]> Git Repo - J-linux.git/blob - fs/btrfs/ctree.c
Merge tag 'vfs-6.13-rc7.fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs
[J-linux.git] / fs / btrfs / ctree.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007,2008 Oracle.  All rights reserved.
4  */
5
6 #include <linux/sched.h>
7 #include <linux/slab.h>
8 #include <linux/rbtree.h>
9 #include <linux/mm.h>
10 #include <linux/error-injection.h>
11 #include "messages.h"
12 #include "ctree.h"
13 #include "disk-io.h"
14 #include "transaction.h"
15 #include "print-tree.h"
16 #include "locking.h"
17 #include "volumes.h"
18 #include "qgroup.h"
19 #include "tree-mod-log.h"
20 #include "tree-checker.h"
21 #include "fs.h"
22 #include "accessors.h"
23 #include "extent-tree.h"
24 #include "relocation.h"
25 #include "file-item.h"
26
27 static struct kmem_cache *btrfs_path_cachep;
28
29 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
30                       *root, struct btrfs_path *path, int level);
31 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root *root,
32                       const struct btrfs_key *ins_key, struct btrfs_path *path,
33                       int data_size, int extend);
34 static int push_node_left(struct btrfs_trans_handle *trans,
35                           struct extent_buffer *dst,
36                           struct extent_buffer *src, int empty);
37 static int balance_node_right(struct btrfs_trans_handle *trans,
38                               struct extent_buffer *dst_buf,
39                               struct extent_buffer *src_buf);
40
41 static const struct btrfs_csums {
42         u16             size;
43         const char      name[10];
44         const char      driver[12];
45 } btrfs_csums[] = {
46         [BTRFS_CSUM_TYPE_CRC32] = { .size = 4, .name = "crc32c" },
47         [BTRFS_CSUM_TYPE_XXHASH] = { .size = 8, .name = "xxhash64" },
48         [BTRFS_CSUM_TYPE_SHA256] = { .size = 32, .name = "sha256" },
49         [BTRFS_CSUM_TYPE_BLAKE2] = { .size = 32, .name = "blake2b",
50                                      .driver = "blake2b-256" },
51 };
52
53 /*
54  * The leaf data grows from end-to-front in the node.  this returns the address
55  * of the start of the last item, which is the stop of the leaf data stack.
56  */
57 static unsigned int leaf_data_end(const struct extent_buffer *leaf)
58 {
59         u32 nr = btrfs_header_nritems(leaf);
60
61         if (nr == 0)
62                 return BTRFS_LEAF_DATA_SIZE(leaf->fs_info);
63         return btrfs_item_offset(leaf, nr - 1);
64 }
65
66 /*
67  * Move data in a @leaf (using memmove, safe for overlapping ranges).
68  *
69  * @leaf:       leaf that we're doing a memmove on
70  * @dst_offset: item data offset we're moving to
71  * @src_offset: item data offset were' moving from
72  * @len:        length of the data we're moving
73  *
74  * Wrapper around memmove_extent_buffer() that takes into account the header on
75  * the leaf.  The btrfs_item offset's start directly after the header, so we
76  * have to adjust any offsets to account for the header in the leaf.  This
77  * handles that math to simplify the callers.
78  */
79 static inline void memmove_leaf_data(const struct extent_buffer *leaf,
80                                      unsigned long dst_offset,
81                                      unsigned long src_offset,
82                                      unsigned long len)
83 {
84         memmove_extent_buffer(leaf, btrfs_item_nr_offset(leaf, 0) + dst_offset,
85                               btrfs_item_nr_offset(leaf, 0) + src_offset, len);
86 }
87
88 /*
89  * Copy item data from @src into @dst at the given @offset.
90  *
91  * @dst:        destination leaf that we're copying into
92  * @src:        source leaf that we're copying from
93  * @dst_offset: item data offset we're copying to
94  * @src_offset: item data offset were' copying from
95  * @len:        length of the data we're copying
96  *
97  * Wrapper around copy_extent_buffer() that takes into account the header on
98  * the leaf.  The btrfs_item offset's start directly after the header, so we
99  * have to adjust any offsets to account for the header in the leaf.  This
100  * handles that math to simplify the callers.
101  */
102 static inline void copy_leaf_data(const struct extent_buffer *dst,
103                                   const struct extent_buffer *src,
104                                   unsigned long dst_offset,
105                                   unsigned long src_offset, unsigned long len)
106 {
107         copy_extent_buffer(dst, src, btrfs_item_nr_offset(dst, 0) + dst_offset,
108                            btrfs_item_nr_offset(src, 0) + src_offset, len);
109 }
110
111 /*
112  * Move items in a @leaf (using memmove).
113  *
114  * @dst:        destination leaf for the items
115  * @dst_item:   the item nr we're copying into
116  * @src_item:   the item nr we're copying from
117  * @nr_items:   the number of items to copy
118  *
119  * Wrapper around memmove_extent_buffer() that does the math to get the
120  * appropriate offsets into the leaf from the item numbers.
121  */
122 static inline void memmove_leaf_items(const struct extent_buffer *leaf,
123                                       int dst_item, int src_item, int nr_items)
124 {
125         memmove_extent_buffer(leaf, btrfs_item_nr_offset(leaf, dst_item),
126                               btrfs_item_nr_offset(leaf, src_item),
127                               nr_items * sizeof(struct btrfs_item));
128 }
129
130 /*
131  * Copy items from @src into @dst at the given @offset.
132  *
133  * @dst:        destination leaf for the items
134  * @src:        source leaf for the items
135  * @dst_item:   the item nr we're copying into
136  * @src_item:   the item nr we're copying from
137  * @nr_items:   the number of items to copy
138  *
139  * Wrapper around copy_extent_buffer() that does the math to get the
140  * appropriate offsets into the leaf from the item numbers.
141  */
142 static inline void copy_leaf_items(const struct extent_buffer *dst,
143                                    const struct extent_buffer *src,
144                                    int dst_item, int src_item, int nr_items)
145 {
146         copy_extent_buffer(dst, src, btrfs_item_nr_offset(dst, dst_item),
147                               btrfs_item_nr_offset(src, src_item),
148                               nr_items * sizeof(struct btrfs_item));
149 }
150
151 /* This exists for btrfs-progs usages. */
152 u16 btrfs_csum_type_size(u16 type)
153 {
154         return btrfs_csums[type].size;
155 }
156
157 int btrfs_super_csum_size(const struct btrfs_super_block *s)
158 {
159         u16 t = btrfs_super_csum_type(s);
160         /*
161          * csum type is validated at mount time
162          */
163         return btrfs_csum_type_size(t);
164 }
165
166 const char *btrfs_super_csum_name(u16 csum_type)
167 {
168         /* csum type is validated at mount time */
169         return btrfs_csums[csum_type].name;
170 }
171
172 /*
173  * Return driver name if defined, otherwise the name that's also a valid driver
174  * name
175  */
176 const char *btrfs_super_csum_driver(u16 csum_type)
177 {
178         /* csum type is validated at mount time */
179         return btrfs_csums[csum_type].driver[0] ?
180                 btrfs_csums[csum_type].driver :
181                 btrfs_csums[csum_type].name;
182 }
183
184 size_t __attribute_const__ btrfs_get_num_csums(void)
185 {
186         return ARRAY_SIZE(btrfs_csums);
187 }
188
189 struct btrfs_path *btrfs_alloc_path(void)
190 {
191         might_sleep();
192
193         return kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
194 }
195
196 /* this also releases the path */
197 void btrfs_free_path(struct btrfs_path *p)
198 {
199         if (!p)
200                 return;
201         btrfs_release_path(p);
202         kmem_cache_free(btrfs_path_cachep, p);
203 }
204
205 /*
206  * path release drops references on the extent buffers in the path
207  * and it drops any locks held by this path
208  *
209  * It is safe to call this on paths that no locks or extent buffers held.
210  */
211 noinline void btrfs_release_path(struct btrfs_path *p)
212 {
213         int i;
214
215         for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
216                 p->slots[i] = 0;
217                 if (!p->nodes[i])
218                         continue;
219                 if (p->locks[i]) {
220                         btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
221                         p->locks[i] = 0;
222                 }
223                 free_extent_buffer(p->nodes[i]);
224                 p->nodes[i] = NULL;
225         }
226 }
227
228 /*
229  * We want the transaction abort to print stack trace only for errors where the
230  * cause could be a bug, eg. due to ENOSPC, and not for common errors that are
231  * caused by external factors.
232  */
233 bool __cold abort_should_print_stack(int error)
234 {
235         switch (error) {
236         case -EIO:
237         case -EROFS:
238         case -ENOMEM:
239                 return false;
240         }
241         return true;
242 }
243
244 /*
245  * safely gets a reference on the root node of a tree.  A lock
246  * is not taken, so a concurrent writer may put a different node
247  * at the root of the tree.  See btrfs_lock_root_node for the
248  * looping required.
249  *
250  * The extent buffer returned by this has a reference taken, so
251  * it won't disappear.  It may stop being the root of the tree
252  * at any time because there are no locks held.
253  */
254 struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
255 {
256         struct extent_buffer *eb;
257
258         while (1) {
259                 rcu_read_lock();
260                 eb = rcu_dereference(root->node);
261
262                 /*
263                  * RCU really hurts here, we could free up the root node because
264                  * it was COWed but we may not get the new root node yet so do
265                  * the inc_not_zero dance and if it doesn't work then
266                  * synchronize_rcu and try again.
267                  */
268                 if (atomic_inc_not_zero(&eb->refs)) {
269                         rcu_read_unlock();
270                         break;
271                 }
272                 rcu_read_unlock();
273                 synchronize_rcu();
274         }
275         return eb;
276 }
277
278 /*
279  * Cowonly root (not-shareable trees, everything not subvolume or reloc roots),
280  * just get put onto a simple dirty list.  Transaction walks this list to make
281  * sure they get properly updated on disk.
282  */
283 static void add_root_to_dirty_list(struct btrfs_root *root)
284 {
285         struct btrfs_fs_info *fs_info = root->fs_info;
286
287         if (test_bit(BTRFS_ROOT_DIRTY, &root->state) ||
288             !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state))
289                 return;
290
291         spin_lock(&fs_info->trans_lock);
292         if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) {
293                 /* Want the extent tree to be the last on the list */
294                 if (btrfs_root_id(root) == BTRFS_EXTENT_TREE_OBJECTID)
295                         list_move_tail(&root->dirty_list,
296                                        &fs_info->dirty_cowonly_roots);
297                 else
298                         list_move(&root->dirty_list,
299                                   &fs_info->dirty_cowonly_roots);
300         }
301         spin_unlock(&fs_info->trans_lock);
302 }
303
304 /*
305  * used by snapshot creation to make a copy of a root for a tree with
306  * a given objectid.  The buffer with the new root node is returned in
307  * cow_ret, and this func returns zero on success or a negative error code.
308  */
309 int btrfs_copy_root(struct btrfs_trans_handle *trans,
310                       struct btrfs_root *root,
311                       struct extent_buffer *buf,
312                       struct extent_buffer **cow_ret, u64 new_root_objectid)
313 {
314         struct btrfs_fs_info *fs_info = root->fs_info;
315         struct extent_buffer *cow;
316         int ret = 0;
317         int level;
318         struct btrfs_disk_key disk_key;
319         u64 reloc_src_root = 0;
320
321         WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
322                 trans->transid != fs_info->running_transaction->transid);
323         WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
324                 trans->transid != btrfs_get_root_last_trans(root));
325
326         level = btrfs_header_level(buf);
327         if (level == 0)
328                 btrfs_item_key(buf, &disk_key, 0);
329         else
330                 btrfs_node_key(buf, &disk_key, 0);
331
332         if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
333                 reloc_src_root = btrfs_header_owner(buf);
334         cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid,
335                                      &disk_key, level, buf->start, 0,
336                                      reloc_src_root, BTRFS_NESTING_NEW_ROOT);
337         if (IS_ERR(cow))
338                 return PTR_ERR(cow);
339
340         copy_extent_buffer_full(cow, buf);
341         btrfs_set_header_bytenr(cow, cow->start);
342         btrfs_set_header_generation(cow, trans->transid);
343         btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
344         btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
345                                      BTRFS_HEADER_FLAG_RELOC);
346         if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
347                 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
348         else
349                 btrfs_set_header_owner(cow, new_root_objectid);
350
351         write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
352
353         WARN_ON(btrfs_header_generation(buf) > trans->transid);
354         if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
355                 ret = btrfs_inc_ref(trans, root, cow, 1);
356         else
357                 ret = btrfs_inc_ref(trans, root, cow, 0);
358         if (ret) {
359                 btrfs_tree_unlock(cow);
360                 free_extent_buffer(cow);
361                 btrfs_abort_transaction(trans, ret);
362                 return ret;
363         }
364
365         btrfs_mark_buffer_dirty(trans, cow);
366         *cow_ret = cow;
367         return 0;
368 }
369
370 /*
371  * check if the tree block can be shared by multiple trees
372  */
373 bool btrfs_block_can_be_shared(struct btrfs_trans_handle *trans,
374                                struct btrfs_root *root,
375                                struct extent_buffer *buf)
376 {
377         const u64 buf_gen = btrfs_header_generation(buf);
378
379         /*
380          * Tree blocks not in shareable trees and tree roots are never shared.
381          * If a block was allocated after the last snapshot and the block was
382          * not allocated by tree relocation, we know the block is not shared.
383          */
384
385         if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
386                 return false;
387
388         if (buf == root->node)
389                 return false;
390
391         if (buf_gen > btrfs_root_last_snapshot(&root->root_item) &&
392             !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC))
393                 return false;
394
395         if (buf != root->commit_root)
396                 return true;
397
398         /*
399          * An extent buffer that used to be the commit root may still be shared
400          * because the tree height may have increased and it became a child of a
401          * higher level root. This can happen when snapshotting a subvolume
402          * created in the current transaction.
403          */
404         if (buf_gen == trans->transid)
405                 return true;
406
407         return false;
408 }
409
410 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
411                                        struct btrfs_root *root,
412                                        struct extent_buffer *buf,
413                                        struct extent_buffer *cow,
414                                        int *last_ref)
415 {
416         struct btrfs_fs_info *fs_info = root->fs_info;
417         u64 refs;
418         u64 owner;
419         u64 flags;
420         int ret;
421
422         /*
423          * Backrefs update rules:
424          *
425          * Always use full backrefs for extent pointers in tree block
426          * allocated by tree relocation.
427          *
428          * If a shared tree block is no longer referenced by its owner
429          * tree (btrfs_header_owner(buf) == root->root_key.objectid),
430          * use full backrefs for extent pointers in tree block.
431          *
432          * If a tree block is been relocating
433          * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
434          * use full backrefs for extent pointers in tree block.
435          * The reason for this is some operations (such as drop tree)
436          * are only allowed for blocks use full backrefs.
437          */
438
439         if (btrfs_block_can_be_shared(trans, root, buf)) {
440                 ret = btrfs_lookup_extent_info(trans, fs_info, buf->start,
441                                                btrfs_header_level(buf), 1,
442                                                &refs, &flags, NULL);
443                 if (ret)
444                         return ret;
445                 if (unlikely(refs == 0)) {
446                         btrfs_crit(fs_info,
447                 "found 0 references for tree block at bytenr %llu level %d root %llu",
448                                    buf->start, btrfs_header_level(buf),
449                                    btrfs_root_id(root));
450                         ret = -EUCLEAN;
451                         btrfs_abort_transaction(trans, ret);
452                         return ret;
453                 }
454         } else {
455                 refs = 1;
456                 if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID ||
457                     btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
458                         flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
459                 else
460                         flags = 0;
461         }
462
463         owner = btrfs_header_owner(buf);
464         if (unlikely(owner == BTRFS_TREE_RELOC_OBJECTID &&
465                      !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))) {
466                 btrfs_crit(fs_info,
467 "found tree block at bytenr %llu level %d root %llu refs %llu flags %llx without full backref flag set",
468                            buf->start, btrfs_header_level(buf),
469                            btrfs_root_id(root), refs, flags);
470                 ret = -EUCLEAN;
471                 btrfs_abort_transaction(trans, ret);
472                 return ret;
473         }
474
475         if (refs > 1) {
476                 if ((owner == btrfs_root_id(root) ||
477                      btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID) &&
478                     !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
479                         ret = btrfs_inc_ref(trans, root, buf, 1);
480                         if (ret)
481                                 return ret;
482
483                         if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID) {
484                                 ret = btrfs_dec_ref(trans, root, buf, 0);
485                                 if (ret)
486                                         return ret;
487                                 ret = btrfs_inc_ref(trans, root, cow, 1);
488                                 if (ret)
489                                         return ret;
490                         }
491                         ret = btrfs_set_disk_extent_flags(trans, buf,
492                                                   BTRFS_BLOCK_FLAG_FULL_BACKREF);
493                         if (ret)
494                                 return ret;
495                 } else {
496
497                         if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID)
498                                 ret = btrfs_inc_ref(trans, root, cow, 1);
499                         else
500                                 ret = btrfs_inc_ref(trans, root, cow, 0);
501                         if (ret)
502                                 return ret;
503                 }
504         } else {
505                 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
506                         if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID)
507                                 ret = btrfs_inc_ref(trans, root, cow, 1);
508                         else
509                                 ret = btrfs_inc_ref(trans, root, cow, 0);
510                         if (ret)
511                                 return ret;
512                         ret = btrfs_dec_ref(trans, root, buf, 1);
513                         if (ret)
514                                 return ret;
515                 }
516                 btrfs_clear_buffer_dirty(trans, buf);
517                 *last_ref = 1;
518         }
519         return 0;
520 }
521
522 /*
523  * does the dirty work in cow of a single block.  The parent block (if
524  * supplied) is updated to point to the new cow copy.  The new buffer is marked
525  * dirty and returned locked.  If you modify the block it needs to be marked
526  * dirty again.
527  *
528  * search_start -- an allocation hint for the new block
529  *
530  * empty_size -- a hint that you plan on doing more cow.  This is the size in
531  * bytes the allocator should try to find free next to the block it returns.
532  * This is just a hint and may be ignored by the allocator.
533  */
534 int btrfs_force_cow_block(struct btrfs_trans_handle *trans,
535                           struct btrfs_root *root,
536                           struct extent_buffer *buf,
537                           struct extent_buffer *parent, int parent_slot,
538                           struct extent_buffer **cow_ret,
539                           u64 search_start, u64 empty_size,
540                           enum btrfs_lock_nesting nest)
541 {
542         struct btrfs_fs_info *fs_info = root->fs_info;
543         struct btrfs_disk_key disk_key;
544         struct extent_buffer *cow;
545         int level, ret;
546         int last_ref = 0;
547         int unlock_orig = 0;
548         u64 parent_start = 0;
549         u64 reloc_src_root = 0;
550
551         if (*cow_ret == buf)
552                 unlock_orig = 1;
553
554         btrfs_assert_tree_write_locked(buf);
555
556         WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
557                 trans->transid != fs_info->running_transaction->transid);
558         WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
559                 trans->transid != btrfs_get_root_last_trans(root));
560
561         level = btrfs_header_level(buf);
562
563         if (level == 0)
564                 btrfs_item_key(buf, &disk_key, 0);
565         else
566                 btrfs_node_key(buf, &disk_key, 0);
567
568         if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID) {
569                 if (parent)
570                         parent_start = parent->start;
571                 reloc_src_root = btrfs_header_owner(buf);
572         }
573         cow = btrfs_alloc_tree_block(trans, root, parent_start,
574                                      btrfs_root_id(root), &disk_key, level,
575                                      search_start, empty_size, reloc_src_root, nest);
576         if (IS_ERR(cow))
577                 return PTR_ERR(cow);
578
579         /* cow is set to blocking by btrfs_init_new_buffer */
580
581         copy_extent_buffer_full(cow, buf);
582         btrfs_set_header_bytenr(cow, cow->start);
583         btrfs_set_header_generation(cow, trans->transid);
584         btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
585         btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
586                                      BTRFS_HEADER_FLAG_RELOC);
587         if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID)
588                 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
589         else
590                 btrfs_set_header_owner(cow, btrfs_root_id(root));
591
592         write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
593
594         ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
595         if (ret) {
596                 btrfs_abort_transaction(trans, ret);
597                 goto error_unlock_cow;
598         }
599
600         if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) {
601                 ret = btrfs_reloc_cow_block(trans, root, buf, cow);
602                 if (ret) {
603                         btrfs_abort_transaction(trans, ret);
604                         goto error_unlock_cow;
605                 }
606         }
607
608         if (buf == root->node) {
609                 WARN_ON(parent && parent != buf);
610                 if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID ||
611                     btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
612                         parent_start = buf->start;
613
614                 ret = btrfs_tree_mod_log_insert_root(root->node, cow, true);
615                 if (ret < 0) {
616                         btrfs_abort_transaction(trans, ret);
617                         goto error_unlock_cow;
618                 }
619                 atomic_inc(&cow->refs);
620                 rcu_assign_pointer(root->node, cow);
621
622                 ret = btrfs_free_tree_block(trans, btrfs_root_id(root), buf,
623                                             parent_start, last_ref);
624                 free_extent_buffer(buf);
625                 add_root_to_dirty_list(root);
626                 if (ret < 0) {
627                         btrfs_abort_transaction(trans, ret);
628                         goto error_unlock_cow;
629                 }
630         } else {
631                 WARN_ON(trans->transid != btrfs_header_generation(parent));
632                 ret = btrfs_tree_mod_log_insert_key(parent, parent_slot,
633                                                     BTRFS_MOD_LOG_KEY_REPLACE);
634                 if (ret) {
635                         btrfs_abort_transaction(trans, ret);
636                         goto error_unlock_cow;
637                 }
638                 btrfs_set_node_blockptr(parent, parent_slot,
639                                         cow->start);
640                 btrfs_set_node_ptr_generation(parent, parent_slot,
641                                               trans->transid);
642                 btrfs_mark_buffer_dirty(trans, parent);
643                 if (last_ref) {
644                         ret = btrfs_tree_mod_log_free_eb(buf);
645                         if (ret) {
646                                 btrfs_abort_transaction(trans, ret);
647                                 goto error_unlock_cow;
648                         }
649                 }
650                 ret = btrfs_free_tree_block(trans, btrfs_root_id(root), buf,
651                                             parent_start, last_ref);
652                 if (ret < 0) {
653                         btrfs_abort_transaction(trans, ret);
654                         goto error_unlock_cow;
655                 }
656         }
657
658         trace_btrfs_cow_block(root, buf, cow);
659         if (unlock_orig)
660                 btrfs_tree_unlock(buf);
661         free_extent_buffer_stale(buf);
662         btrfs_mark_buffer_dirty(trans, cow);
663         *cow_ret = cow;
664         return 0;
665
666 error_unlock_cow:
667         btrfs_tree_unlock(cow);
668         free_extent_buffer(cow);
669         return ret;
670 }
671
672 static inline int should_cow_block(struct btrfs_trans_handle *trans,
673                                    struct btrfs_root *root,
674                                    struct extent_buffer *buf)
675 {
676         if (btrfs_is_testing(root->fs_info))
677                 return 0;
678
679         /* Ensure we can see the FORCE_COW bit */
680         smp_mb__before_atomic();
681
682         /*
683          * We do not need to cow a block if
684          * 1) this block is not created or changed in this transaction;
685          * 2) this block does not belong to TREE_RELOC tree;
686          * 3) the root is not forced COW.
