]> Git Repo - J-linux.git/blob - fs/bcachefs/btree_write_buffer.c
Merge tag 'vfs-6.13-rc7.fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs
[J-linux.git] / fs / bcachefs / btree_write_buffer.c
1 // SPDX-License-Identifier: GPL-2.0
2
3 #include "bcachefs.h"
4 #include "bkey_buf.h"
5 #include "btree_locking.h"
6 #include "btree_update.h"
7 #include "btree_update_interior.h"
8 #include "btree_write_buffer.h"
9 #include "disk_accounting.h"
10 #include "error.h"
11 #include "extents.h"
12 #include "journal.h"
13 #include "journal_io.h"
14 #include "journal_reclaim.h"
15
16 #include <linux/prefetch.h>
17 #include <linux/sort.h>
18
19 static int bch2_btree_write_buffer_journal_flush(struct journal *,
20                                 struct journal_entry_pin *, u64);
21
22 static int bch2_journal_keys_to_write_buffer(struct bch_fs *, struct journal_buf *);
23
24 static inline bool __wb_key_ref_cmp(const struct wb_key_ref *l, const struct wb_key_ref *r)
25 {
26         return (cmp_int(l->hi, r->hi) ?:
27                 cmp_int(l->mi, r->mi) ?:
28                 cmp_int(l->lo, r->lo)) >= 0;
29 }
30
31 static inline bool wb_key_ref_cmp(const struct wb_key_ref *l, const struct wb_key_ref *r)
32 {
33 #ifdef CONFIG_X86_64
34         int cmp;
35
36         asm("mov   (%[l]), %%rax;"
37             "sub   (%[r]), %%rax;"
38             "mov  8(%[l]), %%rax;"
39             "sbb  8(%[r]), %%rax;"
40             "mov 16(%[l]), %%rax;"
41             "sbb 16(%[r]), %%rax;"
42             : "=@ccae" (cmp)
43             : [l] "r" (l), [r] "r" (r)
44             : "rax", "cc");
45
46         EBUG_ON(cmp != __wb_key_ref_cmp(l, r));
47         return cmp;
48 #else
49         return __wb_key_ref_cmp(l, r);
50 #endif
51 }
52
53 static int wb_key_seq_cmp(const void *_l, const void *_r)
54 {
55         const struct btree_write_buffered_key *l = _l;
56         const struct btree_write_buffered_key *r = _r;
57
58         return cmp_int(l->journal_seq, r->journal_seq);
59 }
60
61 /* Compare excluding idx, the low 24 bits: */
62 static inline bool wb_key_eq(const void *_l, const void *_r)
63 {
64         const struct wb_key_ref *l = _l;
65         const struct wb_key_ref *r = _r;
66
67         return !((l->hi ^ r->hi)|
68                  (l->mi ^ r->mi)|
69                  ((l->lo >> 24) ^ (r->lo >> 24)));
70 }
71
72 static noinline void wb_sort(struct wb_key_ref *base, size_t num)
73 {
74         size_t n = num, a = num / 2;
75
76         if (!a)         /* num < 2 || size == 0 */
77                 return;
78
79         for (;;) {
80                 size_t b, c, d;
81
82                 if (a)                  /* Building heap: sift down --a */
83                         --a;
84                 else if (--n)           /* Sorting: Extract root to --n */
85                         swap(base[0], base[n]);
86                 else                    /* Sort complete */
87                         break;
88
89                 /*
90                  * Sift element at "a" down into heap.  This is the
91                  * "bottom-up" variant, which significantly reduces
92                  * calls to cmp_func(): we find the sift-down path all
93                  * the way to the leaves (one compare per level), then
94                  * backtrack to find where to insert the target element.
95                  *
96                  * Because elements tend to sift down close to the leaves,
97                  * this uses fewer compares than doing two per level
98                  * on the way down.  (A bit more than half as many on
99                  * average, 3/4 worst-case.)
