1 // SPDX-License-Identifier: GPL-2.0-only
3 * VFIO: IOMMU DMA mapping support for Type1 IOMMU
5 * Copyright (C) 2012 Red Hat, Inc. All rights reserved.
8 * Derived from original vfio:
9 * Copyright 2010 Cisco Systems, Inc. All rights reserved.
12 * We arbitrarily define a Type1 IOMMU as one matching the below code.
13 * It could be called the x86 IOMMU as it's designed for AMD-Vi & Intel
14 * VT-d, but that makes it harder to re-use as theoretically anyone
15 * implementing a similar IOMMU could make use of this. We expect the
16 * IOMMU to support the IOMMU API and have few to no restrictions around
17 * the IOVA range that can be mapped. The Type1 IOMMU is currently
18 * optimized for relatively static mappings of a userspace process with
19 * userspace pages pinned into memory. We also assume devices and IOMMU
20 * domains are PCI based as the IOMMU API is still centered around a
21 * device/bus interface rather than a group interface.
24 #include <linux/compat.h>
25 #include <linux/device.h>
27 #include <linux/highmem.h>
28 #include <linux/iommu.h>
29 #include <linux/module.h>
31 #include <linux/kthread.h>
32 #include <linux/rbtree.h>
33 #include <linux/sched/signal.h>
34 #include <linux/sched/mm.h>
35 #include <linux/slab.h>
36 #include <linux/uaccess.h>
37 #include <linux/vfio.h>
38 #include <linux/workqueue.h>
39 #include <linux/notifier.h>
42 #define DRIVER_VERSION "0.2"
44 #define DRIVER_DESC "Type1 IOMMU driver for VFIO"
46 static bool allow_unsafe_interrupts;
47 module_param_named(allow_unsafe_interrupts,
48 allow_unsafe_interrupts, bool, S_IRUGO | S_IWUSR);
49 MODULE_PARM_DESC(allow_unsafe_interrupts,
50 "Enable VFIO IOMMU support for on platforms without interrupt remapping support.");
52 static bool disable_hugepages;
53 module_param_named(disable_hugepages,
54 disable_hugepages, bool, S_IRUGO | S_IWUSR);
55 MODULE_PARM_DESC(disable_hugepages,
56 "Disable VFIO IOMMU support for IOMMU hugepages.");
58 static unsigned int dma_entry_limit __read_mostly = U16_MAX;
59 module_param_named(dma_entry_limit, dma_entry_limit, uint, 0644);
60 MODULE_PARM_DESC(dma_entry_limit,
61 "Maximum number of user DMA mappings per container (65535).");
64 struct list_head domain_list;
65 struct list_head iova_list;
67 struct rb_root dma_list;
68 struct list_head device_list;
69 struct mutex device_list_lock;
70 unsigned int dma_avail;
71 unsigned int vaddr_invalid_count;
72 uint64_t pgsize_bitmap;
73 uint64_t num_non_pinned_groups;
75 bool dirty_page_tracking;
76 struct list_head emulated_iommu_groups;
80 struct iommu_domain *domain;
81 struct list_head next;
82 struct list_head group_list;
83 bool fgsp : 1; /* Fine-grained super pages */
84 bool enforce_cache_coherency : 1;
89 dma_addr_t iova; /* Device address */
90 unsigned long vaddr; /* Process virtual addr */
91 size_t size; /* Map size (bytes) */
92 int prot; /* IOMMU_READ/WRITE */
94 bool lock_cap; /* capable(CAP_IPC_LOCK) */
96 struct task_struct *task;
97 struct rb_root pfn_list; /* Ex-user pinned pfn list */
98 unsigned long *bitmap;
104 struct page **pages; /* for pin_user_pages_remote */
105 struct page *fallback_page; /* if pages alloc fails */
106 int capacity; /* length of pages array */
107 int size; /* of batch currently */
108 int offset; /* of next entry in pages */
111 struct vfio_iommu_group {
112 struct iommu_group *iommu_group;
113 struct list_head next;
114 bool pinned_page_dirty_scope;
118 struct list_head list;
124 * Guest RAM pinning working set or DMA target
128 dma_addr_t iova; /* Device address */
129 unsigned long pfn; /* Host pfn */
130 unsigned int ref_count;
133 struct vfio_regions {
134 struct list_head list;
140 #define DIRTY_BITMAP_BYTES(n) (ALIGN(n, BITS_PER_TYPE(u64)) / BITS_PER_BYTE)
143 * Input argument of number of bits to bitmap_set() is unsigned integer, which
144 * further casts to signed integer for unaligned multi-bit operation,
146 * Then maximum bitmap size supported is 2^31 bits divided by 2^3 bits/byte,
147 * that is 2^28 (256 MB) which maps to 2^31 * 2^12 = 2^43 (8TB) on 4K page
150 #define DIRTY_BITMAP_PAGES_MAX ((u64)INT_MAX)
151 #define DIRTY_BITMAP_SIZE_MAX DIRTY_BITMAP_BYTES(DIRTY_BITMAP_PAGES_MAX)
153 static int put_pfn(unsigned long pfn, int prot);
155 static struct vfio_iommu_group*
156 vfio_iommu_find_iommu_group(struct vfio_iommu *iommu,
157 struct iommu_group *iommu_group);
160 * This code handles mapping and unmapping of user data buffers
161 * into DMA'ble space using the IOMMU
164 static struct vfio_dma *vfio_find_dma(struct vfio_iommu *iommu,
165 dma_addr_t start, size_t size)
167 struct rb_node *node = iommu->dma_list.rb_node;
170 struct vfio_dma *dma = rb_entry(node, struct vfio_dma, node);
172 if (start + size <= dma->iova)
173 node = node->rb_left;
174 else if (start >= dma->iova + dma->size)
175 node = node->rb_right;
183 static struct rb_node *vfio_find_dma_first_node(struct vfio_iommu *iommu,
184 dma_addr_t start, u64 size)
186 struct rb_node *res = NULL;
187 struct rb_node *node = iommu->dma_list.rb_node;
188 struct vfio_dma *dma_res = NULL;
191 struct vfio_dma *dma = rb_entry(node, struct vfio_dma, node);
193 if (start < dma->iova + dma->size) {
196 if (start >= dma->iova)
198 node = node->rb_left;
200 node = node->rb_right;
203 if (res && size && dma_res->iova >= start + size)
208 static void vfio_link_dma(struct vfio_iommu *iommu, struct vfio_dma *new)
210 struct rb_node **link = &iommu->dma_list.rb_node, *parent = NULL;
211 struct vfio_dma *dma;
215 dma = rb_entry(parent, struct vfio_dma, node);
217 if (new->iova + new->size <= dma->iova)
218 link = &(*link)->rb_left;
220 link = &(*link)->rb_right;
223 rb_link_node(&new->node, parent, link);
224 rb_insert_color(&new->node, &iommu->dma_list);
227 static void vfio_unlink_dma(struct vfio_iommu *iommu, struct vfio_dma *old)
229 rb_erase(&old->node, &iommu->dma_list);
233 static int vfio_dma_bitmap_alloc(struct vfio_dma *dma, size_t pgsize)
235 uint64_t npages = dma->size / pgsize;
237 if (npages > DIRTY_BITMAP_PAGES_MAX)
241 * Allocate extra 64 bits that are used to calculate shift required for
242 * bitmap_shift_left() to manipulate and club unaligned number of pages
243 * in adjacent vfio_dma ranges.
245 dma->bitmap = kvzalloc(DIRTY_BITMAP_BYTES(npages) + sizeof(u64),
253 static void vfio_dma_bitmap_free(struct vfio_dma *dma)
259 static void vfio_dma_populate_bitmap(struct vfio_dma *dma, size_t pgsize)
262 unsigned long pgshift = __ffs(pgsize);
264 for (p = rb_first(&dma->pfn_list); p; p = rb_next(p)) {
265 struct vfio_pfn *vpfn = rb_entry(p, struct vfio_pfn, node);
267 bitmap_set(dma->bitmap, (vpfn->iova - dma->iova) >> pgshift, 1);
271 static void vfio_iommu_populate_bitmap_full(struct vfio_iommu *iommu)
274 unsigned long pgshift = __ffs(iommu->pgsize_bitmap);
276 for (n = rb_first(&iommu->dma_list); n; n = rb_next(n)) {
277 struct vfio_dma *dma = rb_entry(n, struct vfio_dma, node);
279 bitmap_set(dma->bitmap, 0, dma->size >> pgshift);
283 static int vfio_dma_bitmap_alloc_all(struct vfio_iommu *iommu, size_t pgsize)
287 for (n = rb_first(&iommu->dma_list); n; n = rb_next(n)) {
288 struct vfio_dma *dma = rb_entry(n, struct vfio_dma, node);
291 ret = vfio_dma_bitmap_alloc(dma, pgsize);
295 for (p = rb_prev(n); p; p = rb_prev(p)) {
296 struct vfio_dma *dma = rb_entry(n,
297 struct vfio_dma, node);
299 vfio_dma_bitmap_free(dma);
303 vfio_dma_populate_bitmap(dma, pgsize);
308 static void vfio_dma_bitmap_free_all(struct vfio_iommu *iommu)
312 for (n = rb_first(&iommu->dma_list); n; n = rb_next(n)) {
313 struct vfio_dma *dma = rb_entry(n, struct vfio_dma, node);
315 vfio_dma_bitmap_free(dma);
320 * Helper Functions for host iova-pfn list
322 static struct vfio_pfn *vfio_find_vpfn(struct vfio_dma *dma, dma_addr_t iova)
324 struct vfio_pfn *vpfn;
325 struct rb_node *node = dma->pfn_list.rb_node;
328 vpfn = rb_entry(node, struct vfio_pfn, node);
330 if (iova < vpfn->iova)
331 node = node->rb_left;
332 else if (iova > vpfn->iova)
333 node = node->rb_right;
340 static void vfio_link_pfn(struct vfio_dma *dma,
341 struct vfio_pfn *new)
343 struct rb_node **link, *parent = NULL;
344 struct vfio_pfn *vpfn;
346 link = &dma->pfn_list.rb_node;
349 vpfn = rb_entry(parent, struct vfio_pfn, node);
351 if (new->iova < vpfn->iova)
352 link = &(*link)->rb_left;
354 link = &(*link)->rb_right;
357 rb_link_node(&new->node, parent, link);
358 rb_insert_color(&new->node, &dma->pfn_list);
361 static void vfio_unlink_pfn(struct vfio_dma *dma, struct vfio_pfn *old)
363 rb_erase(&old->node, &dma->pfn_list);
366 static int vfio_add_to_pfn_list(struct vfio_dma *dma, dma_addr_t iova,
369 struct vfio_pfn *vpfn;
371 vpfn = kzalloc(sizeof(*vpfn), GFP_KERNEL);
378 vfio_link_pfn(dma, vpfn);
382 static void vfio_remove_from_pfn_list(struct vfio_dma *dma,
383 struct vfio_pfn *vpfn)
385 vfio_unlink_pfn(dma, vpfn);
389 static struct vfio_pfn *vfio_iova_get_vfio_pfn(struct vfio_dma *dma,
392 struct vfio_pfn *vpfn = vfio_find_vpfn(dma, iova);
399 static int vfio_iova_put_vfio_pfn(struct vfio_dma *dma, struct vfio_pfn *vpfn)
404 if (!vpfn->ref_count) {
405 ret = put_pfn(vpfn->pfn, dma->prot);
406 vfio_remove_from_pfn_list(dma, vpfn);
411 static int mm_lock_acct(struct task_struct *task, struct mm_struct *mm,
412 bool lock_cap, long npage)
414 int ret = mmap_write_lock_killable(mm);
419 ret = __account_locked_vm(mm, abs(npage), npage > 0, task, lock_cap);
420 mmap_write_unlock(mm);
424 static int vfio_lock_acct(struct vfio_dma *dma, long npage, bool async)
426 struct mm_struct *mm;
433 if (async && !mmget_not_zero(mm))
434 return -ESRCH; /* process exited */
436 ret = mm_lock_acct(dma->task, mm, dma->lock_cap, npage);
438 dma->locked_vm += npage;
447 * Some mappings aren't backed by a struct page, for example an mmap'd
448 * MMIO range for our own or another device. These use a different
449 * pfn conversion and shouldn't be tracked as locked pages.
