]> Git Repo - J-linux.git/blob - drivers/usb/dwc2/hcd.c
Merge tag 'vfs-6.13-rc7.fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs
[J-linux.git] / drivers / usb / dwc2 / hcd.c
1 // SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause)
2 /*
3  * hcd.c - DesignWare HS OTG Controller host-mode routines
4  *
5  * Copyright (C) 2004-2013 Synopsys, Inc.
6  */
7
8 /*
9  * This file contains the core HCD code, and implements the Linux hc_driver
10  * API
11  */
12 #include <linux/kernel.h>
13 #include <linux/module.h>
14 #include <linux/spinlock.h>
15 #include <linux/interrupt.h>
16 #include <linux/platform_device.h>
17 #include <linux/dma-mapping.h>
18 #include <linux/delay.h>
19 #include <linux/io.h>
20 #include <linux/slab.h>
21 #include <linux/usb.h>
22
23 #include <linux/usb/hcd.h>
24 #include <linux/usb/ch11.h>
25 #include <linux/usb/of.h>
26
27 #include "core.h"
28 #include "hcd.h"
29
30 /*
31  * =========================================================================
32  *  Host Core Layer Functions
33  * =========================================================================
34  */
35
36 /**
37  * dwc2_enable_common_interrupts() - Initializes the commmon interrupts,
38  * used in both device and host modes
39  *
40  * @hsotg: Programming view of the DWC_otg controller
41  */
42 static void dwc2_enable_common_interrupts(struct dwc2_hsotg *hsotg)
43 {
44         u32 intmsk;
45
46         /* Clear any pending OTG Interrupts */
47         dwc2_writel(hsotg, 0xffffffff, GOTGINT);
48
49         /* Clear any pending interrupts */
50         dwc2_writel(hsotg, 0xffffffff, GINTSTS);
51
52         /* Enable the interrupts in the GINTMSK */
53         intmsk = GINTSTS_MODEMIS | GINTSTS_OTGINT;
54
55         if (!hsotg->params.host_dma)
56                 intmsk |= GINTSTS_RXFLVL;
57         if (!hsotg->params.external_id_pin_ctl)
58                 intmsk |= GINTSTS_CONIDSTSCHNG;
59
60         intmsk |= GINTSTS_WKUPINT | GINTSTS_USBSUSP |
61                   GINTSTS_SESSREQINT;
62
63         if (dwc2_is_device_mode(hsotg) && hsotg->params.lpm)
64                 intmsk |= GINTSTS_LPMTRANRCVD;
65
66         dwc2_writel(hsotg, intmsk, GINTMSK);
67 }
68
69 static int dwc2_gahbcfg_init(struct dwc2_hsotg *hsotg)
70 {
71         u32 ahbcfg = dwc2_readl(hsotg, GAHBCFG);
72
73         switch (hsotg->hw_params.arch) {
74         case GHWCFG2_EXT_DMA_ARCH:
75                 dev_err(hsotg->dev, "External DMA Mode not supported\n");
76                 return -EINVAL;
77
78         case GHWCFG2_INT_DMA_ARCH:
79                 dev_dbg(hsotg->dev, "Internal DMA Mode\n");
80                 if (hsotg->params.ahbcfg != -1) {
81                         ahbcfg &= GAHBCFG_CTRL_MASK;
82                         ahbcfg |= hsotg->params.ahbcfg &
83                                   ~GAHBCFG_CTRL_MASK;
84                 }
85                 break;
86
87         case GHWCFG2_SLAVE_ONLY_ARCH:
88         default:
89                 dev_dbg(hsotg->dev, "Slave Only Mode\n");
90                 break;
91         }
92
93         if (hsotg->params.host_dma)
94                 ahbcfg |= GAHBCFG_DMA_EN;
95         else
96                 hsotg->params.dma_desc_enable = false;
97
98         dwc2_writel(hsotg, ahbcfg, GAHBCFG);
99
100         return 0;
101 }
102
103 static void dwc2_gusbcfg_init(struct dwc2_hsotg *hsotg)
104 {
105         u32 usbcfg;
106
107         usbcfg = dwc2_readl(hsotg, GUSBCFG);
108         usbcfg &= ~(GUSBCFG_HNPCAP | GUSBCFG_SRPCAP);
109
110         switch (hsotg->hw_params.op_mode) {
111         case GHWCFG2_OP_MODE_HNP_SRP_CAPABLE:
112                 if (hsotg->params.otg_caps.hnp_support &&
113                     hsotg->params.otg_caps.srp_support)
114                         usbcfg |= GUSBCFG_HNPCAP;
115                 fallthrough;
116
117         case GHWCFG2_OP_MODE_SRP_ONLY_CAPABLE:
118         case GHWCFG2_OP_MODE_SRP_CAPABLE_DEVICE:
119         case GHWCFG2_OP_MODE_SRP_CAPABLE_HOST:
120                 if (hsotg->params.otg_caps.srp_support)
121                         usbcfg |= GUSBCFG_SRPCAP;
122                 break;
123
124         case GHWCFG2_OP_MODE_NO_HNP_SRP_CAPABLE:
125         case GHWCFG2_OP_MODE_NO_SRP_CAPABLE_DEVICE:
126         case GHWCFG2_OP_MODE_NO_SRP_CAPABLE_HOST:
127         default:
128                 break;
129         }
130
131         dwc2_writel(hsotg, usbcfg, GUSBCFG);
132 }
133
134 static int dwc2_vbus_supply_init(struct dwc2_hsotg *hsotg)
135 {
136         if (hsotg->vbus_supply)
137                 return regulator_enable(hsotg->vbus_supply);
138
139         return 0;
140 }
141
142 static int dwc2_vbus_supply_exit(struct dwc2_hsotg *hsotg)
143 {
144         if (hsotg->vbus_supply)
145                 return regulator_disable(hsotg->vbus_supply);
146
147         return 0;
148 }
149
150 /**
151  * dwc2_enable_host_interrupts() - Enables the Host mode interrupts
152  *
153  * @hsotg: Programming view of DWC_otg controller
154  */
155 static void dwc2_enable_host_interrupts(struct dwc2_hsotg *hsotg)
156 {
157         u32 intmsk;
158
159         dev_dbg(hsotg->dev, "%s()\n", __func__);
160
161         /* Disable all interrupts */
162         dwc2_writel(hsotg, 0, GINTMSK);
163         dwc2_writel(hsotg, 0, HAINTMSK);
164
165         /* Enable the common interrupts */
166         dwc2_enable_common_interrupts(hsotg);
167
168         /* Enable host mode interrupts without disturbing common interrupts */
169         intmsk = dwc2_readl(hsotg, GINTMSK);
170         intmsk |= GINTSTS_DISCONNINT | GINTSTS_PRTINT | GINTSTS_HCHINT;
171         dwc2_writel(hsotg, intmsk, GINTMSK);
172 }
173
174 /**
175  * dwc2_disable_host_interrupts() - Disables the Host Mode interrupts
176  *
177  * @hsotg: Programming view of DWC_otg controller
178  */
179 static void dwc2_disable_host_interrupts(struct dwc2_hsotg *hsotg)
180 {
181         u32 intmsk = dwc2_readl(hsotg, GINTMSK);
182
183         /* Disable host mode interrupts without disturbing common interrupts */
184         intmsk &= ~(GINTSTS_SOF | GINTSTS_PRTINT | GINTSTS_HCHINT |
185                     GINTSTS_PTXFEMP | GINTSTS_NPTXFEMP | GINTSTS_DISCONNINT);
186         dwc2_writel(hsotg, intmsk, GINTMSK);
187 }
188
189 /*
190  * dwc2_calculate_dynamic_fifo() - Calculates the default fifo size
191  * For system that have a total fifo depth that is smaller than the default
192  * RX + TX fifo size.
193  *
194  * @hsotg: Programming view of DWC_otg controller
195  */
196 static void dwc2_calculate_dynamic_fifo(struct dwc2_hsotg *hsotg)
197 {
198         struct dwc2_core_params *params = &hsotg->params;
199         struct dwc2_hw_params *hw = &hsotg->hw_params;
200         u32 rxfsiz, nptxfsiz, ptxfsiz, total_fifo_size;
201
202         total_fifo_size = hw->total_fifo_size;
203         rxfsiz = params->host_rx_fifo_size;
204         nptxfsiz = params->host_nperio_tx_fifo_size;
205         ptxfsiz = params->host_perio_tx_fifo_size;
206
207         /*
208          * Will use Method 2 defined in the DWC2 spec: minimum FIFO depth
209          * allocation with support for high bandwidth endpoints. Synopsys
210          * defines MPS(Max Packet size) for a periodic EP=1024, and for
211          * non-periodic as 512.
212          */
213         if (total_fifo_size < (rxfsiz + nptxfsiz + ptxfsiz)) {
214                 /*
215                  * For Buffer DMA mode/Scatter Gather DMA mode
216                  * 2 * ((Largest Packet size / 4) + 1 + 1) + n
217                  * with n = number of host channel.
218                  * 2 * ((1024/4) + 2) = 516
219                  */
220                 rxfsiz = 516 + hw->host_channels;
221
222                 /*
223                  * min non-periodic tx fifo depth
224                  * 2 * (largest non-periodic USB packet used / 4)
225                  * 2 * (512/4) = 256
226                  */
227                 nptxfsiz = 256;
228
229                 /*
230                  * min periodic tx fifo depth
231                  * (largest packet size*MC)/4
232                  * (1024 * 3)/4 = 768
233                  */
234                 ptxfsiz = 768;
235
236                 params->host_rx_fifo_size = rxfsiz;
237                 params->host_nperio_tx_fifo_size = nptxfsiz;
238                 params->host_perio_tx_fifo_size = ptxfsiz;
239         }
240
241         /*
242          * If the summation of RX, NPTX and PTX fifo sizes is still
243          * bigger than the total_fifo_size, then we have a problem.
244          *
245          * We won't be able to allocate as many endpoints. Right now,
246          * we're just printing an error message, but ideally this FIFO
247          * allocation algorithm would be improved in the future.
248          *
249          * FIXME improve this FIFO allocation algorithm.
250          */
251         if (unlikely(total_fifo_size < (rxfsiz + nptxfsiz + ptxfsiz)))
252                 dev_err(hsotg->dev, "invalid fifo sizes\n");
253 }
254
255 static void dwc2_config_fifos(struct dwc2_hsotg *hsotg)
256 {
257         struct dwc2_core_params *params = &hsotg->params;
258         u32 nptxfsiz, hptxfsiz, dfifocfg, grxfsiz;
259
260         if (!params->enable_dynamic_fifo)
261                 return;
262
263         dwc2_calculate_dynamic_fifo(hsotg);
264
265         /* Rx FIFO */
266         grxfsiz = dwc2_readl(hsotg, GRXFSIZ);
267         dev_dbg(hsotg->dev, "initial grxfsiz=%08x\n", grxfsiz);
268         grxfsiz &= ~GRXFSIZ_DEPTH_MASK;
269         grxfsiz |= params->host_rx_fifo_size <<
270                    GRXFSIZ_DEPTH_SHIFT & GRXFSIZ_DEPTH_MASK;
271         dwc2_writel(hsotg, grxfsiz, GRXFSIZ);
272         dev_dbg(hsotg->dev, "new grxfsiz=%08x\n",
273                 dwc2_readl(hsotg, GRXFSIZ));
274
275         /* Non-periodic Tx FIFO */
276         dev_dbg(hsotg->dev, "initial gnptxfsiz=%08x\n",
277                 dwc2_readl(hsotg, GNPTXFSIZ));
278         nptxfsiz = params->host_nperio_tx_fifo_size <<
279                    FIFOSIZE_DEPTH_SHIFT & FIFOSIZE_DEPTH_MASK;
280         nptxfsiz |= params->host_rx_fifo_size <<
281                     FIFOSIZE_STARTADDR_SHIFT & FIFOSIZE_STARTADDR_MASK;
282         dwc2_writel(hsotg, nptxfsiz, GNPTXFSIZ);
283         dev_dbg(hsotg->dev, "new gnptxfsiz=%08x\n",
284                 dwc2_readl(hsotg, GNPTXFSIZ));
285
286         /* Periodic Tx FIFO */
287         dev_dbg(hsotg->dev, "initial hptxfsiz=%08x\n",
288                 dwc2_readl(hsotg, HPTXFSIZ));
289         hptxfsiz = params->host_perio_tx_fifo_size <<
290                    FIFOSIZE_DEPTH_SHIFT & FIFOSIZE_DEPTH_MASK;
291         hptxfsiz |= (params->host_rx_fifo_size +
292                      params->host_nperio_tx_fifo_size) <<
293                     FIFOSIZE_STARTADDR_SHIFT & FIFOSIZE_STARTADDR_MASK;
294         dwc2_writel(hsotg, hptxfsiz, HPTXFSIZ);
295         dev_dbg(hsotg->dev, "new hptxfsiz=%08x\n",
296                 dwc2_readl(hsotg, HPTXFSIZ));
297
298         if (hsotg->params.en_multiple_tx_fifo &&
299             hsotg->hw_params.snpsid >= DWC2_CORE_REV_2_91a) {
300                 /*
301                  * This feature was implemented in 2.91a version
302                  * Global DFIFOCFG calculation for Host mode -
303                  * include RxFIFO, NPTXFIFO and HPTXFIFO
304                  */
305                 dfifocfg = dwc2_readl(hsotg, GDFIFOCFG);
306                 dfifocfg &= ~GDFIFOCFG_EPINFOBASE_MASK;
307                 dfifocfg |= (params->host_rx_fifo_size +
308                              params->host_nperio_tx_fifo_size +
309                              params->host_perio_tx_fifo_size) <<
310                             GDFIFOCFG_EPINFOBASE_SHIFT &
311                             GDFIFOCFG_EPINFOBASE_MASK;
312                 dwc2_writel(hsotg, dfifocfg, GDFIFOCFG);
313         }
314 }
315
316 /**
317  * dwc2_calc_frame_interval() - Calculates the correct frame Interval value for
318  * the HFIR register according to PHY type and speed
319  *
320  * @hsotg: Programming view of DWC_otg controller
321  *
322  * NOTE: The caller can modify the value of the HFIR register only after the
323  * Port Enable bit of the Host Port Control and Status register (HPRT.EnaPort)
324  * has been set
325  */
326 u32 dwc2_calc_frame_interval(struct dwc2_hsotg *hsotg)
327 {
328         u32 usbcfg;
329         u32 hprt0;
330         int clock = 60; /* default value */
331
332         usbcfg = dwc2_readl(hsotg, GUSBCFG);
333         hprt0 = dwc2_readl(hsotg, HPRT0);
334
335         if (!(usbcfg & GUSBCFG_PHYSEL) && (usbcfg & GUSBCFG_ULPI_UTMI_SEL) &&
336             !(usbcfg & GUSBCFG_PHYIF16))
337                 clock = 60;
338         if ((usbcfg & GUSBCFG_PHYSEL) && hsotg->hw_params.fs_phy_type ==
339             GHWCFG2_FS_PHY_TYPE_SHARED_ULPI)
340                 clock = 48;
341         if (!(usbcfg & GUSBCFG_PHY_LP_CLK_SEL) && !(usbcfg & GUSBCFG_PHYSEL) &&
342             !(usbcfg & GUSBCFG_ULPI_UTMI_SEL) && (usbcfg & GUSBCFG_PHYIF16))
343                 clock = 30;
344         if (!(usbcfg & GUSBCFG_PHY_LP_CLK_SEL) && !(usbcfg & GUSBCFG_PHYSEL) &&
345             !(usbcfg & GUSBCFG_ULPI_UTMI_SEL) && !(usbcfg & GUSBCFG_PHYIF16))
346                 clock = 60;
347         if ((usbcfg & GUSBCFG_PHY_LP_CLK_SEL) && !(usbcfg & GUSBCFG_PHYSEL) &&
348             !(usbcfg & GUSBCFG_ULPI_UTMI_SEL) && (usbcfg & GUSBCFG_PHYIF16))
349                 clock = 48;
350         if ((usbcfg & GUSBCFG_PHYSEL) && !(usbcfg & GUSBCFG_PHYIF16) &&
351             hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_SHARED_UTMI)
352                 clock = 48;
353         if ((usbcfg & GUSBCFG_PHYSEL) &&
354             hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_DEDICATED)
355                 clock = 48;
356
357         if ((hprt0 & HPRT0_SPD_MASK) >> HPRT0_SPD_SHIFT == HPRT0_SPD_HIGH_SPEED)
358                 /* High speed case */
359                 return 125 * clock - 1;
360
361         /* FS/LS case */
362         return 1000 * clock - 1;
363 }
364
365 /**
366  * dwc2_read_packet() - Reads a packet from the Rx FIFO into the destination
367  * buffer
368  *
369  * @hsotg: Programming view of DWC_otg controller
370  * @dest:    Destination buffer for the packet
371  * @bytes:   Number of bytes to copy to the destination
372  */
373 void dwc2_read_packet(struct dwc2_hsotg *hsotg, u8 *dest, u16 bytes)
374 {
375         u32 *data_buf = (u32 *)dest;
376         int word_count = (bytes + 3) / 4;
377         int i;
378
379         /*
380          * Todo: Account for the case where dest is not dword aligned. This
381          * requires reading data from the FIFO into a u32 temp buffer, then
382          * moving it into the data buffer.
383          */
384
385         dev_vdbg(hsotg->dev, "%s(%p,%p,%d)\n", __func__, hsotg, dest, bytes);
386
387         for (i = 0; i < word_count; i++, data_buf++)
388                 *data_buf = dwc2_readl(hsotg, HCFIFO(0));
389 }
390
391 /**
392  * dwc2_dump_channel_info() - Prints the state of a host channel
393  *
394  * @hsotg: Programming view of DWC_otg controller
395  * @chan:  Pointer to the channel to dump
396  *
397  * Must be called with interrupt disabled and spinlock held
398  *
399  * NOTE: This function will be removed once the peripheral controller code
400  * is integrated and the driver is stable
401  */
402 static void dwc2_dump_channel_info(struct dwc2_hsotg *hsotg,
403                                    struct dwc2_host_chan *chan)
404 {
405 #ifdef VERBOSE_DEBUG
406         int num_channels = hsotg->params.host_channels;
407         struct dwc2_qh *qh;
408         u32 hcchar;
409         u32 hcsplt;
410         u32 hctsiz;
411         u32 hc_dma;
412         int i;
413
414         if (!chan)
415                 return;
416
417         hcchar = dwc2_readl(hsotg, HCCHAR(chan->hc_num));
418         hcsplt = dwc2_readl(hsotg, HCSPLT(chan->hc_num));
419         hctsiz = dwc2_readl(hsotg, HCTSIZ(chan->hc_num));
420         hc_dma = dwc2_readl(hsotg, HCDMA(chan->hc_num));
421
422         dev_dbg(hsotg->dev, "  Assigned to channel %p:\n", chan);
423         dev_dbg(hsotg->dev, "    hcchar 0x%08x, hcsplt 0x%08x\n",
424                 hcchar, hcsplt);
425         dev_dbg(hsotg->dev, "    hctsiz 0x%08x, hc_dma 0x%08x\n",
426                 hctsiz, hc_dma);
427         dev_dbg(hsotg->dev, "    dev_addr: %d, ep_num: %d, ep_is_in: %d\n",
428                 chan->dev_addr, chan->ep_num, chan->ep_is_in);
429         dev_dbg(hsotg->dev, "    ep_type: %d\n", chan->ep_type);
430         dev_dbg(hsotg->dev, "    max_packet: %d\n", chan->max_packet);
431         dev_dbg(hsotg->dev, "    data_pid_start: %d\n", chan->data_pid_start);
432         dev_dbg(hsotg->dev, "    xfer_started: %d\n", chan->xfer_started);
433         dev_dbg(hsotg->dev, "    halt_status: %d\n", chan->halt_status);
434         dev_dbg(hsotg->dev, "    xfer_buf: %p\n", chan->xfer_buf);
435         dev_dbg(hsotg->dev, "    xfer_dma: %08lx\n",
436                 (unsigned long)chan->xfer_dma);
437         dev_dbg(hsotg->dev, "    xfer_len: %d\n", chan->xfer_len);
438         dev_dbg(hsotg->dev, "    qh: %p\n", chan->qh);
439         dev_dbg(hsotg->dev, "  NP inactive sched:\n");
440         list_for_each_entry(qh, &hsotg->non_periodic_sched_inactive,
441                             qh_list_entry)
442                 dev_dbg(hsotg->dev, "    %p\n", qh);
443         dev_dbg(hsotg->dev, "  NP waiting sched:\n");
444         list_for_each_entry(qh, &hsotg->non_periodic_sched_waiting,
445                             qh_list_entry)
446                 dev_dbg(hsotg->dev, "    %p\n", qh);
447         dev_dbg(hsotg->dev, "  NP active sched:\n");
448         list_for_each_entry(qh, &hsotg->non_periodic_sched_active,
449                             qh_list_entry)
450                 dev_dbg(hsotg->dev, "    %p\n", qh);
451         dev_dbg(hsotg->dev, "  Channels:\n");
452         for (i = 0; i < num_channels; i++) {
453                 struct dwc2_host_chan *chan = hsotg->hc_ptr_array[i];
454
455                 dev_dbg(hsotg->dev, "    %2d: %p\n", i, chan);
456         }
457 #endif /* VERBOSE_DEBUG */
458 }
459
460 static int _dwc2_hcd_start(struct usb_hcd *hcd);
461
462 static void dwc2_host_start(struct dwc2_hsotg *hsotg)
463 {
464         struct usb_hcd *hcd = dwc2_hsotg_to_hcd(hsotg);
465
466         hcd->self.is_b_host = dwc2_hcd_is_b_host(hsotg);
467         _dwc2_hcd_start(hcd);
468 }
469
470 static void dwc2_host_disconnect(struct dwc2_hsotg *hsotg)
471 {
472         struct usb_hcd *hcd = dwc2_hsotg_to_hcd(hsotg);
473
474         hcd->self.is_b_host = 0;
475 }
476
477 static void dwc2_host_hub_info(struct dwc2_hsotg *hsotg, void *context,
478                                int *hub_addr, int *hub_port)
479 {
480         struct urb *urb = context;
481
482         if (urb->dev->tt)
483                 *hub_addr = urb->dev->tt->hub->devnum;
484         else
485                 *hub_addr = 0;
486         *hub_port = urb->dev->ttport;
487 }
488
489 /*
490  * =========================================================================
491  *  Low Level Host Channel Access Functions
492  * =========================================================================
493  */
494
495 static void dwc2_hc_enable_slave_ints(struct dwc2_hsotg *hsotg,
496                                       struct dwc2_host_chan *chan)
497 {
498         u32 hcintmsk = HCINTMSK_CHHLTD;
499
500         switch (chan->ep_type) {
501         case USB_ENDPOINT_XFER_CONTROL:
502         case USB_ENDPOINT_XFER_BULK:
503                 dev_vdbg(hsotg->dev, "control/bulk\n");
504                 hcintmsk |= HCINTMSK_XFERCOMPL;
505                 hcintmsk |= HCINTMSK_STALL;
506                 hcintmsk |= HCINTMSK_XACTERR;
507                 hcintmsk |= HCINTMSK_DATATGLERR;
508                 if (chan->ep_is_in) {
509                         hcintmsk |= HCINTMSK_BBLERR;
510                 } else {
511                         hcintmsk |= HCINTMSK_NAK;
512                         hcintmsk |= HCINTMSK_NYET;
513                         if (chan->do_ping)
514                                 hcintmsk |= HCINTMSK_ACK;
515                 }
516
517                 if (chan->do_split) {
518                         hcintmsk |= HCINTMSK_NAK;
519                         if (chan->complete_split)
520                                 hcintmsk |= HCINTMSK_NYET;
521                         else
522                                 hcintmsk |= HCINTMSK_ACK;
523                 }
524
525                 if (chan->error_state)
526                         hcintmsk |= HCINTMSK_ACK;
527                 break;
528
529         case USB_ENDPOINT_XFER_INT:
530                 if (dbg_perio())
531                         dev_vdbg(hsotg->dev, "intr\n");
532                 hcintmsk |= HCINTMSK_XFERCOMPL;
533                 hcintmsk |= HCINTMSK_NAK;
534                 hcintmsk |= HCINTMSK_STALL;
535                 hcintmsk |= HCINTMSK_XACTERR;
536                 hcintmsk |= HCINTMSK_DATATGLERR;
537                 hcintmsk |= HCINTMSK_FRMOVRUN;
538
539                 if (chan->ep_is_in)
540                         hcintmsk |= HCINTMSK_BBLERR;
541                 if (chan->error_state)
542                         hcintmsk |= HCINTMSK_ACK;
543                 if (chan->do_split) {
544                         if (chan->complete_split)
545                                 hcintmsk |= HCINTMSK_NYET;
546                         else
547                                 hcintmsk |= HCINTMSK_ACK;
548                 }
549                 break;
550
551         case USB_ENDPOINT_XFER_ISOC:
552                 if (dbg_perio())
553                         dev_vdbg(hsotg->dev, "isoc\n");
554                 hcintmsk |= HCINTMSK_XFERCOMPL;
555                 hcintmsk |= HCINTMSK_FRMOVRUN;
556                 hcintmsk |= HCINTMSK_ACK;
557
558                 if (chan->ep_is_in) {
559                         hcintmsk |= HCINTMSK_XACTERR;
560                         hcintmsk |= HCINTMSK_BBLERR;
561                 }
562                 break;
563         default:
564                 dev_err(hsotg->dev, "## Unknown EP type ##\n");
565                 break;
566         }
567
568         dwc2_writel(hsotg, hcintmsk, HCINTMSK(chan->hc_num));
569         if (dbg_hc(chan))
570                 dev_vdbg(hsotg->dev, "set HCINTMSK to %08x\n", hcintmsk);
571 }
572
573 static void dwc2_hc_enable_dma_ints(struct dwc2_hsotg *hsotg,
574                                     struct dwc2_host_chan *chan)
575 {
576         u32 hcintmsk = HCINTMSK_CHHLTD;
577
578         /*
579          * For Descriptor DMA mode core halts the channel on AHB error.
580          * Interrupt is not required.
581          */
582         if (!hsotg->params.dma_desc_enable) {
583                 if (dbg_hc(chan))
584                         dev_vdbg(hsotg->dev, "desc DMA disabled\n");
585                 hcintmsk |= HCINTMSK_AHBERR;
586         } else {
587                 if (dbg_hc(chan))
588                         dev_vdbg(hsotg->dev, "desc DMA enabled\n");
589                 if (chan->ep_type == USB_ENDPOINT_XFER_ISOC)
590                         hcintmsk |= HCINTMSK_XFERCOMPL;
591         }
592
593         if (chan->error_state && !chan->do_split &&
594             chan->ep_type != USB_ENDPOINT_XFER_ISOC) {
595                 if (dbg_hc(chan))
596                         dev_vdbg(hsotg->dev, "setting ACK\n");
597                 hcintmsk |= HCINTMSK_ACK;
598                 if (chan->ep_is_in) {
599                         hcintmsk |= HCINTMSK_DATATGLERR;
600                         if (chan->ep_type != USB_ENDPOINT_XFER_INT)
601                                 hcintmsk |= HCINTMSK_NAK;
602                 }
603         }
604
605         dwc2_writel(hsotg, hcintmsk, HCINTMSK(chan->hc_num));
606         if (dbg_hc(chan))
607                 dev_vdbg(hsotg->dev, "set HCINTMSK to %08x\n", hcintmsk);
608 }
609
610 static void dwc2_hc_enable_ints(struct dwc2_hsotg *hsotg,
611                                 struct dwc2_host_chan *chan)
612 {
613         u32 intmsk;
614
615         if (hsotg->params.host_dma) {
616                 if (dbg_hc(chan))
617                         dev_vdbg(hsotg->dev, "DMA enabled\n");
618                 dwc2_hc_enable_dma_ints(hsotg, chan);
619         } else {
620                 if (dbg_hc(chan))
621                         dev_vdbg(hsotg->dev, "DMA disabled\n");
622                 dwc2_hc_enable_slave_ints(hsotg, chan);
623         }
624
625         /* Enable the top level host channel interrupt */
626         intmsk = dwc2_readl(hsotg, HAINTMSK);
627         intmsk |= 1 << chan->hc_num;
628         dwc2_writel(hsotg, intmsk, HAINTMSK);
629         if (dbg_hc(chan))
630                 dev_vdbg(hsotg->dev, "set HAINTMSK to %08x\n", intmsk);
631
632         /* Make sure host channel interrupts are enabled */
633         intmsk = dwc2_readl(hsotg, GINTMSK);
634         intmsk |= GINTSTS_HCHINT;
635         dwc2_writel(hsotg, intmsk, GINTMSK);
636         if (dbg_hc(chan))
637                 dev_vdbg(hsotg->dev, "set GINTMSK to %08x\n", intmsk);
638 }
639
640 /**
641  * dwc2_hc_init() - Prepares a host channel for transferring packets to/from
642  * a specific endpoint
643  *
644  * @hsotg: Programming view of DWC_otg controller
645  * @chan:  Information needed to initialize the host channel
646  *
647  * The HCCHARn register is set up with the characteristics specified in chan.