100                  */
101                 for (b = a; c = 2*b + 1, (d = c + 1) < n;)
102                         b = wb_key_ref_cmp(base + c, base + d) ? c : d;
103                 if (d == n)             /* Special case last leaf with no sibling */
104                         b = c;
105
106                 /* Now backtrack from "b" to the correct location for "a" */
107                 while (b != a && wb_key_ref_cmp(base + a, base + b))
108                         b = (b - 1) / 2;
109                 c = b;                  /* Where "a" belongs */
110                 while (b != a) {        /* Shift it into place */
111                         b = (b - 1) / 2;
112                         swap(base[b], base[c]);
113                 }
114         }
115 }
116
117 static noinline int wb_flush_one_slowpath(struct btree_trans *trans,
118                                           struct btree_iter *iter,
119                                           struct btree_write_buffered_key *wb)
120 {
121         struct btree_path *path = btree_iter_path(trans, iter);
122
123         bch2_btree_node_unlock_write(trans, path, path->l[0].b);
124
125         trans->journal_res.seq = wb->journal_seq;
126
127         return bch2_trans_update(trans, iter, &wb->k,
128                                  BTREE_UPDATE_internal_snapshot_node) ?:
129                 bch2_trans_commit(trans, NULL, NULL,
130                                   BCH_TRANS_COMMIT_no_enospc|
131                                   BCH_TRANS_COMMIT_no_check_rw|
132                                   BCH_TRANS_COMMIT_no_journal_res|
133                                   BCH_TRANS_COMMIT_journal_reclaim);
134 }
135
136 static inline int wb_flush_one(struct btree_trans *trans, struct btree_iter *iter,
137                                struct btree_write_buffered_key *wb,
138                                bool *write_locked,
139                                bool *accounting_accumulated,
140                                size_t *fast)
141 {
142         struct btree_path *path;
143         int ret;
144
145         EBUG_ON(!wb->journal_seq);
146         EBUG_ON(!trans->c->btree_write_buffer.flushing.pin.seq);
147         EBUG_ON(trans->c->btree_write_buffer.flushing.pin.seq > wb->journal_seq);
148
149         ret = bch2_btree_iter_traverse(iter);
150         if (ret)
151                 return ret;
152
153         if (!*accounting_accumulated && wb->k.k.type == KEY_TYPE_accounting) {
154                 struct bkey u;
155                 struct bkey_s_c k = bch2_btree_path_peek_slot_exact(btree_iter_path(trans, iter), &u);
156
157                 if (k.k->type == KEY_TYPE_accounting)
158                         bch2_accounting_accumulate(bkey_i_to_accounting(&wb->k),
159                                                    bkey_s_c_to_accounting(k));
160         }
161         *accounting_accumulated = true;
162
163         /*
164          * We can't clone a path that has write locks: unshare it now, before
165          * set_pos and traverse():
166          */
167         if (btree_iter_path(trans, iter)->ref > 1)
168                 iter->path = __bch2_btree_path_make_mut(trans, iter->path, true, _THIS_IP_);
169
170         path = btree_iter_path(trans, iter);
171
172         if (!*write_locked) {
173                 ret = bch2_btree_node_lock_write(trans, path, &path->l[0].b->c);
174                 if (ret)
175                         return ret;
176
177                 bch2_btree_node_prep_for_write(trans, path, path->l[0].b);
178                 *write_locked = true;
179         }
180
181         if (unlikely(!bch2_btree_node_insert_fits(path->l[0].b, wb->k.k.u64s))) {
182                 *write_locked = false;
183                 return wb_flush_one_slowpath(trans, iter, wb);
184         }
185
186         bch2_btree_insert_key_leaf(trans, path, &wb->k, wb->journal_seq);
187         (*fast)++;
188         return 0;
189 }
190
191 /*
192  * Update a btree with a write buffered key using the journal seq of the
193  * original write buffer insert.
194  *
195  * It is not safe to rejournal the key once it has been inserted into the write
196  * buffer because that may break recovery ordering. For example, the key may
197  * have already been modified in the active write buffer in a seq that comes
198  * before the current transaction. If we were to journal this key again and
199  * crash, recovery would process updates in the wrong order.
