfs / disk-io.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5
6 #include <linux/fs.h>
7 #include <linux/blkdev.h>
8 #include <linux/radix-tree.h>
9 #include <linux/writeback.h>
10 #include <linux/workqueue.h>
11 #include <linux/kthread.h>
12 #include <linux/slab.h>
13 #include <linux/migrate.h>
14 #include <linux/ratelimit.h>
15 #include <linux/uuid.h>
16 #include <linux/semaphore.h>
17 #include <linux/error-injection.h>
18 #include <linux/crc32c.h>
19 #include <linux/sched/mm.h>
20 #include <linux/unaligned.h>
21 #include <crypto/hash.h>
22 #include "ctree.h"
23 #include "disk-io.h"
24 #include "transaction.h"
25 #include "btrfs_inode.h"
26 #include "bio.h"
27 #include "print-tree.h"
28 #include "locking.h"
29 #include "tree-log.h"
30 #include "free-space-cache.h"
31 #include "free-space-tree.h"
32 #include "dev-replace.h"
33 #include "raid56.h"
34 #include "sysfs.h"
35 #include "qgroup.h"
36 #include "compression.h"
37 #include "tree-checker.h"
38 #include "ref-verify.h"
39 #include "block-group.h"
40 #include "discard.h"
41 #include "space-info.h"
42 #include "zoned.h"
43 #include "subpage.h"
44 #include "fs.h"
45 #include "accessors.h"
46 #include "extent-tree.h"
47 #include "root-tree.h"
48 #include "defrag.h"
49 #include "uuid-tree.h"
50 #include "relocation.h"
51 #include "scrub.h"
52 #include "super.h"
53
54 #define BTRFS_SUPER_FLAG_SUPP   (BTRFS_HEADER_FLAG_WRITTEN |\
55                                  BTRFS_HEADER_FLAG_RELOC |\
56                                  BTRFS_SUPER_FLAG_ERROR |\
57                                  BTRFS_SUPER_FLAG_SEEDING |\
58                                  BTRFS_SUPER_FLAG_METADUMP |\
59                                  BTRFS_SUPER_FLAG_METADUMP_V2)
60
61 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
62 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
63
64 static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info)
65 {
66         if (fs_info->csum_shash)
67                 crypto_free_shash(fs_info->csum_shash);
68 }
69
70 /*
71  * Compute the csum of a btree block and store the result to provided buffer.
72  */
73 static void csum_tree_block(struct extent_buffer *buf, u8 *result)
74 {
75         struct btrfs_fs_info *fs_info = buf->fs_info;
76         int num_pages;
77         u32 first_page_part;
78         SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
79         char *kaddr;
80         int i;
81
82         shash->tfm = fs_info->csum_shash;
83         crypto_shash_init(shash);
84
85         if (buf->addr) {
86                 /* Pages are contiguous, handle them as a big one. */
87                 kaddr = buf->addr;
88                 first_page_part = fs_info->nodesize;
89                 num_pages = 1;
90         } else {
91                 kaddr = folio_address(buf->folios[0]);
92                 first_page_part = min_t(u32, PAGE_SIZE, fs_info->nodesize);
93                 num_pages = num_extent_pages(buf);
94         }
95
96         crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE,
97                             first_page_part - BTRFS_CSUM_SIZE);
98
99         /*
100          * Multiple single-page folios case would reach here.
101          *
102          * nodesize <= PAGE_SIZE and large folio all handled by above
103          * crypto_shash_update() already.
104          */
105         for (i = 1; i < num_pages && INLINE_EXTENT_BUFFER_PAGES > 1; i++) {
106                 kaddr = folio_address(buf->folios[i]);
107                 crypto_shash_update(shash, kaddr, PAGE_SIZE);
108         }
109         memset(result, 0, BTRFS_CSUM_SIZE);
110         crypto_shash_final(shash, result);
111 }
112
113 /*
114  * we can't consider a given block up to date unless the transid of the
115  * block matches the transid in the parent node's pointer.  This is how we
116  * detect blocks that either didn't get written at all or got written
117  * in the wrong place.
118  */
119 int btrfs_buffer_uptodate(struct extent_buffer *eb, u64 parent_transid, int atomic)
120 {
121         if (!extent_buffer_uptodate(eb))
122                 return 0;
123
124         if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
125                 return 1;
126
127         if (atomic)
128                 return -EAGAIN;
129
130         if (!extent_buffer_uptodate(eb) ||
131             btrfs_header_generation(eb) != parent_transid) {
132                 btrfs_err_rl(eb->fs_info,
133 "parent transid verify failed on logical %llu mirror %u wanted %llu found %llu",
134                         eb->start, eb->read_mirror,
135                         parent_transid, btrfs_header_generation(eb));
136                 clear_extent_buffer_uptodate(eb);
137                 return 0;
138         }
139         return 1;
140 }
141
142 static bool btrfs_supported_super_csum(u16 csum_type)
143 {
144         switch (csum_type) {
145         case BTRFS_CSUM_TYPE_CRC32:
146         case BTRFS_CSUM_TYPE_XXHASH:
147         case BTRFS_CSUM_TYPE_SHA256:
148         case BTRFS_CSUM_TYPE_BLAKE2:
149                 return true;
150         default:
151                 return false;
152         }
153 }
154
155 /*
156  * Return 0 if the superblock checksum type matches the checksum value of that
157  * algorithm. Pass the raw disk superblock data.
158  */
159 int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
160                            const struct btrfs_super_block *disk_sb)
161 {
162         char result[BTRFS_CSUM_SIZE];
163         SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
164
165         shash->tfm = fs_info->csum_shash;
166
167         /*
168          * The super_block structure does not span the whole
169          * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is
170          * filled with zeros and is included in the checksum.
171          */
172         crypto_shash_digest(shash, (const u8 *)disk_sb + BTRFS_CSUM_SIZE,
173                             BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, result);
174
175         if (memcmp(disk_sb->csum, result, fs_info->csum_size))
176                 return 1;
177
178         return 0;
179 }
180
181 static int btrfs_repair_eb_io_failure(const struct extent_buffer *eb,
182                                       int mirror_num)
183 {
184         struct btrfs_fs_info *fs_info = eb->fs_info;
185         int num_folios = num_extent_folios(eb);
186         int ret = 0;
187
188         if (sb_rdonly(fs_info->sb))
189                 return -EROFS;
190
191         for (int i = 0; i < num_folios; i++) {
192                 struct folio *folio = eb->folios[i];
193                 u64 start = max_t(u64, eb->start, folio_pos(folio));
194                 u64 end = min_t(u64, eb->start + eb->len,
195                                 folio_pos(folio) + eb->folio_size);
196                 u32 len = end - start;
197
198                 ret = btrfs_repair_io_failure(fs_info, 0, start, len,
199                                               start, folio, offset_in_folio(folio, start),
200                                               mirror_num);
201                 if (ret)
202                         break;
203         }
204
205         return ret;
206 }
207
208 /*
209  * helper to read a given tree block, doing retries as required when
210  * the checksums don't match and we have alternate mirrors to try.
211  *
212  * @check:              expected tree parentness check, see the comments of the
213  *                      structure for details.
214  */
215 int btrfs_read_extent_buffer(struct extent_buffer *eb,
216                              const struct btrfs_tree_parent_check *check)
217 {
218         struct btrfs_fs_info *fs_info = eb->fs_info;
219         int failed = 0;
220         int ret;
221         int num_copies = 0;
222         int mirror_num = 0;
223         int failed_mirror = 0;
224
225         ASSERT(check);
226
227         while (1) {
228                 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
229                 ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num, check);
230                 if (!ret)
231                         break;
232
233                 num_copies = btrfs_num_copies(fs_info,
234                                               eb->start, eb->len);
235                 if (num_copies == 1)
236                         break;
237
238                 if (!failed_mirror) {
239                         failed = 1;
240                         failed_mirror = eb->read_mirror;
241                 }
242
243                 mirror_num++;
244                 if (mirror_num == failed_mirror)
245                         mirror_num++;
246
247                 if (mirror_num > num_copies)
248                         break;
249         }
250
251         if (failed && !ret && failed_mirror)
252                 btrfs_repair_eb_io_failure(eb, failed_mirror);
253
254         return ret;
255 }
256
257 /*
258  * Checksum a dirty tree block before IO.
259  */
260 blk_status_t btree_csum_one_bio(struct btrfs_bio *bbio)
261 {
262         struct extent_buffer *eb = bbio->private;
263         struct btrfs_fs_info *fs_info = eb->fs_info;
264         u64 found_start = btrfs_header_bytenr(eb);
265         u64 last_trans;
266         u8 result[BTRFS_CSUM_SIZE];
267         int ret;
268
269         /* Btree blocks are always contiguous on disk. */
270         if (WARN_ON_ONCE(bbio->file_offset != eb->start))
271                 return BLK_STS_IOERR;
272         if (WARN_ON_ONCE(bbio->bio.bi_iter.bi_size != eb->len))
273                 return BLK_STS_IOERR;
274
275         /*
276          * If an extent_buffer is marked as EXTENT_BUFFER_ZONED_ZEROOUT, don't
277          * checksum it but zero-out its content. This is done to preserve
278          * ordering of I/O without unnecessarily writing out data.
279          */
280         if (test_bit(EXTENT_BUFFER_ZONED_ZEROOUT, &eb->bflags)) {
281                 memzero_extent_buffer(eb, 0, eb->len);
282                 return BLK_STS_OK;
283         }
284
285         if (WARN_ON_ONCE(found_start != eb->start))
286                 return BLK_STS_IOERR;
287         if (WARN_ON(!btrfs_folio_test_uptodate(fs_info, eb->folios[0],
288                                                eb->start, eb->len)))
289                 return BLK_STS_IOERR;
290
291         ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid,
292                                     offsetof(struct btrfs_header, fsid),
293                                     BTRFS_FSID_SIZE) == 0);
294         csum_tree_block(eb, result);
295
296         if (btrfs_header_level(eb))
297                 ret = btrfs_check_node(eb);
298         else
299                 ret = btrfs_check_leaf(eb);
300
301         if (ret < 0)
302                 goto error;
303
304         /*
305          * Also check the generation, the eb reached here must be newer than
306          * last committed. Or something seriously wrong happened.
307          */
308         last_trans = btrfs_get_last_trans_committed(fs_info);
309         if (unlikely(btrfs_header_generation(eb) <= last_trans)) {
310                 ret = -EUCLEAN;
311                 btrfs_err(fs_info,
312                         "block=%llu bad generation, have %llu expect > %llu",
313                           eb->start, btrfs_header_generation(eb), last_trans);
314                 goto error;
315         }
316         write_extent_buffer(eb, result, 0, fs_info->csum_size);
317         return BLK_STS_OK;
318
319 error:
320         btrfs_print_tree(eb, 0);
321         btrfs_err(fs_info, "block=%llu write time tree block corruption detected",
322                   eb->start);
323         /*
324          * Be noisy if this is an extent buffer from a log tree. We don't abort
325          * a transaction in case there's a bad log tree extent buffer, we just
326          * fallback to a transaction commit. Still we want to know when there is
327          * a bad log tree extent buffer, as that may signal a bug somewhere.
328          */
329         WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG) ||
330                 btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID);
331         return errno_to_blk_status(ret);
332 }
333
334 static bool check_tree_block_fsid(struct extent_buffer *eb)
335 {
336         struct btrfs_fs_info *fs_info = eb->fs_info;
337         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
338         u8 fsid[BTRFS_FSID_SIZE];
339
340         read_extent_buffer(eb, fsid, offsetof(struct btrfs_header, fsid),
341                            BTRFS_FSID_SIZE);
342
343         /*
344          * alloc_fsid_devices() copies the fsid into fs_devices::metadata_uuid.
345          * This is then overwritten by metadata_uuid if it is present in the
346          * device_list_add(). The same true for a seed device as well. So use of
347          * fs_devices::metadata_uuid is appropriate here.
348          */
349         if (memcmp(fsid, fs_info->fs_devices->metadata_uuid, BTRFS_FSID_SIZE) == 0)
350                 return false;
351
352         list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list)
353                 if (!memcmp(fsid, seed_devs->fsid, BTRFS_FSID_SIZE))
354                         return false;
355
356         return true;
357 }
358
359 /* Do basic extent buffer checks at read time */
360 int btrfs_validate_extent_buffer(struct extent_buffer *eb,
361                                  const struct btrfs_tree_parent_check *check)
362 {
363         struct btrfs_fs_info *fs_info = eb->fs_info;
364         u64 found_start;
365         const u32 csum_size = fs_info->csum_size;
366         u8 found_level;
367         u8 result[BTRFS_CSUM_SIZE];
368         const u8 *header_csum;
369         int ret = 0;
370         const bool ignore_csum = btrfs_test_opt(fs_info, IGNOREMETACSUMS);
371
372         ASSERT(check);
373
374         found_start = btrfs_header_bytenr(eb);
375         if (found_start != eb->start) {
376                 btrfs_err_rl(fs_info,
377                         "bad tree block start, mirror %u want %llu have %llu",
378                              eb->read_mirror, eb->start, found_start);
379                 ret = -EIO;
380                 goto out;
381         }
382         if (check_tree_block_fsid(eb)) {
383                 btrfs_err_rl(fs_info, "bad fsid on logical %llu mirror %u",
384                              eb->start, eb->read_mirror);
385                 ret = -EIO;
386                 goto out;
387         }
388         found_level = btrfs_header_level(eb);
389         if (found_level >= BTRFS_MAX_LEVEL) {
390                 btrfs_err(fs_info,
391                         "bad tree block level, mirror %u level %d on logical %llu",
392                         eb->read_mirror, btrfs_header_level(eb), eb->start);
393                 ret = -EIO;
394                 goto out;
395         }
396
397         csum_tree_block(eb, result);
398         header_csum = folio_address(eb->folios[0]) +
399                 get_eb_offset_in_folio(eb, offsetof(struct btrfs_header, csum));
400
401         if (memcmp(result, header_csum, csum_size) != 0) {
402                 btrfs_warn_rl(fs_info,
403 "checksum verify failed on logical %llu mirror %u wanted " CSUM_FMT " found " CSUM_FMT " level %d%s",
404                               eb->start, eb->read_mirror,
405                               CSUM_FMT_VALUE(csum_size, header_csum),
406                               CSUM_FMT_VALUE(csum_size, result),
407                               btrfs_header_level(eb),
408                               ignore_csum ? ", ignored" : "");
409                 if (!ignore_csum) {
410                         ret = -EUCLEAN;
411                         goto out;
412                 }
413         }
414
415         if (found_level != check->level) {
416                 btrfs_err(fs_info,
417                 "level verify failed on logical %llu mirror %u wanted %u found %u",
418                           eb->start, eb->read_mirror, check->level, found_level);
419                 ret = -EIO;
420                 goto out;
421         }
422         if (unlikely(check->transid &&
423                      btrfs_header_generation(eb) != check->transid)) {
424                 btrfs_err_rl(eb->fs_info,
425 "parent transid verify failed on logical %llu mirror %u wanted %llu found %llu",
426                                 eb->start, eb->read_mirror, check->transid,
427                                 btrfs_header_generation(eb));
428                 ret = -EIO;
429                 goto out;
430         }
431         if (check->has_first_key) {
432                 const struct btrfs_key *expect_key = &check->first_key;
433                 struct btrfs_key found_key;
434
435                 if (found_level)
436                         btrfs_node_key_to_cpu(eb, &found_key, 0);
437                 else
438                         btrfs_item_key_to_cpu(eb, &found_key, 0);
439                 if (unlikely(btrfs_comp_cpu_keys(expect_key, &found_key))) {
440                         btrfs_err(fs_info,
441 "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
442                                   eb->start, check->transid,
443                                   expect_key->objectid,
444                                   expect_key->type, expect_key->offset,
445                                   found_key.objectid, found_key.type,
446                                   found_key.offset);
447                         ret = -EUCLEAN;
448                         goto out;
449                 }
450         }
451         if (check->owner_root) {
452                 ret = btrfs_check_eb_owner(eb, check->owner_root);
453                 if (ret < 0)
454                         goto out;
455         }
456
457         /*
458          * If this is a leaf block and it is corrupt, set the corrupt bit so
459          * that we don't try and read the other copies of this block, just
460          * return -EIO.
461          */
462         if (found_level == 0 && btrfs_check_leaf(eb)) {
463                 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
464                 ret = -EIO;
465         }
466
467         if (found_level > 0 && btrfs_check_node(eb))
468                 ret = -EIO;
469
470         if (ret)
471                 btrfs_err(fs_info,
472                 "read time tree block corruption detected on logical %llu mirror %u",
473                           eb->start, eb->read_mirror);
474 out:
475         return ret;
476 }
477
478 #ifdef CONFIG_MIGRATION
479 static int btree_migrate_folio(struct address_space *mapping,
480                 struct folio *dst, struct folio *src, enum migrate_mode mode)
481 {
482         /*
483          * we can't safely write a btree page from here,
484          * we haven't done the locking hook
485          */
486         if (folio_test_dirty(src))
487                 return -EAGAIN;
488         /*
489          * Buffers may be managed in a filesystem specific way.
490          * We must have no buffers or drop them.
491          */
492         if (folio_get_private(src) &&
493             !filemap_release_folio(src, GFP_KERNEL))
494                 return -EAGAIN;
495         return migrate_folio(mapping, dst, src, mode);
496 }
497 #else
498 #define btree_migrate_folio NULL
499 #endif
500
501 static int btree_writepages(struct address_space *mapping,
502                             struct writeback_control *wbc)
503 {
504         int ret;
505
506         if (wbc->sync_mode == WB_SYNC_NONE) {
507                 struct btrfs_fs_info *fs_info;
508
509                 if (wbc->for_kupdate)
510                         return 0;
511
512                 fs_info = inode_to_fs_info(mapping->host);
513                 /* this is a bit racy, but that's ok */
514                 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
515                                              BTRFS_DIRTY_METADATA_THRESH,
516                                              fs_info->dirty_metadata_batch);
517                 if (ret < 0)
518                         return 0;
519         }
520         return btree_write_cache_pages(mapping, wbc);
521 }
522
523 static bool btree_release_folio(struct folio *folio, gfp_t gfp_flags)
524 {
525         if (folio_test_writeback(folio) || folio_test_dirty(folio))
526                 return false;
527
528         return try_release_extent_buffer(folio);
529 }
530
531 static void btree_invalidate_folio(struct folio *folio, size_t offset,
532                                  size_t length)
533 {
534         struct extent_io_tree *tree;
535
536         tree = &folio_to_inode(folio)->io_tree;
537         extent_invalidate_folio(tree, folio, offset);
538         btree_release_folio(folio, GFP_NOFS);
539         if (folio_get_private(folio)) {
540                 btrfs_warn(folio_to_fs_info(folio),
541                            "folio private not zero on folio %llu",
542                            (unsigned long long)folio_pos(folio));
543                 folio_detach_private(folio);
544         }
545 }
546
547 #ifdef DEBUG
548 static bool btree_dirty_folio(struct address_space *mapping,
549                 struct folio *folio)
550 {
551         struct btrfs_fs_info *fs_info = inode_to_fs_info(mapping->host);
552         struct btrfs_subpage_info *spi = fs_info->subpage_info;
553         struct btrfs_subpage *subpage;
554         struct extent_buffer *eb;
555         int cur_bit = 0;
556         u64 page_start = folio_pos(folio);
557
558         if (fs_info->sectorsize == PAGE_SIZE) {
559                 eb = folio_get_private(folio);
560                 BUG_ON(!eb);
561                 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
562                 BUG_ON(!atomic_read(&eb->refs));
563                 btrfs_assert_tree_write_locked(eb);
564                 return filemap_dirty_folio(mapping, folio);
565         }
566
567         ASSERT(spi);
568         subpage = folio_get_private(folio);
569
570         for (cur_bit = spi->dirty_offset;
571              cur_bit < spi->dirty_offset + spi->bitmap_nr_bits;
572              cur_bit++) {
573                 unsigned long flags;
574                 u64 cur;
575
576                 spin_lock_irqsave(&subpage->lock, flags);
577                 if (!test_bit(cur_bit, subpage->bitmaps)) {
578                         spin_unlock_irqrestore(&subpage->lock, flags);
579                         continue;
580                 }
581                 spin_unlock_irqrestore(&subpage->lock, flags);
582                 cur = page_start + cur_bit * fs_info->sectorsize;
583
584                 eb = find_extent_buffer(fs_info, cur);
585                 ASSERT(eb);
586                 ASSERT(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
587                 ASSERT(atomic_read(&eb->refs));
588                 btrfs_assert_tree_write_locked(eb);
589                 free_extent_buffer(eb);
590
591                 cur_bit += (fs_info->nodesize >> fs_info->sectorsize_bits) - 1;
592         }
593         return filemap_dirty_folio(mapping, folio);
594 }
595 #else
596 #define btree_dirty_folio filemap_dirty_folio
597 #endif
598
599 static const struct address_space_operations btree_aops = {
600         .writepages     = btree_writepages,
601         .release_folio  = btree_release_folio,
602         .invalidate_folio = btree_invalidate_folio,
603         .migrate_folio  = btree_migrate_folio,
604         .dirty_folio    = btree_dirty_folio,
605 };
606
607 struct extent_buffer *btrfs_find_create_tree_block(
608                                                 struct btrfs_fs_info *fs_info,
609                                                 u64 bytenr, u64 owner_root,
610                                                 int level)
611 {
612         if (btrfs_is_testing(fs_info))
613                 return alloc_test_extent_buffer(fs_info, bytenr);
614         return alloc_extent_buffer(fs_info, bytenr, owner_root, level);
615 }
616
617 /*
618  * Read tree block at logical address @bytenr and do variant basic but critical
619  * verification.
620  *
621  * @check:              expected tree parentness check, see comments of the
622  *                      structure for details.