648  * Host channel interrupts that may need to be serviced while this transfer is
649  * in progress are enabled.
650  */
651 static void dwc2_hc_init(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan)
652 {
653         u8 hc_num = chan->hc_num;
654         u32 hcintmsk;
655         u32 hcchar;
656         u32 hcsplt = 0;
657
658         if (dbg_hc(chan))
659                 dev_vdbg(hsotg->dev, "%s()\n", __func__);
660
661         /* Clear old interrupt conditions for this host channel */
662         hcintmsk = 0xffffffff;
663         hcintmsk &= ~HCINTMSK_RESERVED14_31;
664         dwc2_writel(hsotg, hcintmsk, HCINT(hc_num));
665
666         /* Enable channel interrupts required for this transfer */
667         dwc2_hc_enable_ints(hsotg, chan);
668
669         /*
670          * Program the HCCHARn register with the endpoint characteristics for
671          * the current transfer
672          */
673         hcchar = chan->dev_addr << HCCHAR_DEVADDR_SHIFT & HCCHAR_DEVADDR_MASK;
674         hcchar |= chan->ep_num << HCCHAR_EPNUM_SHIFT & HCCHAR_EPNUM_MASK;
675         if (chan->ep_is_in)
676                 hcchar |= HCCHAR_EPDIR;
677         if (chan->speed == USB_SPEED_LOW)
678                 hcchar |= HCCHAR_LSPDDEV;
679         hcchar |= chan->ep_type << HCCHAR_EPTYPE_SHIFT & HCCHAR_EPTYPE_MASK;
680         hcchar |= chan->max_packet << HCCHAR_MPS_SHIFT & HCCHAR_MPS_MASK;
681         dwc2_writel(hsotg, hcchar, HCCHAR(hc_num));
682         if (dbg_hc(chan)) {
683                 dev_vdbg(hsotg->dev, "set HCCHAR(%d) to %08x\n",
684                          hc_num, hcchar);
685
686                 dev_vdbg(hsotg->dev, "%s: Channel %d\n",
687                          __func__, hc_num);
688                 dev_vdbg(hsotg->dev, "   Dev Addr: %d\n",
689                          chan->dev_addr);
690                 dev_vdbg(hsotg->dev, "   Ep Num: %d\n",
691                          chan->ep_num);
692                 dev_vdbg(hsotg->dev, "   Is In: %d\n",
693                          chan->ep_is_in);
694                 dev_vdbg(hsotg->dev, "   Is Low Speed: %d\n",
695                          chan->speed == USB_SPEED_LOW);
696                 dev_vdbg(hsotg->dev, "   Ep Type: %d\n",
697                          chan->ep_type);
698                 dev_vdbg(hsotg->dev, "   Max Pkt: %d\n",
699                          chan->max_packet);
700         }
701
702         /* Program the HCSPLT register for SPLITs */
703         if (chan->do_split) {
704                 if (dbg_hc(chan))
705                         dev_vdbg(hsotg->dev,
706                                  "Programming HC %d with split --> %s\n",
707                                  hc_num,
708                                  chan->complete_split ? "CSPLIT" : "SSPLIT");
709                 if (chan->complete_split)
710                         hcsplt |= HCSPLT_COMPSPLT;
711                 hcsplt |= chan->xact_pos << HCSPLT_XACTPOS_SHIFT &
712                           HCSPLT_XACTPOS_MASK;
713                 hcsplt |= chan->hub_addr << HCSPLT_HUBADDR_SHIFT &
714                           HCSPLT_HUBADDR_MASK;
715                 hcsplt |= chan->hub_port << HCSPLT_PRTADDR_SHIFT &
716                           HCSPLT_PRTADDR_MASK;
717                 if (dbg_hc(chan)) {
718                         dev_vdbg(hsotg->dev, "    comp split %d\n",
719                                  chan->complete_split);
720                         dev_vdbg(hsotg->dev, "    xact pos %d\n",
721                                  chan->xact_pos);
722                         dev_vdbg(hsotg->dev, "    hub addr %d\n",
723                                  chan->hub_addr);
724                         dev_vdbg(hsotg->dev, "    hub port %d\n",
725                                  chan->hub_port);
726                         dev_vdbg(hsotg->dev, "    is_in %d\n",
727                                  chan->ep_is_in);
728                         dev_vdbg(hsotg->dev, "    Max Pkt %d\n",
729                                  chan->max_packet);
730                         dev_vdbg(hsotg->dev, "    xferlen %d\n",
731                                  chan->xfer_len);
732                 }
733         }
734
735         dwc2_writel(hsotg, hcsplt, HCSPLT(hc_num));
736 }
737
738 /**
739  * dwc2_hc_halt() - Attempts to halt a host channel
740  *
741  * @hsotg:       Controller register interface
742  * @chan:        Host channel to halt
743  * @halt_status: Reason for halting the channel
744  *
745  * This function should only be called in Slave mode or to abort a transfer in
746  * either Slave mode or DMA mode. Under normal circumstances in DMA mode, the
747  * controller halts the channel when the transfer is complete or a condition
748  * occurs that requires application intervention.
749  *
750  * In slave mode, checks for a free request queue entry, then sets the Channel
751  * Enable and Channel Disable bits of the Host Channel Characteristics
752  * register of the specified channel to intiate the halt. If there is no free
753  * request queue entry, sets only the Channel Disable bit of the HCCHARn
754  * register to flush requests for this channel. In the latter case, sets a
755  * flag to indicate that the host channel needs to be halted when a request
756  * queue slot is open.
757  *
758  * In DMA mode, always sets the Channel Enable and Channel Disable bits of the
759  * HCCHARn register. The controller ensures there is space in the request
760  * queue before submitting the halt request.
761  *
762  * Some time may elapse before the core flushes any posted requests for this
763  * host channel and halts. The Channel Halted interrupt handler completes the
764  * deactivation of the host channel.
765  */
766 void dwc2_hc_halt(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan,
767                   enum dwc2_halt_status halt_status)
768 {
769         u32 nptxsts, hptxsts, hcchar;
770
771         if (dbg_hc(chan))
772                 dev_vdbg(hsotg->dev, "%s()\n", __func__);
773
774         /*
775          * In buffer DMA or external DMA mode channel can't be halted
776          * for non-split periodic channels. At the end of the next
777          * uframe/frame (in the worst case), the core generates a channel
778          * halted and disables the channel automatically.
779          */
780         if ((hsotg->params.g_dma && !hsotg->params.g_dma_desc) ||
781             hsotg->hw_params.arch == GHWCFG2_EXT_DMA_ARCH) {
782                 if (!chan->do_split &&
783                     (chan->ep_type == USB_ENDPOINT_XFER_ISOC ||
784                      chan->ep_type == USB_ENDPOINT_XFER_INT)) {
785                         dev_err(hsotg->dev, "%s() Channel can't be halted\n",
786                                 __func__);
787                         return;
788                 }
789         }
790
791         if (halt_status == DWC2_HC_XFER_NO_HALT_STATUS)
792                 dev_err(hsotg->dev, "!!! halt_status = %d !!!\n", halt_status);
793
794         if (halt_status == DWC2_HC_XFER_URB_DEQUEUE ||
795             halt_status == DWC2_HC_XFER_AHB_ERR) {
796                 /*
797                  * Disable all channel interrupts except Ch Halted. The QTD
798                  * and QH state associated with this transfer has been cleared
799                  * (in the case of URB_DEQUEUE), so the channel needs to be
800                  * shut down carefully to prevent crashes.
801                  */
802                 u32 hcintmsk = HCINTMSK_CHHLTD;
803
804                 dev_vdbg(hsotg->dev, "dequeue/error\n");
805                 dwc2_writel(hsotg, hcintmsk, HCINTMSK(chan->hc_num));
806
807                 /*
808                  * Make sure no other interrupts besides halt are currently
809                  * pending. Handling another interrupt could cause a crash due
810                  * to the QTD and QH state.
811                  */
812                 dwc2_writel(hsotg, ~hcintmsk, HCINT(chan->hc_num));
813
814                 /*
815                  * Make sure the halt status is set to URB_DEQUEUE or AHB_ERR
816                  * even if the channel was already halted for some other
817                  * reason
818                  */
819                 chan->halt_status = halt_status;
820
821                 hcchar = dwc2_readl(hsotg, HCCHAR(chan->hc_num));
822                 if (!(hcchar & HCCHAR_CHENA)) {
823                         /*
824                          * The channel is either already halted or it hasn't
825                          * started yet. In DMA mode, the transfer may halt if
826                          * it finishes normally or a condition occurs that
827                          * requires driver intervention. Don't want to halt
828                          * the channel again. In either Slave or DMA mode,
829                          * it's possible that the transfer has been assigned
830                          * to a channel, but not started yet when an URB is
831                          * dequeued. Don't want to halt a channel that hasn't
832                          * started yet.
833                          */
834                         return;
835                 }
836         }
837         if (chan->halt_pending) {
838                 /*
839                  * A halt has already been issued for this channel. This might
840                  * happen when a transfer is aborted by a higher level in
841                  * the stack.
842                  */
843                 dev_vdbg(hsotg->dev,
844                          "*** %s: Channel %d, chan->halt_pending already set ***\n",
845                          __func__, chan->hc_num);
846                 return;
847         }
848
849         hcchar = dwc2_readl(hsotg, HCCHAR(chan->hc_num));
850
851         /* No need to set the bit in DDMA for disabling the channel */
852         /* TODO check it everywhere channel is disabled */
853         if (!hsotg->params.dma_desc_enable) {
854                 if (dbg_hc(chan))
855                         dev_vdbg(hsotg->dev, "desc DMA disabled\n");
856                 hcchar |= HCCHAR_CHENA;
857         } else {
858                 if (dbg_hc(chan))
859                         dev_dbg(hsotg->dev, "desc DMA enabled\n");
860         }
861         hcchar |= HCCHAR_CHDIS;
862
863         if (!hsotg->params.host_dma) {
864                 if (dbg_hc(chan))
865                         dev_vdbg(hsotg->dev, "DMA not enabled\n");
866                 hcchar |= HCCHAR_CHENA;
867
868                 /* Check for space in the request queue to issue the halt */
869                 if (chan->ep_type == USB_ENDPOINT_XFER_CONTROL ||
870                     chan->ep_type == USB_ENDPOINT_XFER_BULK) {
871                         dev_vdbg(hsotg->dev, "control/bulk\n");
872                         nptxsts = dwc2_readl(hsotg, GNPTXSTS);
873                         if ((nptxsts & TXSTS_QSPCAVAIL_MASK) == 0) {
874                                 dev_vdbg(hsotg->dev, "Disabling channel\n");
875                                 hcchar &= ~HCCHAR_CHENA;
876                         }
877                 } else {
878                         if (dbg_perio())
879                                 dev_vdbg(hsotg->dev, "isoc/intr\n");
880                         hptxsts = dwc2_readl(hsotg, HPTXSTS);
881                         if ((hptxsts & TXSTS_QSPCAVAIL_MASK) == 0 ||
882                             hsotg->queuing_high_bandwidth) {
883                                 if (dbg_perio())
884                                         dev_vdbg(hsotg->dev, "Disabling channel\n");
885                                 hcchar &= ~HCCHAR_CHENA;
886                         }
887                 }
888         } else {
889                 if (dbg_hc(chan))
890                         dev_vdbg(hsotg->dev, "DMA enabled\n");
891         }
892
893         dwc2_writel(hsotg, hcchar, HCCHAR(chan->hc_num));
894         chan->halt_status = halt_status;
895
896         if (hcchar & HCCHAR_CHENA) {
897                 if (dbg_hc(chan))
898                         dev_vdbg(hsotg->dev, "Channel enabled\n");
899                 chan->halt_pending = 1;
900                 chan->halt_on_queue = 0;
901         } else {
902                 if (dbg_hc(chan))
903                         dev_vdbg(hsotg->dev, "Channel disabled\n");
904                 chan->halt_on_queue = 1;
905         }
906
907         if (dbg_hc(chan)) {
908                 dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
909                          chan->hc_num);
910                 dev_vdbg(hsotg->dev, "   hcchar: 0x%08x\n",
911                          hcchar);
912                 dev_vdbg(hsotg->dev, "   halt_pending: %d\n",
913                          chan->halt_pending);
914                 dev_vdbg(hsotg->dev, "   halt_on_queue: %d\n",
915                          chan->halt_on_queue);
916                 dev_vdbg(hsotg->dev, "   halt_status: %d\n",
917                          chan->halt_status);
918         }
919 }
920
921 /**
922  * dwc2_hc_cleanup() - Clears the transfer state for a host channel
923  *
924  * @hsotg: Programming view of DWC_otg controller
925  * @chan:  Identifies the host channel to clean up
926  *
927  * This function is normally called after a transfer is done and the host
928  * channel is being released
929  */
930 void dwc2_hc_cleanup(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan)
931 {
932         u32 hcintmsk;
933
934         chan->xfer_started = 0;
935
936         list_del_init(&chan->split_order_list_entry);
937
938         /*
939          * Clear channel interrupt enables and any unhandled channel interrupt
940          * conditions
941          */
942         dwc2_writel(hsotg, 0, HCINTMSK(chan->hc_num));
943         hcintmsk = 0xffffffff;
944         hcintmsk &= ~HCINTMSK_RESERVED14_31;
945         dwc2_writel(hsotg, hcintmsk, HCINT(chan->hc_num));
946 }
947
948 /**
949  * dwc2_hc_set_even_odd_frame() - Sets the channel property that indicates in
950  * which frame a periodic transfer should occur
951  *
952  * @hsotg:  Programming view of DWC_otg controller
953  * @chan:   Identifies the host channel to set up and its properties
954  * @hcchar: Current value of the HCCHAR register for the specified host channel
955  *
956  * This function has no effect on non-periodic transfers
957  */
958 static void dwc2_hc_set_even_odd_frame(struct dwc2_hsotg *hsotg,
959                                        struct dwc2_host_chan *chan, u32 *hcchar)
960 {
961         if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
962             chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
963                 int host_speed;
964                 int xfer_ns;
965                 int xfer_us;
966                 int bytes_in_fifo;
967                 u16 fifo_space;
968                 u16 frame_number;
969                 u16 wire_frame;
970
971                 /*
972                  * Try to figure out if we're an even or odd frame. If we set
973                  * even and the current frame number is even the transfer
974                  * will happen immediately.  Similar if both are odd. If one is
975                  * even and the other is odd then the transfer will happen when
976                  * the frame number ticks.
977                  *
978                  * There's a bit of a balancing act to get this right.
979                  * Sometimes we may want to send data in the current frame (AK
980                  * right away).  We might want to do this if the frame number
981                  * _just_ ticked, but we might also want to do this in order
982                  * to continue a split transaction that happened late in a
983                  * microframe (so we didn't know to queue the next transfer
984                  * until the frame number had ticked).  The problem is that we
985                  * need a lot of knowledge to know if there's actually still
986                  * time to send things or if it would be better to wait until
987                  * the next frame.
988                  *
989                  * We can look at how much time is left in the current frame
990                  * and make a guess about whether we'll have time to transfer.
991                  * We'll do that.
992                  */
993
994                 /* Get speed host is running at */
995                 host_speed = (chan->speed != USB_SPEED_HIGH &&
996                               !chan->do_split) ? chan->speed : USB_SPEED_HIGH;
997
998                 /* See how many bytes are in the periodic FIFO right now */
999                 fifo_space = (dwc2_readl(hsotg, HPTXSTS) &
1000                               TXSTS_FSPCAVAIL_MASK) >> TXSTS_FSPCAVAIL_SHIFT;
1001                 bytes_in_fifo = sizeof(u32) *
1002                                 (hsotg->params.host_perio_tx_fifo_size -
1003                                  fifo_space);
1004
1005                 /*
1006                  * Roughly estimate bus time for everything in the periodic
1007                  * queue + our new transfer.  This is "rough" because we're
1008                  * using a function that makes takes into account IN/OUT
1009                  * and INT/ISO and we're just slamming in one value for all
1010                  * transfers.  This should be an over-estimate and that should
1011                  * be OK, but we can probably tighten it.
1012                  */
1013                 xfer_ns = usb_calc_bus_time(host_speed, false, false,
1014                                             chan->xfer_len + bytes_in_fifo);
1015                 xfer_us = NS_TO_US(xfer_ns);
1016
1017                 /* See what frame number we'll be at by the time we finish */
1018                 frame_number = dwc2_hcd_get_future_frame_number(hsotg, xfer_us);
1019
1020                 /* This is when we were scheduled to be on the wire */
1021                 wire_frame = dwc2_frame_num_inc(chan->qh->next_active_frame, 1);
1022
1023                 /*
1024                  * If we'd finish _after_ the frame we're scheduled in then
1025                  * it's hopeless.  Just schedule right away and hope for the
1026                  * best.  Note that it _might_ be wise to call back into the
1027                  * scheduler to pick a better frame, but this is better than
1028                  * nothing.
1029                  */
1030                 if (dwc2_frame_num_gt(frame_number, wire_frame)) {
1031                         dwc2_sch_vdbg(hsotg,
1032                                       "QH=%p EO MISS fr=%04x=>%04x (%+d)\n",
1033                                       chan->qh, wire_frame, frame_number,
1034                                       dwc2_frame_num_dec(frame_number,
1035                                                          wire_frame));
1036                         wire_frame = frame_number;
1037
1038                         /*
1039                          * We picked a different frame number; communicate this
1040                          * back to the scheduler so it doesn't try to schedule
1041                          * another in the same frame.
1042                          *
1043                          * Remember that next_active_frame is 1 before the wire
1044                          * frame.
1045                          */
1046                         chan->qh->next_active_frame =
1047                                 dwc2_frame_num_dec(frame_number, 1);
1048                 }
1049
1050                 if (wire_frame & 1)
1051                         *hcchar |= HCCHAR_ODDFRM;
1052                 else
1053                         *hcchar &= ~HCCHAR_ODDFRM;
1054         }
1055 }
1056
1057 static void dwc2_set_pid_isoc(struct dwc2_host_chan *chan)
1058 {
1059         /* Set up the initial PID for the transfer */
1060         if (chan->speed == USB_SPEED_HIGH) {
1061                 if (chan->ep_is_in) {
1062                         if (chan->multi_count == 1)
1063                                 chan->data_pid_start = DWC2_HC_PID_DATA0;
1064                         else if (chan->multi_count == 2)
1065                                 chan->data_pid_start = DWC2_HC_PID_DATA1;
1066                         else
1067                                 chan->data_pid_start = DWC2_HC_PID_DATA2;
1068                 } else {
1069                         if (chan->multi_count == 1)
1070                                 chan->data_pid_start = DWC2_HC_PID_DATA0;
1071                         else
1072                                 chan->data_pid_start = DWC2_HC_PID_MDATA;
1073                 }
1074         } else {
1075                 chan->data_pid_start = DWC2_HC_PID_DATA0;
1076         }
1077 }
1078
1079 /**
1080  * dwc2_hc_write_packet() - Writes a packet into the Tx FIFO associated with
1081  * the Host Channel
1082  *
1083  * @hsotg: Programming view of DWC_otg controller
1084  * @chan:  Information needed to initialize the host channel
1085  *
1086  * This function should only be called in Slave mode. For a channel associated
1087  * with a non-periodic EP, the non-periodic Tx FIFO is written. For a channel
1088  * associated with a periodic EP, the periodic Tx FIFO is written.
1089  *
1090  * Upon return the xfer_buf and xfer_count fields in chan are incremented by
1091  * the number of bytes written to the Tx FIFO.
1092  */
1093 static void dwc2_hc_write_packet(struct dwc2_hsotg *hsotg,
1094                                  struct dwc2_host_chan *chan)
1095 {
1096         u32 i;
1097         u32 remaining_count;
1098         u32 byte_count;
1099         u32 dword_count;
1100         u32 *data_buf = (u32 *)chan->xfer_buf;
1101
1102         if (dbg_hc(chan))
1103                 dev_vdbg(hsotg->dev, "%s()\n", __func__);
1104
1105         remaining_count = chan->xfer_len - chan->xfer_count;
1106         if (remaining_count > chan->max_packet)
1107                 byte_count = chan->max_packet;
1108         else
1109                 byte_count = remaining_count;
1110
1111         dword_count = (byte_count + 3) / 4;
1112
1113         if (((unsigned long)data_buf & 0x3) == 0) {
1114                 /* xfer_buf is DWORD aligned */
1115                 for (i = 0; i < dword_count; i++, data_buf++)
1116                         dwc2_writel(hsotg, *data_buf, HCFIFO(chan->hc_num));
1117         } else {
1118                 /* xfer_buf is not DWORD aligned */
1119                 for (i = 0; i < dword_count; i++, data_buf++) {
1120                         u32 data = data_buf[0] | data_buf[1] << 8 |
1121                                    data_buf[2] << 16 | data_buf[3] << 24;
1122                         dwc2_writel(hsotg, data, HCFIFO(chan->hc_num));
1123                 }
1124         }
1125
1126         chan->xfer_count += byte_count;
1127         chan->xfer_buf += byte_count;
1128 }
1129
1130 /**
1131  * dwc2_hc_do_ping() - Starts a PING transfer
1132  *
1133  * @hsotg: Programming view of DWC_otg controller
1134  * @chan:  Information needed to initialize the host channel
1135  *
1136  * This function should only be called in Slave mode. The Do Ping bit is set in
1137  * the HCTSIZ register, then the channel is enabled.
1138  */
1139 static void dwc2_hc_do_ping(struct dwc2_hsotg *hsotg,
1140                             struct dwc2_host_chan *chan)
1141 {
1142         u32 hcchar;
1143         u32 hctsiz;
1144
1145         if (dbg_hc(chan))
1146                 dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1147                          chan->hc_num);
1148
1149         hctsiz = TSIZ_DOPNG;
1150         hctsiz |= 1 << TSIZ_PKTCNT_SHIFT;
1151         dwc2_writel(hsotg, hctsiz, HCTSIZ(chan->hc_num));
1152
1153         hcchar = dwc2_readl(hsotg, HCCHAR(chan->hc_num));
1154         hcchar |= HCCHAR_CHENA;
1155         hcchar &= ~HCCHAR_CHDIS;
1156         dwc2_writel(hsotg, hcchar, HCCHAR(chan->hc_num));
1157 }
1158
1159 /**
1160  * dwc2_hc_start_transfer() - Does the setup for a data transfer for a host
1161  * channel and starts the transfer
1162  *
1163  * @hsotg: Programming view of DWC_otg controller
1164  * @chan:  Information needed to initialize the host channel. The xfer_len value
1165  *         may be reduced to accommodate the max widths of the XferSize and
1166  *         PktCnt fields in the HCTSIZn register. The multi_count value may be
1167  *         changed to reflect the final xfer_len value.
1168  *
1169  * This function may be called in either Slave mode or DMA mode. In Slave mode,
1170  * the caller must ensure that there is sufficient space in the request queue
1171  * and Tx Data FIFO.
1172  *
1173  * For an OUT transfer in Slave mode, it loads a data packet into the
1174  * appropriate FIFO. If necessary, additional data packets are loaded in the
1175  * Host ISR.
1176  *
1177  * For an IN transfer in Slave mode, a data packet is requested. The data
1178  * packets are unloaded from the Rx FIFO in the Host ISR. If necessary,
1179  * additional data packets are requested in the Host ISR.
1180  *
1181  * For a PING transfer in Slave mode, the Do Ping bit is set in the HCTSIZ
1182  * register along with a packet count of 1 and the channel is enabled. This
1183  * causes a single PING transaction to occur. Other fields in HCTSIZ are
1184  * simply set to 0 since no data transfer occurs in this case.
1185  *
1186  * For a PING transfer in DMA mode, the HCTSIZ register is initialized with
1187  * all the information required to perform the subsequent data transfer. In
1188  * addition, the Do Ping bit is set in the HCTSIZ register. In this case, the
1189  * controller performs the entire PING protocol, then starts the data
1190  * transfer.
1191  */
1192 static void dwc2_hc_start_transfer(struct dwc2_hsotg *hsotg,
1193                                    struct dwc2_host_chan *chan)
1194 {
1195         u32 max_hc_xfer_size = hsotg->params.max_transfer_size;
1196         u16 max_hc_pkt_count = hsotg->params.max_packet_count;
1197         u32 hcchar;
1198         u32 hctsiz = 0;
1199         u16 num_packets;
1200         u32 ec_mc;
1201
1202         if (dbg_hc(chan))
1203                 dev_vdbg(hsotg->dev, "%s()\n", __func__);
1204
1205         if (chan->do_ping) {
1206                 if (!hsotg->params.host_dma) {
1207                         if (dbg_hc(chan))
1208                                 dev_vdbg(hsotg->dev, "ping, no DMA\n");
1209                         dwc2_hc_do_ping(hsotg, chan);
1210                         chan->xfer_started = 1;
1211                         return;
1212                 }
1213
1214                 if (dbg_hc(chan))
1215                         dev_vdbg(hsotg->dev, "ping, DMA\n");
1216
1217                 hctsiz |= TSIZ_DOPNG;
1218         }
1219
1220         if (chan->do_split) {
1221                 if (dbg_hc(chan))
1222                         dev_vdbg(hsotg->dev, "split\n");
1223                 num_packets = 1;
1224
1225                 if (chan->complete_split && !chan->ep_is_in)
1226                         /*
1227                          * For CSPLIT OUT Transfer, set the size to 0 so the
1228                          * core doesn't expect any data written to the FIFO
1229                          */
1230                         chan->xfer_len = 0;
1231                 else if (chan->ep_is_in || chan->xfer_len > chan->max_packet)
1232                         chan->xfer_len = chan->max_packet;
1233                 else if (!chan->ep_is_in && chan->xfer_len > 188)
1234                         chan->xfer_len = 188;
1235
1236                 hctsiz |= chan->xfer_len << TSIZ_XFERSIZE_SHIFT &
1237                           TSIZ_XFERSIZE_MASK;
1238
1239                 /* For split set ec_mc for immediate retries */
1240                 if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1241                     chan->ep_type == USB_ENDPOINT_XFER_ISOC)
1242                         ec_mc = 3;
1243                 else
1244                         ec_mc = 1;
1245         } else {
1246                 if (dbg_hc(chan))
1247                         dev_vdbg(hsotg->dev, "no split\n");
1248                 /*
1249                  * Ensure that the transfer length and packet count will fit
1250                  * in the widths allocated for them in the HCTSIZn register
1251                  */
1252                 if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1253                     chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
1254                         /*
1255                          * Make sure the transfer size is no larger than one
1256                          * (micro)frame's worth of data. (A check was done
1257                          * when the periodic transfer was accepted to ensure
1258                          * that a (micro)frame's worth of data can be
1259                          * programmed into a channel.)
1260                          */
1261                         u32 max_periodic_len =
1262                                 chan->multi_count * chan->max_packet;
1263
1264                         if (chan->xfer_len > max_periodic_len)
1265                                 chan->xfer_len = max_periodic_len;
1266                 } else if (chan->xfer_len > max_hc_xfer_size) {
1267                         /*
1268                          * Make sure that xfer_len is a multiple of max packet
1269                          * size
1270                          */
1271                         chan->xfer_len =
1272                                 max_hc_xfer_size - chan->max_packet + 1;
1273                 }
1274
1275                 if (chan->xfer_len > 0) {
1276                         num_packets = (chan->xfer_len + chan->max_packet - 1) /
1277                                         chan->max_packet;
1278                         if (num_packets > max_hc_pkt_count) {
1279                                 num_packets = max_hc_pkt_count;
1280                                 chan->xfer_len = num_packets * chan->max_packet;
1281                         } else if (chan->ep_is_in) {
1282                                 /*
1283                                  * Always program an integral # of max packets
1284                                  * for IN transfers.
1285                                  * Note: This assumes that the input buffer is
1286                                  * aligned and sized accordingly.