200  */
201 static int
202 btree_write_buffered_insert(struct btree_trans *trans,
203                           struct btree_write_buffered_key *wb)
204 {
205         struct btree_iter iter;
206         int ret;
207
208         bch2_trans_iter_init(trans, &iter, wb->btree, bkey_start_pos(&wb->k.k),
209                              BTREE_ITER_cached|BTREE_ITER_intent);
210
211         trans->journal_res.seq = wb->journal_seq;
212
213         ret   = bch2_btree_iter_traverse(&iter) ?:
214                 bch2_trans_update(trans, &iter, &wb->k,
215                                   BTREE_UPDATE_internal_snapshot_node);
216         bch2_trans_iter_exit(trans, &iter);
217         return ret;
218 }
219
220 static void move_keys_from_inc_to_flushing(struct btree_write_buffer *wb)
221 {
222         struct bch_fs *c = container_of(wb, struct bch_fs, btree_write_buffer);
223         struct journal *j = &c->journal;
224
225         if (!wb->inc.keys.nr)
226                 return;
227
228         bch2_journal_pin_add(j, wb->inc.keys.data[0].journal_seq, &wb->flushing.pin,
229                              bch2_btree_write_buffer_journal_flush);
230
231         darray_resize(&wb->flushing.keys, min_t(size_t, 1U << 20, wb->flushing.keys.nr + wb->inc.keys.nr));
232         darray_resize(&wb->sorted, wb->flushing.keys.size);
233
234         if (!wb->flushing.keys.nr && wb->sorted.size >= wb->inc.keys.nr) {
235                 swap(wb->flushing.keys, wb->inc.keys);
236                 goto out;
237         }
238
239         size_t nr = min(darray_room(wb->flushing.keys),
240                         wb->sorted.size - wb->flushing.keys.nr);
241         nr = min(nr, wb->inc.keys.nr);
242
243         memcpy(&darray_top(wb->flushing.keys),
244                wb->inc.keys.data,
245                sizeof(wb->inc.keys.data[0]) * nr);
246
247         memmove(wb->inc.keys.data,
248                 wb->inc.keys.data + nr,
249                sizeof(wb->inc.keys.data[0]) * (wb->inc.keys.nr - nr));
250
251         wb->flushing.keys.nr    += nr;
252         wb->inc.keys.nr         -= nr;
253 out:
254         if (!wb->inc.keys.nr)
255                 bch2_journal_pin_drop(j, &wb->inc.pin);
256         else
257                 bch2_journal_pin_update(j, wb->inc.keys.data[0].journal_seq, &wb->inc.pin,
258                                         bch2_btree_write_buffer_journal_flush);
259
260         if (j->watermark) {
261                 spin_lock(&j->lock);
262                 bch2_journal_set_watermark(j);
263                 spin_unlock(&j->lock);
264         }
265
266         BUG_ON(wb->sorted.size < wb->flushing.keys.nr);
267 }
268
269 static int bch2_btree_write_buffer_flush_locked(struct btree_trans *trans)
270 {
271         struct bch_fs *c = trans->c;
272         struct journal *j = &c->journal;
273         struct btree_write_buffer *wb = &c->btree_write_buffer;
274         struct btree_iter iter = { NULL };
275         size_t overwritten = 0, fast = 0, slowpath = 0, could_not_insert = 0;
276         bool write_locked = false;
277         bool accounting_replay_done = test_bit(BCH_FS_accounting_replay_done, &c->flags);
278         int ret = 0;
279
280         ret = bch2_journal_error(&c->journal);
281         if (ret)
282                 return ret;
283
284         bch2_trans_unlock(trans);
285         bch2_trans_begin(trans);
286
287         mutex_lock(&wb->inc.lock);
288         move_keys_from_inc_to_flushing(wb);
289         mutex_unlock(&wb->inc.lock);
290
291         for (size_t i = 0; i < wb->flushing.keys.nr; i++) {
292                 wb->sorted.data[i].idx = i;
293                 wb->sorted.data[i].btree = wb->flushing.keys.data[i].btree;
294                 memcpy(&wb->sorted.data[i].pos, &wb->flushing.keys.data[i].k.k.p, sizeof(struct bpos));
295         }
296         wb->sorted.nr = wb->flushing.keys.nr;
297
298         /*
299          * We first sort so that we can detect and skip redundant updates, and
300          * then we attempt to flush in sorted btree order, as this is most
301          * efficient.
302          *
303          * However, since we're not flushing in the order they appear in the
304          * journal we won't be able to drop our journal pin until everything is
305          * flushed - which means this could deadlock the journal if we weren't
306          * passing BCH_TRANS_COMMIT_journal_reclaim. This causes the update to fail
307          * if it would block taking a journal reservation.
308          *
309          * If that happens, simply skip the key so we can optimistically insert
310          * as many keys as possible in the fast path.