623  */
624 struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
625                                       struct btrfs_tree_parent_check *check)
626 {
627         struct extent_buffer *buf = NULL;
628         int ret;
629
630         ASSERT(check);
631
632         buf = btrfs_find_create_tree_block(fs_info, bytenr, check->owner_root,
633                                            check->level);
634         if (IS_ERR(buf))
635                 return buf;
636
637         ret = btrfs_read_extent_buffer(buf, check);
638         if (ret) {
639                 free_extent_buffer_stale(buf);
640                 return ERR_PTR(ret);
641         }
642         return buf;
643
644 }
645
646 static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
647                          u64 objectid)
648 {
649         bool dummy = btrfs_is_testing(fs_info);
650
651         memset(&root->root_key, 0, sizeof(root->root_key));
652         memset(&root->root_item, 0, sizeof(root->root_item));
653         memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
654         root->fs_info = fs_info;
655         root->root_key.objectid = objectid;
656         root->node = NULL;
657         root->commit_root = NULL;
658         root->state = 0;
659         RB_CLEAR_NODE(&root->rb_node);
660
661         btrfs_set_root_last_trans(root, 0);
662         root->free_objectid = 0;
663         root->nr_delalloc_inodes = 0;
664         root->nr_ordered_extents = 0;
665         xa_init(&root->inodes);
666         xa_init(&root->delayed_nodes);
667
668         btrfs_init_root_block_rsv(root);
669
670         INIT_LIST_HEAD(&root->dirty_list);
671         INIT_LIST_HEAD(&root->root_list);
672         INIT_LIST_HEAD(&root->delalloc_inodes);
673         INIT_LIST_HEAD(&root->delalloc_root);
674         INIT_LIST_HEAD(&root->ordered_extents);
675         INIT_LIST_HEAD(&root->ordered_root);
676         INIT_LIST_HEAD(&root->reloc_dirty_list);
677         spin_lock_init(&root->delalloc_lock);
678         spin_lock_init(&root->ordered_extent_lock);
679         spin_lock_init(&root->accounting_lock);
680         spin_lock_init(&root->qgroup_meta_rsv_lock);
681         mutex_init(&root->objectid_mutex);
682         mutex_init(&root->log_mutex);
683         mutex_init(&root->ordered_extent_mutex);
684         mutex_init(&root->delalloc_mutex);
685         init_waitqueue_head(&root->qgroup_flush_wait);
686         init_waitqueue_head(&root->log_writer_wait);
687         init_waitqueue_head(&root->log_commit_wait[0]);
688         init_waitqueue_head(&root->log_commit_wait[1]);
689         INIT_LIST_HEAD(&root->log_ctxs[0]);
690         INIT_LIST_HEAD(&root->log_ctxs[1]);
691         atomic_set(&root->log_commit[0], 0);
692         atomic_set(&root->log_commit[1], 0);
693         atomic_set(&root->log_writers, 0);
694         atomic_set(&root->log_batch, 0);
695         refcount_set(&root->refs, 1);
696         atomic_set(&root->snapshot_force_cow, 0);
697         atomic_set(&root->nr_swapfiles, 0);
698         btrfs_set_root_log_transid(root, 0);
699         root->log_transid_committed = -1;
700         btrfs_set_root_last_log_commit(root, 0);
701         root->anon_dev = 0;
702         if (!dummy) {
703                 extent_io_tree_init(fs_info, &root->dirty_log_pages,
704                                     IO_TREE_ROOT_DIRTY_LOG_PAGES);
705                 extent_io_tree_init(fs_info, &root->log_csum_range,
706                                     IO_TREE_LOG_CSUM_RANGE);
707         }
708
709         spin_lock_init(&root->root_item_lock);
710         btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks);
711 #ifdef CONFIG_BTRFS_DEBUG
712         INIT_LIST_HEAD(&root->leak_list);
713         spin_lock(&fs_info->fs_roots_radix_lock);
714         list_add_tail(&root->leak_list, &fs_info->allocated_roots);
715         spin_unlock(&fs_info->fs_roots_radix_lock);
716 #endif
717 }
718
719 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
720                                            u64 objectid, gfp_t flags)
721 {
722         struct btrfs_root *root = kzalloc(sizeof(*root), flags);
723         if (root)
724                 __setup_root(root, fs_info, objectid);
725         return root;
726 }
727
728 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
729 /* Should only be used by the testing infrastructure */
730 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
731 {
732         struct btrfs_root *root;
733
734         if (!fs_info)
735                 return ERR_PTR(-EINVAL);
736
737         root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, GFP_KERNEL);
738         if (!root)
739                 return ERR_PTR(-ENOMEM);
740
741         /* We don't use the stripesize in selftest, set it as sectorsize */
742         root->alloc_bytenr = 0;
743
744         return root;
745 }
746 #endif
747
748 static int global_root_cmp(struct rb_node *a_node, const struct rb_node *b_node)
749 {
750         const struct btrfs_root *a = rb_entry(a_node, struct btrfs_root, rb_node);
751         const struct btrfs_root *b = rb_entry(b_node, struct btrfs_root, rb_node);
752
753         return btrfs_comp_cpu_keys(&a->root_key, &b->root_key);
754 }
755
756 static int global_root_key_cmp(const void *k, const struct rb_node *node)
757 {
758         const struct btrfs_key *key = k;
759         const struct btrfs_root *root = rb_entry(node, struct btrfs_root, rb_node);
760
761         return btrfs_comp_cpu_keys(key, &root->root_key);
762 }
763
764 int btrfs_global_root_insert(struct btrfs_root *root)
765 {
766         struct btrfs_fs_info *fs_info = root->fs_info;
767         struct rb_node *tmp;
768         int ret = 0;
769
770         write_lock(&fs_info->global_root_lock);
771         tmp = rb_find_add(&root->rb_node, &fs_info->global_root_tree, global_root_cmp);
772         write_unlock(&fs_info->global_root_lock);
773
774         if (tmp) {
775                 ret = -EEXIST;
776                 btrfs_warn(fs_info, "global root %llu %llu already exists",
777                            btrfs_root_id(root), root->root_key.offset);
778         }
779         return ret;
780 }
781
782 void btrfs_global_root_delete(struct btrfs_root *root)
783 {
784         struct btrfs_fs_info *fs_info = root->fs_info;
785
786         write_lock(&fs_info->global_root_lock);
787         rb_erase(&root->rb_node, &fs_info->global_root_tree);
788         write_unlock(&fs_info->global_root_lock);
789 }
790
791 struct btrfs_root *btrfs_global_root(struct btrfs_fs_info *fs_info,
792                                      struct btrfs_key *key)
793 {
794         struct rb_node *node;
795         struct btrfs_root *root = NULL;
796
797         read_lock(&fs_info->global_root_lock);
798         node = rb_find(key, &fs_info->global_root_tree, global_root_key_cmp);
799         if (node)
800                 root = container_of(node, struct btrfs_root, rb_node);
801         read_unlock(&fs_info->global_root_lock);
802
803         return root;
804 }
805
806 static u64 btrfs_global_root_id(struct btrfs_fs_info *fs_info, u64 bytenr)
807 {
808         struct btrfs_block_group *block_group;
809         u64 ret;
810
811         if (!btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))
812                 return 0;
813
814         if (bytenr)
815                 block_group = btrfs_lookup_block_group(fs_info, bytenr);
816         else
817                 block_group = btrfs_lookup_first_block_group(fs_info, bytenr);
818         ASSERT(block_group);
819         if (!block_group)
820                 return 0;
821         ret = block_group->global_root_id;
822         btrfs_put_block_group(block_group);
823
824         return ret;
825 }
826
827 struct btrfs_root *btrfs_csum_root(struct btrfs_fs_info *fs_info, u64 bytenr)
828 {
829         struct btrfs_key key = {
830                 .objectid = BTRFS_CSUM_TREE_OBJECTID,
831                 .type = BTRFS_ROOT_ITEM_KEY,
832                 .offset = btrfs_global_root_id(fs_info, bytenr),
833         };
834
835         return btrfs_global_root(fs_info, &key);
836 }
837
838 struct btrfs_root *btrfs_extent_root(struct btrfs_fs_info *fs_info, u64 bytenr)
839 {
840         struct btrfs_key key = {
841                 .objectid = BTRFS_EXTENT_TREE_OBJECTID,
842                 .type = BTRFS_ROOT_ITEM_KEY,
843                 .offset = btrfs_global_root_id(fs_info, bytenr),
844         };
845
846         return btrfs_global_root(fs_info, &key);
847 }
848
849 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
850                                      u64 objectid)
851 {
852         struct btrfs_fs_info *fs_info = trans->fs_info;
853         struct extent_buffer *leaf;
854         struct btrfs_root *tree_root = fs_info->tree_root;
855         struct btrfs_root *root;
856         struct btrfs_key key;
857         unsigned int nofs_flag;
858         int ret = 0;
859
860         /*
861          * We're holding a transaction handle, so use a NOFS memory allocation
862          * context to avoid deadlock if reclaim happens.
863          */
864         nofs_flag = memalloc_nofs_save();
865         root = btrfs_alloc_root(fs_info, objectid, GFP_KERNEL);
866         memalloc_nofs_restore(nofs_flag);
867         if (!root)
868                 return ERR_PTR(-ENOMEM);
869
870         root->root_key.objectid = objectid;
871         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
872         root->root_key.offset = 0;
873
874         leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0,
875                                       0, BTRFS_NESTING_NORMAL);
876         if (IS_ERR(leaf)) {
877                 ret = PTR_ERR(leaf);
878                 leaf = NULL;
879                 goto fail;
880         }
881
882         root->node = leaf;
883         btrfs_mark_buffer_dirty(trans, leaf);
884
885         root->commit_root = btrfs_root_node(root);
886         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
887
888         btrfs_set_root_flags(&root->root_item, 0);
889         btrfs_set_root_limit(&root->root_item, 0);
890         btrfs_set_root_bytenr(&root->root_item, leaf->start);
891         btrfs_set_root_generation(&root->root_item, trans->transid);
892         btrfs_set_root_level(&root->root_item, 0);
893         btrfs_set_root_refs(&root->root_item, 1);
894         btrfs_set_root_used(&root->root_item, leaf->len);
895         btrfs_set_root_last_snapshot(&root->root_item, 0);
896         btrfs_set_root_dirid(&root->root_item, 0);
897         if (is_fstree(objectid))
898                 generate_random_guid(root->root_item.uuid);
899         else
900                 export_guid(root->root_item.uuid, &guid_null);
901         btrfs_set_root_drop_level(&root->root_item, 0);
902
903         btrfs_tree_unlock(leaf);
904
905         key.objectid = objectid;
906         key.type = BTRFS_ROOT_ITEM_KEY;
907         key.offset = 0;
908         ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
909         if (ret)
910                 goto fail;
911
912         return root;
913
914 fail:
915         btrfs_put_root(root);
916
917         return ERR_PTR(ret);
918 }
919
920 static struct btrfs_root *alloc_log_tree(struct btrfs_fs_info *fs_info)
921 {
922         struct btrfs_root *root;
923
924         root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, GFP_NOFS);
925         if (!root)
926                 return ERR_PTR(-ENOMEM);
927
928         root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
929         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
930         root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
931
932         return root;
933 }
934
935 int btrfs_alloc_log_tree_node(struct btrfs_trans_handle *trans,
936                               struct btrfs_root *root)
937 {
938         struct extent_buffer *leaf;
939
940         /*
941          * DON'T set SHAREABLE bit for log trees.
942          *
943          * Log trees are not exposed to user space thus can't be snapshotted,
944          * and they go away before a real commit is actually done.
945          *
946          * They do store pointers to file data extents, and those reference
947          * counts still get updated (along with back refs to the log tree).
948          */
949
950         leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
951                         NULL, 0, 0, 0, 0, BTRFS_NESTING_NORMAL);
952         if (IS_ERR(leaf))
953                 return PTR_ERR(leaf);
954
955         root->node = leaf;
956
957         btrfs_mark_buffer_dirty(trans, root->node);
958         btrfs_tree_unlock(root->node);
959
960         return 0;
961 }
962
963 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
964                              struct btrfs_fs_info *fs_info)
965 {
966         struct btrfs_root *log_root;
967
968         log_root = alloc_log_tree(fs_info);
969         if (IS_ERR(log_root))
970                 return PTR_ERR(log_root);
971
972         if (!btrfs_is_zoned(fs_info)) {
973                 int ret = btrfs_alloc_log_tree_node(trans, log_root);
974
975                 if (ret) {
976                         btrfs_put_root(log_root);
977                         return ret;
978                 }
979         }
980
981         WARN_ON(fs_info->log_root_tree);
982         fs_info->log_root_tree = log_root;
983         return 0;
984 }
985
986 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
987                        struct btrfs_root *root)
988 {
989         struct btrfs_fs_info *fs_info = root->fs_info;
990         struct btrfs_root *log_root;
991         struct btrfs_inode_item *inode_item;
992         int ret;
993
994         log_root = alloc_log_tree(fs_info);
995         if (IS_ERR(log_root))
996                 return PTR_ERR(log_root);
997
998         ret = btrfs_alloc_log_tree_node(trans, log_root);
999         if (ret) {
1000                 btrfs_put_root(log_root);
1001                 return ret;
1002         }
1003
1004         btrfs_set_root_last_trans(log_root, trans->transid);
1005         log_root->root_key.offset = btrfs_root_id(root);
1006
1007         inode_item = &log_root->root_item.inode;
1008         btrfs_set_stack_inode_generation(inode_item, 1);
1009         btrfs_set_stack_inode_size(inode_item, 3);
1010         btrfs_set_stack_inode_nlink(inode_item, 1);
1011         btrfs_set_stack_inode_nbytes(inode_item,
1012                                      fs_info->nodesize);
1013         btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1014
1015         btrfs_set_root_node(&log_root->root_item, log_root->node);
1016
1017         WARN_ON(root->log_root);
1018         root->log_root = log_root;
1019         btrfs_set_root_log_transid(root, 0);
1020         root->log_transid_committed = -1;
1021         btrfs_set_root_last_log_commit(root, 0);
1022         return 0;
1023 }
1024
1025 static struct btrfs_root *read_tree_root_path(struct btrfs_root *tree_root,
1026                                               struct btrfs_path *path,
1027                                               const struct btrfs_key *key)
1028 {
1029         struct btrfs_root *root;
1030         struct btrfs_tree_parent_check check = { 0 };
1031         struct btrfs_fs_info *fs_info = tree_root->fs_info;
1032         u64 generation;
1033         int ret;
1034         int level;
1035
1036         root = btrfs_alloc_root(fs_info, key->objectid, GFP_NOFS);
1037         if (!root)
1038                 return ERR_PTR(-ENOMEM);
1039
1040         ret = btrfs_find_root(tree_root, key, path,
1041                               &root->root_item, &root->root_key);
1042         if (ret) {
1043                 if (ret > 0)
1044                         ret = -ENOENT;
1045                 goto fail;
1046         }
1047
1048         generation = btrfs_root_generation(&root->root_item);
1049         level = btrfs_root_level(&root->root_item);
1050         check.level = level;
1051         check.transid = generation;
1052         check.owner_root = key->objectid;
1053         root->node = read_tree_block(fs_info, btrfs_root_bytenr(&root->root_item),
1054                                      &check);
1055         if (IS_ERR(root->node)) {
1056                 ret = PTR_ERR(root->node);
1057                 root->node = NULL;
1058                 goto fail;
1059         }
1060         if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1061                 ret = -EIO;
1062                 goto fail;
1063         }
1064
1065         /*
1066          * For real fs, and not log/reloc trees, root owner must
1067          * match its root node owner
1068          */
1069         if (!btrfs_is_testing(fs_info) &&
1070             btrfs_root_id(root) != BTRFS_TREE_LOG_OBJECTID &&
1071             btrfs_root_id(root) != BTRFS_TREE_RELOC_OBJECTID &&
1072             btrfs_root_id(root) != btrfs_header_owner(root->node)) {
1073                 btrfs_crit(fs_info,
1074 "root=%llu block=%llu, tree root owner mismatch, have %llu expect %llu",
1075                            btrfs_root_id(root), root->node->start,
1076                            btrfs_header_owner(root->node),
1077                            btrfs_root_id(root));
1078                 ret = -EUCLEAN;
1079                 goto fail;
1080         }
1081         root->commit_root = btrfs_root_node(root);
1082         return root;
1083 fail:
1084         btrfs_put_root(root);
1085         return ERR_PTR(ret);
1086 }
1087
1088 struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1089                                         const struct btrfs_key *key)
1090 {
1091         struct btrfs_root *root;
1092         struct btrfs_path *path;
1093
1094         path = btrfs_alloc_path();
1095         if (!path)
1096                 return ERR_PTR(-ENOMEM);
1097         root = read_tree_root_path(tree_root, path, key);
1098         btrfs_free_path(path);
1099
1100         return root;
1101 }
1102
1103 /*
1104  * Initialize subvolume root in-memory structure
1105  *
1106  * @anon_dev:   anonymous device to attach to the root, if zero, allocate new
1107  */
1108 static int btrfs_init_fs_root(struct btrfs_root *root, dev_t anon_dev)
1109 {
1110         int ret;
1111
1112         btrfs_drew_lock_init(&root->snapshot_lock);
1113
1114         if (btrfs_root_id(root) != BTRFS_TREE_LOG_OBJECTID &&
1115             !btrfs_is_data_reloc_root(root) &&
1116             is_fstree(btrfs_root_id(root))) {
1117                 set_bit(BTRFS_ROOT_SHAREABLE, &root->state);
1118                 btrfs_check_and_init_root_item(&root->root_item);
1119         }
1120
1121         /*
1122          * Don't assign anonymous block device to roots that are not exposed to
1123          * userspace, the id pool is limited to 1M
1124          */
1125         if (is_fstree(btrfs_root_id(root)) &&
1126             btrfs_root_refs(&root->root_item) > 0) {
1127                 if (!anon_dev) {
1128                         ret = get_anon_bdev(&root->anon_dev);
1129                         if (ret)
1130                                 goto fail;
1131                 } else {
1132                         root->anon_dev = anon_dev;
1133                 }
1134         }
1135
1136         mutex_lock(&root->objectid_mutex);
1137         ret = btrfs_init_root_free_objectid(root);
1138         if (ret) {
1139                 mutex_unlock(&root->objectid_mutex);
1140                 goto fail;
1141         }
1142
1143         ASSERT(root->free_objectid <= BTRFS_LAST_FREE_OBJECTID);
1144
1145         mutex_unlock(&root->objectid_mutex);
1146
1147         return 0;
1148 fail:
1149         /* The caller is responsible to call btrfs_free_fs_root */
1150         return ret;
1151 }
1152
1153 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1154                                                u64 root_id)
1155 {
1156         struct btrfs_root *root;
1157
1158         spin_lock(&fs_info->fs_roots_radix_lock);
1159         root = radix_tree_lookup(&fs_info->fs_roots_radix,
1160                                  (unsigned long)root_id);
1161         root = btrfs_grab_root(root);
1162         spin_unlock(&fs_info->fs_roots_radix_lock);
1163         return root;
1164 }
1165
1166 static struct btrfs_root *btrfs_get_global_root(struct btrfs_fs_info *fs_info,
1167                                                 u64 objectid)
1168 {
1169         struct btrfs_key key = {
1170                 .objectid = objectid,
1171                 .type = BTRFS_ROOT_ITEM_KEY,
1172                 .offset = 0,
1173         };
1174
1175         switch (objectid) {
1176         case BTRFS_ROOT_TREE_OBJECTID:
1177                 return btrfs_grab_root(fs_info->tree_root);
1178         case BTRFS_EXTENT_TREE_OBJECTID:
1179                 return btrfs_grab_root(btrfs_global_root(fs_info, &key));
1180         case BTRFS_CHUNK_TREE_OBJECTID:
1181                 return btrfs_grab_root(fs_info->chunk_root);
1182         case BTRFS_DEV_TREE_OBJECTID:
1183                 return btrfs_grab_root(fs_info->dev_root);
1184         case BTRFS_CSUM_TREE_OBJECTID:
1185                 return btrfs_grab_root(btrfs_global_root(fs_info, &key));
1186         case BTRFS_QUOTA_TREE_OBJECTID:
1187                 return btrfs_grab_root(fs_info->quota_root);
1188         case BTRFS_UUID_TREE_OBJECTID:
1189                 return btrfs_grab_root(fs_info->uuid_root);
1190         case BTRFS_BLOCK_GROUP_TREE_OBJECTID:
1191                 return btrfs_grab_root(fs_info->block_group_root);
1192         case BTRFS_FREE_SPACE_TREE_OBJECTID:
1193                 return btrfs_grab_root(btrfs_global_root(fs_info, &key));
1194         case BTRFS_RAID_STRIPE_TREE_OBJECTID:
1195                 return btrfs_grab_root(fs_info->stripe_root);
1196         default:
1197                 return NULL;
1198         }
1199 }
1200
1201 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1202                          struct btrfs_root *root)
1203 {
1204         int ret;
1205
1206         ret = radix_tree_preload(GFP_NOFS);
1207         if (ret)
1208                 return ret;
1209
1210         spin_lock(&fs_info->fs_roots_radix_lock);
1211         ret = radix_tree_insert(&fs_info->fs_roots_radix,
1212                                 (unsigned long)btrfs_root_id(root),
1213                                 root);
1214         if (ret == 0) {
1215                 btrfs_grab_root(root);
1216                 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1217         }
1218         spin_unlock(&fs_info->fs_roots_radix_lock);
1219         radix_tree_preload_end();
1220
1221         return ret;
1222 }
1223
1224 void btrfs_check_leaked_roots(const struct btrfs_fs_info *fs_info)
1225 {
1226 #ifdef CONFIG_BTRFS_DEBUG
1227         struct btrfs_root *root;
1228
1229         while (!list_empty(&fs_info->allocated_roots)) {
1230                 char buf[BTRFS_ROOT_NAME_BUF_LEN];
1231
1232                 root = list_first_entry(&fs_info->allocated_roots,
1233                                         struct btrfs_root, leak_list);
1234                 btrfs_err(fs_info, "leaked root %s refcount %d",
1235                           btrfs_root_name(&root->root_key, buf),
1236                           refcount_read(&root->refs));
1237                 WARN_ON_ONCE(1);
1238                 while (refcount_read(&root->refs) > 1)
1239                         btrfs_put_root(root);
1240                 btrfs_put_root(root);
1241         }
1242 #endif
1243 }
1244
1245 static void free_global_roots(struct btrfs_fs_info *fs_info)
1246 {
1247         struct btrfs_root *root;
1248         struct rb_node *node;
1249
1250         while ((node = rb_first_postorder(&fs_info->global_root_tree)) != NULL) {
1251                 root = rb_entry(node, struct btrfs_root, rb_node);
1252                 rb_erase(&root->rb_node, &fs_info->global_root_tree);
1253                 btrfs_put_root(root);
1254         }
1255 }
1256
1257 void btrfs_free_fs_info(struct btrfs_fs_info *fs_info)
1258 {
1259         struct percpu_counter *em_counter = &fs_info->evictable_extent_maps;
1260
1261         percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
1262         percpu_counter_destroy(&fs_info->delalloc_bytes);
1263         percpu_counter_destroy(&fs_info->ordered_bytes);
1264         if (percpu_counter_initialized(em_counter))
1265                 ASSERT(percpu_counter_sum_positive(em_counter) == 0);
1266         percpu_counter_destroy(em_counter);
1267         percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
1268         btrfs_free_csum_hash(fs_info);
1269         btrfs_free_stripe_hash_table(fs_info);
1270         btrfs_free_ref_cache(fs_info);
1271         kfree(fs_info->balance_ctl);
1272         kfree(fs_info->delayed_root);
1273         free_global_roots(fs_info);
1274         btrfs_put_root(fs_info->tree_root);
1275         btrfs_put_root(fs_info->chunk_root);
1276         btrfs_put_root(fs_info->dev_root);
1277         btrfs_put_root(fs_info->quota_root);
1278         btrfs_put_root(fs_info->uuid_root);
1279         btrfs_put_root(fs_info->fs_root);
1280         btrfs_put_root(fs_info->data_reloc_root);
1281         btrfs_put_root(fs_info->block_group_root);
1282         btrfs_put_root(fs_info->stripe_root);
1283         btrfs_check_leaked_roots(fs_info);
1284         btrfs_extent_buffer_leak_debug_check(fs_info);
1285         kfree(fs_info->super_copy);
1286         kfree(fs_info->super_for_commit);
1287         kvfree(fs_info);
1288 }
1289
1290
1291 /*
1292  * Get an in-memory reference of a root structure.