1287                                  */
1288                                 chan->xfer_len = num_packets * chan->max_packet;
1289                         }
1290                 } else {
1291                         /* Need 1 packet for transfer length of 0 */
1292                         num_packets = 1;
1293                 }
1294
1295                 if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1296                     chan->ep_type == USB_ENDPOINT_XFER_ISOC)
1297                         /*
1298                          * Make sure that the multi_count field matches the
1299                          * actual transfer length
1300                          */
1301                         chan->multi_count = num_packets;
1302
1303                 if (chan->ep_type == USB_ENDPOINT_XFER_ISOC)
1304                         dwc2_set_pid_isoc(chan);
1305
1306                 hctsiz |= chan->xfer_len << TSIZ_XFERSIZE_SHIFT &
1307                           TSIZ_XFERSIZE_MASK;
1308
1309                 /* The ec_mc gets the multi_count for non-split */
1310                 ec_mc = chan->multi_count;
1311         }
1312
1313         chan->start_pkt_count = num_packets;
1314         hctsiz |= num_packets << TSIZ_PKTCNT_SHIFT & TSIZ_PKTCNT_MASK;
1315         hctsiz |= chan->data_pid_start << TSIZ_SC_MC_PID_SHIFT &
1316                   TSIZ_SC_MC_PID_MASK;
1317         dwc2_writel(hsotg, hctsiz, HCTSIZ(chan->hc_num));
1318         if (dbg_hc(chan)) {
1319                 dev_vdbg(hsotg->dev, "Wrote %08x to HCTSIZ(%d)\n",
1320                          hctsiz, chan->hc_num);
1321
1322                 dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1323                          chan->hc_num);
1324                 dev_vdbg(hsotg->dev, "   Xfer Size: %d\n",
1325                          (hctsiz & TSIZ_XFERSIZE_MASK) >>
1326                          TSIZ_XFERSIZE_SHIFT);
1327                 dev_vdbg(hsotg->dev, "   Num Pkts: %d\n",
1328                          (hctsiz & TSIZ_PKTCNT_MASK) >>
1329                          TSIZ_PKTCNT_SHIFT);
1330                 dev_vdbg(hsotg->dev, "   Start PID: %d\n",
1331                          (hctsiz & TSIZ_SC_MC_PID_MASK) >>
1332                          TSIZ_SC_MC_PID_SHIFT);
1333         }
1334
1335         if (hsotg->params.host_dma) {
1336                 dma_addr_t dma_addr;
1337
1338                 if (chan->align_buf) {
1339                         if (dbg_hc(chan))
1340                                 dev_vdbg(hsotg->dev, "align_buf\n");
1341                         dma_addr = chan->align_buf;
1342                 } else {
1343                         dma_addr = chan->xfer_dma;
1344                 }
1345                 dwc2_writel(hsotg, (u32)dma_addr, HCDMA(chan->hc_num));
1346
1347                 if (dbg_hc(chan))
1348                         dev_vdbg(hsotg->dev, "Wrote %08lx to HCDMA(%d)\n",
1349                                  (unsigned long)dma_addr, chan->hc_num);
1350         }
1351
1352         /* Start the split */
1353         if (chan->do_split) {
1354                 u32 hcsplt = dwc2_readl(hsotg, HCSPLT(chan->hc_num));
1355
1356                 hcsplt |= HCSPLT_SPLTENA;
1357                 dwc2_writel(hsotg, hcsplt, HCSPLT(chan->hc_num));
1358         }
1359
1360         hcchar = dwc2_readl(hsotg, HCCHAR(chan->hc_num));
1361         hcchar &= ~HCCHAR_MULTICNT_MASK;
1362         hcchar |= (ec_mc << HCCHAR_MULTICNT_SHIFT) & HCCHAR_MULTICNT_MASK;
1363         dwc2_hc_set_even_odd_frame(hsotg, chan, &hcchar);
1364
1365         if (hcchar & HCCHAR_CHDIS)
1366                 dev_warn(hsotg->dev,
1367                          "%s: chdis set, channel %d, hcchar 0x%08x\n",
1368                          __func__, chan->hc_num, hcchar);
1369
1370         /* Set host channel enable after all other setup is complete */
1371         hcchar |= HCCHAR_CHENA;
1372         hcchar &= ~HCCHAR_CHDIS;
1373
1374         if (dbg_hc(chan))
1375                 dev_vdbg(hsotg->dev, "   Multi Cnt: %d\n",
1376                          (hcchar & HCCHAR_MULTICNT_MASK) >>
1377                          HCCHAR_MULTICNT_SHIFT);
1378
1379         dwc2_writel(hsotg, hcchar, HCCHAR(chan->hc_num));
1380         if (dbg_hc(chan))
1381                 dev_vdbg(hsotg->dev, "Wrote %08x to HCCHAR(%d)\n", hcchar,
1382                          chan->hc_num);
1383
1384         chan->xfer_started = 1;
1385         chan->requests++;
1386
1387         if (!hsotg->params.host_dma &&
1388             !chan->ep_is_in && chan->xfer_len > 0)
1389                 /* Load OUT packet into the appropriate Tx FIFO */
1390                 dwc2_hc_write_packet(hsotg, chan);
1391 }
1392
1393 /**
1394  * dwc2_hc_start_transfer_ddma() - Does the setup for a data transfer for a
1395  * host channel and starts the transfer in Descriptor DMA mode
1396  *
1397  * @hsotg: Programming view of DWC_otg controller
1398  * @chan:  Information needed to initialize the host channel
1399  *
1400  * Initializes HCTSIZ register. For a PING transfer the Do Ping bit is set.
1401  * Sets PID and NTD values. For periodic transfers initializes SCHED_INFO field
1402  * with micro-frame bitmap.
1403  *
1404  * Initializes HCDMA register with descriptor list address and CTD value then
1405  * starts the transfer via enabling the channel.
1406  */
1407 void dwc2_hc_start_transfer_ddma(struct dwc2_hsotg *hsotg,
1408                                  struct dwc2_host_chan *chan)
1409 {
1410         u32 hcchar;
1411         u32 hctsiz = 0;
1412
1413         if (chan->do_ping)
1414                 hctsiz |= TSIZ_DOPNG;
1415
1416         if (chan->ep_type == USB_ENDPOINT_XFER_ISOC)
1417                 dwc2_set_pid_isoc(chan);
1418
1419         /* Packet Count and Xfer Size are not used in Descriptor DMA mode */
1420         hctsiz |= chan->data_pid_start << TSIZ_SC_MC_PID_SHIFT &
1421                   TSIZ_SC_MC_PID_MASK;
1422
1423         /* 0 - 1 descriptor, 1 - 2 descriptors, etc */
1424         hctsiz |= (chan->ntd - 1) << TSIZ_NTD_SHIFT & TSIZ_NTD_MASK;
1425
1426         /* Non-zero only for high-speed interrupt endpoints */
1427         hctsiz |= chan->schinfo << TSIZ_SCHINFO_SHIFT & TSIZ_SCHINFO_MASK;
1428
1429         if (dbg_hc(chan)) {
1430                 dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1431                          chan->hc_num);
1432                 dev_vdbg(hsotg->dev, "   Start PID: %d\n",
1433                          chan->data_pid_start);
1434                 dev_vdbg(hsotg->dev, "   NTD: %d\n", chan->ntd - 1);
1435         }
1436
1437         dwc2_writel(hsotg, hctsiz, HCTSIZ(chan->hc_num));
1438
1439         dma_sync_single_for_device(hsotg->dev, chan->desc_list_addr,
1440                                    chan->desc_list_sz, DMA_TO_DEVICE);
1441
1442         dwc2_writel(hsotg, chan->desc_list_addr, HCDMA(chan->hc_num));
1443
1444         if (dbg_hc(chan))
1445                 dev_vdbg(hsotg->dev, "Wrote %pad to HCDMA(%d)\n",
1446                          &chan->desc_list_addr, chan->hc_num);
1447
1448         hcchar = dwc2_readl(hsotg, HCCHAR(chan->hc_num));
1449         hcchar &= ~HCCHAR_MULTICNT_MASK;
1450         hcchar |= chan->multi_count << HCCHAR_MULTICNT_SHIFT &
1451                   HCCHAR_MULTICNT_MASK;
1452
1453         if (hcchar & HCCHAR_CHDIS)
1454                 dev_warn(hsotg->dev,
1455                          "%s: chdis set, channel %d, hcchar 0x%08x\n",
1456                          __func__, chan->hc_num, hcchar);
1457
1458         /* Set host channel enable after all other setup is complete */
1459         hcchar |= HCCHAR_CHENA;
1460         hcchar &= ~HCCHAR_CHDIS;
1461
1462         if (dbg_hc(chan))
1463                 dev_vdbg(hsotg->dev, "   Multi Cnt: %d\n",
1464                          (hcchar & HCCHAR_MULTICNT_MASK) >>
1465                          HCCHAR_MULTICNT_SHIFT);
1466
1467         dwc2_writel(hsotg, hcchar, HCCHAR(chan->hc_num));
1468         if (dbg_hc(chan))
1469                 dev_vdbg(hsotg->dev, "Wrote %08x to HCCHAR(%d)\n", hcchar,
1470                          chan->hc_num);
1471
1472         chan->xfer_started = 1;
1473         chan->requests++;
1474 }
1475
1476 /**
1477  * dwc2_hc_continue_transfer() - Continues a data transfer that was started by
1478  * a previous call to dwc2_hc_start_transfer()
1479  *
1480  * @hsotg: Programming view of DWC_otg controller
1481  * @chan:  Information needed to initialize the host channel
1482  *
1483  * The caller must ensure there is sufficient space in the request queue and Tx
1484  * Data FIFO. This function should only be called in Slave mode. In DMA mode,
1485  * the controller acts autonomously to complete transfers programmed to a host
1486  * channel.
1487  *
1488  * For an OUT transfer, a new data packet is loaded into the appropriate FIFO
1489  * if there is any data remaining to be queued. For an IN transfer, another
1490  * data packet is always requested. For the SETUP phase of a control transfer,
1491  * this function does nothing.
1492  *
1493  * Return: 1 if a new request is queued, 0 if no more requests are required
1494  * for this transfer
1495  */
1496 static int dwc2_hc_continue_transfer(struct dwc2_hsotg *hsotg,
1497                                      struct dwc2_host_chan *chan)
1498 {
1499         if (dbg_hc(chan))
1500                 dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1501                          chan->hc_num);
1502
1503         if (chan->do_split)
1504                 /* SPLITs always queue just once per channel */
1505                 return 0;
1506
1507         if (chan->data_pid_start == DWC2_HC_PID_SETUP)
1508                 /* SETUPs are queued only once since they can't be NAK'd */
1509                 return 0;
1510
1511         if (chan->ep_is_in) {
1512                 /*
1513                  * Always queue another request for other IN transfers. If
1514                  * back-to-back INs are issued and NAKs are received for both,
1515                  * the driver may still be processing the first NAK when the
1516                  * second NAK is received. When the interrupt handler clears
1517                  * the NAK interrupt for the first NAK, the second NAK will
1518                  * not be seen. So we can't depend on the NAK interrupt
1519                  * handler to requeue a NAK'd request. Instead, IN requests
1520                  * are issued each time this function is called. When the
1521                  * transfer completes, the extra requests for the channel will
1522                  * be flushed.
1523                  */
1524                 u32 hcchar = dwc2_readl(hsotg, HCCHAR(chan->hc_num));
1525
1526                 dwc2_hc_set_even_odd_frame(hsotg, chan, &hcchar);
1527                 hcchar |= HCCHAR_CHENA;
1528                 hcchar &= ~HCCHAR_CHDIS;
1529                 if (dbg_hc(chan))
1530                         dev_vdbg(hsotg->dev, "   IN xfer: hcchar = 0x%08x\n",
1531                                  hcchar);
1532                 dwc2_writel(hsotg, hcchar, HCCHAR(chan->hc_num));
1533                 chan->requests++;
1534                 return 1;
1535         }
1536
1537         /* OUT transfers */
1538
1539         if (chan->xfer_count < chan->xfer_len) {
1540                 if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1541                     chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
1542                         u32 hcchar = dwc2_readl(hsotg,
1543                                                 HCCHAR(chan->hc_num));
1544
1545                         dwc2_hc_set_even_odd_frame(hsotg, chan,
1546                                                    &hcchar);
1547                 }
1548
1549                 /* Load OUT packet into the appropriate Tx FIFO */
1550                 dwc2_hc_write_packet(hsotg, chan);
1551                 chan->requests++;
1552                 return 1;
1553         }
1554
1555         return 0;
1556 }
1557
1558 /*
1559  * =========================================================================
1560  *  HCD
1561  * =========================================================================
1562  */
1563
1564 /*
1565  * Processes all the URBs in a single list of QHs. Completes them with
1566  * -ETIMEDOUT and frees the QTD.
1567  *
1568  * Must be called with interrupt disabled and spinlock held
1569  */
1570 static void dwc2_kill_urbs_in_qh_list(struct dwc2_hsotg *hsotg,
1571                                       struct list_head *qh_list)
1572 {
1573         struct dwc2_qh *qh, *qh_tmp;
1574         struct dwc2_qtd *qtd, *qtd_tmp;
1575
1576         list_for_each_entry_safe(qh, qh_tmp, qh_list, qh_list_entry) {
1577                 list_for_each_entry_safe(qtd, qtd_tmp, &qh->qtd_list,
1578                                          qtd_list_entry) {
1579                         dwc2_host_complete(hsotg, qtd, -ECONNRESET);
1580                         dwc2_hcd_qtd_unlink_and_free(hsotg, qtd, qh);
1581                 }
1582         }
1583 }
1584
1585 static void dwc2_qh_list_free(struct dwc2_hsotg *hsotg,
1586                               struct list_head *qh_list)
1587 {
1588         struct dwc2_qtd *qtd, *qtd_tmp;
1589         struct dwc2_qh *qh, *qh_tmp;
1590         unsigned long flags;
1591
1592         if (!qh_list->next)
1593                 /* The list hasn't been initialized yet */
1594                 return;
1595
1596         spin_lock_irqsave(&hsotg->lock, flags);
1597
1598         /* Ensure there are no QTDs or URBs left */
1599         dwc2_kill_urbs_in_qh_list(hsotg, qh_list);
1600
1601         list_for_each_entry_safe(qh, qh_tmp, qh_list, qh_list_entry) {
1602                 dwc2_hcd_qh_unlink(hsotg, qh);
1603
1604                 /* Free each QTD in the QH's QTD list */
1605                 list_for_each_entry_safe(qtd, qtd_tmp, &qh->qtd_list,
1606                                          qtd_list_entry)
1607                         dwc2_hcd_qtd_unlink_and_free(hsotg, qtd, qh);
1608
1609                 if (qh->channel && qh->channel->qh == qh)
1610                         qh->channel->qh = NULL;
1611
1612                 spin_unlock_irqrestore(&hsotg->lock, flags);
1613                 dwc2_hcd_qh_free(hsotg, qh);
1614                 spin_lock_irqsave(&hsotg->lock, flags);
1615         }
1616
1617         spin_unlock_irqrestore(&hsotg->lock, flags);
1618 }
1619
1620 /*
1621  * Responds with an error status of -ETIMEDOUT to all URBs in the non-periodic
1622  * and periodic schedules. The QTD associated with each URB is removed from
1623  * the schedule and freed. This function may be called when a disconnect is
1624  * detected or when the HCD is being stopped.
1625  *
1626  * Must be called with interrupt disabled and spinlock held
1627  */
1628 static void dwc2_kill_all_urbs(struct dwc2_hsotg *hsotg)
1629 {
1630         dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->non_periodic_sched_inactive);
1631         dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->non_periodic_sched_waiting);
1632         dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->non_periodic_sched_active);
1633         dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_inactive);
1634         dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_ready);
1635         dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_assigned);
1636         dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_queued);
1637 }
1638
1639 /**
1640  * dwc2_hcd_start() - Starts the HCD when switching to Host mode
1641  *
1642  * @hsotg: Pointer to struct dwc2_hsotg
1643  */
1644 void dwc2_hcd_start(struct dwc2_hsotg *hsotg)
1645 {
1646         u32 hprt0;
1647
1648         if (hsotg->op_state == OTG_STATE_B_HOST) {
1649                 /*
1650                  * Reset the port. During a HNP mode switch the reset
1651                  * needs to occur within 1ms and have a duration of at
1652                  * least 50ms.
1653                  */
1654                 hprt0 = dwc2_read_hprt0(hsotg);
1655                 hprt0 |= HPRT0_RST;
1656                 dwc2_writel(hsotg, hprt0, HPRT0);
1657         }
1658
1659         queue_delayed_work(hsotg->wq_otg, &hsotg->start_work,
1660                            msecs_to_jiffies(50));
1661 }
1662
1663 /* Must be called with interrupt disabled and spinlock held */
1664 static void dwc2_hcd_cleanup_channels(struct dwc2_hsotg *hsotg)
1665 {
1666         int num_channels = hsotg->params.host_channels;
1667         struct dwc2_host_chan *channel;
1668         u32 hcchar;
1669         int i;
1670
1671         if (!hsotg->params.host_dma) {
1672                 /* Flush out any channel requests in slave mode */
1673                 for (i = 0; i < num_channels; i++) {
1674                         channel = hsotg->hc_ptr_array[i];
1675                         if (!list_empty(&channel->hc_list_entry))
1676                                 continue;
1677                         hcchar = dwc2_readl(hsotg, HCCHAR(i));
1678                         if (hcchar & HCCHAR_CHENA) {
1679                                 hcchar &= ~(HCCHAR_CHENA | HCCHAR_EPDIR);
1680                                 hcchar |= HCCHAR_CHDIS;
1681                                 dwc2_writel(hsotg, hcchar, HCCHAR(i));
1682                         }
1683                 }
1684         }
1685
1686         for (i = 0; i < num_channels; i++) {
1687                 channel = hsotg->hc_ptr_array[i];
1688                 if (!list_empty(&channel->hc_list_entry))
1689                         continue;
1690                 hcchar = dwc2_readl(hsotg, HCCHAR(i));
1691                 if (hcchar & HCCHAR_CHENA) {
1692                         /* Halt the channel */
1693                         hcchar |= HCCHAR_CHDIS;
1694                         dwc2_writel(hsotg, hcchar, HCCHAR(i));
1695                 }
1696
1697                 dwc2_hc_cleanup(hsotg, channel);
1698                 list_add_tail(&channel->hc_list_entry, &hsotg->free_hc_list);
1699                 /*
1700                  * Added for Descriptor DMA to prevent channel double cleanup in
1701                  * release_channel_ddma(), which is called from ep_disable when
1702                  * device disconnects
1703                  */
1704                 channel->qh = NULL;
1705         }
1706         /* All channels have been freed, mark them available */
1707         if (hsotg->params.uframe_sched) {
1708                 hsotg->available_host_channels =
1709                         hsotg->params.host_channels;
1710         } else {
1711                 hsotg->non_periodic_channels = 0;
1712                 hsotg->periodic_channels = 0;
1713         }
1714 }
1715
1716 /**
1717  * dwc2_hcd_connect() - Handles connect of the HCD
1718  *
1719  * @hsotg: Pointer to struct dwc2_hsotg
1720  *
1721  * Must be called with interrupt disabled and spinlock held
1722  */
1723 void dwc2_hcd_connect(struct dwc2_hsotg *hsotg)
1724 {
1725         if (hsotg->lx_state != DWC2_L0)
1726                 usb_hcd_resume_root_hub(hsotg->priv);
1727
1728         hsotg->flags.b.port_connect_status_change = 1;
1729         hsotg->flags.b.port_connect_status = 1;
1730 }
1731
1732 /**
1733  * dwc2_hcd_disconnect() - Handles disconnect of the HCD
1734  *
1735  * @hsotg: Pointer to struct dwc2_hsotg
1736  * @force: If true, we won't try to reconnect even if we see device connected.
1737  *
1738  * Must be called with interrupt disabled and spinlock held
1739  */
1740 void dwc2_hcd_disconnect(struct dwc2_hsotg *hsotg, bool force)
1741 {
1742         u32 intr;
1743         u32 hprt0;
1744
1745         /* Set status flags for the hub driver */
1746         hsotg->flags.b.port_connect_status_change = 1;
1747         hsotg->flags.b.port_connect_status = 0;
1748
1749         /*
1750          * Shutdown any transfers in process by clearing the Tx FIFO Empty
1751          * interrupt mask and status bits and disabling subsequent host
1752          * channel interrupts.
1753          */
1754         intr = dwc2_readl(hsotg, GINTMSK);
1755         intr &= ~(GINTSTS_NPTXFEMP | GINTSTS_PTXFEMP | GINTSTS_HCHINT);
1756         dwc2_writel(hsotg, intr, GINTMSK);
1757         intr = GINTSTS_NPTXFEMP | GINTSTS_PTXFEMP | GINTSTS_HCHINT;
1758         dwc2_writel(hsotg, intr, GINTSTS);
1759
1760         /*
1761          * Turn off the vbus power only if the core has transitioned to device
1762          * mode. If still in host mode, need to keep power on to detect a
1763          * reconnection.
1764          */
1765         if (dwc2_is_device_mode(hsotg)) {
1766                 if (hsotg->op_state != OTG_STATE_A_SUSPEND) {
1767                         dev_dbg(hsotg->dev, "Disconnect: PortPower off\n");
1768                         dwc2_writel(hsotg, 0, HPRT0);
1769                 }
1770
1771                 dwc2_disable_host_interrupts(hsotg);
1772         }
1773
1774         /* Respond with an error status to all URBs in the schedule */
1775         dwc2_kill_all_urbs(hsotg);
1776
1777         if (dwc2_is_host_mode(hsotg))
1778                 /* Clean up any host channels that were in use */
1779                 dwc2_hcd_cleanup_channels(hsotg);
1780
1781         dwc2_host_disconnect(hsotg);
1782
1783         /*
1784          * Add an extra check here to see if we're actually connected but
1785          * we don't have a detection interrupt pending.  This can happen if:
1786          *   1. hardware sees connect
1787          *   2. hardware sees disconnect
1788          *   3. hardware sees connect
1789          *   4. dwc2_port_intr() - clears connect interrupt
1790          *   5. dwc2_handle_common_intr() - calls here
1791          *
1792          * Without the extra check here we will end calling disconnect
1793          * and won't get any future interrupts to handle the connect.
1794          */
1795         if (!force) {
1796                 hprt0 = dwc2_readl(hsotg, HPRT0);
1797                 if (!(hprt0 & HPRT0_CONNDET) && (hprt0 & HPRT0_CONNSTS))
1798                         dwc2_hcd_connect(hsotg);
1799         }
1800 }
1801
1802 /**
1803  * dwc2_hcd_rem_wakeup() - Handles Remote Wakeup
1804  *
1805  * @hsotg: Pointer to struct dwc2_hsotg
1806  */
1807 static void dwc2_hcd_rem_wakeup(struct dwc2_hsotg *hsotg)
1808 {
1809         if (hsotg->bus_suspended) {
1810                 hsotg->flags.b.port_suspend_change = 1;
1811                 usb_hcd_resume_root_hub(hsotg->priv);
1812         }
1813
1814         if (hsotg->lx_state == DWC2_L1)
1815                 hsotg->flags.b.port_l1_change = 1;
1816 }
1817
1818 /**
1819  * dwc2_hcd_stop() - Halts the DWC_otg host mode operations in a clean manner
1820  *
1821  * @hsotg: Pointer to struct dwc2_hsotg
1822  *
1823  * Must be called with interrupt disabled and spinlock held
1824  */
1825 void dwc2_hcd_stop(struct dwc2_hsotg *hsotg)
1826 {
1827         dev_dbg(hsotg->dev, "DWC OTG HCD STOP\n");
1828
1829         /*
1830          * The root hub should be disconnected before this function is called.
1831          * The disconnect will clear the QTD lists (via ..._hcd_urb_dequeue)
1832          * and the QH lists (via ..._hcd_endpoint_disable).
1833          */
1834
1835         /* Turn off all host-specific interrupts */
1836         dwc2_disable_host_interrupts(hsotg);
1837
1838         /* Turn off the vbus power */
1839         dev_dbg(hsotg->dev, "PortPower off\n");
1840         dwc2_writel(hsotg, 0, HPRT0);
1841 }
1842
1843 /* Caller must hold driver lock */
1844 static int dwc2_hcd_urb_enqueue(struct dwc2_hsotg *hsotg,
1845                                 struct dwc2_hcd_urb *urb, struct dwc2_qh *qh,
1846                                 struct dwc2_qtd *qtd)
1847 {
1848         u32 intr_mask;
1849         int retval;
1850         int dev_speed;
1851
1852         if (!hsotg->flags.b.port_connect_status) {
1853                 /* No longer connected */
1854                 dev_err(hsotg->dev, "Not connected\n");
1855                 return -ENODEV;
1856         }
1857
1858         dev_speed = dwc2_host_get_speed(hsotg, urb->priv);
1859
1860         /* Some configurations cannot support LS traffic on a FS root port */
1861         if ((dev_speed == USB_SPEED_LOW) &&
1862             (hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_DEDICATED) &&
1863             (hsotg->hw_params.hs_phy_type == GHWCFG2_HS_PHY_TYPE_UTMI)) {
1864                 u32 hprt0 = dwc2_readl(hsotg, HPRT0);
1865                 u32 prtspd = (hprt0 & HPRT0_SPD_MASK) >> HPRT0_SPD_SHIFT;
1866
1867                 if (prtspd == HPRT0_SPD_FULL_SPEED)
1868                         return -ENODEV;
1869         }
1870
1871         if (!qtd)
1872                 return -EINVAL;
1873
1874         dwc2_hcd_qtd_init(qtd, urb);
1875         retval = dwc2_hcd_qtd_add(hsotg, qtd, qh);
1876         if (retval) {
1877                 dev_err(hsotg->dev,
1878                         "DWC OTG HCD URB Enqueue failed adding QTD. Error status %d\n",
1879                         retval);
1880                 return retval;
1881         }
1882
1883         intr_mask = dwc2_readl(hsotg, GINTMSK);
1884         if (!(intr_mask & GINTSTS_SOF)) {
1885                 enum dwc2_transaction_type tr_type;
1886
1887                 if (qtd->qh->ep_type == USB_ENDPOINT_XFER_BULK &&
1888                     !(qtd->urb->flags & URB_GIVEBACK_ASAP))
1889                         /*
1890                          * Do not schedule SG transactions until qtd has
1891                          * URB_GIVEBACK_ASAP set
1892                          */
1893                         return 0;
1894
1895                 tr_type = dwc2_hcd_select_transactions(hsotg);
1896                 if (tr_type != DWC2_TRANSACTION_NONE)
1897                         dwc2_hcd_queue_transactions(hsotg, tr_type);
1898         }
1899
1900         return 0;
1901 }
1902
1903 /* Must be called with interrupt disabled and spinlock held */
1904 static int dwc2_hcd_urb_dequeue(struct dwc2_hsotg *hsotg,
1905                                 struct dwc2_hcd_urb *urb)
1906 {
1907         struct dwc2_qh *qh;
1908         struct dwc2_qtd *urb_qtd;
1909
1910         urb_qtd = urb->qtd;
1911         if (!urb_qtd) {
1912                 dev_dbg(hsotg->dev, "## Urb QTD is NULL ##\n");
1913                 return -EINVAL;
1914         }
1915
1916         qh = urb_qtd->qh;
1917         if (!qh) {
1918                 dev_dbg(hsotg->dev, "## Urb QTD QH is NULL ##\n");
1919                 return -EINVAL;
1920         }
1921
1922         urb->priv = NULL;
1923
1924         if (urb_qtd->in_process && qh->channel) {
1925                 dwc2_dump_channel_info(hsotg, qh->channel);
1926
1927                 /* The QTD is in process (it has been assigned to a channel) */
1928                 if (hsotg->flags.b.port_connect_status)
1929                         /*
1930                          * If still connected (i.e. in host mode), halt the
1931                          * channel so it can be used for other transfers. If
1932                          * no longer connected, the host registers can't be
1933                          * written to halt the channel since the core is in
1934                          * device mode.
1935                          */
1936                         dwc2_hc_halt(hsotg, qh->channel,
1937                                      DWC2_HC_XFER_URB_DEQUEUE);
1938         }
1939
1940         /*
1941          * Free the QTD and clean up the associated QH. Leave the QH in the
1942          * schedule if it has any remaining QTDs.