311          */
312         wb_sort(wb->sorted.data, wb->sorted.nr);
313
314         darray_for_each(wb->sorted, i) {
315                 struct btree_write_buffered_key *k = &wb->flushing.keys.data[i->idx];
316
317                 for (struct wb_key_ref *n = i + 1; n < min(i + 4, &darray_top(wb->sorted)); n++)
318                         prefetch(&wb->flushing.keys.data[n->idx]);
319
320                 BUG_ON(!k->journal_seq);
321
322                 if (!accounting_replay_done &&
323                     k->k.k.type == KEY_TYPE_accounting) {
324                         slowpath++;
325                         continue;
326                 }
327
328                 if (i + 1 < &darray_top(wb->sorted) &&
329                     wb_key_eq(i, i + 1)) {
330                         struct btree_write_buffered_key *n = &wb->flushing.keys.data[i[1].idx];
331
332                         if (k->k.k.type == KEY_TYPE_accounting &&
333                             n->k.k.type == KEY_TYPE_accounting)
334                                 bch2_accounting_accumulate(bkey_i_to_accounting(&n->k),
335                                                            bkey_i_to_s_c_accounting(&k->k));
336
337                         overwritten++;
338                         n->journal_seq = min_t(u64, n->journal_seq, k->journal_seq);
339                         k->journal_seq = 0;
340                         continue;
341                 }
342
343                 if (write_locked) {
344                         struct btree_path *path = btree_iter_path(trans, &iter);
345
346                         if (path->btree_id != i->btree ||
347                             bpos_gt(k->k.k.p, path->l[0].b->key.k.p)) {
348                                 bch2_btree_node_unlock_write(trans, path, path->l[0].b);
349                                 write_locked = false;
350
351                                 ret = lockrestart_do(trans,
352                                         bch2_btree_iter_traverse(&iter) ?:
353                                         bch2_foreground_maybe_merge(trans, iter.path, 0,
354                                                         BCH_WATERMARK_reclaim|
355                                                         BCH_TRANS_COMMIT_journal_reclaim|
356                                                         BCH_TRANS_COMMIT_no_check_rw|
357                                                         BCH_TRANS_COMMIT_no_enospc));
358                                 if (ret)
359                                         goto err;
360                         }
361                 }
362
363                 if (!iter.path || iter.btree_id != k->btree) {
364                         bch2_trans_iter_exit(trans, &iter);
365                         bch2_trans_iter_init(trans, &iter, k->btree, k->k.k.p,
366                                              BTREE_ITER_intent|BTREE_ITER_all_snapshots);
367                 }
368
369                 bch2_btree_iter_set_pos(&iter, k->k.k.p);
370                 btree_iter_path(trans, &iter)->preserve = false;
371
372                 bool accounting_accumulated = false;
373                 do {
374                         if (race_fault()) {
375                                 ret = -BCH_ERR_journal_reclaim_would_deadlock;
376                                 break;
377                         }
378
379                         ret = wb_flush_one(trans, &iter, k, &write_locked,
380                                            &accounting_accumulated, &fast);
381                         if (!write_locked)
382                                 bch2_trans_begin(trans);
383                 } while (bch2_err_matches(ret, BCH_ERR_transaction_restart));
384
385                 if (!ret) {
386                         k->journal_seq = 0;
387                 } else if (ret == -BCH_ERR_journal_reclaim_would_deadlock) {
388                         slowpath++;
389                         ret = 0;
390                 } else
391                         break;
392         }
393
394         if (write_locked) {
395                 struct btree_path *path = btree_iter_path(trans, &iter);
396                 bch2_btree_node_unlock_write(trans, path, path->l[0].b);
397         }
398         bch2_trans_iter_exit(trans, &iter);
399
400         if (ret)
401                 goto err;
402
403         if (slowpath) {
404                 /*
405                  * Flush in the order they were present in the journal, so that
406                  * we can release journal pins:
407                  * The fastpath zapped the seq of keys that were successfully flushed so
408                  * we can skip those here.