1293  *
1294  * For essential trees like root/extent tree, we grab it from fs_info directly.
1295  * For subvolume trees, we check the cached filesystem roots first. If not
1296  * found, then read it from disk and add it to cached fs roots.
1297  *
1298  * Caller should release the root by calling btrfs_put_root() after the usage.
1299  *
1300  * NOTE: Reloc and log trees can't be read by this function as they share the
1301  *       same root objectid.
1302  *
1303  * @objectid:   root id
1304  * @anon_dev:   preallocated anonymous block device number for new roots,
1305  *              pass NULL for a new allocation.
1306  * @check_ref:  whether to check root item references, If true, return -ENOENT
1307  *              for orphan roots
1308  */
1309 static struct btrfs_root *btrfs_get_root_ref(struct btrfs_fs_info *fs_info,
1310                                              u64 objectid, dev_t *anon_dev,
1311                                              bool check_ref)
1312 {
1313         struct btrfs_root *root;
1314         struct btrfs_path *path;
1315         struct btrfs_key key;
1316         int ret;
1317
1318         root = btrfs_get_global_root(fs_info, objectid);
1319         if (root)
1320                 return root;
1321
1322         /*
1323          * If we're called for non-subvolume trees, and above function didn't
1324          * find one, do not try to read it from disk.
1325          *
1326          * This is namely for free-space-tree and quota tree, which can change
1327          * at runtime and should only be grabbed from fs_info.
1328          */
1329         if (!is_fstree(objectid) && objectid != BTRFS_DATA_RELOC_TREE_OBJECTID)
1330                 return ERR_PTR(-ENOENT);
1331 again:
1332         root = btrfs_lookup_fs_root(fs_info, objectid);
1333         if (root) {
1334                 /*
1335                  * Some other caller may have read out the newly inserted
1336                  * subvolume already (for things like backref walk etc).  Not
1337                  * that common but still possible.  In that case, we just need
1338                  * to free the anon_dev.
1339                  */
1340                 if (unlikely(anon_dev && *anon_dev)) {
1341                         free_anon_bdev(*anon_dev);
1342                         *anon_dev = 0;
1343                 }
1344
1345                 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1346                         btrfs_put_root(root);
1347                         return ERR_PTR(-ENOENT);
1348                 }
1349                 return root;
1350         }
1351
1352         key.objectid = objectid;
1353         key.type = BTRFS_ROOT_ITEM_KEY;
1354         key.offset = (u64)-1;
1355         root = btrfs_read_tree_root(fs_info->tree_root, &key);
1356         if (IS_ERR(root))
1357                 return root;
1358
1359         if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1360                 ret = -ENOENT;
1361                 goto fail;
1362         }
1363
1364         ret = btrfs_init_fs_root(root, anon_dev ? *anon_dev : 0);
1365         if (ret)
1366                 goto fail;
1367
1368         path = btrfs_alloc_path();
1369         if (!path) {
1370                 ret = -ENOMEM;
1371                 goto fail;
1372         }
1373         key.objectid = BTRFS_ORPHAN_OBJECTID;
1374         key.type = BTRFS_ORPHAN_ITEM_KEY;
1375         key.offset = objectid;
1376
1377         ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1378         btrfs_free_path(path);
1379         if (ret < 0)
1380                 goto fail;
1381         if (ret == 0)
1382                 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1383
1384         ret = btrfs_insert_fs_root(fs_info, root);
1385         if (ret) {
1386                 if (ret == -EEXIST) {
1387                         btrfs_put_root(root);
1388                         goto again;
1389                 }
1390                 goto fail;
1391         }
1392         return root;
1393 fail:
1394         /*
1395          * If our caller provided us an anonymous device, then it's his
1396          * responsibility to free it in case we fail. So we have to set our
1397          * root's anon_dev to 0 to avoid a double free, once by btrfs_put_root()
1398          * and once again by our caller.
1399          */
1400         if (anon_dev && *anon_dev)
1401                 root->anon_dev = 0;
1402         btrfs_put_root(root);
1403         return ERR_PTR(ret);
1404 }
1405
1406 /*
1407  * Get in-memory reference of a root structure
1408  *
1409  * @objectid:   tree objectid
1410  * @check_ref:  if set, verify that the tree exists and the item has at least
1411  *              one reference
1412  */
1413 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1414                                      u64 objectid, bool check_ref)
1415 {
1416         return btrfs_get_root_ref(fs_info, objectid, NULL, check_ref);
1417 }
1418
1419 /*
1420  * Get in-memory reference of a root structure, created as new, optionally pass
1421  * the anonymous block device id
1422  *
1423  * @objectid:   tree objectid
1424  * @anon_dev:   if NULL, allocate a new anonymous block device or use the
1425  *              parameter value if not NULL
1426  */
1427 struct btrfs_root *btrfs_get_new_fs_root(struct btrfs_fs_info *fs_info,
1428                                          u64 objectid, dev_t *anon_dev)
1429 {
1430         return btrfs_get_root_ref(fs_info, objectid, anon_dev, true);
1431 }
1432
1433 /*
1434  * Return a root for the given objectid.
1435  *
1436  * @fs_info:    the fs_info
1437  * @objectid:   the objectid we need to lookup
1438  *
1439  * This is exclusively used for backref walking, and exists specifically because
1440  * of how qgroups does lookups.  Qgroups will do a backref lookup at delayed ref
1441  * creation time, which means we may have to read the tree_root in order to look
1442  * up a fs root that is not in memory.  If the root is not in memory we will
1443  * read the tree root commit root and look up the fs root from there.  This is a
1444  * temporary root, it will not be inserted into the radix tree as it doesn't
1445  * have the most uptodate information, it'll simply be discarded once the
1446  * backref code is finished using the root.
1447  */
1448 struct btrfs_root *btrfs_get_fs_root_commit_root(struct btrfs_fs_info *fs_info,
1449                                                  struct btrfs_path *path,
1450                                                  u64 objectid)
1451 {
1452         struct btrfs_root *root;
1453         struct btrfs_key key;
1454
1455         ASSERT(path->search_commit_root && path->skip_locking);
1456
1457         /*
1458          * This can return -ENOENT if we ask for a root that doesn't exist, but
1459          * since this is called via the backref walking code we won't be looking
1460          * up a root that doesn't exist, unless there's corruption.  So if root
1461          * != NULL just return it.
1462          */
1463         root = btrfs_get_global_root(fs_info, objectid);
1464         if (root)
1465                 return root;
1466
1467         root = btrfs_lookup_fs_root(fs_info, objectid);
1468         if (root)
1469                 return root;
1470
1471         key.objectid = objectid;
1472         key.type = BTRFS_ROOT_ITEM_KEY;
1473         key.offset = (u64)-1;
1474         root = read_tree_root_path(fs_info->tree_root, path, &key);
1475         btrfs_release_path(path);
1476
1477         return root;
1478 }
1479
1480 static int cleaner_kthread(void *arg)
1481 {
1482         struct btrfs_fs_info *fs_info = arg;
1483         int again;
1484
1485         while (1) {
1486                 again = 0;
1487
1488                 set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1489
1490                 /* Make the cleaner go to sleep early. */
1491                 if (btrfs_need_cleaner_sleep(fs_info))
1492                         goto sleep;
1493
1494                 /*
1495                  * Do not do anything if we might cause open_ctree() to block
1496                  * before we have finished mounting the filesystem.
1497                  */
1498                 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1499                         goto sleep;
1500
1501                 if (!mutex_trylock(&fs_info->cleaner_mutex))
1502                         goto sleep;
1503
1504                 /*
1505                  * Avoid the problem that we change the status of the fs
1506                  * during the above check and trylock.
1507                  */
1508                 if (btrfs_need_cleaner_sleep(fs_info)) {
1509                         mutex_unlock(&fs_info->cleaner_mutex);
1510                         goto sleep;
1511                 }
1512
1513                 if (test_and_clear_bit(BTRFS_FS_FEATURE_CHANGED, &fs_info->flags))
1514                         btrfs_sysfs_feature_update(fs_info);
1515
1516                 btrfs_run_delayed_iputs(fs_info);
1517
1518                 again = btrfs_clean_one_deleted_snapshot(fs_info);
1519                 mutex_unlock(&fs_info->cleaner_mutex);
1520
1521                 /*
1522                  * The defragger has dealt with the R/O remount and umount,
1523                  * needn't do anything special here.
1524                  */
1525                 btrfs_run_defrag_inodes(fs_info);
1526
1527                 /*
1528                  * Acquires fs_info->reclaim_bgs_lock to avoid racing
1529                  * with relocation (btrfs_relocate_chunk) and relocation
1530                  * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1531                  * after acquiring fs_info->reclaim_bgs_lock. So we
1532                  * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1533                  * unused block groups.
1534                  */
1535                 btrfs_delete_unused_bgs(fs_info);
1536
1537                 /*
1538                  * Reclaim block groups in the reclaim_bgs list after we deleted
1539                  * all unused block_groups. This possibly gives us some more free
1540                  * space.
1541                  */
1542                 btrfs_reclaim_bgs(fs_info);
1543 sleep:
1544                 clear_and_wake_up_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1545                 if (kthread_should_park())
1546                         kthread_parkme();
1547                 if (kthread_should_stop())
1548                         return 0;
1549                 if (!again) {
1550                         set_current_state(TASK_INTERRUPTIBLE);
1551                         schedule();
1552                         __set_current_state(TASK_RUNNING);
1553                 }
1554         }
1555 }
1556
1557 static int transaction_kthread(void *arg)
1558 {
1559         struct btrfs_root *root = arg;
1560         struct btrfs_fs_info *fs_info = root->fs_info;
1561         struct btrfs_trans_handle *trans;
1562         struct btrfs_transaction *cur;
1563         u64 transid;
1564         time64_t delta;
1565         unsigned long delay;
1566         bool cannot_commit;
1567
1568         do {
1569                 cannot_commit = false;
1570                 delay = msecs_to_jiffies(fs_info->commit_interval * 1000);
1571                 mutex_lock(&fs_info->transaction_kthread_mutex);
1572
1573                 spin_lock(&fs_info->trans_lock);
1574                 cur = fs_info->running_transaction;
1575                 if (!cur) {
1576                         spin_unlock(&fs_info->trans_lock);
1577                         goto sleep;
1578                 }
1579
1580                 delta = ktime_get_seconds() - cur->start_time;
1581                 if (!test_and_clear_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags) &&
1582                     cur->state < TRANS_STATE_COMMIT_PREP &&
1583                     delta < fs_info->commit_interval) {
1584                         spin_unlock(&fs_info->trans_lock);
1585                         delay -= msecs_to_jiffies((delta - 1) * 1000);
1586                         delay = min(delay,
1587                                     msecs_to_jiffies(fs_info->commit_interval * 1000));
1588                         goto sleep;
1589                 }
1590                 transid = cur->transid;
1591                 spin_unlock(&fs_info->trans_lock);
1592
1593                 /* If the file system is aborted, this will always fail. */
1594                 trans = btrfs_attach_transaction(root);
1595                 if (IS_ERR(trans)) {
1596                         if (PTR_ERR(trans) != -ENOENT)
1597                                 cannot_commit = true;
1598                         goto sleep;
1599                 }
1600                 if (transid == trans->transid) {
1601                         btrfs_commit_transaction(trans);
1602                 } else {
1603                         btrfs_end_transaction(trans);
1604                 }
1605 sleep:
1606                 wake_up_process(fs_info->cleaner_kthread);
1607                 mutex_unlock(&fs_info->transaction_kthread_mutex);
1608
1609                 if (BTRFS_FS_ERROR(fs_info))
1610                         btrfs_cleanup_transaction(fs_info);
1611                 if (!kthread_should_stop() &&
1612                                 (!btrfs_transaction_blocked(fs_info) ||
1613                                  cannot_commit))
1614                         schedule_timeout_interruptible(delay);
1615         } while (!kthread_should_stop());
1616         return 0;
1617 }
1618
1619 /*
1620  * This will find the highest generation in the array of root backups.  The
1621  * index of the highest array is returned, or -EINVAL if we can't find
1622  * anything.
1623  *
1624  * We check to make sure the array is valid by comparing the
1625  * generation of the latest  root in the array with the generation
1626  * in the super block.  If they don't match we pitch it.
1627  */
1628 static int find_newest_super_backup(struct btrfs_fs_info *info)
1629 {
1630         const u64 newest_gen = btrfs_super_generation(info->super_copy);
1631         u64 cur;
1632         struct btrfs_root_backup *root_backup;
1633         int i;
1634
1635         for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1636                 root_backup = info->super_copy->super_roots + i;
1637                 cur = btrfs_backup_tree_root_gen(root_backup);
1638                 if (cur == newest_gen)
1639                         return i;
1640         }
1641
1642         return -EINVAL;
1643 }
1644
1645 /*
1646  * copy all the root pointers into the super backup array.
1647  * this will bump the backup pointer by one when it is
1648  * done
1649  */
1650 static void backup_super_roots(struct btrfs_fs_info *info)
1651 {
1652         const int next_backup = info->backup_root_index;
1653         struct btrfs_root_backup *root_backup;
1654
1655         root_backup = info->super_for_commit->super_roots + next_backup;
1656
1657         /*
1658          * make sure all of our padding and empty slots get zero filled
1659          * regardless of which ones we use today
1660          */
1661         memset(root_backup, 0, sizeof(*root_backup));
1662
1663         info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1664
1665         btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1666         btrfs_set_backup_tree_root_gen(root_backup,
1667                                btrfs_header_generation(info->tree_root->node));
1668
1669         btrfs_set_backup_tree_root_level(root_backup,
1670                                btrfs_header_level(info->tree_root->node));
1671
1672         btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1673         btrfs_set_backup_chunk_root_gen(root_backup,
1674                                btrfs_header_generation(info->chunk_root->node));
1675         btrfs_set_backup_chunk_root_level(root_backup,
1676                                btrfs_header_level(info->chunk_root->node));
1677
1678         if (!btrfs_fs_compat_ro(info, BLOCK_GROUP_TREE)) {
1679                 struct btrfs_root *extent_root = btrfs_extent_root(info, 0);
1680                 struct btrfs_root *csum_root = btrfs_csum_root(info, 0);
1681
1682                 btrfs_set_backup_extent_root(root_backup,
1683                                              extent_root->node->start);
1684                 btrfs_set_backup_extent_root_gen(root_backup,
1685                                 btrfs_header_generation(extent_root->node));
1686                 btrfs_set_backup_extent_root_level(root_backup,
1687                                         btrfs_header_level(extent_root->node));
1688
1689                 btrfs_set_backup_csum_root(root_backup, csum_root->node->start);
1690                 btrfs_set_backup_csum_root_gen(root_backup,
1691                                                btrfs_header_generation(csum_root->node));
1692                 btrfs_set_backup_csum_root_level(root_backup,
1693                                                  btrfs_header_level(csum_root->node));
1694         }
1695
1696         /*
1697          * we might commit during log recovery, which happens before we set
1698          * the fs_root.  Make sure it is valid before we fill it in.
1699          */
1700         if (info->fs_root && info->fs_root->node) {
1701                 btrfs_set_backup_fs_root(root_backup,
1702                                          info->fs_root->node->start);
1703                 btrfs_set_backup_fs_root_gen(root_backup,
1704                                btrfs_header_generation(info->fs_root->node));
1705                 btrfs_set_backup_fs_root_level(root_backup,
1706                                btrfs_header_level(info->fs_root->node));
1707         }
1708
1709         btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1710         btrfs_set_backup_dev_root_gen(root_backup,
1711                                btrfs_header_generation(info->dev_root->node));
1712         btrfs_set_backup_dev_root_level(root_backup,
1713                                        btrfs_header_level(info->dev_root->node));
1714
1715         btrfs_set_backup_total_bytes(root_backup,
1716                              btrfs_super_total_bytes(info->super_copy));
1717         btrfs_set_backup_bytes_used(root_backup,
1718                              btrfs_super_bytes_used(info->super_copy));
1719         btrfs_set_backup_num_devices(root_backup,
1720                              btrfs_super_num_devices(info->super_copy));
1721
1722         /*
1723          * if we don't copy this out to the super_copy, it won't get remembered
1724          * for the next commit
1725          */
1726         memcpy(&info->super_copy->super_roots,
1727                &info->super_for_commit->super_roots,
1728                sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1729 }
1730
1731 /*
1732  * Reads a backup root based on the passed priority. Prio 0 is the newest, prio
1733  * 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots
1734  *
1735  * @fs_info:  filesystem whose backup roots need to be read
1736  * @priority: priority of backup root required
1737  *
1738  * Returns backup root index on success and -EINVAL otherwise.
1739  */
1740 static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority)
1741 {
1742         int backup_index = find_newest_super_backup(fs_info);
1743         struct btrfs_super_block *super = fs_info->super_copy;
1744         struct btrfs_root_backup *root_backup;
1745
1746         if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) {
1747                 if (priority == 0)
1748                         return backup_index;
1749
1750                 backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority;
1751                 backup_index %= BTRFS_NUM_BACKUP_ROOTS;
1752         } else {
1753                 return -EINVAL;
1754         }
1755
1756         root_backup = super->super_roots + backup_index;
1757
1758         btrfs_set_super_generation(super,
1759                                    btrfs_backup_tree_root_gen(root_backup));
1760         btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1761         btrfs_set_super_root_level(super,
1762                                    btrfs_backup_tree_root_level(root_backup));
1763         btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1764
1765         /*
1766          * Fixme: the total bytes and num_devices need to match or we should
1767          * need a fsck
1768          */
1769         btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1770         btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1771
1772         return backup_index;
1773 }
1774
1775 /* helper to cleanup workers */
1776 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
1777 {
1778         btrfs_destroy_workqueue(fs_info->fixup_workers);
1779         btrfs_destroy_workqueue(fs_info->delalloc_workers);
1780         btrfs_destroy_workqueue(fs_info->workers);
1781         if (fs_info->endio_workers)
1782                 destroy_workqueue(fs_info->endio_workers);
1783         if (fs_info->rmw_workers)
1784                 destroy_workqueue(fs_info->rmw_workers);
1785         if (fs_info->compressed_write_workers)
1786                 destroy_workqueue(fs_info->compressed_write_workers);
1787         btrfs_destroy_workqueue(fs_info->endio_write_workers);
1788         btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
1789         btrfs_destroy_workqueue(fs_info->delayed_workers);
1790         btrfs_destroy_workqueue(fs_info->caching_workers);
1791         btrfs_destroy_workqueue(fs_info->flush_workers);
1792         btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
1793         if (fs_info->discard_ctl.discard_workers)
1794                 destroy_workqueue(fs_info->discard_ctl.discard_workers);
1795         /*
1796          * Now that all other work queues are destroyed, we can safely destroy
1797          * the queues used for metadata I/O, since tasks from those other work
1798          * queues can do metadata I/O operations.