450 * For compound pages, any driver that sets the reserved bit in head
451 * page needs to set the reserved bit in all subpages to be safe.
453 static bool is_invalid_reserved_pfn(unsigned long pfn)
456 return PageReserved(pfn_to_page(pfn));
461 static int put_pfn(unsigned long pfn, int prot)
463 if (!is_invalid_reserved_pfn(pfn)) {
464 struct page *page = pfn_to_page(pfn);
466 unpin_user_pages_dirty_lock(&page, 1, prot & IOMMU_WRITE);
472 #define VFIO_BATCH_MAX_CAPACITY (PAGE_SIZE / sizeof(struct page *))
474 static void vfio_batch_init(struct vfio_batch *batch)
479 if (unlikely(disable_hugepages))
482 batch->pages = (struct page **) __get_free_page(GFP_KERNEL);
486 batch->capacity = VFIO_BATCH_MAX_CAPACITY;
490 batch->pages = &batch->fallback_page;
494 static void vfio_batch_unpin(struct vfio_batch *batch, struct vfio_dma *dma)
496 while (batch->size) {
497 unsigned long pfn = page_to_pfn(batch->pages[batch->offset]);
499 put_pfn(pfn, dma->prot);
505 static void vfio_batch_fini(struct vfio_batch *batch)
507 if (batch->capacity == VFIO_BATCH_MAX_CAPACITY)
508 free_page((unsigned long)batch->pages);
511 static int follow_fault_pfn(struct vm_area_struct *vma, struct mm_struct *mm,
512 unsigned long vaddr, unsigned long *pfn,
515 struct follow_pfnmap_args args = { .vma = vma, .address = vaddr };
518 ret = follow_pfnmap_start(&args);
520 bool unlocked = false;
522 ret = fixup_user_fault(mm, vaddr,
524 (write_fault ? FAULT_FLAG_WRITE : 0),
532 ret = follow_pfnmap_start(&args);
537 if (write_fault && !args.writable)
542 follow_pfnmap_end(&args);
547 * Returns the positive number of pfns successfully obtained or a negative
550 static int vaddr_get_pfns(struct mm_struct *mm, unsigned long vaddr,
551 long npages, int prot, unsigned long *pfn,
554 struct vm_area_struct *vma;
555 unsigned int flags = 0;
558 if (prot & IOMMU_WRITE)
562 ret = pin_user_pages_remote(mm, vaddr, npages, flags | FOLL_LONGTERM,
565 *pfn = page_to_pfn(pages[0]);
569 vaddr = untagged_addr_remote(mm, vaddr);
572 vma = vma_lookup(mm, vaddr);
574 if (vma && vma->vm_flags & VM_PFNMAP) {
575 ret = follow_fault_pfn(vma, mm, vaddr, pfn, prot & IOMMU_WRITE);
580 if (is_invalid_reserved_pfn(*pfn))
587 mmap_read_unlock(mm);
592 * Attempt to pin pages. We really don't want to track all the pfns and
593 * the iommu can only map chunks of consecutive pfns anyway, so get the
594 * first page and all consecutive pages with the same locking.
596 static long vfio_pin_pages_remote(struct vfio_dma *dma, unsigned long vaddr,
597 long npage, unsigned long *pfn_base,
598 unsigned long limit, struct vfio_batch *batch)
601 struct mm_struct *mm = current->mm;
602 long ret, pinned = 0, lock_acct = 0;
604 dma_addr_t iova = vaddr - dma->vaddr + dma->iova;
606 /* This code path is only user initiated */
611 /* Leftover pages in batch from an earlier call. */
612 *pfn_base = page_to_pfn(batch->pages[batch->offset]);
614 rsvd = is_invalid_reserved_pfn(*pfn_base);
621 /* Empty batch, so refill it. */
622 long req_pages = min_t(long, npage, batch->capacity);
624 ret = vaddr_get_pfns(mm, vaddr, req_pages, dma->prot,
634 rsvd = is_invalid_reserved_pfn(*pfn_base);
639 * pfn is preset for the first iteration of this inner loop and
640 * updated at the end to handle a VM_PFNMAP pfn. In that case,
641 * batch->pages isn't valid (there's no struct page), so allow
642 * batch->pages to be touched only when there's more than one
643 * pfn to check, which guarantees the pfns are from a
647 if (pfn != *pfn_base + pinned ||
648 rsvd != is_invalid_reserved_pfn(pfn))
652 * Reserved pages aren't counted against the user,
653 * externally pinned pages are already counted against
656 if (!rsvd && !vfio_find_vpfn(dma, iova)) {
657 if (!dma->lock_cap &&
658 mm->locked_vm + lock_acct + 1 > limit) {
659 pr_warn("%s: RLIMIT_MEMLOCK (%ld) exceeded\n",
660 __func__, limit << PAGE_SHIFT);
677 pfn = page_to_pfn(batch->pages[batch->offset]);
680 if (unlikely(disable_hugepages))
685 ret = vfio_lock_acct(dma, lock_acct, false);
688 if (batch->size == 1 && !batch->offset) {
689 /* May be a VM_PFNMAP pfn, which the batch can't remember. */
690 put_pfn(pfn, dma->prot);
695 if (pinned && !rsvd) {
696 for (pfn = *pfn_base ; pinned ; pfn++, pinned--)
697 put_pfn(pfn, dma->prot);
699 vfio_batch_unpin(batch, dma);
707 static long vfio_unpin_pages_remote(struct vfio_dma *dma, dma_addr_t iova,
708 unsigned long pfn, long npage,
711 long unlocked = 0, locked = 0;
714 for (i = 0; i < npage; i++, iova += PAGE_SIZE) {
715 if (put_pfn(pfn++, dma->prot)) {
717 if (vfio_find_vpfn(dma, iova))
723 vfio_lock_acct(dma, locked - unlocked, true);
728 static int vfio_pin_page_external(struct vfio_dma *dma, unsigned long vaddr,
729 unsigned long *pfn_base, bool do_accounting)
731 struct page *pages[1];
732 struct mm_struct *mm;
736 if (!mmget_not_zero(mm))
739 ret = vaddr_get_pfns(mm, vaddr, 1, dma->prot, pfn_base, pages);
745 if (do_accounting && !is_invalid_reserved_pfn(*pfn_base)) {
746 ret = vfio_lock_acct(dma, 1, false);
748 put_pfn(*pfn_base, dma->prot);
750 pr_warn("%s: Task %s (%d) RLIMIT_MEMLOCK "
751 "(%ld) exceeded\n", __func__,
752 dma->task->comm, task_pid_nr(dma->task),
753 task_rlimit(dma->task, RLIMIT_MEMLOCK));
762 static int vfio_unpin_page_external(struct vfio_dma *dma, dma_addr_t iova,
766 struct vfio_pfn *vpfn = vfio_find_vpfn(dma, iova);
771 unlocked = vfio_iova_put_vfio_pfn(dma, vpfn);
774 vfio_lock_acct(dma, -unlocked, true);
779 static int vfio_iommu_type1_pin_pages(void *iommu_data,
780 struct iommu_group *iommu_group,
781 dma_addr_t user_iova,
785 struct vfio_iommu *iommu = iommu_data;
786 struct vfio_iommu_group *group;
788 unsigned long remote_vaddr;
789 struct vfio_dma *dma;
792 if (!iommu || !pages)
795 /* Supported for v2 version only */
799 mutex_lock(&iommu->lock);
801 if (WARN_ONCE(iommu->vaddr_invalid_count,
802 "vfio_pin_pages not allowed with VFIO_UPDATE_VADDR\n")) {
807 /* Fail if no dma_umap notifier is registered */
808 if (list_empty(&iommu->device_list)) {
814 * If iommu capable domain exist in the container then all pages are
815 * already pinned and accounted. Accounting should be done if there is no
816 * iommu capable domain in the container.