1943          */
1944         if (!hsotg->params.dma_desc_enable) {
1945                 u8 in_process = urb_qtd->in_process;
1946
1947                 dwc2_hcd_qtd_unlink_and_free(hsotg, urb_qtd, qh);
1948                 if (in_process) {
1949                         dwc2_hcd_qh_deactivate(hsotg, qh, 0);
1950                         qh->channel = NULL;
1951                 } else if (list_empty(&qh->qtd_list)) {
1952                         dwc2_hcd_qh_unlink(hsotg, qh);
1953                 }
1954         } else {
1955                 dwc2_hcd_qtd_unlink_and_free(hsotg, urb_qtd, qh);
1956         }
1957
1958         return 0;
1959 }
1960
1961 /* Must NOT be called with interrupt disabled or spinlock held */
1962 static int dwc2_hcd_endpoint_disable(struct dwc2_hsotg *hsotg,
1963                                      struct usb_host_endpoint *ep, int retry)
1964 {
1965         struct dwc2_qtd *qtd, *qtd_tmp;
1966         struct dwc2_qh *qh;
1967         unsigned long flags;
1968         int rc;
1969
1970         spin_lock_irqsave(&hsotg->lock, flags);
1971
1972         qh = ep->hcpriv;
1973         if (!qh) {
1974                 rc = -EINVAL;
1975                 goto err;
1976         }
1977
1978         while (!list_empty(&qh->qtd_list) && retry--) {
1979                 if (retry == 0) {
1980                         dev_err(hsotg->dev,
1981                                 "## timeout in dwc2_hcd_endpoint_disable() ##\n");
1982                         rc = -EBUSY;
1983                         goto err;
1984                 }
1985
1986                 spin_unlock_irqrestore(&hsotg->lock, flags);
1987                 msleep(20);
1988                 spin_lock_irqsave(&hsotg->lock, flags);
1989                 qh = ep->hcpriv;
1990                 if (!qh) {
1991                         rc = -EINVAL;
1992                         goto err;
1993                 }
1994         }
1995
1996         dwc2_hcd_qh_unlink(hsotg, qh);
1997
1998         /* Free each QTD in the QH's QTD list */
1999         list_for_each_entry_safe(qtd, qtd_tmp, &qh->qtd_list, qtd_list_entry)
2000                 dwc2_hcd_qtd_unlink_and_free(hsotg, qtd, qh);
2001
2002         ep->hcpriv = NULL;
2003
2004         if (qh->channel && qh->channel->qh == qh)
2005                 qh->channel->qh = NULL;
2006
2007         spin_unlock_irqrestore(&hsotg->lock, flags);
2008
2009         dwc2_hcd_qh_free(hsotg, qh);
2010
2011         return 0;
2012
2013 err:
2014         ep->hcpriv = NULL;
2015         spin_unlock_irqrestore(&hsotg->lock, flags);
2016
2017         return rc;
2018 }
2019
2020 /* Must be called with interrupt disabled and spinlock held */
2021 static int dwc2_hcd_endpoint_reset(struct dwc2_hsotg *hsotg,
2022                                    struct usb_host_endpoint *ep)
2023 {
2024         struct dwc2_qh *qh = ep->hcpriv;
2025
2026         if (!qh)
2027                 return -EINVAL;
2028
2029         qh->data_toggle = DWC2_HC_PID_DATA0;
2030
2031         return 0;
2032 }
2033
2034 /**
2035  * dwc2_core_init() - Initializes the DWC_otg controller registers and
2036  * prepares the core for device mode or host mode operation
2037  *
2038  * @hsotg:         Programming view of the DWC_otg controller
2039  * @initial_setup: If true then this is the first init for this instance.
2040  */
2041 int dwc2_core_init(struct dwc2_hsotg *hsotg, bool initial_setup)
2042 {
2043         u32 usbcfg, otgctl;
2044         int retval;
2045
2046         dev_dbg(hsotg->dev, "%s(%p)\n", __func__, hsotg);
2047
2048         usbcfg = dwc2_readl(hsotg, GUSBCFG);
2049
2050         /* Set ULPI External VBUS bit if needed */
2051         usbcfg &= ~GUSBCFG_ULPI_EXT_VBUS_DRV;
2052         if (hsotg->params.phy_ulpi_ext_vbus)
2053                 usbcfg |= GUSBCFG_ULPI_EXT_VBUS_DRV;
2054
2055         /* Set external TS Dline pulsing bit if needed */
2056         usbcfg &= ~GUSBCFG_TERMSELDLPULSE;
2057         if (hsotg->params.ts_dline)
2058                 usbcfg |= GUSBCFG_TERMSELDLPULSE;
2059
2060         dwc2_writel(hsotg, usbcfg, GUSBCFG);
2061
2062         /*
2063          * Reset the Controller
2064          *
2065          * We only need to reset the controller if this is a re-init.
2066          * For the first init we know for sure that earlier code reset us (it
2067          * needed to in order to properly detect various parameters).
2068          */
2069         if (!initial_setup) {
2070                 retval = dwc2_core_reset(hsotg, false);
2071                 if (retval) {
2072                         dev_err(hsotg->dev, "%s(): Reset failed, aborting\n",
2073                                 __func__);
2074                         return retval;
2075                 }
2076         }
2077
2078         /*
2079          * This needs to happen in FS mode before any other programming occurs
2080          */
2081         retval = dwc2_phy_init(hsotg, initial_setup);
2082         if (retval)
2083                 return retval;
2084
2085         /* Program the GAHBCFG Register */
2086         retval = dwc2_gahbcfg_init(hsotg);
2087         if (retval)
2088                 return retval;
2089
2090         /* Program the GUSBCFG register */
2091         dwc2_gusbcfg_init(hsotg);
2092
2093         /* Program the GOTGCTL register */
2094         otgctl = dwc2_readl(hsotg, GOTGCTL);
2095         otgctl &= ~GOTGCTL_OTGVER;
2096         dwc2_writel(hsotg, otgctl, GOTGCTL);
2097
2098         /* Clear the SRP success bit for FS-I2c */
2099         hsotg->srp_success = 0;
2100
2101         /* Enable common interrupts */
2102         dwc2_enable_common_interrupts(hsotg);
2103
2104         /*
2105          * Do device or host initialization based on mode during PCD and
2106          * HCD initialization
2107          */
2108         if (dwc2_is_host_mode(hsotg)) {
2109                 dev_dbg(hsotg->dev, "Host Mode\n");
2110                 hsotg->op_state = OTG_STATE_A_HOST;
2111         } else {
2112                 dev_dbg(hsotg->dev, "Device Mode\n");
2113                 hsotg->op_state = OTG_STATE_B_PERIPHERAL;
2114         }
2115
2116         return 0;
2117 }
2118
2119 /**
2120  * dwc2_core_host_init() - Initializes the DWC_otg controller registers for
2121  * Host mode
2122  *
2123  * @hsotg: Programming view of DWC_otg controller
2124  *
2125  * This function flushes the Tx and Rx FIFOs and flushes any entries in the
2126  * request queues. Host channels are reset to ensure that they are ready for
2127  * performing transfers.
2128  */
2129 static void dwc2_core_host_init(struct dwc2_hsotg *hsotg)
2130 {
2131         u32 hcfg, hfir, otgctl, usbcfg;
2132
2133         dev_dbg(hsotg->dev, "%s(%p)\n", __func__, hsotg);
2134
2135         /* Set HS/FS Timeout Calibration to 7 (max available value).
2136          * The number of PHY clocks that the application programs in
2137          * this field is added to the high/full speed interpacket timeout
2138          * duration in the core to account for any additional delays
2139          * introduced by the PHY. This can be required, because the delay
2140          * introduced by the PHY in generating the linestate condition
2141          * can vary from one PHY to another.
2142          */
2143         usbcfg = dwc2_readl(hsotg, GUSBCFG);
2144         usbcfg |= GUSBCFG_TOUTCAL(7);
2145         dwc2_writel(hsotg, usbcfg, GUSBCFG);
2146
2147         /* Restart the Phy Clock */
2148         dwc2_writel(hsotg, 0, PCGCTL);
2149
2150         /* Initialize Host Configuration Register */
2151         dwc2_init_fs_ls_pclk_sel(hsotg);
2152         if (hsotg->params.speed == DWC2_SPEED_PARAM_FULL ||
2153             hsotg->params.speed == DWC2_SPEED_PARAM_LOW) {
2154                 hcfg = dwc2_readl(hsotg, HCFG);
2155                 hcfg |= HCFG_FSLSSUPP;
2156                 dwc2_writel(hsotg, hcfg, HCFG);
2157         }
2158
2159         /*
2160          * This bit allows dynamic reloading of the HFIR register during
2161          * runtime. This bit needs to be programmed during initial configuration
2162          * and its value must not be changed during runtime.
2163          */
2164         if (hsotg->params.reload_ctl) {
2165                 hfir = dwc2_readl(hsotg, HFIR);
2166                 hfir |= HFIR_RLDCTRL;
2167                 dwc2_writel(hsotg, hfir, HFIR);
2168         }
2169
2170         if (hsotg->params.dma_desc_enable) {
2171                 u32 op_mode = hsotg->hw_params.op_mode;
2172
2173                 if (hsotg->hw_params.snpsid < DWC2_CORE_REV_2_90a ||
2174                     !hsotg->hw_params.dma_desc_enable ||
2175                     op_mode == GHWCFG2_OP_MODE_SRP_CAPABLE_DEVICE ||
2176                     op_mode == GHWCFG2_OP_MODE_NO_SRP_CAPABLE_DEVICE ||
2177                     op_mode == GHWCFG2_OP_MODE_UNDEFINED) {
2178                         dev_err(hsotg->dev,
2179                                 "Hardware does not support descriptor DMA mode -\n");
2180                         dev_err(hsotg->dev,
2181                                 "falling back to buffer DMA mode.\n");
2182                         hsotg->params.dma_desc_enable = false;
2183                 } else {
2184                         hcfg = dwc2_readl(hsotg, HCFG);
2185                         hcfg |= HCFG_DESCDMA;
2186                         dwc2_writel(hsotg, hcfg, HCFG);
2187                 }
2188         }
2189
2190         /* Configure data FIFO sizes */
2191         dwc2_config_fifos(hsotg);
2192
2193         /* TODO - check this */
2194         /* Clear Host Set HNP Enable in the OTG Control Register */
2195         otgctl = dwc2_readl(hsotg, GOTGCTL);
2196         otgctl &= ~GOTGCTL_HSTSETHNPEN;
2197         dwc2_writel(hsotg, otgctl, GOTGCTL);
2198
2199         /* Make sure the FIFOs are flushed */
2200         dwc2_flush_tx_fifo(hsotg, 0x10 /* all TX FIFOs */);
2201         dwc2_flush_rx_fifo(hsotg);
2202
2203         /* Clear Host Set HNP Enable in the OTG Control Register */
2204         otgctl = dwc2_readl(hsotg, GOTGCTL);
2205         otgctl &= ~GOTGCTL_HSTSETHNPEN;
2206         dwc2_writel(hsotg, otgctl, GOTGCTL);
2207
2208         if (!hsotg->params.dma_desc_enable) {
2209                 int num_channels, i;
2210                 u32 hcchar;
2211
2212                 /* Flush out any leftover queued requests */
2213                 num_channels = hsotg->params.host_channels;
2214                 for (i = 0; i < num_channels; i++) {
2215                         hcchar = dwc2_readl(hsotg, HCCHAR(i));
2216                         if (hcchar & HCCHAR_CHENA) {
2217                                 hcchar &= ~HCCHAR_CHENA;
2218                                 hcchar |= HCCHAR_CHDIS;
2219                                 hcchar &= ~HCCHAR_EPDIR;
2220                                 dwc2_writel(hsotg, hcchar, HCCHAR(i));
2221                         }
2222                 }
2223
2224                 /* Halt all channels to put them into a known state */
2225                 for (i = 0; i < num_channels; i++) {
2226                         hcchar = dwc2_readl(hsotg, HCCHAR(i));
2227                         if (hcchar & HCCHAR_CHENA) {
2228                                 hcchar |= HCCHAR_CHENA | HCCHAR_CHDIS;
2229                                 hcchar &= ~HCCHAR_EPDIR;
2230                                 dwc2_writel(hsotg, hcchar, HCCHAR(i));
2231                                 dev_dbg(hsotg->dev, "%s: Halt channel %d\n",
2232                                         __func__, i);
2233
2234                                 if (dwc2_hsotg_wait_bit_clear(hsotg, HCCHAR(i),
2235                                                               HCCHAR_CHENA,
2236                                                               1000)) {
2237                                         dev_warn(hsotg->dev,
2238                                                  "Unable to clear enable on channel %d\n",
2239                                                  i);
2240                                 }
2241                         }
2242                 }
2243         }
2244
2245         /* Enable ACG feature in host mode, if supported */
2246         dwc2_enable_acg(hsotg);
2247
2248         /* Turn on the vbus power */
2249         dev_dbg(hsotg->dev, "Init: Port Power? op_state=%d\n", hsotg->op_state);
2250         if (hsotg->op_state == OTG_STATE_A_HOST) {
2251                 u32 hprt0 = dwc2_read_hprt0(hsotg);
2252
2253                 dev_dbg(hsotg->dev, "Init: Power Port (%d)\n",
2254                         !!(hprt0 & HPRT0_PWR));
2255                 if (!(hprt0 & HPRT0_PWR)) {
2256                         hprt0 |= HPRT0_PWR;
2257                         dwc2_writel(hsotg, hprt0, HPRT0);
2258                 }
2259         }
2260
2261         dwc2_enable_host_interrupts(hsotg);
2262 }
2263
2264 /*
2265  * Initializes dynamic portions of the DWC_otg HCD state
2266  *
2267  * Must be called with interrupt disabled and spinlock held
2268  */
2269 static void dwc2_hcd_reinit(struct dwc2_hsotg *hsotg)
2270 {
2271         struct dwc2_host_chan *chan, *chan_tmp;
2272         int num_channels;
2273         int i;
2274
2275         hsotg->flags.d32 = 0;
2276         hsotg->non_periodic_qh_ptr = &hsotg->non_periodic_sched_active;
2277
2278         if (hsotg->params.uframe_sched) {
2279                 hsotg->available_host_channels =
2280                         hsotg->params.host_channels;
2281         } else {
2282                 hsotg->non_periodic_channels = 0;
2283                 hsotg->periodic_channels = 0;
2284         }
2285
2286         /*
2287          * Put all channels in the free channel list and clean up channel
2288          * states
2289          */
2290         list_for_each_entry_safe(chan, chan_tmp, &hsotg->free_hc_list,
2291                                  hc_list_entry)
2292                 list_del_init(&chan->hc_list_entry);
2293
2294         num_channels = hsotg->params.host_channels;
2295         for (i = 0; i < num_channels; i++) {
2296                 chan = hsotg->hc_ptr_array[i];
2297                 list_add_tail(&chan->hc_list_entry, &hsotg->free_hc_list);
2298                 dwc2_hc_cleanup(hsotg, chan);
2299         }
2300
2301         /* Initialize the DWC core for host mode operation */
2302         dwc2_core_host_init(hsotg);
2303 }
2304
2305 static void dwc2_hc_init_split(struct dwc2_hsotg *hsotg,
2306                                struct dwc2_host_chan *chan,
2307                                struct dwc2_qtd *qtd, struct dwc2_hcd_urb *urb)
2308 {
2309         int hub_addr, hub_port;
2310
2311         chan->do_split = 1;
2312         chan->xact_pos = qtd->isoc_split_pos;
2313         chan->complete_split = qtd->complete_split;
2314         dwc2_host_hub_info(hsotg, urb->priv, &hub_addr, &hub_port);
2315         chan->hub_addr = (u8)hub_addr;
2316         chan->hub_port = (u8)hub_port;
2317 }
2318
2319 static void dwc2_hc_init_xfer(struct dwc2_hsotg *hsotg,
2320                               struct dwc2_host_chan *chan,
2321                               struct dwc2_qtd *qtd)
2322 {
2323         struct dwc2_hcd_urb *urb = qtd->urb;
2324         struct dwc2_hcd_iso_packet_desc *frame_desc;
2325
2326         switch (dwc2_hcd_get_pipe_type(&urb->pipe_info)) {
2327         case USB_ENDPOINT_XFER_CONTROL:
2328                 chan->ep_type = USB_ENDPOINT_XFER_CONTROL;
2329
2330                 switch (qtd->control_phase) {
2331                 case DWC2_CONTROL_SETUP:
2332                         dev_vdbg(hsotg->dev, "  Control setup transaction\n");
2333                         chan->do_ping = 0;
2334                         chan->ep_is_in = 0;
2335                         chan->data_pid_start = DWC2_HC_PID_SETUP;
2336                         if (hsotg->params.host_dma)
2337                                 chan->xfer_dma = urb->setup_dma;
2338                         else
2339                                 chan->xfer_buf = urb->setup_packet;
2340                         chan->xfer_len = 8;
2341                         break;
2342
2343                 case DWC2_CONTROL_DATA:
2344                         dev_vdbg(hsotg->dev, "  Control data transaction\n");
2345                         chan->data_pid_start = qtd->data_toggle;
2346                         break;
2347
2348                 case DWC2_CONTROL_STATUS:
2349                         /*
2350                          * Direction is opposite of data direction or IN if no
2351                          * data
2352                          */
2353                         dev_vdbg(hsotg->dev, "  Control status transaction\n");
2354                         if (urb->length == 0)
2355                                 chan->ep_is_in = 1;
2356                         else
2357                                 chan->ep_is_in =
2358                                         dwc2_hcd_is_pipe_out(&urb->pipe_info);
2359                         if (chan->ep_is_in)
2360                                 chan->do_ping = 0;
2361                         chan->data_pid_start = DWC2_HC_PID_DATA1;
2362                         chan->xfer_len = 0;
2363                         if (hsotg->params.host_dma)
2364                                 chan->xfer_dma = hsotg->status_buf_dma;
2365                         else
2366                                 chan->xfer_buf = hsotg->status_buf;
2367                         break;
2368                 }
2369                 break;
2370
2371         case USB_ENDPOINT_XFER_BULK:
2372                 chan->ep_type = USB_ENDPOINT_XFER_BULK;
2373                 break;
2374
2375         case USB_ENDPOINT_XFER_INT:
2376                 chan->ep_type = USB_ENDPOINT_XFER_INT;
2377                 break;
2378
2379         case USB_ENDPOINT_XFER_ISOC:
2380                 chan->ep_type = USB_ENDPOINT_XFER_ISOC;
2381                 if (hsotg->params.dma_desc_enable)
2382                         break;
2383
2384                 frame_desc = &urb->iso_descs[qtd->isoc_frame_index];
2385                 frame_desc->status = 0;
2386
2387                 if (hsotg->params.host_dma) {
2388                         chan->xfer_dma = urb->dma;
2389                         chan->xfer_dma += frame_desc->offset +
2390                                         qtd->isoc_split_offset;
2391                 } else {
2392                         chan->xfer_buf = urb->buf;
2393                         chan->xfer_buf += frame_desc->offset +
2394                                         qtd->isoc_split_offset;
2395                 }
2396
2397                 chan->xfer_len = frame_desc->length - qtd->isoc_split_offset;
2398
2399                 if (chan->xact_pos == DWC2_HCSPLT_XACTPOS_ALL) {
2400                         if (chan->xfer_len <= 188)
2401                                 chan->xact_pos = DWC2_HCSPLT_XACTPOS_ALL;
2402                         else
2403                                 chan->xact_pos = DWC2_HCSPLT_XACTPOS_BEGIN;
2404                 }
2405                 break;
2406         }
2407 }
2408
2409 static int dwc2_alloc_split_dma_aligned_buf(struct dwc2_hsotg *hsotg,
2410                                             struct dwc2_qh *qh,
2411                                             struct dwc2_host_chan *chan)
2412 {
2413         if (!hsotg->unaligned_cache ||
2414             chan->max_packet > DWC2_KMEM_UNALIGNED_BUF_SIZE)
2415                 return -ENOMEM;
2416
2417         if (!qh->dw_align_buf) {
2418                 qh->dw_align_buf = kmem_cache_alloc(hsotg->unaligned_cache,
2419                                                     GFP_ATOMIC | GFP_DMA);
2420                 if (!qh->dw_align_buf)
2421                         return -ENOMEM;
2422         }
2423
2424         qh->dw_align_buf_dma = dma_map_single(hsotg->dev, qh->dw_align_buf,
2425                                               DWC2_KMEM_UNALIGNED_BUF_SIZE,
2426                                               DMA_FROM_DEVICE);
2427
2428         if (dma_mapping_error(hsotg->dev, qh->dw_align_buf_dma)) {
2429                 dev_err(hsotg->dev, "can't map align_buf\n");
2430                 chan->align_buf = 0;
2431                 return -EINVAL;
2432         }
2433
2434         chan->align_buf = qh->dw_align_buf_dma;
2435         return 0;
2436 }
2437
2438 #define DWC2_USB_DMA_ALIGN 4
2439
2440 static void dwc2_free_dma_aligned_buffer(struct urb *urb)
2441 {
2442         void *stored_xfer_buffer;
2443         size_t length;
2444
2445         if (!(urb->transfer_flags & URB_ALIGNED_TEMP_BUFFER))
2446                 return;
2447
2448         /* Restore urb->transfer_buffer from the end of the allocated area */
2449         memcpy(&stored_xfer_buffer,
2450                PTR_ALIGN(urb->transfer_buffer + urb->transfer_buffer_length,
2451                          dma_get_cache_alignment()),
2452                sizeof(urb->transfer_buffer));
2453
2454         if (usb_urb_dir_in(urb)) {
2455                 if (usb_pipeisoc(urb->pipe))
2456                         length = urb->transfer_buffer_length;
2457                 else
2458                         length = urb->actual_length;
2459
2460                 memcpy(stored_xfer_buffer, urb->transfer_buffer, length);
2461         }
2462         kfree(urb->transfer_buffer);
2463         urb->transfer_buffer = stored_xfer_buffer;
2464
2465         urb->transfer_flags &= ~URB_ALIGNED_TEMP_BUFFER;
2466 }
2467
2468 static int dwc2_alloc_dma_aligned_buffer(struct urb *urb, gfp_t mem_flags)
2469 {
2470         void *kmalloc_ptr;
2471         size_t kmalloc_size;
2472
2473         if (urb->num_sgs || urb->sg ||
2474             urb->transfer_buffer_length == 0 ||
2475             !((uintptr_t)urb->transfer_buffer & (DWC2_USB_DMA_ALIGN - 1)))
2476                 return 0;
2477
2478         /*
2479          * Allocate a buffer with enough padding for original transfer_buffer
2480          * pointer. This allocation is guaranteed to be aligned properly for
2481          * DMA
2482          */
2483         kmalloc_size = urb->transfer_buffer_length +
2484                 (dma_get_cache_alignment() - 1) +
2485                 sizeof(urb->transfer_buffer);
2486
2487         kmalloc_ptr = kmalloc(kmalloc_size, mem_flags);
2488         if (!kmalloc_ptr)
2489                 return -ENOMEM;
2490
2491         /*
2492          * Position value of original urb->transfer_buffer pointer to the end
2493          * of allocation for later referencing
2494          */
2495         memcpy(PTR_ALIGN(kmalloc_ptr + urb->transfer_buffer_length,
2496                          dma_get_cache_alignment()),
2497                &urb->transfer_buffer, sizeof(urb->transfer_buffer));
2498
2499         if (usb_urb_dir_out(urb))
2500                 memcpy(kmalloc_ptr, urb->transfer_buffer,
2501                        urb->transfer_buffer_length);
2502         urb->transfer_buffer = kmalloc_ptr;
2503
2504         urb->transfer_flags |= URB_ALIGNED_TEMP_BUFFER;
2505
2506         return 0;
2507 }
2508
2509 static int dwc2_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
2510                                 gfp_t mem_flags)
2511 {
2512         int ret;
2513
2514         /* We assume setup_dma is always aligned; warn if not */
2515         WARN_ON_ONCE(urb->setup_dma &&
2516                      (urb->setup_dma & (DWC2_USB_DMA_ALIGN - 1)));
2517
2518         ret = dwc2_alloc_dma_aligned_buffer(urb, mem_flags);
2519         if (ret)
2520                 return ret;
2521
2522         ret = usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
2523         if (ret)
2524                 dwc2_free_dma_aligned_buffer(urb);
2525
2526         return ret;
2527 }
2528
2529 static void dwc2_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
2530 {
2531         usb_hcd_unmap_urb_for_dma(hcd, urb);
2532         dwc2_free_dma_aligned_buffer(urb);
2533 }
2534
2535 /**
2536  * dwc2_assign_and_init_hc() - Assigns transactions from a QTD to a free host
2537  * channel and initializes the host channel to perform the transactions. The
2538  * host channel is removed from the free list.
2539  *
2540  * @hsotg: The HCD state structure
2541  * @qh:    Transactions from the first QTD for this QH are selected and assigned
2542  *         to a free host channel
2543  */
2544 static int dwc2_assign_and_init_hc(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
2545 {
2546         struct dwc2_host_chan *chan;
2547         struct dwc2_hcd_urb *urb;
2548         struct dwc2_qtd *qtd;
2549
2550         if (dbg_qh(qh))
2551                 dev_vdbg(hsotg->dev, "%s(%p,%p)\n", __func__, hsotg, qh);
2552
2553         if (list_empty(&qh->qtd_list)) {
2554                 dev_dbg(hsotg->dev, "No QTDs in QH list\n");
2555                 return -ENOMEM;
2556         }
2557
2558         if (list_empty(&hsotg->free_hc_list)) {
2559                 dev_dbg(hsotg->dev, "No free channel to assign\n");
2560                 return -ENOMEM;
2561         }
2562
2563         chan = list_first_entry(&hsotg->free_hc_list, struct dwc2_host_chan,
2564                                 hc_list_entry);
2565
2566         /* Remove host channel from free list */
2567         list_del_init(&chan->hc_list_entry);
2568
2569         qtd = list_first_entry(&qh->qtd_list, struct dwc2_qtd, qtd_list_entry);
2570         urb = qtd->urb;
2571         qh->channel = chan;
2572         qtd->in_process = 1;
2573
2574         /*
2575          * Use usb_pipedevice to determine device address. This address is
2576          * 0 before the SET_ADDRESS command and the correct address afterward.
2577          */
2578         chan->dev_addr = dwc2_hcd_get_dev_addr(&urb->pipe_info);
2579         chan->ep_num = dwc2_hcd_get_ep_num(&urb->pipe_info);
2580         chan->speed = qh->dev_speed;
2581         chan->max_packet = qh->maxp;
2582
2583         chan->xfer_started = 0;
2584         chan->halt_status = DWC2_HC_XFER_NO_HALT_STATUS;
2585         chan->error_state = (qtd->error_count > 0);
2586         chan->halt_on_queue = 0;
2587         chan->halt_pending = 0;
2588         chan->requests = 0;
2589
2590         /*
2591          * The following values may be modified in the transfer type section
2592          * below. The xfer_len value may be reduced when the transfer is
2593          * started to accommodate the max widths of the XferSize and PktCnt
2594          * fields in the HCTSIZn register.
2595          */
2596
2597         chan->ep_is_in = (dwc2_hcd_is_pipe_in(&urb->pipe_info) != 0);
2598         if (chan->ep_is_in)
2599                 chan->do_ping = 0;
2600         else
2601                 chan->do_ping = qh->ping_state;
2602
2603         chan->data_pid_start = qh->data_toggle;
2604         chan->multi_count = 1;
2605
2606         if (urb->actual_length > urb->length &&
2607             !dwc2_hcd_is_pipe_in(&urb->pipe_info))
2608                 urb->actual_length = urb->length;
2609
2610         if (hsotg->params.host_dma)
2611                 chan->xfer_dma = urb->dma + urb->actual_length;
2612         else
2613                 chan->xfer_buf = (u8 *)urb->buf + urb->actual_length;
2614
2615         chan->xfer_len = urb->length - urb->actual_length;
2616         chan->xfer_count = 0;
2617
2618         /* Set the split attributes if required */
2619         if (qh->do_split)
2620                 dwc2_hc_init_split(hsotg, chan, qtd, urb);
2621         else
2622                 chan->do_split = 0;
2623
2624         /* Set the transfer attributes */
2625         dwc2_hc_init_xfer(hsotg, chan, qtd);
2626
2627         /* For non-dword aligned buffers */
2628         if (hsotg->params.host_dma && qh->do_split &&
2629             chan->ep_is_in && (chan->xfer_dma & 0x3)) {
2630                 dev_vdbg(hsotg->dev, "Non-aligned buffer\n");
2631                 if (dwc2_alloc_split_dma_aligned_buf(hsotg, qh, chan)) {
2632                         dev_err(hsotg->dev,
2633                                 "Failed to allocate memory to handle non-aligned buffer\n");
2634                         /* Add channel back to free list */
2635                         chan->align_buf = 0;
2636                         chan->multi_count = 0;
2637                         list_add_tail(&chan->hc_list_entry,
2638                                       &hsotg->free_hc_list);
2639                         qtd->in_process = 0;
2640                         qh->channel = NULL;
2641                         return -ENOMEM;
2642                 }
2643         } else {
2644                 /*
2645                  * We assume that DMA is always aligned in non-split
2646                  * case or split out case. Warn if not.
2647                  */
2648                 WARN_ON_ONCE(hsotg->params.host_dma &&
2649                              (chan->xfer_dma & 0x3));
2650                 chan->align_buf = 0;
2651         }
2652
2653         if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
2654             chan->ep_type == USB_ENDPOINT_XFER_ISOC)
2655                 /*
2656                  * This value may be modified when the transfer is started
2657                  * to reflect the actual transfer length
2658                  */
2659                 chan->multi_count = qh->maxp_mult;
2660
2661         if (hsotg->params.dma_desc_enable) {
2662                 chan->desc_list_addr = qh->desc_list_dma;
2663                 chan->desc_list_sz = qh->desc_list_sz;
2664         }
2665
2666         dwc2_hc_init(hsotg, chan);
2667         chan->qh = qh;
2668
2669         return 0;
2670 }
2671
2672 /**
2673  * dwc2_hcd_select_transactions() - Selects transactions from the HCD transfer
2674  * schedule and assigns them to available host channels. Called from the HCD
2675  * interrupt handler functions.