1799          */
1800         if (fs_info->endio_meta_workers)
1801                 destroy_workqueue(fs_info->endio_meta_workers);
1802 }
1803
1804 static void free_root_extent_buffers(struct btrfs_root *root)
1805 {
1806         if (root) {
1807                 free_extent_buffer(root->node);
1808                 free_extent_buffer(root->commit_root);
1809                 root->node = NULL;
1810                 root->commit_root = NULL;
1811         }
1812 }
1813
1814 static void free_global_root_pointers(struct btrfs_fs_info *fs_info)
1815 {
1816         struct btrfs_root *root, *tmp;
1817
1818         rbtree_postorder_for_each_entry_safe(root, tmp,
1819                                              &fs_info->global_root_tree,
1820                                              rb_node)
1821                 free_root_extent_buffers(root);
1822 }
1823
1824 /* helper to cleanup tree roots */
1825 static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root)
1826 {
1827         free_root_extent_buffers(info->tree_root);
1828
1829         free_global_root_pointers(info);
1830         free_root_extent_buffers(info->dev_root);
1831         free_root_extent_buffers(info->quota_root);
1832         free_root_extent_buffers(info->uuid_root);
1833         free_root_extent_buffers(info->fs_root);
1834         free_root_extent_buffers(info->data_reloc_root);
1835         free_root_extent_buffers(info->block_group_root);
1836         free_root_extent_buffers(info->stripe_root);
1837         if (free_chunk_root)
1838                 free_root_extent_buffers(info->chunk_root);
1839 }
1840
1841 void btrfs_put_root(struct btrfs_root *root)
1842 {
1843         if (!root)
1844                 return;
1845
1846         if (refcount_dec_and_test(&root->refs)) {
1847                 if (WARN_ON(!xa_empty(&root->inodes)))
1848                         xa_destroy(&root->inodes);
1849                 WARN_ON(test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state));
1850                 if (root->anon_dev)
1851                         free_anon_bdev(root->anon_dev);
1852                 free_root_extent_buffers(root);
1853 #ifdef CONFIG_BTRFS_DEBUG
1854                 spin_lock(&root->fs_info->fs_roots_radix_lock);
1855                 list_del_init(&root->leak_list);
1856                 spin_unlock(&root->fs_info->fs_roots_radix_lock);
1857 #endif
1858                 kfree(root);
1859         }
1860 }
1861
1862 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
1863 {
1864         int ret;
1865         struct btrfs_root *gang[8];
1866         int i;
1867
1868         while (!list_empty(&fs_info->dead_roots)) {
1869                 gang[0] = list_entry(fs_info->dead_roots.next,
1870                                      struct btrfs_root, root_list);
1871                 list_del(&gang[0]->root_list);
1872
1873                 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state))
1874                         btrfs_drop_and_free_fs_root(fs_info, gang[0]);
1875                 btrfs_put_root(gang[0]);
1876         }
1877
1878         while (1) {
1879                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
1880                                              (void **)gang, 0,
1881                                              ARRAY_SIZE(gang));
1882                 if (!ret)
1883                         break;
1884                 for (i = 0; i < ret; i++)
1885                         btrfs_drop_and_free_fs_root(fs_info, gang[i]);
1886         }
1887 }
1888
1889 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
1890 {
1891         mutex_init(&fs_info->scrub_lock);
1892         atomic_set(&fs_info->scrubs_running, 0);
1893         atomic_set(&fs_info->scrub_pause_req, 0);
1894         atomic_set(&fs_info->scrubs_paused, 0);
1895         atomic_set(&fs_info->scrub_cancel_req, 0);
1896         init_waitqueue_head(&fs_info->scrub_pause_wait);
1897         refcount_set(&fs_info->scrub_workers_refcnt, 0);
1898 }
1899
1900 static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
1901 {
1902         spin_lock_init(&fs_info->balance_lock);
1903         mutex_init(&fs_info->balance_mutex);
1904         atomic_set(&fs_info->balance_pause_req, 0);
1905         atomic_set(&fs_info->balance_cancel_req, 0);
1906         fs_info->balance_ctl = NULL;
1907         init_waitqueue_head(&fs_info->balance_wait_q);
1908         atomic_set(&fs_info->reloc_cancel_req, 0);
1909 }
1910
1911 static int btrfs_init_btree_inode(struct super_block *sb)
1912 {
1913         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1914         unsigned long hash = btrfs_inode_hash(BTRFS_BTREE_INODE_OBJECTID,
1915                                               fs_info->tree_root);
1916         struct inode *inode;
1917
1918         inode = new_inode(sb);
1919         if (!inode)
1920                 return -ENOMEM;
1921
1922         btrfs_set_inode_number(BTRFS_I(inode), BTRFS_BTREE_INODE_OBJECTID);
1923         set_nlink(inode, 1);
1924         /*
1925          * we set the i_size on the btree inode to the max possible int.
1926          * the real end of the address space is determined by all of
1927          * the devices in the system
1928          */
1929         inode->i_size = OFFSET_MAX;
1930         inode->i_mapping->a_ops = &btree_aops;
1931         mapping_set_gfp_mask(inode->i_mapping, GFP_NOFS);
1932
1933         extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree,
1934                             IO_TREE_BTREE_INODE_IO);
1935         extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
1936
1937         BTRFS_I(inode)->root = btrfs_grab_root(fs_info->tree_root);
1938         set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
1939         __insert_inode_hash(inode, hash);
1940         fs_info->btree_inode = inode;
1941
1942         return 0;
1943 }
1944
1945 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
1946 {
1947         mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
1948         init_rwsem(&fs_info->dev_replace.rwsem);
1949         init_waitqueue_head(&fs_info->dev_replace.replace_wait);
1950 }
1951
1952 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
1953 {
1954         spin_lock_init(&fs_info->qgroup_lock);
1955         mutex_init(&fs_info->qgroup_ioctl_lock);
1956         fs_info->qgroup_tree = RB_ROOT;
1957         INIT_LIST_HEAD(&fs_info->dirty_qgroups);
1958         fs_info->qgroup_seq = 1;
1959         fs_info->qgroup_ulist = NULL;
1960         fs_info->qgroup_rescan_running = false;
1961         fs_info->qgroup_drop_subtree_thres = BTRFS_QGROUP_DROP_SUBTREE_THRES_DEFAULT;
1962         mutex_init(&fs_info->qgroup_rescan_lock);
1963 }
1964
1965 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info)
1966 {
1967         u32 max_active = fs_info->thread_pool_size;
1968         unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
1969         unsigned int ordered_flags = WQ_MEM_RECLAIM | WQ_FREEZABLE;
1970
1971         fs_info->workers =
1972                 btrfs_alloc_workqueue(fs_info, "worker", flags, max_active, 16);
1973
1974         fs_info->delalloc_workers =
1975                 btrfs_alloc_workqueue(fs_info, "delalloc",
1976                                       flags, max_active, 2);
1977
1978         fs_info->flush_workers =
1979                 btrfs_alloc_workqueue(fs_info, "flush_delalloc",
1980                                       flags, max_active, 0);
1981
1982         fs_info->caching_workers =
1983                 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
1984
1985         fs_info->fixup_workers =
1986                 btrfs_alloc_ordered_workqueue(fs_info, "fixup", ordered_flags);
1987
1988         fs_info->endio_workers =
1989                 alloc_workqueue("btrfs-endio", flags, max_active);
1990         fs_info->endio_meta_workers =
1991                 alloc_workqueue("btrfs-endio-meta", flags, max_active);
1992         fs_info->rmw_workers = alloc_workqueue("btrfs-rmw", flags, max_active);
1993         fs_info->endio_write_workers =
1994                 btrfs_alloc_workqueue(fs_info, "endio-write", flags,
1995                                       max_active, 2);
1996         fs_info->compressed_write_workers =
1997                 alloc_workqueue("btrfs-compressed-write", flags, max_active);
1998         fs_info->endio_freespace_worker =
1999                 btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2000                                       max_active, 0);
2001         fs_info->delayed_workers =
2002                 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2003                                       max_active, 0);
2004         fs_info->qgroup_rescan_workers =
2005                 btrfs_alloc_ordered_workqueue(fs_info, "qgroup-rescan",
2006                                               ordered_flags);
2007         fs_info->discard_ctl.discard_workers =
2008                 alloc_ordered_workqueue("btrfs_discard", WQ_FREEZABLE);
2009
2010         if (!(fs_info->workers &&
2011               fs_info->delalloc_workers && fs_info->flush_workers &&
2012               fs_info->endio_workers && fs_info->endio_meta_workers &&
2013               fs_info->compressed_write_workers &&
2014               fs_info->endio_write_workers &&
2015               fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2016               fs_info->caching_workers && fs_info->fixup_workers &&
2017               fs_info->delayed_workers && fs_info->qgroup_rescan_workers &&
2018               fs_info->discard_ctl.discard_workers)) {
2019                 return -ENOMEM;
2020         }
2021
2022         return 0;
2023 }
2024
2025 static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type)
2026 {
2027         struct crypto_shash *csum_shash;
2028         const char *csum_driver = btrfs_super_csum_driver(csum_type);
2029
2030         csum_shash = crypto_alloc_shash(csum_driver, 0, 0);
2031
2032         if (IS_ERR(csum_shash)) {
2033                 btrfs_err(fs_info, "error allocating %s hash for checksum",
2034                           csum_driver);
2035                 return PTR_ERR(csum_shash);
2036         }
2037
2038         fs_info->csum_shash = csum_shash;
2039
2040         /*
2041          * Check if the checksum implementation is a fast accelerated one.
2042          * As-is this is a bit of a hack and should be replaced once the csum
2043          * implementations provide that information themselves.
2044          */
2045         switch (csum_type) {
2046         case BTRFS_CSUM_TYPE_CRC32:
2047                 if (!strstr(crypto_shash_driver_name(csum_shash), "generic"))
2048                         set_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags);
2049                 break;
2050         case BTRFS_CSUM_TYPE_XXHASH:
2051                 set_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags);
2052                 break;
2053         default:
2054                 break;
2055         }
2056
2057         btrfs_info(fs_info, "using %s (%s) checksum algorithm",
2058                         btrfs_super_csum_name(csum_type),
2059                         crypto_shash_driver_name(csum_shash));
2060         return 0;
2061 }
2062
2063 static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2064                             struct btrfs_fs_devices *fs_devices)
2065 {
2066         int ret;
2067         struct btrfs_tree_parent_check check = { 0 };
2068         struct btrfs_root *log_tree_root;
2069         struct btrfs_super_block *disk_super = fs_info->super_copy;
2070         u64 bytenr = btrfs_super_log_root(disk_super);
2071         int level = btrfs_super_log_root_level(disk_super);
2072
2073         if (fs_devices->rw_devices == 0) {
2074                 btrfs_warn(fs_info, "log replay required on RO media");
2075                 return -EIO;
2076         }
2077
2078         log_tree_root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID,
2079                                          GFP_KERNEL);
2080         if (!log_tree_root)
2081                 return -ENOMEM;
2082
2083         check.level = level;
2084         check.transid = fs_info->generation + 1;
2085         check.owner_root = BTRFS_TREE_LOG_OBJECTID;
2086         log_tree_root->node = read_tree_block(fs_info, bytenr, &check);
2087         if (IS_ERR(log_tree_root->node)) {
2088                 btrfs_warn(fs_info, "failed to read log tree");
2089                 ret = PTR_ERR(log_tree_root->node);
2090                 log_tree_root->node = NULL;
2091                 btrfs_put_root(log_tree_root);
2092                 return ret;
2093         }
2094         if (!extent_buffer_uptodate(log_tree_root->node)) {
2095                 btrfs_err(fs_info, "failed to read log tree");
2096                 btrfs_put_root(log_tree_root);
2097                 return -EIO;
2098         }
2099
2100         /* returns with log_tree_root freed on success */
2101         ret = btrfs_recover_log_trees(log_tree_root);
2102         if (ret) {
2103                 btrfs_handle_fs_error(fs_info, ret,
2104                                       "Failed to recover log tree");
2105                 btrfs_put_root(log_tree_root);
2106                 return ret;
2107         }
2108
2109         if (sb_rdonly(fs_info->sb)) {
2110                 ret = btrfs_commit_super(fs_info);
2111                 if (ret)
2112                         return ret;
2113         }
2114
2115         return 0;
2116 }
2117
2118 static int load_global_roots_objectid(struct btrfs_root *tree_root,
2119                                       struct btrfs_path *path, u64 objectid,
2120                                       const char *name)
2121 {
2122         struct btrfs_fs_info *fs_info = tree_root->fs_info;
2123         struct btrfs_root *root;
2124         u64 max_global_id = 0;
2125         int ret;
2126         struct btrfs_key key = {
2127                 .objectid = objectid,
2128                 .type = BTRFS_ROOT_ITEM_KEY,
2129                 .offset = 0,
2130         };
2131         bool found = false;
2132
2133         /* If we have IGNOREDATACSUMS skip loading these roots. */
2134         if (objectid == BTRFS_CSUM_TREE_OBJECTID &&
2135             btrfs_test_opt(fs_info, IGNOREDATACSUMS)) {
2136                 set_bit(BTRFS_FS_STATE_NO_DATA_CSUMS, &fs_info->fs_state);
2137                 return 0;
2138         }
2139
2140         while (1) {
2141                 ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0);
2142                 if (ret < 0)
2143                         break;
2144
2145                 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2146                         ret = btrfs_next_leaf(tree_root, path);
2147                         if (ret) {
2148                                 if (ret > 0)
2149                                         ret = 0;
2150                                 break;
2151                         }
2152                 }
2153                 ret = 0;
2154
2155                 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2156                 if (key.objectid != objectid)
2157                         break;
2158                 btrfs_release_path(path);
2159
2160                 /*
2161                  * Just worry about this for extent tree, it'll be the same for
2162                  * everybody.
2163                  */
2164                 if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
2165                         max_global_id = max(max_global_id, key.offset);
2166
2167                 found = true;
2168                 root = read_tree_root_path(tree_root, path, &key);
2169                 if (IS_ERR(root)) {
2170                         if (!btrfs_test_opt(fs_info, IGNOREBADROOTS))
2171                                 ret = PTR_ERR(root);
2172                         break;
2173                 }
2174                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2175                 ret = btrfs_global_root_insert(root);
2176                 if (ret) {
2177                         btrfs_put_root(root);
2178                         break;
2179                 }
2180                 key.offset++;
2181         }
2182         btrfs_release_path(path);
2183
2184         if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
2185                 fs_info->nr_global_roots = max_global_id + 1;
2186
2187         if (!found || ret) {
2188                 if (objectid == BTRFS_CSUM_TREE_OBJECTID)
2189                         set_bit(BTRFS_FS_STATE_NO_DATA_CSUMS, &fs_info->fs_state);
2190
2191                 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS))
2192                         ret = ret ? ret : -ENOENT;
2193                 else
2194                         ret = 0;
2195                 btrfs_err(fs_info, "failed to load root %s", name);
2196         }
2197         return ret;
2198 }
2199
2200 static int load_global_roots(struct btrfs_root *tree_root)
2201 {
2202         struct btrfs_path *path;
2203         int ret = 0;
2204
2205         path = btrfs_alloc_path();
2206         if (!path)
2207                 return -ENOMEM;
2208
2209         ret = load_global_roots_objectid(tree_root, path,
2210                                          BTRFS_EXTENT_TREE_OBJECTID, "extent");
2211         if (ret)
2212                 goto out;
2213         ret = load_global_roots_objectid(tree_root, path,
2214                                          BTRFS_CSUM_TREE_OBJECTID, "csum");
2215         if (ret)
2216                 goto out;
2217         if (!btrfs_fs_compat_ro(tree_root->fs_info, FREE_SPACE_TREE))
2218                 goto out;
2219         ret = load_global_roots_objectid(tree_root, path,
2220                                          BTRFS_FREE_SPACE_TREE_OBJECTID,
2221                                          "free space");
2222 out:
2223         btrfs_free_path(path);
2224         return ret;
2225 }
2226
2227 static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
2228 {
2229         struct btrfs_root *tree_root = fs_info->tree_root;
2230         struct btrfs_root *root;
2231         struct btrfs_key location;
2232         int ret;
2233
2234         ASSERT(fs_info->tree_root);
2235
2236         ret = load_global_roots(tree_root);
2237         if (ret)
2238                 return ret;
2239
2240         location.type = BTRFS_ROOT_ITEM_KEY;
2241         location.offset = 0;
2242
2243         if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE)) {
2244                 location.objectid = BTRFS_BLOCK_GROUP_TREE_OBJECTID;
2245                 root = btrfs_read_tree_root(tree_root, &location);
2246                 if (IS_ERR(root)) {
2247                         if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2248                                 ret = PTR_ERR(root);
2249                                 goto out;
2250                         }
2251                 } else {
2252                         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2253                         fs_info->block_group_root = root;
2254                 }
2255         }
2256
2257         location.objectid = BTRFS_DEV_TREE_OBJECTID;
2258         root = btrfs_read_tree_root(tree_root, &location);
2259         if (IS_ERR(root)) {
2260                 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2261                         ret = PTR_ERR(root);
2262                         goto out;
2263                 }
2264         } else {
2265                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2266                 fs_info->dev_root = root;
2267         }
2268         /* Initialize fs_info for all devices in any case */
2269         ret = btrfs_init_devices_late(fs_info);
2270         if (ret)
2271                 goto out;
2272
2273         /*
2274          * This tree can share blocks with some other fs tree during relocation
2275          * and we need a proper setup by btrfs_get_fs_root
2276          */
2277         root = btrfs_get_fs_root(tree_root->fs_info,
2278                                  BTRFS_DATA_RELOC_TREE_OBJECTID, true);
2279         if (IS_ERR(root)) {
2280                 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2281                         ret = PTR_ERR(root);
2282                         goto out;
2283                 }
2284         } else {
2285                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2286                 fs_info->data_reloc_root = root;
2287         }
2288
2289         location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2290         root = btrfs_read_tree_root(tree_root, &location);
2291         if (!IS_ERR(root)) {
2292                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2293                 fs_info->quota_root = root;
2294         }
2295
2296         location.objectid = BTRFS_UUID_TREE_OBJECTID;
2297         root = btrfs_read_tree_root(tree_root, &location);
2298         if (IS_ERR(root)) {
2299                 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2300                         ret = PTR_ERR(root);
2301                         if (ret != -ENOENT)
2302                                 goto out;
2303                 }
2304         } else {
2305                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2306                 fs_info->uuid_root = root;
2307         }
2308
2309         if (btrfs_fs_incompat(fs_info, RAID_STRIPE_TREE)) {
2310                 location.objectid = BTRFS_RAID_STRIPE_TREE_OBJECTID;
2311                 root = btrfs_read_tree_root(tree_root, &location);
2312                 if (IS_ERR(root)) {
2313                         if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2314                                 ret = PTR_ERR(root);
2315                                 goto out;
2316                         }
2317                 } else {
2318                         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2319                         fs_info->stripe_root = root;
2320                 }
2321         }
2322
2323         return 0;
2324 out:
2325         btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2326                    location.objectid, ret);
2327         return ret;
2328 }
2329
2330 /*
2331  * Real super block validation
2332  * NOTE: super csum type and incompat features will not be checked here.
2333  *
2334  * @sb:         super block to check
2335  * @mirror_num: the super block number to check its bytenr:
2336  *              0       the primary (1st) sb
2337  *              1, 2    2nd and 3rd backup copy
2338  *             -1       skip bytenr check
2339  */
2340 int btrfs_validate_super(const struct btrfs_fs_info *fs_info,
2341                          const struct btrfs_super_block *sb, int mirror_num)
2342 {
2343         u64 nodesize = btrfs_super_nodesize(sb);
2344         u64 sectorsize = btrfs_super_sectorsize(sb);
2345         int ret = 0;
2346         const bool ignore_flags = btrfs_test_opt(fs_info, IGNORESUPERFLAGS);
2347
2348         if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2349                 btrfs_err(fs_info, "no valid FS found");
2350                 ret = -EINVAL;
2351         }
2352         if ((btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP)) {
2353                 if (!ignore_flags) {
2354                         btrfs_err(fs_info,
2355                         "unrecognized or unsupported super flag 0x%llx",
2356                                   btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2357                         ret = -EINVAL;
2358                 } else {
2359                         btrfs_info(fs_info,
2360                         "unrecognized or unsupported super flags: 0x%llx, ignored",
2361                                    btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2362                 }
2363         }
2364         if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2365                 btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2366                                 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2367                 ret = -EINVAL;
2368         }
2369         if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2370                 btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2371                                 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2372                 ret = -EINVAL;
2373         }
2374         if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2375                 btrfs_err(fs_info, "log_root level too big: %d >= %d",
2376                                 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2377                 ret = -EINVAL;
2378         }
2379
2380         /*
2381          * Check sectorsize and nodesize first, other check will need it.
2382          * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2383          */
2384         if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
2385             sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2386                 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2387                 ret = -EINVAL;
2388         }
2389
2390         /*
2391          * We only support at most two sectorsizes: 4K and PAGE_SIZE.
2392          *
2393          * We can support 16K sectorsize with 64K page size without problem,
2394          * but such sectorsize/pagesize combination doesn't make much sense.
2395          * 4K will be our future standard, PAGE_SIZE is supported from the very
2396          * beginning.
2397          */
2398         if (sectorsize > PAGE_SIZE || (sectorsize != SZ_4K && sectorsize != PAGE_SIZE)) {
2399                 btrfs_err(fs_info,
2400                         "sectorsize %llu not yet supported for page size %lu",
2401                         sectorsize, PAGE_SIZE);
2402                 ret = -EINVAL;
2403         }
2404
2405         if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2406             nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2407                 btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2408                 ret = -EINVAL;
2409         }
2410         if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2411                 btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2412                           le32_to_cpu(sb->__unused_leafsize), nodesize);
2413                 ret = -EINVAL;
2414         }
2415
2416         /* Root alignment check */
2417         if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2418                 btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2419                            btrfs_super_root(sb));
2420                 ret = -EINVAL;
2421         }
2422         if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2423                 btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2424                            btrfs_super_chunk_root(sb));
2425                 ret = -EINVAL;
2426         }
2427         if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2428                 btrfs_warn(fs_info, "log_root block unaligned: %llu",
2429                            btrfs_super_log_root(sb));
2430                 ret = -EINVAL;
2431         }
2432
2433         if (!fs_info->fs_devices->temp_fsid &&
2434             memcmp(fs_info->fs_devices->fsid, sb->fsid, BTRFS_FSID_SIZE) != 0) {
2435                 btrfs_err(fs_info,
2436                 "superblock fsid doesn't match fsid of fs_devices: %pU != %pU",
2437                           sb->fsid, fs_info->fs_devices->fsid);
2438                 ret = -EINVAL;
2439         }
2440
2441         if (memcmp(fs_info->fs_devices->metadata_uuid, btrfs_sb_fsid_ptr(sb),
2442                    BTRFS_FSID_SIZE) != 0) {
2443                 btrfs_err(fs_info,
2444 "superblock metadata_uuid doesn't match metadata uuid of fs_devices: %pU != %pU",
2445                           btrfs_sb_fsid_ptr(sb), fs_info->fs_devices->metadata_uuid);
2446                 ret = -EINVAL;
2447         }
2448
2449         if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid,
2450                    BTRFS_FSID_SIZE) != 0) {
2451                 btrfs_err(fs_info,
2452                         "dev_item UUID does not match metadata fsid: %pU != %pU",
2453                         fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid);
2454                 ret = -EINVAL;
2455         }
2456
2457         /*
2458          * Artificial requirement for block-group-tree to force newer features
2459          * (free-space-tree, no-holes) so the test matrix is smaller.