687          *
688          * What is forced COW:
689          *    when we create snapshot during committing the transaction,
690          *    after we've finished copying src root, we must COW the shared
691          *    block to ensure the metadata consistency.
692          */
693         if (btrfs_header_generation(buf) == trans->transid &&
694             !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
695             !(btrfs_root_id(root) != BTRFS_TREE_RELOC_OBJECTID &&
696               btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
697             !test_bit(BTRFS_ROOT_FORCE_COW, &root->state))
698                 return 0;
699         return 1;
700 }
701
702 /*
703  * COWs a single block, see btrfs_force_cow_block() for the real work.
704  * This version of it has extra checks so that a block isn't COWed more than
705  * once per transaction, as long as it hasn't been written yet
706  */
707 int btrfs_cow_block(struct btrfs_trans_handle *trans,
708                     struct btrfs_root *root, struct extent_buffer *buf,
709                     struct extent_buffer *parent, int parent_slot,
710                     struct extent_buffer **cow_ret,
711                     enum btrfs_lock_nesting nest)
712 {
713         struct btrfs_fs_info *fs_info = root->fs_info;
714         u64 search_start;
715
716         if (unlikely(test_bit(BTRFS_ROOT_DELETING, &root->state))) {
717                 btrfs_abort_transaction(trans, -EUCLEAN);
718                 btrfs_crit(fs_info,
719                    "attempt to COW block %llu on root %llu that is being deleted",
720                            buf->start, btrfs_root_id(root));
721                 return -EUCLEAN;
722         }
723
724         /*
725          * COWing must happen through a running transaction, which always
726          * matches the current fs generation (it's a transaction with a state
727          * less than TRANS_STATE_UNBLOCKED). If it doesn't, then turn the fs
728          * into error state to prevent the commit of any transaction.
729          */
730         if (unlikely(trans->transaction != fs_info->running_transaction ||
731                      trans->transid != fs_info->generation)) {
732                 btrfs_abort_transaction(trans, -EUCLEAN);
733                 btrfs_crit(fs_info,
734 "unexpected transaction when attempting to COW block %llu on root %llu, transaction %llu running transaction %llu fs generation %llu",
735                            buf->start, btrfs_root_id(root), trans->transid,
736                            fs_info->running_transaction->transid,
737                            fs_info->generation);
738                 return -EUCLEAN;
739         }
740
741         if (!should_cow_block(trans, root, buf)) {
742                 *cow_ret = buf;
743                 return 0;
744         }
745
746         search_start = round_down(buf->start, SZ_1G);
747
748         /*
749          * Before CoWing this block for later modification, check if it's
750          * the subtree root and do the delayed subtree trace if needed.
751          *
752          * Also We don't care about the error, as it's handled internally.
753          */
754         btrfs_qgroup_trace_subtree_after_cow(trans, root, buf);
755         return btrfs_force_cow_block(trans, root, buf, parent, parent_slot,
756                                      cow_ret, search_start, 0, nest);
757 }
758 ALLOW_ERROR_INJECTION(btrfs_cow_block, ERRNO);
759
760 /*
761  * same as comp_keys only with two btrfs_key's
762  */
763 int __pure btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2)
764 {
765         if (k1->objectid > k2->objectid)
766                 return 1;
767         if (k1->objectid < k2->objectid)
768                 return -1;
769         if (k1->type > k2->type)
770                 return 1;
771         if (k1->type < k2->type)
772                 return -1;
773         if (k1->offset > k2->offset)
774                 return 1;
775         if (k1->offset < k2->offset)
776                 return -1;
777         return 0;
778 }
779
780 /*
781  * Search for a key in the given extent_buffer.
782  *
783  * The lower boundary for the search is specified by the slot number @first_slot.
784  * Use a value of 0 to search over the whole extent buffer. Works for both
785  * leaves and nodes.
786  *
787  * The slot in the extent buffer is returned via @slot. If the key exists in the
788  * extent buffer, then @slot will point to the slot where the key is, otherwise
789  * it points to the slot where you would insert the key.
790  *
791  * Slot may point to the total number of items (i.e. one position beyond the last
792  * key) if the key is bigger than the last key in the extent buffer.
793  */
794 int btrfs_bin_search(struct extent_buffer *eb, int first_slot,
795                      const struct btrfs_key *key, int *slot)
796 {
797         unsigned long p;
798         int item_size;
799         /*
800          * Use unsigned types for the low and high slots, so that we get a more
801          * efficient division in the search loop below.
802          */
803         u32 low = first_slot;
804         u32 high = btrfs_header_nritems(eb);
805         int ret;
806         const int key_size = sizeof(struct btrfs_disk_key);
807
808         if (unlikely(low > high)) {
809                 btrfs_err(eb->fs_info,
810                  "%s: low (%u) > high (%u) eb %llu owner %llu level %d",
811                           __func__, low, high, eb->start,
812                           btrfs_header_owner(eb), btrfs_header_level(eb));
813                 return -EINVAL;
814         }
815
816         if (btrfs_header_level(eb) == 0) {
817                 p = offsetof(struct btrfs_leaf, items);
818                 item_size = sizeof(struct btrfs_item);
819         } else {
820                 p = offsetof(struct btrfs_node, ptrs);
821                 item_size = sizeof(struct btrfs_key_ptr);
822         }
823
824         while (low < high) {
825                 const int unit_size = eb->folio_size;
826                 unsigned long oil;
827                 unsigned long offset;
828                 struct btrfs_disk_key *tmp;
829                 struct btrfs_disk_key unaligned;
830                 int mid;
831
832                 mid = (low + high) / 2;
833                 offset = p + mid * item_size;
834                 oil = get_eb_offset_in_folio(eb, offset);
835
836                 if (oil + key_size <= unit_size) {
837                         const unsigned long idx = get_eb_folio_index(eb, offset);
838                         char *kaddr = folio_address(eb->folios[idx]);
839
840                         oil = get_eb_offset_in_folio(eb, offset);
841                         tmp = (struct btrfs_disk_key *)(kaddr + oil);
842                 } else {
843                         read_extent_buffer(eb, &unaligned, offset, key_size);
844                         tmp = &unaligned;
845                 }
846
847                 ret = btrfs_comp_keys(tmp, key);
848
849                 if (ret < 0)
850                         low = mid + 1;
851                 else if (ret > 0)
852                         high = mid;
853                 else {
854                         *slot = mid;
855                         return 0;
856                 }
857         }
858         *slot = low;
859         return 1;
860 }
861
862 static void root_add_used_bytes(struct btrfs_root *root)
863 {
864         spin_lock(&root->accounting_lock);
865         btrfs_set_root_used(&root->root_item,
866                 btrfs_root_used(&root->root_item) + root->fs_info->nodesize);
867         spin_unlock(&root->accounting_lock);
868 }
869
870 static void root_sub_used_bytes(struct btrfs_root *root)
871 {
872         spin_lock(&root->accounting_lock);
873         btrfs_set_root_used(&root->root_item,
874                 btrfs_root_used(&root->root_item) - root->fs_info->nodesize);
875         spin_unlock(&root->accounting_lock);
876 }
877
878 /* given a node and slot number, this reads the blocks it points to.  The
879  * extent buffer is returned with a reference taken (but unlocked).
880  */
881 struct extent_buffer *btrfs_read_node_slot(struct extent_buffer *parent,
882                                            int slot)
883 {
884         int level = btrfs_header_level(parent);
885         struct btrfs_tree_parent_check check = { 0 };
886         struct extent_buffer *eb;
887
888         if (slot < 0 || slot >= btrfs_header_nritems(parent))
889                 return ERR_PTR(-ENOENT);
890
891         ASSERT(level);
892
893         check.level = level - 1;
894         check.transid = btrfs_node_ptr_generation(parent, slot);
895         check.owner_root = btrfs_header_owner(parent);
896         check.has_first_key = true;
897         btrfs_node_key_to_cpu(parent, &check.first_key, slot);
898
899         eb = read_tree_block(parent->fs_info, btrfs_node_blockptr(parent, slot),
900                              &check);
901         if (IS_ERR(eb))
902                 return eb;
903         if (!extent_buffer_uptodate(eb)) {
904                 free_extent_buffer(eb);
905                 return ERR_PTR(-EIO);
906         }
907
908         return eb;
909 }
910
911 /*
912  * node level balancing, used to make sure nodes are in proper order for
913  * item deletion.  We balance from the top down, so we have to make sure
914  * that a deletion won't leave an node completely empty later on.
915  */
916 static noinline int balance_level(struct btrfs_trans_handle *trans,
917                          struct btrfs_root *root,
918                          struct btrfs_path *path, int level)
919 {
920         struct btrfs_fs_info *fs_info = root->fs_info;
921         struct extent_buffer *right = NULL;
922         struct extent_buffer *mid;
923         struct extent_buffer *left = NULL;
924         struct extent_buffer *parent = NULL;
925         int ret = 0;
926         int wret;
927         int pslot;
928         int orig_slot = path->slots[level];
929         u64 orig_ptr;
930
931         ASSERT(level > 0);
932
933         mid = path->nodes[level];
934
935         WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK);
936         WARN_ON(btrfs_header_generation(mid) != trans->transid);
937
938         orig_ptr = btrfs_node_blockptr(mid, orig_slot);
939
940         if (level < BTRFS_MAX_LEVEL - 1) {
941                 parent = path->nodes[level + 1];
942                 pslot = path->slots[level + 1];
943         }
944
945         /*
946          * deal with the case where there is only one pointer in the root
947          * by promoting the node below to a root
948          */
949         if (!parent) {
950                 struct extent_buffer *child;
951
952                 if (btrfs_header_nritems(mid) != 1)
953                         return 0;
954
955                 /* promote the child to a root */
956                 child = btrfs_read_node_slot(mid, 0);
957                 if (IS_ERR(child)) {
958                         ret = PTR_ERR(child);
959                         goto out;
960                 }
961
962                 btrfs_tree_lock(child);
963                 ret = btrfs_cow_block(trans, root, child, mid, 0, &child,
964                                       BTRFS_NESTING_COW);
965                 if (ret) {
966                         btrfs_tree_unlock(child);
967                         free_extent_buffer(child);
968                         goto out;
969                 }
970
971                 ret = btrfs_tree_mod_log_insert_root(root->node, child, true);
972                 if (ret < 0) {
973                         btrfs_tree_unlock(child);
974                         free_extent_buffer(child);
975                         btrfs_abort_transaction(trans, ret);
976                         goto out;
977                 }
978                 rcu_assign_pointer(root->node, child);
979
980                 add_root_to_dirty_list(root);
981                 btrfs_tree_unlock(child);
982
983                 path->locks[level] = 0;
984                 path->nodes[level] = NULL;
985                 btrfs_clear_buffer_dirty(trans, mid);
986                 btrfs_tree_unlock(mid);
987                 /* once for the path */
988                 free_extent_buffer(mid);
989
990                 root_sub_used_bytes(root);
991                 ret = btrfs_free_tree_block(trans, btrfs_root_id(root), mid, 0, 1);
992                 /* once for the root ptr */
993                 free_extent_buffer_stale(mid);
994                 if (ret < 0) {
995                         btrfs_abort_transaction(trans, ret);
996                         goto out;
997                 }
998                 return 0;
999         }
1000         if (btrfs_header_nritems(mid) >
1001             BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 4)
1002                 return 0;
1003
1004         if (pslot) {
1005                 left = btrfs_read_node_slot(parent, pslot - 1);
1006                 if (IS_ERR(left)) {
1007                         ret = PTR_ERR(left);
1008                         left = NULL;
1009                         goto out;
1010                 }
1011
1012                 btrfs_tree_lock_nested(left, BTRFS_NESTING_LEFT);
1013                 wret = btrfs_cow_block(trans, root, left,
1014                                        parent, pslot - 1, &left,
1015                                        BTRFS_NESTING_LEFT_COW);
1016                 if (wret) {
1017                         ret = wret;
1018                         goto out;
1019                 }
1020         }
1021
1022         if (pslot + 1 < btrfs_header_nritems(parent)) {
1023                 right = btrfs_read_node_slot(parent, pslot + 1);
1024                 if (IS_ERR(right)) {
1025                         ret = PTR_ERR(right);
1026                         right = NULL;
1027                         goto out;
1028                 }
1029
1030                 btrfs_tree_lock_nested(right, BTRFS_NESTING_RIGHT);
1031                 wret = btrfs_cow_block(trans, root, right,
1032                                        parent, pslot + 1, &right,
1033                                        BTRFS_NESTING_RIGHT_COW);
1034                 if (wret) {
1035                         ret = wret;
1036                         goto out;
1037                 }
1038         }
1039
1040         /* first, try to make some room in the middle buffer */
1041         if (left) {
1042                 orig_slot += btrfs_header_nritems(left);
1043                 wret = push_node_left(trans, left, mid, 1);
1044                 if (wret < 0)
1045                         ret = wret;
1046         }
1047
1048         /*
1049          * then try to empty the right most buffer into the middle
1050          */
1051         if (right) {
1052                 wret = push_node_left(trans, mid, right, 1);
1053                 if (wret < 0 && wret != -ENOSPC)
1054                         ret = wret;
1055                 if (btrfs_header_nritems(right) == 0) {
1056                         btrfs_clear_buffer_dirty(trans, right);
1057                         btrfs_tree_unlock(right);
1058                         ret = btrfs_del_ptr(trans, root, path, level + 1, pslot + 1);
1059                         if (ret < 0) {
1060                                 free_extent_buffer_stale(right);
1061                                 right = NULL;
1062                                 goto out;
1063                         }
1064                         root_sub_used_bytes(root);
1065                         ret = btrfs_free_tree_block(trans, btrfs_root_id(root),
1066                                                     right, 0, 1);
1067                         free_extent_buffer_stale(right);
1068                         right = NULL;
1069                         if (ret < 0) {
1070                                 btrfs_abort_transaction(trans, ret);
1071                                 goto out;
1072                         }
1073                 } else {
1074                         struct btrfs_disk_key right_key;
1075                         btrfs_node_key(right, &right_key, 0);
1076                         ret = btrfs_tree_mod_log_insert_key(parent, pslot + 1,
1077                                         BTRFS_MOD_LOG_KEY_REPLACE);
1078                         if (ret < 0) {
1079                                 btrfs_abort_transaction(trans, ret);
1080                                 goto out;
1081                         }
1082                         btrfs_set_node_key(parent, &right_key, pslot + 1);
1083                         btrfs_mark_buffer_dirty(trans, parent);
1084                 }
1085         }
1086         if (btrfs_header_nritems(mid) == 1) {
1087                 /*
1088                  * we're not allowed to leave a node with one item in the
1089                  * tree during a delete.  A deletion from lower in the tree
1090                  * could try to delete the only pointer in this node.
1091                  * So, pull some keys from the left.
1092                  * There has to be a left pointer at this point because
1093                  * otherwise we would have pulled some pointers from the
1094                  * right
1095                  */
1096                 if (unlikely(!left)) {
1097                         btrfs_crit(fs_info,
1098 "missing left child when middle child only has 1 item, parent bytenr %llu level %d mid bytenr %llu root %llu",
1099                                    parent->start, btrfs_header_level(parent),
1100                                    mid->start, btrfs_root_id(root));
1101                         ret = -EUCLEAN;
1102                         btrfs_abort_transaction(trans, ret);
1103                         goto out;
1104                 }
1105                 wret = balance_node_right(trans, mid, left);
1106                 if (wret < 0) {
1107                         ret = wret;
1108                         goto out;
1109                 }
1110                 if (wret == 1) {
1111                         wret = push_node_left(trans, left, mid, 1);
1112                         if (wret < 0)
1113                                 ret = wret;
1114                 }
1115                 BUG_ON(wret == 1);
1116         }
1117         if (btrfs_header_nritems(mid) == 0) {
1118                 btrfs_clear_buffer_dirty(trans, mid);
1119                 btrfs_tree_unlock(mid);
1120                 ret = btrfs_del_ptr(trans, root, path, level + 1, pslot);
1121                 if (ret < 0) {
1122                         free_extent_buffer_stale(mid);
1123                         mid = NULL;
1124                         goto out;
1125                 }
1126                 root_sub_used_bytes(root);
1127                 ret = btrfs_free_tree_block(trans, btrfs_root_id(root), mid, 0, 1);
1128                 free_extent_buffer_stale(mid);
1129                 mid = NULL;
1130                 if (ret < 0) {
1131                         btrfs_abort_transaction(trans, ret);
1132                         goto out;
1133                 }
1134         } else {
1135                 /* update the parent key to reflect our changes */
1136                 struct btrfs_disk_key mid_key;
1137                 btrfs_node_key(mid, &mid_key, 0);
1138                 ret = btrfs_tree_mod_log_insert_key(parent, pslot,
1139                                                     BTRFS_MOD_LOG_KEY_REPLACE);
1140                 if (ret < 0) {
1141                         btrfs_abort_transaction(trans, ret);
1142                         goto out;
1143                 }
1144                 btrfs_set_node_key(parent, &mid_key, pslot);
1145                 btrfs_mark_buffer_dirty(trans, parent);
1146         }
1147
1148         /* update the path */
1149         if (left) {
1150                 if (btrfs_header_nritems(left) > orig_slot) {
1151                         atomic_inc(&left->refs);
1152                         /* left was locked after cow */
1153                         path->nodes[level] = left;
1154                         path->slots[level + 1] -= 1;
1155                         path->slots[level] = orig_slot;
1156                         if (mid) {
1157                                 btrfs_tree_unlock(mid);
1158                                 free_extent_buffer(mid);
1159                         }
1160                 } else {
1161                         orig_slot -= btrfs_header_nritems(left);
1162                         path->slots[level] = orig_slot;
1163                 }
1164         }
1165         /* double check we haven't messed things up */
1166         if (orig_ptr !=
1167             btrfs_node_blockptr(path->nodes[level], path->slots[level]))
1168                 BUG();
1169 out:
1170         if (right) {
1171                 btrfs_tree_unlock(right);
1172                 free_extent_buffer(right);
1173         }
1174         if (left) {
1175                 if (path->nodes[level] != left)
1176                         btrfs_tree_unlock(left);
1177                 free_extent_buffer(left);
1178         }
1179         return ret;
1180 }
1181
1182 /* Node balancing for insertion.  Here we only split or push nodes around
1183  * when they are completely full.  This is also done top down, so we
1184  * have to be pessimistic.
1185  */
1186 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
1187                                           struct btrfs_root *root,
1188                                           struct btrfs_path *path, int level)
1189 {
1190         struct btrfs_fs_info *fs_info = root->fs_info;
1191         struct extent_buffer *right = NULL;
1192         struct extent_buffer *mid;
1193         struct extent_buffer *left = NULL;
1194         struct extent_buffer *parent = NULL;
1195         int ret = 0;
1196         int wret;
1197         int pslot;
1198         int orig_slot = path->slots[level];
1199
1200         if (level == 0)
1201                 return 1;
1202
1203         mid = path->nodes[level];
1204         WARN_ON(btrfs_header_generation(mid) != trans->transid);
1205
1206         if (level < BTRFS_MAX_LEVEL - 1) {
1207                 parent = path->nodes[level + 1];
1208                 pslot = path->slots[level + 1];
1209         }
1210
1211         if (!parent)
1212                 return 1;
1213
1214         /* first, try to make some room in the middle buffer */
1215         if (pslot) {
1216                 u32 left_nr;
1217
1218                 left = btrfs_read_node_slot(parent, pslot - 1);
1219                 if (IS_ERR(left))
1220                         return PTR_ERR(left);
1221
1222                 btrfs_tree_lock_nested(left, BTRFS_NESTING_LEFT);
1223
1224                 left_nr = btrfs_header_nritems(left);
1225                 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
1226                         wret = 1;
1227                 } else {
1228                         ret = btrfs_cow_block(trans, root, left, parent,
1229                                               pslot - 1, &left,
1230                                               BTRFS_NESTING_LEFT_COW);
1231                         if (ret)
1232                                 wret = 1;
1233                         else {
1234                                 wret = push_node_left(trans, left, mid, 0);
1235                         }
1236                 }
1237                 if (wret < 0)
1238                         ret = wret;
1239                 if (wret == 0) {
1240                         struct btrfs_disk_key disk_key;
1241                         orig_slot += left_nr;
1242                         btrfs_node_key(mid, &disk_key, 0);
1243                         ret = btrfs_tree_mod_log_insert_key(parent, pslot,
1244                                         BTRFS_MOD_LOG_KEY_REPLACE);
1245                         if (ret < 0) {
1246                                 btrfs_tree_unlock(left);
1247                                 free_extent_buffer(left);
1248                                 btrfs_abort_transaction(trans, ret);
1249                                 return ret;
1250                         }
1251                         btrfs_set_node_key(parent, &disk_key, pslot);
1252                         btrfs_mark_buffer_dirty(trans, parent);
1253                         if (btrfs_header_nritems(left) > orig_slot) {
1254                                 path->nodes[level] = left;
1255                                 path->slots[level + 1] -= 1;
1256                                 path->slots[level] = orig_slot;
1257                                 btrfs_tree_unlock(mid);
1258                                 free_extent_buffer(mid);
1259                         } else {
1260                                 orig_slot -=
1261                                         btrfs_header_nritems(left);
1262                                 path->slots[level] = orig_slot;
1263                                 btrfs_tree_unlock(left);
1264                                 free_extent_buffer(left);
1265                         }
1266                         return 0;
1267                 }
1268                 btrfs_tree_unlock(left);
1269                 free_extent_buffer(left);
1270         }
1271
1272         /*
1273          * then try to empty the right most buffer into the middle
1274          */
1275         if (pslot + 1 < btrfs_header_nritems(parent)) {
1276                 u32 right_nr;
1277
1278                 right = btrfs_read_node_slot(parent, pslot + 1);
1279                 if (IS_ERR(right))
1280                         return PTR_ERR(right);
1281
1282                 btrfs_tree_lock_nested(right, BTRFS_NESTING_RIGHT);
1283
1284                 right_nr = btrfs_header_nritems(right);
1285                 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
1286                         wret = 1;
1287                 } else {
1288                         ret = btrfs_cow_block(trans, root, right,
1289                                               parent, pslot + 1,
1290                                               &right, BTRFS_NESTING_RIGHT_COW);
1291                         if (ret)
1292                                 wret = 1;
1293                         else {
1294                                 wret = balance_node_right(trans, right, mid);
1295                         }
1296                 }
1297                 if (wret < 0)
1298                         ret = wret;
1299                 if (wret == 0) {
1300                         struct btrfs_disk_key disk_key;
1301
1302                         btrfs_node_key(right, &disk_key, 0);
1303                         ret = btrfs_tree_mod_log_insert_key(parent, pslot + 1,
1304                                         BTRFS_MOD_LOG_KEY_REPLACE);
1305                         if (ret < 0) {
1306                                 btrfs_tree_unlock(right);
1307                                 free_extent_buffer(right);
1308                                 btrfs_abort_transaction(trans, ret);
1309                                 return ret;
1310                         }
1311                         btrfs_set_node_key(parent, &disk_key, pslot + 1);
1312                         btrfs_mark_buffer_dirty(trans, parent);
1313
1314                         if (btrfs_header_nritems(mid) <= orig_slot) {
1315                                 path->nodes[level] = right;
1316                                 path->slots[level + 1] += 1;
1317                                 path->slots[level] = orig_slot -
1318                                         btrfs_header_nritems(mid);
1319                                 btrfs_tree_unlock(mid);
1320                                 free_extent_buffer(mid);
1321                         } else {
1322                                 btrfs_tree_unlock(right);
1323                                 free_extent_buffer(right);
1324                         }
1325                         return 0;
1326                 }
1327                 btrfs_tree_unlock(right);
1328                 free_extent_buffer(right);
1329         }
1330         return 1;
1331 }
1332
1333 /*
1334  * readahead one full node of leaves, finding things that are close
1335  * to the block in 'slot', and triggering ra on them.
