1 // SPDX-License-Identifier: GPL-2.0
4 #include "alloc_foreground.h"
6 #include "bkey_methods.h"
7 #include "btree_cache.h"
9 #include "btree_journal_iter.h"
10 #include "btree_update.h"
11 #include "btree_update_interior.h"
13 #include "btree_iter.h"
14 #include "btree_locking.h"
21 #include "journal_reclaim.h"
23 #include "recovery_passes.h"
25 #include "sb-members.h"
29 #include <linux/random.h>
31 static const char * const bch2_btree_update_modes[] = {
38 static int bch2_btree_insert_node(struct btree_update *, struct btree_trans *,
39 btree_path_idx_t, struct btree *, struct keylist *);
40 static void bch2_btree_update_add_new_node(struct btree_update *, struct btree *);
43 * Verify that child nodes correctly span parent node's range:
45 int bch2_btree_node_check_topology(struct btree_trans *trans, struct btree *b)
47 struct bch_fs *c = trans->c;
48 struct bpos node_min = b->key.k.type == KEY_TYPE_btree_ptr_v2
49 ? bkey_i_to_btree_ptr_v2(&b->key)->v.min_key
51 struct btree_and_journal_iter iter;
53 struct printbuf buf = PRINTBUF;
57 BUG_ON(b->key.k.type == KEY_TYPE_btree_ptr_v2 &&
58 !bpos_eq(bkey_i_to_btree_ptr_v2(&b->key)->v.min_key,
61 if (b == btree_node_root(c, b)) {
62 if (!bpos_eq(b->data->min_key, POS_MIN)) {
64 bch2_bpos_to_text(&buf, b->data->min_key);
65 need_fsck_err(trans, btree_root_bad_min_key,
66 "btree root with incorrect min_key: %s", buf.buf);
70 if (!bpos_eq(b->data->max_key, SPOS_MAX)) {
72 bch2_bpos_to_text(&buf, b->data->max_key);
73 need_fsck_err(trans, btree_root_bad_max_key,
74 "btree root with incorrect max_key: %s", buf.buf);
82 bch2_bkey_buf_init(&prev);
83 bkey_init(&prev.k->k);
84 bch2_btree_and_journal_iter_init_node_iter(trans, &iter, b);
86 while ((k = bch2_btree_and_journal_iter_peek(&iter)).k) {
87 if (k.k->type != KEY_TYPE_btree_ptr_v2)
90 struct bkey_s_c_btree_ptr_v2 bp = bkey_s_c_to_btree_ptr_v2(k);
92 struct bpos expected_min = bkey_deleted(&prev.k->k)
94 : bpos_successor(prev.k->k.p);
96 if (!bpos_eq(expected_min, bp.v->min_key)) {
97 bch2_topology_error(c);
100 prt_str(&buf, "end of prev node doesn't match start of next node\n"),
101 prt_printf(&buf, " in btree %s level %u node ",
102 bch2_btree_id_str(b->c.btree_id), b->c.level);
103 bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(&b->key));
104 prt_str(&buf, "\n prev ");
105 bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(prev.k));
106 prt_str(&buf, "\n next ");
107 bch2_bkey_val_to_text(&buf, c, k);
109 need_fsck_err(trans, btree_node_topology_bad_min_key, "%s", buf.buf);
110 goto topology_repair;
113 bch2_bkey_buf_reassemble(&prev, c, k);
114 bch2_btree_and_journal_iter_advance(&iter);
117 if (bkey_deleted(&prev.k->k)) {
118 bch2_topology_error(c);
120 printbuf_reset(&buf);
121 prt_str(&buf, "empty interior node\n");
122 prt_printf(&buf, " in btree %s level %u node ",
123 bch2_btree_id_str(b->c.btree_id), b->c.level);
124 bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(&b->key));
126 need_fsck_err(trans, btree_node_topology_empty_interior_node, "%s", buf.buf);
127 goto topology_repair;
128 } else if (!bpos_eq(prev.k->k.p, b->key.k.p)) {
129 bch2_topology_error(c);
131 printbuf_reset(&buf);
132 prt_str(&buf, "last child node doesn't end at end of parent node\n");
133 prt_printf(&buf, " in btree %s level %u node ",
134 bch2_btree_id_str(b->c.btree_id), b->c.level);
135 bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(&b->key));
136 prt_str(&buf, "\n last key ");
137 bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(prev.k));
139 need_fsck_err(trans, btree_node_topology_bad_max_key, "%s", buf.buf);
140 goto topology_repair;
144 bch2_btree_and_journal_iter_exit(&iter);
145 bch2_bkey_buf_exit(&prev, c);
149 if ((c->opts.recovery_passes & BIT_ULL(BCH_RECOVERY_PASS_check_topology)) &&
150 c->curr_recovery_pass > BCH_RECOVERY_PASS_check_topology) {
151 bch2_inconsistent_error(c);
152 ret = -BCH_ERR_btree_need_topology_repair;
154 ret = bch2_run_explicit_recovery_pass(c, BCH_RECOVERY_PASS_check_topology);
159 /* Calculate ideal packed bkey format for new btree nodes: */
161 static void __bch2_btree_calc_format(struct bkey_format_state *s, struct btree *b)
163 struct bkey_packed *k;
167 bset_tree_for_each_key(b, t, k)
168 if (!bkey_deleted(k)) {
169 uk = bkey_unpack_key(b, k);
170 bch2_bkey_format_add_key(s, &uk);
174 static struct bkey_format bch2_btree_calc_format(struct btree *b)
176 struct bkey_format_state s;
178 bch2_bkey_format_init(&s);
179 bch2_bkey_format_add_pos(&s, b->data->min_key);
180 bch2_bkey_format_add_pos(&s, b->data->max_key);
181 __bch2_btree_calc_format(&s, b);
183 return bch2_bkey_format_done(&s);
186 static size_t btree_node_u64s_with_format(struct btree_nr_keys nr,
187 struct bkey_format *old_f,
188 struct bkey_format *new_f)
190 /* stupid integer promotion rules */
192 (((int) new_f->key_u64s - old_f->key_u64s) *
193 (int) nr.packed_keys) +
194 (((int) new_f->key_u64s - BKEY_U64s) *
195 (int) nr.unpacked_keys);
197 BUG_ON(delta + nr.live_u64s < 0);
199 return nr.live_u64s + delta;
203 * bch2_btree_node_format_fits - check if we could rewrite node with a new format
205 * @c: filesystem handle
206 * @b: btree node to rewrite
207 * @nr: number of keys for new node (i.e. b->nr)
208 * @new_f: bkey format to translate keys to
210 * Returns: true if all re-packed keys will be able to fit in a new node.
212 * Assumes all keys will successfully pack with the new format.
214 static bool bch2_btree_node_format_fits(struct bch_fs *c, struct btree *b,
215 struct btree_nr_keys nr,
216 struct bkey_format *new_f)
218 size_t u64s = btree_node_u64s_with_format(nr, &b->format, new_f);
220 return __vstruct_bytes(struct btree_node, u64s) < btree_buf_bytes(b);
223 /* Btree node freeing/allocation: */
225 static void __btree_node_free(struct btree_trans *trans, struct btree *b)
227 struct bch_fs *c = trans->c;
229 trace_and_count(c, btree_node_free, trans, b);
231 BUG_ON(btree_node_write_blocked(b));
232 BUG_ON(btree_node_dirty(b));
233 BUG_ON(btree_node_need_write(b));
234 BUG_ON(b == btree_node_root(c, b));
236 BUG_ON(!list_empty(&b->write_blocked));
237 BUG_ON(b->will_make_reachable);
239 clear_btree_node_noevict(b);
242 static void bch2_btree_node_free_inmem(struct btree_trans *trans,
243 struct btree_path *path,
246 struct bch_fs *c = trans->c;
247 unsigned i, level = b->c.level;
249 bch2_btree_node_lock_write_nofail(trans, path, &b->c);
251 __btree_node_free(trans, b);
253 mutex_lock(&c->btree_cache.lock);
254 bch2_btree_node_hash_remove(&c->btree_cache, b);
255 mutex_unlock(&c->btree_cache.lock);
257 six_unlock_write(&b->c.lock);
258 mark_btree_node_locked_noreset(path, level, BTREE_NODE_INTENT_LOCKED);
260 trans_for_each_path(trans, path, i)
261 if (path->l[level].b == b) {
262 btree_node_unlock(trans, path, level);
263 path->l[level].b = ERR_PTR(-BCH_ERR_no_btree_node_init);
267 static void bch2_btree_node_free_never_used(struct btree_update *as,
268 struct btree_trans *trans,
271 struct bch_fs *c = as->c;
272 struct prealloc_nodes *p = &as->prealloc_nodes[b->c.lock.readers != NULL];
273 struct btree_path *path;
274 unsigned i, level = b->c.level;
276 BUG_ON(!list_empty(&b->write_blocked));
277 BUG_ON(b->will_make_reachable != (1UL|(unsigned long) as));
279 b->will_make_reachable = 0;
280 closure_put(&as->cl);
282 clear_btree_node_will_make_reachable(b);
283 clear_btree_node_accessed(b);
284 clear_btree_node_dirty_acct(c, b);
285 clear_btree_node_need_write(b);
287 mutex_lock(&c->btree_cache.lock);
288 __bch2_btree_node_hash_remove(&c->btree_cache, b);
289 mutex_unlock(&c->btree_cache.lock);
291 BUG_ON(p->nr >= ARRAY_SIZE(p->b));
294 six_unlock_intent(&b->c.lock);
296 trans_for_each_path(trans, path, i)
297 if (path->l[level].b == b) {
298 btree_node_unlock(trans, path, level);
299 path->l[level].b = ERR_PTR(-BCH_ERR_no_btree_node_init);
303 static struct btree *__bch2_btree_node_alloc(struct btree_trans *trans,
304 struct disk_reservation *res,
309 struct bch_fs *c = trans->c;
310 struct write_point *wp;
312 BKEY_PADDED_ONSTACK(k, BKEY_BTREE_PTR_VAL_U64s_MAX) tmp;
313 struct open_buckets obs = { .nr = 0 };
314 struct bch_devs_list devs_have = (struct bch_devs_list) { 0 };
315 enum bch_watermark watermark = flags & BCH_WATERMARK_MASK;
316 unsigned nr_reserve = watermark < BCH_WATERMARK_reclaim
321 b = bch2_btree_node_mem_alloc(trans, interior_node);
327 mutex_lock(&c->btree_reserve_cache_lock);
328 if (c->btree_reserve_cache_nr > nr_reserve) {
329 struct btree_alloc *a =
330 &c->btree_reserve_cache[--c->btree_reserve_cache_nr];
333 bkey_copy(&tmp.k, &a->k);
334 mutex_unlock(&c->btree_reserve_cache_lock);
337 mutex_unlock(&c->btree_reserve_cache_lock);
339 ret = bch2_alloc_sectors_start_trans(trans,
340 c->opts.metadata_target ?:
341 c->opts.foreground_target,
343 writepoint_ptr(&c->btree_write_point),
346 min(res->nr_replicas,
347 c->opts.metadata_replicas_required),