2676  *
2677  * @hsotg: The HCD state structure
2678  *
2679  * Return: The types of new transactions that were assigned to host channels
2680  */
2681 enum dwc2_transaction_type dwc2_hcd_select_transactions(
2682                 struct dwc2_hsotg *hsotg)
2683 {
2684         enum dwc2_transaction_type ret_val = DWC2_TRANSACTION_NONE;
2685         struct list_head *qh_ptr;
2686         struct dwc2_qh *qh;
2687         int num_channels;
2688
2689 #ifdef DWC2_DEBUG_SOF
2690         dev_vdbg(hsotg->dev, "  Select Transactions\n");
2691 #endif
2692
2693         /* Process entries in the periodic ready list */
2694         qh_ptr = hsotg->periodic_sched_ready.next;
2695         while (qh_ptr != &hsotg->periodic_sched_ready) {
2696                 if (list_empty(&hsotg->free_hc_list))
2697                         break;
2698                 if (hsotg->params.uframe_sched) {
2699                         if (hsotg->available_host_channels <= 1)
2700                                 break;
2701                         hsotg->available_host_channels--;
2702                 }
2703                 qh = list_entry(qh_ptr, struct dwc2_qh, qh_list_entry);
2704                 if (dwc2_assign_and_init_hc(hsotg, qh)) {
2705                         if (hsotg->params.uframe_sched)
2706                                 hsotg->available_host_channels++;
2707                         break;
2708                 }
2709
2710                 /*
2711                  * Move the QH from the periodic ready schedule to the
2712                  * periodic assigned schedule
2713                  */
2714                 qh_ptr = qh_ptr->next;
2715                 list_move_tail(&qh->qh_list_entry,
2716                                &hsotg->periodic_sched_assigned);
2717                 ret_val = DWC2_TRANSACTION_PERIODIC;
2718         }
2719
2720         /*
2721          * Process entries in the inactive portion of the non-periodic
2722          * schedule. Some free host channels may not be used if they are
2723          * reserved for periodic transfers.
2724          */
2725         num_channels = hsotg->params.host_channels;
2726         qh_ptr = hsotg->non_periodic_sched_inactive.next;
2727         while (qh_ptr != &hsotg->non_periodic_sched_inactive) {
2728                 if (!hsotg->params.uframe_sched &&
2729                     hsotg->non_periodic_channels >= num_channels -
2730                                                 hsotg->periodic_channels)
2731                         break;
2732                 if (list_empty(&hsotg->free_hc_list))
2733                         break;
2734                 qh = list_entry(qh_ptr, struct dwc2_qh, qh_list_entry);
2735                 if (hsotg->params.uframe_sched) {
2736                         if (hsotg->available_host_channels < 1)
2737                                 break;
2738                         hsotg->available_host_channels--;
2739                 }
2740
2741                 if (dwc2_assign_and_init_hc(hsotg, qh)) {
2742                         if (hsotg->params.uframe_sched)
2743                                 hsotg->available_host_channels++;
2744                         break;
2745                 }
2746
2747                 /*
2748                  * Move the QH from the non-periodic inactive schedule to the
2749                  * non-periodic active schedule
2750                  */
2751                 qh_ptr = qh_ptr->next;
2752                 list_move_tail(&qh->qh_list_entry,
2753                                &hsotg->non_periodic_sched_active);
2754
2755                 if (ret_val == DWC2_TRANSACTION_NONE)
2756                         ret_val = DWC2_TRANSACTION_NON_PERIODIC;
2757                 else
2758                         ret_val = DWC2_TRANSACTION_ALL;
2759
2760                 if (!hsotg->params.uframe_sched)
2761                         hsotg->non_periodic_channels++;
2762         }
2763
2764         return ret_val;
2765 }
2766
2767 /**
2768  * dwc2_queue_transaction() - Attempts to queue a single transaction request for
2769  * a host channel associated with either a periodic or non-periodic transfer
2770  *
2771  * @hsotg: The HCD state structure
2772  * @chan:  Host channel descriptor associated with either a periodic or
2773  *         non-periodic transfer
2774  * @fifo_dwords_avail: Number of DWORDs available in the periodic Tx FIFO
2775  *                     for periodic transfers or the non-periodic Tx FIFO
2776  *                     for non-periodic transfers
2777  *
2778  * Return: 1 if a request is queued and more requests may be needed to
2779  * complete the transfer, 0 if no more requests are required for this
2780  * transfer, -1 if there is insufficient space in the Tx FIFO
2781  *
2782  * This function assumes that there is space available in the appropriate
2783  * request queue. For an OUT transfer or SETUP transaction in Slave mode,
2784  * it checks whether space is available in the appropriate Tx FIFO.
2785  *
2786  * Must be called with interrupt disabled and spinlock held
2787  */
2788 static int dwc2_queue_transaction(struct dwc2_hsotg *hsotg,
2789                                   struct dwc2_host_chan *chan,
2790                                   u16 fifo_dwords_avail)
2791 {
2792         int retval = 0;
2793
2794         if (chan->do_split)
2795                 /* Put ourselves on the list to keep order straight */
2796                 list_move_tail(&chan->split_order_list_entry,
2797                                &hsotg->split_order);
2798
2799         if (hsotg->params.host_dma && chan->qh) {
2800                 if (hsotg->params.dma_desc_enable) {
2801                         if (!chan->xfer_started ||
2802                             chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
2803                                 dwc2_hcd_start_xfer_ddma(hsotg, chan->qh);
2804                                 chan->qh->ping_state = 0;
2805                         }
2806                 } else if (!chan->xfer_started) {
2807                         dwc2_hc_start_transfer(hsotg, chan);
2808                         chan->qh->ping_state = 0;
2809                 }
2810         } else if (chan->halt_pending) {
2811                 /* Don't queue a request if the channel has been halted */
2812         } else if (chan->halt_on_queue) {
2813                 dwc2_hc_halt(hsotg, chan, chan->halt_status);
2814         } else if (chan->do_ping) {
2815                 if (!chan->xfer_started)
2816                         dwc2_hc_start_transfer(hsotg, chan);
2817         } else if (!chan->ep_is_in ||
2818                    chan->data_pid_start == DWC2_HC_PID_SETUP) {
2819                 if ((fifo_dwords_avail * 4) >= chan->max_packet) {
2820                         if (!chan->xfer_started) {
2821                                 dwc2_hc_start_transfer(hsotg, chan);
2822                                 retval = 1;
2823                         } else {
2824                                 retval = dwc2_hc_continue_transfer(hsotg, chan);
2825                         }
2826                 } else {
2827                         retval = -1;
2828                 }
2829         } else {
2830                 if (!chan->xfer_started) {
2831                         dwc2_hc_start_transfer(hsotg, chan);
2832                         retval = 1;
2833                 } else {
2834                         retval = dwc2_hc_continue_transfer(hsotg, chan);
2835                 }
2836         }
2837
2838         return retval;
2839 }
2840
2841 /*
2842  * Processes periodic channels for the next frame and queues transactions for
2843  * these channels to the DWC_otg controller. After queueing transactions, the
2844  * Periodic Tx FIFO Empty interrupt is enabled if there are more transactions
2845  * to queue as Periodic Tx FIFO or request queue space becomes available.
2846  * Otherwise, the Periodic Tx FIFO Empty interrupt is disabled.
2847  *
2848  * Must be called with interrupt disabled and spinlock held
2849  */
2850 static void dwc2_process_periodic_channels(struct dwc2_hsotg *hsotg)
2851 {
2852         struct list_head *qh_ptr;
2853         struct dwc2_qh *qh;
2854         u32 tx_status;
2855         u32 fspcavail;
2856         u32 gintmsk;
2857         int status;
2858         bool no_queue_space = false;
2859         bool no_fifo_space = false;
2860         u32 qspcavail;
2861
2862         /* If empty list then just adjust interrupt enables */
2863         if (list_empty(&hsotg->periodic_sched_assigned))
2864                 goto exit;
2865
2866         if (dbg_perio())
2867                 dev_vdbg(hsotg->dev, "Queue periodic transactions\n");
2868
2869         tx_status = dwc2_readl(hsotg, HPTXSTS);
2870         qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
2871                     TXSTS_QSPCAVAIL_SHIFT;
2872         fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
2873                     TXSTS_FSPCAVAIL_SHIFT;
2874
2875         if (dbg_perio()) {
2876                 dev_vdbg(hsotg->dev, "  P Tx Req Queue Space Avail (before queue): %d\n",
2877                          qspcavail);
2878                 dev_vdbg(hsotg->dev, "  P Tx FIFO Space Avail (before queue): %d\n",
2879                          fspcavail);
2880         }
2881
2882         qh_ptr = hsotg->periodic_sched_assigned.next;
2883         while (qh_ptr != &hsotg->periodic_sched_assigned) {
2884                 tx_status = dwc2_readl(hsotg, HPTXSTS);
2885                 qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
2886                             TXSTS_QSPCAVAIL_SHIFT;
2887                 if (qspcavail == 0) {
2888                         no_queue_space = true;
2889                         break;
2890                 }
2891
2892                 qh = list_entry(qh_ptr, struct dwc2_qh, qh_list_entry);
2893                 if (!qh->channel) {
2894                         qh_ptr = qh_ptr->next;
2895                         continue;
2896                 }
2897
2898                 /* Make sure EP's TT buffer is clean before queueing qtds */
2899                 if (qh->tt_buffer_dirty) {
2900                         qh_ptr = qh_ptr->next;
2901                         continue;
2902                 }
2903
2904                 /*
2905                  * Set a flag if we're queuing high-bandwidth in slave mode.
2906                  * The flag prevents any halts to get into the request queue in
2907                  * the middle of multiple high-bandwidth packets getting queued.
2908                  */
2909                 if (!hsotg->params.host_dma &&
2910                     qh->channel->multi_count > 1)
2911                         hsotg->queuing_high_bandwidth = 1;
2912
2913                 fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
2914                             TXSTS_FSPCAVAIL_SHIFT;
2915                 status = dwc2_queue_transaction(hsotg, qh->channel, fspcavail);
2916                 if (status < 0) {
2917                         no_fifo_space = true;
2918                         break;
2919                 }
2920
2921                 /*
2922                  * In Slave mode, stay on the current transfer until there is
2923                  * nothing more to do or the high-bandwidth request count is
2924                  * reached. In DMA mode, only need to queue one request. The
2925                  * controller automatically handles multiple packets for
2926                  * high-bandwidth transfers.
2927                  */
2928                 if (hsotg->params.host_dma || status == 0 ||
2929                     qh->channel->requests == qh->channel->multi_count) {
2930                         qh_ptr = qh_ptr->next;
2931                         /*
2932                          * Move the QH from the periodic assigned schedule to
2933                          * the periodic queued schedule
2934                          */
2935                         list_move_tail(&qh->qh_list_entry,
2936                                        &hsotg->periodic_sched_queued);
2937
2938                         /* done queuing high bandwidth */
2939                         hsotg->queuing_high_bandwidth = 0;
2940                 }
2941         }
2942
2943 exit:
2944         if (no_queue_space || no_fifo_space ||
2945             (!hsotg->params.host_dma &&
2946              !list_empty(&hsotg->periodic_sched_assigned))) {
2947                 /*
2948                  * May need to queue more transactions as the request
2949                  * queue or Tx FIFO empties. Enable the periodic Tx
2950                  * FIFO empty interrupt. (Always use the half-empty
2951                  * level to ensure that new requests are loaded as
2952                  * soon as possible.)
2953                  */
2954                 gintmsk = dwc2_readl(hsotg, GINTMSK);
2955                 if (!(gintmsk & GINTSTS_PTXFEMP)) {
2956                         gintmsk |= GINTSTS_PTXFEMP;
2957                         dwc2_writel(hsotg, gintmsk, GINTMSK);
2958                 }
2959         } else {
2960                 /*
2961                  * Disable the Tx FIFO empty interrupt since there are
2962                  * no more transactions that need to be queued right
2963                  * now. This function is called from interrupt
2964                  * handlers to queue more transactions as transfer
2965                  * states change.
2966                  */
2967                 gintmsk = dwc2_readl(hsotg, GINTMSK);
2968                 if (gintmsk & GINTSTS_PTXFEMP) {
2969                         gintmsk &= ~GINTSTS_PTXFEMP;
2970                         dwc2_writel(hsotg, gintmsk, GINTMSK);
2971                 }
2972         }
2973 }
2974
2975 /*
2976  * Processes active non-periodic channels and queues transactions for these
2977  * channels to the DWC_otg controller. After queueing transactions, the NP Tx
2978  * FIFO Empty interrupt is enabled if there are more transactions to queue as
2979  * NP Tx FIFO or request queue space becomes available. Otherwise, the NP Tx
2980  * FIFO Empty interrupt is disabled.
2981  *
2982  * Must be called with interrupt disabled and spinlock held
2983  */
2984 static void dwc2_process_non_periodic_channels(struct dwc2_hsotg *hsotg)
2985 {
2986         struct list_head *orig_qh_ptr;
2987         struct dwc2_qh *qh;
2988         u32 tx_status;
2989         u32 qspcavail;
2990         u32 fspcavail;
2991         u32 gintmsk;
2992         int status;
2993         int no_queue_space = 0;
2994         int no_fifo_space = 0;
2995         int more_to_do = 0;
2996
2997         dev_vdbg(hsotg->dev, "Queue non-periodic transactions\n");
2998
2999         tx_status = dwc2_readl(hsotg, GNPTXSTS);
3000         qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
3001                     TXSTS_QSPCAVAIL_SHIFT;
3002         fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
3003                     TXSTS_FSPCAVAIL_SHIFT;
3004         dev_vdbg(hsotg->dev, "  NP Tx Req Queue Space Avail (before queue): %d\n",
3005                  qspcavail);
3006         dev_vdbg(hsotg->dev, "  NP Tx FIFO Space Avail (before queue): %d\n",
3007                  fspcavail);
3008
3009         /*
3010          * Keep track of the starting point. Skip over the start-of-list
3011          * entry.
3012          */
3013         if (hsotg->non_periodic_qh_ptr == &hsotg->non_periodic_sched_active)
3014                 hsotg->non_periodic_qh_ptr = hsotg->non_periodic_qh_ptr->next;
3015         orig_qh_ptr = hsotg->non_periodic_qh_ptr;
3016
3017         /*
3018          * Process once through the active list or until no more space is
3019          * available in the request queue or the Tx FIFO
3020          */
3021         do {
3022                 tx_status = dwc2_readl(hsotg, GNPTXSTS);
3023                 qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
3024                             TXSTS_QSPCAVAIL_SHIFT;
3025                 if (!hsotg->params.host_dma && qspcavail == 0) {
3026                         no_queue_space = 1;
3027                         break;
3028                 }
3029
3030                 qh = list_entry(hsotg->non_periodic_qh_ptr, struct dwc2_qh,
3031                                 qh_list_entry);
3032                 if (!qh->channel)
3033                         goto next;
3034
3035                 /* Make sure EP's TT buffer is clean before queueing qtds */
3036                 if (qh->tt_buffer_dirty)
3037                         goto next;
3038
3039                 fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
3040                             TXSTS_FSPCAVAIL_SHIFT;
3041                 status = dwc2_queue_transaction(hsotg, qh->channel, fspcavail);
3042
3043                 if (status > 0) {
3044                         more_to_do = 1;
3045                 } else if (status < 0) {
3046                         no_fifo_space = 1;
3047                         break;
3048                 }
3049 next:
3050                 /* Advance to next QH, skipping start-of-list entry */
3051                 hsotg->non_periodic_qh_ptr = hsotg->non_periodic_qh_ptr->next;
3052                 if (hsotg->non_periodic_qh_ptr ==
3053                                 &hsotg->non_periodic_sched_active)
3054                         hsotg->non_periodic_qh_ptr =
3055                                         hsotg->non_periodic_qh_ptr->next;
3056         } while (hsotg->non_periodic_qh_ptr != orig_qh_ptr);
3057
3058         if (!hsotg->params.host_dma) {
3059                 tx_status = dwc2_readl(hsotg, GNPTXSTS);
3060                 qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
3061                             TXSTS_QSPCAVAIL_SHIFT;
3062                 fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
3063                             TXSTS_FSPCAVAIL_SHIFT;
3064                 dev_vdbg(hsotg->dev,
3065                          "  NP Tx Req Queue Space Avail (after queue): %d\n",
3066                          qspcavail);
3067                 dev_vdbg(hsotg->dev,
3068                          "  NP Tx FIFO Space Avail (after queue): %d\n",
3069                          fspcavail);
3070
3071                 if (more_to_do || no_queue_space || no_fifo_space) {
3072                         /*
3073                          * May need to queue more transactions as the request
3074                          * queue or Tx FIFO empties. Enable the non-periodic
3075                          * Tx FIFO empty interrupt. (Always use the half-empty
3076                          * level to ensure that new requests are loaded as
3077                          * soon as possible.)
3078                          */
3079                         gintmsk = dwc2_readl(hsotg, GINTMSK);
3080                         gintmsk |= GINTSTS_NPTXFEMP;
3081                         dwc2_writel(hsotg, gintmsk, GINTMSK);
3082                 } else {
3083                         /*
3084                          * Disable the Tx FIFO empty interrupt since there are
3085                          * no more transactions that need to be queued right
3086                          * now. This function is called from interrupt
3087                          * handlers to queue more transactions as transfer
3088                          * states change.
3089                          */
3090                         gintmsk = dwc2_readl(hsotg, GINTMSK);
3091                         gintmsk &= ~GINTSTS_NPTXFEMP;
3092                         dwc2_writel(hsotg, gintmsk, GINTMSK);
3093                 }
3094         }
3095 }
3096
3097 /**
3098  * dwc2_hcd_queue_transactions() - Processes the currently active host channels
3099  * and queues transactions for these channels to the DWC_otg controller. Called
3100  * from the HCD interrupt handler functions.
3101  *
3102  * @hsotg:   The HCD state structure
3103  * @tr_type: The type(s) of transactions to queue (non-periodic, periodic,
3104  *           or both)
3105  *
3106  * Must be called with interrupt disabled and spinlock held
3107  */
3108 void dwc2_hcd_queue_transactions(struct dwc2_hsotg *hsotg,
3109                                  enum dwc2_transaction_type tr_type)
3110 {
3111 #ifdef DWC2_DEBUG_SOF
3112         dev_vdbg(hsotg->dev, "Queue Transactions\n");
3113 #endif
3114         /* Process host channels associated with periodic transfers */
3115         if (tr_type == DWC2_TRANSACTION_PERIODIC ||
3116             tr_type == DWC2_TRANSACTION_ALL)
3117                 dwc2_process_periodic_channels(hsotg);
3118
3119         /* Process host channels associated with non-periodic transfers */
3120         if (tr_type == DWC2_TRANSACTION_NON_PERIODIC ||
3121             tr_type == DWC2_TRANSACTION_ALL) {
3122                 if (!list_empty(&hsotg->non_periodic_sched_active)) {
3123                         dwc2_process_non_periodic_channels(hsotg);
3124                 } else {
3125                         /*
3126                          * Ensure NP Tx FIFO empty interrupt is disabled when
3127                          * there are no non-periodic transfers to process
3128                          */
3129                         u32 gintmsk = dwc2_readl(hsotg, GINTMSK);
3130
3131                         gintmsk &= ~GINTSTS_NPTXFEMP;
3132                         dwc2_writel(hsotg, gintmsk, GINTMSK);
3133                 }
3134         }
3135 }
3136
3137 static void dwc2_conn_id_status_change(struct work_struct *work)
3138 {
3139         struct dwc2_hsotg *hsotg = container_of(work, struct dwc2_hsotg,
3140                                                 wf_otg);
3141         u32 count = 0;
3142         u32 gotgctl;
3143         unsigned long flags;
3144
3145         dev_dbg(hsotg->dev, "%s()\n", __func__);
3146
3147         gotgctl = dwc2_readl(hsotg, GOTGCTL);
3148         dev_dbg(hsotg->dev, "gotgctl=%0x\n", gotgctl);
3149         dev_dbg(hsotg->dev, "gotgctl.b.conidsts=%d\n",
3150                 !!(gotgctl & GOTGCTL_CONID_B));
3151
3152         /* B-Device connector (Device Mode) */
3153         if (gotgctl & GOTGCTL_CONID_B) {
3154                 dwc2_vbus_supply_exit(hsotg);
3155                 /* Wait for switch to device mode */
3156                 dev_dbg(hsotg->dev, "connId B\n");
3157                 if (hsotg->bus_suspended) {
3158                         dev_info(hsotg->dev,
3159                                  "Do port resume before switching to device mode\n");
3160                         dwc2_port_resume(hsotg);
3161                 }
3162                 while (!dwc2_is_device_mode(hsotg)) {
3163                         dev_info(hsotg->dev,
3164                                  "Waiting for Peripheral Mode, Mode=%s\n",
3165                                  dwc2_is_host_mode(hsotg) ? "Host" :
3166                                  "Peripheral");
3167                         msleep(20);
3168                         /*
3169                          * Sometimes the initial GOTGCTRL read is wrong, so
3170                          * check it again and jump to host mode if that was
3171                          * the case.
3172                          */
3173                         gotgctl = dwc2_readl(hsotg, GOTGCTL);
3174                         if (!(gotgctl & GOTGCTL_CONID_B))
3175                                 goto host;
3176                         if (++count > 250)
3177                                 break;
3178                 }
3179                 if (count > 250)
3180                         dev_err(hsotg->dev,
3181                                 "Connection id status change timed out\n");
3182
3183                 /*
3184                  * Exit Partial Power Down without restoring registers.
3185                  * No need to check the return value as registers
3186                  * are not being restored.
3187                  */
3188                 if (hsotg->in_ppd && hsotg->lx_state == DWC2_L2)
3189                         dwc2_exit_partial_power_down(hsotg, 0, false);
3190
3191                 hsotg->op_state = OTG_STATE_B_PERIPHERAL;
3192                 dwc2_core_init(hsotg, false);
3193                 dwc2_enable_global_interrupts(hsotg);
3194                 spin_lock_irqsave(&hsotg->lock, flags);
3195                 dwc2_hsotg_core_init_disconnected(hsotg, false);
3196                 spin_unlock_irqrestore(&hsotg->lock, flags);
3197                 /* Enable ACG feature in device mode,if supported */
3198                 dwc2_enable_acg(hsotg);
3199                 dwc2_hsotg_core_connect(hsotg);
3200         } else {
3201 host:
3202                 /* A-Device connector (Host Mode) */
3203                 dev_dbg(hsotg->dev, "connId A\n");
3204                 while (!dwc2_is_host_mode(hsotg)) {
3205                         dev_info(hsotg->dev, "Waiting for Host Mode, Mode=%s\n",
3206                                  dwc2_is_host_mode(hsotg) ?
3207                                  "Host" : "Peripheral");
3208                         msleep(20);
3209                         if (++count > 250)
3210                                 break;
3211                 }
3212                 if (count > 250)
3213                         dev_err(hsotg->dev,
3214                                 "Connection id status change timed out\n");
3215
3216                 spin_lock_irqsave(&hsotg->lock, flags);
3217                 dwc2_hsotg_disconnect(hsotg);
3218                 spin_unlock_irqrestore(&hsotg->lock, flags);
3219
3220                 hsotg->op_state = OTG_STATE_A_HOST;
3221                 /* Initialize the Core for Host mode */
3222                 dwc2_core_init(hsotg, false);
3223                 dwc2_enable_global_interrupts(hsotg);
3224                 dwc2_hcd_start(hsotg);
3225         }
3226 }
3227
3228 static void dwc2_wakeup_detected(struct timer_list *t)
3229 {
3230         struct dwc2_hsotg *hsotg = from_timer(hsotg, t, wkp_timer);
3231         u32 hprt0;
3232
3233         dev_dbg(hsotg->dev, "%s()\n", __func__);
3234
3235         /*
3236          * Clear the Resume after 70ms. (Need 20 ms minimum. Use 70 ms
3237          * so that OPT tests pass with all PHYs.)
3238          */
3239         hprt0 = dwc2_read_hprt0(hsotg);
3240         dev_dbg(hsotg->dev, "Resume: HPRT0=%0x\n", hprt0);
3241         hprt0 &= ~HPRT0_RES;
3242         dwc2_writel(hsotg, hprt0, HPRT0);
3243         dev_dbg(hsotg->dev, "Clear Resume: HPRT0=%0x\n",
3244                 dwc2_readl(hsotg, HPRT0));
3245
3246         dwc2_hcd_rem_wakeup(hsotg);
3247         hsotg->bus_suspended = false;
3248
3249         /* Change to L0 state */
3250         hsotg->lx_state = DWC2_L0;
3251 }
3252
3253 static int dwc2_host_is_b_hnp_enabled(struct dwc2_hsotg *hsotg)
3254 {
3255         struct usb_hcd *hcd = dwc2_hsotg_to_hcd(hsotg);
3256
3257         return hcd->self.b_hnp_enable;
3258 }
3259
3260 /**
3261  * dwc2_port_suspend() - Put controller in suspend mode for host.
3262  *
3263  * @hsotg: Programming view of the DWC_otg controller
3264  * @windex: The control request wIndex field
3265  *
3266  * Return: non-zero if failed to enter suspend mode for host.
3267  *
3268  * This function is for entering Host mode suspend.
3269  * Must NOT be called with interrupt disabled or spinlock held.
3270  */
3271 int dwc2_port_suspend(struct dwc2_hsotg *hsotg, u16 windex)
3272 {
3273         unsigned long flags;
3274         u32 pcgctl;
3275         u32 gotgctl;
3276         int ret = 0;
3277
3278         dev_dbg(hsotg->dev, "%s()\n", __func__);
3279
3280         spin_lock_irqsave(&hsotg->lock, flags);
3281
3282         if (windex == hsotg->otg_port && dwc2_host_is_b_hnp_enabled(hsotg)) {
3283                 gotgctl = dwc2_readl(hsotg, GOTGCTL);
3284                 gotgctl |= GOTGCTL_HSTSETHNPEN;
3285                 dwc2_writel(hsotg, gotgctl, GOTGCTL);
3286                 hsotg->op_state = OTG_STATE_A_SUSPEND;
3287         }
3288
3289         switch (hsotg->params.power_down) {
3290         case DWC2_POWER_DOWN_PARAM_PARTIAL:
3291                 ret = dwc2_enter_partial_power_down(hsotg);
3292                 if (ret)
3293                         dev_err(hsotg->dev,
3294                                 "enter partial_power_down failed.\n");
3295                 break;
3296         case DWC2_POWER_DOWN_PARAM_HIBERNATION:
3297                 /*
3298                  * Perform spin unlock and lock because in
3299                  * "dwc2_host_enter_hibernation()" function there is a spinlock
3300                  * logic which prevents servicing of any IRQ during entering
3301                  * hibernation.
3302                  */
3303                 spin_unlock_irqrestore(&hsotg->lock, flags);
3304                 ret = dwc2_enter_hibernation(hsotg, 1);
3305                 if (ret)
3306                         dev_err(hsotg->dev, "enter hibernation failed.\n");
3307                 spin_lock_irqsave(&hsotg->lock, flags);
3308                 break;
3309         case DWC2_POWER_DOWN_PARAM_NONE:
3310                 /*
3311                  * If not hibernation nor partial power down are supported,
3312                  * clock gating is used to save power.
3313                  */
3314                 if (!hsotg->params.no_clock_gating)
3315                         dwc2_host_enter_clock_gating(hsotg);
3316                 break;
3317         }
3318
3319         /* For HNP the bus must be suspended for at least 200ms */
3320         if (dwc2_host_is_b_hnp_enabled(hsotg)) {
3321                 pcgctl = dwc2_readl(hsotg, PCGCTL);
3322                 pcgctl &= ~PCGCTL_STOPPCLK;
3323                 dwc2_writel(hsotg, pcgctl, PCGCTL);
3324
3325                 spin_unlock_irqrestore(&hsotg->lock, flags);
3326
3327                 msleep(200);
3328         } else {
3329                 spin_unlock_irqrestore(&hsotg->lock, flags);
3330         }
3331
3332         return ret;
3333 }
3334
3335 /**
3336  * dwc2_port_resume() - Exit controller from suspend mode for host.
3337  *
3338  * @hsotg: Programming view of the DWC_otg controller
3339  *
3340  * Return: non-zero if failed to exit suspend mode for host.
3341  *
3342  * This function is for exiting Host mode suspend.
3343  * Must NOT be called with interrupt disabled or spinlock held.
3344  */
3345 int dwc2_port_resume(struct dwc2_hsotg *hsotg)
3346 {
3347         unsigned long flags;
3348         int ret = 0;
3349
3350         spin_lock_irqsave(&hsotg->lock, flags);
3351
3352         switch (hsotg->params.power_down) {
3353         case DWC2_POWER_DOWN_PARAM_PARTIAL:
3354                 ret = dwc2_exit_partial_power_down(hsotg, 0, true);
3355                 if (ret)
3356                         dev_err(hsotg->dev,
3357                                 "exit partial_power_down failed.\n");
3358                 break;
3359         case DWC2_POWER_DOWN_PARAM_HIBERNATION:
3360                 /* Exit host hibernation. */
3361                 ret = dwc2_exit_hibernation(hsotg, 0, 0, 1);
3362                 if (ret)
3363                         dev_err(hsotg->dev, "exit hibernation failed.\n");
3364                 break;
3365         case DWC2_POWER_DOWN_PARAM_NONE:
3366                 /*
3367                  * If not hibernation nor partial power down are supported,
3368                  * port resume is done using the clock gating programming flow.