818 do_accounting = list_empty(&iommu->domain_list);
820 for (i = 0; i < npage; i++) {
821 unsigned long phys_pfn;
823 struct vfio_pfn *vpfn;
825 iova = user_iova + PAGE_SIZE * i;
826 dma = vfio_find_dma(iommu, iova, PAGE_SIZE);
832 if ((dma->prot & prot) != prot) {
837 vpfn = vfio_iova_get_vfio_pfn(dma, iova);
839 pages[i] = pfn_to_page(vpfn->pfn);
843 remote_vaddr = dma->vaddr + (iova - dma->iova);
844 ret = vfio_pin_page_external(dma, remote_vaddr, &phys_pfn,
849 if (!pfn_valid(phys_pfn)) {
854 ret = vfio_add_to_pfn_list(dma, iova, phys_pfn);
856 if (put_pfn(phys_pfn, dma->prot) && do_accounting)
857 vfio_lock_acct(dma, -1, true);
861 pages[i] = pfn_to_page(phys_pfn);
863 if (iommu->dirty_page_tracking) {
864 unsigned long pgshift = __ffs(iommu->pgsize_bitmap);
867 * Bitmap populated with the smallest supported page
870 bitmap_set(dma->bitmap,
871 (iova - dma->iova) >> pgshift, 1);
876 group = vfio_iommu_find_iommu_group(iommu, iommu_group);
877 if (!group->pinned_page_dirty_scope) {
878 group->pinned_page_dirty_scope = true;
879 iommu->num_non_pinned_groups--;
886 for (j = 0; j < i; j++) {
889 iova = user_iova + PAGE_SIZE * j;
890 dma = vfio_find_dma(iommu, iova, PAGE_SIZE);
891 vfio_unpin_page_external(dma, iova, do_accounting);
895 mutex_unlock(&iommu->lock);
899 static void vfio_iommu_type1_unpin_pages(void *iommu_data,
900 dma_addr_t user_iova, int npage)
902 struct vfio_iommu *iommu = iommu_data;
906 /* Supported for v2 version only */
907 if (WARN_ON(!iommu->v2))
910 mutex_lock(&iommu->lock);
912 do_accounting = list_empty(&iommu->domain_list);
913 for (i = 0; i < npage; i++) {
914 dma_addr_t iova = user_iova + PAGE_SIZE * i;
915 struct vfio_dma *dma;
917 dma = vfio_find_dma(iommu, iova, PAGE_SIZE);
921 vfio_unpin_page_external(dma, iova, do_accounting);
924 mutex_unlock(&iommu->lock);
929 static long vfio_sync_unpin(struct vfio_dma *dma, struct vfio_domain *domain,
930 struct list_head *regions,
931 struct iommu_iotlb_gather *iotlb_gather)
934 struct vfio_regions *entry, *next;
936 iommu_iotlb_sync(domain->domain, iotlb_gather);
938 list_for_each_entry_safe(entry, next, regions, list) {
939 unlocked += vfio_unpin_pages_remote(dma,
941 entry->phys >> PAGE_SHIFT,
942 entry->len >> PAGE_SHIFT,
944 list_del(&entry->list);
954 * Generally, VFIO needs to unpin remote pages after each IOTLB flush.
955 * Therefore, when using IOTLB flush sync interface, VFIO need to keep track
956 * of these regions (currently using a list).
958 * This value specifies maximum number of regions for each IOTLB flush sync.
960 #define VFIO_IOMMU_TLB_SYNC_MAX 512
962 static size_t unmap_unpin_fast(struct vfio_domain *domain,
963 struct vfio_dma *dma, dma_addr_t *iova,
964 size_t len, phys_addr_t phys, long *unlocked,
965 struct list_head *unmapped_list,
967 struct iommu_iotlb_gather *iotlb_gather)
970 struct vfio_regions *entry = kzalloc(sizeof(*entry), GFP_KERNEL);
973 unmapped = iommu_unmap_fast(domain->domain, *iova, len,
981 entry->len = unmapped;
982 list_add_tail(&entry->list, unmapped_list);
990 * Sync if the number of fast-unmap regions hits the limit
991 * or in case of errors.
993 if (*unmapped_cnt >= VFIO_IOMMU_TLB_SYNC_MAX || !unmapped) {
994 *unlocked += vfio_sync_unpin(dma, domain, unmapped_list,
1002 static size_t unmap_unpin_slow(struct vfio_domain *domain,
1003 struct vfio_dma *dma, dma_addr_t *iova,
1004 size_t len, phys_addr_t phys,
1007 size_t unmapped = iommu_unmap(domain->domain, *iova, len);
1010 *unlocked += vfio_unpin_pages_remote(dma, *iova,
1012 unmapped >> PAGE_SHIFT,
1020 static long vfio_unmap_unpin(struct vfio_iommu *iommu, struct vfio_dma *dma,
1023 dma_addr_t iova = dma->iova, end = dma->iova + dma->size;
1024 struct vfio_domain *domain, *d;
1025 LIST_HEAD(unmapped_region_list);
1026 struct iommu_iotlb_gather iotlb_gather;
1027 int unmapped_region_cnt = 0;
1033 if (list_empty(&iommu->domain_list))
1037 * We use the IOMMU to track the physical addresses, otherwise we'd
1038 * need a much more complicated tracking system. Unfortunately that
1039 * means we need to use one of the iommu domains to figure out the
1040 * pfns to unpin. The rest need to be unmapped in advance so we have
1041 * no iommu translations remaining when the pages are unpinned.
1043 domain = d = list_first_entry(&iommu->domain_list,
1044 struct vfio_domain, next);
1046 list_for_each_entry_continue(d, &iommu->domain_list, next) {
1047 iommu_unmap(d->domain, dma->iova, dma->size);
1051 iommu_iotlb_gather_init(&iotlb_gather);
1052 while (iova < end) {
1053 size_t unmapped, len;
1054 phys_addr_t phys, next;
1056 phys = iommu_iova_to_phys(domain->domain, iova);
1057 if (WARN_ON(!phys)) {
1063 * To optimize for fewer iommu_unmap() calls, each of which
1064 * may require hardware cache flushing, try to find the
1065 * largest contiguous physical memory chunk to unmap.
1067 for (len = PAGE_SIZE;
1068 !domain->fgsp && iova + len < end; len += PAGE_SIZE) {
1069 next = iommu_iova_to_phys(domain->domain, iova + len);
1070 if (next != phys + len)
1075 * First, try to use fast unmap/unpin. In case of failure,
1076 * switch to slow unmap/unpin path.
1078 unmapped = unmap_unpin_fast(domain, dma, &iova, len, phys,
1079 &unlocked, &unmapped_region_list,
1080 &unmapped_region_cnt,
1083 unmapped = unmap_unpin_slow(domain, dma, &iova, len,
1085 if (WARN_ON(!unmapped))
1090 dma->iommu_mapped = false;
1092 if (unmapped_region_cnt) {
1093 unlocked += vfio_sync_unpin(dma, domain, &unmapped_region_list,
1097 if (do_accounting) {
1098 vfio_lock_acct(dma, -unlocked, true);
1104 static void vfio_remove_dma(struct vfio_iommu *iommu, struct vfio_dma *dma)
1106 WARN_ON(!RB_EMPTY_ROOT(&dma->pfn_list));
1107 vfio_unmap_unpin(iommu, dma, true);
1108 vfio_unlink_dma(iommu, dma);
1109 put_task_struct(dma->task);
1111 vfio_dma_bitmap_free(dma);
1112 if (dma->vaddr_invalid)
1113 iommu->vaddr_invalid_count--;
1118 static void vfio_update_pgsize_bitmap(struct vfio_iommu *iommu)
1120 struct vfio_domain *domain;
1122 iommu->pgsize_bitmap = ULONG_MAX;
1124 list_for_each_entry(domain, &iommu->domain_list, next)
1125 iommu->pgsize_bitmap &= domain->domain->pgsize_bitmap;
1128 * In case the IOMMU supports page sizes smaller than PAGE_SIZE
1129 * we pretend PAGE_SIZE is supported and hide sub-PAGE_SIZE sizes.
1130 * That way the user will be able to map/unmap buffers whose size/
1131 * start address is aligned with PAGE_SIZE. Pinning code uses that
1132 * granularity while iommu driver can use the sub-PAGE_SIZE size
1133 * to map the buffer.
1135 if (iommu->pgsize_bitmap & ~PAGE_MASK) {
1136 iommu->pgsize_bitmap &= PAGE_MASK;
1137 iommu->pgsize_bitmap |= PAGE_SIZE;
1141 static int update_user_bitmap(u64 __user *bitmap, struct vfio_iommu *iommu,
1142 struct vfio_dma *dma, dma_addr_t base_iova,
1145 unsigned long pgshift = __ffs(pgsize);
1146 unsigned long nbits = dma->size >> pgshift;
1147 unsigned long bit_offset = (dma->iova - base_iova) >> pgshift;
1148 unsigned long copy_offset = bit_offset / BITS_PER_LONG;
1149 unsigned long shift = bit_offset % BITS_PER_LONG;
1150 unsigned long leftover;
1153 * mark all pages dirty if any IOMMU capable device is not able
1154 * to report dirty pages and all pages are pinned and mapped.
1156 if (iommu->num_non_pinned_groups && dma->iommu_mapped)
1157 bitmap_set(dma->bitmap, 0, nbits);
1160 bitmap_shift_left(dma->bitmap, dma->bitmap, shift,
1163 if (copy_from_user(&leftover,
1164 (void __user *)(bitmap + copy_offset),
1168 bitmap_or(dma->bitmap, dma->bitmap, &leftover, shift);
1171 if (copy_to_user((void __user *)(bitmap + copy_offset), dma->bitmap,
1172 DIRTY_BITMAP_BYTES(nbits + shift)))
1178 static int vfio_iova_dirty_bitmap(u64 __user *bitmap, struct vfio_iommu *iommu,
1179 dma_addr_t iova, size_t size, size_t pgsize)
1181 struct vfio_dma *dma;
1183 unsigned long pgshift = __ffs(pgsize);
1187 * GET_BITMAP request must fully cover vfio_dma mappings. Multiple
1188 * vfio_dma mappings may be clubbed by specifying large ranges, but
1189 * there must not be any previous mappings bisected by the range.
1190 * An error will be returned if these conditions are not met.
1192 dma = vfio_find_dma(iommu, iova, 1);
1193 if (dma && dma->iova != iova)
1196 dma = vfio_find_dma(iommu, iova + size - 1, 0);
1197 if (dma && dma->iova + dma->size != iova + size)
1200 for (n = rb_first(&iommu->dma_list); n; n = rb_next(n)) {
1201 struct vfio_dma *dma = rb_entry(n, struct vfio_dma, node);
1203 if (dma->iova < iova)
1206 if (dma->iova > iova + size - 1)
1209 ret = update_user_bitmap(bitmap, iommu, dma, iova, pgsize);
1214 * Re-populate bitmap to include all pinned pages which are
1215 * considered as dirty but exclude pages which are unpinned and
1216 * pages which are marked dirty by vfio_dma_rw()
1218 bitmap_clear(dma->bitmap, 0, dma->size >> pgshift);
1219 vfio_dma_populate_bitmap(dma, pgsize);
1224 static int verify_bitmap_size(uint64_t npages, uint64_t bitmap_size)
1226 if (!npages || !bitmap_size || (bitmap_size > DIRTY_BITMAP_SIZE_MAX) ||
1227 (bitmap_size < DIRTY_BITMAP_BYTES(npages)))
1234 * Notify VFIO drivers using vfio_register_emulated_iommu_dev() to invalidate
1235 * and unmap iovas within the range we're about to unmap. Drivers MUST unpin
1236 * pages in response to an invalidation.