348 watermark, 0, cl, &wp);
352 if (wp->sectors_free < btree_sectors(c)) {
353 struct open_bucket *ob;
356 open_bucket_for_each(c, &wp->ptrs, ob, i)
357 if (ob->sectors_free < btree_sectors(c))
358 ob->sectors_free = 0;
360 bch2_alloc_sectors_done(c, wp);
364 bkey_btree_ptr_v2_init(&tmp.k);
365 bch2_alloc_sectors_append_ptrs(c, wp, &tmp.k, btree_sectors(c), false);
367 bch2_open_bucket_get(c, wp, &obs);
368 bch2_alloc_sectors_done(c, wp);
370 bkey_copy(&b->key, &tmp.k);
372 six_unlock_write(&b->c.lock);
373 six_unlock_intent(&b->c.lock);
377 bch2_btree_node_to_freelist(c, b);
381 static struct btree *bch2_btree_node_alloc(struct btree_update *as,
382 struct btree_trans *trans,
385 struct bch_fs *c = as->c;
387 struct prealloc_nodes *p = &as->prealloc_nodes[!!level];
390 BUG_ON(level >= BTREE_MAX_DEPTH);
395 btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_intent);
396 btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_write);
398 set_btree_node_accessed(b);
399 set_btree_node_dirty_acct(c, b);
400 set_btree_node_need_write(b);
402 bch2_bset_init_first(b, &b->data->keys);
404 b->c.btree_id = as->btree_id;
405 b->version_ondisk = c->sb.version;
407 memset(&b->nr, 0, sizeof(b->nr));
408 b->data->magic = cpu_to_le64(bset_magic(c));
409 memset(&b->data->_ptr, 0, sizeof(b->data->_ptr));
411 SET_BTREE_NODE_ID(b->data, as->btree_id);
412 SET_BTREE_NODE_LEVEL(b->data, level);
414 if (b->key.k.type == KEY_TYPE_btree_ptr_v2) {
415 struct bkey_i_btree_ptr_v2 *bp = bkey_i_to_btree_ptr_v2(&b->key);
418 bp->v.seq = b->data->keys.seq;
419 bp->v.sectors_written = 0;
422 SET_BTREE_NODE_NEW_EXTENT_OVERWRITE(b->data, true);
424 bch2_btree_build_aux_trees(b);
426 ret = bch2_btree_node_hash_insert(&c->btree_cache, b, level, as->btree_id);
429 trace_and_count(c, btree_node_alloc, trans, b);
430 bch2_increment_clock(c, btree_sectors(c), WRITE);
434 static void btree_set_min(struct btree *b, struct bpos pos)
436 if (b->key.k.type == KEY_TYPE_btree_ptr_v2)
437 bkey_i_to_btree_ptr_v2(&b->key)->v.min_key = pos;
438 b->data->min_key = pos;
441 static void btree_set_max(struct btree *b, struct bpos pos)
444 b->data->max_key = pos;
447 static struct btree *bch2_btree_node_alloc_replacement(struct btree_update *as,
448 struct btree_trans *trans,
451 struct btree *n = bch2_btree_node_alloc(as, trans, b->c.level);
452 struct bkey_format format = bch2_btree_calc_format(b);
455 * The keys might expand with the new format - if they wouldn't fit in
456 * the btree node anymore, use the old format for now:
458 if (!bch2_btree_node_format_fits(as->c, b, b->nr, &format))
461 SET_BTREE_NODE_SEQ(n->data, BTREE_NODE_SEQ(b->data) + 1);
463 btree_set_min(n, b->data->min_key);
464 btree_set_max(n, b->data->max_key);
466 n->data->format = format;
467 btree_node_set_format(n, format);
469 bch2_btree_sort_into(as->c, n, b);
471 btree_node_reset_sib_u64s(n);
475 static struct btree *__btree_root_alloc(struct btree_update *as,
476 struct btree_trans *trans, unsigned level)
478 struct btree *b = bch2_btree_node_alloc(as, trans, level);
480 btree_set_min(b, POS_MIN);
481 btree_set_max(b, SPOS_MAX);
482 b->data->format = bch2_btree_calc_format(b);
484 btree_node_set_format(b, b->data->format);
485 bch2_btree_build_aux_trees(b);
490 static void bch2_btree_reserve_put(struct btree_update *as, struct btree_trans *trans)
492 struct bch_fs *c = as->c;
493 struct prealloc_nodes *p;
495 for (p = as->prealloc_nodes;
496 p < as->prealloc_nodes + ARRAY_SIZE(as->prealloc_nodes);
499 struct btree *b = p->b[--p->nr];
501 mutex_lock(&c->btree_reserve_cache_lock);
503 if (c->btree_reserve_cache_nr <
504 ARRAY_SIZE(c->btree_reserve_cache)) {
505 struct btree_alloc *a =
506 &c->btree_reserve_cache[c->btree_reserve_cache_nr++];
510 bkey_copy(&a->k, &b->key);
512 bch2_open_buckets_put(c, &b->ob);
515 mutex_unlock(&c->btree_reserve_cache_lock);
517 btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_intent);
518 btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_write);
519 __btree_node_free(trans, b);
520 bch2_btree_node_to_freelist(c, b);
525 static int bch2_btree_reserve_get(struct btree_trans *trans,
526 struct btree_update *as,
527 unsigned nr_nodes[2],
535 BUG_ON(nr_nodes[0] + nr_nodes[1] > BTREE_RESERVE_MAX);
538 * Protects reaping from the btree node cache and using the btree node
539 * open bucket reserve:
541 ret = bch2_btree_cache_cannibalize_lock(trans, cl);
545 for (interior = 0; interior < 2; interior++) {
546 struct prealloc_nodes *p = as->prealloc_nodes + interior;
548 while (p->nr < nr_nodes[interior]) {
549 b = __bch2_btree_node_alloc(trans, &as->disk_res, cl,
560 bch2_btree_cache_cannibalize_unlock(trans);
564 /* Asynchronous interior node update machinery */
566 static void bch2_btree_update_free(struct btree_update *as, struct btree_trans *trans)
568 struct bch_fs *c = as->c;
570 if (as->took_gc_lock)
571 up_read(&c->gc_lock);
572 as->took_gc_lock = false;
574 bch2_journal_pin_drop(&c->journal, &as->journal);
575 bch2_journal_pin_flush(&c->journal, &as->journal);
576 bch2_disk_reservation_put(c, &as->disk_res);
577 bch2_btree_reserve_put(as, trans);
579 bch2_time_stats_update(&c->times[BCH_TIME_btree_interior_update_total],
582 mutex_lock(&c->btree_interior_update_lock);
583 list_del(&as->unwritten_list);
586 closure_debug_destroy(&as->cl);
587 mempool_free(as, &c->btree_interior_update_pool);
590 * Have to do the wakeup with btree_interior_update_lock still held,
591 * since being on btree_interior_update_list is our ref on @c:
593 closure_wake_up(&c->btree_interior_update_wait);
595 mutex_unlock(&c->btree_interior_update_lock);
598 static void btree_update_add_key(struct btree_update *as,
599 struct keylist *keys, struct btree *b)
601 struct bkey_i *k = &b->key;
603 BUG_ON(bch2_keylist_u64s(keys) + k->k.u64s >
604 ARRAY_SIZE(as->_old_keys));
606 bkey_copy(keys->top, k);
607 bkey_i_to_btree_ptr_v2(keys->top)->v.mem_ptr = b->c.level + 1;
609 bch2_keylist_push(keys);
612 static bool btree_update_new_nodes_marked_sb(struct btree_update *as)
614 for_each_keylist_key(&as->new_keys, k)
615 if (!bch2_dev_btree_bitmap_marked(as->c, bkey_i_to_s_c(k)))
620 static void btree_update_new_nodes_mark_sb(struct btree_update *as)
622 struct bch_fs *c = as->c;
624 mutex_lock(&c->sb_lock);
625 for_each_keylist_key(&as->new_keys, k)
626 bch2_dev_btree_bitmap_mark(c, bkey_i_to_s_c(k));
629 mutex_unlock(&c->sb_lock);
633 * The transactional part of an interior btree node update, where we journal the
634 * update we did to the interior node and update alloc info:
636 static int btree_update_nodes_written_trans(struct btree_trans *trans,
637 struct btree_update *as)
639 struct jset_entry *e = bch2_trans_jset_entry_alloc(trans, as->journal_u64s);
640 int ret = PTR_ERR_OR_ZERO(e);
644 memcpy(e, as->journal_entries, as->journal_u64s * sizeof(u64));
646 trans->journal_pin = &as->journal;
648 for_each_keylist_key(&as->old_keys, k) {
649 unsigned level = bkey_i_to_btree_ptr_v2(k)->v.mem_ptr;
651 ret = bch2_key_trigger_old(trans, as->btree_id, level, bkey_i_to_s_c(k),
652 BTREE_TRIGGER_transactional);
657 for_each_keylist_key(&as->new_keys, k) {
658 unsigned level = bkey_i_to_btree_ptr_v2(k)->v.mem_ptr;
660 ret = bch2_key_trigger_new(trans, as->btree_id, level, bkey_i_to_s(k),
661 BTREE_TRIGGER_transactional);
669 static void btree_update_nodes_written(struct btree_update *as)
671 struct bch_fs *c = as->c;
673 struct btree_trans *trans = bch2_trans_get(c);
679 * If we're already in an error state, it might be because a btree node
680 * was never written, and we might be trying to free that same btree
681 * node here, but it won't have been marked as allocated and we'll see
682 * spurious disk usage inconsistencies in the transactional part below
683 * if we don't skip it:
685 ret = bch2_journal_error(&c->journal);
689 if (!btree_update_new_nodes_marked_sb(as))
690 btree_update_new_nodes_mark_sb(as);
693 * Wait for any in flight writes to finish before we free the old nodes
696 for (i = 0; i < as->nr_old_nodes; i++) {
699 b = as->old_nodes[i];
701 btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_read);
702 seq = b->data ? b->data->keys.seq : 0;
703 six_unlock_read(&b->c.lock);
705 if (seq == as->old_nodes_seq[i])
706 wait_on_bit_io(&b->flags, BTREE_NODE_write_in_flight_inner,
707 TASK_UNINTERRUPTIBLE);
711 * We did an update to a parent node where the pointers we added pointed
712 * to child nodes that weren't written yet: now, the child nodes have
713 * been written so we can write out the update to the interior node.
717 * We can't call into journal reclaim here: we'd block on the journal
718 * reclaim lock, but we may need to release the open buckets we have
719 * pinned in order for other btree updates to make forward progress, and
720 * journal reclaim does btree updates when flushing bkey_cached entries,
721 * which may require allocations as well.