1336  */
1337 static void reada_for_search(struct btrfs_fs_info *fs_info,
1338                              struct btrfs_path *path,
1339                              int level, int slot, u64 objectid)
1340 {
1341         struct extent_buffer *node;
1342         struct btrfs_disk_key disk_key;
1343         u32 nritems;
1344         u64 search;
1345         u64 target;
1346         u64 nread = 0;
1347         u64 nread_max;
1348         u32 nr;
1349         u32 blocksize;
1350         u32 nscan = 0;
1351
1352         if (level != 1 && path->reada != READA_FORWARD_ALWAYS)
1353                 return;
1354
1355         if (!path->nodes[level])
1356                 return;
1357
1358         node = path->nodes[level];
1359
1360         /*
1361          * Since the time between visiting leaves is much shorter than the time
1362          * between visiting nodes, limit read ahead of nodes to 1, to avoid too
1363          * much IO at once (possibly random).
1364          */
1365         if (path->reada == READA_FORWARD_ALWAYS) {
1366                 if (level > 1)
1367                         nread_max = node->fs_info->nodesize;
1368                 else
1369                         nread_max = SZ_128K;
1370         } else {
1371                 nread_max = SZ_64K;
1372         }
1373
1374         search = btrfs_node_blockptr(node, slot);
1375         blocksize = fs_info->nodesize;
1376         if (path->reada != READA_FORWARD_ALWAYS) {
1377                 struct extent_buffer *eb;
1378
1379                 eb = find_extent_buffer(fs_info, search);
1380                 if (eb) {
1381                         free_extent_buffer(eb);
1382                         return;
1383                 }
1384         }
1385
1386         target = search;
1387
1388         nritems = btrfs_header_nritems(node);
1389         nr = slot;
1390
1391         while (1) {
1392                 if (path->reada == READA_BACK) {
1393                         if (nr == 0)
1394                                 break;
1395                         nr--;
1396                 } else if (path->reada == READA_FORWARD ||
1397                            path->reada == READA_FORWARD_ALWAYS) {
1398                         nr++;
1399                         if (nr >= nritems)
1400                                 break;
1401                 }
1402                 if (path->reada == READA_BACK && objectid) {
1403                         btrfs_node_key(node, &disk_key, nr);
1404                         if (btrfs_disk_key_objectid(&disk_key) != objectid)
1405                                 break;
1406                 }
1407                 search = btrfs_node_blockptr(node, nr);
1408                 if (path->reada == READA_FORWARD_ALWAYS ||
1409                     (search <= target && target - search <= 65536) ||
1410                     (search > target && search - target <= 65536)) {
1411                         btrfs_readahead_node_child(node, nr);
1412                         nread += blocksize;
1413                 }
1414                 nscan++;
1415                 if (nread > nread_max || nscan > 32)
1416                         break;
1417         }
1418 }
1419
1420 static noinline void reada_for_balance(struct btrfs_path *path, int level)
1421 {
1422         struct extent_buffer *parent;
1423         int slot;
1424         int nritems;
1425
1426         parent = path->nodes[level + 1];
1427         if (!parent)
1428                 return;
1429
1430         nritems = btrfs_header_nritems(parent);
1431         slot = path->slots[level + 1];
1432
1433         if (slot > 0)
1434                 btrfs_readahead_node_child(parent, slot - 1);
1435         if (slot + 1 < nritems)
1436                 btrfs_readahead_node_child(parent, slot + 1);
1437 }
1438
1439
1440 /*
1441  * when we walk down the tree, it is usually safe to unlock the higher layers
1442  * in the tree.  The exceptions are when our path goes through slot 0, because
1443  * operations on the tree might require changing key pointers higher up in the
1444  * tree.
1445  *
1446  * callers might also have set path->keep_locks, which tells this code to keep
1447  * the lock if the path points to the last slot in the block.  This is part of
1448  * walking through the tree, and selecting the next slot in the higher block.
1449  *
1450  * lowest_unlock sets the lowest level in the tree we're allowed to unlock.  so
1451  * if lowest_unlock is 1, level 0 won't be unlocked
1452  */
1453 static noinline void unlock_up(struct btrfs_path *path, int level,
1454                                int lowest_unlock, int min_write_lock_level,
1455                                int *write_lock_level)
1456 {
1457         int i;
1458         int skip_level = level;
1459         bool check_skip = true;
1460
1461         for (i = level; i < BTRFS_MAX_LEVEL; i++) {
1462                 if (!path->nodes[i])
1463                         break;
1464                 if (!path->locks[i])
1465                         break;
1466
1467                 if (check_skip) {
1468                         if (path->slots[i] == 0) {
1469                                 skip_level = i + 1;
1470                                 continue;
1471                         }
1472
1473                         if (path->keep_locks) {
1474                                 u32 nritems;
1475
1476                                 nritems = btrfs_header_nritems(path->nodes[i]);
1477                                 if (nritems < 1 || path->slots[i] >= nritems - 1) {
1478                                         skip_level = i + 1;
1479                                         continue;
1480                                 }
1481                         }
1482                 }
1483
1484                 if (i >= lowest_unlock && i > skip_level) {
1485                         check_skip = false;
1486                         btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
1487                         path->locks[i] = 0;
1488                         if (write_lock_level &&
1489                             i > min_write_lock_level &&
1490                             i <= *write_lock_level) {
1491                                 *write_lock_level = i - 1;
1492                         }
1493                 }
1494         }
1495 }
1496
1497 /*
1498  * Helper function for btrfs_search_slot() and other functions that do a search
1499  * on a btree. The goal is to find a tree block in the cache (the radix tree at
1500  * fs_info->buffer_radix), but if we can't find it, or it's not up to date, read
1501  * its pages from disk.
1502  *
1503  * Returns -EAGAIN, with the path unlocked, if the caller needs to repeat the
1504  * whole btree search, starting again from the current root node.
1505  */
1506 static int
1507 read_block_for_search(struct btrfs_root *root, struct btrfs_path *p,
1508                       struct extent_buffer **eb_ret, int slot,
1509                       const struct btrfs_key *key)
1510 {
1511         struct btrfs_fs_info *fs_info = root->fs_info;
1512         struct btrfs_tree_parent_check check = { 0 };
1513         u64 blocknr;
1514         struct extent_buffer *tmp = NULL;
1515         int ret = 0;
1516         int parent_level;
1517         int err;
1518         bool read_tmp = false;
1519         bool tmp_locked = false;
1520         bool path_released = false;
1521
1522         blocknr = btrfs_node_blockptr(*eb_ret, slot);
1523         parent_level = btrfs_header_level(*eb_ret);
1524         btrfs_node_key_to_cpu(*eb_ret, &check.first_key, slot);
1525         check.has_first_key = true;
1526         check.level = parent_level - 1;
1527         check.transid = btrfs_node_ptr_generation(*eb_ret, slot);
1528         check.owner_root = btrfs_root_id(root);
1529
1530         /*
1531          * If we need to read an extent buffer from disk and we are holding locks
1532          * on upper level nodes, we unlock all the upper nodes before reading the
1533          * extent buffer, and then return -EAGAIN to the caller as it needs to
1534          * restart the search. We don't release the lock on the current level
1535          * because we need to walk this node to figure out which blocks to read.
1536          */
1537         tmp = find_extent_buffer(fs_info, blocknr);
1538         if (tmp) {
1539                 if (p->reada == READA_FORWARD_ALWAYS)
1540                         reada_for_search(fs_info, p, parent_level, slot, key->objectid);
1541
1542                 /* first we do an atomic uptodate check */
1543                 if (btrfs_buffer_uptodate(tmp, check.transid, 1) > 0) {
1544                         /*
1545                          * Do extra check for first_key, eb can be stale due to
1546                          * being cached, read from scrub, or have multiple
1547                          * parents (shared tree blocks).
1548                          */
1549                         if (btrfs_verify_level_key(tmp, &check)) {
1550                                 ret = -EUCLEAN;
1551                                 goto out;
1552                         }
1553                         *eb_ret = tmp;
1554                         tmp = NULL;
1555                         ret = 0;
1556                         goto out;
1557                 }
1558
1559                 if (p->nowait) {
1560                         ret = -EAGAIN;
1561                         goto out;
1562                 }
1563
1564                 if (!p->skip_locking) {
1565                         btrfs_unlock_up_safe(p, parent_level + 1);
1566                         tmp_locked = true;
1567                         btrfs_tree_read_lock(tmp);
1568                         btrfs_release_path(p);
1569                         ret = -EAGAIN;
1570                         path_released = true;
1571                 }
1572
1573                 /* Now we're allowed to do a blocking uptodate check. */
1574                 err = btrfs_read_extent_buffer(tmp, &check);
1575                 if (err) {
1576                         ret = err;
1577                         goto out;
1578                 }
1579
1580                 if (ret == 0) {
1581                         ASSERT(!tmp_locked);
1582                         *eb_ret = tmp;
1583                         tmp = NULL;
1584                 }
1585                 goto out;
1586         } else if (p->nowait) {
1587                 ret = -EAGAIN;
1588                 goto out;
1589         }
1590
1591         if (!p->skip_locking) {
1592                 btrfs_unlock_up_safe(p, parent_level + 1);
1593                 ret = -EAGAIN;
1594         }
1595
1596         if (p->reada != READA_NONE)
1597                 reada_for_search(fs_info, p, parent_level, slot, key->objectid);
1598
1599         tmp = btrfs_find_create_tree_block(fs_info, blocknr, check.owner_root, check.level);
1600         if (IS_ERR(tmp)) {
1601                 ret = PTR_ERR(tmp);
1602                 tmp = NULL;
1603                 goto out;
1604         }
1605         read_tmp = true;
1606
1607         if (!p->skip_locking) {
1608                 ASSERT(ret == -EAGAIN);
1609                 tmp_locked = true;
1610                 btrfs_tree_read_lock(tmp);
1611                 btrfs_release_path(p);
1612                 path_released = true;
1613         }
1614
1615         /* Now we're allowed to do a blocking uptodate check. */
1616         err = btrfs_read_extent_buffer(tmp, &check);
1617         if (err) {
1618                 ret = err;
1619                 goto out;
1620         }
1621
1622         /*
1623          * If the read above didn't mark this buffer up to date,
1624          * it will never end up being up to date.  Set ret to EIO now
1625          * and give up so that our caller doesn't loop forever
1626          * on our EAGAINs.
1627          */
1628         if (!extent_buffer_uptodate(tmp)) {
1629                 ret = -EIO;
1630                 goto out;
1631         }
1632
1633         if (ret == 0) {
1634                 ASSERT(!tmp_locked);
1635                 *eb_ret = tmp;
1636                 tmp = NULL;
1637         }
1638 out:
1639         if (tmp) {
1640                 if (tmp_locked)
1641                         btrfs_tree_read_unlock(tmp);
1642                 if (read_tmp && ret && ret != -EAGAIN)
1643                         free_extent_buffer_stale(tmp);
1644                 else
1645                         free_extent_buffer(tmp);
1646         }
1647         if (ret && !path_released)
1648                 btrfs_release_path(p);
1649
1650         return ret;
1651 }
1652
1653 /*
1654  * helper function for btrfs_search_slot.  This does all of the checks
1655  * for node-level blocks and does any balancing required based on
1656  * the ins_len.
1657  *
1658  * If no extra work was required, zero is returned.  If we had to
1659  * drop the path, -EAGAIN is returned and btrfs_search_slot must
1660  * start over
1661  */
1662 static int
1663 setup_nodes_for_search(struct btrfs_trans_handle *trans,
1664                        struct btrfs_root *root, struct btrfs_path *p,
1665                        struct extent_buffer *b, int level, int ins_len,
1666                        int *write_lock_level)
1667 {
1668         struct btrfs_fs_info *fs_info = root->fs_info;
1669         int ret = 0;
1670
1671         if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
1672             BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) {
1673
1674                 if (*write_lock_level < level + 1) {
1675                         *write_lock_level = level + 1;
1676                         btrfs_release_path(p);
1677                         return -EAGAIN;
1678                 }
1679
1680                 reada_for_balance(p, level);
1681                 ret = split_node(trans, root, p, level);
1682
1683                 b = p->nodes[level];
1684         } else if (ins_len < 0 && btrfs_header_nritems(b) <
1685                    BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 2) {
1686
1687                 if (*write_lock_level < level + 1) {
1688                         *write_lock_level = level + 1;
1689                         btrfs_release_path(p);
1690                         return -EAGAIN;
1691                 }
1692
1693                 reada_for_balance(p, level);
1694                 ret = balance_level(trans, root, p, level);
1695                 if (ret)
1696                         return ret;
1697
1698                 b = p->nodes[level];
1699                 if (!b) {
1700                         btrfs_release_path(p);
1701                         return -EAGAIN;
1702                 }
1703                 BUG_ON(btrfs_header_nritems(b) == 1);
1704         }
1705         return ret;
1706 }
1707
1708 int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
1709                 u64 iobjectid, u64 ioff, u8 key_type,
1710                 struct btrfs_key *found_key)
1711 {
1712         int ret;
1713         struct btrfs_key key;
1714         struct extent_buffer *eb;
1715
1716         ASSERT(path);
1717         ASSERT(found_key);
1718
1719         key.type = key_type;
1720         key.objectid = iobjectid;
1721         key.offset = ioff;
1722
1723         ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
1724         if (ret < 0)
1725                 return ret;
1726
1727         eb = path->nodes[0];
1728         if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
1729                 ret = btrfs_next_leaf(fs_root, path);
1730                 if (ret)
1731                         return ret;
1732                 eb = path->nodes[0];
1733         }
1734
1735         btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
1736         if (found_key->type != key.type ||
1737                         found_key->objectid != key.objectid)
1738                 return 1;
1739
1740         return 0;
1741 }
1742
1743 static struct extent_buffer *btrfs_search_slot_get_root(struct btrfs_root *root,
1744                                                         struct btrfs_path *p,
1745                                                         int write_lock_level)
1746 {
1747         struct extent_buffer *b;
1748         int root_lock = 0;
1749         int level = 0;
1750
1751         if (p->search_commit_root) {
1752                 b = root->commit_root;
1753                 atomic_inc(&b->refs);
1754                 level = btrfs_header_level(b);
1755                 /*
1756                  * Ensure that all callers have set skip_locking when
1757                  * p->search_commit_root = 1.
1758                  */
1759                 ASSERT(p->skip_locking == 1);
1760
1761                 goto out;
1762         }
1763
1764         if (p->skip_locking) {
1765                 b = btrfs_root_node(root);
1766                 level = btrfs_header_level(b);
1767                 goto out;
1768         }
1769
1770         /* We try very hard to do read locks on the root */
1771         root_lock = BTRFS_READ_LOCK;
1772
1773         /*
1774          * If the level is set to maximum, we can skip trying to get the read
1775          * lock.
1776          */
1777         if (write_lock_level < BTRFS_MAX_LEVEL) {
1778                 /*
1779                  * We don't know the level of the root node until we actually
1780                  * have it read locked
1781                  */
1782                 if (p->nowait) {
1783                         b = btrfs_try_read_lock_root_node(root);
1784                         if (IS_ERR(b))
1785                                 return b;
1786                 } else {
1787                         b = btrfs_read_lock_root_node(root);
1788                 }
1789                 level = btrfs_header_level(b);
1790                 if (level > write_lock_level)
1791                         goto out;
1792
1793                 /* Whoops, must trade for write lock */
1794                 btrfs_tree_read_unlock(b);
1795                 free_extent_buffer(b);
1796         }
1797
1798         b = btrfs_lock_root_node(root);
1799         root_lock = BTRFS_WRITE_LOCK;
1800
1801         /* The level might have changed, check again */
1802         level = btrfs_header_level(b);
1803
1804 out:
1805         /*
1806          * The root may have failed to write out at some point, and thus is no
1807          * longer valid, return an error in this case.
1808          */
1809         if (!extent_buffer_uptodate(b)) {
1810                 if (root_lock)
1811                         btrfs_tree_unlock_rw(b, root_lock);
1812                 free_extent_buffer(b);
1813                 return ERR_PTR(-EIO);
1814         }
1815
1816         p->nodes[level] = b;
1817         if (!p->skip_locking)
1818                 p->locks[level] = root_lock;
1819         /*
1820          * Callers are responsible for dropping b's references.
1821          */
1822         return b;
1823 }
1824
1825 /*
1826  * Replace the extent buffer at the lowest level of the path with a cloned
1827  * version. The purpose is to be able to use it safely, after releasing the
1828  * commit root semaphore, even if relocation is happening in parallel, the
1829  * transaction used for relocation is committed and the extent buffer is
1830  * reallocated in the next transaction.
1831  *
1832  * This is used in a context where the caller does not prevent transaction
1833  * commits from happening, either by holding a transaction handle or holding
1834  * some lock, while it's doing searches through a commit root.
1835  * At the moment it's only used for send operations.
1836  */
1837 static int finish_need_commit_sem_search(struct btrfs_path *path)
1838 {
1839         const int i = path->lowest_level;
1840         const int slot = path->slots[i];
1841         struct extent_buffer *lowest = path->nodes[i];
1842         struct extent_buffer *clone;
1843
1844         ASSERT(path->need_commit_sem);
1845
1846         if (!lowest)
1847                 return 0;
1848
1849         lockdep_assert_held_read(&lowest->fs_info->commit_root_sem);
1850
1851         clone = btrfs_clone_extent_buffer(lowest);
1852         if (!clone)
1853                 return -ENOMEM;
1854
1855         btrfs_release_path(path);
1856         path->nodes[i] = clone;
1857         path->slots[i] = slot;
1858
1859         return 0;
1860 }
1861
1862 static inline int search_for_key_slot(struct extent_buffer *eb,
1863                                       int search_low_slot,
1864                                       const struct btrfs_key *key,
1865                                       int prev_cmp,
1866                                       int *slot)
1867 {
1868         /*
1869          * If a previous call to btrfs_bin_search() on a parent node returned an
1870          * exact match (prev_cmp == 0), we can safely assume the target key will
1871          * always be at slot 0 on lower levels, since each key pointer
1872          * (struct btrfs_key_ptr) refers to the lowest key accessible from the
1873          * subtree it points to. Thus we can skip searching lower levels.
1874          */
1875         if (prev_cmp == 0) {
1876                 *slot = 0;
1877                 return 0;
1878         }
1879
1880         return btrfs_bin_search(eb, search_low_slot, key, slot);
1881 }
1882
1883 static int search_leaf(struct btrfs_trans_handle *trans,
1884                        struct btrfs_root *root,
1885                        const struct btrfs_key *key,
1886                        struct btrfs_path *path,
1887                        int ins_len,
1888                        int prev_cmp)
1889 {
1890         struct extent_buffer *leaf = path->nodes[0];
1891         int leaf_free_space = -1;
1892         int search_low_slot = 0;
1893         int ret;
1894         bool do_bin_search = true;
1895
1896         /*
1897          * If we are doing an insertion, the leaf has enough free space and the
1898          * destination slot for the key is not slot 0, then we can unlock our
1899          * write lock on the parent, and any other upper nodes, before doing the
1900          * binary search on the leaf (with search_for_key_slot()), allowing other
1901          * tasks to lock the parent and any other upper nodes.
1902          */
1903         if (ins_len > 0) {
1904                 /*
1905                  * Cache the leaf free space, since we will need it later and it
1906                  * will not change until then.
1907                  */
1908                 leaf_free_space = btrfs_leaf_free_space(leaf);
1909
1910                 /*
1911                  * !path->locks[1] means we have a single node tree, the leaf is
1912                  * the root of the tree.
1913                  */
1914                 if (path->locks[1] && leaf_free_space >= ins_len) {
1915                         struct btrfs_disk_key first_key;
1916
1917                         ASSERT(btrfs_header_nritems(leaf) > 0);
1918                         btrfs_item_key(leaf, &first_key, 0);
1919
1920                         /*
1921                          * Doing the extra comparison with the first key is cheap,
1922                          * taking into account that the first key is very likely
1923                          * already in a cache line because it immediately follows
1924                          * the extent buffer's header and we have recently accessed
1925                          * the header's level field.
1926                          */
1927                         ret = btrfs_comp_keys(&first_key, key);
1928                         if (ret < 0) {
1929                                 /*
1930                                  * The first key is smaller than the key we want
1931                                  * to insert, so we are safe to unlock all upper
1932                                  * nodes and we have to do the binary search.
1933                                  *
1934                                  * We do use btrfs_unlock_up_safe() and not
1935                                  * unlock_up() because the later does not unlock
1936                                  * nodes with a slot of 0 - we can safely unlock
1937                                  * any node even if its slot is 0 since in this
1938                                  * case the key does not end up at slot 0 of the
1939                                  * leaf and there's no need to split the leaf.
1940                                  */
1941                                 btrfs_unlock_up_safe(path, 1);
1942                                 search_low_slot = 1;
1943                         } else {
1944                                 /*
1945                                  * The first key is >= then the key we want to
1946                                  * insert, so we can skip the binary search as
1947                                  * the target key will be at slot 0.
1948                                  *
1949                                  * We can not unlock upper nodes when the key is
1950                                  * less than the first key, because we will need
1951                                  * to update the key at slot 0 of the parent node
1952                                  * and possibly of other upper nodes too.