1238 static void vfio_notify_dma_unmap(struct vfio_iommu *iommu,
1239 struct vfio_dma *dma)
1241 struct vfio_device *device;
1243 if (list_empty(&iommu->device_list))
1247 * The device is expected to call vfio_unpin_pages() for any IOVA it has
1248 * pinned within the range. Since vfio_unpin_pages() will eventually
1249 * call back down to this code and try to obtain the iommu->lock we must
1252 mutex_lock(&iommu->device_list_lock);
1253 mutex_unlock(&iommu->lock);
1255 list_for_each_entry(device, &iommu->device_list, iommu_entry)
1256 device->ops->dma_unmap(device, dma->iova, dma->size);
1258 mutex_unlock(&iommu->device_list_lock);
1259 mutex_lock(&iommu->lock);
1262 static int vfio_dma_do_unmap(struct vfio_iommu *iommu,
1263 struct vfio_iommu_type1_dma_unmap *unmap,
1264 struct vfio_bitmap *bitmap)
1266 struct vfio_dma *dma, *dma_last = NULL;
1267 size_t unmapped = 0, pgsize;
1268 int ret = -EINVAL, retries = 0;
1269 unsigned long pgshift;
1270 dma_addr_t iova = unmap->iova;
1271 u64 size = unmap->size;
1272 bool unmap_all = unmap->flags & VFIO_DMA_UNMAP_FLAG_ALL;
1273 bool invalidate_vaddr = unmap->flags & VFIO_DMA_UNMAP_FLAG_VADDR;
1274 struct rb_node *n, *first_n;
1276 mutex_lock(&iommu->lock);
1278 /* Cannot update vaddr if mdev is present. */
1279 if (invalidate_vaddr && !list_empty(&iommu->emulated_iommu_groups)) {
1284 pgshift = __ffs(iommu->pgsize_bitmap);
1285 pgsize = (size_t)1 << pgshift;
1287 if (iova & (pgsize - 1))
1294 } else if (!size || size & (pgsize - 1) ||
1295 iova + size - 1 < iova || size > SIZE_MAX) {
1299 /* When dirty tracking is enabled, allow only min supported pgsize */
1300 if ((unmap->flags & VFIO_DMA_UNMAP_FLAG_GET_DIRTY_BITMAP) &&
1301 (!iommu->dirty_page_tracking || (bitmap->pgsize != pgsize))) {
1305 WARN_ON((pgsize - 1) & PAGE_MASK);
1308 * vfio-iommu-type1 (v1) - User mappings were coalesced together to
1309 * avoid tracking individual mappings. This means that the granularity
1310 * of the original mapping was lost and the user was allowed to attempt
1311 * to unmap any range. Depending on the contiguousness of physical
1312 * memory and page sizes supported by the IOMMU, arbitrary unmaps may
1313 * or may not have worked. We only guaranteed unmap granularity
1314 * matching the original mapping; even though it was untracked here,
1315 * the original mappings are reflected in IOMMU mappings. This
1316 * resulted in a couple unusual behaviors. First, if a range is not
1317 * able to be unmapped, ex. a set of 4k pages that was mapped as a
1318 * 2M hugepage into the IOMMU, the unmap ioctl returns success but with
1319 * a zero sized unmap. Also, if an unmap request overlaps the first
1320 * address of a hugepage, the IOMMU will unmap the entire hugepage.
1321 * This also returns success and the returned unmap size reflects the
1322 * actual size unmapped.
1324 * We attempt to maintain compatibility with this "v1" interface, but
1325 * we take control out of the hands of the IOMMU. Therefore, an unmap
1326 * request offset from the beginning of the original mapping will
1327 * return success with zero sized unmap. And an unmap request covering
1328 * the first iova of mapping will unmap the entire range.
1330 * The v2 version of this interface intends to be more deterministic.
1331 * Unmap requests must fully cover previous mappings. Multiple
1332 * mappings may still be unmaped by specifying large ranges, but there
1333 * must not be any previous mappings bisected by the range. An error
1334 * will be returned if these conditions are not met. The v2 interface
1335 * will only return success and a size of zero if there were no
1336 * mappings within the range.
1338 if (iommu->v2 && !unmap_all) {
1339 dma = vfio_find_dma(iommu, iova, 1);
1340 if (dma && dma->iova != iova)
1343 dma = vfio_find_dma(iommu, iova + size - 1, 0);
1344 if (dma && dma->iova + dma->size != iova + size)
1349 n = first_n = vfio_find_dma_first_node(iommu, iova, size);
1352 dma = rb_entry(n, struct vfio_dma, node);
1353 if (dma->iova >= iova + size)
1356 if (!iommu->v2 && iova > dma->iova)
1359 if (invalidate_vaddr) {
1360 if (dma->vaddr_invalid) {
1361 struct rb_node *last_n = n;
1363 for (n = first_n; n != last_n; n = rb_next(n)) {
1365 struct vfio_dma, node);
1366 dma->vaddr_invalid = false;
1367 iommu->vaddr_invalid_count--;
1373 dma->vaddr_invalid = true;
1374 iommu->vaddr_invalid_count++;
1375 unmapped += dma->size;
1380 if (!RB_EMPTY_ROOT(&dma->pfn_list)) {
1381 if (dma_last == dma) {
1382 BUG_ON(++retries > 10);
1388 vfio_notify_dma_unmap(iommu, dma);
1392 if (unmap->flags & VFIO_DMA_UNMAP_FLAG_GET_DIRTY_BITMAP) {
1393 ret = update_user_bitmap(bitmap->data, iommu, dma,
1399 unmapped += dma->size;
1401 vfio_remove_dma(iommu, dma);
1405 mutex_unlock(&iommu->lock);
1407 /* Report how much was unmapped */
1408 unmap->size = unmapped;
1413 static int vfio_iommu_map(struct vfio_iommu *iommu, dma_addr_t iova,
1414 unsigned long pfn, long npage, int prot)
1416 struct vfio_domain *d;
1419 list_for_each_entry(d, &iommu->domain_list, next) {
1420 ret = iommu_map(d->domain, iova, (phys_addr_t)pfn << PAGE_SHIFT,
1421 npage << PAGE_SHIFT, prot | IOMMU_CACHE,
1422 GFP_KERNEL_ACCOUNT);
1432 list_for_each_entry_continue_reverse(d, &iommu->domain_list, next) {
1433 iommu_unmap(d->domain, iova, npage << PAGE_SHIFT);
1440 static int vfio_pin_map_dma(struct vfio_iommu *iommu, struct vfio_dma *dma,
1443 dma_addr_t iova = dma->iova;
1444 unsigned long vaddr = dma->vaddr;
1445 struct vfio_batch batch;
1446 size_t size = map_size;
1448 unsigned long pfn, limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
1451 vfio_batch_init(&batch);
1454 /* Pin a contiguous chunk of memory */
1455 npage = vfio_pin_pages_remote(dma, vaddr + dma->size,
1456 size >> PAGE_SHIFT, &pfn, limit,
1465 ret = vfio_iommu_map(iommu, iova + dma->size, pfn, npage,
1468 vfio_unpin_pages_remote(dma, iova + dma->size, pfn,
1470 vfio_batch_unpin(&batch, dma);
1474 size -= npage << PAGE_SHIFT;
1475 dma->size += npage << PAGE_SHIFT;
1478 vfio_batch_fini(&batch);
1479 dma->iommu_mapped = true;
1482 vfio_remove_dma(iommu, dma);
1488 * Check dma map request is within a valid iova range
1490 static bool vfio_iommu_iova_dma_valid(struct vfio_iommu *iommu,
1491 dma_addr_t start, dma_addr_t end)
1493 struct list_head *iova = &iommu->iova_list;
1494 struct vfio_iova *node;
1496 list_for_each_entry(node, iova, list) {
1497 if (start >= node->start && end <= node->end)
1502 * Check for list_empty() as well since a container with
1503 * a single mdev device will have an empty list.
1505 return list_empty(iova);
1508 static int vfio_change_dma_owner(struct vfio_dma *dma)
1510 struct task_struct *task = current->group_leader;
1511 struct mm_struct *mm = current->mm;
1512 long npage = dma->locked_vm;
1519 lock_cap = capable(CAP_IPC_LOCK);
1520 ret = mm_lock_acct(task, mm, lock_cap, npage);
1524 if (mmget_not_zero(dma->mm)) {
1525 mm_lock_acct(dma->task, dma->mm, dma->lock_cap, -npage);
1529 if (dma->task != task) {
1530 put_task_struct(dma->task);
1531 dma->task = get_task_struct(task);
1536 dma->lock_cap = lock_cap;
1540 static int vfio_dma_do_map(struct vfio_iommu *iommu,
1541 struct vfio_iommu_type1_dma_map *map)
1543 bool set_vaddr = map->flags & VFIO_DMA_MAP_FLAG_VADDR;
1544 dma_addr_t iova = map->iova;
1545 unsigned long vaddr = map->vaddr;
1546 size_t size = map->size;
1547 int ret = 0, prot = 0;
1549 struct vfio_dma *dma;
1551 /* Verify that none of our __u64 fields overflow */
1552 if (map->size != size || map->vaddr != vaddr || map->iova != iova)
1555 /* READ/WRITE from device perspective */
1556 if (map->flags & VFIO_DMA_MAP_FLAG_WRITE)
1557 prot |= IOMMU_WRITE;
1558 if (map->flags & VFIO_DMA_MAP_FLAG_READ)
1561 if ((prot && set_vaddr) || (!prot && !set_vaddr))
1564 mutex_lock(&iommu->lock);
1566 pgsize = (size_t)1 << __ffs(iommu->pgsize_bitmap);
1568 WARN_ON((pgsize - 1) & PAGE_MASK);
1570 if (!size || (size | iova | vaddr) & (pgsize - 1)) {
1575 /* Don't allow IOVA or virtual address wrap */
1576 if (iova + size - 1 < iova || vaddr + size - 1 < vaddr) {
1581 dma = vfio_find_dma(iommu, iova, size);
1585 } else if (!dma->vaddr_invalid || dma->iova != iova ||
1586 dma->size != size) {
1589 ret = vfio_change_dma_owner(dma);
1593 dma->vaddr_invalid = false;
1594 iommu->vaddr_invalid_count--;
1602 if (!iommu->dma_avail) {
1607 if (!vfio_iommu_iova_dma_valid(iommu, iova, iova + size - 1)) {
1612 dma = kzalloc(sizeof(*dma), GFP_KERNEL);
1624 * We need to be able to both add to a task's locked memory and test
1625 * against the locked memory limit and we need to be able to do both
1626 * outside of this call path as pinning can be asynchronous via the
1627 * external interfaces for mdev devices. RLIMIT_MEMLOCK requires a
1628 * task_struct. Save the group_leader so that all DMA tracking uses
1629 * the same task, to make debugging easier. VM locked pages requires
1630 * an mm_struct, so grab the mm in case the task dies.