409                  */
410                 trace_and_count(c, write_buffer_flush_slowpath, trans, slowpath, wb->flushing.keys.nr);
411
412                 sort(wb->flushing.keys.data,
413                      wb->flushing.keys.nr,
414                      sizeof(wb->flushing.keys.data[0]),
415                      wb_key_seq_cmp, NULL);
416
417                 darray_for_each(wb->flushing.keys, i) {
418                         if (!i->journal_seq)
419                                 continue;
420
421                         if (!accounting_replay_done &&
422                             i->k.k.type == KEY_TYPE_accounting) {
423                                 could_not_insert++;
424                                 continue;
425                         }
426
427                         if (!could_not_insert)
428                                 bch2_journal_pin_update(j, i->journal_seq, &wb->flushing.pin,
429                                                         bch2_btree_write_buffer_journal_flush);
430
431                         bch2_trans_begin(trans);
432
433                         ret = commit_do(trans, NULL, NULL,
434                                         BCH_WATERMARK_reclaim|
435                                         BCH_TRANS_COMMIT_journal_reclaim|
436                                         BCH_TRANS_COMMIT_no_check_rw|
437                                         BCH_TRANS_COMMIT_no_enospc|
438                                         BCH_TRANS_COMMIT_no_journal_res ,
439                                         btree_write_buffered_insert(trans, i));
440                         if (ret)
441                                 goto err;
442
443                         i->journal_seq = 0;
444                 }
445
446                 /*
447                  * If journal replay hasn't finished with accounting keys we
448                  * can't flush accounting keys at all - condense them and leave
449                  * them for next time.
450                  *
451                  * Q: Can the write buffer overflow?
452                  * A Shouldn't be any actual risk. It's just new accounting
453                  * updates that the write buffer can't flush, and those are only
454                  * going to be generated by interior btree node updates as
455                  * journal replay has to split/rewrite nodes to make room for
456                  * its updates.
457                  *
458                  * And for those new acounting updates, updates to the same
459                  * counters get accumulated as they're flushed from the journal
460                  * to the write buffer - see the patch for eytzingcer tree
461                  * accumulated. So we could only overflow if the number of
462                  * distinct counters touched somehow was very large.
463                  */
464                 if (could_not_insert) {
465                         struct btree_write_buffered_key *dst = wb->flushing.keys.data;
466
467                         darray_for_each(wb->flushing.keys, i)
468                                 if (i->journal_seq)
469                                         *dst++ = *i;
470                         wb->flushing.keys.nr = dst - wb->flushing.keys.data;
471                 }
472         }
473 err:
474         if (ret || !could_not_insert) {
475                 bch2_journal_pin_drop(j, &wb->flushing.pin);
476                 wb->flushing.keys.nr = 0;
477         }
478
479         bch2_fs_fatal_err_on(ret, c, "%s", bch2_err_str(ret));
480         trace_write_buffer_flush(trans, wb->flushing.keys.nr, overwritten, fast, 0);
481         return ret;
482 }
483
484 static int fetch_wb_keys_from_journal(struct bch_fs *c, u64 seq)
485 {
486         struct journal *j = &c->journal;
487         struct journal_buf *buf;
488         int ret = 0;
489
490         while (!ret && (buf = bch2_next_write_buffer_flush_journal_buf(j, seq))) {
491                 ret = bch2_journal_keys_to_write_buffer(c, buf);
492                 mutex_unlock(&j->buf_lock);
493         }
494
495         return ret;
496 }
497
498 static int btree_write_buffer_flush_seq(struct btree_trans *trans, u64 seq,
499                                         bool *did_work)
500 {
501         struct bch_fs *c = trans->c;
502         struct btree_write_buffer *wb = &c->btree_write_buffer;