723 ret = commit_do(trans, &as->disk_res, &journal_seq,
724 BCH_WATERMARK_interior_updates|
725 BCH_TRANS_COMMIT_no_enospc|
726 BCH_TRANS_COMMIT_no_check_rw|
727 BCH_TRANS_COMMIT_journal_reclaim,
728 btree_update_nodes_written_trans(trans, as));
729 bch2_trans_unlock(trans);
731 bch2_fs_fatal_err_on(ret && !bch2_journal_error(&c->journal), c,
732 "%s", bch2_err_str(ret));
735 * Ensure transaction is unlocked before using btree_node_lock_nopath()
736 * (the use of which is always suspect, we need to work on removing this
739 * It should be, but bch2_path_get_unlocked_mut() -> bch2_path_get()
740 * calls bch2_path_upgrade(), before we call path_make_mut(), so we may
741 * rarely end up with a locked path besides the one we have here:
743 bch2_trans_unlock(trans);
744 bch2_trans_begin(trans);
747 * We have to be careful because another thread might be getting ready
748 * to free as->b and calling btree_update_reparent() on us - we'll
749 * recheck under btree_update_lock below:
751 b = READ_ONCE(as->b);
754 * @b is the node we did the final insert into:
756 * On failure to get a journal reservation, we still have to
757 * unblock the write and allow most of the write path to happen
758 * so that shutdown works, but the i->journal_seq mechanism
759 * won't work to prevent the btree write from being visible (we
760 * didn't get a journal sequence number) - instead
761 * __bch2_btree_node_write() doesn't do the actual write if
762 * we're in journal error state:
765 btree_path_idx_t path_idx = bch2_path_get_unlocked_mut(trans,
766 as->btree_id, b->c.level, b->key.k.p);
767 struct btree_path *path = trans->paths + path_idx;
768 btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_intent);
769 mark_btree_node_locked(trans, path, b->c.level, BTREE_NODE_INTENT_LOCKED);
770 path->l[b->c.level].lock_seq = six_lock_seq(&b->c.lock);
771 path->l[b->c.level].b = b;
773 bch2_btree_node_lock_write_nofail(trans, path, &b->c);
775 mutex_lock(&c->btree_interior_update_lock);
777 list_del(&as->write_blocked_list);
778 if (list_empty(&b->write_blocked))
779 clear_btree_node_write_blocked(b);
782 * Node might have been freed, recheck under
783 * btree_interior_update_lock:
787 BUG_ON(!btree_node_dirty(b));
790 struct bset *last = btree_bset_last(b);
792 last->journal_seq = cpu_to_le64(
794 le64_to_cpu(last->journal_seq)));
796 bch2_btree_add_journal_pin(c, b, journal_seq);
799 * If we didn't get a journal sequence number we
800 * can't write this btree node, because recovery
801 * won't know to ignore this write:
803 set_btree_node_never_write(b);
807 mutex_unlock(&c->btree_interior_update_lock);
809 mark_btree_node_locked_noreset(path, b->c.level, BTREE_NODE_INTENT_LOCKED);
810 six_unlock_write(&b->c.lock);
812 btree_node_write_if_need(c, b, SIX_LOCK_intent);
813 btree_node_unlock(trans, path, b->c.level);
814 bch2_path_put(trans, path_idx, true);
817 bch2_journal_pin_drop(&c->journal, &as->journal);
819 mutex_lock(&c->btree_interior_update_lock);
820 for (i = 0; i < as->nr_new_nodes; i++) {
821 b = as->new_nodes[i];
823 BUG_ON(b->will_make_reachable != (unsigned long) as);
824 b->will_make_reachable = 0;
825 clear_btree_node_will_make_reachable(b);
827 mutex_unlock(&c->btree_interior_update_lock);
829 for (i = 0; i < as->nr_new_nodes; i++) {
830 b = as->new_nodes[i];
832 btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_read);
833 btree_node_write_if_need(c, b, SIX_LOCK_read);
834 six_unlock_read(&b->c.lock);
837 for (i = 0; i < as->nr_open_buckets; i++)
838 bch2_open_bucket_put(c, c->open_buckets + as->open_buckets[i]);
840 bch2_btree_update_free(as, trans);
841 bch2_trans_put(trans);
844 static void btree_interior_update_work(struct work_struct *work)
847 container_of(work, struct bch_fs, btree_interior_update_work);
848 struct btree_update *as;
851 mutex_lock(&c->btree_interior_update_lock);
852 as = list_first_entry_or_null(&c->btree_interior_updates_unwritten,
853 struct btree_update, unwritten_list);
854 if (as && !as->nodes_written)
856 mutex_unlock(&c->btree_interior_update_lock);
861 btree_update_nodes_written(as);
865 static CLOSURE_CALLBACK(btree_update_set_nodes_written)
867 closure_type(as, struct btree_update, cl);
868 struct bch_fs *c = as->c;
870 mutex_lock(&c->btree_interior_update_lock);
871 as->nodes_written = true;
872 mutex_unlock(&c->btree_interior_update_lock);
874 queue_work(c->btree_interior_update_worker, &c->btree_interior_update_work);
878 * We're updating @b with pointers to nodes that haven't finished writing yet:
879 * block @b from being written until @as completes
881 static void btree_update_updated_node(struct btree_update *as, struct btree *b)
883 struct bch_fs *c = as->c;
885 BUG_ON(as->mode != BTREE_UPDATE_none);
886 BUG_ON(as->update_level_end < b->c.level);
887 BUG_ON(!btree_node_dirty(b));
890 mutex_lock(&c->btree_interior_update_lock);
891 list_add_tail(&as->unwritten_list, &c->btree_interior_updates_unwritten);
893 as->mode = BTREE_UPDATE_node;
895 as->update_level_end = b->c.level;
897 set_btree_node_write_blocked(b);
898 list_add(&as->write_blocked_list, &b->write_blocked);
900 mutex_unlock(&c->btree_interior_update_lock);
903 static int bch2_update_reparent_journal_pin_flush(struct journal *j,
904 struct journal_entry_pin *_pin, u64 seq)
909 static void btree_update_reparent(struct btree_update *as,
910 struct btree_update *child)
912 struct bch_fs *c = as->c;
914 lockdep_assert_held(&c->btree_interior_update_lock);
917 child->mode = BTREE_UPDATE_update;
919 bch2_journal_pin_copy(&c->journal, &as->journal, &child->journal,
920 bch2_update_reparent_journal_pin_flush);
923 static void btree_update_updated_root(struct btree_update *as, struct btree *b)
925 struct bkey_i *insert = &b->key;
926 struct bch_fs *c = as->c;
928 BUG_ON(as->mode != BTREE_UPDATE_none);
930 BUG_ON(as->journal_u64s + jset_u64s(insert->k.u64s) >
931 ARRAY_SIZE(as->journal_entries));
934 journal_entry_set((void *) &as->journal_entries[as->journal_u64s],
935 BCH_JSET_ENTRY_btree_root,
936 b->c.btree_id, b->c.level,
937 insert, insert->k.u64s);
939 mutex_lock(&c->btree_interior_update_lock);
940 list_add_tail(&as->unwritten_list, &c->btree_interior_updates_unwritten);
942 as->mode = BTREE_UPDATE_root;
943 mutex_unlock(&c->btree_interior_update_lock);
947 * bch2_btree_update_add_new_node:
949 * This causes @as to wait on @b to be written, before it gets to
950 * bch2_btree_update_nodes_written
952 * Additionally, it sets b->will_make_reachable to prevent any additional writes
953 * to @b from happening besides the first until @b is reachable on disk
955 * And it adds @b to the list of @as's new nodes, so that we can update sector
956 * counts in bch2_btree_update_nodes_written:
958 static void bch2_btree_update_add_new_node(struct btree_update *as, struct btree *b)
960 struct bch_fs *c = as->c;
962 closure_get(&as->cl);
964 mutex_lock(&c->btree_interior_update_lock);
965 BUG_ON(as->nr_new_nodes >= ARRAY_SIZE(as->new_nodes));
966 BUG_ON(b->will_make_reachable);
968 as->new_nodes[as->nr_new_nodes++] = b;
969 b->will_make_reachable = 1UL|(unsigned long) as;
970 set_btree_node_will_make_reachable(b);
972 mutex_unlock(&c->btree_interior_update_lock);
974 btree_update_add_key(as, &as->new_keys, b);
976 if (b->key.k.type == KEY_TYPE_btree_ptr_v2) {
977 unsigned bytes = vstruct_end(&b->data->keys) - (void *) b->data;
978 unsigned sectors = round_up(bytes, block_bytes(c)) >> 9;
980 bkey_i_to_btree_ptr_v2(&b->key)->v.sectors_written =
981 cpu_to_le16(sectors);
986 * returns true if @b was a new node
988 static void btree_update_drop_new_node(struct bch_fs *c, struct btree *b)
990 struct btree_update *as;
994 mutex_lock(&c->btree_interior_update_lock);
996 * When b->will_make_reachable != 0, it owns a ref on as->cl that's
997 * dropped when it gets written by bch2_btree_complete_write - the
998 * xchg() is for synchronization with bch2_btree_complete_write:
1000 v = xchg(&b->will_make_reachable, 0);
1001 clear_btree_node_will_make_reachable(b);
1002 as = (struct btree_update *) (v & ~1UL);
1005 mutex_unlock(&c->btree_interior_update_lock);
1009 for (i = 0; i < as->nr_new_nodes; i++)
1010 if (as->new_nodes[i] == b)
1015 array_remove_item(as->new_nodes, as->nr_new_nodes, i);
1016 mutex_unlock(&c->btree_interior_update_lock);
1019 closure_put(&as->cl);
1022 static void bch2_btree_update_get_open_buckets(struct btree_update *as, struct btree *b)
1025 as->open_buckets[as->nr_open_buckets++] =
1026 b->ob.v[--b->ob.nr];
1029 static int bch2_btree_update_will_free_node_journal_pin_flush(struct journal *j,
1030 struct journal_entry_pin *_pin, u64 seq)
1036 * @b is being split/rewritten: it may have pointers to not-yet-written btree
1037 * nodes and thus outstanding btree_updates - redirect @b's
1038 * btree_updates to point to this btree_update:
1040 static void bch2_btree_interior_update_will_free_node(struct btree_update *as,
1043 struct bch_fs *c = as->c;
1044 struct btree_update *p, *n;
1045 struct btree_write *w;
1047 set_btree_node_dying(b);
1049 if (btree_node_fake(b))
1052 mutex_lock(&c->btree_interior_update_lock);
1055 * Does this node have any btree_update operations preventing
1056 * it from being written?
1058 * If so, redirect them to point to this btree_update: we can
1059 * write out our new nodes, but we won't make them visible until those
1060 * operations complete
1062 list_for_each_entry_safe(p, n, &b->write_blocked, write_blocked_list) {
1063 list_del_init(&p->write_blocked_list);
1064 btree_update_reparent(as, p);
1067 * for flush_held_btree_writes() waiting on updates to flush or
1068 * nodes to be writeable:
1070 closure_wake_up(&c->btree_interior_update_wait);
1073 clear_btree_node_dirty_acct(c, b);
1074 clear_btree_node_need_write(b);
1075 clear_btree_node_write_blocked(b);
1078 * Does this node have unwritten data that has a pin on the journal?
1080 * If so, transfer that pin to the btree_update operation -
1081 * note that if we're freeing multiple nodes, we only need to keep the
1082 * oldest pin of any of the nodes we're freeing. We'll release the pin
1083 * when the new nodes are persistent and reachable on disk:
1085 w = btree_current_write(b);
1086 bch2_journal_pin_copy(&c->journal, &as->journal, &w->journal,
1087 bch2_btree_update_will_free_node_journal_pin_flush);
1088 bch2_journal_pin_drop(&c->journal, &w->journal);
1090 w = btree_prev_write(b);
1091 bch2_journal_pin_copy(&c->journal, &as->journal, &w->journal,
1092 bch2_btree_update_will_free_node_journal_pin_flush);
1093 bch2_journal_pin_drop(&c->journal, &w->journal);
1095 mutex_unlock(&c->btree_interior_update_lock);
1098 * Is this a node that isn't reachable on disk yet?