1953                                  * If the key matches the first key, then we can
1954                                  * unlock all the upper nodes, using
1955                                  * btrfs_unlock_up_safe() instead of unlock_up()
1956                                  * as stated above.
1957                                  */
1958                                 if (ret == 0)
1959                                         btrfs_unlock_up_safe(path, 1);
1960                                 /*
1961                                  * ret is already 0 or 1, matching the result of
1962                                  * a btrfs_bin_search() call, so there is no need
1963                                  * to adjust it.
1964                                  */
1965                                 do_bin_search = false;
1966                                 path->slots[0] = 0;
1967                         }
1968                 }
1969         }
1970
1971         if (do_bin_search) {
1972                 ret = search_for_key_slot(leaf, search_low_slot, key,
1973                                           prev_cmp, &path->slots[0]);
1974                 if (ret < 0)
1975                         return ret;
1976         }
1977
1978         if (ins_len > 0) {
1979                 /*
1980                  * Item key already exists. In this case, if we are allowed to
1981                  * insert the item (for example, in dir_item case, item key
1982                  * collision is allowed), it will be merged with the original
1983                  * item. Only the item size grows, no new btrfs item will be
1984                  * added. If search_for_extension is not set, ins_len already
1985                  * accounts the size btrfs_item, deduct it here so leaf space
1986                  * check will be correct.
1987                  */
1988                 if (ret == 0 && !path->search_for_extension) {
1989                         ASSERT(ins_len >= sizeof(struct btrfs_item));
1990                         ins_len -= sizeof(struct btrfs_item);
1991                 }
1992
1993                 ASSERT(leaf_free_space >= 0);
1994
1995                 if (leaf_free_space < ins_len) {
1996                         int err;
1997
1998                         err = split_leaf(trans, root, key, path, ins_len,
1999                                          (ret == 0));
2000                         ASSERT(err <= 0);
2001                         if (WARN_ON(err > 0))
2002                                 err = -EUCLEAN;
2003                         if (err)
2004                                 ret = err;
2005                 }
2006         }
2007
2008         return ret;
2009 }
2010
2011 /*
2012  * Look for a key in a tree and perform necessary modifications to preserve
2013  * tree invariants.
2014  *
2015  * @trans:      Handle of transaction, used when modifying the tree
2016  * @p:          Holds all btree nodes along the search path
2017  * @root:       The root node of the tree
2018  * @key:        The key we are looking for
2019  * @ins_len:    Indicates purpose of search:
2020  *              >0  for inserts it's size of item inserted (*)
2021  *              <0  for deletions
2022  *               0  for plain searches, not modifying the tree
2023  *
2024  *              (*) If size of item inserted doesn't include
2025  *              sizeof(struct btrfs_item), then p->search_for_extension must
2026  *              be set.
2027  * @cow:        boolean should CoW operations be performed. Must always be 1
2028  *              when modifying the tree.
2029  *
2030  * If @ins_len > 0, nodes and leaves will be split as we walk down the tree.
2031  * If @ins_len < 0, nodes will be merged as we walk down the tree (if possible)
2032  *
2033  * If @key is found, 0 is returned and you can find the item in the leaf level
2034  * of the path (level 0)
2035  *
2036  * If @key isn't found, 1 is returned and the leaf level of the path (level 0)
2037  * points to the slot where it should be inserted
2038  *
2039  * If an error is encountered while searching the tree a negative error number
2040  * is returned
2041  */
2042 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2043                       const struct btrfs_key *key, struct btrfs_path *p,
2044                       int ins_len, int cow)
2045 {
2046         struct btrfs_fs_info *fs_info;
2047         struct extent_buffer *b;
2048         int slot;
2049         int ret;
2050         int err;
2051         int level;
2052         int lowest_unlock = 1;
2053         /* everything at write_lock_level or lower must be write locked */
2054         int write_lock_level = 0;
2055         u8 lowest_level = 0;
2056         int min_write_lock_level;
2057         int prev_cmp;
2058
2059         if (!root)
2060                 return -EINVAL;
2061
2062         fs_info = root->fs_info;
2063         might_sleep();
2064
2065         lowest_level = p->lowest_level;
2066         WARN_ON(lowest_level && ins_len > 0);
2067         WARN_ON(p->nodes[0] != NULL);
2068         BUG_ON(!cow && ins_len);
2069
2070         /*
2071          * For now only allow nowait for read only operations.  There's no
2072          * strict reason why we can't, we just only need it for reads so it's
2073          * only implemented for reads.
2074          */
2075         ASSERT(!p->nowait || !cow);
2076
2077         if (ins_len < 0) {
2078                 lowest_unlock = 2;
2079
2080                 /* when we are removing items, we might have to go up to level
2081                  * two as we update tree pointers  Make sure we keep write
2082                  * for those levels as well
2083                  */
2084                 write_lock_level = 2;
2085         } else if (ins_len > 0) {
2086                 /*
2087                  * for inserting items, make sure we have a write lock on
2088                  * level 1 so we can update keys
2089                  */
2090                 write_lock_level = 1;
2091         }
2092
2093         if (!cow)
2094                 write_lock_level = -1;
2095
2096         if (cow && (p->keep_locks || p->lowest_level))
2097                 write_lock_level = BTRFS_MAX_LEVEL;
2098
2099         min_write_lock_level = write_lock_level;
2100
2101         if (p->need_commit_sem) {
2102                 ASSERT(p->search_commit_root);
2103                 if (p->nowait) {
2104                         if (!down_read_trylock(&fs_info->commit_root_sem))
2105                                 return -EAGAIN;
2106                 } else {
2107                         down_read(&fs_info->commit_root_sem);
2108                 }
2109         }
2110
2111 again:
2112         prev_cmp = -1;
2113         b = btrfs_search_slot_get_root(root, p, write_lock_level);
2114         if (IS_ERR(b)) {
2115                 ret = PTR_ERR(b);
2116                 goto done;
2117         }
2118
2119         while (b) {
2120                 int dec = 0;
2121
2122                 level = btrfs_header_level(b);
2123
2124                 if (cow) {
2125                         bool last_level = (level == (BTRFS_MAX_LEVEL - 1));
2126
2127                         /*
2128                          * if we don't really need to cow this block
2129                          * then we don't want to set the path blocking,
2130                          * so we test it here
2131                          */
2132                         if (!should_cow_block(trans, root, b))
2133                                 goto cow_done;
2134
2135                         /*
2136                          * must have write locks on this node and the
2137                          * parent
2138                          */
2139                         if (level > write_lock_level ||
2140                             (level + 1 > write_lock_level &&
2141                             level + 1 < BTRFS_MAX_LEVEL &&
2142                             p->nodes[level + 1])) {
2143                                 write_lock_level = level + 1;
2144                                 btrfs_release_path(p);
2145                                 goto again;
2146                         }
2147
2148                         if (last_level)
2149                                 err = btrfs_cow_block(trans, root, b, NULL, 0,
2150                                                       &b,
2151                                                       BTRFS_NESTING_COW);
2152                         else
2153                                 err = btrfs_cow_block(trans, root, b,
2154                                                       p->nodes[level + 1],
2155                                                       p->slots[level + 1], &b,
2156                                                       BTRFS_NESTING_COW);
2157                         if (err) {
2158                                 ret = err;
2159                                 goto done;
2160                         }
2161                 }
2162 cow_done:
2163                 p->nodes[level] = b;
2164
2165                 /*
2166                  * we have a lock on b and as long as we aren't changing
2167                  * the tree, there is no way to for the items in b to change.
2168                  * It is safe to drop the lock on our parent before we
2169                  * go through the expensive btree search on b.
2170                  *
2171                  * If we're inserting or deleting (ins_len != 0), then we might
2172                  * be changing slot zero, which may require changing the parent.
2173                  * So, we can't drop the lock until after we know which slot
2174                  * we're operating on.
2175                  */
2176                 if (!ins_len && !p->keep_locks) {
2177                         int u = level + 1;
2178
2179                         if (u < BTRFS_MAX_LEVEL && p->locks[u]) {
2180                                 btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]);
2181                                 p->locks[u] = 0;
2182                         }
2183                 }
2184
2185                 if (level == 0) {
2186                         if (ins_len > 0)
2187                                 ASSERT(write_lock_level >= 1);
2188
2189                         ret = search_leaf(trans, root, key, p, ins_len, prev_cmp);
2190                         if (!p->search_for_split)
2191                                 unlock_up(p, level, lowest_unlock,
2192                                           min_write_lock_level, NULL);
2193                         goto done;
2194                 }
2195
2196                 ret = search_for_key_slot(b, 0, key, prev_cmp, &slot);
2197                 if (ret < 0)
2198                         goto done;
2199                 prev_cmp = ret;
2200
2201                 if (ret && slot > 0) {
2202                         dec = 1;
2203                         slot--;
2204                 }
2205                 p->slots[level] = slot;
2206                 err = setup_nodes_for_search(trans, root, p, b, level, ins_len,
2207                                              &write_lock_level);
2208                 if (err == -EAGAIN)
2209                         goto again;
2210                 if (err) {
2211                         ret = err;
2212                         goto done;
2213                 }
2214                 b = p->nodes[level];
2215                 slot = p->slots[level];
2216
2217                 /*
2218                  * Slot 0 is special, if we change the key we have to update
2219                  * the parent pointer which means we must have a write lock on
2220                  * the parent
2221                  */
2222                 if (slot == 0 && ins_len && write_lock_level < level + 1) {
2223                         write_lock_level = level + 1;
2224                         btrfs_release_path(p);
2225                         goto again;
2226                 }
2227
2228                 unlock_up(p, level, lowest_unlock, min_write_lock_level,
2229                           &write_lock_level);
2230
2231                 if (level == lowest_level) {
2232                         if (dec)
2233                                 p->slots[level]++;
2234                         goto done;
2235                 }
2236
2237                 err = read_block_for_search(root, p, &b, slot, key);
2238                 if (err == -EAGAIN && !p->nowait)
2239                         goto again;
2240                 if (err) {
2241                         ret = err;
2242                         goto done;
2243                 }
2244
2245                 if (!p->skip_locking) {
2246                         level = btrfs_header_level(b);
2247
2248                         btrfs_maybe_reset_lockdep_class(root, b);
2249
2250                         if (level <= write_lock_level) {
2251                                 btrfs_tree_lock(b);
2252                                 p->locks[level] = BTRFS_WRITE_LOCK;
2253                         } else {
2254                                 if (p->nowait) {
2255                                         if (!btrfs_try_tree_read_lock(b)) {
2256                                                 free_extent_buffer(b);
2257                                                 ret = -EAGAIN;
2258                                                 goto done;
2259                                         }
2260                                 } else {
2261                                         btrfs_tree_read_lock(b);
2262                                 }
2263                                 p->locks[level] = BTRFS_READ_LOCK;
2264                         }
2265                         p->nodes[level] = b;
2266                 }
2267         }
2268         ret = 1;
2269 done:
2270         if (ret < 0 && !p->skip_release_on_error)
2271                 btrfs_release_path(p);
2272
2273         if (p->need_commit_sem) {
2274                 int ret2;
2275
2276                 ret2 = finish_need_commit_sem_search(p);
2277                 up_read(&fs_info->commit_root_sem);
2278                 if (ret2)
2279                         ret = ret2;
2280         }
2281
2282         return ret;
2283 }
2284 ALLOW_ERROR_INJECTION(btrfs_search_slot, ERRNO);
2285
2286 /*
2287  * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2288  * current state of the tree together with the operations recorded in the tree
2289  * modification log to search for the key in a previous version of this tree, as
2290  * denoted by the time_seq parameter.
2291  *
2292  * Naturally, there is no support for insert, delete or cow operations.
2293  *
2294  * The resulting path and return value will be set up as if we called
2295  * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2296  */
2297 int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key,
2298                           struct btrfs_path *p, u64 time_seq)
2299 {
2300         struct btrfs_fs_info *fs_info = root->fs_info;
2301         struct extent_buffer *b;
2302         int slot;
2303         int ret;
2304         int err;
2305         int level;
2306         int lowest_unlock = 1;
2307         u8 lowest_level = 0;
2308
2309         lowest_level = p->lowest_level;
2310         WARN_ON(p->nodes[0] != NULL);
2311         ASSERT(!p->nowait);
2312
2313         if (p->search_commit_root) {
2314                 BUG_ON(time_seq);
2315                 return btrfs_search_slot(NULL, root, key, p, 0, 0);
2316         }
2317
2318 again:
2319         b = btrfs_get_old_root(root, time_seq);
2320         if (!b) {
2321                 ret = -EIO;
2322                 goto done;
2323         }
2324         level = btrfs_header_level(b);
2325         p->locks[level] = BTRFS_READ_LOCK;
2326
2327         while (b) {
2328                 int dec = 0;
2329
2330                 level = btrfs_header_level(b);
2331                 p->nodes[level] = b;
2332
2333                 /*
2334                  * we have a lock on b and as long as we aren't changing
2335                  * the tree, there is no way to for the items in b to change.
2336                  * It is safe to drop the lock on our parent before we
2337                  * go through the expensive btree search on b.
2338                  */
2339                 btrfs_unlock_up_safe(p, level + 1);
2340
2341                 ret = btrfs_bin_search(b, 0, key, &slot);
2342                 if (ret < 0)
2343                         goto done;
2344
2345                 if (level == 0) {
2346                         p->slots[level] = slot;
2347                         unlock_up(p, level, lowest_unlock, 0, NULL);
2348                         goto done;
2349                 }
2350
2351                 if (ret && slot > 0) {
2352                         dec = 1;
2353                         slot--;
2354                 }
2355                 p->slots[level] = slot;
2356                 unlock_up(p, level, lowest_unlock, 0, NULL);
2357
2358                 if (level == lowest_level) {
2359                         if (dec)
2360                                 p->slots[level]++;
2361                         goto done;
2362                 }
2363
2364                 err = read_block_for_search(root, p, &b, slot, key);
2365                 if (err == -EAGAIN && !p->nowait)
2366                         goto again;
2367                 if (err) {
2368                         ret = err;
2369                         goto done;
2370                 }
2371
2372                 level = btrfs_header_level(b);
2373                 btrfs_tree_read_lock(b);
2374                 b = btrfs_tree_mod_log_rewind(fs_info, b, time_seq);
2375                 if (!b) {
2376                         ret = -ENOMEM;
2377                         goto done;
2378                 }
2379                 p->locks[level] = BTRFS_READ_LOCK;
2380                 p->nodes[level] = b;
2381         }
2382         ret = 1;
2383 done:
2384         if (ret < 0)
2385                 btrfs_release_path(p);
2386
2387         return ret;
2388 }
2389
2390 /*
2391  * Search the tree again to find a leaf with smaller keys.
2392  * Returns 0 if it found something.
2393  * Returns 1 if there are no smaller keys.
2394  * Returns < 0 on error.
2395  *
2396  * This may release the path, and so you may lose any locks held at the
2397  * time you call it.
2398  */
2399 static int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
2400 {
2401         struct btrfs_key key;
2402         struct btrfs_key orig_key;
2403         struct btrfs_disk_key found_key;
2404         int ret;
2405
2406         btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
2407         orig_key = key;
2408
2409         if (key.offset > 0) {
2410                 key.offset--;
2411         } else if (key.type > 0) {
2412                 key.type--;
2413                 key.offset = (u64)-1;
2414         } else if (key.objectid > 0) {
2415                 key.objectid--;
2416                 key.type = (u8)-1;
2417                 key.offset = (u64)-1;
2418         } else {
2419                 return 1;
2420         }
2421
2422         btrfs_release_path(path);
2423         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2424         if (ret <= 0)
2425                 return ret;
2426
2427         /*
2428          * Previous key not found. Even if we were at slot 0 of the leaf we had
2429          * before releasing the path and calling btrfs_search_slot(), we now may
2430          * be in a slot pointing to the same original key - this can happen if
2431          * after we released the path, one of more items were moved from a
2432          * sibling leaf into the front of the leaf we had due to an insertion
2433          * (see push_leaf_right()).
2434          * If we hit this case and our slot is > 0 and just decrement the slot
2435          * so that the caller does not process the same key again, which may or
2436          * may not break the caller, depending on its logic.
2437          */
2438         if (path->slots[0] < btrfs_header_nritems(path->nodes[0])) {
2439                 btrfs_item_key(path->nodes[0], &found_key, path->slots[0]);
2440                 ret = btrfs_comp_keys(&found_key, &orig_key);
2441                 if (ret == 0) {
2442                         if (path->slots[0] > 0) {
2443                                 path->slots[0]--;
2444                                 return 0;
2445                         }
2446                         /*
2447                          * At slot 0, same key as before, it means orig_key is
2448                          * the lowest, leftmost, key in the tree. We're done.
2449                          */
2450                         return 1;
2451                 }
2452         }
2453
2454         btrfs_item_key(path->nodes[0], &found_key, 0);
2455         ret = btrfs_comp_keys(&found_key, &key);
2456         /*
2457          * We might have had an item with the previous key in the tree right
2458          * before we released our path. And after we released our path, that
2459          * item might have been pushed to the first slot (0) of the leaf we
2460          * were holding due to a tree balance. Alternatively, an item with the
2461          * previous key can exist as the only element of a leaf (big fat item).
2462          * Therefore account for these 2 cases, so that our callers (like
2463          * btrfs_previous_item) don't miss an existing item with a key matching
2464          * the previous key we computed above.
2465          */
2466         if (ret <= 0)
2467                 return 0;
2468         return 1;
2469 }
2470
2471 /*
2472  * helper to use instead of search slot if no exact match is needed but
2473  * instead the next or previous item should be returned.
2474  * When find_higher is true, the next higher item is returned, the next lower
2475  * otherwise.
2476  * When return_any and find_higher are both true, and no higher item is found,
2477  * return the next lower instead.
2478  * When return_any is true and find_higher is false, and no lower item is found,
2479  * return the next higher instead.
2480  * It returns 0 if any item is found, 1 if none is found (tree empty), and
2481  * < 0 on error
2482  */
2483 int btrfs_search_slot_for_read(struct btrfs_root *root,
2484                                const struct btrfs_key *key,
2485                                struct btrfs_path *p, int find_higher,
2486                                int return_any)
2487 {
2488         int ret;
2489         struct extent_buffer *leaf;
2490
2491 again:
2492         ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
2493         if (ret <= 0)
2494                 return ret;
2495         /*
2496          * a return value of 1 means the path is at the position where the
2497          * item should be inserted. Normally this is the next bigger item,
2498          * but in case the previous item is the last in a leaf, path points
2499          * to the first free slot in the previous leaf, i.e. at an invalid
2500          * item.
2501          */
2502         leaf = p->nodes[0];
2503
2504         if (find_higher) {
2505                 if (p->slots[0] >= btrfs_header_nritems(leaf)) {
2506                         ret = btrfs_next_leaf(root, p);
2507                         if (ret <= 0)
2508                                 return ret;
2509                         if (!return_any)
2510                                 return 1;
2511                         /*
2512                          * no higher item found, return the next
2513                          * lower instead
2514                          */
2515                         return_any = 0;
2516                         find_higher = 0;
2517                         btrfs_release_path(p);
2518                         goto again;
2519                 }
2520         } else {
2521                 if (p->slots[0] == 0) {
2522                         ret = btrfs_prev_leaf(root, p);
2523                         if (ret < 0)
2524                                 return ret;
2525                         if (!ret) {
2526                                 leaf = p->nodes[0];
2527                                 if (p->slots[0] == btrfs_header_nritems(leaf))
2528                                         p->slots[0]--;
2529                                 return 0;
2530                         }
2531                         if (!return_any)
2532                                 return 1;
2533                         /*
2534                          * no lower item found, return the next
2535                          * higher instead
2536                          */
2537                         return_any = 0;
2538                         find_higher = 1;
2539                         btrfs_release_path(p);
2540                         goto again;
2541                 } else {
2542                         --p->slots[0];
2543                 }
2544         }
2545         return 0;
2546 }
2547
2548 /*
2549  * Execute search and call btrfs_previous_item to traverse backwards if the item
2550  * was not found.
2551  *
2552  * Return 0 if found, 1 if not found and < 0 if error.
2553  */
2554 int btrfs_search_backwards(struct btrfs_root *root, struct btrfs_key *key,
2555                            struct btrfs_path *path)
2556 {
2557         int ret;
2558
2559         ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
2560         if (ret > 0)
2561                 ret = btrfs_previous_item(root, path, key->objectid, key->type);
2562
2563         if (ret == 0)
2564                 btrfs_item_key_to_cpu(path->nodes[0], key, path->slots[0]);
2565
2566         return ret;
2567 }
2568
2569 /*
2570  * Search for a valid slot for the given path.
2571  *
2572  * @root:       The root node of the tree.
2573  * @key:        Will contain a valid item if found.
2574  * @path:       The starting point to validate the slot.
2575  *
2576  * Return: 0  if the item is valid
2577  *         1  if not found
2578  *         <0 if error.
2579  */
2580 int btrfs_get_next_valid_item(struct btrfs_root *root, struct btrfs_key *key,
2581                               struct btrfs_path *path)
2582 {
2583         if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2584                 int ret;
2585
2586                 ret = btrfs_next_leaf(root, path);
2587                 if (ret)
2588                         return ret;
2589         }
2590
2591         btrfs_item_key_to_cpu(path->nodes[0], key, path->slots[0]);
2592         return 0;
2593 }
2594
2595 /*
2596  * adjust the pointers going up the tree, starting at level
2597  * making sure the right key of each node is points to 'key'.
2598  * This is used after shifting pointers to the left, so it stops
2599  * fixing up pointers when a given leaf/node is not in slot 0 of the
2600  * higher levels
2601  *
2602  */
2603 static void fixup_low_keys(struct btrfs_trans_handle *trans,
2604                            const struct btrfs_path *path,
2605                            const struct btrfs_disk_key *key, int level)
2606 {
2607         int i;
2608         struct extent_buffer *t;
2609         int ret;
2610
2611         for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2612                 int tslot = path->slots[i];
2613
2614                 if (!path->nodes[i])
2615                         break;
2616                 t = path->nodes[i];
2617                 ret = btrfs_tree_mod_log_insert_key(t, tslot,
2618                                                     BTRFS_MOD_LOG_KEY_REPLACE);
2619                 BUG_ON(ret < 0);
2620                 btrfs_set_node_key(t, key, tslot);
2621                 btrfs_mark_buffer_dirty(trans, path->nodes[i]);
2622                 if (tslot != 0)
2623                         break;
2624         }
2625 }
2626
2627 /*
2628  * update item key.