503         int ret = 0, fetch_from_journal_err;
504
505         do {
506                 bch2_trans_unlock(trans);
507
508                 fetch_from_journal_err = fetch_wb_keys_from_journal(c, seq);
509
510                 *did_work |= wb->inc.keys.nr || wb->flushing.keys.nr;
511
512                 /*
513                  * On memory allocation failure, bch2_btree_write_buffer_flush_locked()
514                  * is not guaranteed to empty wb->inc:
515                  */
516                 mutex_lock(&wb->flushing.lock);
517                 ret = bch2_btree_write_buffer_flush_locked(trans);
518                 mutex_unlock(&wb->flushing.lock);
519         } while (!ret &&
520                  (fetch_from_journal_err ||
521                   (wb->inc.pin.seq && wb->inc.pin.seq <= seq) ||
522                   (wb->flushing.pin.seq && wb->flushing.pin.seq <= seq)));
523
524         return ret;
525 }
526
527 static int bch2_btree_write_buffer_journal_flush(struct journal *j,
528                                 struct journal_entry_pin *_pin, u64 seq)
529 {
530         struct bch_fs *c = container_of(j, struct bch_fs, journal);
531         bool did_work = false;
532
533         return bch2_trans_run(c, btree_write_buffer_flush_seq(trans, seq, &did_work));
534 }
535
536 int bch2_btree_write_buffer_flush_sync(struct btree_trans *trans)
537 {
538         struct bch_fs *c = trans->c;
539         bool did_work = false;
540
541         trace_and_count(c, write_buffer_flush_sync, trans, _RET_IP_);
542
543         return btree_write_buffer_flush_seq(trans, journal_cur_seq(&c->journal), &did_work);
544 }
545
546 /*
547  * The write buffer requires flushing when going RO: keys in the journal for the
548  * write buffer don't have a journal pin yet
549  */
550 bool bch2_btree_write_buffer_flush_going_ro(struct bch_fs *c)
551 {
552         if (bch2_journal_error(&c->journal))
553                 return false;
554
555         bool did_work = false;
556         bch2_trans_run(c, btree_write_buffer_flush_seq(trans,
557                                 journal_cur_seq(&c->journal), &did_work));
558         return did_work;
559 }
560
561 int bch2_btree_write_buffer_flush_nocheck_rw(struct btree_trans *trans)
562 {
563         struct bch_fs *c = trans->c;
564         struct btree_write_buffer *wb = &c->btree_write_buffer;
565         int ret = 0;
566
567         if (mutex_trylock(&wb->flushing.lock)) {
568                 ret = bch2_btree_write_buffer_flush_locked(trans);
569                 mutex_unlock(&wb->flushing.lock);
570         }
571
572         return ret;
573 }
574
575 int bch2_btree_write_buffer_tryflush(struct btree_trans *trans)
576 {
577         struct bch_fs *c = trans->c;
578
579         if (!bch2_write_ref_tryget(c, BCH_WRITE_REF_btree_write_buffer))
580                 return -BCH_ERR_erofs_no_writes;
581
582         int ret = bch2_btree_write_buffer_flush_nocheck_rw(trans);
583         bch2_write_ref_put(c, BCH_WRITE_REF_btree_write_buffer);
584         return ret;
585 }
586
587 /*
588  * In check and repair code, when checking references to write buffer btrees we
589  * need to issue a flush before we have a definitive error: this issues a flush
590  * if this is a key we haven't yet checked.
591  */
592 int bch2_btree_write_buffer_maybe_flush(struct btree_trans *trans,
593                                         struct bkey_s_c referring_k,
594                                         struct bkey_buf *last_flushed)
595 {
596         struct bch_fs *c = trans->c;
597         struct bkey_buf tmp;
598         int ret = 0;
599
600         bch2_bkey_buf_init(&tmp);
601
602         if (!bkey_and_val_eq(referring_k, bkey_i_to_s_c(last_flushed->k))) {
603                 bch2_bkey_buf_reassemble(&tmp, c, referring_k);
604
605                 if (bkey_is_btree_ptr(referring_k.k)) {
606                         bch2_trans_unlock(trans);
607                         bch2_btree_interior_updates_flush(c);
608                 }
609
610                 ret = bch2_btree_write_buffer_flush_sync(trans);
611                 if (ret)
612                         goto err;
613
614                 bch2_bkey_buf_copy(last_flushed, c, tmp.k);
615                 ret = -BCH_ERR_transaction_restart_write_buffer_flush;
616         }
617 err:
618         bch2_bkey_buf_exit(&tmp, c);
619         return ret;
620 }
621
622 static void bch2_btree_write_buffer_flush_work(struct work_struct *work)