1632 get_task_struct(current->group_leader);
1633 dma->task = current->group_leader;
1634 dma->lock_cap = capable(CAP_IPC_LOCK);
1635 dma->mm = current->mm;
1638 dma->pfn_list = RB_ROOT;
1640 /* Insert zero-sized and grow as we map chunks of it */
1641 vfio_link_dma(iommu, dma);
1643 /* Don't pin and map if container doesn't contain IOMMU capable domain*/
1644 if (list_empty(&iommu->domain_list))
1647 ret = vfio_pin_map_dma(iommu, dma, size);
1649 if (!ret && iommu->dirty_page_tracking) {
1650 ret = vfio_dma_bitmap_alloc(dma, pgsize);
1652 vfio_remove_dma(iommu, dma);
1656 mutex_unlock(&iommu->lock);
1660 static int vfio_iommu_replay(struct vfio_iommu *iommu,
1661 struct vfio_domain *domain)
1663 struct vfio_batch batch;
1664 struct vfio_domain *d = NULL;
1666 unsigned long limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
1669 /* Arbitrarily pick the first domain in the list for lookups */
1670 if (!list_empty(&iommu->domain_list))
1671 d = list_first_entry(&iommu->domain_list,
1672 struct vfio_domain, next);
1674 vfio_batch_init(&batch);
1676 n = rb_first(&iommu->dma_list);
1678 for (; n; n = rb_next(n)) {
1679 struct vfio_dma *dma;
1682 dma = rb_entry(n, struct vfio_dma, node);
1685 while (iova < dma->iova + dma->size) {
1689 if (dma->iommu_mapped) {
1693 if (WARN_ON(!d)) { /* mapped w/o a domain?! */
1698 phys = iommu_iova_to_phys(d->domain, iova);
1700 if (WARN_ON(!phys)) {
1708 while (i < dma->iova + dma->size &&
1709 p == iommu_iova_to_phys(d->domain, i)) {
1716 unsigned long vaddr = dma->vaddr +
1718 size_t n = dma->iova + dma->size - iova;
1721 npage = vfio_pin_pages_remote(dma, vaddr,
1731 phys = pfn << PAGE_SHIFT;
1732 size = npage << PAGE_SHIFT;
1735 ret = iommu_map(domain->domain, iova, phys, size,
1736 dma->prot | IOMMU_CACHE,
1737 GFP_KERNEL_ACCOUNT);
1739 if (!dma->iommu_mapped) {
1740 vfio_unpin_pages_remote(dma, iova,
1744 vfio_batch_unpin(&batch, dma);
1753 /* All dmas are now mapped, defer to second tree walk for unwind */
1754 for (n = rb_first(&iommu->dma_list); n; n = rb_next(n)) {
1755 struct vfio_dma *dma = rb_entry(n, struct vfio_dma, node);
1757 dma->iommu_mapped = true;
1760 vfio_batch_fini(&batch);
1764 for (; n; n = rb_prev(n)) {
1765 struct vfio_dma *dma = rb_entry(n, struct vfio_dma, node);
1768 if (dma->iommu_mapped) {
1769 iommu_unmap(domain->domain, dma->iova, dma->size);
1774 while (iova < dma->iova + dma->size) {
1775 phys_addr_t phys, p;
1779 phys = iommu_iova_to_phys(domain->domain, iova);
1788 while (i < dma->iova + dma->size &&
1789 p == iommu_iova_to_phys(domain->domain, i)) {
1795 iommu_unmap(domain->domain, iova, size);
1796 vfio_unpin_pages_remote(dma, iova, phys >> PAGE_SHIFT,
1797 size >> PAGE_SHIFT, true);
1801 vfio_batch_fini(&batch);
1806 * We change our unmap behavior slightly depending on whether the IOMMU
1807 * supports fine-grained superpages. IOMMUs like AMD-Vi will use a superpage
1808 * for practically any contiguous power-of-two mapping we give it. This means
1809 * we don't need to look for contiguous chunks ourselves to make unmapping
1810 * more efficient. On IOMMUs with coarse-grained super pages, like Intel VT-d
1811 * with discrete 2M/1G/512G/1T superpages, identifying contiguous chunks
1812 * significantly boosts non-hugetlbfs mappings and doesn't seem to hurt when
1813 * hugetlbfs is in use.
1815 static void vfio_test_domain_fgsp(struct vfio_domain *domain, struct list_head *regions)
1817 int ret, order = get_order(PAGE_SIZE * 2);
1818 struct vfio_iova *region;
1822 pages = alloc_pages(GFP_KERNEL | __GFP_ZERO, order);
1826 list_for_each_entry(region, regions, list) {
1827 start = ALIGN(region->start, PAGE_SIZE * 2);
1828 if (start >= region->end || (region->end - start < PAGE_SIZE * 2))
1831 ret = iommu_map(domain->domain, start, page_to_phys(pages), PAGE_SIZE * 2,
1832 IOMMU_READ | IOMMU_WRITE | IOMMU_CACHE,
1833 GFP_KERNEL_ACCOUNT);
1835 size_t unmapped = iommu_unmap(domain->domain, start, PAGE_SIZE);
1837 if (unmapped == PAGE_SIZE)
1838 iommu_unmap(domain->domain, start + PAGE_SIZE, PAGE_SIZE);
1840 domain->fgsp = true;
1845 __free_pages(pages, order);
1848 static struct vfio_iommu_group *find_iommu_group(struct vfio_domain *domain,
1849 struct iommu_group *iommu_group)
1851 struct vfio_iommu_group *g;
1853 list_for_each_entry(g, &domain->group_list, next) {
1854 if (g->iommu_group == iommu_group)
1861 static struct vfio_iommu_group*
1862 vfio_iommu_find_iommu_group(struct vfio_iommu *iommu,
1863 struct iommu_group *iommu_group)
1865 struct vfio_iommu_group *group;
1866 struct vfio_domain *domain;
1868 list_for_each_entry(domain, &iommu->domain_list, next) {
1869 group = find_iommu_group(domain, iommu_group);
1874 list_for_each_entry(group, &iommu->emulated_iommu_groups, next)
1875 if (group->iommu_group == iommu_group)
1880 static bool vfio_iommu_has_sw_msi(struct list_head *group_resv_regions,
1883 struct iommu_resv_region *region;
1886 list_for_each_entry(region, group_resv_regions, list) {
1888 * The presence of any 'real' MSI regions should take
1889 * precedence over the software-managed one if the
1890 * IOMMU driver happens to advertise both types.
1892 if (region->type == IOMMU_RESV_MSI) {
1897 if (region->type == IOMMU_RESV_SW_MSI) {
1898 *base = region->start;
1907 * This is a helper function to insert an address range to iova list.
1908 * The list is initially created with a single entry corresponding to
1909 * the IOMMU domain geometry to which the device group is attached.
1910 * The list aperture gets modified when a new domain is added to the
1911 * container if the new aperture doesn't conflict with the current one
1912 * or with any existing dma mappings. The list is also modified to
1913 * exclude any reserved regions associated with the device group.
1915 static int vfio_iommu_iova_insert(struct list_head *head,
1916 dma_addr_t start, dma_addr_t end)
1918 struct vfio_iova *region;
1920 region = kmalloc(sizeof(*region), GFP_KERNEL);
1924 INIT_LIST_HEAD(®ion->list);
1925 region->start = start;
1928 list_add_tail(®ion->list, head);
1933 * Check the new iommu aperture conflicts with existing aper or with any
1934 * existing dma mappings.
1936 static bool vfio_iommu_aper_conflict(struct vfio_iommu *iommu,
1937 dma_addr_t start, dma_addr_t end)
1939 struct vfio_iova *first, *last;
1940 struct list_head *iova = &iommu->iova_list;
1942 if (list_empty(iova))
1945 /* Disjoint sets, return conflict */
1946 first = list_first_entry(iova, struct vfio_iova, list);
1947 last = list_last_entry(iova, struct vfio_iova, list);
1948 if (start > last->end || end < first->start)
1951 /* Check for any existing dma mappings below the new start */
1952 if (start > first->start) {
1953 if (vfio_find_dma(iommu, first->start, start - first->start))
1957 /* Check for any existing dma mappings beyond the new end */
1958 if (end < last->end) {
1959 if (vfio_find_dma(iommu, end + 1, last->end - end))
1967 * Resize iommu iova aperture window. This is called only if the new
1968 * aperture has no conflict with existing aperture and dma mappings.
1970 static int vfio_iommu_aper_resize(struct list_head *iova,
1971 dma_addr_t start, dma_addr_t end)
1973 struct vfio_iova *node, *next;
1975 if (list_empty(iova))
1976 return vfio_iommu_iova_insert(iova, start, end);
1978 /* Adjust iova list start */
1979 list_for_each_entry_safe(node, next, iova, list) {
1980 if (start < node->start)
1982 if (start >= node->start && start < node->end) {
1983 node->start = start;
1986 /* Delete nodes before new start */
1987 list_del(&node->list);
1991 /* Adjust iova list end */
1992 list_for_each_entry_safe(node, next, iova, list) {
1993 if (end > node->end)
1995 if (end > node->start && end <= node->end) {
1999 /* Delete nodes after new end */
2000 list_del(&node->list);
2008 * Check reserved region conflicts with existing dma mappings
2010 static bool vfio_iommu_resv_conflict(struct vfio_iommu *iommu,
2011 struct list_head *resv_regions)
2013 struct iommu_resv_region *region;
2015 /* Check for conflict with existing dma mappings */
2016 list_for_each_entry(region, resv_regions, list) {
2017 if (region->type == IOMMU_RESV_DIRECT_RELAXABLE)
2020 if (vfio_find_dma(iommu, region->start, region->length))
2028 * Check iova region overlap with reserved regions and
2029 * exclude them from the iommu iova range
2031 static int vfio_iommu_resv_exclude(struct list_head *iova,
2032 struct list_head *resv_regions)
2034 struct iommu_resv_region *resv;
2035 struct vfio_iova *n, *next;
2037 list_for_each_entry(resv, resv_regions, list) {
2038 phys_addr_t start, end;
2040 if (resv->type == IOMMU_RESV_DIRECT_RELAXABLE)
2043 start = resv->start;
2044 end = resv->start + resv->length - 1;
2046 list_for_each_entry_safe(n, next, iova, list) {
2050 if (start > n->end || end < n->start)
2053 * Insert a new node if current node overlaps with the
2054 * reserve region to exclude that from valid iova range.
2055 * Note that, new node is inserted before the current
2056 * node and finally the current node is deleted keeping
2057 * the list updated and sorted.