2629  *
2630  * This function isn't completely safe. It's the caller's responsibility
2631  * that the new key won't break the order
2632  */
2633 void btrfs_set_item_key_safe(struct btrfs_trans_handle *trans,
2634                              const struct btrfs_path *path,
2635                              const struct btrfs_key *new_key)
2636 {
2637         struct btrfs_fs_info *fs_info = trans->fs_info;
2638         struct btrfs_disk_key disk_key;
2639         struct extent_buffer *eb;
2640         int slot;
2641
2642         eb = path->nodes[0];
2643         slot = path->slots[0];
2644         if (slot > 0) {
2645                 btrfs_item_key(eb, &disk_key, slot - 1);
2646                 if (unlikely(btrfs_comp_keys(&disk_key, new_key) >= 0)) {
2647                         btrfs_print_leaf(eb);
2648                         btrfs_crit(fs_info,
2649                 "slot %u key (%llu %u %llu) new key (%llu %u %llu)",
2650                                    slot, btrfs_disk_key_objectid(&disk_key),
2651                                    btrfs_disk_key_type(&disk_key),
2652                                    btrfs_disk_key_offset(&disk_key),
2653                                    new_key->objectid, new_key->type,
2654                                    new_key->offset);
2655                         BUG();
2656                 }
2657         }
2658         if (slot < btrfs_header_nritems(eb) - 1) {
2659                 btrfs_item_key(eb, &disk_key, slot + 1);
2660                 if (unlikely(btrfs_comp_keys(&disk_key, new_key) <= 0)) {
2661                         btrfs_print_leaf(eb);
2662                         btrfs_crit(fs_info,
2663                 "slot %u key (%llu %u %llu) new key (%llu %u %llu)",
2664                                    slot, btrfs_disk_key_objectid(&disk_key),
2665                                    btrfs_disk_key_type(&disk_key),
2666                                    btrfs_disk_key_offset(&disk_key),
2667                                    new_key->objectid, new_key->type,
2668                                    new_key->offset);
2669                         BUG();
2670                 }
2671         }
2672
2673         btrfs_cpu_key_to_disk(&disk_key, new_key);
2674         btrfs_set_item_key(eb, &disk_key, slot);
2675         btrfs_mark_buffer_dirty(trans, eb);
2676         if (slot == 0)
2677                 fixup_low_keys(trans, path, &disk_key, 1);
2678 }
2679
2680 /*
2681  * Check key order of two sibling extent buffers.
2682  *
2683  * Return true if something is wrong.
2684  * Return false if everything is fine.
2685  *
2686  * Tree-checker only works inside one tree block, thus the following
2687  * corruption can not be detected by tree-checker:
2688  *
2689  * Leaf @left                   | Leaf @right
2690  * --------------------------------------------------------------
2691  * | 1 | 2 | 3 | 4 | 5 | f6 |   | 7 | 8 |
2692  *
2693  * Key f6 in leaf @left itself is valid, but not valid when the next
2694  * key in leaf @right is 7.
2695  * This can only be checked at tree block merge time.
2696  * And since tree checker has ensured all key order in each tree block
2697  * is correct, we only need to bother the last key of @left and the first
2698  * key of @right.
2699  */
2700 static bool check_sibling_keys(const struct extent_buffer *left,
2701                                const struct extent_buffer *right)
2702 {
2703         struct btrfs_key left_last;
2704         struct btrfs_key right_first;
2705         int level = btrfs_header_level(left);
2706         int nr_left = btrfs_header_nritems(left);
2707         int nr_right = btrfs_header_nritems(right);
2708
2709         /* No key to check in one of the tree blocks */
2710         if (!nr_left || !nr_right)
2711                 return false;
2712
2713         if (level) {
2714                 btrfs_node_key_to_cpu(left, &left_last, nr_left - 1);
2715                 btrfs_node_key_to_cpu(right, &right_first, 0);
2716         } else {
2717                 btrfs_item_key_to_cpu(left, &left_last, nr_left - 1);
2718                 btrfs_item_key_to_cpu(right, &right_first, 0);
2719         }
2720
2721         if (unlikely(btrfs_comp_cpu_keys(&left_last, &right_first) >= 0)) {
2722                 btrfs_crit(left->fs_info, "left extent buffer:");
2723                 btrfs_print_tree(left, false);
2724                 btrfs_crit(left->fs_info, "right extent buffer:");
2725                 btrfs_print_tree(right, false);
2726                 btrfs_crit(left->fs_info,
2727 "bad key order, sibling blocks, left last (%llu %u %llu) right first (%llu %u %llu)",
2728                            left_last.objectid, left_last.type,
2729                            left_last.offset, right_first.objectid,
2730                            right_first.type, right_first.offset);
2731                 return true;
2732         }
2733         return false;
2734 }
2735
2736 /*
2737  * try to push data from one node into the next node left in the
2738  * tree.
2739  *
2740  * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
2741  * error, and > 0 if there was no room in the left hand block.
2742  */
2743 static int push_node_left(struct btrfs_trans_handle *trans,
2744                           struct extent_buffer *dst,
2745                           struct extent_buffer *src, int empty)
2746 {
2747         struct btrfs_fs_info *fs_info = trans->fs_info;
2748         int push_items = 0;
2749         int src_nritems;
2750         int dst_nritems;
2751         int ret = 0;
2752
2753         src_nritems = btrfs_header_nritems(src);
2754         dst_nritems = btrfs_header_nritems(dst);
2755         push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
2756         WARN_ON(btrfs_header_generation(src) != trans->transid);
2757         WARN_ON(btrfs_header_generation(dst) != trans->transid);
2758
2759         if (!empty && src_nritems <= 8)
2760                 return 1;
2761
2762         if (push_items <= 0)
2763                 return 1;
2764
2765         if (empty) {
2766                 push_items = min(src_nritems, push_items);
2767                 if (push_items < src_nritems) {
2768                         /* leave at least 8 pointers in the node if
2769                          * we aren't going to empty it
2770                          */
2771                         if (src_nritems - push_items < 8) {
2772                                 if (push_items <= 8)
2773                                         return 1;
2774                                 push_items -= 8;
2775                         }
2776                 }
2777         } else
2778                 push_items = min(src_nritems - 8, push_items);
2779
2780         /* dst is the left eb, src is the middle eb */
2781         if (check_sibling_keys(dst, src)) {
2782                 ret = -EUCLEAN;
2783                 btrfs_abort_transaction(trans, ret);
2784                 return ret;
2785         }
2786         ret = btrfs_tree_mod_log_eb_copy(dst, src, dst_nritems, 0, push_items);
2787         if (ret) {
2788                 btrfs_abort_transaction(trans, ret);
2789                 return ret;
2790         }
2791         copy_extent_buffer(dst, src,
2792                            btrfs_node_key_ptr_offset(dst, dst_nritems),
2793                            btrfs_node_key_ptr_offset(src, 0),
2794                            push_items * sizeof(struct btrfs_key_ptr));
2795
2796         if (push_items < src_nritems) {
2797                 /*
2798                  * btrfs_tree_mod_log_eb_copy handles logging the move, so we
2799                  * don't need to do an explicit tree mod log operation for it.
2800                  */
2801                 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(src, 0),
2802                                       btrfs_node_key_ptr_offset(src, push_items),
2803                                       (src_nritems - push_items) *
2804                                       sizeof(struct btrfs_key_ptr));
2805         }
2806         btrfs_set_header_nritems(src, src_nritems - push_items);
2807         btrfs_set_header_nritems(dst, dst_nritems + push_items);
2808         btrfs_mark_buffer_dirty(trans, src);
2809         btrfs_mark_buffer_dirty(trans, dst);
2810
2811         return ret;
2812 }
2813
2814 /*
2815  * try to push data from one node into the next node right in the
2816  * tree.
2817  *
2818  * returns 0 if some ptrs were pushed, < 0 if there was some horrible
2819  * error, and > 0 if there was no room in the right hand block.
2820  *
2821  * this will  only push up to 1/2 the contents of the left node over
2822  */
2823 static int balance_node_right(struct btrfs_trans_handle *trans,
2824                               struct extent_buffer *dst,
2825                               struct extent_buffer *src)
2826 {
2827         struct btrfs_fs_info *fs_info = trans->fs_info;
2828         int push_items = 0;
2829         int max_push;
2830         int src_nritems;
2831         int dst_nritems;
2832         int ret = 0;
2833
2834         WARN_ON(btrfs_header_generation(src) != trans->transid);
2835         WARN_ON(btrfs_header_generation(dst) != trans->transid);
2836
2837         src_nritems = btrfs_header_nritems(src);
2838         dst_nritems = btrfs_header_nritems(dst);
2839         push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
2840         if (push_items <= 0)
2841                 return 1;
2842
2843         if (src_nritems < 4)
2844                 return 1;
2845
2846         max_push = src_nritems / 2 + 1;
2847         /* don't try to empty the node */
2848         if (max_push >= src_nritems)
2849                 return 1;
2850
2851         if (max_push < push_items)
2852                 push_items = max_push;
2853
2854         /* dst is the right eb, src is the middle eb */
2855         if (check_sibling_keys(src, dst)) {
2856                 ret = -EUCLEAN;
2857                 btrfs_abort_transaction(trans, ret);
2858                 return ret;
2859         }
2860
2861         /*
2862          * btrfs_tree_mod_log_eb_copy handles logging the move, so we don't
2863          * need to do an explicit tree mod log operation for it.
2864          */
2865         memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(dst, push_items),
2866                                       btrfs_node_key_ptr_offset(dst, 0),
2867                                       (dst_nritems) *
2868                                       sizeof(struct btrfs_key_ptr));
2869
2870         ret = btrfs_tree_mod_log_eb_copy(dst, src, 0, src_nritems - push_items,
2871                                          push_items);
2872         if (ret) {
2873                 btrfs_abort_transaction(trans, ret);
2874                 return ret;
2875         }
2876         copy_extent_buffer(dst, src,
2877                            btrfs_node_key_ptr_offset(dst, 0),
2878                            btrfs_node_key_ptr_offset(src, src_nritems - push_items),
2879                            push_items * sizeof(struct btrfs_key_ptr));
2880
2881         btrfs_set_header_nritems(src, src_nritems - push_items);
2882         btrfs_set_header_nritems(dst, dst_nritems + push_items);
2883
2884         btrfs_mark_buffer_dirty(trans, src);
2885         btrfs_mark_buffer_dirty(trans, dst);
2886
2887         return ret;
2888 }
2889
2890 /*
2891  * helper function to insert a new root level in the tree.
2892  * A new node is allocated, and a single item is inserted to
2893  * point to the existing root
2894  *
2895  * returns zero on success or < 0 on failure.
2896  */
2897 static noinline int insert_new_root(struct btrfs_trans_handle *trans,
2898                            struct btrfs_root *root,
2899                            struct btrfs_path *path, int level)
2900 {
2901         u64 lower_gen;
2902         struct extent_buffer *lower;
2903         struct extent_buffer *c;
2904         struct extent_buffer *old;
2905         struct btrfs_disk_key lower_key;
2906         int ret;
2907
2908         BUG_ON(path->nodes[level]);
2909         BUG_ON(path->nodes[level-1] != root->node);
2910
2911         lower = path->nodes[level-1];
2912         if (level == 1)
2913                 btrfs_item_key(lower, &lower_key, 0);
2914         else
2915                 btrfs_node_key(lower, &lower_key, 0);
2916
2917         c = btrfs_alloc_tree_block(trans, root, 0, btrfs_root_id(root),
2918                                    &lower_key, level, root->node->start, 0,
2919                                    0, BTRFS_NESTING_NEW_ROOT);
2920         if (IS_ERR(c))
2921                 return PTR_ERR(c);
2922
2923         root_add_used_bytes(root);
2924
2925         btrfs_set_header_nritems(c, 1);
2926         btrfs_set_node_key(c, &lower_key, 0);
2927         btrfs_set_node_blockptr(c, 0, lower->start);
2928         lower_gen = btrfs_header_generation(lower);
2929         WARN_ON(lower_gen != trans->transid);
2930
2931         btrfs_set_node_ptr_generation(c, 0, lower_gen);
2932
2933         btrfs_mark_buffer_dirty(trans, c);
2934
2935         old = root->node;
2936         ret = btrfs_tree_mod_log_insert_root(root->node, c, false);
2937         if (ret < 0) {
2938                 int ret2;
2939
2940                 ret2 = btrfs_free_tree_block(trans, btrfs_root_id(root), c, 0, 1);
2941                 if (ret2 < 0)
2942                         btrfs_abort_transaction(trans, ret2);
2943                 btrfs_tree_unlock(c);
2944                 free_extent_buffer(c);
2945                 return ret;
2946         }
2947         rcu_assign_pointer(root->node, c);
2948
2949         /* the super has an extra ref to root->node */
2950         free_extent_buffer(old);
2951
2952         add_root_to_dirty_list(root);
2953         atomic_inc(&c->refs);
2954         path->nodes[level] = c;
2955         path->locks[level] = BTRFS_WRITE_LOCK;
2956         path->slots[level] = 0;
2957         return 0;
2958 }
2959
2960 /*
2961  * worker function to insert a single pointer in a node.
2962  * the node should have enough room for the pointer already
2963  *
2964  * slot and level indicate where you want the key to go, and
2965  * blocknr is the block the key points to.
2966  */
2967 static int insert_ptr(struct btrfs_trans_handle *trans,
2968                       const struct btrfs_path *path,
2969                       const struct btrfs_disk_key *key, u64 bytenr,
2970                       int slot, int level)
2971 {
2972         struct extent_buffer *lower;
2973         int nritems;
2974         int ret;
2975
2976         BUG_ON(!path->nodes[level]);
2977         btrfs_assert_tree_write_locked(path->nodes[level]);
2978         lower = path->nodes[level];
2979         nritems = btrfs_header_nritems(lower);
2980         BUG_ON(slot > nritems);
2981         BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(trans->fs_info));
2982         if (slot != nritems) {
2983                 if (level) {
2984                         ret = btrfs_tree_mod_log_insert_move(lower, slot + 1,
2985                                         slot, nritems - slot);
2986                         if (ret < 0) {
2987                                 btrfs_abort_transaction(trans, ret);
2988                                 return ret;
2989                         }
2990                 }
2991                 memmove_extent_buffer(lower,
2992                               btrfs_node_key_ptr_offset(lower, slot + 1),
2993                               btrfs_node_key_ptr_offset(lower, slot),
2994                               (nritems - slot) * sizeof(struct btrfs_key_ptr));
2995         }
2996         if (level) {
2997                 ret = btrfs_tree_mod_log_insert_key(lower, slot,
2998                                                     BTRFS_MOD_LOG_KEY_ADD);
2999                 if (ret < 0) {
3000                         btrfs_abort_transaction(trans, ret);
3001                         return ret;
3002                 }
3003         }
3004         btrfs_set_node_key(lower, key, slot);
3005         btrfs_set_node_blockptr(lower, slot, bytenr);
3006         WARN_ON(trans->transid == 0);
3007         btrfs_set_node_ptr_generation(lower, slot, trans->transid);
3008         btrfs_set_header_nritems(lower, nritems + 1);
3009         btrfs_mark_buffer_dirty(trans, lower);
3010
3011         return 0;
3012 }
3013
3014 /*
3015  * split the node at the specified level in path in two.
3016  * The path is corrected to point to the appropriate node after the split
3017  *
3018  * Before splitting this tries to make some room in the node by pushing
3019  * left and right, if either one works, it returns right away.
3020  *
3021  * returns 0 on success and < 0 on failure
3022  */
3023 static noinline int split_node(struct btrfs_trans_handle *trans,
3024                                struct btrfs_root *root,
3025                                struct btrfs_path *path, int level)
3026 {
3027         struct btrfs_fs_info *fs_info = root->fs_info;
3028         struct extent_buffer *c;
3029         struct extent_buffer *split;
3030         struct btrfs_disk_key disk_key;
3031         int mid;
3032         int ret;
3033         u32 c_nritems;
3034
3035         c = path->nodes[level];
3036         WARN_ON(btrfs_header_generation(c) != trans->transid);
3037         if (c == root->node) {
3038                 /*
3039                  * trying to split the root, lets make a new one
3040                  *
3041                  * tree mod log: We don't log_removal old root in
3042                  * insert_new_root, because that root buffer will be kept as a
3043                  * normal node. We are going to log removal of half of the
3044                  * elements below with btrfs_tree_mod_log_eb_copy(). We're
3045                  * holding a tree lock on the buffer, which is why we cannot
3046                  * race with other tree_mod_log users.
3047                  */
3048                 ret = insert_new_root(trans, root, path, level + 1);
3049                 if (ret)
3050                         return ret;
3051         } else {
3052                 ret = push_nodes_for_insert(trans, root, path, level);
3053                 c = path->nodes[level];
3054                 if (!ret && btrfs_header_nritems(c) <
3055                     BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3)
3056                         return 0;
3057                 if (ret < 0)
3058                         return ret;
3059         }
3060
3061         c_nritems = btrfs_header_nritems(c);
3062         mid = (c_nritems + 1) / 2;
3063         btrfs_node_key(c, &disk_key, mid);
3064
3065         split = btrfs_alloc_tree_block(trans, root, 0, btrfs_root_id(root),
3066                                        &disk_key, level, c->start, 0,
3067                                        0, BTRFS_NESTING_SPLIT);
3068         if (IS_ERR(split))
3069                 return PTR_ERR(split);
3070
3071         root_add_used_bytes(root);
3072         ASSERT(btrfs_header_level(c) == level);
3073
3074         ret = btrfs_tree_mod_log_eb_copy(split, c, 0, mid, c_nritems - mid);
3075         if (ret) {
3076                 btrfs_tree_unlock(split);
3077                 free_extent_buffer(split);
3078                 btrfs_abort_transaction(trans, ret);
3079                 return ret;
3080         }
3081         copy_extent_buffer(split, c,
3082                            btrfs_node_key_ptr_offset(split, 0),
3083                            btrfs_node_key_ptr_offset(c, mid),
3084                            (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
3085         btrfs_set_header_nritems(split, c_nritems - mid);
3086         btrfs_set_header_nritems(c, mid);
3087
3088         btrfs_mark_buffer_dirty(trans, c);
3089         btrfs_mark_buffer_dirty(trans, split);
3090
3091         ret = insert_ptr(trans, path, &disk_key, split->start,
3092                          path->slots[level + 1] + 1, level + 1);
3093         if (ret < 0) {
3094                 btrfs_tree_unlock(split);
3095                 free_extent_buffer(split);
3096                 return ret;
3097         }
3098
3099         if (path->slots[level] >= mid) {
3100                 path->slots[level] -= mid;
3101                 btrfs_tree_unlock(c);
3102                 free_extent_buffer(c);
3103                 path->nodes[level] = split;
3104                 path->slots[level + 1] += 1;
3105         } else {
3106                 btrfs_tree_unlock(split);
3107                 free_extent_buffer(split);
3108         }
3109         return 0;
3110 }
3111
3112 /*
3113  * how many bytes are required to store the items in a leaf.  start
3114  * and nr indicate which items in the leaf to check.  This totals up the
3115  * space used both by the item structs and the item data
3116  */
3117 static int leaf_space_used(const struct extent_buffer *l, int start, int nr)
3118 {
3119         int data_len;
3120         int nritems = btrfs_header_nritems(l);
3121         int end = min(nritems, start + nr) - 1;
3122
3123         if (!nr)
3124                 return 0;
3125         data_len = btrfs_item_offset(l, start) + btrfs_item_size(l, start);
3126         data_len = data_len - btrfs_item_offset(l, end);
3127         data_len += sizeof(struct btrfs_item) * nr;
3128         WARN_ON(data_len < 0);
3129         return data_len;
3130 }
3131
3132 /*
3133  * The space between the end of the leaf items and
3134  * the start of the leaf data.  IOW, how much room
3135  * the leaf has left for both items and data
3136  */
3137 int btrfs_leaf_free_space(const struct extent_buffer *leaf)
3138 {
3139         struct btrfs_fs_info *fs_info = leaf->fs_info;
3140         int nritems = btrfs_header_nritems(leaf);
3141         int ret;
3142
3143         ret = BTRFS_LEAF_DATA_SIZE(fs_info) - leaf_space_used(leaf, 0, nritems);
3144         if (ret < 0) {
3145                 btrfs_crit(fs_info,
3146                            "leaf free space ret %d, leaf data size %lu, used %d nritems %d",
3147                            ret,
3148                            (unsigned long) BTRFS_LEAF_DATA_SIZE(fs_info),
3149                            leaf_space_used(leaf, 0, nritems), nritems);
3150         }
3151         return ret;
3152 }
3153
3154 /*
3155  * min slot controls the lowest index we're willing to push to the
3156  * right.  We'll push up to and including min_slot, but no lower
3157  */
3158 static noinline int __push_leaf_right(struct btrfs_trans_handle *trans,
3159                                       struct btrfs_path *path,
3160                                       int data_size, int empty,
3161                                       struct extent_buffer *right,
3162                                       int free_space, u32 left_nritems,
3163                                       u32 min_slot)
3164 {
3165         struct btrfs_fs_info *fs_info = right->fs_info;
3166         struct extent_buffer *left = path->nodes[0];
3167         struct extent_buffer *upper = path->nodes[1];
3168         struct btrfs_map_token token;
3169         struct btrfs_disk_key disk_key;
3170         int slot;
3171         u32 i;
3172         int push_space = 0;
3173         int push_items = 0;
3174         u32 nr;
3175         u32 right_nritems;
3176         u32 data_end;
3177         u32 this_item_size;
3178
3179         if (empty)
3180                 nr = 0;
3181         else
3182                 nr = max_t(u32, 1, min_slot);
3183
3184         if (path->slots[0] >= left_nritems)
3185                 push_space += data_size;
3186
3187         slot = path->slots[1];
3188         i = left_nritems - 1;
3189         while (i >= nr) {
3190                 if (!empty && push_items > 0) {
3191                         if (path->slots[0] > i)
3192                                 break;
3193                         if (path->slots[0] == i) {
3194                                 int space = btrfs_leaf_free_space(left);
3195
3196                                 if (space + push_space * 2 > free_space)
3197                                         break;
3198                         }
3199                 }
3200
3201                 if (path->slots[0] == i)
3202                         push_space += data_size;
3203
3204                 this_item_size = btrfs_item_size(left, i);
3205                 if (this_item_size + sizeof(struct btrfs_item) +
3206                     push_space > free_space)
3207                         break;
3208
3209                 push_items++;
3210                 push_space += this_item_size + sizeof(struct btrfs_item);
3211                 if (i == 0)
3212                         break;
3213                 i--;
3214         }
3215
3216         if (push_items == 0)
3217                 goto out_unlock;
3218
3219         WARN_ON(!empty && push_items == left_nritems);
3220
3221         /* push left to right */
3222         right_nritems = btrfs_header_nritems(right);
3223
3224         push_space = btrfs_item_data_end(left, left_nritems - push_items);
3225         push_space -= leaf_data_end(left);
3226
3227         /* make room in the right data area */
3228         data_end = leaf_data_end(right);
3229         memmove_leaf_data(right, data_end - push_space, data_end,
3230                           BTRFS_LEAF_DATA_SIZE(fs_info) - data_end);
3231
3232         /* copy from the left data area */
3233         copy_leaf_data(right, left, BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3234                        leaf_data_end(left), push_space);
3235
3236         memmove_leaf_items(right, push_items, 0, right_nritems);
3237
3238         /* copy the items from left to right */
3239         copy_leaf_items(right, left, 0, left_nritems - push_items, push_items);
3240
3241         /* update the item pointers */
3242         btrfs_init_map_token(&token, right);
3243         right_nritems += push_items;
3244         btrfs_set_header_nritems(right, right_nritems);
3245         push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3246         for (i = 0; i < right_nritems; i++) {
3247                 push_space -= btrfs_token_item_size(&token, i);
3248                 btrfs_set_token_item_offset(&token, i, push_space);
3249         }
3250
3251         left_nritems -= push_items;
3252         btrfs_set_header_nritems(left, left_nritems);
3253
3254         if (left_nritems)
3255                 btrfs_mark_buffer_dirty(trans, left);
3256         else
3257                 btrfs_clear_buffer_dirty(trans, left);
3258
3259         btrfs_mark_buffer_dirty(trans, right);
3260
3261         btrfs_item_key(right, &disk_key, 0);
3262         btrfs_set_node_key(upper, &disk_key, slot + 1);
3263         btrfs_mark_buffer_dirty(trans, upper);
3264
3265         /* then fixup the leaf pointer in the path */
3266         if (path->slots[0] >= left_nritems) {
3267                 path->slots[0] -= left_nritems;
3268                 if (btrfs_header_nritems(path->nodes[0]) == 0)
3269                         btrfs_clear_buffer_dirty(trans, path->nodes[0]);
3270                 btrfs_tree_unlock(path->nodes[0]);
3271                 free_extent_buffer(path->nodes[0]);
3272                 path->nodes[0] = right;
3273                 path->slots[1] += 1;
3274         } else {
3275                 btrfs_tree_unlock(right);
3276                 free_extent_buffer(right);
3277         }
3278         return 0;
3279
3280 out_unlock:
3281         btrfs_tree_unlock(right);
3282         free_extent_buffer(right);
3283         return 1;
3284 }
3285
3286 /*
3287  * push some data in the path leaf to the right, trying to free up at
3288  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3289  *
3290  * returns 1 if the push failed because the other node didn't have enough
3291  * room, 0 if everything worked out and < 0 if there were major errors.