2460          */
2461         if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE) &&
2462             (!btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID) ||
2463              !btrfs_fs_incompat(fs_info, NO_HOLES))) {
2464                 btrfs_err(fs_info,
2465                 "block-group-tree feature requires free-space-tree and no-holes");
2466                 ret = -EINVAL;
2467         }
2468
2469         /*
2470          * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2471          * done later
2472          */
2473         if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2474                 btrfs_err(fs_info, "bytes_used is too small %llu",
2475                           btrfs_super_bytes_used(sb));
2476                 ret = -EINVAL;
2477         }
2478         if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2479                 btrfs_err(fs_info, "invalid stripesize %u",
2480                           btrfs_super_stripesize(sb));
2481                 ret = -EINVAL;
2482         }
2483         if (btrfs_super_num_devices(sb) > (1UL << 31))
2484                 btrfs_warn(fs_info, "suspicious number of devices: %llu",
2485                            btrfs_super_num_devices(sb));
2486         if (btrfs_super_num_devices(sb) == 0) {
2487                 btrfs_err(fs_info, "number of devices is 0");
2488                 ret = -EINVAL;
2489         }
2490
2491         if (mirror_num >= 0 &&
2492             btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
2493                 btrfs_err(fs_info, "super offset mismatch %llu != %u",
2494                           btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2495                 ret = -EINVAL;
2496         }
2497
2498         /*
2499          * Obvious sys_chunk_array corruptions, it must hold at least one key
2500          * and one chunk
2501          */
2502         if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2503                 btrfs_err(fs_info, "system chunk array too big %u > %u",
2504                           btrfs_super_sys_array_size(sb),
2505                           BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2506                 ret = -EINVAL;
2507         }
2508         if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2509                         + sizeof(struct btrfs_chunk)) {
2510                 btrfs_err(fs_info, "system chunk array too small %u < %zu",
2511                           btrfs_super_sys_array_size(sb),
2512                           sizeof(struct btrfs_disk_key)
2513                           + sizeof(struct btrfs_chunk));
2514                 ret = -EINVAL;
2515         }
2516
2517         /*
2518          * The generation is a global counter, we'll trust it more than the others
2519          * but it's still possible that it's the one that's wrong.
2520          */
2521         if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2522                 btrfs_warn(fs_info,
2523                         "suspicious: generation < chunk_root_generation: %llu < %llu",
2524                         btrfs_super_generation(sb),
2525                         btrfs_super_chunk_root_generation(sb));
2526         if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2527             && btrfs_super_cache_generation(sb) != (u64)-1)
2528                 btrfs_warn(fs_info,
2529                         "suspicious: generation < cache_generation: %llu < %llu",
2530                         btrfs_super_generation(sb),
2531                         btrfs_super_cache_generation(sb));
2532
2533         return ret;
2534 }
2535
2536 /*
2537  * Validation of super block at mount time.
2538  * Some checks already done early at mount time, like csum type and incompat
2539  * flags will be skipped.
2540  */
2541 static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2542 {
2543         return btrfs_validate_super(fs_info, fs_info->super_copy, 0);
2544 }
2545
2546 /*
2547  * Validation of super block at write time.
2548  * Some checks like bytenr check will be skipped as their values will be
2549  * overwritten soon.
2550  * Extra checks like csum type and incompat flags will be done here.
2551  */
2552 static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2553                                       struct btrfs_super_block *sb)
2554 {
2555         int ret;
2556
2557         ret = btrfs_validate_super(fs_info, sb, -1);
2558         if (ret < 0)
2559                 goto out;
2560         if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) {
2561                 ret = -EUCLEAN;
2562                 btrfs_err(fs_info, "invalid csum type, has %u want %u",
2563                           btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2564                 goto out;
2565         }
2566         if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
2567                 ret = -EUCLEAN;
2568                 btrfs_err(fs_info,
2569                 "invalid incompat flags, has 0x%llx valid mask 0x%llx",
2570                           btrfs_super_incompat_flags(sb),
2571                           (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2572                 goto out;
2573         }
2574 out:
2575         if (ret < 0)
2576                 btrfs_err(fs_info,
2577                 "super block corruption detected before writing it to disk");
2578         return ret;
2579 }
2580
2581 static int load_super_root(struct btrfs_root *root, u64 bytenr, u64 gen, int level)
2582 {
2583         struct btrfs_tree_parent_check check = {
2584                 .level = level,
2585                 .transid = gen,
2586                 .owner_root = btrfs_root_id(root)
2587         };
2588         int ret = 0;
2589
2590         root->node = read_tree_block(root->fs_info, bytenr, &check);
2591         if (IS_ERR(root->node)) {
2592                 ret = PTR_ERR(root->node);
2593                 root->node = NULL;
2594                 return ret;
2595         }
2596         if (!extent_buffer_uptodate(root->node)) {
2597                 free_extent_buffer(root->node);
2598                 root->node = NULL;
2599                 return -EIO;
2600         }
2601
2602         btrfs_set_root_node(&root->root_item, root->node);
2603         root->commit_root = btrfs_root_node(root);
2604         btrfs_set_root_refs(&root->root_item, 1);
2605         return ret;
2606 }
2607
2608 static int load_important_roots(struct btrfs_fs_info *fs_info)
2609 {
2610         struct btrfs_super_block *sb = fs_info->super_copy;
2611         u64 gen, bytenr;
2612         int level, ret;
2613
2614         bytenr = btrfs_super_root(sb);
2615         gen = btrfs_super_generation(sb);
2616         level = btrfs_super_root_level(sb);
2617         ret = load_super_root(fs_info->tree_root, bytenr, gen, level);
2618         if (ret) {
2619                 btrfs_warn(fs_info, "couldn't read tree root");
2620                 return ret;
2621         }
2622         return 0;
2623 }
2624
2625 static int __cold init_tree_roots(struct btrfs_fs_info *fs_info)
2626 {
2627         int backup_index = find_newest_super_backup(fs_info);
2628         struct btrfs_super_block *sb = fs_info->super_copy;
2629         struct btrfs_root *tree_root = fs_info->tree_root;
2630         bool handle_error = false;
2631         int ret = 0;
2632         int i;
2633
2634         for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
2635                 if (handle_error) {
2636                         if (!IS_ERR(tree_root->node))
2637                                 free_extent_buffer(tree_root->node);
2638                         tree_root->node = NULL;
2639
2640                         if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
2641                                 break;
2642
2643                         free_root_pointers(fs_info, 0);
2644
2645                         /*
2646                          * Don't use the log in recovery mode, it won't be
2647                          * valid
2648                          */
2649                         btrfs_set_super_log_root(sb, 0);
2650
2651                         btrfs_warn(fs_info, "try to load backup roots slot %d", i);
2652                         ret = read_backup_root(fs_info, i);
2653                         backup_index = ret;
2654                         if (ret < 0)
2655                                 return ret;
2656                 }
2657
2658                 ret = load_important_roots(fs_info);
2659                 if (ret) {
2660                         handle_error = true;
2661                         continue;
2662                 }
2663
2664                 /*
2665                  * No need to hold btrfs_root::objectid_mutex since the fs
2666                  * hasn't been fully initialised and we are the only user
2667                  */
2668                 ret = btrfs_init_root_free_objectid(tree_root);
2669                 if (ret < 0) {
2670                         handle_error = true;
2671                         continue;
2672                 }
2673
2674                 ASSERT(tree_root->free_objectid <= BTRFS_LAST_FREE_OBJECTID);
2675
2676                 ret = btrfs_read_roots(fs_info);
2677                 if (ret < 0) {
2678                         handle_error = true;
2679                         continue;
2680                 }
2681
2682                 /* All successful */
2683                 fs_info->generation = btrfs_header_generation(tree_root->node);
2684                 btrfs_set_last_trans_committed(fs_info, fs_info->generation);
2685                 fs_info->last_reloc_trans = 0;
2686
2687                 /* Always begin writing backup roots after the one being used */
2688                 if (backup_index < 0) {
2689                         fs_info->backup_root_index = 0;
2690                 } else {
2691                         fs_info->backup_root_index = backup_index + 1;
2692                         fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS;
2693                 }
2694                 break;
2695         }
2696
2697         return ret;
2698 }
2699
2700 void btrfs_init_fs_info(struct btrfs_fs_info *fs_info)
2701 {
2702         INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2703         INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2704         INIT_LIST_HEAD(&fs_info->trans_list);
2705         INIT_LIST_HEAD(&fs_info->dead_roots);
2706         INIT_LIST_HEAD(&fs_info->delayed_iputs);
2707         INIT_LIST_HEAD(&fs_info->delalloc_roots);
2708         INIT_LIST_HEAD(&fs_info->caching_block_groups);
2709         spin_lock_init(&fs_info->delalloc_root_lock);
2710         spin_lock_init(&fs_info->trans_lock);
2711         spin_lock_init(&fs_info->fs_roots_radix_lock);
2712         spin_lock_init(&fs_info->delayed_iput_lock);
2713         spin_lock_init(&fs_info->defrag_inodes_lock);
2714         spin_lock_init(&fs_info->super_lock);
2715         spin_lock_init(&fs_info->buffer_lock);
2716         spin_lock_init(&fs_info->unused_bgs_lock);
2717         spin_lock_init(&fs_info->treelog_bg_lock);
2718         spin_lock_init(&fs_info->zone_active_bgs_lock);
2719         spin_lock_init(&fs_info->relocation_bg_lock);
2720         rwlock_init(&fs_info->tree_mod_log_lock);
2721         rwlock_init(&fs_info->global_root_lock);
2722         mutex_init(&fs_info->unused_bg_unpin_mutex);
2723         mutex_init(&fs_info->reclaim_bgs_lock);
2724         mutex_init(&fs_info->reloc_mutex);
2725         mutex_init(&fs_info->delalloc_root_mutex);
2726         mutex_init(&fs_info->zoned_meta_io_lock);
2727         mutex_init(&fs_info->zoned_data_reloc_io_lock);
2728         seqlock_init(&fs_info->profiles_lock);
2729
2730         btrfs_lockdep_init_map(fs_info, btrfs_trans_num_writers);
2731         btrfs_lockdep_init_map(fs_info, btrfs_trans_num_extwriters);
2732         btrfs_lockdep_init_map(fs_info, btrfs_trans_pending_ordered);
2733         btrfs_lockdep_init_map(fs_info, btrfs_ordered_extent);
2734         btrfs_state_lockdep_init_map(fs_info, btrfs_trans_commit_prep,
2735                                      BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
2736         btrfs_state_lockdep_init_map(fs_info, btrfs_trans_unblocked,
2737                                      BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2738         btrfs_state_lockdep_init_map(fs_info, btrfs_trans_super_committed,
2739                                      BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2740         btrfs_state_lockdep_init_map(fs_info, btrfs_trans_completed,
2741                                      BTRFS_LOCKDEP_TRANS_COMPLETED);
2742
2743         INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2744         INIT_LIST_HEAD(&fs_info->space_info);
2745         INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2746         INIT_LIST_HEAD(&fs_info->unused_bgs);
2747         INIT_LIST_HEAD(&fs_info->reclaim_bgs);
2748         INIT_LIST_HEAD(&fs_info->zone_active_bgs);
2749 #ifdef CONFIG_BTRFS_DEBUG
2750         INIT_LIST_HEAD(&fs_info->allocated_roots);
2751         INIT_LIST_HEAD(&fs_info->allocated_ebs);
2752         spin_lock_init(&fs_info->eb_leak_lock);
2753 #endif
2754         fs_info->mapping_tree = RB_ROOT_CACHED;
2755         rwlock_init(&fs_info->mapping_tree_lock);
2756         btrfs_init_block_rsv(&fs_info->global_block_rsv,
2757                              BTRFS_BLOCK_RSV_GLOBAL);
2758         btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2759         btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2760         btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2761         btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2762                              BTRFS_BLOCK_RSV_DELOPS);
2763         btrfs_init_block_rsv(&fs_info->delayed_refs_rsv,
2764                              BTRFS_BLOCK_RSV_DELREFS);
2765
2766         atomic_set(&fs_info->async_delalloc_pages, 0);
2767         atomic_set(&fs_info->defrag_running, 0);
2768         atomic_set(&fs_info->nr_delayed_iputs, 0);
2769         atomic64_set(&fs_info->tree_mod_seq, 0);
2770         fs_info->global_root_tree = RB_ROOT;
2771         fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2772         fs_info->metadata_ratio = 0;
2773         fs_info->defrag_inodes = RB_ROOT;
2774         atomic64_set(&fs_info->free_chunk_space, 0);
2775         fs_info->tree_mod_log = RB_ROOT;
2776         fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2777         btrfs_init_ref_verify(fs_info);
2778
2779         fs_info->thread_pool_size = min_t(unsigned long,
2780                                           num_online_cpus() + 2, 8);
2781
2782         INIT_LIST_HEAD(&fs_info->ordered_roots);
2783         spin_lock_init(&fs_info->ordered_root_lock);
2784
2785         btrfs_init_scrub(fs_info);
2786         btrfs_init_balance(fs_info);
2787         btrfs_init_async_reclaim_work(fs_info);
2788         btrfs_init_extent_map_shrinker_work(fs_info);
2789
2790         rwlock_init(&fs_info->block_group_cache_lock);
2791         fs_info->block_group_cache_tree = RB_ROOT_CACHED;
2792
2793         extent_io_tree_init(fs_info, &fs_info->excluded_extents,
2794                             IO_TREE_FS_EXCLUDED_EXTENTS);
2795
2796         mutex_init(&fs_info->ordered_operations_mutex);
2797         mutex_init(&fs_info->tree_log_mutex);
2798         mutex_init(&fs_info->chunk_mutex);
2799         mutex_init(&fs_info->transaction_kthread_mutex);
2800         mutex_init(&fs_info->cleaner_mutex);
2801         mutex_init(&fs_info->ro_block_group_mutex);
2802         init_rwsem(&fs_info->commit_root_sem);
2803         init_rwsem(&fs_info->cleanup_work_sem);
2804         init_rwsem(&fs_info->subvol_sem);
2805         sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2806
2807         btrfs_init_dev_replace_locks(fs_info);
2808         btrfs_init_qgroup(fs_info);
2809         btrfs_discard_init(fs_info);
2810
2811         btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2812         btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2813
2814         init_waitqueue_head(&fs_info->transaction_throttle);
2815         init_waitqueue_head(&fs_info->transaction_wait);
2816         init_waitqueue_head(&fs_info->transaction_blocked_wait);
2817         init_waitqueue_head(&fs_info->async_submit_wait);
2818         init_waitqueue_head(&fs_info->delayed_iputs_wait);
2819
2820         /* Usable values until the real ones are cached from the superblock */
2821         fs_info->nodesize = 4096;
2822         fs_info->sectorsize = 4096;
2823         fs_info->sectorsize_bits = ilog2(4096);
2824         fs_info->stripesize = 4096;
2825
2826         /* Default compress algorithm when user does -o compress */
2827         fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2828
2829         fs_info->max_extent_size = BTRFS_MAX_EXTENT_SIZE;
2830
2831         spin_lock_init(&fs_info->swapfile_pins_lock);
2832         fs_info->swapfile_pins = RB_ROOT;
2833
2834         fs_info->bg_reclaim_threshold = BTRFS_DEFAULT_RECLAIM_THRESH;
2835         INIT_WORK(&fs_info->reclaim_bgs_work, btrfs_reclaim_bgs_work);
2836 }
2837
2838 static int init_mount_fs_info(struct btrfs_fs_info *fs_info, struct super_block *sb)
2839 {
2840         int ret;
2841
2842         fs_info->sb = sb;
2843         /* Temporary fixed values for block size until we read the superblock. */
2844         sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
2845         sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
2846
2847         ret = percpu_counter_init(&fs_info->ordered_bytes, 0, GFP_KERNEL);
2848         if (ret)
2849                 return ret;
2850
2851         ret = percpu_counter_init(&fs_info->evictable_extent_maps, 0, GFP_KERNEL);
2852         if (ret)
2853                 return ret;
2854
2855         ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2856         if (ret)
2857                 return ret;
2858
2859         fs_info->dirty_metadata_batch = PAGE_SIZE *
2860                                         (1 + ilog2(nr_cpu_ids));
2861
2862         ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2863         if (ret)
2864                 return ret;
2865
2866         ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
2867                         GFP_KERNEL);
2868         if (ret)
2869                 return ret;
2870
2871         fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2872                                         GFP_KERNEL);
2873         if (!fs_info->delayed_root)
2874                 return -ENOMEM;
2875         btrfs_init_delayed_root(fs_info->delayed_root);
2876
2877         if (sb_rdonly(sb))
2878                 set_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state);
2879         if (btrfs_test_opt(fs_info, IGNOREMETACSUMS))
2880                 set_bit(BTRFS_FS_STATE_SKIP_META_CSUMS, &fs_info->fs_state);
2881
2882         return btrfs_alloc_stripe_hash_table(fs_info);
2883 }
2884
2885 static int btrfs_uuid_rescan_kthread(void *data)
2886 {
2887         struct btrfs_fs_info *fs_info = data;
2888         int ret;
2889
2890         /*
2891          * 1st step is to iterate through the existing UUID tree and
2892          * to delete all entries that contain outdated data.
2893          * 2nd step is to add all missing entries to the UUID tree.
2894          */
2895         ret = btrfs_uuid_tree_iterate(fs_info);
2896         if (ret < 0) {
2897                 if (ret != -EINTR)
2898                         btrfs_warn(fs_info, "iterating uuid_tree failed %d",
2899                                    ret);
2900                 up(&fs_info->uuid_tree_rescan_sem);
2901                 return ret;
2902         }
2903         return btrfs_uuid_scan_kthread(data);
2904 }
2905
2906 static int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
2907 {
2908         struct task_struct *task;
2909
2910         down(&fs_info->uuid_tree_rescan_sem);
2911         task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
2912         if (IS_ERR(task)) {
2913                 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
2914                 btrfs_warn(fs_info, "failed to start uuid_rescan task");
2915                 up(&fs_info->uuid_tree_rescan_sem);
2916                 return PTR_ERR(task);
2917         }
2918
2919         return 0;
2920 }
2921
2922 static int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
2923 {
2924         u64 root_objectid = 0;
2925         struct btrfs_root *gang[8];
2926         int ret = 0;
2927
2928         while (1) {
2929                 unsigned int found;
2930
2931                 spin_lock(&fs_info->fs_roots_radix_lock);
2932                 found = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2933                                              (void **)gang, root_objectid,
2934                                              ARRAY_SIZE(gang));
2935                 if (!found) {
2936                         spin_unlock(&fs_info->fs_roots_radix_lock);
2937                         break;
2938                 }
2939                 root_objectid = btrfs_root_id(gang[found - 1]) + 1;
2940
2941                 for (int i = 0; i < found; i++) {
2942                         /* Avoid to grab roots in dead_roots. */
2943                         if (btrfs_root_refs(&gang[i]->root_item) == 0) {
2944                                 gang[i] = NULL;
2945                                 continue;
2946                         }
2947                         /* Grab all the search result for later use. */
2948                         gang[i] = btrfs_grab_root(gang[i]);
2949                 }
2950                 spin_unlock(&fs_info->fs_roots_radix_lock);
2951
2952                 for (int i = 0; i < found; i++) {
2953                         if (!gang[i])
2954                                 continue;
2955                         root_objectid = btrfs_root_id(gang[i]);
2956                         /*
2957                          * Continue to release the remaining roots after the first
2958                          * error without cleanup and preserve the first error
2959                          * for the return.
2960                          */
2961                         if (!ret)
2962                                 ret = btrfs_orphan_cleanup(gang[i]);
2963                         btrfs_put_root(gang[i]);
2964                 }
2965                 if (ret)
2966                         break;
2967
2968                 root_objectid++;
2969         }
2970         return ret;
2971 }
2972
2973 /*
2974  * Mounting logic specific to read-write file systems. Shared by open_ctree
2975  * and btrfs_remount when remounting from read-only to read-write.
2976  */
2977 int btrfs_start_pre_rw_mount(struct btrfs_fs_info *fs_info)
2978 {
2979         int ret;
2980         const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE);
2981         bool rebuild_free_space_tree = false;
2982
2983         if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
2984             btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2985                 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))
2986                         btrfs_warn(fs_info,
2987                                    "'clear_cache' option is ignored with extent tree v2");
2988                 else
2989                         rebuild_free_space_tree = true;
2990         } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
2991                    !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
2992                 btrfs_warn(fs_info, "free space tree is invalid");
2993                 rebuild_free_space_tree = true;
2994         }
2995
2996         if (rebuild_free_space_tree) {
2997                 btrfs_info(fs_info, "rebuilding free space tree");
2998                 ret = btrfs_rebuild_free_space_tree(fs_info);
2999                 if (ret) {
3000                         btrfs_warn(fs_info,
3001                                    "failed to rebuild free space tree: %d", ret);
3002                         goto out;
3003                 }
3004         }
3005
3006         if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3007             !btrfs_test_opt(fs_info, FREE_SPACE_TREE)) {
3008                 btrfs_info(fs_info, "disabling free space tree");
3009                 ret = btrfs_delete_free_space_tree(fs_info);
3010                 if (ret) {
3011                         btrfs_warn(fs_info,
3012                                    "failed to disable free space tree: %d", ret);
3013                         goto out;
3014                 }
3015         }
3016
3017         /*
3018          * btrfs_find_orphan_roots() is responsible for finding all the dead
3019          * roots (with 0 refs), flag them with BTRFS_ROOT_DEAD_TREE and load
3020          * them into the fs_info->fs_roots_radix tree. This must be done before
3021          * calling btrfs_orphan_cleanup() on the tree root. If we don't do it
3022          * first, then btrfs_orphan_cleanup() will delete a dead root's orphan
3023          * item before the root's tree is deleted - this means that if we unmount
3024          * or crash before the deletion completes, on the next mount we will not
3025          * delete what remains of the tree because the orphan item does not
3026          * exists anymore, which is what tells us we have a pending deletion.
3027          */
3028         ret = btrfs_find_orphan_roots(fs_info);
3029         if (ret)
3030                 goto out;
3031
3032         ret = btrfs_cleanup_fs_roots(fs_info);
3033         if (ret)
3034                 goto out;
3035
3036         down_read(&fs_info->cleanup_work_sem);
3037         if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3038             (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3039                 up_read(&fs_info->cleanup_work_sem);
3040                 goto out;
3041         }
3042         up_read(&fs_info->cleanup_work_sem);
3043
3044         mutex_lock(&fs_info->cleaner_mutex);
3045         ret = btrfs_recover_relocation(fs_info);
3046         mutex_unlock(&fs_info->cleaner_mutex);
3047         if (ret < 0) {
3048                 btrfs_warn(fs_info, "failed to recover relocation: %d", ret);
3049                 goto out;
3050         }
3051
3052         if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
3053             !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3054                 btrfs_info(fs_info, "creating free space tree");
3055                 ret = btrfs_create_free_space_tree(fs_info);
3056                 if (ret) {
3057                         btrfs_warn(fs_info,
3058                                 "failed to create free space tree: %d", ret);
3059                         goto out;
3060                 }
3061         }
3062
3063         if (cache_opt != btrfs_free_space_cache_v1_active(fs_info)) {
3064                 ret = btrfs_set_free_space_cache_v1_active(fs_info, cache_opt);
3065                 if (ret)
3066                         goto out;
3067         }
3068
3069         ret = btrfs_resume_balance_async(fs_info);
3070         if (ret)
3071                 goto out;
3072
3073         ret = btrfs_resume_dev_replace_async(fs_info);
3074         if (ret) {
3075                 btrfs_warn(fs_info, "failed to resume dev_replace");
3076                 goto out;
3077         }
3078
3079         btrfs_qgroup_rescan_resume(fs_info);
3080
3081         if (!fs_info->uuid_root) {
3082                 btrfs_info(fs_info, "creating UUID tree");
3083                 ret = btrfs_create_uuid_tree(fs_info);
3084                 if (ret) {
3085                         btrfs_warn(fs_info,
3086                                    "failed to create the UUID tree %d", ret);
3087                         goto out;
3088                 }
3089         }
3090
3091 out:
3092         return ret;
3093 }
3094
3095 /*
3096  * Do various sanity and dependency checks of different features.