2059 if (start > n->start)
2060 ret = vfio_iommu_iova_insert(&n->list, n->start,
2062 if (!ret && end < n->end)
2063 ret = vfio_iommu_iova_insert(&n->list, end + 1,
2073 if (list_empty(iova))
2079 static void vfio_iommu_resv_free(struct list_head *resv_regions)
2081 struct iommu_resv_region *n, *next;
2083 list_for_each_entry_safe(n, next, resv_regions, list) {
2089 static void vfio_iommu_iova_free(struct list_head *iova)
2091 struct vfio_iova *n, *next;
2093 list_for_each_entry_safe(n, next, iova, list) {
2099 static int vfio_iommu_iova_get_copy(struct vfio_iommu *iommu,
2100 struct list_head *iova_copy)
2102 struct list_head *iova = &iommu->iova_list;
2103 struct vfio_iova *n;
2106 list_for_each_entry(n, iova, list) {
2107 ret = vfio_iommu_iova_insert(iova_copy, n->start, n->end);
2115 vfio_iommu_iova_free(iova_copy);
2119 static void vfio_iommu_iova_insert_copy(struct vfio_iommu *iommu,
2120 struct list_head *iova_copy)
2122 struct list_head *iova = &iommu->iova_list;
2124 vfio_iommu_iova_free(iova);
2126 list_splice_tail(iova_copy, iova);
2129 static int vfio_iommu_domain_alloc(struct device *dev, void *data)
2131 struct iommu_domain **domain = data;
2133 *domain = iommu_paging_domain_alloc(dev);
2134 return 1; /* Don't iterate */
2137 static int vfio_iommu_type1_attach_group(void *iommu_data,
2138 struct iommu_group *iommu_group, enum vfio_group_type type)
2140 struct vfio_iommu *iommu = iommu_data;
2141 struct vfio_iommu_group *group;
2142 struct vfio_domain *domain, *d;
2144 phys_addr_t resv_msi_base = 0;
2145 struct iommu_domain_geometry *geo;
2146 LIST_HEAD(iova_copy);
2147 LIST_HEAD(group_resv_regions);
2150 mutex_lock(&iommu->lock);
2152 /* Attach could require pinning, so disallow while vaddr is invalid. */
2153 if (iommu->vaddr_invalid_count)
2156 /* Check for duplicates */
2158 if (vfio_iommu_find_iommu_group(iommu, iommu_group))
2162 group = kzalloc(sizeof(*group), GFP_KERNEL);
2165 group->iommu_group = iommu_group;
2167 if (type == VFIO_EMULATED_IOMMU) {
2168 list_add(&group->next, &iommu->emulated_iommu_groups);
2170 * An emulated IOMMU group cannot dirty memory directly, it can
2171 * only use interfaces that provide dirty tracking.
2172 * The iommu scope can only be promoted with the addition of a
2173 * dirty tracking group.
2175 group->pinned_page_dirty_scope = true;
2181 domain = kzalloc(sizeof(*domain), GFP_KERNEL);
2183 goto out_free_group;
2186 * Going via the iommu_group iterator avoids races, and trivially gives
2187 * us a representative device for the IOMMU API call. We don't actually
2188 * want to iterate beyond the first device (if any).
2190 iommu_group_for_each_dev(iommu_group, &domain->domain,
2191 vfio_iommu_domain_alloc);
2192 if (IS_ERR(domain->domain)) {
2193 ret = PTR_ERR(domain->domain);
2194 goto out_free_domain;
2197 ret = iommu_attach_group(domain->domain, group->iommu_group);
2201 /* Get aperture info */
2202 geo = &domain->domain->geometry;
2203 if (vfio_iommu_aper_conflict(iommu, geo->aperture_start,
2204 geo->aperture_end)) {
2209 ret = iommu_get_group_resv_regions(iommu_group, &group_resv_regions);
2213 if (vfio_iommu_resv_conflict(iommu, &group_resv_regions)) {
2219 * We don't want to work on the original iova list as the list
2220 * gets modified and in case of failure we have to retain the
2221 * original list. Get a copy here.
2223 ret = vfio_iommu_iova_get_copy(iommu, &iova_copy);
2227 ret = vfio_iommu_aper_resize(&iova_copy, geo->aperture_start,
2232 ret = vfio_iommu_resv_exclude(&iova_copy, &group_resv_regions);
2236 resv_msi = vfio_iommu_has_sw_msi(&group_resv_regions, &resv_msi_base);
2238 INIT_LIST_HEAD(&domain->group_list);
2239 list_add(&group->next, &domain->group_list);
2241 if (!allow_unsafe_interrupts &&
2242 !iommu_group_has_isolated_msi(iommu_group)) {
2243 pr_warn("%s: No interrupt remapping support. Use the module param \"allow_unsafe_interrupts\" to enable VFIO IOMMU support on this platform\n",
2250 * If the IOMMU can block non-coherent operations (ie PCIe TLPs with
2251 * no-snoop set) then VFIO always turns this feature on because on Intel
2252 * platforms it optimizes KVM to disable wbinvd emulation.
2254 if (domain->domain->ops->enforce_cache_coherency)
2255 domain->enforce_cache_coherency =
2256 domain->domain->ops->enforce_cache_coherency(
2260 * Try to match an existing compatible domain. We don't want to
2261 * preclude an IOMMU driver supporting multiple bus_types and being
2262 * able to include different bus_types in the same IOMMU domain, so
2263 * we test whether the domains use the same iommu_ops rather than
2264 * testing if they're on the same bus_type.
2266 list_for_each_entry(d, &iommu->domain_list, next) {
2267 if (d->domain->ops == domain->domain->ops &&
2268 d->enforce_cache_coherency ==
2269 domain->enforce_cache_coherency) {
2270 iommu_detach_group(domain->domain, group->iommu_group);
2271 if (!iommu_attach_group(d->domain,
2272 group->iommu_group)) {
2273 list_add(&group->next, &d->group_list);
2274 iommu_domain_free(domain->domain);
2279 ret = iommu_attach_group(domain->domain,
2280 group->iommu_group);
2286 vfio_test_domain_fgsp(domain, &iova_copy);
2288 /* replay mappings on new domains */
2289 ret = vfio_iommu_replay(iommu, domain);
2294 ret = iommu_get_msi_cookie(domain->domain, resv_msi_base);
2295 if (ret && ret != -ENODEV)
2299 list_add(&domain->next, &iommu->domain_list);
2300 vfio_update_pgsize_bitmap(iommu);
2302 /* Delete the old one and insert new iova list */
2303 vfio_iommu_iova_insert_copy(iommu, &iova_copy);
2306 * An iommu backed group can dirty memory directly and therefore
2307 * demotes the iommu scope until it declares itself dirty tracking
2308 * capable via the page pinning interface.
2310 iommu->num_non_pinned_groups++;
2311 mutex_unlock(&iommu->lock);
2312 vfio_iommu_resv_free(&group_resv_regions);
2317 iommu_detach_group(domain->domain, group->iommu_group);
2319 iommu_domain_free(domain->domain);
2320 vfio_iommu_iova_free(&iova_copy);
2321 vfio_iommu_resv_free(&group_resv_regions);
2327 mutex_unlock(&iommu->lock);
2331 static void vfio_iommu_unmap_unpin_all(struct vfio_iommu *iommu)
2333 struct rb_node *node;
2335 while ((node = rb_first(&iommu->dma_list)))
2336 vfio_remove_dma(iommu, rb_entry(node, struct vfio_dma, node));
2339 static void vfio_iommu_unmap_unpin_reaccount(struct vfio_iommu *iommu)
2341 struct rb_node *n, *p;
2343 n = rb_first(&iommu->dma_list);
2344 for (; n; n = rb_next(n)) {
2345 struct vfio_dma *dma;
2346 long locked = 0, unlocked = 0;
2348 dma = rb_entry(n, struct vfio_dma, node);
2349 unlocked += vfio_unmap_unpin(iommu, dma, false);
2350 p = rb_first(&dma->pfn_list);
2351 for (; p; p = rb_next(p)) {
2352 struct vfio_pfn *vpfn = rb_entry(p, struct vfio_pfn,
2355 if (!is_invalid_reserved_pfn(vpfn->pfn))
2358 vfio_lock_acct(dma, locked - unlocked, true);
2363 * Called when a domain is removed in detach. It is possible that
2364 * the removed domain decided the iova aperture window. Modify the
2365 * iova aperture with the smallest window among existing domains.
2367 static void vfio_iommu_aper_expand(struct vfio_iommu *iommu,
2368 struct list_head *iova_copy)
2370 struct vfio_domain *domain;
2371 struct vfio_iova *node;
2372 dma_addr_t start = 0;
2373 dma_addr_t end = (dma_addr_t)~0;
2375 if (list_empty(iova_copy))
2378 list_for_each_entry(domain, &iommu->domain_list, next) {
2379 struct iommu_domain_geometry *geo = &domain->domain->geometry;
2381 if (geo->aperture_start > start)
2382 start = geo->aperture_start;
2383 if (geo->aperture_end < end)
2384 end = geo->aperture_end;
2387 /* Modify aperture limits. The new aper is either same or bigger */
2388 node = list_first_entry(iova_copy, struct vfio_iova, list);
2389 node->start = start;
2390 node = list_last_entry(iova_copy, struct vfio_iova, list);
2395 * Called when a group is detached. The reserved regions for that
2396 * group can be part of valid iova now. But since reserved regions
2397 * may be duplicated among groups, populate the iova valid regions
2400 static int vfio_iommu_resv_refresh(struct vfio_iommu *iommu,
2401 struct list_head *iova_copy)
2403 struct vfio_domain *d;
2404 struct vfio_iommu_group *g;
2405 struct vfio_iova *node;
2406 dma_addr_t start, end;
2407 LIST_HEAD(resv_regions);
2410 if (list_empty(iova_copy))
2413 list_for_each_entry(d, &iommu->domain_list, next) {
2414 list_for_each_entry(g, &d->group_list, next) {
2415 ret = iommu_get_group_resv_regions(g->iommu_group,
2422 node = list_first_entry(iova_copy, struct vfio_iova, list);
2423 start = node->start;
2424 node = list_last_entry(iova_copy, struct vfio_iova, list);
2427 /* purge the iova list and create new one */
2428 vfio_iommu_iova_free(iova_copy);
2430 ret = vfio_iommu_aper_resize(iova_copy, start, end);
2434 /* Exclude current reserved regions from iova ranges */
2435 ret = vfio_iommu_resv_exclude(iova_copy, &resv_regions);
2437 vfio_iommu_resv_free(&resv_regions);
2441 static void vfio_iommu_type1_detach_group(void *iommu_data,
2442 struct iommu_group *iommu_group)
2444 struct vfio_iommu *iommu = iommu_data;
2445 struct vfio_domain *domain;
2446 struct vfio_iommu_group *group;
2447 bool update_dirty_scope = false;
2448 LIST_HEAD(iova_copy);
2450 mutex_lock(&iommu->lock);
2451 list_for_each_entry(group, &iommu->emulated_iommu_groups, next) {
2452 if (group->iommu_group != iommu_group)
2454 update_dirty_scope = !group->pinned_page_dirty_scope;
2455 list_del(&group->next);
2458 if (list_empty(&iommu->emulated_iommu_groups) &&
2459 list_empty(&iommu->domain_list)) {
2460 WARN_ON(!list_empty(&iommu->device_list));
2461 vfio_iommu_unmap_unpin_all(iommu);
2463 goto detach_group_done;
2467 * Get a copy of iova list. This will be used to update
2468 * and to replace the current one later. Please note that
2469 * we will leave the original list as it is if update fails.