3292  *
3293  * this will push starting from min_slot to the end of the leaf.  It won't
3294  * push any slot lower than min_slot
3295  */
3296 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
3297                            *root, struct btrfs_path *path,
3298                            int min_data_size, int data_size,
3299                            int empty, u32 min_slot)
3300 {
3301         struct extent_buffer *left = path->nodes[0];
3302         struct extent_buffer *right;
3303         struct extent_buffer *upper;
3304         int slot;
3305         int free_space;
3306         u32 left_nritems;
3307         int ret;
3308
3309         if (!path->nodes[1])
3310                 return 1;
3311
3312         slot = path->slots[1];
3313         upper = path->nodes[1];
3314         if (slot >= btrfs_header_nritems(upper) - 1)
3315                 return 1;
3316
3317         btrfs_assert_tree_write_locked(path->nodes[1]);
3318
3319         right = btrfs_read_node_slot(upper, slot + 1);
3320         if (IS_ERR(right))
3321                 return PTR_ERR(right);
3322
3323         btrfs_tree_lock_nested(right, BTRFS_NESTING_RIGHT);
3324
3325         free_space = btrfs_leaf_free_space(right);
3326         if (free_space < data_size)
3327                 goto out_unlock;
3328
3329         ret = btrfs_cow_block(trans, root, right, upper,
3330                               slot + 1, &right, BTRFS_NESTING_RIGHT_COW);
3331         if (ret)
3332                 goto out_unlock;
3333
3334         left_nritems = btrfs_header_nritems(left);
3335         if (left_nritems == 0)
3336                 goto out_unlock;
3337
3338         if (check_sibling_keys(left, right)) {
3339                 ret = -EUCLEAN;
3340                 btrfs_abort_transaction(trans, ret);
3341                 btrfs_tree_unlock(right);
3342                 free_extent_buffer(right);
3343                 return ret;
3344         }
3345         if (path->slots[0] == left_nritems && !empty) {
3346                 /* Key greater than all keys in the leaf, right neighbor has
3347                  * enough room for it and we're not emptying our leaf to delete
3348                  * it, therefore use right neighbor to insert the new item and
3349                  * no need to touch/dirty our left leaf. */
3350                 btrfs_tree_unlock(left);
3351                 free_extent_buffer(left);
3352                 path->nodes[0] = right;
3353                 path->slots[0] = 0;
3354                 path->slots[1]++;
3355                 return 0;
3356         }
3357
3358         return __push_leaf_right(trans, path, min_data_size, empty, right,
3359                                  free_space, left_nritems, min_slot);
3360 out_unlock:
3361         btrfs_tree_unlock(right);
3362         free_extent_buffer(right);
3363         return 1;
3364 }
3365
3366 /*
3367  * push some data in the path leaf to the left, trying to free up at
3368  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3369  *
3370  * max_slot can put a limit on how far into the leaf we'll push items.  The
3371  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us do all the
3372  * items
3373  */
3374 static noinline int __push_leaf_left(struct btrfs_trans_handle *trans,
3375                                      struct btrfs_path *path, int data_size,
3376                                      int empty, struct extent_buffer *left,
3377                                      int free_space, u32 right_nritems,
3378                                      u32 max_slot)
3379 {
3380         struct btrfs_fs_info *fs_info = left->fs_info;
3381         struct btrfs_disk_key disk_key;
3382         struct extent_buffer *right = path->nodes[0];
3383         int i;
3384         int push_space = 0;
3385         int push_items = 0;
3386         u32 old_left_nritems;
3387         u32 nr;
3388         int ret = 0;
3389         u32 this_item_size;
3390         u32 old_left_item_size;
3391         struct btrfs_map_token token;
3392
3393         if (empty)
3394                 nr = min(right_nritems, max_slot);
3395         else
3396                 nr = min(right_nritems - 1, max_slot);
3397
3398         for (i = 0; i < nr; i++) {
3399                 if (!empty && push_items > 0) {
3400                         if (path->slots[0] < i)
3401                                 break;
3402                         if (path->slots[0] == i) {
3403                                 int space = btrfs_leaf_free_space(right);
3404
3405                                 if (space + push_space * 2 > free_space)
3406                                         break;
3407                         }
3408                 }
3409
3410                 if (path->slots[0] == i)
3411                         push_space += data_size;
3412
3413                 this_item_size = btrfs_item_size(right, i);
3414                 if (this_item_size + sizeof(struct btrfs_item) + push_space >
3415                     free_space)
3416                         break;
3417
3418                 push_items++;
3419                 push_space += this_item_size + sizeof(struct btrfs_item);
3420         }
3421
3422         if (push_items == 0) {
3423                 ret = 1;
3424                 goto out;
3425         }
3426         WARN_ON(!empty && push_items == btrfs_header_nritems(right));
3427
3428         /* push data from right to left */
3429         copy_leaf_items(left, right, btrfs_header_nritems(left), 0, push_items);
3430
3431         push_space = BTRFS_LEAF_DATA_SIZE(fs_info) -
3432                      btrfs_item_offset(right, push_items - 1);
3433
3434         copy_leaf_data(left, right, leaf_data_end(left) - push_space,
3435                        btrfs_item_offset(right, push_items - 1), push_space);
3436         old_left_nritems = btrfs_header_nritems(left);
3437         BUG_ON(old_left_nritems <= 0);
3438
3439         btrfs_init_map_token(&token, left);
3440         old_left_item_size = btrfs_item_offset(left, old_left_nritems - 1);
3441         for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
3442                 u32 ioff;
3443
3444                 ioff = btrfs_token_item_offset(&token, i);
3445                 btrfs_set_token_item_offset(&token, i,
3446                       ioff - (BTRFS_LEAF_DATA_SIZE(fs_info) - old_left_item_size));
3447         }
3448         btrfs_set_header_nritems(left, old_left_nritems + push_items);
3449
3450         /* fixup right node */
3451         if (push_items > right_nritems)
3452                 WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
3453                        right_nritems);
3454
3455         if (push_items < right_nritems) {
3456                 push_space = btrfs_item_offset(right, push_items - 1) -
3457                                                   leaf_data_end(right);
3458                 memmove_leaf_data(right,
3459                                   BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3460                                   leaf_data_end(right), push_space);
3461
3462                 memmove_leaf_items(right, 0, push_items,
3463                                    btrfs_header_nritems(right) - push_items);
3464         }
3465
3466         btrfs_init_map_token(&token, right);
3467         right_nritems -= push_items;
3468         btrfs_set_header_nritems(right, right_nritems);
3469         push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3470         for (i = 0; i < right_nritems; i++) {
3471                 push_space = push_space - btrfs_token_item_size(&token, i);
3472                 btrfs_set_token_item_offset(&token, i, push_space);
3473         }
3474
3475         btrfs_mark_buffer_dirty(trans, left);
3476         if (right_nritems)
3477                 btrfs_mark_buffer_dirty(trans, right);
3478         else
3479                 btrfs_clear_buffer_dirty(trans, right);
3480
3481         btrfs_item_key(right, &disk_key, 0);
3482         fixup_low_keys(trans, path, &disk_key, 1);
3483
3484         /* then fixup the leaf pointer in the path */
3485         if (path->slots[0] < push_items) {
3486                 path->slots[0] += old_left_nritems;
3487                 btrfs_tree_unlock(path->nodes[0]);
3488                 free_extent_buffer(path->nodes[0]);
3489                 path->nodes[0] = left;
3490                 path->slots[1] -= 1;
3491         } else {
3492                 btrfs_tree_unlock(left);
3493                 free_extent_buffer(left);
3494                 path->slots[0] -= push_items;
3495         }
3496         BUG_ON(path->slots[0] < 0);
3497         return ret;
3498 out:
3499         btrfs_tree_unlock(left);
3500         free_extent_buffer(left);
3501         return ret;
3502 }
3503
3504 /*
3505  * push some data in the path leaf to the left, trying to free up at
3506  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3507  *
3508  * max_slot can put a limit on how far into the leaf we'll push items.  The
3509  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us push all the
3510  * items
3511  */
3512 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
3513                           *root, struct btrfs_path *path, int min_data_size,
3514                           int data_size, int empty, u32 max_slot)
3515 {
3516         struct extent_buffer *right = path->nodes[0];
3517         struct extent_buffer *left;
3518         int slot;
3519         int free_space;
3520         u32 right_nritems;
3521         int ret = 0;
3522
3523         slot = path->slots[1];
3524         if (slot == 0)
3525                 return 1;
3526         if (!path->nodes[1])
3527                 return 1;
3528
3529         right_nritems = btrfs_header_nritems(right);
3530         if (right_nritems == 0)
3531                 return 1;
3532
3533         btrfs_assert_tree_write_locked(path->nodes[1]);
3534
3535         left = btrfs_read_node_slot(path->nodes[1], slot - 1);
3536         if (IS_ERR(left))
3537                 return PTR_ERR(left);
3538
3539         btrfs_tree_lock_nested(left, BTRFS_NESTING_LEFT);
3540
3541         free_space = btrfs_leaf_free_space(left);
3542         if (free_space < data_size) {
3543                 ret = 1;
3544                 goto out;
3545         }
3546
3547         ret = btrfs_cow_block(trans, root, left,
3548                               path->nodes[1], slot - 1, &left,
3549                               BTRFS_NESTING_LEFT_COW);
3550         if (ret) {
3551                 /* we hit -ENOSPC, but it isn't fatal here */
3552                 if (ret == -ENOSPC)
3553                         ret = 1;
3554                 goto out;
3555         }
3556
3557         if (check_sibling_keys(left, right)) {
3558                 ret = -EUCLEAN;
3559                 btrfs_abort_transaction(trans, ret);
3560                 goto out;
3561         }
3562         return __push_leaf_left(trans, path, min_data_size, empty, left,
3563                                 free_space, right_nritems, max_slot);
3564 out:
3565         btrfs_tree_unlock(left);
3566         free_extent_buffer(left);
3567         return ret;
3568 }
3569
3570 /*
3571  * split the path's leaf in two, making sure there is at least data_size
3572  * available for the resulting leaf level of the path.
3573  */
3574 static noinline int copy_for_split(struct btrfs_trans_handle *trans,
3575                                    struct btrfs_path *path,
3576                                    struct extent_buffer *l,
3577                                    struct extent_buffer *right,
3578                                    int slot, int mid, int nritems)
3579 {
3580         struct btrfs_fs_info *fs_info = trans->fs_info;
3581         int data_copy_size;
3582         int rt_data_off;
3583         int i;
3584         int ret;
3585         struct btrfs_disk_key disk_key;
3586         struct btrfs_map_token token;
3587
3588         nritems = nritems - mid;
3589         btrfs_set_header_nritems(right, nritems);
3590         data_copy_size = btrfs_item_data_end(l, mid) - leaf_data_end(l);
3591
3592         copy_leaf_items(right, l, 0, mid, nritems);
3593
3594         copy_leaf_data(right, l, BTRFS_LEAF_DATA_SIZE(fs_info) - data_copy_size,
3595                        leaf_data_end(l), data_copy_size);
3596
3597         rt_data_off = BTRFS_LEAF_DATA_SIZE(fs_info) - btrfs_item_data_end(l, mid);
3598
3599         btrfs_init_map_token(&token, right);
3600         for (i = 0; i < nritems; i++) {
3601                 u32 ioff;
3602
3603                 ioff = btrfs_token_item_offset(&token, i);
3604                 btrfs_set_token_item_offset(&token, i, ioff + rt_data_off);
3605         }
3606
3607         btrfs_set_header_nritems(l, mid);
3608         btrfs_item_key(right, &disk_key, 0);
3609         ret = insert_ptr(trans, path, &disk_key, right->start, path->slots[1] + 1, 1);
3610         if (ret < 0)
3611                 return ret;
3612
3613         btrfs_mark_buffer_dirty(trans, right);
3614         btrfs_mark_buffer_dirty(trans, l);
3615         BUG_ON(path->slots[0] != slot);
3616
3617         if (mid <= slot) {
3618                 btrfs_tree_unlock(path->nodes[0]);
3619                 free_extent_buffer(path->nodes[0]);
3620                 path->nodes[0] = right;
3621                 path->slots[0] -= mid;
3622                 path->slots[1] += 1;
3623         } else {
3624                 btrfs_tree_unlock(right);
3625                 free_extent_buffer(right);
3626         }
3627
3628         BUG_ON(path->slots[0] < 0);
3629
3630         return 0;
3631 }
3632
3633 /*
3634  * double splits happen when we need to insert a big item in the middle
3635  * of a leaf.  A double split can leave us with 3 mostly empty leaves:
3636  * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
3637  *          A                 B                 C
3638  *
3639  * We avoid this by trying to push the items on either side of our target
3640  * into the adjacent leaves.  If all goes well we can avoid the double split
3641  * completely.
3642  */
3643 static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
3644                                           struct btrfs_root *root,
3645                                           struct btrfs_path *path,
3646                                           int data_size)
3647 {
3648         int ret;
3649         int progress = 0;
3650         int slot;
3651         u32 nritems;
3652         int space_needed = data_size;
3653
3654         slot = path->slots[0];
3655         if (slot < btrfs_header_nritems(path->nodes[0]))
3656                 space_needed -= btrfs_leaf_free_space(path->nodes[0]);
3657
3658         /*
3659          * try to push all the items after our slot into the
3660          * right leaf
3661          */
3662         ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot);
3663         if (ret < 0)
3664                 return ret;
3665
3666         if (ret == 0)
3667                 progress++;
3668
3669         nritems = btrfs_header_nritems(path->nodes[0]);
3670         /*
3671          * our goal is to get our slot at the start or end of a leaf.  If
3672          * we've done so we're done
3673          */
3674         if (path->slots[0] == 0 || path->slots[0] == nritems)
3675                 return 0;
3676
3677         if (btrfs_leaf_free_space(path->nodes[0]) >= data_size)
3678                 return 0;
3679
3680         /* try to push all the items before our slot into the next leaf */
3681         slot = path->slots[0];
3682         space_needed = data_size;
3683         if (slot > 0)
3684                 space_needed -= btrfs_leaf_free_space(path->nodes[0]);
3685         ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot);
3686         if (ret < 0)
3687                 return ret;
3688
3689         if (ret == 0)
3690                 progress++;
3691
3692         if (progress)
3693                 return 0;
3694         return 1;
3695 }
3696
3697 /*
3698  * split the path's leaf in two, making sure there is at least data_size
3699  * available for the resulting leaf level of the path.
3700  *
3701  * returns 0 if all went well and < 0 on failure.
3702  */
3703 static noinline int split_leaf(struct btrfs_trans_handle *trans,
3704                                struct btrfs_root *root,
3705                                const struct btrfs_key *ins_key,
3706                                struct btrfs_path *path, int data_size,
3707                                int extend)
3708 {
3709         struct btrfs_disk_key disk_key;
3710         struct extent_buffer *l;
3711         u32 nritems;
3712         int mid;
3713         int slot;
3714         struct extent_buffer *right;
3715         struct btrfs_fs_info *fs_info = root->fs_info;
3716         int ret = 0;
3717         int wret;
3718         int split;
3719         int num_doubles = 0;
3720         int tried_avoid_double = 0;
3721
3722         l = path->nodes[0];
3723         slot = path->slots[0];
3724         if (extend && data_size + btrfs_item_size(l, slot) +
3725             sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(fs_info))
3726                 return -EOVERFLOW;
3727
3728         /* first try to make some room by pushing left and right */
3729         if (data_size && path->nodes[1]) {
3730                 int space_needed = data_size;
3731
3732                 if (slot < btrfs_header_nritems(l))
3733                         space_needed -= btrfs_leaf_free_space(l);
3734
3735                 wret = push_leaf_right(trans, root, path, space_needed,
3736                                        space_needed, 0, 0);
3737                 if (wret < 0)
3738                         return wret;
3739                 if (wret) {
3740                         space_needed = data_size;
3741                         if (slot > 0)
3742                                 space_needed -= btrfs_leaf_free_space(l);
3743                         wret = push_leaf_left(trans, root, path, space_needed,
3744                                               space_needed, 0, (u32)-1);
3745                         if (wret < 0)
3746                                 return wret;
3747                 }
3748                 l = path->nodes[0];
3749
3750                 /* did the pushes work? */
3751                 if (btrfs_leaf_free_space(l) >= data_size)
3752                         return 0;
3753         }
3754
3755         if (!path->nodes[1]) {
3756                 ret = insert_new_root(trans, root, path, 1);
3757                 if (ret)
3758                         return ret;
3759         }
3760 again:
3761         split = 1;
3762         l = path->nodes[0];
3763         slot = path->slots[0];
3764         nritems = btrfs_header_nritems(l);
3765         mid = (nritems + 1) / 2;
3766
3767         if (mid <= slot) {
3768                 if (nritems == 1 ||
3769                     leaf_space_used(l, mid, nritems - mid) + data_size >
3770                         BTRFS_LEAF_DATA_SIZE(fs_info)) {
3771                         if (slot >= nritems) {
3772                                 split = 0;
3773                         } else {
3774                                 mid = slot;
3775                                 if (mid != nritems &&
3776                                     leaf_space_used(l, mid, nritems - mid) +
3777                                     data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
3778                                         if (data_size && !tried_avoid_double)
3779                                                 goto push_for_double;
3780                                         split = 2;
3781                                 }
3782                         }
3783                 }
3784         } else {
3785                 if (leaf_space_used(l, 0, mid) + data_size >
3786                         BTRFS_LEAF_DATA_SIZE(fs_info)) {
3787                         if (!extend && data_size && slot == 0) {
3788                                 split = 0;
3789                         } else if ((extend || !data_size) && slot == 0) {
3790                                 mid = 1;
3791                         } else {
3792                                 mid = slot;
3793                                 if (mid != nritems &&
3794                                     leaf_space_used(l, mid, nritems - mid) +
3795                                     data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
3796                                         if (data_size && !tried_avoid_double)
3797                                                 goto push_for_double;
3798                                         split = 2;
3799                                 }
3800                         }
3801                 }
3802         }
3803
3804         if (split == 0)
3805                 btrfs_cpu_key_to_disk(&disk_key, ins_key);
3806         else
3807                 btrfs_item_key(l, &disk_key, mid);
3808
3809         /*
3810          * We have to about BTRFS_NESTING_NEW_ROOT here if we've done a double
3811          * split, because we're only allowed to have MAX_LOCKDEP_SUBCLASSES
3812          * subclasses, which is 8 at the time of this patch, and we've maxed it
3813          * out.  In the future we could add a
3814          * BTRFS_NESTING_SPLIT_THE_SPLITTENING if we need to, but for now just
3815          * use BTRFS_NESTING_NEW_ROOT.
3816          */
3817         right = btrfs_alloc_tree_block(trans, root, 0, btrfs_root_id(root),
3818                                        &disk_key, 0, l->start, 0, 0,
3819                                        num_doubles ? BTRFS_NESTING_NEW_ROOT :
3820                                        BTRFS_NESTING_SPLIT);
3821         if (IS_ERR(right))
3822                 return PTR_ERR(right);
3823
3824         root_add_used_bytes(root);
3825
3826         if (split == 0) {
3827                 if (mid <= slot) {
3828                         btrfs_set_header_nritems(right, 0);
3829                         ret = insert_ptr(trans, path, &disk_key,
3830                                          right->start, path->slots[1] + 1, 1);
3831                         if (ret < 0) {
3832                                 btrfs_tree_unlock(right);
3833                                 free_extent_buffer(right);
3834                                 return ret;
3835                         }
3836                         btrfs_tree_unlock(path->nodes[0]);
3837                         free_extent_buffer(path->nodes[0]);
3838                         path->nodes[0] = right;
3839                         path->slots[0] = 0;
3840                         path->slots[1] += 1;
3841                 } else {
3842                         btrfs_set_header_nritems(right, 0);
3843                         ret = insert_ptr(trans, path, &disk_key,
3844                                          right->start, path->slots[1], 1);
3845                         if (ret < 0) {
3846                                 btrfs_tree_unlock(right);
3847                                 free_extent_buffer(right);
3848                                 return ret;
3849                         }
3850                         btrfs_tree_unlock(path->nodes[0]);
3851                         free_extent_buffer(path->nodes[0]);
3852                         path->nodes[0] = right;
3853                         path->slots[0] = 0;
3854                         if (path->slots[1] == 0)
3855                                 fixup_low_keys(trans, path, &disk_key, 1);
3856                 }
3857                 /*
3858                  * We create a new leaf 'right' for the required ins_len and
3859                  * we'll do btrfs_mark_buffer_dirty() on this leaf after copying
3860                  * the content of ins_len to 'right'.