3097  *
3098  * @is_rw_mount:        If the mount is read-write.
3099  *
3100  * This is the place for less strict checks (like for subpage or artificial
3101  * feature dependencies).
3102  *
3103  * For strict checks or possible corruption detection, see
3104  * btrfs_validate_super().
3105  *
3106  * This should be called after btrfs_parse_options(), as some mount options
3107  * (space cache related) can modify on-disk format like free space tree and
3108  * screw up certain feature dependencies.
3109  */
3110 int btrfs_check_features(struct btrfs_fs_info *fs_info, bool is_rw_mount)
3111 {
3112         struct btrfs_super_block *disk_super = fs_info->super_copy;
3113         u64 incompat = btrfs_super_incompat_flags(disk_super);
3114         const u64 compat_ro = btrfs_super_compat_ro_flags(disk_super);
3115         const u64 compat_ro_unsupp = (compat_ro & ~BTRFS_FEATURE_COMPAT_RO_SUPP);
3116
3117         if (incompat & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
3118                 btrfs_err(fs_info,
3119                 "cannot mount because of unknown incompat features (0x%llx)",
3120                     incompat);
3121                 return -EINVAL;
3122         }
3123
3124         /* Runtime limitation for mixed block groups. */
3125         if ((incompat & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
3126             (fs_info->sectorsize != fs_info->nodesize)) {
3127                 btrfs_err(fs_info,
3128 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
3129                         fs_info->nodesize, fs_info->sectorsize);
3130                 return -EINVAL;
3131         }
3132
3133         /* Mixed backref is an always-enabled feature. */
3134         incompat |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
3135
3136         /* Set compression related flags just in case. */
3137         if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
3138                 incompat |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
3139         else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
3140                 incompat |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
3141
3142         /*
3143          * An ancient flag, which should really be marked deprecated.
3144          * Such runtime limitation doesn't really need a incompat flag.
3145          */
3146         if (btrfs_super_nodesize(disk_super) > PAGE_SIZE)
3147                 incompat |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
3148
3149         if (compat_ro_unsupp && is_rw_mount) {
3150                 btrfs_err(fs_info,
3151         "cannot mount read-write because of unknown compat_ro features (0x%llx)",
3152                        compat_ro);
3153                 return -EINVAL;
3154         }
3155
3156         /*
3157          * We have unsupported RO compat features, although RO mounted, we
3158          * should not cause any metadata writes, including log replay.
3159          * Or we could screw up whatever the new feature requires.
3160          */
3161         if (compat_ro_unsupp && btrfs_super_log_root(disk_super) &&
3162             !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3163                 btrfs_err(fs_info,
3164 "cannot replay dirty log with unsupported compat_ro features (0x%llx), try rescue=nologreplay",
3165                           compat_ro);
3166                 return -EINVAL;
3167         }
3168
3169         /*
3170          * Artificial limitations for block group tree, to force
3171          * block-group-tree to rely on no-holes and free-space-tree.
3172          */
3173         if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE) &&
3174             (!btrfs_fs_incompat(fs_info, NO_HOLES) ||
3175              !btrfs_test_opt(fs_info, FREE_SPACE_TREE))) {
3176                 btrfs_err(fs_info,
3177 "block-group-tree feature requires no-holes and free-space-tree features");
3178                 return -EINVAL;
3179         }
3180
3181         /*
3182          * Subpage runtime limitation on v1 cache.
3183          *
3184          * V1 space cache still has some hard codeed PAGE_SIZE usage, while
3185          * we're already defaulting to v2 cache, no need to bother v1 as it's
3186          * going to be deprecated anyway.
3187          */
3188         if (fs_info->sectorsize < PAGE_SIZE && btrfs_test_opt(fs_info, SPACE_CACHE)) {
3189                 btrfs_warn(fs_info,
3190         "v1 space cache is not supported for page size %lu with sectorsize %u",
3191                            PAGE_SIZE, fs_info->sectorsize);
3192                 return -EINVAL;
3193         }
3194
3195         /* This can be called by remount, we need to protect the super block. */
3196         spin_lock(&fs_info->super_lock);
3197         btrfs_set_super_incompat_flags(disk_super, incompat);
3198         spin_unlock(&fs_info->super_lock);
3199
3200         return 0;
3201 }
3202
3203 int __cold open_ctree(struct super_block *sb, struct btrfs_fs_devices *fs_devices)
3204 {
3205         u32 sectorsize;
3206         u32 nodesize;
3207         u32 stripesize;
3208         u64 generation;
3209         u16 csum_type;
3210         struct btrfs_super_block *disk_super;
3211         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
3212         struct btrfs_root *tree_root;
3213         struct btrfs_root *chunk_root;
3214         int ret;
3215         int level;
3216
3217         ret = init_mount_fs_info(fs_info, sb);
3218         if (ret)
3219                 goto fail;
3220
3221         /* These need to be init'ed before we start creating inodes and such. */
3222         tree_root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID,
3223                                      GFP_KERNEL);
3224         fs_info->tree_root = tree_root;
3225         chunk_root = btrfs_alloc_root(fs_info, BTRFS_CHUNK_TREE_OBJECTID,
3226                                       GFP_KERNEL);
3227         fs_info->chunk_root = chunk_root;
3228         if (!tree_root || !chunk_root) {
3229                 ret = -ENOMEM;
3230                 goto fail;
3231         }
3232
3233         ret = btrfs_init_btree_inode(sb);
3234         if (ret)
3235                 goto fail;
3236
3237         invalidate_bdev(fs_devices->latest_dev->bdev);
3238
3239         /*
3240          * Read super block and check the signature bytes only
3241          */
3242         disk_super = btrfs_read_dev_super(fs_devices->latest_dev->bdev);
3243         if (IS_ERR(disk_super)) {
3244                 ret = PTR_ERR(disk_super);
3245                 goto fail_alloc;
3246         }
3247
3248         btrfs_info(fs_info, "first mount of filesystem %pU", disk_super->fsid);
3249         /*
3250          * Verify the type first, if that or the checksum value are
3251          * corrupted, we'll find out
3252          */
3253         csum_type = btrfs_super_csum_type(disk_super);
3254         if (!btrfs_supported_super_csum(csum_type)) {
3255                 btrfs_err(fs_info, "unsupported checksum algorithm: %u",
3256                           csum_type);
3257                 ret = -EINVAL;
3258                 btrfs_release_disk_super(disk_super);
3259                 goto fail_alloc;
3260         }
3261
3262         fs_info->csum_size = btrfs_super_csum_size(disk_super);
3263
3264         ret = btrfs_init_csum_hash(fs_info, csum_type);
3265         if (ret) {
3266                 btrfs_release_disk_super(disk_super);
3267                 goto fail_alloc;
3268         }
3269
3270         /*
3271          * We want to check superblock checksum, the type is stored inside.
3272          * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
3273          */
3274         if (btrfs_check_super_csum(fs_info, disk_super)) {
3275                 btrfs_err(fs_info, "superblock checksum mismatch");
3276                 ret = -EINVAL;
3277                 btrfs_release_disk_super(disk_super);
3278                 goto fail_alloc;
3279         }
3280
3281         /*
3282          * super_copy is zeroed at allocation time and we never touch the
3283          * following bytes up to INFO_SIZE, the checksum is calculated from
3284          * the whole block of INFO_SIZE
3285          */
3286         memcpy(fs_info->super_copy, disk_super, sizeof(*fs_info->super_copy));
3287         btrfs_release_disk_super(disk_super);
3288
3289         disk_super = fs_info->super_copy;
3290
3291         memcpy(fs_info->super_for_commit, fs_info->super_copy,
3292                sizeof(*fs_info->super_for_commit));
3293
3294         ret = btrfs_validate_mount_super(fs_info);
3295         if (ret) {
3296                 btrfs_err(fs_info, "superblock contains fatal errors");
3297                 ret = -EINVAL;
3298                 goto fail_alloc;
3299         }
3300
3301         if (!btrfs_super_root(disk_super)) {
3302                 btrfs_err(fs_info, "invalid superblock tree root bytenr");
3303                 ret = -EINVAL;
3304                 goto fail_alloc;
3305         }
3306
3307         /* check FS state, whether FS is broken. */
3308         if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
3309                 WRITE_ONCE(fs_info->fs_error, -EUCLEAN);
3310
3311         /* Set up fs_info before parsing mount options */
3312         nodesize = btrfs_super_nodesize(disk_super);
3313         sectorsize = btrfs_super_sectorsize(disk_super);
3314         stripesize = sectorsize;
3315         fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
3316         fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
3317
3318         fs_info->nodesize = nodesize;
3319         fs_info->sectorsize = sectorsize;
3320         fs_info->sectorsize_bits = ilog2(sectorsize);
3321         fs_info->sectors_per_page = (PAGE_SIZE >> fs_info->sectorsize_bits);
3322         fs_info->csums_per_leaf = BTRFS_MAX_ITEM_SIZE(fs_info) / fs_info->csum_size;
3323         fs_info->stripesize = stripesize;
3324
3325         /*
3326          * Handle the space caching options appropriately now that we have the
3327          * super block loaded and validated.
3328          */
3329         btrfs_set_free_space_cache_settings(fs_info);
3330
3331         if (!btrfs_check_options(fs_info, &fs_info->mount_opt, sb->s_flags)) {
3332                 ret = -EINVAL;
3333                 goto fail_alloc;
3334         }
3335
3336         ret = btrfs_check_features(fs_info, !sb_rdonly(sb));
3337         if (ret < 0)
3338                 goto fail_alloc;
3339
3340         /*
3341          * At this point our mount options are validated, if we set ->max_inline
3342          * to something non-standard make sure we truncate it to sectorsize.
3343          */
3344         fs_info->max_inline = min_t(u64, fs_info->max_inline, fs_info->sectorsize);
3345
3346         if (sectorsize < PAGE_SIZE)
3347                 btrfs_warn(fs_info,
3348                 "read-write for sector size %u with page size %lu is experimental",
3349                            sectorsize, PAGE_SIZE);
3350
3351         ret = btrfs_init_workqueues(fs_info);
3352         if (ret)
3353                 goto fail_sb_buffer;
3354
3355         sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
3356         sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
3357
3358         /* Update the values for the current filesystem. */
3359         sb->s_blocksize = sectorsize;
3360         sb->s_blocksize_bits = blksize_bits(sectorsize);
3361         memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE);
3362
3363         mutex_lock(&fs_info->chunk_mutex);
3364         ret = btrfs_read_sys_array(fs_info);
3365         mutex_unlock(&fs_info->chunk_mutex);
3366         if (ret) {
3367                 btrfs_err(fs_info, "failed to read the system array: %d", ret);
3368                 goto fail_sb_buffer;
3369         }
3370
3371         generation = btrfs_super_chunk_root_generation(disk_super);
3372         level = btrfs_super_chunk_root_level(disk_super);
3373         ret = load_super_root(chunk_root, btrfs_super_chunk_root(disk_super),
3374                               generation, level);
3375         if (ret) {
3376                 btrfs_err(fs_info, "failed to read chunk root");
3377                 goto fail_tree_roots;
3378         }
3379
3380         read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
3381                            offsetof(struct btrfs_header, chunk_tree_uuid),
3382                            BTRFS_UUID_SIZE);
3383
3384         ret = btrfs_read_chunk_tree(fs_info);
3385         if (ret) {
3386                 btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
3387                 goto fail_tree_roots;
3388         }
3389
3390         /*
3391          * At this point we know all the devices that make this filesystem,
3392          * including the seed devices but we don't know yet if the replace
3393          * target is required. So free devices that are not part of this
3394          * filesystem but skip the replace target device which is checked
3395          * below in btrfs_init_dev_replace().
3396          */
3397         btrfs_free_extra_devids(fs_devices);
3398         if (!fs_devices->latest_dev->bdev) {
3399                 btrfs_err(fs_info, "failed to read devices");
3400                 ret = -EIO;
3401                 goto fail_tree_roots;
3402         }
3403
3404         ret = init_tree_roots(fs_info);
3405         if (ret)
3406                 goto fail_tree_roots;
3407
3408         /*
3409          * Get zone type information of zoned block devices. This will also
3410          * handle emulation of a zoned filesystem if a regular device has the
3411          * zoned incompat feature flag set.
3412          */
3413         ret = btrfs_get_dev_zone_info_all_devices(fs_info);
3414         if (ret) {
3415                 btrfs_err(fs_info,
3416                           "zoned: failed to read device zone info: %d", ret);
3417                 goto fail_block_groups;
3418         }
3419
3420         /*
3421          * If we have a uuid root and we're not being told to rescan we need to
3422          * check the generation here so we can set the
3423          * BTRFS_FS_UPDATE_UUID_TREE_GEN bit.  Otherwise we could commit the
3424          * transaction during a balance or the log replay without updating the
3425          * uuid generation, and then if we crash we would rescan the uuid tree,
3426          * even though it was perfectly fine.
3427          */
3428         if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) &&
3429             fs_info->generation == btrfs_super_uuid_tree_generation(disk_super))
3430                 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3431
3432         ret = btrfs_verify_dev_extents(fs_info);
3433         if (ret) {
3434                 btrfs_err(fs_info,
3435                           "failed to verify dev extents against chunks: %d",
3436                           ret);
3437                 goto fail_block_groups;
3438         }
3439         ret = btrfs_recover_balance(fs_info);
3440         if (ret) {
3441                 btrfs_err(fs_info, "failed to recover balance: %d", ret);
3442                 goto fail_block_groups;
3443         }
3444
3445         ret = btrfs_init_dev_stats(fs_info);
3446         if (ret) {
3447                 btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
3448                 goto fail_block_groups;
3449         }
3450
3451         ret = btrfs_init_dev_replace(fs_info);
3452         if (ret) {
3453                 btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
3454                 goto fail_block_groups;
3455         }
3456
3457         ret = btrfs_check_zoned_mode(fs_info);
3458         if (ret) {
3459                 btrfs_err(fs_info, "failed to initialize zoned mode: %d",
3460                           ret);
3461                 goto fail_block_groups;
3462         }
3463
3464         ret = btrfs_sysfs_add_fsid(fs_devices);
3465         if (ret) {
3466                 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3467                                 ret);
3468                 goto fail_block_groups;
3469         }
3470
3471         ret = btrfs_sysfs_add_mounted(fs_info);
3472         if (ret) {
3473                 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
3474                 goto fail_fsdev_sysfs;
3475         }
3476
3477         ret = btrfs_init_space_info(fs_info);
3478         if (ret) {
3479                 btrfs_err(fs_info, "failed to initialize space info: %d", ret);
3480                 goto fail_sysfs;
3481         }
3482
3483         ret = btrfs_read_block_groups(fs_info);
3484         if (ret) {
3485                 btrfs_err(fs_info, "failed to read block groups: %d", ret);
3486                 goto fail_sysfs;
3487         }
3488
3489         btrfs_free_zone_cache(fs_info);
3490
3491         btrfs_check_active_zone_reservation(fs_info);
3492
3493         if (!sb_rdonly(sb) && fs_info->fs_devices->missing_devices &&
3494             !btrfs_check_rw_degradable(fs_info, NULL)) {
3495                 btrfs_warn(fs_info,
3496                 "writable mount is not allowed due to too many missing devices");
3497                 ret = -EINVAL;
3498                 goto fail_sysfs;
3499         }
3500
3501         fs_info->cleaner_kthread = kthread_run(cleaner_kthread, fs_info,
3502                                                "btrfs-cleaner");
3503         if (IS_ERR(fs_info->cleaner_kthread)) {
3504                 ret = PTR_ERR(fs_info->cleaner_kthread);
3505                 goto fail_sysfs;
3506         }
3507
3508         fs_info->transaction_kthread = kthread_run(transaction_kthread,
3509                                                    tree_root,
3510                                                    "btrfs-transaction");
3511         if (IS_ERR(fs_info->transaction_kthread)) {
3512                 ret = PTR_ERR(fs_info->transaction_kthread);
3513                 goto fail_cleaner;
3514         }
3515
3516         ret = btrfs_read_qgroup_config(fs_info);
3517         if (ret)
3518                 goto fail_trans_kthread;
3519
3520         if (btrfs_build_ref_tree(fs_info))
3521                 btrfs_err(fs_info, "couldn't build ref tree");
3522
3523         /* do not make disk changes in broken FS or nologreplay is given */
3524         if (btrfs_super_log_root(disk_super) != 0 &&
3525             !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3526                 btrfs_info(fs_info, "start tree-log replay");
3527                 ret = btrfs_replay_log(fs_info, fs_devices);
3528                 if (ret)
3529                         goto fail_qgroup;
3530         }
3531
3532         fs_info->fs_root = btrfs_get_fs_root(fs_info, BTRFS_FS_TREE_OBJECTID, true);
3533         if (IS_ERR(fs_info->fs_root)) {
3534                 ret = PTR_ERR(fs_info->fs_root);
3535                 btrfs_warn(fs_info, "failed to read fs tree: %d", ret);
3536                 fs_info->fs_root = NULL;
3537                 goto fail_qgroup;
3538         }
3539
3540         if (sb_rdonly(sb))
3541                 return 0;
3542
3543         ret = btrfs_start_pre_rw_mount(fs_info);
3544         if (ret) {
3545                 close_ctree(fs_info);
3546                 return ret;
3547         }
3548         btrfs_discard_resume(fs_info);
3549
3550         if (fs_info->uuid_root &&
3551             (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
3552              fs_info->generation != btrfs_super_uuid_tree_generation(disk_super))) {
3553                 btrfs_info(fs_info, "checking UUID tree");
3554                 ret = btrfs_check_uuid_tree(fs_info);
3555                 if (ret) {
3556                         btrfs_warn(fs_info,
3557                                 "failed to check the UUID tree: %d", ret);
3558                         close_ctree(fs_info);
3559                         return ret;
3560                 }
3561         }
3562
3563         set_bit(BTRFS_FS_OPEN, &fs_info->flags);
3564
3565         /* Kick the cleaner thread so it'll start deleting snapshots. */
3566         if (test_bit(BTRFS_FS_UNFINISHED_DROPS, &fs_info->flags))
3567                 wake_up_process(fs_info->cleaner_kthread);
3568
3569         return 0;
3570
3571 fail_qgroup:
3572         btrfs_free_qgroup_config(fs_info);
3573 fail_trans_kthread:
3574         kthread_stop(fs_info->transaction_kthread);
3575         btrfs_cleanup_transaction(fs_info);
3576         btrfs_free_fs_roots(fs_info);
3577 fail_cleaner:
3578         kthread_stop(fs_info->cleaner_kthread);
3579
3580         /*
3581          * make sure we're done with the btree inode before we stop our
3582          * kthreads
3583          */
3584         filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3585
3586 fail_sysfs:
3587         btrfs_sysfs_remove_mounted(fs_info);
3588
3589 fail_fsdev_sysfs:
3590         btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3591
3592 fail_block_groups:
3593         btrfs_put_block_group_cache(fs_info);
3594
3595 fail_tree_roots:
3596         if (fs_info->data_reloc_root)
3597                 btrfs_drop_and_free_fs_root(fs_info, fs_info->data_reloc_root);
3598         free_root_pointers(fs_info, true);
3599         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3600
3601 fail_sb_buffer:
3602         btrfs_stop_all_workers(fs_info);
3603         btrfs_free_block_groups(fs_info);
3604 fail_alloc:
3605         btrfs_mapping_tree_free(fs_info);
3606
3607         iput(fs_info->btree_inode);
3608 fail:
3609         btrfs_close_devices(fs_info->fs_devices);
3610         ASSERT(ret < 0);
3611         return ret;
3612 }
3613 ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
3614
3615 static void btrfs_end_super_write(struct bio *bio)
3616 {
3617         struct btrfs_device *device = bio->bi_private;
3618         struct folio_iter fi;
3619
3620         bio_for_each_folio_all(fi, bio) {
3621                 if (bio->bi_status) {
3622                         btrfs_warn_rl_in_rcu(device->fs_info,
3623                                 "lost super block write due to IO error on %s (%d)",
3624                                 btrfs_dev_name(device),
3625                                 blk_status_to_errno(bio->bi_status));
3626                         btrfs_dev_stat_inc_and_print(device,
3627                                                      BTRFS_DEV_STAT_WRITE_ERRS);
3628                         /* Ensure failure if the primary sb fails. */
3629                         if (bio->bi_opf & REQ_FUA)
3630                                 atomic_add(BTRFS_SUPER_PRIMARY_WRITE_ERROR,
3631                                            &device->sb_write_errors);
3632                         else
3633                                 atomic_inc(&device->sb_write_errors);
3634                 }
3635                 folio_unlock(fi.folio);
3636                 folio_put(fi.folio);
3637         }
3638
3639         bio_put(bio);
3640 }
3641
3642 struct btrfs_super_block *btrfs_read_dev_one_super(struct block_device *bdev,
3643                                                    int copy_num, bool drop_cache)
3644 {
3645         struct btrfs_super_block *super;
3646         struct page *page;
3647         u64 bytenr, bytenr_orig;
3648         struct address_space *mapping = bdev->bd_mapping;
3649         int ret;
3650
3651         bytenr_orig = btrfs_sb_offset(copy_num);
3652         ret = btrfs_sb_log_location_bdev(bdev, copy_num, READ, &bytenr);
3653         if (ret == -ENOENT)
3654                 return ERR_PTR(-EINVAL);
3655         else if (ret)
3656                 return ERR_PTR(ret);
3657
3658         if (bytenr + BTRFS_SUPER_INFO_SIZE >= bdev_nr_bytes(bdev))
3659                 return ERR_PTR(-EINVAL);
3660
3661         if (drop_cache) {
3662                 /* This should only be called with the primary sb. */
3663                 ASSERT(copy_num == 0);
3664
3665                 /*
3666                  * Drop the page of the primary superblock, so later read will
3667                  * always read from the device.