2471 vfio_iommu_iova_get_copy(iommu, &iova_copy);
2473 list_for_each_entry(domain, &iommu->domain_list, next) {
2474 group = find_iommu_group(domain, iommu_group);
2478 iommu_detach_group(domain->domain, group->iommu_group);
2479 update_dirty_scope = !group->pinned_page_dirty_scope;
2480 list_del(&group->next);
2483 * Group ownership provides privilege, if the group list is
2484 * empty, the domain goes away. If it's the last domain with
2485 * iommu and external domain doesn't exist, then all the
2486 * mappings go away too. If it's the last domain with iommu and
2487 * external domain exist, update accounting
2489 if (list_empty(&domain->group_list)) {
2490 if (list_is_singular(&iommu->domain_list)) {
2491 if (list_empty(&iommu->emulated_iommu_groups)) {
2492 WARN_ON(!list_empty(
2493 &iommu->device_list));
2494 vfio_iommu_unmap_unpin_all(iommu);
2496 vfio_iommu_unmap_unpin_reaccount(iommu);
2499 iommu_domain_free(domain->domain);
2500 list_del(&domain->next);
2502 vfio_iommu_aper_expand(iommu, &iova_copy);
2503 vfio_update_pgsize_bitmap(iommu);
2508 if (!vfio_iommu_resv_refresh(iommu, &iova_copy))
2509 vfio_iommu_iova_insert_copy(iommu, &iova_copy);
2511 vfio_iommu_iova_free(&iova_copy);
2515 * Removal of a group without dirty tracking may allow the iommu scope
2518 if (update_dirty_scope) {
2519 iommu->num_non_pinned_groups--;
2520 if (iommu->dirty_page_tracking)
2521 vfio_iommu_populate_bitmap_full(iommu);
2523 mutex_unlock(&iommu->lock);
2526 static void *vfio_iommu_type1_open(unsigned long arg)
2528 struct vfio_iommu *iommu;
2530 iommu = kzalloc(sizeof(*iommu), GFP_KERNEL);
2532 return ERR_PTR(-ENOMEM);
2535 case VFIO_TYPE1_IOMMU:
2537 case __VFIO_RESERVED_TYPE1_NESTING_IOMMU:
2538 case VFIO_TYPE1v2_IOMMU:
2543 return ERR_PTR(-EINVAL);
2546 INIT_LIST_HEAD(&iommu->domain_list);
2547 INIT_LIST_HEAD(&iommu->iova_list);
2548 iommu->dma_list = RB_ROOT;
2549 iommu->dma_avail = dma_entry_limit;
2550 mutex_init(&iommu->lock);
2551 mutex_init(&iommu->device_list_lock);
2552 INIT_LIST_HEAD(&iommu->device_list);
2553 iommu->pgsize_bitmap = PAGE_MASK;
2554 INIT_LIST_HEAD(&iommu->emulated_iommu_groups);
2559 static void vfio_release_domain(struct vfio_domain *domain)
2561 struct vfio_iommu_group *group, *group_tmp;
2563 list_for_each_entry_safe(group, group_tmp,
2564 &domain->group_list, next) {
2565 iommu_detach_group(domain->domain, group->iommu_group);
2566 list_del(&group->next);
2570 iommu_domain_free(domain->domain);
2573 static void vfio_iommu_type1_release(void *iommu_data)
2575 struct vfio_iommu *iommu = iommu_data;
2576 struct vfio_domain *domain, *domain_tmp;
2577 struct vfio_iommu_group *group, *next_group;
2579 list_for_each_entry_safe(group, next_group,
2580 &iommu->emulated_iommu_groups, next) {
2581 list_del(&group->next);
2585 vfio_iommu_unmap_unpin_all(iommu);
2587 list_for_each_entry_safe(domain, domain_tmp,
2588 &iommu->domain_list, next) {
2589 vfio_release_domain(domain);
2590 list_del(&domain->next);
2594 vfio_iommu_iova_free(&iommu->iova_list);
2599 static int vfio_domains_have_enforce_cache_coherency(struct vfio_iommu *iommu)
2601 struct vfio_domain *domain;
2604 mutex_lock(&iommu->lock);
2605 list_for_each_entry(domain, &iommu->domain_list, next) {
2606 if (!(domain->enforce_cache_coherency)) {
2611 mutex_unlock(&iommu->lock);
2616 static bool vfio_iommu_has_emulated(struct vfio_iommu *iommu)
2620 mutex_lock(&iommu->lock);
2621 ret = !list_empty(&iommu->emulated_iommu_groups);
2622 mutex_unlock(&iommu->lock);
2626 static int vfio_iommu_type1_check_extension(struct vfio_iommu *iommu,
2630 case VFIO_TYPE1_IOMMU:
2631 case VFIO_TYPE1v2_IOMMU:
2632 case VFIO_UNMAP_ALL:
2634 case VFIO_UPDATE_VADDR:
2636 * Disable this feature if mdevs are present. They cannot
2637 * safely pin/unpin/rw while vaddrs are being updated.
2639 return iommu && !vfio_iommu_has_emulated(iommu);
2640 case VFIO_DMA_CC_IOMMU:
2643 return vfio_domains_have_enforce_cache_coherency(iommu);
2649 static int vfio_iommu_iova_add_cap(struct vfio_info_cap *caps,
2650 struct vfio_iommu_type1_info_cap_iova_range *cap_iovas,
2653 struct vfio_info_cap_header *header;
2654 struct vfio_iommu_type1_info_cap_iova_range *iova_cap;
2656 header = vfio_info_cap_add(caps, size,
2657 VFIO_IOMMU_TYPE1_INFO_CAP_IOVA_RANGE, 1);
2659 return PTR_ERR(header);
2661 iova_cap = container_of(header,
2662 struct vfio_iommu_type1_info_cap_iova_range,
2664 iova_cap->nr_iovas = cap_iovas->nr_iovas;
2665 memcpy(iova_cap->iova_ranges, cap_iovas->iova_ranges,
2666 cap_iovas->nr_iovas * sizeof(*cap_iovas->iova_ranges));
2670 static int vfio_iommu_iova_build_caps(struct vfio_iommu *iommu,
2671 struct vfio_info_cap *caps)
2673 struct vfio_iommu_type1_info_cap_iova_range *cap_iovas;
2674 struct vfio_iova *iova;
2676 int iovas = 0, i = 0, ret;
2678 list_for_each_entry(iova, &iommu->iova_list, list)
2683 * Return 0 as a container with a single mdev device
2684 * will have an empty list
2689 size = struct_size(cap_iovas, iova_ranges, iovas);
2691 cap_iovas = kzalloc(size, GFP_KERNEL);
2695 cap_iovas->nr_iovas = iovas;
2697 list_for_each_entry(iova, &iommu->iova_list, list) {
2698 cap_iovas->iova_ranges[i].start = iova->start;
2699 cap_iovas->iova_ranges[i].end = iova->end;
2703 ret = vfio_iommu_iova_add_cap(caps, cap_iovas, size);
2709 static int vfio_iommu_migration_build_caps(struct vfio_iommu *iommu,
2710 struct vfio_info_cap *caps)
2712 struct vfio_iommu_type1_info_cap_migration cap_mig = {};
2714 cap_mig.header.id = VFIO_IOMMU_TYPE1_INFO_CAP_MIGRATION;
2715 cap_mig.header.version = 1;
2718 /* support minimum pgsize */
2719 cap_mig.pgsize_bitmap = (size_t)1 << __ffs(iommu->pgsize_bitmap);
2720 cap_mig.max_dirty_bitmap_size = DIRTY_BITMAP_SIZE_MAX;
2722 return vfio_info_add_capability(caps, &cap_mig.header, sizeof(cap_mig));
2725 static int vfio_iommu_dma_avail_build_caps(struct vfio_iommu *iommu,
2726 struct vfio_info_cap *caps)
2728 struct vfio_iommu_type1_info_dma_avail cap_dma_avail;
2730 cap_dma_avail.header.id = VFIO_IOMMU_TYPE1_INFO_DMA_AVAIL;
2731 cap_dma_avail.header.version = 1;
2733 cap_dma_avail.avail = iommu->dma_avail;
2735 return vfio_info_add_capability(caps, &cap_dma_avail.header,
2736 sizeof(cap_dma_avail));
2739 static int vfio_iommu_type1_get_info(struct vfio_iommu *iommu,
2742 struct vfio_iommu_type1_info info = {};
2743 unsigned long minsz;
2744 struct vfio_info_cap caps = { .buf = NULL, .size = 0 };
2747 minsz = offsetofend(struct vfio_iommu_type1_info, iova_pgsizes);
2749 if (copy_from_user(&info, (void __user *)arg, minsz))
2752 if (info.argsz < minsz)
2755 minsz = min_t(size_t, info.argsz, sizeof(info));
2757 mutex_lock(&iommu->lock);
2758 info.flags = VFIO_IOMMU_INFO_PGSIZES;
2760 info.iova_pgsizes = iommu->pgsize_bitmap;
2762 ret = vfio_iommu_migration_build_caps(iommu, &caps);
2765 ret = vfio_iommu_dma_avail_build_caps(iommu, &caps);
2768 ret = vfio_iommu_iova_build_caps(iommu, &caps);
2770 mutex_unlock(&iommu->lock);
2776 info.flags |= VFIO_IOMMU_INFO_CAPS;
2778 if (info.argsz < sizeof(info) + caps.size) {
2779 info.argsz = sizeof(info) + caps.size;
2781 vfio_info_cap_shift(&caps, sizeof(info));
2782 if (copy_to_user((void __user *)arg +
2783 sizeof(info), caps.buf,
2788 info.cap_offset = sizeof(info);
2794 return copy_to_user((void __user *)arg, &info, minsz) ?