3369                  */
3370                 spin_unlock_irqrestore(&hsotg->lock, flags);
3371                 dwc2_host_exit_clock_gating(hsotg, 0);
3372                 spin_lock_irqsave(&hsotg->lock, flags);
3373                 break;
3374         }
3375
3376         spin_unlock_irqrestore(&hsotg->lock, flags);
3377
3378         return ret;
3379 }
3380
3381 /* Handles hub class-specific requests */
3382 static int dwc2_hcd_hub_control(struct dwc2_hsotg *hsotg, u16 typereq,
3383                                 u16 wvalue, u16 windex, char *buf, u16 wlength)
3384 {
3385         struct usb_hub_descriptor *hub_desc;
3386         int retval = 0;
3387         u32 hprt0;
3388         u32 port_status;
3389         u32 speed;
3390         u32 pcgctl;
3391         u32 pwr;
3392
3393         switch (typereq) {
3394         case ClearHubFeature:
3395                 dev_dbg(hsotg->dev, "ClearHubFeature %1xh\n", wvalue);
3396
3397                 switch (wvalue) {
3398                 case C_HUB_LOCAL_POWER:
3399                 case C_HUB_OVER_CURRENT:
3400                         /* Nothing required here */
3401                         break;
3402
3403                 default:
3404                         retval = -EINVAL;
3405                         dev_err(hsotg->dev,
3406                                 "ClearHubFeature request %1xh unknown\n",
3407                                 wvalue);
3408                 }
3409                 break;
3410
3411         case ClearPortFeature:
3412                 if (wvalue != USB_PORT_FEAT_L1)
3413                         if (!windex || windex > 1)
3414                                 goto error;
3415                 switch (wvalue) {
3416                 case USB_PORT_FEAT_ENABLE:
3417                         dev_dbg(hsotg->dev,
3418                                 "ClearPortFeature USB_PORT_FEAT_ENABLE\n");
3419                         hprt0 = dwc2_read_hprt0(hsotg);
3420                         hprt0 |= HPRT0_ENA;
3421                         dwc2_writel(hsotg, hprt0, HPRT0);
3422                         break;
3423
3424                 case USB_PORT_FEAT_SUSPEND:
3425                         dev_dbg(hsotg->dev,
3426                                 "ClearPortFeature USB_PORT_FEAT_SUSPEND\n");
3427
3428                         if (hsotg->bus_suspended)
3429                                 retval = dwc2_port_resume(hsotg);
3430                         break;
3431
3432                 case USB_PORT_FEAT_POWER:
3433                         dev_dbg(hsotg->dev,
3434                                 "ClearPortFeature USB_PORT_FEAT_POWER\n");
3435                         hprt0 = dwc2_read_hprt0(hsotg);
3436                         pwr = hprt0 & HPRT0_PWR;
3437                         hprt0 &= ~HPRT0_PWR;
3438                         dwc2_writel(hsotg, hprt0, HPRT0);
3439                         if (pwr)
3440                                 dwc2_vbus_supply_exit(hsotg);
3441                         break;
3442
3443                 case USB_PORT_FEAT_INDICATOR:
3444                         dev_dbg(hsotg->dev,
3445                                 "ClearPortFeature USB_PORT_FEAT_INDICATOR\n");
3446                         /* Port indicator not supported */
3447                         break;
3448
3449                 case USB_PORT_FEAT_C_CONNECTION:
3450                         /*
3451                          * Clears driver's internal Connect Status Change flag
3452                          */
3453                         dev_dbg(hsotg->dev,
3454                                 "ClearPortFeature USB_PORT_FEAT_C_CONNECTION\n");
3455                         hsotg->flags.b.port_connect_status_change = 0;
3456                         break;
3457
3458                 case USB_PORT_FEAT_C_RESET:
3459                         /* Clears driver's internal Port Reset Change flag */
3460                         dev_dbg(hsotg->dev,
3461                                 "ClearPortFeature USB_PORT_FEAT_C_RESET\n");
3462                         hsotg->flags.b.port_reset_change = 0;
3463                         break;
3464
3465                 case USB_PORT_FEAT_C_ENABLE:
3466                         /*
3467                          * Clears the driver's internal Port Enable/Disable
3468                          * Change flag
3469                          */
3470                         dev_dbg(hsotg->dev,
3471                                 "ClearPortFeature USB_PORT_FEAT_C_ENABLE\n");
3472                         hsotg->flags.b.port_enable_change = 0;
3473                         break;
3474
3475                 case USB_PORT_FEAT_C_SUSPEND:
3476                         /*
3477                          * Clears the driver's internal Port Suspend Change
3478                          * flag, which is set when resume signaling on the host
3479                          * port is complete
3480                          */
3481                         dev_dbg(hsotg->dev,
3482                                 "ClearPortFeature USB_PORT_FEAT_C_SUSPEND\n");
3483                         hsotg->flags.b.port_suspend_change = 0;
3484                         break;
3485
3486                 case USB_PORT_FEAT_C_PORT_L1:
3487                         dev_dbg(hsotg->dev,
3488                                 "ClearPortFeature USB_PORT_FEAT_C_PORT_L1\n");
3489                         hsotg->flags.b.port_l1_change = 0;
3490                         break;
3491
3492                 case USB_PORT_FEAT_C_OVER_CURRENT:
3493                         dev_dbg(hsotg->dev,
3494                                 "ClearPortFeature USB_PORT_FEAT_C_OVER_CURRENT\n");
3495                         hsotg->flags.b.port_over_current_change = 0;
3496                         break;
3497
3498                 default:
3499                         retval = -EINVAL;
3500                         dev_err(hsotg->dev,
3501                                 "ClearPortFeature request %1xh unknown or unsupported\n",
3502                                 wvalue);
3503                 }
3504                 break;
3505
3506         case GetHubDescriptor:
3507                 dev_dbg(hsotg->dev, "GetHubDescriptor\n");
3508                 hub_desc = (struct usb_hub_descriptor *)buf;
3509                 hub_desc->bDescLength = 9;
3510                 hub_desc->bDescriptorType = USB_DT_HUB;
3511                 hub_desc->bNbrPorts = 1;
3512                 hub_desc->wHubCharacteristics =
3513                         cpu_to_le16(HUB_CHAR_COMMON_LPSM |
3514                                     HUB_CHAR_INDV_PORT_OCPM);
3515                 hub_desc->bPwrOn2PwrGood = 1;
3516                 hub_desc->bHubContrCurrent = 0;
3517                 hub_desc->u.hs.DeviceRemovable[0] = 0;
3518                 hub_desc->u.hs.DeviceRemovable[1] = 0xff;
3519                 break;
3520
3521         case GetHubStatus:
3522                 dev_dbg(hsotg->dev, "GetHubStatus\n");
3523                 memset(buf, 0, 4);
3524                 break;
3525
3526         case GetPortStatus:
3527                 dev_vdbg(hsotg->dev,
3528                          "GetPortStatus wIndex=0x%04x flags=0x%08x\n", windex,
3529                          hsotg->flags.d32);
3530                 if (!windex || windex > 1)
3531                         goto error;
3532
3533                 port_status = 0;
3534                 if (hsotg->flags.b.port_connect_status_change)
3535                         port_status |= USB_PORT_STAT_C_CONNECTION << 16;
3536                 if (hsotg->flags.b.port_enable_change)
3537                         port_status |= USB_PORT_STAT_C_ENABLE << 16;
3538                 if (hsotg->flags.b.port_suspend_change)
3539                         port_status |= USB_PORT_STAT_C_SUSPEND << 16;
3540                 if (hsotg->flags.b.port_l1_change)
3541                         port_status |= USB_PORT_STAT_C_L1 << 16;
3542                 if (hsotg->flags.b.port_reset_change)
3543                         port_status |= USB_PORT_STAT_C_RESET << 16;
3544                 if (hsotg->flags.b.port_over_current_change) {
3545                         dev_warn(hsotg->dev, "Overcurrent change detected\n");
3546                         port_status |= USB_PORT_STAT_C_OVERCURRENT << 16;
3547                 }
3548
3549                 if (dwc2_is_device_mode(hsotg)) {
3550                         /*
3551                          * Just return 0's for the remainder of the port status
3552                          * since the port register can't be read if the core
3553                          * is in device mode.
3554                          */
3555                         *(__le32 *)buf = cpu_to_le32(port_status);
3556                         break;
3557                 }
3558
3559                 hprt0 = dwc2_readl(hsotg, HPRT0);
3560                 dev_vdbg(hsotg->dev, "  HPRT0: 0x%08x\n", hprt0);
3561
3562                 if (hprt0 & HPRT0_CONNSTS)
3563                         port_status |= USB_PORT_STAT_CONNECTION;
3564                 if (hprt0 & HPRT0_ENA)
3565                         port_status |= USB_PORT_STAT_ENABLE;
3566                 if (hprt0 & HPRT0_SUSP)
3567                         port_status |= USB_PORT_STAT_SUSPEND;
3568                 if (hprt0 & HPRT0_OVRCURRACT)
3569                         port_status |= USB_PORT_STAT_OVERCURRENT;
3570                 if (hprt0 & HPRT0_RST)
3571                         port_status |= USB_PORT_STAT_RESET;
3572                 if (hprt0 & HPRT0_PWR)
3573                         port_status |= USB_PORT_STAT_POWER;
3574
3575                 speed = (hprt0 & HPRT0_SPD_MASK) >> HPRT0_SPD_SHIFT;
3576                 if (speed == HPRT0_SPD_HIGH_SPEED)
3577                         port_status |= USB_PORT_STAT_HIGH_SPEED;
3578                 else if (speed == HPRT0_SPD_LOW_SPEED)
3579                         port_status |= USB_PORT_STAT_LOW_SPEED;
3580
3581                 if (hprt0 & HPRT0_TSTCTL_MASK)
3582                         port_status |= USB_PORT_STAT_TEST;
3583                 /* USB_PORT_FEAT_INDICATOR unsupported always 0 */
3584
3585                 if (hsotg->params.dma_desc_fs_enable) {
3586                         /*
3587                          * Enable descriptor DMA only if a full speed
3588                          * device is connected.
3589                          */
3590                         if (hsotg->new_connection &&
3591                             ((port_status &
3592                               (USB_PORT_STAT_CONNECTION |
3593                                USB_PORT_STAT_HIGH_SPEED |
3594                                USB_PORT_STAT_LOW_SPEED)) ==
3595                                USB_PORT_STAT_CONNECTION)) {
3596                                 u32 hcfg;
3597
3598                                 dev_info(hsotg->dev, "Enabling descriptor DMA mode\n");
3599                                 hsotg->params.dma_desc_enable = true;
3600                                 hcfg = dwc2_readl(hsotg, HCFG);
3601                                 hcfg |= HCFG_DESCDMA;
3602                                 dwc2_writel(hsotg, hcfg, HCFG);
3603                                 hsotg->new_connection = false;
3604                         }
3605                 }
3606
3607                 dev_vdbg(hsotg->dev, "port_status=%08x\n", port_status);
3608                 *(__le32 *)buf = cpu_to_le32(port_status);
3609                 break;
3610
3611         case SetHubFeature:
3612                 dev_dbg(hsotg->dev, "SetHubFeature\n");
3613                 /* No HUB features supported */
3614                 break;
3615
3616         case SetPortFeature:
3617                 dev_dbg(hsotg->dev, "SetPortFeature\n");
3618                 if (wvalue != USB_PORT_FEAT_TEST && (!windex || windex > 1))
3619                         goto error;
3620
3621                 if (dwc2_is_device_mode(hsotg)) {
3622                         /*
3623                          * Just return 0's for the remainder of the port status
3624                          * since the port register can't be read if the core
3625                          * is in device mode.
3626                          */
3627                         break;
3628                 }
3629
3630                 switch (wvalue) {
3631                 case USB_PORT_FEAT_SUSPEND:
3632                         dev_dbg(hsotg->dev,
3633                                 "SetPortFeature - USB_PORT_FEAT_SUSPEND\n");
3634                         if (windex != hsotg->otg_port)
3635                                 goto error;
3636                         if (!hsotg->bus_suspended)
3637                                 retval = dwc2_port_suspend(hsotg, windex);
3638                         break;
3639
3640                 case USB_PORT_FEAT_POWER:
3641                         dev_dbg(hsotg->dev,
3642                                 "SetPortFeature - USB_PORT_FEAT_POWER\n");
3643                         hprt0 = dwc2_read_hprt0(hsotg);
3644                         pwr = hprt0 & HPRT0_PWR;
3645                         hprt0 |= HPRT0_PWR;
3646                         dwc2_writel(hsotg, hprt0, HPRT0);
3647                         if (!pwr)
3648                                 dwc2_vbus_supply_init(hsotg);
3649                         break;
3650
3651                 case USB_PORT_FEAT_RESET:
3652                         dev_dbg(hsotg->dev,
3653                                 "SetPortFeature - USB_PORT_FEAT_RESET\n");
3654
3655                         hprt0 = dwc2_read_hprt0(hsotg);
3656
3657                         if (hsotg->hibernated) {
3658                                 retval = dwc2_exit_hibernation(hsotg, 0, 1, 1);
3659                                 if (retval)
3660                                         dev_err(hsotg->dev,
3661                                                 "exit hibernation failed\n");
3662                         }
3663
3664                         if (hsotg->in_ppd) {
3665                                 retval = dwc2_exit_partial_power_down(hsotg, 1,
3666                                                                       true);
3667                                 if (retval)
3668                                         dev_err(hsotg->dev,
3669                                                 "exit partial_power_down failed\n");
3670                         }
3671
3672                         if (hsotg->params.power_down ==
3673                             DWC2_POWER_DOWN_PARAM_NONE && hsotg->bus_suspended)
3674                                 dwc2_host_exit_clock_gating(hsotg, 0);
3675
3676                         pcgctl = dwc2_readl(hsotg, PCGCTL);
3677                         pcgctl &= ~(PCGCTL_ENBL_SLEEP_GATING | PCGCTL_STOPPCLK);
3678                         dwc2_writel(hsotg, pcgctl, PCGCTL);
3679                         /* ??? Original driver does this */
3680                         dwc2_writel(hsotg, 0, PCGCTL);
3681
3682                         hprt0 = dwc2_read_hprt0(hsotg);
3683                         pwr = hprt0 & HPRT0_PWR;
3684                         /* Clear suspend bit if resetting from suspend state */
3685                         hprt0 &= ~HPRT0_SUSP;
3686
3687                         /*
3688                          * When B-Host the Port reset bit is set in the Start
3689                          * HCD Callback function, so that the reset is started
3690                          * within 1ms of the HNP success interrupt
3691                          */
3692                         if (!dwc2_hcd_is_b_host(hsotg)) {
3693                                 hprt0 |= HPRT0_PWR | HPRT0_RST;
3694                                 dev_dbg(hsotg->dev,
3695                                         "In host mode, hprt0=%08x\n", hprt0);
3696                                 dwc2_writel(hsotg, hprt0, HPRT0);
3697                                 if (!pwr)
3698                                         dwc2_vbus_supply_init(hsotg);
3699                         }
3700
3701                         /* Clear reset bit in 10ms (FS/LS) or 50ms (HS) */
3702                         msleep(50);
3703                         hprt0 &= ~HPRT0_RST;
3704                         dwc2_writel(hsotg, hprt0, HPRT0);
3705                         hsotg->lx_state = DWC2_L0; /* Now back to On state */
3706                         break;
3707
3708                 case USB_PORT_FEAT_INDICATOR:
3709                         dev_dbg(hsotg->dev,
3710                                 "SetPortFeature - USB_PORT_FEAT_INDICATOR\n");
3711                         /* Not supported */
3712                         break;
3713
3714                 case USB_PORT_FEAT_TEST:
3715                         hprt0 = dwc2_read_hprt0(hsotg);
3716                         dev_dbg(hsotg->dev,
3717                                 "SetPortFeature - USB_PORT_FEAT_TEST\n");
3718                         hprt0 &= ~HPRT0_TSTCTL_MASK;
3719                         hprt0 |= (windex >> 8) << HPRT0_TSTCTL_SHIFT;
3720                         dwc2_writel(hsotg, hprt0, HPRT0);
3721                         break;
3722
3723                 default:
3724                         retval = -EINVAL;
3725                         dev_err(hsotg->dev,
3726                                 "SetPortFeature %1xh unknown or unsupported\n",
3727                                 wvalue);
3728                         break;
3729                 }
3730                 break;
3731
3732         default:
3733 error:
3734                 retval = -EINVAL;
3735                 dev_dbg(hsotg->dev,
3736                         "Unknown hub control request: %1xh wIndex: %1xh wValue: %1xh\n",
3737                         typereq, windex, wvalue);
3738                 break;
3739         }
3740
3741         return retval;
3742 }
3743
3744 static int dwc2_hcd_is_status_changed(struct dwc2_hsotg *hsotg, int port)
3745 {
3746         int retval;
3747
3748         if (port != 1)
3749                 return -EINVAL;
3750
3751         retval = (hsotg->flags.b.port_connect_status_change ||
3752                   hsotg->flags.b.port_reset_change ||
3753                   hsotg->flags.b.port_enable_change ||
3754                   hsotg->flags.b.port_suspend_change ||
3755                   hsotg->flags.b.port_over_current_change);
3756
3757         if (retval) {
3758                 dev_dbg(hsotg->dev,
3759                         "DWC OTG HCD HUB STATUS DATA: Root port status changed\n");
3760                 dev_dbg(hsotg->dev, "  port_connect_status_change: %d\n",
3761                         hsotg->flags.b.port_connect_status_change);
3762                 dev_dbg(hsotg->dev, "  port_reset_change: %d\n",
3763                         hsotg->flags.b.port_reset_change);
3764                 dev_dbg(hsotg->dev, "  port_enable_change: %d\n",
3765                         hsotg->flags.b.port_enable_change);
3766                 dev_dbg(hsotg->dev, "  port_suspend_change: %d\n",
3767                         hsotg->flags.b.port_suspend_change);
3768                 dev_dbg(hsotg->dev, "  port_over_current_change: %d\n",
3769                         hsotg->flags.b.port_over_current_change);
3770         }
3771
3772         return retval;
3773 }
3774
3775 int dwc2_hcd_get_frame_number(struct dwc2_hsotg *hsotg)
3776 {
3777         u32 hfnum = dwc2_readl(hsotg, HFNUM);
3778
3779 #ifdef DWC2_DEBUG_SOF
3780         dev_vdbg(hsotg->dev, "DWC OTG HCD GET FRAME NUMBER %d\n",
3781                  (hfnum & HFNUM_FRNUM_MASK) >> HFNUM_FRNUM_SHIFT);
3782 #endif
3783         return (hfnum & HFNUM_FRNUM_MASK) >> HFNUM_FRNUM_SHIFT;
3784 }
3785
3786 int dwc2_hcd_get_future_frame_number(struct dwc2_hsotg *hsotg, int us)
3787 {
3788         u32 hprt = dwc2_readl(hsotg, HPRT0);
3789         u32 hfir = dwc2_readl(hsotg, HFIR);
3790         u32 hfnum = dwc2_readl(hsotg, HFNUM);
3791         unsigned int us_per_frame;
3792         unsigned int frame_number;
3793         unsigned int remaining;
3794         unsigned int interval;
3795         unsigned int phy_clks;
3796
3797         /* High speed has 125 us per (micro) frame; others are 1 ms per */
3798         us_per_frame = (hprt & HPRT0_SPD_MASK) ? 1000 : 125;
3799
3800         /* Extract fields */
3801         frame_number = (hfnum & HFNUM_FRNUM_MASK) >> HFNUM_FRNUM_SHIFT;
3802         remaining = (hfnum & HFNUM_FRREM_MASK) >> HFNUM_FRREM_SHIFT;
3803         interval = (hfir & HFIR_FRINT_MASK) >> HFIR_FRINT_SHIFT;
3804
3805         /*
3806          * Number of phy clocks since the last tick of the frame number after
3807          * "us" has passed.
3808          */
3809         phy_clks = (interval - remaining) +
3810                    DIV_ROUND_UP(interval * us, us_per_frame);
3811
3812         return dwc2_frame_num_inc(frame_number, phy_clks / interval);
3813 }
3814
3815 int dwc2_hcd_is_b_host(struct dwc2_hsotg *hsotg)
3816 {
3817         return hsotg->op_state == OTG_STATE_B_HOST;
3818 }
3819
3820 static struct dwc2_hcd_urb *dwc2_hcd_urb_alloc(struct dwc2_hsotg *hsotg,
3821                                                int iso_desc_count,
3822                                                gfp_t mem_flags)
3823 {
3824         struct dwc2_hcd_urb *urb;
3825
3826         urb = kzalloc(struct_size(urb, iso_descs, iso_desc_count), mem_flags);
3827         if (urb)
3828                 urb->packet_count = iso_desc_count;
3829         return urb;
3830 }
3831
3832 static void dwc2_hcd_urb_set_pipeinfo(struct dwc2_hsotg *hsotg,
3833                                       struct dwc2_hcd_urb *urb, u8 dev_addr,
3834                                       u8 ep_num, u8 ep_type, u8 ep_dir,
3835                                       u16 maxp, u16 maxp_mult)
3836 {
3837         if (dbg_perio() ||
3838             ep_type == USB_ENDPOINT_XFER_BULK ||
3839             ep_type == USB_ENDPOINT_XFER_CONTROL)
3840                 dev_vdbg(hsotg->dev,
3841                          "addr=%d, ep_num=%d, ep_dir=%1x, ep_type=%1x, maxp=%d (%d mult)\n",
3842                          dev_addr, ep_num, ep_dir, ep_type, maxp, maxp_mult);
3843         urb->pipe_info.dev_addr = dev_addr;
3844         urb->pipe_info.ep_num = ep_num;
3845         urb->pipe_info.pipe_type = ep_type;
3846         urb->pipe_info.pipe_dir = ep_dir;
3847         urb->pipe_info.maxp = maxp;
3848         urb->pipe_info.maxp_mult = maxp_mult;
3849 }
3850
3851 /*
3852  * NOTE: This function will be removed once the peripheral controller code
3853  * is integrated and the driver is stable
3854  */
3855 void dwc2_hcd_dump_state(struct dwc2_hsotg *hsotg)
3856 {
3857 #ifdef DEBUG
3858         struct dwc2_host_chan *chan;
3859         struct dwc2_hcd_urb *urb;
3860         struct dwc2_qtd *qtd;
3861         int num_channels;
3862         u32 np_tx_status;
3863         u32 p_tx_status;
3864         int i;
3865
3866         num_channels = hsotg->params.host_channels;
3867         dev_dbg(hsotg->dev, "\n");
3868         dev_dbg(hsotg->dev,
3869                 "************************************************************\n");
3870         dev_dbg(hsotg->dev, "HCD State:\n");
3871         dev_dbg(hsotg->dev, "  Num channels: %d\n", num_channels);
3872
3873         for (i = 0; i < num_channels; i++) {
3874                 chan = hsotg->hc_ptr_array[i];
3875                 dev_dbg(hsotg->dev, "  Channel %d:\n", i);
3876                 dev_dbg(hsotg->dev,
3877                         "    dev_addr: %d, ep_num: %d, ep_is_in: %d\n",
3878                         chan->dev_addr, chan->ep_num, chan->ep_is_in);
3879                 dev_dbg(hsotg->dev, "    speed: %d\n", chan->speed);
3880                 dev_dbg(hsotg->dev, "    ep_type: %d\n", chan->ep_type);
3881                 dev_dbg(hsotg->dev, "    max_packet: %d\n", chan->max_packet);
3882                 dev_dbg(hsotg->dev, "    data_pid_start: %d\n",
3883                         chan->data_pid_start);
3884                 dev_dbg(hsotg->dev, "    multi_count: %d\n", chan->multi_count);
3885                 dev_dbg(hsotg->dev, "    xfer_started: %d\n",
3886                         chan->xfer_started);
3887                 dev_dbg(hsotg->dev, "    xfer_buf: %p\n", chan->xfer_buf);
3888                 dev_dbg(hsotg->dev, "    xfer_dma: %08lx\n",
3889                         (unsigned long)chan->xfer_dma);
3890                 dev_dbg(hsotg->dev, "    xfer_len: %d\n", chan->xfer_len);
3891                 dev_dbg(hsotg->dev, "    xfer_count: %d\n", chan->xfer_count);
3892                 dev_dbg(hsotg->dev, "    halt_on_queue: %d\n",
3893                         chan->halt_on_queue);
3894                 dev_dbg(hsotg->dev, "    halt_pending: %d\n",
3895                         chan->halt_pending);
3896                 dev_dbg(hsotg->dev, "    halt_status: %d\n", chan->halt_status);
3897                 dev_dbg(hsotg->dev, "    do_split: %d\n", chan->do_split);
3898                 dev_dbg(hsotg->dev, "    complete_split: %d\n",
3899                         chan->complete_split);
3900                 dev_dbg(hsotg->dev, "    hub_addr: %d\n", chan->hub_addr);
3901                 dev_dbg(hsotg->dev, "    hub_port: %d\n", chan->hub_port);
3902                 dev_dbg(hsotg->dev, "    xact_pos: %d\n", chan->xact_pos);
3903                 dev_dbg(hsotg->dev, "    requests: %d\n", chan->requests);
3904                 dev_dbg(hsotg->dev, "    qh: %p\n", chan->qh);
3905
3906                 if (chan->xfer_started) {
3907                         u32 hfnum, hcchar, hctsiz, hcint, hcintmsk;
3908
3909                         hfnum = dwc2_readl(hsotg, HFNUM);
3910                         hcchar = dwc2_readl(hsotg, HCCHAR(i));
3911                         hctsiz = dwc2_readl(hsotg, HCTSIZ(i));
3912                         hcint = dwc2_readl(hsotg, HCINT(i));
3913                         hcintmsk = dwc2_readl(hsotg, HCINTMSK(i));
3914                         dev_dbg(hsotg->dev, "    hfnum: 0x%08x\n", hfnum);
3915                         dev_dbg(hsotg->dev, "    hcchar: 0x%08x\n", hcchar);
3916                         dev_dbg(hsotg->dev, "    hctsiz: 0x%08x\n", hctsiz);
3917                         dev_dbg(hsotg->dev, "    hcint: 0x%08x\n", hcint);
3918                         dev_dbg(hsotg->dev, "    hcintmsk: 0x%08x\n", hcintmsk);
3919                 }
3920
3921                 if (!(chan->xfer_started && chan->qh))
3922                         continue;
3923
3924                 list_for_each_entry(qtd, &chan->qh->qtd_list, qtd_list_entry) {
3925                         if (!qtd->in_process)
3926                                 break;
3927                         urb = qtd->urb;
3928                         dev_dbg(hsotg->dev, "    URB Info:\n");
3929                         dev_dbg(hsotg->dev, "      qtd: %p, urb: %p\n",
3930                                 qtd, urb);
3931                         if (urb) {
3932                                 dev_dbg(hsotg->dev,
3933                                         "      Dev: %d, EP: %d %s\n",
3934                                         dwc2_hcd_get_dev_addr(&urb->pipe_info),
3935                                         dwc2_hcd_get_ep_num(&urb->pipe_info),
3936                                         dwc2_hcd_is_pipe_in(&urb->pipe_info) ?
3937                                         "IN" : "OUT");
3938                                 dev_dbg(hsotg->dev,
3939                                         "      Max packet size: %d (%d mult)\n",
3940                                         dwc2_hcd_get_maxp(&urb->pipe_info),
3941                                         dwc2_hcd_get_maxp_mult(&urb->pipe_info));
3942                                 dev_dbg(hsotg->dev,
3943                                         "      transfer_buffer: %p\n",
3944                                         urb->buf);
3945                                 dev_dbg(hsotg->dev,
3946                                         "      transfer_dma: %08lx\n",
3947                                         (unsigned long)urb->dma);
3948                                 dev_dbg(hsotg->dev,
3949                                         "      transfer_buffer_length: %d\n",
3950                                         urb->length);
3951                                 dev_dbg(hsotg->dev, "      actual_length: %d\n",
3952                                         urb->actual_length);
3953                         }
3954                 }
3955         }
3956
3957         dev_dbg(hsotg->dev, "  non_periodic_channels: %d\n",
3958                 hsotg->non_periodic_channels);
3959         dev_dbg(hsotg->dev, "  periodic_channels: %d\n",
3960                 hsotg->periodic_channels);
3961         dev_dbg(hsotg->dev, "  periodic_usecs: %d\n", hsotg->periodic_usecs);
3962         np_tx_status = dwc2_readl(hsotg, GNPTXSTS);
3963         dev_dbg(hsotg->dev, "  NP Tx Req Queue Space Avail: %d\n",
3964                 (np_tx_status & TXSTS_QSPCAVAIL_MASK) >> TXSTS_QSPCAVAIL_SHIFT);
3965         dev_dbg(hsotg->dev, "  NP Tx FIFO Space Avail: %d\n",
3966                 (np_tx_status & TXSTS_FSPCAVAIL_MASK) >> TXSTS_FSPCAVAIL_SHIFT);
3967         p_tx_status = dwc2_readl(hsotg, HPTXSTS);
3968         dev_dbg(hsotg->dev, "  P Tx Req Queue Space Avail: %d\n",
3969                 (p_tx_status & TXSTS_QSPCAVAIL_MASK) >> TXSTS_QSPCAVAIL_SHIFT);
3970         dev_dbg(hsotg->dev, "  P Tx FIFO Space Avail: %d\n",
3971                 (p_tx_status & TXSTS_FSPCAVAIL_MASK) >> TXSTS_FSPCAVAIL_SHIFT);
3972         dwc2_dump_global_registers(hsotg);
3973         dwc2_dump_host_registers(hsotg);
3974         dev_dbg(hsotg->dev,
3975                 "************************************************************\n");
3976         dev_dbg(hsotg->dev, "\n");
3977 #endif
3978 }
3979
3980 struct wrapper_priv_data {
3981         struct dwc2_hsotg *hsotg;
3982 };
3983
3984 /* Gets the dwc2_hsotg from a usb_hcd */
3985 static struct dwc2_hsotg *dwc2_hcd_to_hsotg(struct usb_hcd *hcd)
3986 {
3987         struct wrapper_priv_data *p;
3988
3989         p = (struct wrapper_priv_data *)&hcd->hcd_priv;
3990         return p->hsotg;
3991 }
3992
3993 /**
3994  * dwc2_host_get_tt_info() - Get the dwc2_tt associated with context
3995  *
3996  * This will get the dwc2_tt structure (and ttport) associated with the given
3997  * context (which is really just a struct urb pointer).