3668                  */
3669                 invalidate_inode_pages2_range(mapping,
3670                                 bytenr >> PAGE_SHIFT,
3671                                 (bytenr + BTRFS_SUPER_INFO_SIZE) >> PAGE_SHIFT);
3672         }
3673
3674         page = read_cache_page_gfp(mapping, bytenr >> PAGE_SHIFT, GFP_NOFS);
3675         if (IS_ERR(page))
3676                 return ERR_CAST(page);
3677
3678         super = page_address(page);
3679         if (btrfs_super_magic(super) != BTRFS_MAGIC) {
3680                 btrfs_release_disk_super(super);
3681                 return ERR_PTR(-ENODATA);
3682         }
3683
3684         if (btrfs_super_bytenr(super) != bytenr_orig) {
3685                 btrfs_release_disk_super(super);
3686                 return ERR_PTR(-EINVAL);
3687         }
3688
3689         return super;
3690 }
3691
3692
3693 struct btrfs_super_block *btrfs_read_dev_super(struct block_device *bdev)
3694 {
3695         struct btrfs_super_block *super, *latest = NULL;
3696         int i;
3697         u64 transid = 0;
3698
3699         /* we would like to check all the supers, but that would make
3700          * a btrfs mount succeed after a mkfs from a different FS.
3701          * So, we need to add a special mount option to scan for
3702          * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3703          */
3704         for (i = 0; i < 1; i++) {
3705                 super = btrfs_read_dev_one_super(bdev, i, false);
3706                 if (IS_ERR(super))
3707                         continue;
3708
3709                 if (!latest || btrfs_super_generation(super) > transid) {
3710                         if (latest)
3711                                 btrfs_release_disk_super(super);
3712
3713                         latest = super;
3714                         transid = btrfs_super_generation(super);
3715                 }
3716         }
3717
3718         return super;
3719 }
3720
3721 /*
3722  * Write superblock @sb to the @device. Do not wait for completion, all the
3723  * folios we use for writing are locked.
3724  *
3725  * Write @max_mirrors copies of the superblock, where 0 means default that fit
3726  * the expected device size at commit time. Note that max_mirrors must be
3727  * same for write and wait phases.
3728  *
3729  * Return number of errors when folio is not found or submission fails.
3730  */
3731 static int write_dev_supers(struct btrfs_device *device,
3732                             struct btrfs_super_block *sb, int max_mirrors)
3733 {
3734         struct btrfs_fs_info *fs_info = device->fs_info;
3735         struct address_space *mapping = device->bdev->bd_mapping;
3736         SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
3737         int i;
3738         int ret;
3739         u64 bytenr, bytenr_orig;
3740
3741         atomic_set(&device->sb_write_errors, 0);
3742
3743         if (max_mirrors == 0)
3744                 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3745
3746         shash->tfm = fs_info->csum_shash;
3747
3748         for (i = 0; i < max_mirrors; i++) {
3749                 struct folio *folio;
3750                 struct bio *bio;
3751                 struct btrfs_super_block *disk_super;
3752                 size_t offset;
3753
3754                 bytenr_orig = btrfs_sb_offset(i);
3755                 ret = btrfs_sb_log_location(device, i, WRITE, &bytenr);
3756                 if (ret == -ENOENT) {
3757                         continue;
3758                 } else if (ret < 0) {
3759                         btrfs_err(device->fs_info,
3760                                 "couldn't get super block location for mirror %d",
3761                                 i);
3762                         atomic_inc(&device->sb_write_errors);
3763                         continue;
3764                 }
3765                 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3766                     device->commit_total_bytes)
3767                         break;
3768
3769                 btrfs_set_super_bytenr(sb, bytenr_orig);
3770
3771                 crypto_shash_digest(shash, (const char *)sb + BTRFS_CSUM_SIZE,
3772                                     BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE,
3773                                     sb->csum);
3774
3775                 folio = __filemap_get_folio(mapping, bytenr >> PAGE_SHIFT,
3776                                             FGP_LOCK | FGP_ACCESSED | FGP_CREAT,
3777                                             GFP_NOFS);
3778                 if (IS_ERR(folio)) {
3779                         btrfs_err(device->fs_info,
3780                             "couldn't get super block page for bytenr %llu",
3781                             bytenr);
3782                         atomic_inc(&device->sb_write_errors);
3783                         continue;
3784                 }
3785                 ASSERT(folio_order(folio) == 0);
3786
3787                 offset = offset_in_folio(folio, bytenr);
3788                 disk_super = folio_address(folio) + offset;
3789                 memcpy(disk_super, sb, BTRFS_SUPER_INFO_SIZE);
3790
3791                 /*
3792                  * Directly use bios here instead of relying on the page cache
3793                  * to do I/O, so we don't lose the ability to do integrity
3794                  * checking.
3795                  */
3796                 bio = bio_alloc(device->bdev, 1,
3797                                 REQ_OP_WRITE | REQ_SYNC | REQ_META | REQ_PRIO,
3798                                 GFP_NOFS);
3799                 bio->bi_iter.bi_sector = bytenr >> SECTOR_SHIFT;
3800                 bio->bi_private = device;
3801                 bio->bi_end_io = btrfs_end_super_write;
3802                 bio_add_folio_nofail(bio, folio, BTRFS_SUPER_INFO_SIZE, offset);
3803
3804                 /*
3805                  * We FUA only the first super block.  The others we allow to
3806                  * go down lazy and there's a short window where the on-disk
3807                  * copies might still contain the older version.
3808                  */
3809                 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
3810                         bio->bi_opf |= REQ_FUA;
3811                 submit_bio(bio);
3812
3813                 if (btrfs_advance_sb_log(device, i))
3814                         atomic_inc(&device->sb_write_errors);
3815         }
3816         return atomic_read(&device->sb_write_errors) < i ? 0 : -1;
3817 }
3818
3819 /*
3820  * Wait for write completion of superblocks done by write_dev_supers,
3821  * @max_mirrors same for write and wait phases.
3822  *
3823  * Return -1 if primary super block write failed or when there were no super block
3824  * copies written. Otherwise 0.
3825  */
3826 static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
3827 {
3828         int i;
3829         int errors = 0;
3830         bool primary_failed = false;
3831         int ret;
3832         u64 bytenr;
3833
3834         if (max_mirrors == 0)
3835                 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3836
3837         for (i = 0; i < max_mirrors; i++) {
3838                 struct folio *folio;
3839
3840                 ret = btrfs_sb_log_location(device, i, READ, &bytenr);
3841                 if (ret == -ENOENT) {
3842                         break;
3843                 } else if (ret < 0) {
3844                         errors++;
3845                         if (i == 0)
3846                                 primary_failed = true;
3847                         continue;
3848                 }
3849                 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3850                     device->commit_total_bytes)
3851                         break;
3852
3853                 folio = filemap_get_folio(device->bdev->bd_mapping,
3854                                           bytenr >> PAGE_SHIFT);
3855                 /* If the folio has been removed, then we know it completed. */
3856                 if (IS_ERR(folio))
3857                         continue;
3858                 ASSERT(folio_order(folio) == 0);
3859
3860                 /* Folio will be unlocked once the write completes. */
3861                 folio_wait_locked(folio);
3862                 folio_put(folio);
3863         }
3864
3865         errors += atomic_read(&device->sb_write_errors);
3866         if (errors >= BTRFS_SUPER_PRIMARY_WRITE_ERROR)
3867                 primary_failed = true;
3868         if (primary_failed) {
3869                 btrfs_err(device->fs_info, "error writing primary super block to device %llu",
3870                           device->devid);
3871                 return -1;
3872         }
3873
3874         return errors < i ? 0 : -1;
3875 }
3876
3877 /*
3878  * endio for the write_dev_flush, this will wake anyone waiting
3879  * for the barrier when it is done
3880  */
3881 static void btrfs_end_empty_barrier(struct bio *bio)
3882 {
3883         bio_uninit(bio);
3884         complete(bio->bi_private);
3885 }
3886
3887 /*
3888  * Submit a flush request to the device if it supports it. Error handling is
3889  * done in the waiting counterpart.
3890  */
3891 static void write_dev_flush(struct btrfs_device *device)
3892 {
3893         struct bio *bio = &device->flush_bio;
3894
3895         device->last_flush_error = BLK_STS_OK;
3896
3897         bio_init(bio, device->bdev, NULL, 0,
3898                  REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH);
3899         bio->bi_end_io = btrfs_end_empty_barrier;
3900         init_completion(&device->flush_wait);
3901         bio->bi_private = &device->flush_wait;
3902         submit_bio(bio);
3903         set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3904 }
3905
3906 /*
3907  * If the flush bio has been submitted by write_dev_flush, wait for it.
3908  * Return true for any error, and false otherwise.
3909  */
3910 static bool wait_dev_flush(struct btrfs_device *device)
3911 {
3912         struct bio *bio = &device->flush_bio;
3913
3914         if (!test_and_clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
3915                 return false;
3916
3917         wait_for_completion_io(&device->flush_wait);
3918
3919         if (bio->bi_status) {
3920                 device->last_flush_error = bio->bi_status;
3921                 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_FLUSH_ERRS);
3922                 return true;
3923         }
3924
3925         return false;
3926 }
3927
3928 /*
3929  * send an empty flush down to each device in parallel,
3930  * then wait for them
3931  */
3932 static int barrier_all_devices(struct btrfs_fs_info *info)
3933 {
3934         struct list_head *head;
3935         struct btrfs_device *dev;
3936         int errors_wait = 0;
3937
3938         lockdep_assert_held(&info->fs_devices->device_list_mutex);
3939         /* send down all the barriers */
3940         head = &info->fs_devices->devices;
3941         list_for_each_entry(dev, head, dev_list) {
3942                 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3943                         continue;
3944                 if (!dev->bdev)
3945                         continue;
3946                 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3947                     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3948                         continue;
3949
3950                 write_dev_flush(dev);
3951         }
3952
3953         /* wait for all the barriers */
3954         list_for_each_entry(dev, head, dev_list) {
3955                 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3956                         continue;
3957                 if (!dev->bdev) {
3958                         errors_wait++;
3959                         continue;
3960                 }
3961                 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3962                     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3963                         continue;
3964
3965                 if (wait_dev_flush(dev))
3966                         errors_wait++;
3967         }
3968
3969         /*
3970          * Checks last_flush_error of disks in order to determine the device
3971          * state.
3972          */
3973         if (errors_wait && !btrfs_check_rw_degradable(info, NULL))
3974                 return -EIO;
3975
3976         return 0;
3977 }
3978
3979 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3980 {
3981         int raid_type;
3982         int min_tolerated = INT_MAX;
3983
3984         if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3985             (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
3986                 min_tolerated = min_t(int, min_tolerated,
3987                                     btrfs_raid_array[BTRFS_RAID_SINGLE].
3988                                     tolerated_failures);
3989
3990         for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3991                 if (raid_type == BTRFS_RAID_SINGLE)
3992                         continue;
3993                 if (!(flags & btrfs_raid_array[raid_type].bg_flag))
3994                         continue;
3995                 min_tolerated = min_t(int, min_tolerated,
3996                                     btrfs_raid_array[raid_type].
3997                                     tolerated_failures);
3998         }
3999
4000         if (min_tolerated == INT_MAX) {
4001                 pr_warn("BTRFS: unknown raid flag: %llu", flags);
4002                 min_tolerated = 0;
4003         }
4004
4005         return min_tolerated;
4006 }
4007
4008 int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
4009 {
4010         struct list_head *head;
4011         struct btrfs_device *dev;
4012         struct btrfs_super_block *sb;
4013         struct btrfs_dev_item *dev_item;
4014         int ret;
4015         int do_barriers;
4016         int max_errors;
4017         int total_errors = 0;
4018         u64 flags;
4019
4020         do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
4021
4022         /*
4023          * max_mirrors == 0 indicates we're from commit_transaction,
4024          * not from fsync where the tree roots in fs_info have not
4025          * been consistent on disk.
4026          */
4027         if (max_mirrors == 0)
4028                 backup_super_roots(fs_info);
4029
4030         sb = fs_info->super_for_commit;
4031         dev_item = &sb->dev_item;
4032
4033         mutex_lock(&fs_info->fs_devices->device_list_mutex);
4034         head = &fs_info->fs_devices->devices;
4035         max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
4036
4037         if (do_barriers) {
4038                 ret = barrier_all_devices(fs_info);
4039                 if (ret) {
4040                         mutex_unlock(
4041                                 &fs_info->fs_devices->device_list_mutex);
4042                         btrfs_handle_fs_error(fs_info, ret,
4043                                               "errors while submitting device barriers.");
4044                         return ret;
4045                 }
4046         }
4047
4048         list_for_each_entry(dev, head, dev_list) {
4049                 if (!dev->bdev) {
4050                         total_errors++;
4051                         continue;
4052                 }
4053                 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4054                     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
4055                         continue;
4056
4057                 btrfs_set_stack_device_generation(dev_item, 0);
4058                 btrfs_set_stack_device_type(dev_item, dev->type);
4059                 btrfs_set_stack_device_id(dev_item, dev->devid);
4060                 btrfs_set_stack_device_total_bytes(dev_item,
4061                                                    dev->commit_total_bytes);
4062                 btrfs_set_stack_device_bytes_used(dev_item,
4063                                                   dev->commit_bytes_used);
4064                 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
4065                 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
4066                 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
4067                 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
4068                 memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid,
4069                        BTRFS_FSID_SIZE);
4070
4071                 flags = btrfs_super_flags(sb);
4072                 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
4073
4074                 ret = btrfs_validate_write_super(fs_info, sb);
4075                 if (ret < 0) {
4076                         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4077                         btrfs_handle_fs_error(fs_info, -EUCLEAN,
4078                                 "unexpected superblock corruption detected");
4079                         return -EUCLEAN;
4080                 }
4081
4082                 ret = write_dev_supers(dev, sb, max_mirrors);
4083                 if (ret)
4084                         total_errors++;
4085         }
4086         if (total_errors > max_errors) {
4087                 btrfs_err(fs_info, "%d errors while writing supers",
4088                           total_errors);
4089                 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4090
4091                 /* FUA is masked off if unsupported and can't be the reason */
4092                 btrfs_handle_fs_error(fs_info, -EIO,
4093                                       "%d errors while writing supers",
4094                                       total_errors);
4095                 return -EIO;
4096         }
4097
4098         total_errors = 0;
4099         list_for_each_entry(dev, head, dev_list) {
4100                 if (!dev->bdev)
4101                         continue;
4102                 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4103                     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
4104                         continue;
4105
4106                 ret = wait_dev_supers(dev, max_mirrors);
4107                 if (ret)
4108                         total_errors++;
4109         }
4110         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4111         if (total_errors > max_errors) {
4112                 btrfs_handle_fs_error(fs_info, -EIO,
4113                                       "%d errors while writing supers",
4114                                       total_errors);
4115                 return -EIO;
4116         }
4117         return 0;
4118 }
4119
4120 /* Drop a fs root from the radix tree and free it. */
4121 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
4122                                   struct btrfs_root *root)
4123 {
4124         bool drop_ref = false;
4125
4126         spin_lock(&fs_info->fs_roots_radix_lock);
4127         radix_tree_delete(&fs_info->fs_roots_radix,
4128                           (unsigned long)btrfs_root_id(root));
4129         if (test_and_clear_bit(BTRFS_ROOT_IN_RADIX, &root->state))
4130                 drop_ref = true;
4131         spin_unlock(&fs_info->fs_roots_radix_lock);
4132
4133         if (BTRFS_FS_ERROR(fs_info)) {
4134                 ASSERT(root->log_root == NULL);
4135                 if (root->reloc_root) {
4136                         btrfs_put_root(root->reloc_root);
4137                         root->reloc_root = NULL;
4138                 }
4139         }
4140
4141         if (drop_ref)
4142                 btrfs_put_root(root);
4143 }
4144
4145 int btrfs_commit_super(struct btrfs_fs_info *fs_info)
4146 {
4147         mutex_lock(&fs_info->cleaner_mutex);
4148         btrfs_run_delayed_iputs(fs_info);
4149         mutex_unlock(&fs_info->cleaner_mutex);
4150         wake_up_process(fs_info->cleaner_kthread);
4151
4152         /* wait until ongoing cleanup work done */
4153         down_write(&fs_info->cleanup_work_sem);
4154         up_write(&fs_info->cleanup_work_sem);
4155
4156         return btrfs_commit_current_transaction(fs_info->tree_root);
4157 }
4158
4159 static void warn_about_uncommitted_trans(struct btrfs_fs_info *fs_info)
4160 {
4161         struct btrfs_transaction *trans;
4162         struct btrfs_transaction *tmp;
4163         bool found = false;
4164
4165         /*
4166          * This function is only called at the very end of close_ctree(),
4167          * thus no other running transaction, no need to take trans_lock.
4168          */
4169         ASSERT(test_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags));
4170         list_for_each_entry_safe(trans, tmp, &fs_info->trans_list, list) {
4171                 struct extent_state *cached = NULL;
4172                 u64 dirty_bytes = 0;
4173                 u64 cur = 0;
4174                 u64 found_start;
4175                 u64 found_end;
4176
4177                 found = true;
4178                 while (find_first_extent_bit(&trans->dirty_pages, cur,
4179                         &found_start, &found_end, EXTENT_DIRTY, &cached)) {
4180                         dirty_bytes += found_end + 1 - found_start;
4181                         cur = found_end + 1;
4182                 }
4183                 btrfs_warn(fs_info,
4184         "transaction %llu (with %llu dirty metadata bytes) is not committed",
4185                            trans->transid, dirty_bytes);
4186                 btrfs_cleanup_one_transaction(trans);
4187
4188                 if (trans == fs_info->running_transaction)
4189                         fs_info->running_transaction = NULL;
4190                 list_del_init(&trans->list);
4191
4192                 btrfs_put_transaction(trans);
4193                 trace_btrfs_transaction_commit(fs_info);
4194         }
4195         ASSERT(!found);
4196 }
4197
4198 void __cold close_ctree(struct btrfs_fs_info *fs_info)
4199 {
4200         int ret;
4201
4202         set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
4203
4204         /*
4205          * If we had UNFINISHED_DROPS we could still be processing them, so
4206          * clear that bit and wake up relocation so it can stop.
4207          * We must do this before stopping the block group reclaim task, because
4208          * at btrfs_relocate_block_group() we wait for this bit, and after the
4209          * wait we stop with -EINTR if btrfs_fs_closing() returns non-zero - we
4210          * have just set BTRFS_FS_CLOSING_START, so btrfs_fs_closing() will
4211          * return 1.
4212          */
4213         btrfs_wake_unfinished_drop(fs_info);
4214
4215         /*
4216          * We may have the reclaim task running and relocating a data block group,
4217          * in which case it may create delayed iputs. So stop it before we park
4218          * the cleaner kthread otherwise we can get new delayed iputs after
4219          * parking the cleaner, and that can make the async reclaim task to hang
4220          * if it's waiting for delayed iputs to complete, since the cleaner is
4221          * parked and can not run delayed iputs - this will make us hang when
4222          * trying to stop the async reclaim task.
4223          */
4224         cancel_work_sync(&fs_info->reclaim_bgs_work);
4225         /*
4226          * We don't want the cleaner to start new transactions, add more delayed
4227          * iputs, etc. while we're closing. We can't use kthread_stop() yet
4228          * because that frees the task_struct, and the transaction kthread might
4229          * still try to wake up the cleaner.
4230          */
4231         kthread_park(fs_info->cleaner_kthread);
4232
4233         /* wait for the qgroup rescan worker to stop */
4234         btrfs_qgroup_wait_for_completion(fs_info, false);
4235
4236         /* wait for the uuid_scan task to finish */
4237         down(&fs_info->uuid_tree_rescan_sem);
4238         /* avoid complains from lockdep et al., set sem back to initial state */
4239         up(&fs_info->uuid_tree_rescan_sem);
4240
4241         /* pause restriper - we want to resume on mount */
4242         btrfs_pause_balance(fs_info);
4243
4244         btrfs_dev_replace_suspend_for_unmount(fs_info);
4245
4246         btrfs_scrub_cancel(fs_info);
4247
4248         /* wait for any defraggers to finish */
4249         wait_event(fs_info->transaction_wait,
4250                    (atomic_read(&fs_info->defrag_running) == 0));
4251
4252         /* clear out the rbtree of defraggable inodes */
4253         btrfs_cleanup_defrag_inodes(fs_info);
4254
4255         /*
4256          * Wait for any fixup workers to complete.
4257          * If we don't wait for them here and they are still running by the time
4258          * we call kthread_stop() against the cleaner kthread further below, we
4259          * get an use-after-free on the cleaner because the fixup worker adds an
4260          * inode to the list of delayed iputs and then attempts to wakeup the
4261          * cleaner kthread, which was already stopped and destroyed. We parked
4262          * already the cleaner, but below we run all pending delayed iputs.
4263          */
4264         btrfs_flush_workqueue(fs_info->fixup_workers);
4265         /*
4266          * Similar case here, we have to wait for delalloc workers before we
4267          * proceed below and stop the cleaner kthread, otherwise we trigger a
4268          * use-after-tree on the cleaner kthread task_struct when a delalloc
4269          * worker running submit_compressed_extents() adds a delayed iput, which
4270          * does a wake up on the cleaner kthread, which was already freed below
4271          * when we call kthread_stop().
4272          */
4273         btrfs_flush_workqueue(fs_info->delalloc_workers);
4274
4275         /*
4276          * After we parked the cleaner kthread, ordered extents may have
4277          * completed and created new delayed iputs. If one of the async reclaim
4278          * tasks is running and in the RUN_DELAYED_IPUTS flush state, then we
4279          * can hang forever trying to stop it, because if a delayed iput is
4280          * added after it ran btrfs_run_delayed_iputs() and before it called
4281          * btrfs_wait_on_delayed_iputs(), it will hang forever since there is
4282          * no one else to run iputs.
4283          *
4284          * So wait for all ongoing ordered extents to complete and then run
4285          * delayed iputs. This works because once we reach this point no one
4286          * can either create new ordered extents nor create delayed iputs
4287          * through some other means.