2798 static int vfio_iommu_type1_map_dma(struct vfio_iommu *iommu,
2801 struct vfio_iommu_type1_dma_map map;
2802 unsigned long minsz;
2803 uint32_t mask = VFIO_DMA_MAP_FLAG_READ | VFIO_DMA_MAP_FLAG_WRITE |
2804 VFIO_DMA_MAP_FLAG_VADDR;
2806 minsz = offsetofend(struct vfio_iommu_type1_dma_map, size);
2808 if (copy_from_user(&map, (void __user *)arg, minsz))
2811 if (map.argsz < minsz || map.flags & ~mask)
2814 return vfio_dma_do_map(iommu, &map);
2817 static int vfio_iommu_type1_unmap_dma(struct vfio_iommu *iommu,
2820 struct vfio_iommu_type1_dma_unmap unmap;
2821 struct vfio_bitmap bitmap = { 0 };
2822 uint32_t mask = VFIO_DMA_UNMAP_FLAG_GET_DIRTY_BITMAP |
2823 VFIO_DMA_UNMAP_FLAG_VADDR |
2824 VFIO_DMA_UNMAP_FLAG_ALL;
2825 unsigned long minsz;
2828 minsz = offsetofend(struct vfio_iommu_type1_dma_unmap, size);
2830 if (copy_from_user(&unmap, (void __user *)arg, minsz))
2833 if (unmap.argsz < minsz || unmap.flags & ~mask)
2836 if ((unmap.flags & VFIO_DMA_UNMAP_FLAG_GET_DIRTY_BITMAP) &&
2837 (unmap.flags & (VFIO_DMA_UNMAP_FLAG_ALL |
2838 VFIO_DMA_UNMAP_FLAG_VADDR)))
2841 if (unmap.flags & VFIO_DMA_UNMAP_FLAG_GET_DIRTY_BITMAP) {
2842 unsigned long pgshift;
2844 if (unmap.argsz < (minsz + sizeof(bitmap)))
2847 if (copy_from_user(&bitmap,
2848 (void __user *)(arg + minsz),
2852 if (!access_ok((void __user *)bitmap.data, bitmap.size))
2855 pgshift = __ffs(bitmap.pgsize);
2856 ret = verify_bitmap_size(unmap.size >> pgshift,
2862 ret = vfio_dma_do_unmap(iommu, &unmap, &bitmap);
2866 return copy_to_user((void __user *)arg, &unmap, minsz) ?
2870 static int vfio_iommu_type1_dirty_pages(struct vfio_iommu *iommu,
2873 struct vfio_iommu_type1_dirty_bitmap dirty;
2874 uint32_t mask = VFIO_IOMMU_DIRTY_PAGES_FLAG_START |
2875 VFIO_IOMMU_DIRTY_PAGES_FLAG_STOP |
2876 VFIO_IOMMU_DIRTY_PAGES_FLAG_GET_BITMAP;
2877 unsigned long minsz;
2883 minsz = offsetofend(struct vfio_iommu_type1_dirty_bitmap, flags);
2885 if (copy_from_user(&dirty, (void __user *)arg, minsz))
2888 if (dirty.argsz < minsz || dirty.flags & ~mask)
2891 /* only one flag should be set at a time */
2892 if (__ffs(dirty.flags) != __fls(dirty.flags))
2895 if (dirty.flags & VFIO_IOMMU_DIRTY_PAGES_FLAG_START) {
2898 mutex_lock(&iommu->lock);
2899 pgsize = 1 << __ffs(iommu->pgsize_bitmap);
2900 if (!iommu->dirty_page_tracking) {
2901 ret = vfio_dma_bitmap_alloc_all(iommu, pgsize);
2903 iommu->dirty_page_tracking = true;
2905 mutex_unlock(&iommu->lock);
2907 } else if (dirty.flags & VFIO_IOMMU_DIRTY_PAGES_FLAG_STOP) {
2908 mutex_lock(&iommu->lock);
2909 if (iommu->dirty_page_tracking) {
2910 iommu->dirty_page_tracking = false;
2911 vfio_dma_bitmap_free_all(iommu);
2913 mutex_unlock(&iommu->lock);
2915 } else if (dirty.flags & VFIO_IOMMU_DIRTY_PAGES_FLAG_GET_BITMAP) {
2916 struct vfio_iommu_type1_dirty_bitmap_get range;
2917 unsigned long pgshift;
2918 size_t data_size = dirty.argsz - minsz;
2919 size_t iommu_pgsize;
2921 if (!data_size || data_size < sizeof(range))
2924 if (copy_from_user(&range, (void __user *)(arg + minsz),
2928 if (range.iova + range.size < range.iova)
2930 if (!access_ok((void __user *)range.bitmap.data,
2934 pgshift = __ffs(range.bitmap.pgsize);
2935 ret = verify_bitmap_size(range.size >> pgshift,
2940 mutex_lock(&iommu->lock);
2942 iommu_pgsize = (size_t)1 << __ffs(iommu->pgsize_bitmap);
2944 /* allow only smallest supported pgsize */
2945 if (range.bitmap.pgsize != iommu_pgsize) {
2949 if (range.iova & (iommu_pgsize - 1)) {
2953 if (!range.size || range.size & (iommu_pgsize - 1)) {
2958 if (iommu->dirty_page_tracking)
2959 ret = vfio_iova_dirty_bitmap(range.bitmap.data,
2962 range.bitmap.pgsize);
2966 mutex_unlock(&iommu->lock);
2974 static long vfio_iommu_type1_ioctl(void *iommu_data,
2975 unsigned int cmd, unsigned long arg)
2977 struct vfio_iommu *iommu = iommu_data;
2980 case VFIO_CHECK_EXTENSION:
2981 return vfio_iommu_type1_check_extension(iommu, arg);
2982 case VFIO_IOMMU_GET_INFO:
2983 return vfio_iommu_type1_get_info(iommu, arg);
2984 case VFIO_IOMMU_MAP_DMA:
2985 return vfio_iommu_type1_map_dma(iommu, arg);
2986 case VFIO_IOMMU_UNMAP_DMA:
2987 return vfio_iommu_type1_unmap_dma(iommu, arg);
2988 case VFIO_IOMMU_DIRTY_PAGES:
2989 return vfio_iommu_type1_dirty_pages(iommu, arg);
2995 static void vfio_iommu_type1_register_device(void *iommu_data,
2996 struct vfio_device *vdev)
2998 struct vfio_iommu *iommu = iommu_data;
3000 if (!vdev->ops->dma_unmap)
3004 * list_empty(&iommu->device_list) is tested under the iommu->lock while
3005 * iteration for dma_unmap must be done under the device_list_lock.
3006 * Holding both locks here allows avoiding the device_list_lock in
3007 * several fast paths. See vfio_notify_dma_unmap()
3009 mutex_lock(&iommu->lock);
3010 mutex_lock(&iommu->device_list_lock);
3011 list_add(&vdev->iommu_entry, &iommu->device_list);
3012 mutex_unlock(&iommu->device_list_lock);
3013 mutex_unlock(&iommu->lock);
3016 static void vfio_iommu_type1_unregister_device(void *iommu_data,
3017 struct vfio_device *vdev)
3019 struct vfio_iommu *iommu = iommu_data;
3021 if (!vdev->ops->dma_unmap)
3024 mutex_lock(&iommu->lock);
3025 mutex_lock(&iommu->device_list_lock);
3026 list_del(&vdev->iommu_entry);
3027 mutex_unlock(&iommu->device_list_lock);
3028 mutex_unlock(&iommu->lock);
3031 static int vfio_iommu_type1_dma_rw_chunk(struct vfio_iommu *iommu,
3032 dma_addr_t user_iova, void *data,
3033 size_t count, bool write,
3036 struct mm_struct *mm;
3037 unsigned long vaddr;
3038 struct vfio_dma *dma;
3039 bool kthread = current->mm == NULL;
3044 dma = vfio_find_dma(iommu, user_iova, 1);
3048 if ((write && !(dma->prot & IOMMU_WRITE)) ||
3049 !(dma->prot & IOMMU_READ))
3053 if (!mmget_not_zero(mm))
3058 else if (current->mm != mm)
3061 offset = user_iova - dma->iova;
3063 if (count > dma->size - offset)
3064 count = dma->size - offset;
3066 vaddr = dma->vaddr + offset;
3069 *copied = copy_to_user((void __user *)vaddr, data,
3071 if (*copied && iommu->dirty_page_tracking) {
3072 unsigned long pgshift = __ffs(iommu->pgsize_bitmap);
3074 * Bitmap populated with the smallest supported page
3077 bitmap_set(dma->bitmap, offset >> pgshift,
3078 ((offset + *copied - 1) >> pgshift) -
3079 (offset >> pgshift) + 1);
3082 *copied = copy_from_user(data, (void __user *)vaddr,
3085 kthread_unuse_mm(mm);
3088 return *copied ? 0 : -EFAULT;
3091 static int vfio_iommu_type1_dma_rw(void *iommu_data, dma_addr_t user_iova,
3092 void *data, size_t count, bool write)
3094 struct vfio_iommu *iommu = iommu_data;
3098 mutex_lock(&iommu->lock);
3100 if (WARN_ONCE(iommu->vaddr_invalid_count,
3101 "vfio_dma_rw not allowed with VFIO_UPDATE_VADDR\n")) {
3107 ret = vfio_iommu_type1_dma_rw_chunk(iommu, user_iova, data,
3108 count, write, &done);
3118 mutex_unlock(&iommu->lock);
3122 static struct iommu_domain *
3123 vfio_iommu_type1_group_iommu_domain(void *iommu_data,
3124 struct iommu_group *iommu_group)
3126 struct iommu_domain *domain = ERR_PTR(-ENODEV);
3127 struct vfio_iommu *iommu = iommu_data;
3128 struct vfio_domain *d;
3130 if (!iommu || !iommu_group)
3131 return ERR_PTR(-EINVAL);
3133 mutex_lock(&iommu->lock);
3134 list_for_each_entry(d, &iommu->domain_list, next) {
3135 if (find_iommu_group(d, iommu_group)) {
3140 mutex_unlock(&iommu->lock);
3145 static const struct vfio_iommu_driver_ops vfio_iommu_driver_ops_type1 = {
3146 .name = "vfio-iommu-type1",
3147 .owner = THIS_MODULE,
3148 .open = vfio_iommu_type1_open,
3149 .release = vfio_iommu_type1_release,
3150 .ioctl = vfio_iommu_type1_ioctl,
3151 .attach_group = vfio_iommu_type1_attach_group,
3152 .detach_group = vfio_iommu_type1_detach_group,
3153 .pin_pages = vfio_iommu_type1_pin_pages,
3154 .unpin_pages = vfio_iommu_type1_unpin_pages,
3155 .register_device = vfio_iommu_type1_register_device,
3156 .unregister_device = vfio_iommu_type1_unregister_device,
3157 .dma_rw = vfio_iommu_type1_dma_rw,
3158 .group_iommu_domain = vfio_iommu_type1_group_iommu_domain,
3161 static int __init vfio_iommu_type1_init(void)
3163 return vfio_register_iommu_driver(&vfio_iommu_driver_ops_type1);
3166 static void __exit vfio_iommu_type1_cleanup(void)
3168 vfio_unregister_iommu_driver(&vfio_iommu_driver_ops_type1);
3171 module_init(vfio_iommu_type1_init);
3172 module_exit(vfio_iommu_type1_cleanup);
3174 MODULE_VERSION(DRIVER_VERSION);
3175 MODULE_LICENSE("GPL v2");
3176 MODULE_AUTHOR(DRIVER_AUTHOR);
3177 MODULE_DESCRIPTION(DRIVER_DESC);