3861                  */
3862                 return ret;
3863         }
3864
3865         ret = copy_for_split(trans, path, l, right, slot, mid, nritems);
3866         if (ret < 0) {
3867                 btrfs_tree_unlock(right);
3868                 free_extent_buffer(right);
3869                 return ret;
3870         }
3871
3872         if (split == 2) {
3873                 BUG_ON(num_doubles != 0);
3874                 num_doubles++;
3875                 goto again;
3876         }
3877
3878         return 0;
3879
3880 push_for_double:
3881         push_for_double_split(trans, root, path, data_size);
3882         tried_avoid_double = 1;
3883         if (btrfs_leaf_free_space(path->nodes[0]) >= data_size)
3884                 return 0;
3885         goto again;
3886 }
3887
3888 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
3889                                          struct btrfs_root *root,
3890                                          struct btrfs_path *path, int ins_len)
3891 {
3892         struct btrfs_key key;
3893         struct extent_buffer *leaf;
3894         struct btrfs_file_extent_item *fi;
3895         u64 extent_len = 0;
3896         u32 item_size;
3897         int ret;
3898
3899         leaf = path->nodes[0];
3900         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3901
3902         BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
3903                key.type != BTRFS_EXTENT_CSUM_KEY);
3904
3905         if (btrfs_leaf_free_space(leaf) >= ins_len)
3906                 return 0;
3907
3908         item_size = btrfs_item_size(leaf, path->slots[0]);
3909         if (key.type == BTRFS_EXTENT_DATA_KEY) {
3910                 fi = btrfs_item_ptr(leaf, path->slots[0],
3911                                     struct btrfs_file_extent_item);
3912                 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
3913         }
3914         btrfs_release_path(path);
3915
3916         path->keep_locks = 1;
3917         path->search_for_split = 1;
3918         ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
3919         path->search_for_split = 0;
3920         if (ret > 0)
3921                 ret = -EAGAIN;
3922         if (ret < 0)
3923                 goto err;
3924
3925         ret = -EAGAIN;
3926         leaf = path->nodes[0];
3927         /* if our item isn't there, return now */
3928         if (item_size != btrfs_item_size(leaf, path->slots[0]))
3929                 goto err;
3930
3931         /* the leaf has  changed, it now has room.  return now */
3932         if (btrfs_leaf_free_space(path->nodes[0]) >= ins_len)
3933                 goto err;
3934
3935         if (key.type == BTRFS_EXTENT_DATA_KEY) {
3936                 fi = btrfs_item_ptr(leaf, path->slots[0],
3937                                     struct btrfs_file_extent_item);
3938                 if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
3939                         goto err;
3940         }
3941
3942         ret = split_leaf(trans, root, &key, path, ins_len, 1);
3943         if (ret)
3944                 goto err;
3945
3946         path->keep_locks = 0;
3947         btrfs_unlock_up_safe(path, 1);
3948         return 0;
3949 err:
3950         path->keep_locks = 0;
3951         return ret;
3952 }
3953
3954 static noinline int split_item(struct btrfs_trans_handle *trans,
3955                                struct btrfs_path *path,
3956                                const struct btrfs_key *new_key,
3957                                unsigned long split_offset)
3958 {
3959         struct extent_buffer *leaf;
3960         int orig_slot, slot;
3961         char *buf;
3962         u32 nritems;
3963         u32 item_size;
3964         u32 orig_offset;
3965         struct btrfs_disk_key disk_key;
3966
3967         leaf = path->nodes[0];
3968         /*
3969          * Shouldn't happen because the caller must have previously called
3970          * setup_leaf_for_split() to make room for the new item in the leaf.
3971          */
3972         if (WARN_ON(btrfs_leaf_free_space(leaf) < sizeof(struct btrfs_item)))
3973                 return -ENOSPC;
3974
3975         orig_slot = path->slots[0];
3976         orig_offset = btrfs_item_offset(leaf, path->slots[0]);
3977         item_size = btrfs_item_size(leaf, path->slots[0]);
3978
3979         buf = kmalloc(item_size, GFP_NOFS);
3980         if (!buf)
3981                 return -ENOMEM;
3982
3983         read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
3984                             path->slots[0]), item_size);
3985
3986         slot = path->slots[0] + 1;
3987         nritems = btrfs_header_nritems(leaf);
3988         if (slot != nritems) {
3989                 /* shift the items */
3990                 memmove_leaf_items(leaf, slot + 1, slot, nritems - slot);
3991         }
3992
3993         btrfs_cpu_key_to_disk(&disk_key, new_key);
3994         btrfs_set_item_key(leaf, &disk_key, slot);
3995
3996         btrfs_set_item_offset(leaf, slot, orig_offset);
3997         btrfs_set_item_size(leaf, slot, item_size - split_offset);
3998
3999         btrfs_set_item_offset(leaf, orig_slot,
4000                                  orig_offset + item_size - split_offset);
4001         btrfs_set_item_size(leaf, orig_slot, split_offset);
4002
4003         btrfs_set_header_nritems(leaf, nritems + 1);
4004
4005         /* write the data for the start of the original item */
4006         write_extent_buffer(leaf, buf,
4007                             btrfs_item_ptr_offset(leaf, path->slots[0]),
4008                             split_offset);
4009
4010         /* write the data for the new item */
4011         write_extent_buffer(leaf, buf + split_offset,
4012                             btrfs_item_ptr_offset(leaf, slot),
4013                             item_size - split_offset);
4014         btrfs_mark_buffer_dirty(trans, leaf);
4015
4016         BUG_ON(btrfs_leaf_free_space(leaf) < 0);
4017         kfree(buf);
4018         return 0;
4019 }
4020
4021 /*
4022  * This function splits a single item into two items,
4023  * giving 'new_key' to the new item and splitting the
4024  * old one at split_offset (from the start of the item).
4025  *
4026  * The path may be released by this operation.  After
4027  * the split, the path is pointing to the old item.  The
4028  * new item is going to be in the same node as the old one.
4029  *
4030  * Note, the item being split must be smaller enough to live alone on
4031  * a tree block with room for one extra struct btrfs_item
4032  *
4033  * This allows us to split the item in place, keeping a lock on the
4034  * leaf the entire time.
4035  */
4036 int btrfs_split_item(struct btrfs_trans_handle *trans,
4037                      struct btrfs_root *root,
4038                      struct btrfs_path *path,
4039                      const struct btrfs_key *new_key,
4040                      unsigned long split_offset)
4041 {
4042         int ret;
4043         ret = setup_leaf_for_split(trans, root, path,
4044                                    sizeof(struct btrfs_item));
4045         if (ret)
4046                 return ret;
4047
4048         ret = split_item(trans, path, new_key, split_offset);
4049         return ret;
4050 }
4051
4052 /*
4053  * make the item pointed to by the path smaller.  new_size indicates
4054  * how small to make it, and from_end tells us if we just chop bytes
4055  * off the end of the item or if we shift the item to chop bytes off
4056  * the front.
4057  */
4058 void btrfs_truncate_item(struct btrfs_trans_handle *trans,
4059                          const struct btrfs_path *path, u32 new_size, int from_end)
4060 {
4061         int slot;
4062         struct extent_buffer *leaf;
4063         u32 nritems;
4064         unsigned int data_end;
4065         unsigned int old_data_start;
4066         unsigned int old_size;
4067         unsigned int size_diff;
4068         int i;
4069         struct btrfs_map_token token;
4070
4071         leaf = path->nodes[0];
4072         slot = path->slots[0];
4073
4074         old_size = btrfs_item_size(leaf, slot);
4075         if (old_size == new_size)
4076                 return;
4077
4078         nritems = btrfs_header_nritems(leaf);
4079         data_end = leaf_data_end(leaf);
4080
4081         old_data_start = btrfs_item_offset(leaf, slot);
4082
4083         size_diff = old_size - new_size;
4084
4085         BUG_ON(slot < 0);
4086         BUG_ON(slot >= nritems);
4087
4088         /*
4089          * item0..itemN ... dataN.offset..dataN.size .. data0.size
4090          */
4091         /* first correct the data pointers */
4092         btrfs_init_map_token(&token, leaf);
4093         for (i = slot; i < nritems; i++) {
4094                 u32 ioff;
4095
4096                 ioff = btrfs_token_item_offset(&token, i);
4097                 btrfs_set_token_item_offset(&token, i, ioff + size_diff);
4098         }
4099
4100         /* shift the data */
4101         if (from_end) {
4102                 memmove_leaf_data(leaf, data_end + size_diff, data_end,
4103                                   old_data_start + new_size - data_end);
4104         } else {
4105                 struct btrfs_disk_key disk_key;
4106                 u64 offset;
4107
4108                 btrfs_item_key(leaf, &disk_key, slot);
4109
4110                 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
4111                         unsigned long ptr;
4112                         struct btrfs_file_extent_item *fi;
4113
4114                         fi = btrfs_item_ptr(leaf, slot,
4115                                             struct btrfs_file_extent_item);
4116                         fi = (struct btrfs_file_extent_item *)(
4117                              (unsigned long)fi - size_diff);
4118
4119                         if (btrfs_file_extent_type(leaf, fi) ==
4120                             BTRFS_FILE_EXTENT_INLINE) {
4121                                 ptr = btrfs_item_ptr_offset(leaf, slot);
4122                                 memmove_extent_buffer(leaf, ptr,
4123                                       (unsigned long)fi,
4124                                       BTRFS_FILE_EXTENT_INLINE_DATA_START);
4125                         }
4126                 }
4127
4128                 memmove_leaf_data(leaf, data_end + size_diff, data_end,
4129                                   old_data_start - data_end);
4130
4131                 offset = btrfs_disk_key_offset(&disk_key);
4132                 btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
4133                 btrfs_set_item_key(leaf, &disk_key, slot);
4134                 if (slot == 0)
4135                         fixup_low_keys(trans, path, &disk_key, 1);
4136         }
4137
4138         btrfs_set_item_size(leaf, slot, new_size);
4139         btrfs_mark_buffer_dirty(trans, leaf);
4140
4141         if (btrfs_leaf_free_space(leaf) < 0) {
4142                 btrfs_print_leaf(leaf);
4143                 BUG();
4144         }
4145 }
4146
4147 /*
4148  * make the item pointed to by the path bigger, data_size is the added size.
4149  */
4150 void btrfs_extend_item(struct btrfs_trans_handle *trans,
4151                        const struct btrfs_path *path, u32 data_size)
4152 {
4153         int slot;
4154         struct extent_buffer *leaf;
4155         u32 nritems;
4156         unsigned int data_end;
4157         unsigned int old_data;
4158         unsigned int old_size;
4159         int i;
4160         struct btrfs_map_token token;
4161
4162         leaf = path->nodes[0];
4163
4164         nritems = btrfs_header_nritems(leaf);
4165         data_end = leaf_data_end(leaf);
4166
4167         if (btrfs_leaf_free_space(leaf) < data_size) {
4168                 btrfs_print_leaf(leaf);
4169                 BUG();
4170         }
4171         slot = path->slots[0];
4172         old_data = btrfs_item_data_end(leaf, slot);
4173
4174         BUG_ON(slot < 0);
4175         if (slot >= nritems) {
4176                 btrfs_print_leaf(leaf);
4177                 btrfs_crit(leaf->fs_info, "slot %d too large, nritems %d",
4178                            slot, nritems);
4179                 BUG();
4180         }
4181
4182         /*
4183          * item0..itemN ... dataN.offset..dataN.size .. data0.size
4184          */
4185         /* first correct the data pointers */
4186         btrfs_init_map_token(&token, leaf);
4187         for (i = slot; i < nritems; i++) {
4188                 u32 ioff;
4189
4190                 ioff = btrfs_token_item_offset(&token, i);
4191                 btrfs_set_token_item_offset(&token, i, ioff - data_size);
4192         }
4193
4194         /* shift the data */
4195         memmove_leaf_data(leaf, data_end - data_size, data_end,
4196                           old_data - data_end);
4197
4198         data_end = old_data;
4199         old_size = btrfs_item_size(leaf, slot);
4200         btrfs_set_item_size(leaf, slot, old_size + data_size);
4201         btrfs_mark_buffer_dirty(trans, leaf);
4202
4203         if (btrfs_leaf_free_space(leaf) < 0) {
4204                 btrfs_print_leaf(leaf);
4205                 BUG();
4206         }
4207 }
4208
4209 /*
4210  * Make space in the node before inserting one or more items.
4211  *
4212  * @trans:      transaction handle
4213  * @root:       root we are inserting items to
4214  * @path:       points to the leaf/slot where we are going to insert new items
4215  * @batch:      information about the batch of items to insert
4216  *
4217  * Main purpose is to save stack depth by doing the bulk of the work in a
4218  * function that doesn't call btrfs_search_slot
4219  */
4220 static void setup_items_for_insert(struct btrfs_trans_handle *trans,
4221                                    struct btrfs_root *root, struct btrfs_path *path,
4222                                    const struct btrfs_item_batch *batch)
4223 {
4224         struct btrfs_fs_info *fs_info = root->fs_info;
4225         int i;
4226         u32 nritems;
4227         unsigned int data_end;
4228         struct btrfs_disk_key disk_key;
4229         struct extent_buffer *leaf;
4230         int slot;
4231         struct btrfs_map_token token;
4232         u32 total_size;
4233
4234         /*
4235          * Before anything else, update keys in the parent and other ancestors
4236          * if needed, then release the write locks on them, so that other tasks
4237          * can use them while we modify the leaf.
4238          */
4239         if (path->slots[0] == 0) {
4240                 btrfs_cpu_key_to_disk(&disk_key, &batch->keys[0]);
4241                 fixup_low_keys(trans, path, &disk_key, 1);
4242         }
4243         btrfs_unlock_up_safe(path, 1);
4244
4245         leaf = path->nodes[0];
4246         slot = path->slots[0];
4247
4248         nritems = btrfs_header_nritems(leaf);
4249         data_end = leaf_data_end(leaf);
4250         total_size = batch->total_data_size + (batch->nr * sizeof(struct btrfs_item));
4251
4252         if (btrfs_leaf_free_space(leaf) < total_size) {
4253                 btrfs_print_leaf(leaf);
4254                 btrfs_crit(fs_info, "not enough freespace need %u have %d",
4255                            total_size, btrfs_leaf_free_space(leaf));
4256                 BUG();
4257         }
4258
4259         btrfs_init_map_token(&token, leaf);
4260         if (slot != nritems) {
4261                 unsigned int old_data = btrfs_item_data_end(leaf, slot);
4262
4263                 if (old_data < data_end) {
4264                         btrfs_print_leaf(leaf);
4265                         btrfs_crit(fs_info,
4266                 "item at slot %d with data offset %u beyond data end of leaf %u",
4267                                    slot, old_data, data_end);
4268                         BUG();
4269                 }
4270                 /*
4271                  * item0..itemN ... dataN.offset..dataN.size .. data0.size
4272                  */
4273                 /* first correct the data pointers */
4274                 for (i = slot; i < nritems; i++) {
4275                         u32 ioff;
4276
4277                         ioff = btrfs_token_item_offset(&token, i);
4278                         btrfs_set_token_item_offset(&token, i,
4279                                                        ioff - batch->total_data_size);
4280                 }
4281                 /* shift the items */
4282                 memmove_leaf_items(leaf, slot + batch->nr, slot, nritems - slot);
4283
4284                 /* shift the data */
4285                 memmove_leaf_data(leaf, data_end - batch->total_data_size,
4286                                   data_end, old_data - data_end);
4287                 data_end = old_data;
4288         }
4289
4290         /* setup the item for the new data */
4291         for (i = 0; i < batch->nr; i++) {
4292                 btrfs_cpu_key_to_disk(&disk_key, &batch->keys[i]);
4293                 btrfs_set_item_key(leaf, &disk_key, slot + i);
4294                 data_end -= batch->data_sizes[i];
4295                 btrfs_set_token_item_offset(&token, slot + i, data_end);
4296                 btrfs_set_token_item_size(&token, slot + i, batch->data_sizes[i]);
4297         }
4298
4299         btrfs_set_header_nritems(leaf, nritems + batch->nr);
4300         btrfs_mark_buffer_dirty(trans, leaf);
4301
4302         if (btrfs_leaf_free_space(leaf) < 0) {
4303                 btrfs_print_leaf(leaf);
4304                 BUG();
4305         }
4306 }
4307
4308 /*
4309  * Insert a new item into a leaf.
4310  *
4311  * @trans:     Transaction handle.
4312  * @root:      The root of the btree.
4313  * @path:      A path pointing to the target leaf and slot.
4314  * @key:       The key of the new item.
4315  * @data_size: The size of the data associated with the new key.
4316  */
4317 void btrfs_setup_item_for_insert(struct btrfs_trans_handle *trans,
4318                                  struct btrfs_root *root,
4319                                  struct btrfs_path *path,
4320                                  const struct btrfs_key *key,
4321                                  u32 data_size)
4322 {
4323         struct btrfs_item_batch batch;
4324
4325         batch.keys = key;
4326         batch.data_sizes = &data_size;
4327         batch.total_data_size = data_size;
4328         batch.nr = 1;
4329
4330         setup_items_for_insert(trans, root, path, &batch);
4331 }
4332
4333 /*
4334  * Given a key and some data, insert items into the tree.
4335  * This does all the path init required, making room in the tree if needed.
4336  *
4337  * Returns: 0        on success
4338  *          -EEXIST  if the first key already exists
4339  *          < 0      on other errors
4340  */
4341 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
4342                             struct btrfs_root *root,
4343                             struct btrfs_path *path,
4344                             const struct btrfs_item_batch *batch)
4345 {
4346         int ret = 0;
4347         int slot;
4348         u32 total_size;
4349
4350         total_size = batch->total_data_size + (batch->nr * sizeof(struct btrfs_item));
4351         ret = btrfs_search_slot(trans, root, &batch->keys[0], path, total_size, 1);
4352         if (ret == 0)
4353                 return -EEXIST;
4354         if (ret < 0)
4355                 return ret;
4356
4357         slot = path->slots[0];
4358         BUG_ON(slot < 0);
4359
4360         setup_items_for_insert(trans, root, path, batch);
4361         return 0;
4362 }
4363
4364 /*
4365  * Given a key and some data, insert an item into the tree.
4366  * This does all the path init required, making room in the tree if needed.
4367  */
4368 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4369                       const struct btrfs_key *cpu_key, void *data,
4370                       u32 data_size)
4371 {
4372         int ret = 0;
4373         struct btrfs_path *path;
4374         struct extent_buffer *leaf;
4375         unsigned long ptr;
4376
4377         path = btrfs_alloc_path();
4378         if (!path)
4379                 return -ENOMEM;
4380         ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
4381         if (!ret) {
4382                 leaf = path->nodes[0];
4383                 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4384                 write_extent_buffer(leaf, data, ptr, data_size);
4385                 btrfs_mark_buffer_dirty(trans, leaf);
4386         }
4387         btrfs_free_path(path);
4388         return ret;
4389 }
4390
4391 /*
4392  * This function duplicates an item, giving 'new_key' to the new item.
4393  * It guarantees both items live in the same tree leaf and the new item is
4394  * contiguous with the original item.
4395  *
4396  * This allows us to split a file extent in place, keeping a lock on the leaf
4397  * the entire time.
4398  */
4399 int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
4400                          struct btrfs_root *root,
4401                          struct btrfs_path *path,
4402                          const struct btrfs_key *new_key)
4403 {
4404         struct extent_buffer *leaf;
4405         int ret;
4406         u32 item_size;
4407
4408         leaf = path->nodes[0];
4409         item_size = btrfs_item_size(leaf, path->slots[0]);
4410         ret = setup_leaf_for_split(trans, root, path,
4411                                    item_size + sizeof(struct btrfs_item));
4412         if (ret)
4413                 return ret;
4414
4415         path->slots[0]++;
4416         btrfs_setup_item_for_insert(trans, root, path, new_key, item_size);
4417         leaf = path->nodes[0];
4418         memcpy_extent_buffer(leaf,
4419                              btrfs_item_ptr_offset(leaf, path->slots[0]),
4420                              btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
4421                              item_size);
4422         return 0;
4423 }
4424
4425 /*
4426  * delete the pointer from a given node.
4427  *
4428  * the tree should have been previously balanced so the deletion does not
4429  * empty a node.
4430  *
4431  * This is exported for use inside btrfs-progs, don't un-export it.
4432  */
4433 int btrfs_del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4434                   struct btrfs_path *path, int level, int slot)
4435 {
4436         struct extent_buffer *parent = path->nodes[level];
4437         u32 nritems;
4438         int ret;
4439
4440         nritems = btrfs_header_nritems(parent);
4441         if (slot != nritems - 1) {
4442                 if (level) {
4443                         ret = btrfs_tree_mod_log_insert_move(parent, slot,
4444                                         slot + 1, nritems - slot - 1);
4445                         if (ret < 0) {
4446                                 btrfs_abort_transaction(trans, ret);
4447                                 return ret;
4448                         }
4449                 }
4450                 memmove_extent_buffer(parent,
4451                               btrfs_node_key_ptr_offset(parent, slot),
4452                               btrfs_node_key_ptr_offset(parent, slot + 1),
4453                               sizeof(struct btrfs_key_ptr) *
4454                               (nritems - slot - 1));
4455         } else if (level) {
4456                 ret = btrfs_tree_mod_log_insert_key(parent, slot,
4457                                                     BTRFS_MOD_LOG_KEY_REMOVE);
4458                 if (ret < 0) {
4459                         btrfs_abort_transaction(trans, ret);
4460                         return ret;
4461                 }
4462         }
4463
4464         nritems--;
4465         btrfs_set_header_nritems(parent, nritems);
4466         if (nritems == 0 && parent == root->node) {
4467                 BUG_ON(btrfs_header_level(root->node) != 1);
4468                 /* just turn the root into a leaf and break */
4469                 btrfs_set_header_level(root->node, 0);
4470         } else if (slot == 0) {
4471                 struct btrfs_disk_key disk_key;
4472
4473                 btrfs_node_key(parent, &disk_key, 0);
4474                 fixup_low_keys(trans, path, &disk_key, level + 1);
4475         }
4476         btrfs_mark_buffer_dirty(trans, parent);
4477         return 0;
4478 }
4479
4480 /*
4481  * a helper function to delete the leaf pointed to by path->slots[1] and
4482  * path->nodes[1].
4483  *
4484  * This deletes the pointer in path->nodes[1] and frees the leaf
4485  * block extent.  zero is returned if it all worked out, < 0 otherwise.
4486  *
4487  * The path must have already been setup for deleting the leaf, including
4488  * all the proper balancing.  path->nodes[1] must be locked.