3998  *
3999  * The first time this is called for a given TT we allocate memory for our
4000  * structure.  When everyone is done and has called dwc2_host_put_tt_info()
4001  * then the refcount for the structure will go to 0 and we'll free it.
4002  *
4003  * @hsotg:     The HCD state structure for the DWC OTG controller.
4004  * @context:   The priv pointer from a struct dwc2_hcd_urb.
4005  * @mem_flags: Flags for allocating memory.
4006  * @ttport:    We'll return this device's port number here.  That's used to
4007  *             reference into the bitmap if we're on a multi_tt hub.
4008  *
4009  * Return: a pointer to a struct dwc2_tt.  Don't forget to call
4010  *         dwc2_host_put_tt_info()!  Returns NULL upon memory alloc failure.
4011  */
4012
4013 struct dwc2_tt *dwc2_host_get_tt_info(struct dwc2_hsotg *hsotg, void *context,
4014                                       gfp_t mem_flags, int *ttport)
4015 {
4016         struct urb *urb = context;
4017         struct dwc2_tt *dwc_tt = NULL;
4018
4019         if (urb->dev->tt) {
4020                 *ttport = urb->dev->ttport;
4021
4022                 dwc_tt = urb->dev->tt->hcpriv;
4023                 if (!dwc_tt) {
4024                         size_t bitmap_size;
4025
4026                         /*
4027                          * For single_tt we need one schedule.  For multi_tt
4028                          * we need one per port.
4029                          */
4030                         bitmap_size = DWC2_ELEMENTS_PER_LS_BITMAP *
4031                                       sizeof(dwc_tt->periodic_bitmaps[0]);
4032                         if (urb->dev->tt->multi)
4033                                 bitmap_size *= urb->dev->tt->hub->maxchild;
4034
4035                         dwc_tt = kzalloc(sizeof(*dwc_tt) + bitmap_size,
4036                                          mem_flags);
4037                         if (!dwc_tt)
4038                                 return NULL;
4039
4040                         dwc_tt->usb_tt = urb->dev->tt;
4041                         dwc_tt->usb_tt->hcpriv = dwc_tt;
4042                 }
4043
4044                 dwc_tt->refcount++;
4045         }
4046
4047         return dwc_tt;
4048 }
4049
4050 /**
4051  * dwc2_host_put_tt_info() - Put the dwc2_tt from dwc2_host_get_tt_info()
4052  *
4053  * Frees resources allocated by dwc2_host_get_tt_info() if all current holders
4054  * of the structure are done.
4055  *
4056  * It's OK to call this with NULL.
4057  *
4058  * @hsotg:     The HCD state structure for the DWC OTG controller.
4059  * @dwc_tt:    The pointer returned by dwc2_host_get_tt_info.
4060  */
4061 void dwc2_host_put_tt_info(struct dwc2_hsotg *hsotg, struct dwc2_tt *dwc_tt)
4062 {
4063         /* Model kfree and make put of NULL a no-op */
4064         if (!dwc_tt)
4065                 return;
4066
4067         WARN_ON(dwc_tt->refcount < 1);
4068
4069         dwc_tt->refcount--;
4070         if (!dwc_tt->refcount) {
4071                 dwc_tt->usb_tt->hcpriv = NULL;
4072                 kfree(dwc_tt);
4073         }
4074 }
4075
4076 int dwc2_host_get_speed(struct dwc2_hsotg *hsotg, void *context)
4077 {
4078         struct urb *urb = context;
4079
4080         return urb->dev->speed;
4081 }
4082
4083 static void dwc2_allocate_bus_bandwidth(struct usb_hcd *hcd, u16 bw,
4084                                         struct urb *urb)
4085 {
4086         struct usb_bus *bus = hcd_to_bus(hcd);
4087
4088         if (urb->interval)
4089                 bus->bandwidth_allocated += bw / urb->interval;
4090         if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS)
4091                 bus->bandwidth_isoc_reqs++;
4092         else
4093                 bus->bandwidth_int_reqs++;
4094 }
4095
4096 static void dwc2_free_bus_bandwidth(struct usb_hcd *hcd, u16 bw,
4097                                     struct urb *urb)
4098 {
4099         struct usb_bus *bus = hcd_to_bus(hcd);
4100
4101         if (urb->interval)
4102                 bus->bandwidth_allocated -= bw / urb->interval;
4103         if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS)
4104                 bus->bandwidth_isoc_reqs--;
4105         else
4106                 bus->bandwidth_int_reqs--;
4107 }
4108
4109 /*
4110  * Sets the final status of an URB and returns it to the upper layer. Any
4111  * required cleanup of the URB is performed.
4112  *
4113  * Must be called with interrupt disabled and spinlock held
4114  */
4115 void dwc2_host_complete(struct dwc2_hsotg *hsotg, struct dwc2_qtd *qtd,
4116                         int status)
4117 {
4118         struct urb *urb;
4119         int i;
4120
4121         if (!qtd) {
4122                 dev_dbg(hsotg->dev, "## %s: qtd is NULL ##\n", __func__);
4123                 return;
4124         }
4125
4126         if (!qtd->urb) {
4127                 dev_dbg(hsotg->dev, "## %s: qtd->urb is NULL ##\n", __func__);
4128                 return;
4129         }
4130
4131         urb = qtd->urb->priv;
4132         if (!urb) {
4133                 dev_dbg(hsotg->dev, "## %s: urb->priv is NULL ##\n", __func__);
4134                 return;
4135         }
4136
4137         urb->actual_length = dwc2_hcd_urb_get_actual_length(qtd->urb);
4138
4139         if (dbg_urb(urb))
4140                 dev_vdbg(hsotg->dev,
4141                          "%s: urb %p device %d ep %d-%s status %d actual %d\n",
4142                          __func__, urb, usb_pipedevice(urb->pipe),
4143                          usb_pipeendpoint(urb->pipe),
4144                          usb_pipein(urb->pipe) ? "IN" : "OUT", status,
4145                          urb->actual_length);
4146
4147         if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
4148                 if (!hsotg->params.dma_desc_enable)
4149                         urb->start_frame = qtd->qh->start_active_frame;
4150                 urb->error_count = dwc2_hcd_urb_get_error_count(qtd->urb);
4151                 for (i = 0; i < urb->number_of_packets; ++i) {
4152                         urb->iso_frame_desc[i].actual_length =
4153                                 dwc2_hcd_urb_get_iso_desc_actual_length(
4154                                                 qtd->urb, i);
4155                         urb->iso_frame_desc[i].status =
4156                                 dwc2_hcd_urb_get_iso_desc_status(qtd->urb, i);
4157                 }
4158         }
4159
4160         if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS && dbg_perio()) {
4161                 for (i = 0; i < urb->number_of_packets; i++)
4162                         dev_vdbg(hsotg->dev, " ISO Desc %d status %d\n",
4163                                  i, urb->iso_frame_desc[i].status);
4164         }
4165
4166         urb->status = status;
4167         if (!status) {
4168                 if ((urb->transfer_flags & URB_SHORT_NOT_OK) &&
4169                     urb->actual_length < urb->transfer_buffer_length)
4170                         urb->status = -EREMOTEIO;
4171         }
4172
4173         if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS ||
4174             usb_pipetype(urb->pipe) == PIPE_INTERRUPT) {
4175                 struct usb_host_endpoint *ep = urb->ep;
4176
4177                 if (ep)
4178                         dwc2_free_bus_bandwidth(dwc2_hsotg_to_hcd(hsotg),
4179                                         dwc2_hcd_get_ep_bandwidth(hsotg, ep),
4180                                         urb);
4181         }
4182
4183         usb_hcd_unlink_urb_from_ep(dwc2_hsotg_to_hcd(hsotg), urb);
4184         urb->hcpriv = NULL;
4185         kfree(qtd->urb);
4186         qtd->urb = NULL;
4187
4188         usb_hcd_giveback_urb(dwc2_hsotg_to_hcd(hsotg), urb, status);
4189 }
4190
4191 /*
4192  * Work queue function for starting the HCD when A-Cable is connected
4193  */
4194 static void dwc2_hcd_start_func(struct work_struct *work)
4195 {
4196         struct dwc2_hsotg *hsotg = container_of(work, struct dwc2_hsotg,
4197                                                 start_work.work);
4198
4199         dev_dbg(hsotg->dev, "%s() %p\n", __func__, hsotg);
4200         dwc2_host_start(hsotg);
4201 }
4202
4203 /*
4204  * Reset work queue function
4205  */
4206 static void dwc2_hcd_reset_func(struct work_struct *work)
4207 {
4208         struct dwc2_hsotg *hsotg = container_of(work, struct dwc2_hsotg,
4209                                                 reset_work.work);
4210         unsigned long flags;
4211         u32 hprt0;
4212
4213         dev_dbg(hsotg->dev, "USB RESET function called\n");
4214
4215         spin_lock_irqsave(&hsotg->lock, flags);
4216
4217         hprt0 = dwc2_read_hprt0(hsotg);
4218         hprt0 &= ~HPRT0_RST;
4219         dwc2_writel(hsotg, hprt0, HPRT0);
4220         hsotg->flags.b.port_reset_change = 1;
4221
4222         spin_unlock_irqrestore(&hsotg->lock, flags);
4223 }
4224
4225 static void dwc2_hcd_phy_reset_func(struct work_struct *work)
4226 {
4227         struct dwc2_hsotg *hsotg = container_of(work, struct dwc2_hsotg,
4228                                                 phy_reset_work);
4229         int ret;
4230
4231         ret = phy_reset(hsotg->phy);
4232         if (ret)
4233                 dev_warn(hsotg->dev, "PHY reset failed\n");
4234 }
4235
4236 /*
4237  * =========================================================================
4238  *  Linux HC Driver Functions
4239  * =========================================================================
4240  */
4241
4242 /*
4243  * Initializes the DWC_otg controller and its root hub and prepares it for host
4244  * mode operation. Activates the root port. Returns 0 on success and a negative
4245  * error code on failure.
4246  */
4247 static int _dwc2_hcd_start(struct usb_hcd *hcd)
4248 {
4249         struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4250         struct usb_bus *bus = hcd_to_bus(hcd);
4251         unsigned long flags;
4252         u32 hprt0;
4253         int ret;
4254
4255         dev_dbg(hsotg->dev, "DWC OTG HCD START\n");
4256
4257         spin_lock_irqsave(&hsotg->lock, flags);
4258         hsotg->lx_state = DWC2_L0;
4259         hcd->state = HC_STATE_RUNNING;
4260         set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4261
4262         if (dwc2_is_device_mode(hsotg)) {
4263                 spin_unlock_irqrestore(&hsotg->lock, flags);
4264                 return 0;       /* why 0 ?? */
4265         }
4266
4267         dwc2_hcd_reinit(hsotg);
4268
4269         hprt0 = dwc2_read_hprt0(hsotg);
4270         /* Has vbus power been turned on in dwc2_core_host_init ? */
4271         if (hprt0 & HPRT0_PWR) {
4272                 /* Enable external vbus supply before resuming root hub */
4273                 spin_unlock_irqrestore(&hsotg->lock, flags);
4274                 ret = dwc2_vbus_supply_init(hsotg);
4275                 if (ret)
4276                         return ret;
4277                 spin_lock_irqsave(&hsotg->lock, flags);
4278         }
4279
4280         /* Initialize and connect root hub if one is not already attached */
4281         if (bus->root_hub) {
4282                 dev_dbg(hsotg->dev, "DWC OTG HCD Has Root Hub\n");
4283                 /* Inform the HUB driver to resume */
4284                 usb_hcd_resume_root_hub(hcd);
4285         }
4286
4287         spin_unlock_irqrestore(&hsotg->lock, flags);
4288
4289         return 0;
4290 }
4291
4292 /*
4293  * Halts the DWC_otg host mode operations in a clean manner. USB transfers are
4294  * stopped.
4295  */
4296 static void _dwc2_hcd_stop(struct usb_hcd *hcd)
4297 {
4298         struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4299         unsigned long flags;
4300         u32 hprt0;
4301
4302         /* Turn off all host-specific interrupts */
4303         dwc2_disable_host_interrupts(hsotg);
4304
4305         /* Wait for interrupt processing to finish */
4306         synchronize_irq(hcd->irq);
4307
4308         spin_lock_irqsave(&hsotg->lock, flags);
4309         hprt0 = dwc2_read_hprt0(hsotg);
4310         /* Ensure hcd is disconnected */
4311         dwc2_hcd_disconnect(hsotg, true);
4312         dwc2_hcd_stop(hsotg);
4313         hsotg->lx_state = DWC2_L3;
4314         hcd->state = HC_STATE_HALT;
4315         clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4316         spin_unlock_irqrestore(&hsotg->lock, flags);
4317
4318         /* keep balanced supply init/exit by checking HPRT0_PWR */
4319         if (hprt0 & HPRT0_PWR)
4320                 dwc2_vbus_supply_exit(hsotg);
4321
4322         usleep_range(1000, 3000);
4323 }
4324
4325 static int _dwc2_hcd_suspend(struct usb_hcd *hcd)
4326 {
4327         struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4328         unsigned long flags;
4329         int ret = 0;
4330
4331         spin_lock_irqsave(&hsotg->lock, flags);
4332
4333         if (dwc2_is_device_mode(hsotg))
4334                 goto unlock;
4335
4336         if (hsotg->lx_state != DWC2_L0)
4337                 goto unlock;
4338
4339         if (!HCD_HW_ACCESSIBLE(hcd))
4340                 goto unlock;
4341
4342         if (hsotg->op_state == OTG_STATE_B_PERIPHERAL)
4343                 goto unlock;
4344
4345         if (hsotg->bus_suspended)
4346                 goto skip_power_saving;
4347
4348         if (!(dwc2_read_hprt0(hsotg) & HPRT0_CONNSTS))
4349                 goto skip_power_saving;
4350
4351         switch (hsotg->params.power_down) {
4352         case DWC2_POWER_DOWN_PARAM_PARTIAL:
4353                 /* Enter partial_power_down */
4354                 ret = dwc2_enter_partial_power_down(hsotg);
4355                 if (ret)
4356                         dev_err(hsotg->dev,
4357                                 "enter partial_power_down failed\n");
4358                 /* After entering suspend, hardware is not accessible */
4359                 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4360                 break;
4361         case DWC2_POWER_DOWN_PARAM_HIBERNATION:
4362                 /* Enter hibernation */
4363                 spin_unlock_irqrestore(&hsotg->lock, flags);
4364                 ret = dwc2_enter_hibernation(hsotg, 1);
4365                 if (ret)
4366                         dev_err(hsotg->dev, "enter hibernation failed\n");
4367                 spin_lock_irqsave(&hsotg->lock, flags);
4368
4369                 /* After entering suspend, hardware is not accessible */
4370                 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4371                 break;
4372         case DWC2_POWER_DOWN_PARAM_NONE:
4373                 /*
4374                  * If not hibernation nor partial power down are supported,
4375                  * clock gating is used to save power.
4376                  */
4377                 if (!hsotg->params.no_clock_gating) {
4378                         dwc2_host_enter_clock_gating(hsotg);
4379
4380                         /* After entering suspend, hardware is not accessible */
4381                         clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4382                 }
4383                 break;
4384         default:
4385                 goto skip_power_saving;
4386         }
4387
4388         spin_unlock_irqrestore(&hsotg->lock, flags);
4389         dwc2_vbus_supply_exit(hsotg);
4390         spin_lock_irqsave(&hsotg->lock, flags);
4391
4392         /* Ask phy to be suspended */
4393         if (!IS_ERR_OR_NULL(hsotg->uphy)) {
4394                 spin_unlock_irqrestore(&hsotg->lock, flags);
4395                 usb_phy_set_suspend(hsotg->uphy, true);
4396                 spin_lock_irqsave(&hsotg->lock, flags);
4397         }
4398
4399 skip_power_saving:
4400         hsotg->lx_state = DWC2_L2;
4401 unlock:
4402         spin_unlock_irqrestore(&hsotg->lock, flags);
4403
4404         return ret;
4405 }
4406
4407 static int _dwc2_hcd_resume(struct usb_hcd *hcd)
4408 {
4409         struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4410         unsigned long flags;
4411         u32 hprt0;
4412         int ret = 0;
4413
4414         spin_lock_irqsave(&hsotg->lock, flags);
4415
4416         if (dwc2_is_device_mode(hsotg))
4417                 goto unlock;
4418
4419         if (hsotg->lx_state != DWC2_L2)
4420                 goto unlock;
4421
4422         hprt0 = dwc2_read_hprt0(hsotg);
4423
4424         /*
4425          * Added port connection status checking which prevents exiting from
4426          * Partial Power Down mode from _dwc2_hcd_resume() if not in Partial
4427          * Power Down mode.
4428          */
4429         if (hprt0 & HPRT0_CONNSTS) {
4430                 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4431                 hsotg->lx_state = DWC2_L0;
4432                 goto unlock;
4433         }
4434
4435         switch (hsotg->params.power_down) {
4436         case DWC2_POWER_DOWN_PARAM_PARTIAL:
4437                 ret = dwc2_exit_partial_power_down(hsotg, 0, true);
4438                 if (ret)
4439                         dev_err(hsotg->dev,
4440                                 "exit partial_power_down failed\n");
4441                 /*
4442                  * Set HW accessible bit before powering on the controller
4443                  * since an interrupt may rise.
4444                  */
4445                 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4446                 break;
4447         case DWC2_POWER_DOWN_PARAM_HIBERNATION:
4448                 ret = dwc2_exit_hibernation(hsotg, 0, 0, 1);
4449                 if (ret)
4450                         dev_err(hsotg->dev, "exit hibernation failed.\n");
4451
4452                 /*
4453                  * Set HW accessible bit before powering on the controller
4454                  * since an interrupt may rise.
4455                  */
4456                 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4457                 break;
4458         case DWC2_POWER_DOWN_PARAM_NONE:
4459                 /*
4460                  * If not hibernation nor partial power down are supported,
4461                  * port resume is done using the clock gating programming flow.
4462                  */
4463                 spin_unlock_irqrestore(&hsotg->lock, flags);
4464                 dwc2_host_exit_clock_gating(hsotg, 0);
4465
4466                 /*
4467                  * Initialize the Core for Host mode, as after system resume
4468                  * the global interrupts are disabled.
4469                  */
4470                 dwc2_core_init(hsotg, false);
4471                 dwc2_enable_global_interrupts(hsotg);
4472                 dwc2_hcd_reinit(hsotg);
4473                 spin_lock_irqsave(&hsotg->lock, flags);
4474
4475                 /*
4476                  * Set HW accessible bit before powering on the controller
4477                  * since an interrupt may rise.
4478                  */
4479                 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4480                 break;
4481         default:
4482                 hsotg->lx_state = DWC2_L0;
4483                 goto unlock;
4484         }
4485
4486         /* Change Root port status, as port status change occurred after resume.*/
4487         hsotg->flags.b.port_suspend_change = 1;
4488
4489         /*
4490          * Enable power if not already done.
4491          * This must not be spinlocked since duration
4492          * of this call is unknown.
4493          */
4494         if (!IS_ERR_OR_NULL(hsotg->uphy)) {
4495                 spin_unlock_irqrestore(&hsotg->lock, flags);
4496                 usb_phy_set_suspend(hsotg->uphy, false);
4497                 spin_lock_irqsave(&hsotg->lock, flags);
4498         }
4499
4500         /* Enable external vbus supply after resuming the port. */
4501         spin_unlock_irqrestore(&hsotg->lock, flags);
4502         dwc2_vbus_supply_init(hsotg);
4503
4504         /* Wait for controller to correctly update D+/D- level */
4505         usleep_range(3000, 5000);
4506         spin_lock_irqsave(&hsotg->lock, flags);
4507
4508         /*
4509          * Clear Port Enable and Port Status changes.
4510          * Enable Port Power.
4511          */
4512         dwc2_writel(hsotg, HPRT0_PWR | HPRT0_CONNDET |
4513                         HPRT0_ENACHG, HPRT0);
4514
4515         /* Wait for controller to detect Port Connect */
4516         spin_unlock_irqrestore(&hsotg->lock, flags);
4517         usleep_range(5000, 7000);
4518         spin_lock_irqsave(&hsotg->lock, flags);
4519 unlock:
4520         spin_unlock_irqrestore(&hsotg->lock, flags);
4521
4522         return ret;
4523 }
4524
4525 /* Returns the current frame number */
4526 static int _dwc2_hcd_get_frame_number(struct usb_hcd *hcd)
4527 {
4528         struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4529
4530         return dwc2_hcd_get_frame_number(hsotg);
4531 }
4532
4533 static void dwc2_dump_urb_info(struct usb_hcd *hcd, struct urb *urb,
4534                                char *fn_name)
4535 {
4536 #ifdef VERBOSE_DEBUG
4537         struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4538         char *pipetype = NULL;
4539         char *speed = NULL;
4540
4541         dev_vdbg(hsotg->dev, "%s, urb %p\n", fn_name, urb);
4542         dev_vdbg(hsotg->dev, "  Device address: %d\n",
4543                  usb_pipedevice(urb->pipe));
4544         dev_vdbg(hsotg->dev, "  Endpoint: %d, %s\n",
4545                  usb_pipeendpoint(urb->pipe),
4546                  usb_pipein(urb->pipe) ? "IN" : "OUT");
4547
4548         switch (usb_pipetype(urb->pipe)) {
4549         case PIPE_CONTROL:
4550                 pipetype = "CONTROL";
4551                 break;
4552         case PIPE_BULK:
4553                 pipetype = "BULK";
4554                 break;
4555         case PIPE_INTERRUPT:
4556                 pipetype = "INTERRUPT";
4557                 break;
4558         case PIPE_ISOCHRONOUS:
4559                 pipetype = "ISOCHRONOUS";
4560                 break;
4561         }
4562
4563         dev_vdbg(hsotg->dev, "  Endpoint type: %s %s (%s)\n", pipetype,
4564                  usb_urb_dir_in(urb) ? "IN" : "OUT", usb_pipein(urb->pipe) ?
4565                  "IN" : "OUT");
4566
4567         switch (urb->dev->speed) {
4568         case USB_SPEED_HIGH:
4569                 speed = "HIGH";
4570                 break;
4571         case USB_SPEED_FULL:
4572                 speed = "FULL";
4573                 break;
4574         case USB_SPEED_LOW:
4575                 speed = "LOW";
4576                 break;
4577         default:
4578                 speed = "UNKNOWN";
4579                 break;
4580         }
4581
4582         dev_vdbg(hsotg->dev, "  Speed: %s\n", speed);
4583         dev_vdbg(hsotg->dev, "  Max packet size: %d (%d mult)\n",
4584                  usb_endpoint_maxp(&urb->ep->desc),
4585                  usb_endpoint_maxp_mult(&urb->ep->desc));
4586
4587         dev_vdbg(hsotg->dev, "  Data buffer length: %d\n",
4588                  urb->transfer_buffer_length);
4589         dev_vdbg(hsotg->dev, "  Transfer buffer: %p, Transfer DMA: %08lx\n",
4590                  urb->transfer_buffer, (unsigned long)urb->transfer_dma);
4591         dev_vdbg(hsotg->dev, "  Setup buffer: %p, Setup DMA: %08lx\n",
4592                  urb->setup_packet, (unsigned long)urb->setup_dma);
4593         dev_vdbg(hsotg->dev, "  Interval: %d\n", urb->interval);
4594
4595         if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
4596                 int i;
4597
4598                 for (i = 0; i < urb->number_of_packets; i++) {
4599                         dev_vdbg(hsotg->dev, "  ISO Desc %d:\n", i);
4600                         dev_vdbg(hsotg->dev, "    offset: %d, length %d\n",
4601                                  urb->iso_frame_desc[i].offset,
4602                                  urb->iso_frame_desc[i].length);
4603                 }
4604         }
4605 #endif
4606 }
4607
4608 /*
4609  * Starts processing a USB transfer request specified by a USB Request Block
4610  * (URB). mem_flags indicates the type of memory allocation to use while
4611  * processing this URB.