1100 * Nodes that aren't reachable yet have writes blocked until they're
1101 * reachable - now that we've cancelled any pending writes and moved
1102 * things waiting on that write to wait on this update, we can drop this
1103 * node from the list of nodes that the other update is making
1104 * reachable, prior to freeing it:
1106 btree_update_drop_new_node(c, b);
1108 btree_update_add_key(as, &as->old_keys, b);
1110 as->old_nodes[as->nr_old_nodes] = b;
1111 as->old_nodes_seq[as->nr_old_nodes] = b->data->keys.seq;
1115 static void bch2_btree_update_done(struct btree_update *as, struct btree_trans *trans)
1117 struct bch_fs *c = as->c;
1118 u64 start_time = as->start_time;
1120 BUG_ON(as->mode == BTREE_UPDATE_none);
1122 if (as->took_gc_lock)
1123 up_read(&as->c->gc_lock);
1124 as->took_gc_lock = false;
1126 bch2_btree_reserve_put(as, trans);
1128 continue_at(&as->cl, btree_update_set_nodes_written,
1129 as->c->btree_interior_update_worker);
1131 bch2_time_stats_update(&c->times[BCH_TIME_btree_interior_update_foreground],
1135 static struct btree_update *
1136 bch2_btree_update_start(struct btree_trans *trans, struct btree_path *path,
1137 unsigned level_start, bool split, unsigned flags)
1139 struct bch_fs *c = trans->c;
1140 struct btree_update *as;
1141 u64 start_time = local_clock();
1142 int disk_res_flags = (flags & BCH_TRANS_COMMIT_no_enospc)
1143 ? BCH_DISK_RESERVATION_NOFAIL : 0;
1144 unsigned nr_nodes[2] = { 0, 0 };
1145 unsigned level_end = level_start;
1146 enum bch_watermark watermark = flags & BCH_WATERMARK_MASK;
1148 u32 restart_count = trans->restart_count;
1150 BUG_ON(!path->should_be_locked);
1152 if (watermark == BCH_WATERMARK_copygc)
1153 watermark = BCH_WATERMARK_btree_copygc;
1154 if (watermark < BCH_WATERMARK_btree)
1155 watermark = BCH_WATERMARK_btree;
1157 flags &= ~BCH_WATERMARK_MASK;
1160 if (watermark < BCH_WATERMARK_reclaim &&
1161 test_bit(JOURNAL_space_low, &c->journal.flags)) {
1162 if (flags & BCH_TRANS_COMMIT_journal_reclaim)
1163 return ERR_PTR(-BCH_ERR_journal_reclaim_would_deadlock);
1165 ret = drop_locks_do(trans,
1166 ({ wait_event(c->journal.wait, !test_bit(JOURNAL_space_low, &c->journal.flags)); 0; }));
1168 return ERR_PTR(ret);
1172 nr_nodes[!!level_end] += 1 + split;
1175 ret = bch2_btree_path_upgrade(trans, path, level_end + 1);
1177 return ERR_PTR(ret);
1179 if (!btree_path_node(path, level_end)) {
1180 /* Allocating new root? */
1181 nr_nodes[1] += split;
1182 level_end = BTREE_MAX_DEPTH;
1187 * Always check for space for two keys, even if we won't have to
1188 * split at prior level - it might have been a merge instead:
1190 if (bch2_btree_node_insert_fits(path->l[level_end].b,
1191 BKEY_BTREE_PTR_U64s_MAX * 2))
1194 split = path->l[level_end].b->nr.live_u64s > BTREE_SPLIT_THRESHOLD(c);
1197 if (!down_read_trylock(&c->gc_lock)) {
1198 ret = drop_locks_do(trans, (down_read(&c->gc_lock), 0));
1200 up_read(&c->gc_lock);
1201 return ERR_PTR(ret);
1205 as = mempool_alloc(&c->btree_interior_update_pool, GFP_NOFS);
1206 memset(as, 0, sizeof(*as));
1207 closure_init(&as->cl, NULL);
1209 as->start_time = start_time;
1210 as->ip_started = _RET_IP_;
1211 as->mode = BTREE_UPDATE_none;
1213 as->took_gc_lock = true;
1214 as->btree_id = path->btree_id;
1215 as->update_level_start = level_start;
1216 as->update_level_end = level_end;
1217 INIT_LIST_HEAD(&as->list);
1218 INIT_LIST_HEAD(&as->unwritten_list);
1219 INIT_LIST_HEAD(&as->write_blocked_list);
1220 bch2_keylist_init(&as->old_keys, as->_old_keys);
1221 bch2_keylist_init(&as->new_keys, as->_new_keys);
1222 bch2_keylist_init(&as->parent_keys, as->inline_keys);
1224 mutex_lock(&c->btree_interior_update_lock);
1225 list_add_tail(&as->list, &c->btree_interior_update_list);
1226 mutex_unlock(&c->btree_interior_update_lock);
1229 * We don't want to allocate if we're in an error state, that can cause
1230 * deadlock on emergency shutdown due to open buckets getting stuck in
1231 * the btree_reserve_cache after allocator shutdown has cleared it out.
1232 * This check needs to come after adding us to the btree_interior_update
1233 * list but before calling bch2_btree_reserve_get, to synchronize with
1234 * __bch2_fs_read_only().
1236 ret = bch2_journal_error(&c->journal);
1240 ret = bch2_disk_reservation_get(c, &as->disk_res,
1241 (nr_nodes[0] + nr_nodes[1]) * btree_sectors(c),
1242 c->opts.metadata_replicas,
1247 ret = bch2_btree_reserve_get(trans, as, nr_nodes, flags, NULL);
1248 if (bch2_err_matches(ret, ENOSPC) ||
1249 bch2_err_matches(ret, ENOMEM)) {
1253 * XXX: this should probably be a separate BTREE_INSERT_NONBLOCK
1256 if (bch2_err_matches(ret, ENOSPC) &&
1257 (flags & BCH_TRANS_COMMIT_journal_reclaim) &&
1258 watermark < BCH_WATERMARK_reclaim) {
1259 ret = -BCH_ERR_journal_reclaim_would_deadlock;
1263 closure_init_stack(&cl);
1266 ret = bch2_btree_reserve_get(trans, as, nr_nodes, flags, &cl);
1268 bch2_trans_unlock(trans);
1269 bch2_wait_on_allocator(c, &cl);
1270 } while (bch2_err_matches(ret, BCH_ERR_operation_blocked));
1274 trace_and_count(c, btree_reserve_get_fail, trans->fn,
1275 _RET_IP_, nr_nodes[0] + nr_nodes[1], ret);
1279 ret = bch2_trans_relock(trans);
1283 bch2_trans_verify_not_restarted(trans, restart_count);
1286 bch2_btree_update_free(as, trans);
1287 if (!bch2_err_matches(ret, ENOSPC) &&
1288 !bch2_err_matches(ret, EROFS) &&
1289 ret != -BCH_ERR_journal_reclaim_would_deadlock)
1290 bch_err_fn_ratelimited(c, ret);
1291 return ERR_PTR(ret);
1294 /* Btree root updates: */
1296 static void bch2_btree_set_root_inmem(struct bch_fs *c, struct btree *b)
1298 /* Root nodes cannot be reaped */
1299 mutex_lock(&c->btree_cache.lock);
1300 list_del_init(&b->list);
1301 mutex_unlock(&c->btree_cache.lock);
1303 mutex_lock(&c->btree_root_lock);
1304 bch2_btree_id_root(c, b->c.btree_id)->b = b;
1305 mutex_unlock(&c->btree_root_lock);
1307 bch2_recalc_btree_reserve(c);
1310 static int bch2_btree_set_root(struct btree_update *as,
1311 struct btree_trans *trans,
1312 struct btree_path *path,
1316 struct bch_fs *c = as->c;
1318 trace_and_count(c, btree_node_set_root, trans, b);
1320 struct btree *old = btree_node_root(c, b);
1323 * Ensure no one is using the old root while we switch to the
1327 bch2_btree_node_lock_write_nofail(trans, path, &old->c);
1329 int ret = bch2_btree_node_lock_write(trans, path, &old->c);
1334 bch2_btree_set_root_inmem(c, b);
1336 btree_update_updated_root(as, b);
1339 * Unlock old root after new root is visible:
1341 * The new root isn't persistent, but that's ok: we still have
1342 * an intent lock on the new root, and any updates that would
1343 * depend on the new root would have to update the new root.