623 {
624         struct bch_fs *c = container_of(work, struct bch_fs, btree_write_buffer.flush_work);
625         struct btree_write_buffer *wb = &c->btree_write_buffer;
626         int ret;
627
628         mutex_lock(&wb->flushing.lock);
629         do {
630                 ret = bch2_trans_run(c, bch2_btree_write_buffer_flush_locked(trans));
631         } while (!ret && bch2_btree_write_buffer_should_flush(c));
632         mutex_unlock(&wb->flushing.lock);
633
634         bch2_write_ref_put(c, BCH_WRITE_REF_btree_write_buffer);
635 }
636
637 static void wb_accounting_sort(struct btree_write_buffer *wb)
638 {
639         eytzinger0_sort(wb->accounting.data, wb->accounting.nr,
640                         sizeof(wb->accounting.data[0]),
641                         wb_key_cmp, NULL);
642 }
643
644 int bch2_accounting_key_to_wb_slowpath(struct bch_fs *c, enum btree_id btree,
645                                        struct bkey_i_accounting *k)
646 {
647         struct btree_write_buffer *wb = &c->btree_write_buffer;
648         struct btree_write_buffered_key new = { .btree = btree };
649
650         bkey_copy(&new.k, &k->k_i);
651
652         int ret = darray_push(&wb->accounting, new);
653         if (ret)
654                 return ret;
655
656         wb_accounting_sort(wb);
657         return 0;
658 }
659
660 int bch2_journal_key_to_wb_slowpath(struct bch_fs *c,
661                              struct journal_keys_to_wb *dst,
662                              enum btree_id btree, struct bkey_i *k)
663 {
664         struct btree_write_buffer *wb = &c->btree_write_buffer;
665         int ret;
666 retry:
667         ret = darray_make_room_gfp(&dst->wb->keys, 1, GFP_KERNEL);
668         if (!ret && dst->wb == &wb->flushing)
669                 ret = darray_resize(&wb->sorted, wb->flushing.keys.size);
670
671         if (unlikely(ret)) {
672                 if (dst->wb == &c->btree_write_buffer.flushing) {
673                         mutex_unlock(&dst->wb->lock);
674                         dst->wb = &c->btree_write_buffer.inc;
675                         bch2_journal_pin_add(&c->journal, dst->seq, &dst->wb->pin,
676                                              bch2_btree_write_buffer_journal_flush);
677                         goto retry;
678                 }
679
680                 return ret;
681         }
682
683         dst->room = darray_room(dst->wb->keys);
684         if (dst->wb == &wb->flushing)
685                 dst->room = min(dst->room, wb->sorted.size - wb->flushing.keys.nr);
686         BUG_ON(!dst->room);
687         BUG_ON(!dst->seq);
688
689         struct btree_write_buffered_key *wb_k = &darray_top(dst->wb->keys);
690         wb_k->journal_seq       = dst->seq;
691         wb_k->btree             = btree;
692         bkey_copy(&wb_k->k, k);
693         dst->wb->keys.nr++;
694         dst->room--;
695         return 0;
696 }
697
698 void bch2_journal_keys_to_write_buffer_start(struct bch_fs *c, struct journal_keys_to_wb *dst, u64 seq)
699 {
700         struct btree_write_buffer *wb = &c->btree_write_buffer;
701
702         if (mutex_trylock(&wb->flushing.lock)) {
703                 mutex_lock(&wb->inc.lock);
704                 move_keys_from_inc_to_flushing(wb);
705
706                 /*
707                  * Attempt to skip wb->inc, and add keys directly to
708                  * wb->flushing, saving us a copy later:
709                  */
710
711                 if (!wb->inc.keys.nr) {
712                         dst->wb = &wb->flushing;
713                 } else {
714                         mutex_unlock(&wb->flushing.lock);
715                         dst->wb = &wb->inc;
716                 }
717         } else {
718                 mutex_lock(&wb->inc.lock);
719                 dst->wb = &wb->inc;
720         }
721
722         dst->room = darray_room(dst->wb->keys);
723         if (dst->wb == &wb->flushing)
724                 dst->room = min(dst->room, wb->sorted.size - wb->flushing.keys.nr);
725         dst->seq = seq;
726
727         bch2_journal_pin_add(&c->journal, seq, &dst->wb->pin,
728                              bch2_btree_write_buffer_journal_flush);
729
730         darray_for_each(wb->accounting, i)
731                 memset(&i->k.v, 0, bkey_val_bytes(&i->k.k));
732 }
733
734 int bch2_journal_keys_to_write_buffer_end(struct bch_fs *c, struct journal_keys_to_wb *dst)