4288          *
4289          * Also note that btrfs_wait_ordered_roots() is not safe here, because
4290          * it waits for BTRFS_ORDERED_COMPLETE to be set on an ordered extent,
4291          * but the delayed iput for the respective inode is made only when doing
4292          * the final btrfs_put_ordered_extent() (which must happen at
4293          * btrfs_finish_ordered_io() when we are unmounting).
4294          */
4295         btrfs_flush_workqueue(fs_info->endio_write_workers);
4296         /* Ordered extents for free space inodes. */
4297         btrfs_flush_workqueue(fs_info->endio_freespace_worker);
4298         btrfs_run_delayed_iputs(fs_info);
4299
4300         cancel_work_sync(&fs_info->async_reclaim_work);
4301         cancel_work_sync(&fs_info->async_data_reclaim_work);
4302         cancel_work_sync(&fs_info->preempt_reclaim_work);
4303         cancel_work_sync(&fs_info->em_shrinker_work);
4304
4305         /* Cancel or finish ongoing discard work */
4306         btrfs_discard_cleanup(fs_info);
4307
4308         if (!sb_rdonly(fs_info->sb)) {
4309                 /*
4310                  * The cleaner kthread is stopped, so do one final pass over
4311                  * unused block groups.
4312                  */
4313                 btrfs_delete_unused_bgs(fs_info);
4314
4315                 /*
4316                  * There might be existing delayed inode workers still running
4317                  * and holding an empty delayed inode item. We must wait for
4318                  * them to complete first because they can create a transaction.
4319                  * This happens when someone calls btrfs_balance_delayed_items()
4320                  * and then a transaction commit runs the same delayed nodes
4321                  * before any delayed worker has done something with the nodes.
4322                  * We must wait for any worker here and not at transaction
4323                  * commit time since that could cause a deadlock.
4324                  * This is a very rare case.
4325                  */
4326                 btrfs_flush_workqueue(fs_info->delayed_workers);
4327
4328                 ret = btrfs_commit_super(fs_info);
4329                 if (ret)
4330                         btrfs_err(fs_info, "commit super ret %d", ret);
4331         }
4332
4333         if (BTRFS_FS_ERROR(fs_info))
4334                 btrfs_error_commit_super(fs_info);
4335
4336         kthread_stop(fs_info->transaction_kthread);
4337         kthread_stop(fs_info->cleaner_kthread);
4338
4339         ASSERT(list_empty(&fs_info->delayed_iputs));
4340         set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
4341
4342         if (btrfs_check_quota_leak(fs_info)) {
4343                 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
4344                 btrfs_err(fs_info, "qgroup reserved space leaked");
4345         }
4346
4347         btrfs_free_qgroup_config(fs_info);
4348         ASSERT(list_empty(&fs_info->delalloc_roots));
4349
4350         if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
4351                 btrfs_info(fs_info, "at unmount delalloc count %lld",
4352                        percpu_counter_sum(&fs_info->delalloc_bytes));
4353         }
4354
4355         if (percpu_counter_sum(&fs_info->ordered_bytes))
4356                 btrfs_info(fs_info, "at unmount dio bytes count %lld",
4357                            percpu_counter_sum(&fs_info->ordered_bytes));
4358
4359         btrfs_sysfs_remove_mounted(fs_info);
4360         btrfs_sysfs_remove_fsid(fs_info->fs_devices);
4361
4362         btrfs_put_block_group_cache(fs_info);
4363
4364         /*
4365          * we must make sure there is not any read request to
4366          * submit after we stopping all workers.
4367          */
4368         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
4369         btrfs_stop_all_workers(fs_info);
4370
4371         /* We shouldn't have any transaction open at this point */
4372         warn_about_uncommitted_trans(fs_info);
4373
4374         clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
4375         free_root_pointers(fs_info, true);
4376         btrfs_free_fs_roots(fs_info);
4377
4378         /*
4379          * We must free the block groups after dropping the fs_roots as we could
4380          * have had an IO error and have left over tree log blocks that aren't
4381          * cleaned up until the fs roots are freed.  This makes the block group
4382          * accounting appear to be wrong because there's pending reserved bytes,
4383          * so make sure we do the block group cleanup afterwards.
4384          */
4385         btrfs_free_block_groups(fs_info);
4386
4387         iput(fs_info->btree_inode);
4388
4389         btrfs_mapping_tree_free(fs_info);
4390         btrfs_close_devices(fs_info->fs_devices);
4391 }
4392
4393 void btrfs_mark_buffer_dirty(struct btrfs_trans_handle *trans,
4394                              struct extent_buffer *buf)
4395 {
4396         struct btrfs_fs_info *fs_info = buf->fs_info;
4397         u64 transid = btrfs_header_generation(buf);
4398
4399 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4400         /*
4401          * This is a fast path so only do this check if we have sanity tests
4402          * enabled.  Normal people shouldn't be using unmapped buffers as dirty
4403          * outside of the sanity tests.
4404          */
4405         if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
4406                 return;
4407 #endif
4408         /* This is an active transaction (its state < TRANS_STATE_UNBLOCKED). */
4409         ASSERT(trans->transid == fs_info->generation);
4410         btrfs_assert_tree_write_locked(buf);
4411         if (unlikely(transid != fs_info->generation)) {
4412                 btrfs_abort_transaction(trans, -EUCLEAN);
4413                 btrfs_crit(fs_info,
4414 "dirty buffer transid mismatch, logical %llu found transid %llu running transid %llu",
4415                            buf->start, transid, fs_info->generation);
4416         }
4417         set_extent_buffer_dirty(buf);
4418 }
4419
4420 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
4421                                         int flush_delayed)
4422 {
4423         /*
4424          * looks as though older kernels can get into trouble with
4425          * this code, they end up stuck in balance_dirty_pages forever
4426          */
4427         int ret;
4428
4429         if (current->flags & PF_MEMALLOC)
4430                 return;
4431
4432         if (flush_delayed)
4433                 btrfs_balance_delayed_items(fs_info);
4434
4435         ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4436                                      BTRFS_DIRTY_METADATA_THRESH,
4437                                      fs_info->dirty_metadata_batch);
4438         if (ret > 0) {
4439                 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
4440         }
4441 }
4442
4443 void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
4444 {
4445         __btrfs_btree_balance_dirty(fs_info, 1);
4446 }
4447
4448 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
4449 {
4450         __btrfs_btree_balance_dirty(fs_info, 0);
4451 }
4452
4453 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
4454 {
4455         /* cleanup FS via transaction */
4456         btrfs_cleanup_transaction(fs_info);
4457
4458         mutex_lock(&fs_info->cleaner_mutex);
4459         btrfs_run_delayed_iputs(fs_info);
4460         mutex_unlock(&fs_info->cleaner_mutex);
4461
4462         down_write(&fs_info->cleanup_work_sem);
4463         up_write(&fs_info->cleanup_work_sem);
4464 }
4465
4466 static void btrfs_drop_all_logs(struct btrfs_fs_info *fs_info)
4467 {
4468         struct btrfs_root *gang[8];
4469         u64 root_objectid = 0;
4470         int ret;
4471
4472         spin_lock(&fs_info->fs_roots_radix_lock);
4473         while ((ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
4474                                              (void **)gang, root_objectid,
4475                                              ARRAY_SIZE(gang))) != 0) {
4476                 int i;
4477
4478                 for (i = 0; i < ret; i++)
4479                         gang[i] = btrfs_grab_root(gang[i]);
4480                 spin_unlock(&fs_info->fs_roots_radix_lock);
4481
4482                 for (i = 0; i < ret; i++) {
4483                         if (!gang[i])
4484                                 continue;
4485                         root_objectid = btrfs_root_id(gang[i]);
4486                         btrfs_free_log(NULL, gang[i]);
4487                         btrfs_put_root(gang[i]);
4488                 }
4489                 root_objectid++;
4490                 spin_lock(&fs_info->fs_roots_radix_lock);
4491         }
4492         spin_unlock(&fs_info->fs_roots_radix_lock);
4493         btrfs_free_log_root_tree(NULL, fs_info);
4494 }
4495
4496 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4497 {
4498         struct btrfs_ordered_extent *ordered;
4499
4500         spin_lock(&root->ordered_extent_lock);
4501         /*
4502          * This will just short circuit the ordered completion stuff which will
4503          * make sure the ordered extent gets properly cleaned up.
4504          */
4505         list_for_each_entry(ordered, &root->ordered_extents,
4506                             root_extent_list)
4507                 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4508         spin_unlock(&root->ordered_extent_lock);
4509 }
4510
4511 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4512 {
4513         struct btrfs_root *root;
4514         LIST_HEAD(splice);
4515
4516         spin_lock(&fs_info->ordered_root_lock);
4517         list_splice_init(&fs_info->ordered_roots, &splice);
4518         while (!list_empty(&splice)) {
4519                 root = list_first_entry(&splice, struct btrfs_root,
4520                                         ordered_root);
4521                 list_move_tail(&root->ordered_root,
4522                                &fs_info->ordered_roots);
4523
4524                 spin_unlock(&fs_info->ordered_root_lock);
4525                 btrfs_destroy_ordered_extents(root);
4526
4527                 cond_resched();
4528                 spin_lock(&fs_info->ordered_root_lock);
4529         }
4530         spin_unlock(&fs_info->ordered_root_lock);
4531
4532         /*
4533          * We need this here because if we've been flipped read-only we won't
4534          * get sync() from the umount, so we need to make sure any ordered
4535          * extents that haven't had their dirty pages IO start writeout yet
4536          * actually get run and error out properly.
4537          */
4538         btrfs_wait_ordered_roots(fs_info, U64_MAX, NULL);
4539 }
4540
4541 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4542 {
4543         struct btrfs_inode *btrfs_inode;
4544         LIST_HEAD(splice);
4545
4546         spin_lock(&root->delalloc_lock);
4547         list_splice_init(&root->delalloc_inodes, &splice);
4548
4549         while (!list_empty(&splice)) {
4550                 struct inode *inode = NULL;
4551                 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4552                                                delalloc_inodes);
4553                 btrfs_del_delalloc_inode(btrfs_inode);
4554                 spin_unlock(&root->delalloc_lock);
4555
4556                 /*
4557                  * Make sure we get a live inode and that it'll not disappear
4558                  * meanwhile.
4559                  */
4560                 inode = igrab(&btrfs_inode->vfs_inode);
4561                 if (inode) {
4562                         unsigned int nofs_flag;
4563
4564                         nofs_flag = memalloc_nofs_save();
4565                         invalidate_inode_pages2(inode->i_mapping);
4566                         memalloc_nofs_restore(nofs_flag);
4567                         iput(inode);
4568                 }
4569                 spin_lock(&root->delalloc_lock);
4570         }
4571         spin_unlock(&root->delalloc_lock);
4572 }
4573
4574 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4575 {
4576         struct btrfs_root *root;
4577         LIST_HEAD(splice);
4578
4579         spin_lock(&fs_info->delalloc_root_lock);
4580         list_splice_init(&fs_info->delalloc_roots, &splice);
4581         while (!list_empty(&splice)) {
4582                 root = list_first_entry(&splice, struct btrfs_root,
4583                                          delalloc_root);
4584                 root = btrfs_grab_root(root);
4585                 BUG_ON(!root);
4586                 spin_unlock(&fs_info->delalloc_root_lock);
4587
4588                 btrfs_destroy_delalloc_inodes(root);
4589                 btrfs_put_root(root);
4590
4591                 spin_lock(&fs_info->delalloc_root_lock);
4592         }
4593         spin_unlock(&fs_info->delalloc_root_lock);
4594 }
4595
4596 static void btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
4597                                          struct extent_io_tree *dirty_pages,
4598                                          int mark)
4599 {
4600         struct extent_buffer *eb;
4601         u64 start = 0;
4602         u64 end;
4603
4604         while (find_first_extent_bit(dirty_pages, start, &start, &end,
4605                                      mark, NULL)) {
4606                 clear_extent_bits(dirty_pages, start, end, mark);
4607                 while (start <= end) {
4608                         eb = find_extent_buffer(fs_info, start);
4609                         start += fs_info->nodesize;
4610                         if (!eb)
4611                                 continue;
4612
4613                         btrfs_tree_lock(eb);
4614                         wait_on_extent_buffer_writeback(eb);
4615                         btrfs_clear_buffer_dirty(NULL, eb);
4616                         btrfs_tree_unlock(eb);
4617
4618                         free_extent_buffer_stale(eb);
4619                 }
4620         }
4621 }
4622
4623 static void btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
4624                                         struct extent_io_tree *unpin)
4625 {
4626         u64 start;
4627         u64 end;
4628
4629         while (1) {
4630                 struct extent_state *cached_state = NULL;
4631
4632                 /*
4633                  * The btrfs_finish_extent_commit() may get the same range as
4634                  * ours between find_first_extent_bit and clear_extent_dirty.
4635                  * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
4636                  * the same extent range.
4637                  */
4638                 mutex_lock(&fs_info->unused_bg_unpin_mutex);
4639                 if (!find_first_extent_bit(unpin, 0, &start, &end,
4640                                            EXTENT_DIRTY, &cached_state)) {
4641                         mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4642                         break;
4643                 }
4644
4645                 clear_extent_dirty(unpin, start, end, &cached_state);
4646                 free_extent_state(cached_state);
4647                 btrfs_error_unpin_extent_range(fs_info, start, end);
4648                 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4649                 cond_resched();
4650         }
4651 }
4652
4653 static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache)
4654 {
4655         struct inode *inode;
4656
4657         inode = cache->io_ctl.inode;
4658         if (inode) {
4659                 unsigned int nofs_flag;
4660
4661                 nofs_flag = memalloc_nofs_save();
4662                 invalidate_inode_pages2(inode->i_mapping);
4663                 memalloc_nofs_restore(nofs_flag);
4664
4665                 BTRFS_I(inode)->generation = 0;
4666                 cache->io_ctl.inode = NULL;
4667                 iput(inode);
4668         }
4669         ASSERT(cache->io_ctl.pages == NULL);
4670         btrfs_put_block_group(cache);
4671 }
4672
4673 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
4674                              struct btrfs_fs_info *fs_info)
4675 {
4676         struct btrfs_block_group *cache;
4677
4678         spin_lock(&cur_trans->dirty_bgs_lock);
4679         while (!list_empty(&cur_trans->dirty_bgs)) {
4680                 cache = list_first_entry(&cur_trans->dirty_bgs,
4681                                          struct btrfs_block_group,
4682                                          dirty_list);
4683
4684                 if (!list_empty(&cache->io_list)) {
4685                         spin_unlock(&cur_trans->dirty_bgs_lock);
4686                         list_del_init(&cache->io_list);
4687                         btrfs_cleanup_bg_io(cache);
4688                         spin_lock(&cur_trans->dirty_bgs_lock);
4689                 }
4690
4691                 list_del_init(&cache->dirty_list);
4692                 spin_lock(&cache->lock);
4693                 cache->disk_cache_state = BTRFS_DC_ERROR;
4694                 spin_unlock(&cache->lock);
4695
4696                 spin_unlock(&cur_trans->dirty_bgs_lock);
4697                 btrfs_put_block_group(cache);
4698                 btrfs_dec_delayed_refs_rsv_bg_updates(fs_info);
4699                 spin_lock(&cur_trans->dirty_bgs_lock);
4700         }
4701         spin_unlock(&cur_trans->dirty_bgs_lock);
4702
4703         /*
4704          * Refer to the definition of io_bgs member for details why it's safe
4705          * to use it without any locking
4706          */
4707         while (!list_empty(&cur_trans->io_bgs)) {
4708                 cache = list_first_entry(&cur_trans->io_bgs,
4709                                          struct btrfs_block_group,
4710                                          io_list);
4711
4712                 list_del_init(&cache->io_list);
4713                 spin_lock(&cache->lock);
4714                 cache->disk_cache_state = BTRFS_DC_ERROR;
4715                 spin_unlock(&cache->lock);
4716                 btrfs_cleanup_bg_io(cache);
4717         }
4718 }
4719
4720 static void btrfs_free_all_qgroup_pertrans(struct btrfs_fs_info *fs_info)
4721 {
4722         struct btrfs_root *gang[8];
4723         int i;
4724         int ret;
4725
4726         spin_lock(&fs_info->fs_roots_radix_lock);
4727         while (1) {
4728                 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
4729                                                  (void **)gang, 0,
4730                                                  ARRAY_SIZE(gang),
4731                                                  BTRFS_ROOT_TRANS_TAG);
4732                 if (ret == 0)
4733                         break;
4734                 for (i = 0; i < ret; i++) {
4735                         struct btrfs_root *root = gang[i];
4736
4737                         btrfs_qgroup_free_meta_all_pertrans(root);
4738                         radix_tree_tag_clear(&fs_info->fs_roots_radix,
4739                                         (unsigned long)btrfs_root_id(root),
4740                                         BTRFS_ROOT_TRANS_TAG);
4741                 }
4742         }
4743         spin_unlock(&fs_info->fs_roots_radix_lock);
4744 }
4745
4746 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans)
4747 {
4748         struct btrfs_fs_info *fs_info = cur_trans->fs_info;
4749         struct btrfs_device *dev, *tmp;
4750
4751         btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
4752         ASSERT(list_empty(&cur_trans->dirty_bgs));
4753         ASSERT(list_empty(&cur_trans->io_bgs));
4754
4755         list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list,
4756                                  post_commit_list) {
4757                 list_del_init(&dev->post_commit_list);
4758         }
4759
4760         btrfs_destroy_delayed_refs(cur_trans);
4761
4762         cur_trans->state = TRANS_STATE_COMMIT_START;
4763         wake_up(&fs_info->transaction_blocked_wait);
4764
4765         cur_trans->state = TRANS_STATE_UNBLOCKED;
4766         wake_up(&fs_info->transaction_wait);
4767
4768         btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
4769                                      EXTENT_DIRTY);
4770         btrfs_destroy_pinned_extent(fs_info, &cur_trans->pinned_extents);
4771
4772         cur_trans->state =TRANS_STATE_COMPLETED;
4773         wake_up(&cur_trans->commit_wait);
4774 }
4775
4776 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
4777 {
4778         struct btrfs_transaction *t;
4779
4780         mutex_lock(&fs_info->transaction_kthread_mutex);
4781
4782         spin_lock(&fs_info->trans_lock);
4783         while (!list_empty(&fs_info->trans_list)) {
4784                 t = list_first_entry(&fs_info->trans_list,
4785                                      struct btrfs_transaction, list);
4786                 if (t->state >= TRANS_STATE_COMMIT_PREP) {
4787                         refcount_inc(&t->use_count);
4788                         spin_unlock(&fs_info->trans_lock);
4789                         btrfs_wait_for_commit(fs_info, t->transid);
4790                         btrfs_put_transaction(t);
4791                         spin_lock(&fs_info->trans_lock);
4792                         continue;
4793                 }
4794                 if (t == fs_info->running_transaction) {
4795                         t->state = TRANS_STATE_COMMIT_DOING;
4796                         spin_unlock(&fs_info->trans_lock);
4797                         /*
4798                          * We wait for 0 num_writers since we don't hold a trans
4799                          * handle open currently for this transaction.
4800                          */
4801                         wait_event(t->writer_wait,
4802                                    atomic_read(&t->num_writers) == 0);
4803                 } else {
4804                         spin_unlock(&fs_info->trans_lock);
4805                 }
4806                 btrfs_cleanup_one_transaction(t);
4807
4808                 spin_lock(&fs_info->trans_lock);
4809                 if (t == fs_info->running_transaction)
4810                         fs_info->running_transaction = NULL;
4811                 list_del_init(&t->list);
4812                 spin_unlock(&fs_info->trans_lock);
4813
4814                 btrfs_put_transaction(t);
4815                 trace_btrfs_transaction_commit(fs_info);
4816                 spin_lock(&fs_info->trans_lock);
4817         }
4818         spin_unlock(&fs_info->trans_lock);
4819         btrfs_destroy_all_ordered_extents(fs_info);
4820         btrfs_destroy_delayed_inodes(fs_info);
4821         btrfs_assert_delayed_root_empty(fs_info);
4822         btrfs_destroy_all_delalloc_inodes(fs_info);
4823         btrfs_drop_all_logs(fs_info);
4824         btrfs_free_all_qgroup_pertrans(fs_info);
4825         mutex_unlock(&fs_info->transaction_kthread_mutex);
4826
4827         return 0;
4828 }
4829
4830 int btrfs_init_root_free_objectid(struct btrfs_root *root)
4831 {
4832         struct btrfs_path *path;
4833         int ret;
4834         struct extent_buffer *l;
4835         struct btrfs_key search_key;
4836         struct btrfs_key found_key;
4837         int slot;
4838
4839         path = btrfs_alloc_path();
4840         if (!path)
4841                 return -ENOMEM;
4842
4843         search_key.objectid = BTRFS_LAST_FREE_OBJECTID;
4844         search_key.type = -1;
4845         search_key.offset = (u64)-1;
4846         ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
4847         if (ret < 0)
4848                 goto error;
4849         if (ret == 0) {
4850                 /*
4851                  * Key with offset -1 found, there would have to exist a root
4852                  * with such id, but this is out of valid range.
4853                  */
4854                 ret = -EUCLEAN;
4855                 goto error;
4856         }
4857         if (path->slots[0] > 0) {
4858                 slot = path->slots[0] - 1;
4859                 l = path->nodes[0];
4860                 btrfs_item_key_to_cpu(l, &found_key, slot);
4861                 root->free_objectid = max_t(u64, found_key.objectid + 1,
4862                                             BTRFS_FIRST_FREE_OBJECTID);
4863         } else {
4864                 root->free_objectid = BTRFS_FIRST_FREE_OBJECTID;
4865         }
4866         ret = 0;
4867 error:
4868         btrfs_free_path(path);
4869         return ret;
4870 }
4871
4872 int btrfs_get_free_objectid(struct btrfs_root *root, u64 *objectid)
4873 {
4874         int ret;
4875         mutex_lock(&root->objectid_mutex);
4876
4877         if (unlikely(root->free_objectid >= BTRFS_LAST_FREE_OBJECTID)) {
4878                 btrfs_warn(root->fs_info,
4879                            "the objectid of root %llu reaches its highest value",
4880                            btrfs_root_id(root));
4881                 ret = -ENOSPC;
4882                 goto out;
4883         }
4884
4885         *objectid = root->free_objectid++;
4886         ret = 0;
4887 out:
4888         mutex_unlock(&root->objectid_mutex);
4889         return ret;
4890 }
This page took 0.306677 seconds and 4 git commands to generate.