1345 bch2_btree_node_unlock_write(trans, path, old);
1349 /* Interior node updates: */
1351 static void bch2_insert_fixup_btree_ptr(struct btree_update *as,
1352 struct btree_trans *trans,
1353 struct btree_path *path,
1355 struct btree_node_iter *node_iter,
1356 struct bkey_i *insert)
1358 struct bch_fs *c = as->c;
1359 struct bkey_packed *k;
1360 struct printbuf buf = PRINTBUF;
1361 unsigned long old, new;
1363 BUG_ON(insert->k.type == KEY_TYPE_btree_ptr_v2 &&
1364 !btree_ptr_sectors_written(bkey_i_to_s_c(insert)));
1366 if (unlikely(!test_bit(JOURNAL_replay_done, &c->journal.flags)))
1367 bch2_journal_key_overwritten(c, b->c.btree_id, b->c.level, insert->k.p);
1369 if (bch2_bkey_validate(c, bkey_i_to_s_c(insert),
1370 btree_node_type(b), BCH_VALIDATE_write) ?:
1371 bch2_bkey_in_btree_node(c, b, bkey_i_to_s_c(insert), BCH_VALIDATE_write)) {
1372 bch2_fs_inconsistent(c, "%s: inserting invalid bkey", __func__);
1376 BUG_ON(as->journal_u64s + jset_u64s(insert->k.u64s) >
1377 ARRAY_SIZE(as->journal_entries));
1380 journal_entry_set((void *) &as->journal_entries[as->journal_u64s],
1381 BCH_JSET_ENTRY_btree_keys,
1382 b->c.btree_id, b->c.level,
1383 insert, insert->k.u64s);
1385 while ((k = bch2_btree_node_iter_peek_all(node_iter, b)) &&
1386 bkey_iter_pos_cmp(b, k, &insert->k.p) < 0)
1387 bch2_btree_node_iter_advance(node_iter, b);
1389 bch2_btree_bset_insert_key(trans, path, b, node_iter, insert);
1390 set_btree_node_dirty_acct(c, b);
1392 old = READ_ONCE(b->flags);
1396 new &= ~BTREE_WRITE_TYPE_MASK;
1397 new |= BTREE_WRITE_interior;
1398 new |= 1 << BTREE_NODE_need_write;
1399 } while (!try_cmpxchg(&b->flags, &old, new));
1401 printbuf_exit(&buf);
1405 bch2_btree_insert_keys_interior(struct btree_update *as,
1406 struct btree_trans *trans,
1407 struct btree_path *path,
1409 struct btree_node_iter node_iter,
1410 struct keylist *keys)
1412 struct bkey_i *insert = bch2_keylist_front(keys);
1413 struct bkey_packed *k;
1415 BUG_ON(btree_node_type(b) != BKEY_TYPE_btree);
1417 while ((k = bch2_btree_node_iter_prev_all(&node_iter, b)) &&
1418 (bkey_cmp_left_packed(b, k, &insert->k.p) >= 0))
1421 while (!bch2_keylist_empty(keys)) {
1422 insert = bch2_keylist_front(keys);
1424 if (bpos_gt(insert->k.p, b->key.k.p))
1427 bch2_insert_fixup_btree_ptr(as, trans, path, b, &node_iter, insert);
1428 bch2_keylist_pop_front(keys);
1432 static bool key_deleted_in_insert(struct keylist *insert_keys, struct bpos pos)
1435 for_each_keylist_key(insert_keys, k)
1436 if (bkey_deleted(&k->k) && bpos_eq(k->k.p, pos))
1442 * Move keys from n1 (original replacement node, now lower node) to n2 (higher
1445 static void __btree_split_node(struct btree_update *as,
1446 struct btree_trans *trans,
1449 struct keylist *insert_keys)
1451 struct bkey_packed *k;
1452 struct bpos n1_pos = POS_MIN;
1453 struct btree_node_iter iter;
1454 struct bset *bsets[2];
1455 struct bkey_format_state format[2];
1456 struct bkey_packed *out[2];
1458 unsigned u64s, n1_u64s = (b->nr.live_u64s * 3) / 5;
1459 struct { unsigned nr_keys, val_u64s; } nr_keys[2];
1462 memset(&nr_keys, 0, sizeof(nr_keys));
1464 for (i = 0; i < 2; i++) {
1465 BUG_ON(n[i]->nsets != 1);
1467 bsets[i] = btree_bset_first(n[i]);
1468 out[i] = bsets[i]->start;
1470 SET_BTREE_NODE_SEQ(n[i]->data, BTREE_NODE_SEQ(b->data) + 1);
1471 bch2_bkey_format_init(&format[i]);
1475 for_each_btree_node_key(b, k, &iter) {
1476 if (bkey_deleted(k))
1479 uk = bkey_unpack_key(b, k);
1483 u64s + k->u64s >= n1_u64s &&
1484 (bch2_key_deleted_in_journal(trans, b->c.btree_id, b->c.level, uk.p) ||
1485 key_deleted_in_insert(insert_keys, uk.p)))
1488 i = u64s >= n1_u64s;
1492 bch2_bkey_format_add_key(&format[i], &uk);
1494 nr_keys[i].nr_keys++;
1495 nr_keys[i].val_u64s += bkeyp_val_u64s(&b->format, k);
1498 btree_set_min(n[0], b->data->min_key);
1499 btree_set_max(n[0], n1_pos);
1500 btree_set_min(n[1], bpos_successor(n1_pos));
1501 btree_set_max(n[1], b->data->max_key);
1503 for (i = 0; i < 2; i++) {
1504 bch2_bkey_format_add_pos(&format[i], n[i]->data->min_key);
1505 bch2_bkey_format_add_pos(&format[i], n[i]->data->max_key);
1507 n[i]->data->format = bch2_bkey_format_done(&format[i]);
1509 unsigned u64s = nr_keys[i].nr_keys * n[i]->data->format.key_u64s +
1510 nr_keys[i].val_u64s;
1511 if (__vstruct_bytes(struct btree_node, u64s) > btree_buf_bytes(b))
1512 n[i]->data->format = b->format;
1514 btree_node_set_format(n[i], n[i]->data->format);
1518 for_each_btree_node_key(b, k, &iter) {
1519 if (bkey_deleted(k))
1522 i = u64s >= n1_u64s;
1525 if (bch2_bkey_transform(&n[i]->format, out[i], bkey_packed(k)
1526 ? &b->format: &bch2_bkey_format_current, k))
1527 out[i]->format = KEY_FORMAT_LOCAL_BTREE;
1529 bch2_bkey_unpack(b, (void *) out[i], k);
1531 out[i]->needs_whiteout = false;
1533 btree_keys_account_key_add(&n[i]->nr, 0, out[i]);
1534 out[i] = bkey_p_next(out[i]);
1537 for (i = 0; i < 2; i++) {
1538 bsets[i]->u64s = cpu_to_le16((u64 *) out[i] - bsets[i]->_data);
1540 BUG_ON(!bsets[i]->u64s);
1542 set_btree_bset_end(n[i], n[i]->set);
1544 btree_node_reset_sib_u64s(n[i]);
1546 bch2_verify_btree_nr_keys(n[i]);
1548 BUG_ON(bch2_btree_node_check_topology(trans, n[i]));
1553 * For updates to interior nodes, we've got to do the insert before we split
1554 * because the stuff we're inserting has to be inserted atomically. Post split,
1555 * the keys might have to go in different nodes and the split would no longer be
1558 * Worse, if the insert is from btree node coalescing, if we do the insert after
1559 * we do the split (and pick the pivot) - the pivot we pick might be between
1560 * nodes that were coalesced, and thus in the middle of a child node post
1563 static void btree_split_insert_keys(struct btree_update *as,
1564 struct btree_trans *trans,
1565 btree_path_idx_t path_idx,
1567 struct keylist *keys)
1569 struct btree_path *path = trans->paths + path_idx;
1571 if (!bch2_keylist_empty(keys) &&
1572 bpos_le(bch2_keylist_front(keys)->k.p, b->data->max_key)) {
1573 struct btree_node_iter node_iter;
1575 bch2_btree_node_iter_init(&node_iter, b, &bch2_keylist_front(keys)->k.p);
1577 bch2_btree_insert_keys_interior(as, trans, path, b, node_iter, keys);
1579 BUG_ON(bch2_btree_node_check_topology(trans, b));
1583 static int btree_split(struct btree_update *as, struct btree_trans *trans,
1584 btree_path_idx_t path, struct btree *b,
1585 struct keylist *keys)
1587 struct bch_fs *c = as->c;
1588 struct btree *parent = btree_node_parent(trans->paths + path, b);
1589 struct btree *n1, *n2 = NULL, *n3 = NULL;
1590 btree_path_idx_t path1 = 0, path2 = 0;
1591 u64 start_time = local_clock();
1594 bch2_verify_btree_nr_keys(b);
1595 BUG_ON(!parent && (b != btree_node_root(c, b)));
1596 BUG_ON(parent && !btree_node_intent_locked(trans->paths + path, b->c.level + 1));
1598 ret = bch2_btree_node_check_topology(trans, b);
1602 bch2_btree_interior_update_will_free_node(as, b);
1604 if (b->nr.live_u64s > BTREE_SPLIT_THRESHOLD(c)) {
1607 trace_and_count(c, btree_node_split, trans, b);
1609 n[0] = n1 = bch2_btree_node_alloc(as, trans, b->c.level);
1610 n[1] = n2 = bch2_btree_node_alloc(as, trans, b->c.level);
1612 __btree_split_node(as, trans, b, n, keys);
1615 btree_split_insert_keys(as, trans, path, n1, keys);
1616 btree_split_insert_keys(as, trans, path, n2, keys);
1617 BUG_ON(!bch2_keylist_empty(keys));
1620 bch2_btree_build_aux_trees(n2);
1621 bch2_btree_build_aux_trees(n1);
1623 bch2_btree_update_add_new_node(as, n1);
1624 bch2_btree_update_add_new_node(as, n2);
1625 six_unlock_write(&n2->c.lock);
1626 six_unlock_write(&n1->c.lock);
1628 path1 = bch2_path_get_unlocked_mut(trans, as->btree_id, n1->c.level, n1->key.k.p);
1629 six_lock_increment(&n1->c.lock, SIX_LOCK_intent);
1630 mark_btree_node_locked(trans, trans->paths + path1, n1->c.level, BTREE_NODE_INTENT_LOCKED);
1631 bch2_btree_path_level_init(trans, trans->paths + path1, n1);
1633 path2 = bch2_path_get_unlocked_mut(trans, as->btree_id, n2->c.level, n2->key.k.p);
1634 six_lock_increment(&n2->c.lock, SIX_LOCK_intent);
1635 mark_btree_node_locked(trans, trans->paths + path2, n2->c.level, BTREE_NODE_INTENT_LOCKED);
1636 bch2_btree_path_level_init(trans, trans->paths + path2, n2);
1639 * Note that on recursive parent_keys == keys, so we
1640 * can't start adding new keys to parent_keys before emptying it
1641 * out (which we did with btree_split_insert_keys() above)
1643 bch2_keylist_add(&as->parent_keys, &n1->key);
1644 bch2_keylist_add(&as->parent_keys, &n2->key);
1647 /* Depth increases, make a new root */
1648 n3 = __btree_root_alloc(as, trans, b->c.level + 1);
1650 bch2_btree_update_add_new_node(as, n3);
1651 six_unlock_write(&n3->c.lock);
1653 trans->paths[path2].locks_want++;
1654 BUG_ON(btree_node_locked(trans->paths + path2, n3->c.level));
1655 six_lock_increment(&n3->c.lock, SIX_LOCK_intent);
1656 mark_btree_node_locked(trans, trans->paths + path2, n3->c.level, BTREE_NODE_INTENT_LOCKED);
1657 bch2_btree_path_level_init(trans, trans->paths + path2, n3);
1659 n3->sib_u64s[0] = U16_MAX;
1660 n3->sib_u64s[1] = U16_MAX;
1662 btree_split_insert_keys(as, trans, path, n3, &as->parent_keys);
1665 trace_and_count(c, btree_node_compact, trans, b);
1667 n1 = bch2_btree_node_alloc_replacement(as, trans, b);
1670 btree_split_insert_keys(as, trans, path, n1, keys);
1671 BUG_ON(!bch2_keylist_empty(keys));
1674 bch2_btree_build_aux_trees(n1);
1675 bch2_btree_update_add_new_node(as, n1);
1676 six_unlock_write(&n1->c.lock);
1678 path1 = bch2_path_get_unlocked_mut(trans, as->btree_id, n1->c.level, n1->key.k.p);
1679 six_lock_increment(&n1->c.lock, SIX_LOCK_intent);
1680 mark_btree_node_locked(trans, trans->paths + path1, n1->c.level, BTREE_NODE_INTENT_LOCKED);
1681 bch2_btree_path_level_init(trans, trans->paths + path1, n1);
1684 bch2_keylist_add(&as->parent_keys, &n1->key);
1687 /* New nodes all written, now make them visible: */
1690 /* Split a non root node */
1691 ret = bch2_btree_insert_node(as, trans, path, parent, &as->parent_keys);
1693 ret = bch2_btree_set_root(as, trans, trans->paths + path, n3, false);
1695 /* Root filled up but didn't need to be split */
1696 ret = bch2_btree_set_root(as, trans, trans->paths + path, n1, false);
1703 bch2_btree_update_get_open_buckets(as, n3);
1704 bch2_btree_node_write(c, n3, SIX_LOCK_intent, 0);
1707 bch2_btree_update_get_open_buckets(as, n2);
1708 bch2_btree_node_write(c, n2, SIX_LOCK_intent, 0);
1710 bch2_btree_update_get_open_buckets(as, n1);
1711 bch2_btree_node_write(c, n1, SIX_LOCK_intent, 0);
1714 * The old node must be freed (in memory) _before_ unlocking the new
1715 * nodes - else another thread could re-acquire a read lock on the old
1716 * node after another thread has locked and updated the new node, thus
1717 * seeing stale data:
1719 bch2_btree_node_free_inmem(trans, trans->paths + path, b);
1722 bch2_trans_node_add(trans, trans->paths + path, n3);
1724 bch2_trans_node_add(trans, trans->paths + path2, n2);
1725 bch2_trans_node_add(trans, trans->paths + path1, n1);
1728 six_unlock_intent(&n3->c.lock);
1730 six_unlock_intent(&n2->c.lock);
1731 six_unlock_intent(&n1->c.lock);
1734 __bch2_btree_path_unlock(trans, trans->paths + path2);
1735 bch2_path_put(trans, path2, true);
1738 __bch2_btree_path_unlock(trans, trans->paths + path1);
1739 bch2_path_put(trans, path1, true);
1742 bch2_trans_verify_locks(trans);
1744 bch2_time_stats_update(&c->times[n2
1745 ? BCH_TIME_btree_node_split
1746 : BCH_TIME_btree_node_compact],
1751 bch2_btree_node_free_never_used(as, trans, n3);
1753 bch2_btree_node_free_never_used(as, trans, n2);
1754 bch2_btree_node_free_never_used(as, trans, n1);
1759 * bch2_btree_insert_node - insert bkeys into a given btree node
1761 * @as: btree_update object
1762 * @trans: btree_trans object
1763 * @path_idx: path that points to current node
1764 * @b: node to insert keys into
1765 * @keys: list of keys to insert
1767 * Returns: 0 on success, typically transaction restart error on failure
1769 * Inserts as many keys as it can into a given btree node, splitting it if full.