4489  */
4490 static noinline int btrfs_del_leaf(struct btrfs_trans_handle *trans,
4491                                    struct btrfs_root *root,
4492                                    struct btrfs_path *path,
4493                                    struct extent_buffer *leaf)
4494 {
4495         int ret;
4496
4497         WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4498         ret = btrfs_del_ptr(trans, root, path, 1, path->slots[1]);
4499         if (ret < 0)
4500                 return ret;
4501
4502         /*
4503          * btrfs_free_extent is expensive, we want to make sure we
4504          * aren't holding any locks when we call it
4505          */
4506         btrfs_unlock_up_safe(path, 0);
4507
4508         root_sub_used_bytes(root);
4509
4510         atomic_inc(&leaf->refs);
4511         ret = btrfs_free_tree_block(trans, btrfs_root_id(root), leaf, 0, 1);
4512         free_extent_buffer_stale(leaf);
4513         if (ret < 0)
4514                 btrfs_abort_transaction(trans, ret);
4515
4516         return ret;
4517 }
4518 /*
4519  * delete the item at the leaf level in path.  If that empties
4520  * the leaf, remove it from the tree
4521  */
4522 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4523                     struct btrfs_path *path, int slot, int nr)
4524 {
4525         struct btrfs_fs_info *fs_info = root->fs_info;
4526         struct extent_buffer *leaf;
4527         int ret = 0;
4528         int wret;
4529         u32 nritems;
4530
4531         leaf = path->nodes[0];
4532         nritems = btrfs_header_nritems(leaf);
4533
4534         if (slot + nr != nritems) {
4535                 const u32 last_off = btrfs_item_offset(leaf, slot + nr - 1);
4536                 const int data_end = leaf_data_end(leaf);
4537                 struct btrfs_map_token token;
4538                 u32 dsize = 0;
4539                 int i;
4540
4541                 for (i = 0; i < nr; i++)
4542                         dsize += btrfs_item_size(leaf, slot + i);
4543
4544                 memmove_leaf_data(leaf, data_end + dsize, data_end,
4545                                   last_off - data_end);
4546
4547                 btrfs_init_map_token(&token, leaf);
4548                 for (i = slot + nr; i < nritems; i++) {
4549                         u32 ioff;
4550
4551                         ioff = btrfs_token_item_offset(&token, i);
4552                         btrfs_set_token_item_offset(&token, i, ioff + dsize);
4553                 }
4554
4555                 memmove_leaf_items(leaf, slot, slot + nr, nritems - slot - nr);
4556         }
4557         btrfs_set_header_nritems(leaf, nritems - nr);
4558         nritems -= nr;
4559
4560         /* delete the leaf if we've emptied it */
4561         if (nritems == 0) {
4562                 if (leaf == root->node) {
4563                         btrfs_set_header_level(leaf, 0);
4564                 } else {
4565                         btrfs_clear_buffer_dirty(trans, leaf);
4566                         ret = btrfs_del_leaf(trans, root, path, leaf);
4567                         if (ret < 0)
4568                                 return ret;
4569                 }
4570         } else {
4571                 int used = leaf_space_used(leaf, 0, nritems);
4572                 if (slot == 0) {
4573                         struct btrfs_disk_key disk_key;
4574
4575                         btrfs_item_key(leaf, &disk_key, 0);
4576                         fixup_low_keys(trans, path, &disk_key, 1);
4577                 }
4578
4579                 /*
4580                  * Try to delete the leaf if it is mostly empty. We do this by
4581                  * trying to move all its items into its left and right neighbours.
4582                  * If we can't move all the items, then we don't delete it - it's
4583                  * not ideal, but future insertions might fill the leaf with more
4584                  * items, or items from other leaves might be moved later into our
4585                  * leaf due to deletions on those leaves.
4586                  */
4587                 if (used < BTRFS_LEAF_DATA_SIZE(fs_info) / 3) {
4588                         u32 min_push_space;
4589
4590                         /* push_leaf_left fixes the path.
4591                          * make sure the path still points to our leaf
4592                          * for possible call to btrfs_del_ptr below
4593                          */
4594                         slot = path->slots[1];
4595                         atomic_inc(&leaf->refs);
4596                         /*
4597                          * We want to be able to at least push one item to the
4598                          * left neighbour leaf, and that's the first item.
4599                          */
4600                         min_push_space = sizeof(struct btrfs_item) +
4601                                 btrfs_item_size(leaf, 0);
4602                         wret = push_leaf_left(trans, root, path, 0,
4603                                               min_push_space, 1, (u32)-1);
4604                         if (wret < 0 && wret != -ENOSPC)
4605                                 ret = wret;
4606
4607                         if (path->nodes[0] == leaf &&
4608                             btrfs_header_nritems(leaf)) {
4609                                 /*
4610                                  * If we were not able to push all items from our
4611                                  * leaf to its left neighbour, then attempt to
4612                                  * either push all the remaining items to the
4613                                  * right neighbour or none. There's no advantage
4614                                  * in pushing only some items, instead of all, as
4615                                  * it's pointless to end up with a leaf having
4616                                  * too few items while the neighbours can be full
4617                                  * or nearly full.
4618                                  */
4619                                 nritems = btrfs_header_nritems(leaf);
4620                                 min_push_space = leaf_space_used(leaf, 0, nritems);
4621                                 wret = push_leaf_right(trans, root, path, 0,
4622                                                        min_push_space, 1, 0);
4623                                 if (wret < 0 && wret != -ENOSPC)
4624                                         ret = wret;
4625                         }
4626
4627                         if (btrfs_header_nritems(leaf) == 0) {
4628                                 path->slots[1] = slot;
4629                                 ret = btrfs_del_leaf(trans, root, path, leaf);
4630                                 if (ret < 0)
4631                                         return ret;
4632                                 free_extent_buffer(leaf);
4633                                 ret = 0;
4634                         } else {
4635                                 /* if we're still in the path, make sure
4636                                  * we're dirty.  Otherwise, one of the
4637                                  * push_leaf functions must have already
4638                                  * dirtied this buffer
4639                                  */
4640                                 if (path->nodes[0] == leaf)
4641                                         btrfs_mark_buffer_dirty(trans, leaf);
4642                                 free_extent_buffer(leaf);
4643                         }
4644                 } else {
4645                         btrfs_mark_buffer_dirty(trans, leaf);
4646                 }
4647         }
4648         return ret;
4649 }
4650
4651 /*
4652  * A helper function to walk down the tree starting at min_key, and looking
4653  * for nodes or leaves that are have a minimum transaction id.
4654  * This is used by the btree defrag code, and tree logging
4655  *
4656  * This does not cow, but it does stuff the starting key it finds back
4657  * into min_key, so you can call btrfs_search_slot with cow=1 on the
4658  * key and get a writable path.
4659  *
4660  * This honors path->lowest_level to prevent descent past a given level
4661  * of the tree.
4662  *
4663  * min_trans indicates the oldest transaction that you are interested
4664  * in walking through.  Any nodes or leaves older than min_trans are
4665  * skipped over (without reading them).
4666  *
4667  * returns zero if something useful was found, < 0 on error and 1 if there
4668  * was nothing in the tree that matched the search criteria.
4669  */
4670 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
4671                          struct btrfs_path *path,
4672                          u64 min_trans)
4673 {
4674         struct extent_buffer *cur;
4675         struct btrfs_key found_key;
4676         int slot;
4677         int sret;
4678         u32 nritems;
4679         int level;
4680         int ret = 1;
4681         int keep_locks = path->keep_locks;
4682
4683         ASSERT(!path->nowait);
4684         path->keep_locks = 1;
4685 again:
4686         cur = btrfs_read_lock_root_node(root);
4687         level = btrfs_header_level(cur);
4688         WARN_ON(path->nodes[level]);
4689         path->nodes[level] = cur;
4690         path->locks[level] = BTRFS_READ_LOCK;
4691
4692         if (btrfs_header_generation(cur) < min_trans) {
4693                 ret = 1;
4694                 goto out;
4695         }
4696         while (1) {
4697                 nritems = btrfs_header_nritems(cur);
4698                 level = btrfs_header_level(cur);
4699                 sret = btrfs_bin_search(cur, 0, min_key, &slot);
4700                 if (sret < 0) {
4701                         ret = sret;
4702                         goto out;
4703                 }
4704
4705                 /* at the lowest level, we're done, setup the path and exit */
4706                 if (level == path->lowest_level) {
4707                         if (slot >= nritems)
4708                                 goto find_next_key;
4709                         ret = 0;
4710                         path->slots[level] = slot;
4711                         btrfs_item_key_to_cpu(cur, &found_key, slot);
4712                         goto out;
4713                 }
4714                 if (sret && slot > 0)
4715                         slot--;
4716                 /*
4717                  * check this node pointer against the min_trans parameters.
4718                  * If it is too old, skip to the next one.
4719                  */
4720                 while (slot < nritems) {
4721                         u64 gen;
4722
4723                         gen = btrfs_node_ptr_generation(cur, slot);
4724                         if (gen < min_trans) {
4725                                 slot++;
4726                                 continue;
4727                         }
4728                         break;
4729                 }
4730 find_next_key:
4731                 /*
4732                  * we didn't find a candidate key in this node, walk forward
4733                  * and find another one
4734                  */
4735                 if (slot >= nritems) {
4736                         path->slots[level] = slot;
4737                         sret = btrfs_find_next_key(root, path, min_key, level,
4738                                                   min_trans);
4739                         if (sret == 0) {
4740                                 btrfs_release_path(path);
4741                                 goto again;
4742                         } else {
4743                                 goto out;
4744                         }
4745                 }
4746                 /* save our key for returning back */
4747                 btrfs_node_key_to_cpu(cur, &found_key, slot);
4748                 path->slots[level] = slot;
4749                 if (level == path->lowest_level) {
4750                         ret = 0;
4751                         goto out;
4752                 }
4753                 cur = btrfs_read_node_slot(cur, slot);
4754                 if (IS_ERR(cur)) {
4755                         ret = PTR_ERR(cur);
4756                         goto out;
4757                 }
4758
4759                 btrfs_tree_read_lock(cur);
4760
4761                 path->locks[level - 1] = BTRFS_READ_LOCK;
4762                 path->nodes[level - 1] = cur;
4763                 unlock_up(path, level, 1, 0, NULL);
4764         }
4765 out:
4766         path->keep_locks = keep_locks;
4767         if (ret == 0) {
4768                 btrfs_unlock_up_safe(path, path->lowest_level + 1);
4769                 memcpy(min_key, &found_key, sizeof(found_key));
4770         }
4771         return ret;
4772 }
4773
4774 /*
4775  * this is similar to btrfs_next_leaf, but does not try to preserve
4776  * and fixup the path.  It looks for and returns the next key in the
4777  * tree based on the current path and the min_trans parameters.
4778  *
4779  * 0 is returned if another key is found, < 0 if there are any errors
4780  * and 1 is returned if there are no higher keys in the tree
4781  *
4782  * path->keep_locks should be set to 1 on the search made before
4783  * calling this function.
4784  */
4785 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
4786                         struct btrfs_key *key, int level, u64 min_trans)
4787 {
4788         int slot;
4789         struct extent_buffer *c;
4790
4791         WARN_ON(!path->keep_locks && !path->skip_locking);
4792         while (level < BTRFS_MAX_LEVEL) {
4793                 if (!path->nodes[level])
4794                         return 1;
4795
4796                 slot = path->slots[level] + 1;
4797                 c = path->nodes[level];
4798 next:
4799                 if (slot >= btrfs_header_nritems(c)) {
4800                         int ret;
4801                         int orig_lowest;
4802                         struct btrfs_key cur_key;
4803                         if (level + 1 >= BTRFS_MAX_LEVEL ||
4804                             !path->nodes[level + 1])
4805                                 return 1;
4806
4807                         if (path->locks[level + 1] || path->skip_locking) {
4808                                 level++;
4809                                 continue;
4810                         }
4811
4812                         slot = btrfs_header_nritems(c) - 1;
4813                         if (level == 0)
4814                                 btrfs_item_key_to_cpu(c, &cur_key, slot);
4815                         else
4816                                 btrfs_node_key_to_cpu(c, &cur_key, slot);
4817
4818                         orig_lowest = path->lowest_level;
4819                         btrfs_release_path(path);
4820                         path->lowest_level = level;
4821                         ret = btrfs_search_slot(NULL, root, &cur_key, path,
4822                                                 0, 0);
4823                         path->lowest_level = orig_lowest;
4824                         if (ret < 0)
4825                                 return ret;
4826
4827                         c = path->nodes[level];
4828                         slot = path->slots[level];
4829                         if (ret == 0)
4830                                 slot++;
4831                         goto next;
4832                 }
4833
4834                 if (level == 0)
4835                         btrfs_item_key_to_cpu(c, key, slot);
4836                 else {
4837                         u64 gen = btrfs_node_ptr_generation(c, slot);
4838
4839                         if (gen < min_trans) {
4840                                 slot++;
4841                                 goto next;
4842                         }
4843                         btrfs_node_key_to_cpu(c, key, slot);
4844                 }
4845                 return 0;
4846         }
4847         return 1;
4848 }
4849
4850 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
4851                         u64 time_seq)
4852 {
4853         int slot;
4854         int level;
4855         struct extent_buffer *c;
4856         struct extent_buffer *next;
4857         struct btrfs_fs_info *fs_info = root->fs_info;
4858         struct btrfs_key key;
4859         bool need_commit_sem = false;
4860         u32 nritems;
4861         int ret;
4862         int i;
4863
4864         /*
4865          * The nowait semantics are used only for write paths, where we don't
4866          * use the tree mod log and sequence numbers.
4867          */
4868         if (time_seq)
4869                 ASSERT(!path->nowait);
4870
4871         nritems = btrfs_header_nritems(path->nodes[0]);
4872         if (nritems == 0)
4873                 return 1;
4874
4875         btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
4876 again:
4877         level = 1;
4878         next = NULL;
4879         btrfs_release_path(path);
4880
4881         path->keep_locks = 1;
4882
4883         if (time_seq) {
4884                 ret = btrfs_search_old_slot(root, &key, path, time_seq);
4885         } else {
4886                 if (path->need_commit_sem) {
4887                         path->need_commit_sem = 0;
4888                         need_commit_sem = true;
4889                         if (path->nowait) {
4890                                 if (!down_read_trylock(&fs_info->commit_root_sem)) {
4891                                         ret = -EAGAIN;
4892                                         goto done;
4893                                 }
4894                         } else {
4895                                 down_read(&fs_info->commit_root_sem);
4896                         }
4897                 }
4898                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4899         }
4900         path->keep_locks = 0;
4901
4902         if (ret < 0)
4903                 goto done;
4904
4905         nritems = btrfs_header_nritems(path->nodes[0]);
4906         /*
4907          * by releasing the path above we dropped all our locks.  A balance
4908          * could have added more items next to the key that used to be
4909          * at the very end of the block.  So, check again here and
4910          * advance the path if there are now more items available.
4911          */
4912         if (nritems > 0 && path->slots[0] < nritems - 1) {
4913                 if (ret == 0)
4914                         path->slots[0]++;
4915                 ret = 0;
4916                 goto done;
4917         }
4918         /*
4919          * So the above check misses one case:
4920          * - after releasing the path above, someone has removed the item that
4921          *   used to be at the very end of the block, and balance between leafs
4922          *   gets another one with bigger key.offset to replace it.
4923          *
4924          * This one should be returned as well, or we can get leaf corruption
4925          * later(esp. in __btrfs_drop_extents()).
4926          *
4927          * And a bit more explanation about this check,
4928          * with ret > 0, the key isn't found, the path points to the slot
4929          * where it should be inserted, so the path->slots[0] item must be the
4930          * bigger one.
4931          */
4932         if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) {
4933                 ret = 0;
4934                 goto done;
4935         }
4936
4937         while (level < BTRFS_MAX_LEVEL) {
4938                 if (!path->nodes[level]) {
4939                         ret = 1;
4940                         goto done;
4941                 }
4942
4943                 slot = path->slots[level] + 1;
4944                 c = path->nodes[level];
4945                 if (slot >= btrfs_header_nritems(c)) {
4946                         level++;
4947                         if (level == BTRFS_MAX_LEVEL) {
4948                                 ret = 1;
4949                                 goto done;
4950                         }
4951                         continue;
4952                 }
4953
4954
4955                 /*
4956                  * Our current level is where we're going to start from, and to
4957                  * make sure lockdep doesn't complain we need to drop our locks
4958                  * and nodes from 0 to our current level.
4959                  */
4960                 for (i = 0; i < level; i++) {
4961                         if (path->locks[level]) {
4962                                 btrfs_tree_read_unlock(path->nodes[i]);
4963                                 path->locks[i] = 0;
4964                         }
4965                         free_extent_buffer(path->nodes[i]);
4966                         path->nodes[i] = NULL;
4967                 }
4968
4969                 next = c;
4970                 ret = read_block_for_search(root, path, &next, slot, &key);
4971                 if (ret == -EAGAIN && !path->nowait)
4972                         goto again;
4973
4974                 if (ret < 0) {
4975                         btrfs_release_path(path);
4976                         goto done;
4977                 }
4978
4979                 if (!path->skip_locking) {
4980                         ret = btrfs_try_tree_read_lock(next);
4981                         if (!ret && path->nowait) {
4982                                 ret = -EAGAIN;
4983                                 goto done;
4984                         }
4985                         if (!ret && time_seq) {
4986                                 /*
4987                                  * If we don't get the lock, we may be racing
4988                                  * with push_leaf_left, holding that lock while
4989                                  * itself waiting for the leaf we've currently
4990                                  * locked. To solve this situation, we give up
4991                                  * on our lock and cycle.
4992                                  */
4993                                 free_extent_buffer(next);
4994                                 btrfs_release_path(path);
4995                                 cond_resched();
4996                                 goto again;
4997                         }
4998                         if (!ret)
4999                                 btrfs_tree_read_lock(next);
5000                 }
5001                 break;
5002         }
5003         path->slots[level] = slot;
5004         while (1) {
5005                 level--;
5006                 path->nodes[level] = next;
5007                 path->slots[level] = 0;
5008                 if (!path->skip_locking)
5009                         path->locks[level] = BTRFS_READ_LOCK;
5010                 if (!level)
5011                         break;
5012
5013                 ret = read_block_for_search(root, path, &next, 0, &key);
5014                 if (ret == -EAGAIN && !path->nowait)
5015                         goto again;
5016
5017                 if (ret < 0) {
5018                         btrfs_release_path(path);
5019                         goto done;
5020                 }
5021
5022                 if (!path->skip_locking) {
5023                         if (path->nowait) {
5024                                 if (!btrfs_try_tree_read_lock(next)) {
5025                                         ret = -EAGAIN;
5026                                         goto done;
5027                                 }
5028                         } else {
5029                                 btrfs_tree_read_lock(next);
5030                         }
5031                 }
5032         }
5033         ret = 0;
5034 done:
5035         unlock_up(path, 0, 1, 0, NULL);
5036         if (need_commit_sem) {
5037                 int ret2;
5038
5039                 path->need_commit_sem = 1;
5040                 ret2 = finish_need_commit_sem_search(path);
5041                 up_read(&fs_info->commit_root_sem);
5042                 if (ret2)
5043                         ret = ret2;
5044         }
5045
5046         return ret;
5047 }
5048
5049 int btrfs_next_old_item(struct btrfs_root *root, struct btrfs_path *path, u64 time_seq)
5050 {
5051         path->slots[0]++;
5052         if (path->slots[0] >= btrfs_header_nritems(path->nodes[0]))
5053                 return btrfs_next_old_leaf(root, path, time_seq);
5054         return 0;
5055 }
5056
5057 /*
5058  * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
5059  * searching until it gets past min_objectid or finds an item of 'type'
5060  *
5061  * returns 0 if something is found, 1 if nothing was found and < 0 on error
5062  */
5063 int btrfs_previous_item(struct btrfs_root *root,
5064                         struct btrfs_path *path, u64 min_objectid,
5065                         int type)
5066 {
5067         struct btrfs_key found_key;
5068         struct extent_buffer *leaf;
5069         u32 nritems;
5070         int ret;
5071
5072         while (1) {
5073                 if (path->slots[0] == 0) {
5074                         ret = btrfs_prev_leaf(root, path);
5075                         if (ret != 0)
5076                                 return ret;
5077                 } else {
5078                         path->slots[0]--;
5079                 }
5080                 leaf = path->nodes[0];
5081                 nritems = btrfs_header_nritems(leaf);
5082                 if (nritems == 0)
5083                         return 1;
5084                 if (path->slots[0] == nritems)
5085                         path->slots[0]--;
5086
5087                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5088                 if (found_key.objectid < min_objectid)
5089                         break;
5090                 if (found_key.type == type)
5091                         return 0;
5092                 if (found_key.objectid == min_objectid &&
5093                     found_key.type < type)
5094                         break;
5095         }
5096         return 1;
5097 }
5098
5099 /*
5100  * search in extent tree to find a previous Metadata/Data extent item with
5101  * min objecitd.
5102  *
5103  * returns 0 if something is found, 1 if nothing was found and < 0 on error
5104  */
5105 int btrfs_previous_extent_item(struct btrfs_root *root,
5106                         struct btrfs_path *path, u64 min_objectid)
5107 {
5108         struct btrfs_key found_key;
5109         struct extent_buffer *leaf;
5110         u32 nritems;
5111         int ret;
5112
5113         while (1) {
5114                 if (path->slots[0] == 0) {
5115                         ret = btrfs_prev_leaf(root, path);
5116                         if (ret != 0)
5117                                 return ret;
5118                 } else {
5119                         path->slots[0]--;
5120                 }
5121                 leaf = path->nodes[0];
5122                 nritems = btrfs_header_nritems(leaf);
5123                 if (nritems == 0)
5124                         return 1;
5125                 if (path->slots[0] == nritems)
5126                         path->slots[0]--;
5127
5128                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5129                 if (found_key.objectid < min_objectid)
5130                         break;
5131                 if (found_key.type == BTRFS_EXTENT_ITEM_KEY ||
5132                     found_key.type == BTRFS_METADATA_ITEM_KEY)
5133                         return 0;
5134                 if (found_key.objectid == min_objectid &&
5135                     found_key.type < BTRFS_EXTENT_ITEM_KEY)
5136                         break;
5137         }
5138         return 1;
5139 }
5140
5141 int __init btrfs_ctree_init(void)
5142 {
5143         btrfs_path_cachep = KMEM_CACHE(btrfs_path, 0);
5144         if (!btrfs_path_cachep)
5145                 return -ENOMEM;
5146         return 0;
5147 }
5148
5149 void __cold btrfs_ctree_exit(void)
5150 {
5151         kmem_cache_destroy(btrfs_path_cachep);
5152 }
This page took 0.326434 seconds and 4 git commands to generate.