735 {
736         struct btree_write_buffer *wb = &c->btree_write_buffer;
737         unsigned live_accounting_keys = 0;
738         int ret = 0;
739
740         darray_for_each(wb->accounting, i)
741                 if (!bch2_accounting_key_is_zero(bkey_i_to_s_c_accounting(&i->k))) {
742                         i->journal_seq = dst->seq;
743                         live_accounting_keys++;
744                         ret = __bch2_journal_key_to_wb(c, dst, i->btree, &i->k);
745                         if (ret)
746                                 break;
747                 }
748
749         if (live_accounting_keys * 2 < wb->accounting.nr) {
750                 struct btree_write_buffered_key *dst = wb->accounting.data;
751
752                 darray_for_each(wb->accounting, src)
753                         if (!bch2_accounting_key_is_zero(bkey_i_to_s_c_accounting(&src->k)))
754                                 *dst++ = *src;
755                 wb->accounting.nr = dst - wb->accounting.data;
756                 wb_accounting_sort(wb);
757         }
758
759         if (!dst->wb->keys.nr)
760                 bch2_journal_pin_drop(&c->journal, &dst->wb->pin);
761
762         if (bch2_btree_write_buffer_should_flush(c) &&
763             __bch2_write_ref_tryget(c, BCH_WRITE_REF_btree_write_buffer) &&
764             !queue_work(system_unbound_wq, &c->btree_write_buffer.flush_work))
765                 bch2_write_ref_put(c, BCH_WRITE_REF_btree_write_buffer);
766
767         if (dst->wb == &wb->flushing)
768                 mutex_unlock(&wb->flushing.lock);
769         mutex_unlock(&wb->inc.lock);
770
771         return ret;
772 }
773
774 static int bch2_journal_keys_to_write_buffer(struct bch_fs *c, struct journal_buf *buf)
775 {
776         struct journal_keys_to_wb dst;
777         int ret = 0;
778
779         bch2_journal_keys_to_write_buffer_start(c, &dst, le64_to_cpu(buf->data->seq));
780
781         for_each_jset_entry_type(entry, buf->data, BCH_JSET_ENTRY_write_buffer_keys) {
782                 jset_entry_for_each_key(entry, k) {
783                         ret = bch2_journal_key_to_wb(c, &dst, entry->btree_id, k);
784                         if (ret)
785                                 goto out;
786                 }
787
788                 entry->type = BCH_JSET_ENTRY_btree_keys;
789         }
790
791         spin_lock(&c->journal.lock);
792         buf->need_flush_to_write_buffer = false;
793         spin_unlock(&c->journal.lock);
794 out:
795         ret = bch2_journal_keys_to_write_buffer_end(c, &dst) ?: ret;
796         return ret;
797 }
798
799 static int wb_keys_resize(struct btree_write_buffer_keys *wb, size_t new_size)
800 {
801         if (wb->keys.size >= new_size)
802                 return 0;
803
804         if (!mutex_trylock(&wb->lock))
805                 return -EINTR;
806
807         int ret = darray_resize(&wb->keys, new_size);
808         mutex_unlock(&wb->lock);
809         return ret;
810 }
811
812 int bch2_btree_write_buffer_resize(struct bch_fs *c, size_t new_size)
813 {
814         struct btree_write_buffer *wb = &c->btree_write_buffer;
815
816         return wb_keys_resize(&wb->flushing, new_size) ?:
817                 wb_keys_resize(&wb->inc, new_size);
818 }
819
820 void bch2_fs_btree_write_buffer_exit(struct bch_fs *c)
821 {
822         struct btree_write_buffer *wb = &c->btree_write_buffer;
823
824         BUG_ON((wb->inc.keys.nr || wb->flushing.keys.nr) &&
825                !bch2_journal_error(&c->journal));
826
827         darray_exit(&wb->accounting);
828         darray_exit(&wb->sorted);
829         darray_exit(&wb->flushing.keys);
830         darray_exit(&wb->inc.keys);
831 }
832
833 int bch2_fs_btree_write_buffer_init(struct bch_fs *c)
834 {
835         struct btree_write_buffer *wb = &c->btree_write_buffer;
836
837         mutex_init(&wb->inc.lock);
838         mutex_init(&wb->flushing.lock);
839         INIT_WORK(&wb->flush_work, bch2_btree_write_buffer_flush_work);
840
841         /* Will be resized by journal as needed: */
842         unsigned initial_size = 1 << 16;
843
844         return  darray_make_room(&wb->inc.keys, initial_size) ?:
845                 darray_make_room(&wb->flushing.keys, initial_size) ?:
846                 darray_make_room(&wb->sorted, initial_size);
847 }
This page took 0.074736 seconds and 4 git commands to generate.