1770 * If a split occurred, this function will return early. This can only happen
1771 * for leaf nodes -- inserts into interior nodes have to be atomic.
1773 static int bch2_btree_insert_node(struct btree_update *as, struct btree_trans *trans,
1774 btree_path_idx_t path_idx, struct btree *b,
1775 struct keylist *keys)
1777 struct bch_fs *c = as->c;
1778 struct btree_path *path = trans->paths + path_idx, *linked;
1780 int old_u64s = le16_to_cpu(btree_bset_last(b)->u64s);
1781 int old_live_u64s = b->nr.live_u64s;
1782 int live_u64s_added, u64s_added;
1785 lockdep_assert_held(&c->gc_lock);
1786 BUG_ON(!btree_node_intent_locked(path, b->c.level));
1787 BUG_ON(!b->c.level);
1788 BUG_ON(!as || as->b);
1789 bch2_verify_keylist_sorted(keys);
1791 ret = bch2_btree_node_lock_write(trans, path, &b->c);
1795 bch2_btree_node_prep_for_write(trans, path, b);
1797 if (!bch2_btree_node_insert_fits(b, bch2_keylist_u64s(keys))) {
1798 bch2_btree_node_unlock_write(trans, path, b);
1802 ret = bch2_btree_node_check_topology(trans, b);
1804 bch2_btree_node_unlock_write(trans, path, b);
1808 bch2_btree_insert_keys_interior(as, trans, path, b,
1809 path->l[b->c.level].iter, keys);
1811 trans_for_each_path_with_node(trans, b, linked, i)
1812 bch2_btree_node_iter_peek(&linked->l[b->c.level].iter, b);
1814 bch2_trans_verify_paths(trans);
1816 live_u64s_added = (int) b->nr.live_u64s - old_live_u64s;
1817 u64s_added = (int) le16_to_cpu(btree_bset_last(b)->u64s) - old_u64s;
1819 if (b->sib_u64s[0] != U16_MAX && live_u64s_added < 0)
1820 b->sib_u64s[0] = max(0, (int) b->sib_u64s[0] + live_u64s_added);
1821 if (b->sib_u64s[1] != U16_MAX && live_u64s_added < 0)
1822 b->sib_u64s[1] = max(0, (int) b->sib_u64s[1] + live_u64s_added);
1824 if (u64s_added > live_u64s_added &&
1825 bch2_maybe_compact_whiteouts(c, b))
1826 bch2_trans_node_reinit_iter(trans, b);
1828 btree_update_updated_node(as, b);
1829 bch2_btree_node_unlock_write(trans, path, b);
1831 BUG_ON(bch2_btree_node_check_topology(trans, b));
1835 * We could attempt to avoid the transaction restart, by calling
1836 * bch2_btree_path_upgrade() and allocating more nodes:
1838 if (b->c.level >= as->update_level_end) {
1839 trace_and_count(c, trans_restart_split_race, trans, _THIS_IP_, b);
1840 return btree_trans_restart(trans, BCH_ERR_transaction_restart_split_race);
1843 return btree_split(as, trans, path_idx, b, keys);
1846 int bch2_btree_split_leaf(struct btree_trans *trans,
1847 btree_path_idx_t path,
1850 /* btree_split & merge may both cause paths array to be reallocated */
1851 struct btree *b = path_l(trans->paths + path)->b;
1852 struct btree_update *as;
1856 as = bch2_btree_update_start(trans, trans->paths + path,
1857 trans->paths[path].level,
1862 ret = btree_split(as, trans, path, b, NULL);
1864 bch2_btree_update_free(as, trans);
1868 bch2_btree_update_done(as, trans);
1870 for (l = trans->paths[path].level + 1;
1871 btree_node_intent_locked(&trans->paths[path], l) && !ret;
1873 ret = bch2_foreground_maybe_merge(trans, path, l, flags);
1878 static void __btree_increase_depth(struct btree_update *as, struct btree_trans *trans,
1879 btree_path_idx_t path_idx)
1881 struct bch_fs *c = as->c;
1882 struct btree_path *path = trans->paths + path_idx;
1883 struct btree *n, *b = bch2_btree_id_root(c, path->btree_id)->b;
1885 BUG_ON(!btree_node_locked(path, b->c.level));
1887 n = __btree_root_alloc(as, trans, b->c.level + 1);
1889 bch2_btree_update_add_new_node(as, n);
1890 six_unlock_write(&n->c.lock);
1893 BUG_ON(btree_node_locked(path, n->c.level));
1894 six_lock_increment(&n->c.lock, SIX_LOCK_intent);
1895 mark_btree_node_locked(trans, path, n->c.level, BTREE_NODE_INTENT_LOCKED);
1896 bch2_btree_path_level_init(trans, path, n);
1898 n->sib_u64s[0] = U16_MAX;
1899 n->sib_u64s[1] = U16_MAX;
1901 bch2_keylist_add(&as->parent_keys, &b->key);
1902 btree_split_insert_keys(as, trans, path_idx, n, &as->parent_keys);
1904 int ret = bch2_btree_set_root(as, trans, path, n, true);
1907 bch2_btree_update_get_open_buckets(as, n);
1908 bch2_btree_node_write(c, n, SIX_LOCK_intent, 0);
1909 bch2_trans_node_add(trans, path, n);
1910 six_unlock_intent(&n->c.lock);
1912 mutex_lock(&c->btree_cache.lock);
1913 list_add_tail(&b->list, &c->btree_cache.live[btree_node_pinned(b)].list);
1914 mutex_unlock(&c->btree_cache.lock);
1916 bch2_trans_verify_locks(trans);
1919 int bch2_btree_increase_depth(struct btree_trans *trans, btree_path_idx_t path, unsigned flags)
1921 struct bch_fs *c = trans->c;
1922 struct btree *b = bch2_btree_id_root(c, trans->paths[path].btree_id)->b;
1924 if (btree_node_fake(b))
1925 return bch2_btree_split_leaf(trans, path, flags);
1927 struct btree_update *as =
1928 bch2_btree_update_start(trans, trans->paths + path, b->c.level, true, flags);
1932 __btree_increase_depth(as, trans, path);
1933 bch2_btree_update_done(as, trans);
1937 int __bch2_foreground_maybe_merge(struct btree_trans *trans,
1938 btree_path_idx_t path,
1941 enum btree_node_sibling sib)
1943 struct bch_fs *c = trans->c;
1944 struct btree_update *as;
1945 struct bkey_format_state new_s;
1946 struct bkey_format new_f;
1947 struct bkey_i delete;
1948 struct btree *b, *m, *n, *prev, *next, *parent;
1949 struct bpos sib_pos;
1951 enum btree_id btree = trans->paths[path].btree_id;
1952 btree_path_idx_t sib_path = 0, new_path = 0;
1953 u64 start_time = local_clock();
1956 bch2_trans_verify_not_in_restart(trans);
1957 bch2_trans_verify_not_unlocked(trans);
1958 BUG_ON(!trans->paths[path].should_be_locked);
1959 BUG_ON(!btree_node_locked(&trans->paths[path], level));
1962 * Work around a deadlock caused by the btree write buffer not doing
1963 * merges and leaving tons of merges for us to do - we really don't need
1964 * to be doing merges at all from the interior update path, and if the
1965 * interior update path is generating too many new interior updates we
1968 if ((flags & BCH_WATERMARK_MASK) == BCH_WATERMARK_interior_updates)
1971 if ((flags & BCH_WATERMARK_MASK) <= BCH_WATERMARK_reclaim) {
1972 flags &= ~BCH_WATERMARK_MASK;
1973 flags |= BCH_WATERMARK_btree;
1974 flags |= BCH_TRANS_COMMIT_journal_reclaim;
1977 b = trans->paths[path].l[level].b;
1979 if ((sib == btree_prev_sib && bpos_eq(b->data->min_key, POS_MIN)) ||
1980 (sib == btree_next_sib && bpos_eq(b->data->max_key, SPOS_MAX))) {
1981 b->sib_u64s[sib] = U16_MAX;
1985 sib_pos = sib == btree_prev_sib
1986 ? bpos_predecessor(b->data->min_key)
1987 : bpos_successor(b->data->max_key);
1989 sib_path = bch2_path_get(trans, btree, sib_pos,
1990 U8_MAX, level, BTREE_ITER_intent, _THIS_IP_);
1991 ret = bch2_btree_path_traverse(trans, sib_path, false);
1995 btree_path_set_should_be_locked(trans, trans->paths + sib_path);
1997 m = trans->paths[sib_path].l[level].b;
1999 if (btree_node_parent(trans->paths + path, b) !=
2000 btree_node_parent(trans->paths + sib_path, m)) {
2001 b->sib_u64s[sib] = U16_MAX;
2005 if (sib == btree_prev_sib) {
2013 if (!bpos_eq(bpos_successor(prev->data->max_key), next->data->min_key)) {
2014 struct printbuf buf1 = PRINTBUF, buf2 = PRINTBUF;
2016 bch2_bpos_to_text(&buf1, prev->data->max_key);
2017 bch2_bpos_to_text(&buf2, next->data->min_key);
2019 "%s(): btree topology error:\n"
2020 " prev ends at %s\n"
2021 " next starts at %s",
2022 __func__, buf1.buf, buf2.buf);
2023 printbuf_exit(&buf1);
2024 printbuf_exit(&buf2);
2025 ret = bch2_topology_error(c);
2029 bch2_bkey_format_init(&new_s);
2030 bch2_bkey_format_add_pos(&new_s, prev->data->min_key);
2031 __bch2_btree_calc_format(&new_s, prev);
2032 __bch2_btree_calc_format(&new_s, next);
2033 bch2_bkey_format_add_pos(&new_s, next->data->max_key);
2034 new_f = bch2_bkey_format_done(&new_s);
2036 sib_u64s = btree_node_u64s_with_format(b->nr, &b->format, &new_f) +
2037 btree_node_u64s_with_format(m->nr, &m->format, &new_f);
2039 if (sib_u64s > BTREE_FOREGROUND_MERGE_HYSTERESIS(c)) {
2040 sib_u64s -= BTREE_FOREGROUND_MERGE_HYSTERESIS(c);
2042 sib_u64s += BTREE_FOREGROUND_MERGE_HYSTERESIS(c);
2045 sib_u64s = min(sib_u64s, btree_max_u64s(c));
2046 sib_u64s = min(sib_u64s, (size_t) U16_MAX - 1);
2047 b->sib_u64s[sib] = sib_u64s;
2049 if (b->sib_u64s[sib] > c->btree_foreground_merge_threshold)
2052 parent = btree_node_parent(trans->paths + path, b);
2053 as = bch2_btree_update_start(trans, trans->paths + path, level, false,
2054 BCH_TRANS_COMMIT_no_enospc|flags);
2055 ret = PTR_ERR_OR_ZERO(as);
2059 trace_and_count(c, btree_node_merge, trans, b);
2061 bch2_btree_interior_update_will_free_node(as, b);
2062 bch2_btree_interior_update_will_free_node(as, m);
2064 n = bch2_btree_node_alloc(as, trans, b->c.level);
2066 SET_BTREE_NODE_SEQ(n->data,
2067 max(BTREE_NODE_SEQ(b->data),
2068 BTREE_NODE_SEQ(m->data)) + 1);
2070 btree_set_min(n, prev->data->min_key);
2071 btree_set_max(n, next->data->max_key);
2073 n->data->format = new_f;
2074 btree_node_set_format(n, new_f);
2076 bch2_btree_sort_into(c, n, prev);
2077 bch2_btree_sort_into(c, n, next);
2079 bch2_btree_build_aux_trees(n);
2080 bch2_btree_update_add_new_node(as, n);
2081 six_unlock_write(&n->c.lock);
2083 new_path = bch2_path_get_unlocked_mut(trans, btree, n->c.level, n->key.k.p);
2084 six_lock_increment(&n->c.lock, SIX_LOCK_intent);
2085 mark_btree_node_locked(trans, trans->paths + new_path, n->c.level, BTREE_NODE_INTENT_LOCKED);
2086 bch2_btree_path_level_init(trans, trans->paths + new_path, n);
2088 bkey_init(&delete.k);
2089 delete.k.p = prev->key.k.p;
2090 bch2_keylist_add(&as->parent_keys, &delete);
2091 bch2_keylist_add(&as->parent_keys, &n->key);
2093 bch2_trans_verify_paths(trans);
2095 ret = bch2_btree_insert_node(as, trans, path, parent, &as->parent_keys);
2097 goto err_free_update;
2099 bch2_trans_verify_paths(trans);
2101 bch2_btree_update_get_open_buckets(as, n);
2102 bch2_btree_node_write(c, n, SIX_LOCK_intent, 0);
2104 bch2_btree_node_free_inmem(trans, trans->paths + path, b);
2105 bch2_btree_node_free_inmem(trans, trans->paths + sib_path, m);
2107 bch2_trans_node_add(trans, trans->paths + path, n);
2109 bch2_trans_verify_paths(trans);
2111 six_unlock_intent(&n->c.lock);
2113 bch2_btree_update_done(as, trans);
2115 bch2_time_stats_update(&c->times[BCH_TIME_btree_node_merge], start_time);
2119 bch2_path_put(trans, new_path, true);
2120 bch2_path_put(trans, sib_path, true);
2121 bch2_trans_verify_locks(trans);
2122 if (ret == -BCH_ERR_journal_reclaim_would_deadlock)
2125 ret = bch2_trans_relock(trans);
2128 bch2_btree_node_free_never_used(as, trans, n);
2129 bch2_btree_update_free(as, trans);
2133 int bch2_btree_node_rewrite(struct btree_trans *trans,
2134 struct btree_iter *iter,
2138 struct bch_fs *c = trans->c;
2139 struct btree *n, *parent;
2140 struct btree_update *as;
2141 btree_path_idx_t new_path = 0;
2144 flags |= BCH_TRANS_COMMIT_no_enospc;
2146 struct btree_path *path = btree_iter_path(trans, iter);
2147 parent = btree_node_parent(path, b);
2148 as = bch2_btree_update_start(trans, path, b->c.level, false, flags);
2149 ret = PTR_ERR_OR_ZERO(as);
2153 bch2_btree_interior_update_will_free_node(as, b);
2155 n = bch2_btree_node_alloc_replacement(as, trans, b);
2157 bch2_btree_build_aux_trees(n);
2158 bch2_btree_update_add_new_node(as, n);
2159 six_unlock_write(&n->c.lock);
2161 new_path = bch2_path_get_unlocked_mut(trans, iter->btree_id, n->c.level, n->key.k.p);
2162 six_lock_increment(&n->c.lock, SIX_LOCK_intent);
2163 mark_btree_node_locked(trans, trans->paths + new_path, n->c.level, BTREE_NODE_INTENT_LOCKED);
2164 bch2_btree_path_level_init(trans, trans->paths + new_path, n);
2166 trace_and_count(c, btree_node_rewrite, trans, b);
2169 bch2_keylist_add(&as->parent_keys, &n->key);
2170 ret = bch2_btree_insert_node(as, trans, iter->path, parent, &as->parent_keys);
2172 ret = bch2_btree_set_root(as, trans, btree_iter_path(trans, iter), n, false);
2178 bch2_btree_update_get_open_buckets(as, n);
2179 bch2_btree_node_write(c, n, SIX_LOCK_intent, 0);
2181 bch2_btree_node_free_inmem(trans, btree_iter_path(trans, iter), b);
2183 bch2_trans_node_add(trans, trans->paths + iter->path, n);
2184 six_unlock_intent(&n->c.lock);
2186 bch2_btree_update_done(as, trans);
2189 bch2_path_put(trans, new_path, true);
2190 bch2_trans_downgrade(trans);
2193 bch2_btree_node_free_never_used(as, trans, n);
2194 bch2_btree_update_free(as, trans);
2198 struct async_btree_rewrite {
2200 struct work_struct work;
2201 struct list_head list;
2202 enum btree_id btree_id;
2208 static int async_btree_node_rewrite_trans(struct btree_trans *trans,
2209 struct async_btree_rewrite *a)
2211 struct bch_fs *c = trans->c;
2212 struct btree_iter iter;
2216 bch2_trans_node_iter_init(trans, &iter, a->btree_id, a->pos,
2217 BTREE_MAX_DEPTH, a->level, 0);
2218 b = bch2_btree_iter_peek_node(&iter);
2219 ret = PTR_ERR_OR_ZERO(b);
2223 if (!b || b->data->keys.seq != a->seq) {
2224 struct printbuf buf = PRINTBUF;
2227 bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(&b->key));
2229 prt_str(&buf, "(null");
2230 bch_info(c, "%s: node to rewrite not found:, searching for seq %llu, got\n%s",
2231 __func__, a->seq, buf.buf);
2232 printbuf_exit(&buf);
2236 ret = bch2_btree_node_rewrite(trans, &iter, b, 0);
2238 bch2_trans_iter_exit(trans, &iter);
2243 static void async_btree_node_rewrite_work(struct work_struct *work)
2245 struct async_btree_rewrite *a =
2246 container_of(work, struct async_btree_rewrite, work);
2247 struct bch_fs *c = a->c;
2249 int ret = bch2_trans_do(c, async_btree_node_rewrite_trans(trans, a));
2250 bch_err_fn_ratelimited(c, ret);
2251 bch2_write_ref_put(c, BCH_WRITE_REF_node_rewrite);
2255 void bch2_btree_node_rewrite_async(struct bch_fs *c, struct btree *b)
2257 struct async_btree_rewrite *a;
2260 a = kmalloc(sizeof(*a), GFP_NOFS);
2262 bch_err(c, "%s: error allocating memory", __func__);
2267 a->btree_id = b->c.btree_id;
2268 a->level = b->c.level;
2269 a->pos = b->key.k.p;
2270 a->seq = b->data->keys.seq;
2271 INIT_WORK(&a->work, async_btree_node_rewrite_work);
2273 if (unlikely(!test_bit(BCH_FS_may_go_rw, &c->flags))) {
2274 mutex_lock(&c->pending_node_rewrites_lock);
2275 list_add(&a->list, &c->pending_node_rewrites);
2276 mutex_unlock(&c->pending_node_rewrites_lock);
2280 if (!bch2_write_ref_tryget(c, BCH_WRITE_REF_node_rewrite)) {
2281 if (test_bit(BCH_FS_started, &c->flags)) {
2282 bch_err(c, "%s: error getting c->writes ref", __func__);
2287 ret = bch2_fs_read_write_early(c);
2288 bch_err_msg(c, ret, "going read-write");
2294 bch2_write_ref_get(c, BCH_WRITE_REF_node_rewrite);
2297 queue_work(c->btree_node_rewrite_worker, &a->work);
2300 void bch2_do_pending_node_rewrites(struct bch_fs *c)
2302 struct async_btree_rewrite *a, *n;
2304 mutex_lock(&c->pending_node_rewrites_lock);
2305 list_for_each_entry_safe(a, n, &c->pending_node_rewrites, list) {
2308 bch2_write_ref_get(c, BCH_WRITE_REF_node_rewrite);
2309 queue_work(c->btree_node_rewrite_worker, &a->work);
2311 mutex_unlock(&c->pending_node_rewrites_lock);
2314 void bch2_free_pending_node_rewrites(struct bch_fs *c)
2316 struct async_btree_rewrite *a, *n;
2318 mutex_lock(&c->pending_node_rewrites_lock);
2319 list_for_each_entry_safe(a, n, &c->pending_node_rewrites, list) {
2324 mutex_unlock(&c->pending_node_rewrites_lock);
2327 static int __bch2_btree_node_update_key(struct btree_trans *trans,
2328 struct btree_iter *iter,
2329 struct btree *b, struct btree *new_hash,
2330 struct bkey_i *new_key,
2331 unsigned commit_flags,
2334 struct bch_fs *c = trans->c;
2335 struct btree_iter iter2 = { NULL };
2336 struct btree *parent;
2339 if (!skip_triggers) {
2340 ret = bch2_key_trigger_old(trans, b->c.btree_id, b->c.level + 1,
2341 bkey_i_to_s_c(&b->key),
2342 BTREE_TRIGGER_transactional) ?:
2343 bch2_key_trigger_new(trans, b->c.btree_id, b->c.level + 1,
2344 bkey_i_to_s(new_key),
2345 BTREE_TRIGGER_transactional);
2351 bkey_copy(&new_hash->key, new_key);
2352 ret = bch2_btree_node_hash_insert(&c->btree_cache,
2353 new_hash, b->c.level, b->c.btree_id);
2357 parent = btree_node_parent(btree_iter_path(trans, iter), b);
2359 bch2_trans_copy_iter(&iter2, iter);
2361 iter2.path = bch2_btree_path_make_mut(trans, iter2.path,
2362 iter2.flags & BTREE_ITER_intent,
2365 struct btree_path *path2 = btree_iter_path(trans, &iter2);
2366 BUG_ON(path2->level != b->c.level);
2367 BUG_ON(!bpos_eq(path2->pos, new_key->k.p));
2369 btree_path_set_level_up(trans, path2);
2371 trans->paths_sorted = false;
2373 ret = bch2_btree_iter_traverse(&iter2) ?:
2374 bch2_trans_update(trans, &iter2, new_key, BTREE_TRIGGER_norun);
2378 BUG_ON(btree_node_root(c, b) != b);
2380 struct jset_entry *e = bch2_trans_jset_entry_alloc(trans,
2381 jset_u64s(new_key->k.u64s));
2382 ret = PTR_ERR_OR_ZERO(e);
2386 journal_entry_set(e,
2387 BCH_JSET_ENTRY_btree_root,
2388 b->c.btree_id, b->c.level,
2389 new_key, new_key->k.u64s);
2392 ret = bch2_trans_commit(trans, NULL, NULL, commit_flags);
2396 bch2_btree_node_lock_write_nofail(trans, btree_iter_path(trans, iter), &b->c);
2399 mutex_lock(&c->btree_cache.lock);
2400 bch2_btree_node_hash_remove(&c->btree_cache, new_hash);
2402 __bch2_btree_node_hash_remove(&c->btree_cache, b);
2404 bkey_copy(&b->key, new_key);
2405 ret = __bch2_btree_node_hash_insert(&c->btree_cache, b);
2407 mutex_unlock(&c->btree_cache.lock);
2409 bkey_copy(&b->key, new_key);
2412 bch2_btree_node_unlock_write(trans, btree_iter_path(trans, iter), b);
2414 bch2_trans_iter_exit(trans, &iter2);
2418 mutex_lock(&c->btree_cache.lock);
2419 bch2_btree_node_hash_remove(&c->btree_cache, b);
2420 mutex_unlock(&c->btree_cache.lock);
2425 int bch2_btree_node_update_key(struct btree_trans *trans, struct btree_iter *iter,
2426 struct btree *b, struct bkey_i *new_key,
2427 unsigned commit_flags, bool skip_triggers)
2429 struct bch_fs *c = trans->c;
2430 struct btree *new_hash = NULL;
2431 struct btree_path *path = btree_iter_path(trans, iter);
2435 ret = bch2_btree_path_upgrade(trans, path, b->c.level + 1);
2439 closure_init_stack(&cl);
2442 * check btree_ptr_hash_val() after @b is locked by
2443 * btree_iter_traverse():
2445 if (btree_ptr_hash_val(new_key) != b->hash_val) {
2446 ret = bch2_btree_cache_cannibalize_lock(trans, &cl);
2448 ret = drop_locks_do(trans, (closure_sync(&cl), 0));
2453 new_hash = bch2_btree_node_mem_alloc(trans, false);
2454 ret = PTR_ERR_OR_ZERO(new_hash);
2460 ret = __bch2_btree_node_update_key(trans, iter, b, new_hash, new_key,
2461 commit_flags, skip_triggers);
2465 bch2_btree_node_to_freelist(c, new_hash);
2468 bch2_btree_cache_cannibalize_unlock(trans);
2472 int bch2_btree_node_update_key_get_iter(struct btree_trans *trans,
2473 struct btree *b, struct bkey_i *new_key,
2474 unsigned commit_flags, bool skip_triggers)
2476 struct btree_iter iter;
2479 bch2_trans_node_iter_init(trans, &iter, b->c.btree_id, b->key.k.p,
2480 BTREE_MAX_DEPTH, b->c.level,
2482 ret = bch2_btree_iter_traverse(&iter);
2486 /* has node been freed? */
2487 if (btree_iter_path(trans, &iter)->l[b->c.level].b != b) {
2488 /* node has been freed: */
2489 BUG_ON(!btree_node_dying(b));
2493 BUG_ON(!btree_node_hashed(b));
2495 bch2_bkey_drop_ptrs(bkey_i_to_s(new_key), ptr,
2496 !bch2_bkey_has_device(bkey_i_to_s(&b->key), ptr->dev));
2498 ret = bch2_btree_node_update_key(trans, &iter, b, new_key,
2499 commit_flags, skip_triggers);
2501 bch2_trans_iter_exit(trans, &iter);
2508 * Only for filesystem bringup, when first reading the btree roots or allocating
2509 * btree roots when initializing a new filesystem:
2511 void bch2_btree_set_root_for_read(struct bch_fs *c, struct btree *b)
2513 BUG_ON(btree_node_root(c, b));
2515 bch2_btree_set_root_inmem(c, b);
2518 int bch2_btree_root_alloc_fake_trans(struct btree_trans *trans, enum btree_id id, unsigned level)
2520 struct bch_fs *c = trans->c;
2525 closure_init_stack(&cl);
2528 ret = bch2_btree_cache_cannibalize_lock(trans, &cl);
2532 b = bch2_btree_node_mem_alloc(trans, false);
2533 bch2_btree_cache_cannibalize_unlock(trans);
2535 ret = PTR_ERR_OR_ZERO(b);
2539 set_btree_node_fake(b);
2540 set_btree_node_need_rewrite(b);
2544 bkey_btree_ptr_init(&b->key);
2545 b->key.k.p = SPOS_MAX;
2546 *((u64 *) bkey_i_to_btree_ptr(&b->key)->v.start) = U64_MAX - id;
2548 bch2_bset_init_first(b, &b->data->keys);
2549 bch2_btree_build_aux_trees(b);
2552 btree_set_min(b, POS_MIN);
2553 btree_set_max(b, SPOS_MAX);
2554 b->data->format = bch2_btree_calc_format(b);
2555 btree_node_set_format(b, b->data->format);
2557 ret = bch2_btree_node_hash_insert(&c->btree_cache, b,
2558 b->c.level, b->c.btree_id);
2561 bch2_btree_set_root_inmem(c, b);
2563 six_unlock_write(&b->c.lock);
2564 six_unlock_intent(&b->c.lock);
2568 void bch2_btree_root_alloc_fake(struct bch_fs *c, enum btree_id id, unsigned level)
2570 bch2_trans_run(c, lockrestart_do(trans, bch2_btree_root_alloc_fake_trans(trans, id, level)));
2573 static void bch2_btree_update_to_text(struct printbuf *out, struct btree_update *as)
2575 prt_printf(out, "%ps: ", (void *) as->ip_started);
2576 bch2_trans_commit_flags_to_text(out, as->flags);
2578 prt_printf(out, " btree=%s l=%u-%u mode=%s nodes_written=%u cl.remaining=%u journal_seq=%llu\n",
2579 bch2_btree_id_str(as->btree_id),
2580 as->update_level_start,
2581 as->update_level_end,
2582 bch2_btree_update_modes[as->mode],
2584 closure_nr_remaining(&as->cl),
2588 void bch2_btree_updates_to_text(struct printbuf *out, struct bch_fs *c)
2590 struct btree_update *as;
2592 mutex_lock(&c->btree_interior_update_lock);
2593 list_for_each_entry(as, &c->btree_interior_update_list, list)
2594 bch2_btree_update_to_text(out, as);
2595 mutex_unlock(&c->btree_interior_update_lock);
2598 static bool bch2_btree_interior_updates_pending(struct bch_fs *c)
2602 mutex_lock(&c->btree_interior_update_lock);
2603 ret = !list_empty(&c->btree_interior_update_list);
2604 mutex_unlock(&c->btree_interior_update_lock);
2609 bool bch2_btree_interior_updates_flush(struct bch_fs *c)
2611 bool ret = bch2_btree_interior_updates_pending(c);
2614 closure_wait_event(&c->btree_interior_update_wait,
2615 !bch2_btree_interior_updates_pending(c));
2619 void bch2_journal_entry_to_btree_root(struct bch_fs *c, struct jset_entry *entry)
2621 struct btree_root *r = bch2_btree_id_root(c, entry->btree_id);
2623 mutex_lock(&c->btree_root_lock);
2625 r->level = entry->level;
2627 bkey_copy(&r->key, (struct bkey_i *) entry->start);
2629 mutex_unlock(&c->btree_root_lock);
2633 bch2_btree_roots_to_journal_entries(struct bch_fs *c,
2634 struct jset_entry *end,
2639 mutex_lock(&c->btree_root_lock);
2641 for (i = 0; i < btree_id_nr_alive(c); i++) {
2642 struct btree_root *r = bch2_btree_id_root(c, i);
2644 if (r->alive && !test_bit(i, &skip)) {
2645 journal_entry_set(end, BCH_JSET_ENTRY_btree_root,
2646 i, r->level, &r->key, r->key.k.u64s);
2647 end = vstruct_next(end);
2651 mutex_unlock(&c->btree_root_lock);
2656 static void bch2_btree_alloc_to_text(struct printbuf *out,
2658 struct btree_alloc *a)
2660 printbuf_indent_add(out, 2);
2661 bch2_bkey_val_to_text(out, c, bkey_i_to_s_c(&a->k));
2664 struct open_bucket *ob;
2666 open_bucket_for_each(c, &a->ob, ob, i)
2667 bch2_open_bucket_to_text(out, c, ob);
2669 printbuf_indent_sub(out, 2);
2672 void bch2_btree_reserve_cache_to_text(struct printbuf *out, struct bch_fs *c)
2674 for (unsigned i = 0; i < c->btree_reserve_cache_nr; i++)
2675 bch2_btree_alloc_to_text(out, c, &c->btree_reserve_cache[i]);
2678 void bch2_fs_btree_interior_update_exit(struct bch_fs *c)
2680 if (c->btree_node_rewrite_worker)
2681 destroy_workqueue(c->btree_node_rewrite_worker);
2682 if (c->btree_interior_update_worker)
2683 destroy_workqueue(c->btree_interior_update_worker);
2684 mempool_exit(&c->btree_interior_update_pool);
2687 void bch2_fs_btree_interior_update_init_early(struct bch_fs *c)
2689 mutex_init(&c->btree_reserve_cache_lock);
2690 INIT_LIST_HEAD(&c->btree_interior_update_list);
2691 INIT_LIST_HEAD(&c->btree_interior_updates_unwritten);
2692 mutex_init(&c->btree_interior_update_lock);
2693 INIT_WORK(&c->btree_interior_update_work, btree_interior_update_work);
2695 INIT_LIST_HEAD(&c->pending_node_rewrites);
2696 mutex_init(&c->pending_node_rewrites_lock);
2699 int bch2_fs_btree_interior_update_init(struct bch_fs *c)
2701 c->btree_interior_update_worker =
2702 alloc_workqueue("btree_update", WQ_UNBOUND|WQ_MEM_RECLAIM, 8);
2703 if (!c->btree_interior_update_worker)
2704 return -BCH_ERR_ENOMEM_btree_interior_update_worker_init;
2706 c->btree_node_rewrite_worker =
2707 alloc_ordered_workqueue("btree_node_rewrite", WQ_UNBOUND);
2708 if (!c->btree_node_rewrite_worker)
2709 return -BCH_ERR_ENOMEM_btree_interior_update_worker_init;
2711 if (mempool_init_kmalloc_pool(&c->btree_interior_update_pool, 1,
2712 sizeof(struct btree_update)))
2713 return -BCH_ERR_ENOMEM_btree_interior_update_pool_init;