4612  */
4613 static int _dwc2_hcd_urb_enqueue(struct usb_hcd *hcd, struct urb *urb,
4614                                  gfp_t mem_flags)
4615 {
4616         struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4617         struct usb_host_endpoint *ep = urb->ep;
4618         struct dwc2_hcd_urb *dwc2_urb;
4619         int i;
4620         int retval;
4621         int alloc_bandwidth = 0;
4622         u8 ep_type = 0;
4623         u32 tflags = 0;
4624         void *buf;
4625         unsigned long flags;
4626         struct dwc2_qh *qh;
4627         bool qh_allocated = false;
4628         struct dwc2_qtd *qtd;
4629         struct dwc2_gregs_backup *gr;
4630
4631         gr = &hsotg->gr_backup;
4632
4633         if (dbg_urb(urb)) {
4634                 dev_vdbg(hsotg->dev, "DWC OTG HCD URB Enqueue\n");
4635                 dwc2_dump_urb_info(hcd, urb, "urb_enqueue");
4636         }
4637
4638         if (hsotg->hibernated) {
4639                 if (gr->gotgctl & GOTGCTL_CURMODE_HOST)
4640                         retval = dwc2_exit_hibernation(hsotg, 0, 0, 1);
4641                 else
4642                         retval = dwc2_exit_hibernation(hsotg, 0, 0, 0);
4643
4644                 if (retval)
4645                         dev_err(hsotg->dev,
4646                                 "exit hibernation failed.\n");
4647         }
4648
4649         if (hsotg->in_ppd) {
4650                 retval = dwc2_exit_partial_power_down(hsotg, 0, true);
4651                 if (retval)
4652                         dev_err(hsotg->dev,
4653                                 "exit partial_power_down failed\n");
4654         }
4655
4656         if (hsotg->params.power_down == DWC2_POWER_DOWN_PARAM_NONE &&
4657             hsotg->bus_suspended && !hsotg->params.no_clock_gating) {
4658                 if (dwc2_is_device_mode(hsotg))
4659                         dwc2_gadget_exit_clock_gating(hsotg, 0);
4660                 else
4661                         dwc2_host_exit_clock_gating(hsotg, 0);
4662         }
4663
4664         if (!ep)
4665                 return -EINVAL;
4666
4667         if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS ||
4668             usb_pipetype(urb->pipe) == PIPE_INTERRUPT) {
4669                 spin_lock_irqsave(&hsotg->lock, flags);
4670                 if (!dwc2_hcd_is_bandwidth_allocated(hsotg, ep))
4671                         alloc_bandwidth = 1;
4672                 spin_unlock_irqrestore(&hsotg->lock, flags);
4673         }
4674
4675         switch (usb_pipetype(urb->pipe)) {
4676         case PIPE_CONTROL:
4677                 ep_type = USB_ENDPOINT_XFER_CONTROL;
4678                 break;
4679         case PIPE_ISOCHRONOUS:
4680                 ep_type = USB_ENDPOINT_XFER_ISOC;
4681                 break;
4682         case PIPE_BULK:
4683                 ep_type = USB_ENDPOINT_XFER_BULK;
4684                 break;
4685         case PIPE_INTERRUPT:
4686                 ep_type = USB_ENDPOINT_XFER_INT;
4687                 break;
4688         }
4689
4690         dwc2_urb = dwc2_hcd_urb_alloc(hsotg, urb->number_of_packets,
4691                                       mem_flags);
4692         if (!dwc2_urb)
4693                 return -ENOMEM;
4694
4695         dwc2_hcd_urb_set_pipeinfo(hsotg, dwc2_urb, usb_pipedevice(urb->pipe),
4696                                   usb_pipeendpoint(urb->pipe), ep_type,
4697                                   usb_pipein(urb->pipe),
4698                                   usb_endpoint_maxp(&ep->desc),
4699                                   usb_endpoint_maxp_mult(&ep->desc));
4700
4701         buf = urb->transfer_buffer;
4702
4703         if (hcd_uses_dma(hcd)) {
4704                 if (!buf && (urb->transfer_dma & 3)) {
4705                         dev_err(hsotg->dev,
4706                                 "%s: unaligned transfer with no transfer_buffer",
4707                                 __func__);
4708                         retval = -EINVAL;
4709                         goto fail0;
4710                 }
4711         }
4712
4713         if (!(urb->transfer_flags & URB_NO_INTERRUPT))
4714                 tflags |= URB_GIVEBACK_ASAP;
4715         if (urb->transfer_flags & URB_ZERO_PACKET)
4716                 tflags |= URB_SEND_ZERO_PACKET;
4717
4718         dwc2_urb->priv = urb;
4719         dwc2_urb->buf = buf;
4720         dwc2_urb->dma = urb->transfer_dma;
4721         dwc2_urb->length = urb->transfer_buffer_length;
4722         dwc2_urb->setup_packet = urb->setup_packet;
4723         dwc2_urb->setup_dma = urb->setup_dma;
4724         dwc2_urb->flags = tflags;
4725         dwc2_urb->interval = urb->interval;
4726         dwc2_urb->status = -EINPROGRESS;
4727
4728         for (i = 0; i < urb->number_of_packets; ++i)
4729                 dwc2_hcd_urb_set_iso_desc_params(dwc2_urb, i,
4730                                                  urb->iso_frame_desc[i].offset,
4731                                                  urb->iso_frame_desc[i].length);
4732
4733         urb->hcpriv = dwc2_urb;
4734         qh = (struct dwc2_qh *)ep->hcpriv;
4735         /* Create QH for the endpoint if it doesn't exist */
4736         if (!qh) {
4737                 qh = dwc2_hcd_qh_create(hsotg, dwc2_urb, mem_flags);
4738                 if (!qh) {
4739                         retval = -ENOMEM;
4740                         goto fail0;
4741                 }
4742                 ep->hcpriv = qh;
4743                 qh_allocated = true;
4744         }
4745
4746         qtd = kzalloc(sizeof(*qtd), mem_flags);
4747         if (!qtd) {
4748                 retval = -ENOMEM;
4749                 goto fail1;
4750         }
4751
4752         spin_lock_irqsave(&hsotg->lock, flags);
4753         retval = usb_hcd_link_urb_to_ep(hcd, urb);
4754         if (retval)
4755                 goto fail2;
4756
4757         retval = dwc2_hcd_urb_enqueue(hsotg, dwc2_urb, qh, qtd);
4758         if (retval)
4759                 goto fail3;
4760
4761         if (alloc_bandwidth) {
4762                 dwc2_allocate_bus_bandwidth(hcd,
4763                                 dwc2_hcd_get_ep_bandwidth(hsotg, ep),
4764                                 urb);
4765         }
4766
4767         spin_unlock_irqrestore(&hsotg->lock, flags);
4768
4769         return 0;
4770
4771 fail3:
4772         dwc2_urb->priv = NULL;
4773         usb_hcd_unlink_urb_from_ep(hcd, urb);
4774         if (qh_allocated && qh->channel && qh->channel->qh == qh)
4775                 qh->channel->qh = NULL;
4776 fail2:
4777         urb->hcpriv = NULL;
4778         spin_unlock_irqrestore(&hsotg->lock, flags);
4779         kfree(qtd);
4780 fail1:
4781         if (qh_allocated) {
4782                 struct dwc2_qtd *qtd2, *qtd2_tmp;
4783
4784                 ep->hcpriv = NULL;
4785                 dwc2_hcd_qh_unlink(hsotg, qh);
4786                 /* Free each QTD in the QH's QTD list */
4787                 list_for_each_entry_safe(qtd2, qtd2_tmp, &qh->qtd_list,
4788                                          qtd_list_entry)
4789                         dwc2_hcd_qtd_unlink_and_free(hsotg, qtd2, qh);
4790                 dwc2_hcd_qh_free(hsotg, qh);
4791         }
4792 fail0:
4793         kfree(dwc2_urb);
4794
4795         return retval;
4796 }
4797
4798 /*
4799  * Aborts/cancels a USB transfer request. Always returns 0 to indicate success.
4800  */
4801 static int _dwc2_hcd_urb_dequeue(struct usb_hcd *hcd, struct urb *urb,
4802                                  int status)
4803 {
4804         struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4805         int rc;
4806         unsigned long flags;
4807
4808         dev_dbg(hsotg->dev, "DWC OTG HCD URB Dequeue\n");
4809         dwc2_dump_urb_info(hcd, urb, "urb_dequeue");
4810
4811         spin_lock_irqsave(&hsotg->lock, flags);
4812
4813         rc = usb_hcd_check_unlink_urb(hcd, urb, status);
4814         if (rc)
4815                 goto out;
4816
4817         if (!urb->hcpriv) {
4818                 dev_dbg(hsotg->dev, "## urb->hcpriv is NULL ##\n");
4819                 goto out;
4820         }
4821
4822         rc = dwc2_hcd_urb_dequeue(hsotg, urb->hcpriv);
4823
4824         usb_hcd_unlink_urb_from_ep(hcd, urb);
4825
4826         kfree(urb->hcpriv);
4827         urb->hcpriv = NULL;
4828
4829         /* Higher layer software sets URB status */
4830         spin_unlock(&hsotg->lock);
4831         usb_hcd_giveback_urb(hcd, urb, status);
4832         spin_lock(&hsotg->lock);
4833
4834         dev_dbg(hsotg->dev, "Called usb_hcd_giveback_urb()\n");
4835         dev_dbg(hsotg->dev, "  urb->status = %d\n", urb->status);
4836 out:
4837         spin_unlock_irqrestore(&hsotg->lock, flags);
4838
4839         return rc;
4840 }
4841
4842 /*
4843  * Frees resources in the DWC_otg controller related to a given endpoint. Also
4844  * clears state in the HCD related to the endpoint. Any URBs for the endpoint
4845  * must already be dequeued.
4846  */
4847 static void _dwc2_hcd_endpoint_disable(struct usb_hcd *hcd,
4848                                        struct usb_host_endpoint *ep)
4849 {
4850         struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4851
4852         dev_dbg(hsotg->dev,
4853                 "DWC OTG HCD EP DISABLE: bEndpointAddress=0x%02x, ep->hcpriv=%p\n",
4854                 ep->desc.bEndpointAddress, ep->hcpriv);
4855         dwc2_hcd_endpoint_disable(hsotg, ep, 250);
4856 }
4857
4858 /*
4859  * Resets endpoint specific parameter values, in current version used to reset
4860  * the data toggle (as a WA). This function can be called from usb_clear_halt
4861  * routine.
4862  */
4863 static void _dwc2_hcd_endpoint_reset(struct usb_hcd *hcd,
4864                                      struct usb_host_endpoint *ep)
4865 {
4866         struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4867         unsigned long flags;
4868
4869         dev_dbg(hsotg->dev,
4870                 "DWC OTG HCD EP RESET: bEndpointAddress=0x%02x\n",
4871                 ep->desc.bEndpointAddress);
4872
4873         spin_lock_irqsave(&hsotg->lock, flags);
4874         dwc2_hcd_endpoint_reset(hsotg, ep);
4875         spin_unlock_irqrestore(&hsotg->lock, flags);
4876 }
4877
4878 /*
4879  * Handles host mode interrupts for the DWC_otg controller. Returns IRQ_NONE if
4880  * there was no interrupt to handle. Returns IRQ_HANDLED if there was a valid
4881  * interrupt.
4882  *
4883  * This function is called by the USB core when an interrupt occurs
4884  */
4885 static irqreturn_t _dwc2_hcd_irq(struct usb_hcd *hcd)
4886 {
4887         struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4888
4889         return dwc2_handle_hcd_intr(hsotg);
4890 }
4891
4892 /*
4893  * Creates Status Change bitmap for the root hub and root port. The bitmap is
4894  * returned in buf. Bit 0 is the status change indicator for the root hub. Bit 1
4895  * is the status change indicator for the single root port. Returns 1 if either
4896  * change indicator is 1, otherwise returns 0.
4897  */
4898 static int _dwc2_hcd_hub_status_data(struct usb_hcd *hcd, char *buf)
4899 {
4900         struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4901
4902         buf[0] = dwc2_hcd_is_status_changed(hsotg, 1) << 1;
4903         return buf[0] != 0;
4904 }
4905
4906 /* Handles hub class-specific requests */
4907 static int _dwc2_hcd_hub_control(struct usb_hcd *hcd, u16 typereq, u16 wvalue,
4908                                  u16 windex, char *buf, u16 wlength)
4909 {
4910         int retval = dwc2_hcd_hub_control(dwc2_hcd_to_hsotg(hcd), typereq,
4911                                           wvalue, windex, buf, wlength);
4912         return retval;
4913 }
4914
4915 /* Handles hub TT buffer clear completions */
4916 static void _dwc2_hcd_clear_tt_buffer_complete(struct usb_hcd *hcd,
4917                                                struct usb_host_endpoint *ep)
4918 {
4919         struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4920         struct dwc2_qh *qh;
4921         unsigned long flags;
4922
4923         qh = ep->hcpriv;
4924         if (!qh)
4925                 return;
4926
4927         spin_lock_irqsave(&hsotg->lock, flags);
4928         qh->tt_buffer_dirty = 0;
4929
4930         if (hsotg->flags.b.port_connect_status)
4931                 dwc2_hcd_queue_transactions(hsotg, DWC2_TRANSACTION_ALL);
4932
4933         spin_unlock_irqrestore(&hsotg->lock, flags);
4934 }
4935
4936 /*
4937  * HPRT0_SPD_HIGH_SPEED: high speed
4938  * HPRT0_SPD_FULL_SPEED: full speed
4939  */
4940 static void dwc2_change_bus_speed(struct usb_hcd *hcd, int speed)
4941 {
4942         struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4943
4944         if (hsotg->params.speed == speed)
4945                 return;
4946
4947         hsotg->params.speed = speed;
4948         queue_work(hsotg->wq_otg, &hsotg->wf_otg);
4949 }
4950
4951 static void dwc2_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
4952 {
4953         struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4954
4955         if (!hsotg->params.change_speed_quirk)
4956                 return;
4957
4958         /*
4959          * On removal, set speed to default high-speed.
4960          */
4961         if (udev->parent && udev->parent->speed > USB_SPEED_UNKNOWN &&
4962             udev->parent->speed < USB_SPEED_HIGH) {
4963                 dev_info(hsotg->dev, "Set speed to default high-speed\n");
4964                 dwc2_change_bus_speed(hcd, HPRT0_SPD_HIGH_SPEED);
4965         }
4966 }
4967
4968 static int dwc2_reset_device(struct usb_hcd *hcd, struct usb_device *udev)
4969 {
4970         struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4971
4972         if (!hsotg->params.change_speed_quirk)
4973                 return 0;
4974
4975         if (udev->speed == USB_SPEED_HIGH) {
4976                 dev_info(hsotg->dev, "Set speed to high-speed\n");
4977                 dwc2_change_bus_speed(hcd, HPRT0_SPD_HIGH_SPEED);
4978         } else if ((udev->speed == USB_SPEED_FULL ||
4979                                 udev->speed == USB_SPEED_LOW)) {
4980                 /*
4981                  * Change speed setting to full-speed if there's
4982                  * a full-speed or low-speed device plugged in.
4983                  */
4984                 dev_info(hsotg->dev, "Set speed to full-speed\n");
4985                 dwc2_change_bus_speed(hcd, HPRT0_SPD_FULL_SPEED);
4986         }
4987
4988         return 0;
4989 }
4990
4991 static struct hc_driver dwc2_hc_driver = {
4992         .description = "dwc2_hsotg",
4993         .product_desc = "DWC OTG Controller",
4994         .hcd_priv_size = sizeof(struct wrapper_priv_data),
4995
4996         .irq = _dwc2_hcd_irq,
4997         .flags = HCD_MEMORY | HCD_USB2 | HCD_BH,
4998
4999         .start = _dwc2_hcd_start,
5000         .stop = _dwc2_hcd_stop,
5001         .urb_enqueue = _dwc2_hcd_urb_enqueue,
5002         .urb_dequeue = _dwc2_hcd_urb_dequeue,
5003         .endpoint_disable = _dwc2_hcd_endpoint_disable,
5004         .endpoint_reset = _dwc2_hcd_endpoint_reset,
5005         .get_frame_number = _dwc2_hcd_get_frame_number,
5006
5007         .hub_status_data = _dwc2_hcd_hub_status_data,
5008         .hub_control = _dwc2_hcd_hub_control,
5009         .clear_tt_buffer_complete = _dwc2_hcd_clear_tt_buffer_complete,
5010
5011         .bus_suspend = _dwc2_hcd_suspend,
5012         .bus_resume = _dwc2_hcd_resume,
5013
5014         .map_urb_for_dma        = dwc2_map_urb_for_dma,
5015         .unmap_urb_for_dma      = dwc2_unmap_urb_for_dma,
5016 };
5017
5018 /*
5019  * Frees secondary storage associated with the dwc2_hsotg structure contained
5020  * in the struct usb_hcd field
5021  */
5022 static void dwc2_hcd_free(struct dwc2_hsotg *hsotg)
5023 {
5024         u32 ahbcfg;
5025         u32 dctl;
5026         int i;
5027
5028         dev_dbg(hsotg->dev, "DWC OTG HCD FREE\n");
5029
5030         /* Free memory for QH/QTD lists */
5031         dwc2_qh_list_free(hsotg, &hsotg->non_periodic_sched_inactive);
5032         dwc2_qh_list_free(hsotg, &hsotg->non_periodic_sched_waiting);
5033         dwc2_qh_list_free(hsotg, &hsotg->non_periodic_sched_active);
5034         dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_inactive);
5035         dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_ready);
5036         dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_assigned);
5037         dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_queued);
5038
5039         /* Free memory for the host channels */
5040         for (i = 0; i < MAX_EPS_CHANNELS; i++) {
5041                 struct dwc2_host_chan *chan = hsotg->hc_ptr_array[i];
5042
5043                 if (chan) {
5044                         dev_dbg(hsotg->dev, "HCD Free channel #%i, chan=%p\n",
5045                                 i, chan);
5046                         hsotg->hc_ptr_array[i] = NULL;
5047                         kfree(chan);
5048                 }
5049         }
5050
5051         if (hsotg->params.host_dma) {
5052                 if (hsotg->status_buf) {
5053                         dma_free_coherent(hsotg->dev, DWC2_HCD_STATUS_BUF_SIZE,
5054                                           hsotg->status_buf,
5055                                           hsotg->status_buf_dma);
5056                         hsotg->status_buf = NULL;
5057                 }
5058         } else {
5059                 kfree(hsotg->status_buf);
5060                 hsotg->status_buf = NULL;
5061         }
5062
5063         ahbcfg = dwc2_readl(hsotg, GAHBCFG);
5064
5065         /* Disable all interrupts */
5066         ahbcfg &= ~GAHBCFG_GLBL_INTR_EN;
5067         dwc2_writel(hsotg, ahbcfg, GAHBCFG);
5068         dwc2_writel(hsotg, 0, GINTMSK);
5069
5070         if (hsotg->hw_params.snpsid >= DWC2_CORE_REV_3_00a) {
5071                 dctl = dwc2_readl(hsotg, DCTL);
5072                 dctl |= DCTL_SFTDISCON;
5073                 dwc2_writel(hsotg, dctl, DCTL);
5074         }
5075
5076         if (hsotg->wq_otg) {
5077                 if (!cancel_work_sync(&hsotg->wf_otg))
5078                         flush_workqueue(hsotg->wq_otg);
5079                 destroy_workqueue(hsotg->wq_otg);
5080         }
5081
5082         cancel_work_sync(&hsotg->phy_reset_work);
5083
5084         del_timer(&hsotg->wkp_timer);
5085 }
5086
5087 static void dwc2_hcd_release(struct dwc2_hsotg *hsotg)
5088 {
5089         /* Turn off all host-specific interrupts */
5090         dwc2_disable_host_interrupts(hsotg);
5091
5092         dwc2_hcd_free(hsotg);
5093 }
5094
5095 /*
5096  * Initializes the HCD. This function allocates memory for and initializes the
5097  * static parts of the usb_hcd and dwc2_hsotg structures. It also registers the
5098  * USB bus with the core and calls the hc_driver->start() function. It returns
5099  * a negative error on failure.
5100  */
5101 int dwc2_hcd_init(struct dwc2_hsotg *hsotg)
5102 {
5103         struct platform_device *pdev = to_platform_device(hsotg->dev);
5104         struct resource *res;
5105         struct usb_hcd *hcd;
5106         struct dwc2_host_chan *channel;
5107         u32 hcfg;
5108         int i, num_channels;
5109         int retval;
5110
5111         if (usb_disabled())
5112                 return -ENODEV;
5113
5114         dev_dbg(hsotg->dev, "DWC OTG HCD INIT\n");
5115
5116         retval = -ENOMEM;
5117
5118         hcfg = dwc2_readl(hsotg, HCFG);
5119         dev_dbg(hsotg->dev, "hcfg=%08x\n", hcfg);
5120
5121 #ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS
5122         hsotg->frame_num_array = kcalloc(FRAME_NUM_ARRAY_SIZE,
5123                                          sizeof(*hsotg->frame_num_array),
5124                                          GFP_KERNEL);
5125         if (!hsotg->frame_num_array)
5126                 goto error1;
5127         hsotg->last_frame_num_array =
5128                 kcalloc(FRAME_NUM_ARRAY_SIZE,
5129                         sizeof(*hsotg->last_frame_num_array), GFP_KERNEL);
5130         if (!hsotg->last_frame_num_array)
5131                 goto error1;
5132 #endif
5133         hsotg->last_frame_num = HFNUM_MAX_FRNUM;
5134
5135         /* Check if the bus driver or platform code has setup a dma_mask */
5136         if (hsotg->params.host_dma &&
5137             !hsotg->dev->dma_mask) {
5138                 dev_warn(hsotg->dev,
5139                          "dma_mask not set, disabling DMA\n");
5140                 hsotg->params.host_dma = false;
5141                 hsotg->params.dma_desc_enable = false;
5142         }
5143
5144         /* Set device flags indicating whether the HCD supports DMA */
5145         if (hsotg->params.host_dma) {
5146                 if (dma_set_mask(hsotg->dev, DMA_BIT_MASK(32)) < 0)
5147                         dev_warn(hsotg->dev, "can't set DMA mask\n");
5148                 if (dma_set_coherent_mask(hsotg->dev, DMA_BIT_MASK(32)) < 0)
5149                         dev_warn(hsotg->dev, "can't set coherent DMA mask\n");
5150         }
5151
5152         if (hsotg->params.change_speed_quirk) {
5153                 dwc2_hc_driver.free_dev = dwc2_free_dev;
5154                 dwc2_hc_driver.reset_device = dwc2_reset_device;
5155         }
5156
5157         if (hsotg->params.host_dma)
5158                 dwc2_hc_driver.flags |= HCD_DMA;
5159
5160         hcd = usb_create_hcd(&dwc2_hc_driver, hsotg->dev, dev_name(hsotg->dev));
5161         if (!hcd)
5162                 goto error1;
5163
5164         hcd->has_tt = 1;
5165
5166         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
5167         if (!res) {
5168                 retval = -EINVAL;
5169                 goto error2;
5170         }
5171         hcd->rsrc_start = res->start;
5172         hcd->rsrc_len = resource_size(res);
5173
5174         ((struct wrapper_priv_data *)&hcd->hcd_priv)->hsotg = hsotg;
5175         hsotg->priv = hcd;
5176
5177         /*
5178          * Disable the global interrupt until all the interrupt handlers are
5179          * installed
5180          */
5181         dwc2_disable_global_interrupts(hsotg);
5182
5183         /* Initialize the DWC_otg core, and select the Phy type */
5184         retval = dwc2_core_init(hsotg, true);
5185         if (retval)
5186                 goto error2;
5187
5188         /* Create new workqueue and init work */
5189         retval = -ENOMEM;
5190         hsotg->wq_otg = alloc_ordered_workqueue("dwc2", 0);
5191         if (!hsotg->wq_otg) {
5192                 dev_err(hsotg->dev, "Failed to create workqueue\n");
5193                 goto error2;
5194         }
5195         INIT_WORK(&hsotg->wf_otg, dwc2_conn_id_status_change);
5196
5197         timer_setup(&hsotg->wkp_timer, dwc2_wakeup_detected, 0);
5198
5199         /* Initialize the non-periodic schedule */
5200         INIT_LIST_HEAD(&hsotg->non_periodic_sched_inactive);
5201         INIT_LIST_HEAD(&hsotg->non_periodic_sched_waiting);
5202         INIT_LIST_HEAD(&hsotg->non_periodic_sched_active);
5203
5204         /* Initialize the periodic schedule */
5205         INIT_LIST_HEAD(&hsotg->periodic_sched_inactive);
5206         INIT_LIST_HEAD(&hsotg->periodic_sched_ready);
5207         INIT_LIST_HEAD(&hsotg->periodic_sched_assigned);
5208         INIT_LIST_HEAD(&hsotg->periodic_sched_queued);
5209
5210         INIT_LIST_HEAD(&hsotg->split_order);
5211
5212         /*
5213          * Create a host channel descriptor for each host channel implemented
5214          * in the controller. Initialize the channel descriptor array.
5215          */
5216         INIT_LIST_HEAD(&hsotg->free_hc_list);
5217         num_channels = hsotg->params.host_channels;
5218         memset(&hsotg->hc_ptr_array[0], 0, sizeof(hsotg->hc_ptr_array));
5219
5220         for (i = 0; i < num_channels; i++) {
5221                 channel = kzalloc(sizeof(*channel), GFP_KERNEL);
5222                 if (!channel)
5223                         goto error3;
5224                 channel->hc_num = i;
5225                 INIT_LIST_HEAD(&channel->split_order_list_entry);
5226                 hsotg->hc_ptr_array[i] = channel;
5227         }
5228
5229         /* Initialize work */
5230         INIT_DELAYED_WORK(&hsotg->start_work, dwc2_hcd_start_func);
5231         INIT_DELAYED_WORK(&hsotg->reset_work, dwc2_hcd_reset_func);
5232         INIT_WORK(&hsotg->phy_reset_work, dwc2_hcd_phy_reset_func);
5233
5234         /*
5235          * Allocate space for storing data on status transactions. Normally no
5236          * data is sent, but this space acts as a bit bucket. This must be
5237          * done after usb_add_hcd since that function allocates the DMA buffer
5238          * pool.
5239          */
5240         if (hsotg->params.host_dma)
5241                 hsotg->status_buf = dma_alloc_coherent(hsotg->dev,
5242                                         DWC2_HCD_STATUS_BUF_SIZE,
5243                                         &hsotg->status_buf_dma, GFP_KERNEL);
5244         else
5245                 hsotg->status_buf = kzalloc(DWC2_HCD_STATUS_BUF_SIZE,
5246                                           GFP_KERNEL);
5247
5248         if (!hsotg->status_buf)
5249                 goto error3;
5250
5251         /*
5252          * Create kmem caches to handle descriptor buffers in descriptor
5253          * DMA mode.
5254          * Alignment must be set to 512 bytes.
5255          */
5256         if (hsotg->params.dma_desc_enable ||
5257             hsotg->params.dma_desc_fs_enable) {
5258                 hsotg->desc_gen_cache = kmem_cache_create("dwc2-gen-desc",
5259                                 sizeof(struct dwc2_dma_desc) *
5260                                 MAX_DMA_DESC_NUM_GENERIC, 512, SLAB_CACHE_DMA,
5261                                 NULL);
5262                 if (!hsotg->desc_gen_cache) {
5263                         dev_err(hsotg->dev,
5264                                 "unable to create dwc2 generic desc cache\n");
5265
5266                         /*
5267                          * Disable descriptor dma mode since it will not be
5268                          * usable.
5269                          */
5270                         hsotg->params.dma_desc_enable = false;
5271                         hsotg->params.dma_desc_fs_enable = false;
5272                 }
5273
5274                 hsotg->desc_hsisoc_cache = kmem_cache_create("dwc2-hsisoc-desc",
5275                                 sizeof(struct dwc2_dma_desc) *
5276                                 MAX_DMA_DESC_NUM_HS_ISOC, 512, 0, NULL);
5277                 if (!hsotg->desc_hsisoc_cache) {
5278                         dev_err(hsotg->dev,
5279                                 "unable to create dwc2 hs isoc desc cache\n");
5280
5281                         kmem_cache_destroy(hsotg->desc_gen_cache);
5282
5283                         /*
5284                          * Disable descriptor dma mode since it will not be
5285                          * usable.
5286                          */
5287                         hsotg->params.dma_desc_enable = false;
5288                         hsotg->params.dma_desc_fs_enable = false;
5289                 }
5290         }
5291
5292         if (hsotg->params.host_dma) {
5293                 /*
5294                  * Create kmem caches to handle non-aligned buffer
5295                  * in Buffer DMA mode.
5296                  */
5297                 hsotg->unaligned_cache = kmem_cache_create("dwc2-unaligned-dma",
5298                                                 DWC2_KMEM_UNALIGNED_BUF_SIZE, 4,
5299                                                 SLAB_CACHE_DMA, NULL);
5300                 if (!hsotg->unaligned_cache)
5301                         dev_err(hsotg->dev,
5302                                 "unable to create dwc2 unaligned cache\n");
5303         }
5304
5305         hsotg->otg_port = 1;
5306         hsotg->frame_list = NULL;
5307         hsotg->frame_list_dma = 0;
5308         hsotg->periodic_qh_count = 0;
5309
5310         /* Initiate lx_state to L3 disconnected state */
5311         hsotg->lx_state = DWC2_L3;
5312
5313         hcd->self.otg_port = hsotg->otg_port;
5314
5315         /* Don't support SG list at this point */
5316         hcd->self.sg_tablesize = 0;
5317
5318         hcd->tpl_support = of_usb_host_tpl_support(hsotg->dev->of_node);
5319
5320         if (!IS_ERR_OR_NULL(hsotg->uphy))
5321                 otg_set_host(hsotg->uphy->otg, &hcd->self);
5322
5323         /*
5324          * Finish generic HCD initialization and start the HCD. This function
5325          * allocates the DMA buffer pool, registers the USB bus, requests the
5326          * IRQ line, and calls hcd_start method.
5327          */
5328         retval = usb_add_hcd(hcd, hsotg->irq, IRQF_SHARED);
5329         if (retval < 0)
5330                 goto error4;
5331
5332         device_wakeup_enable(hcd->self.controller);
5333
5334         dwc2_hcd_dump_state(hsotg);
5335
5336         dwc2_enable_global_interrupts(hsotg);
5337
5338         return 0;
5339
5340 error4:
5341         kmem_cache_destroy(hsotg->unaligned_cache);
5342         kmem_cache_destroy(hsotg->desc_hsisoc_cache);
5343         kmem_cache_destroy(hsotg->desc_gen_cache);
5344 error3:
5345         dwc2_hcd_release(hsotg);
5346 error2:
5347         usb_put_hcd(hcd);
5348 error1:
5349
5350 #ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS
5351         kfree(hsotg->last_frame_num_array);
5352         kfree(hsotg->frame_num_array);
5353 #endif
5354
5355         dev_err(hsotg->dev, "%s() FAILED, returning %d\n", __func__, retval);
5356         return retval;
5357 }
5358
5359 /*
5360  * Removes the HCD.
5361  * Frees memory and resources associated with the HCD and deregisters the bus.
5362  */
5363 void dwc2_hcd_remove(struct dwc2_hsotg *hsotg)
5364 {
5365         struct usb_hcd *hcd;
5366
5367         dev_dbg(hsotg->dev, "DWC OTG HCD REMOVE\n");
5368
5369         hcd = dwc2_hsotg_to_hcd(hsotg);
5370         dev_dbg(hsotg->dev, "hsotg->hcd = %p\n", hcd);
5371
5372         if (!hcd) {
5373                 dev_dbg(hsotg->dev, "%s: dwc2_hsotg_to_hcd(hsotg) NULL!\n",
5374                         __func__);
5375                 return;
5376         }
5377
5378         if (!IS_ERR_OR_NULL(hsotg->uphy))
5379                 otg_set_host(hsotg->uphy->otg, NULL);
5380
5381         usb_remove_hcd(hcd);
5382         hsotg->priv = NULL;
5383
5384         kmem_cache_destroy(hsotg->unaligned_cache);
5385         kmem_cache_destroy(hsotg->desc_hsisoc_cache);
5386         kmem_cache_destroy(hsotg->desc_gen_cache);
5387
5388         dwc2_hcd_release(hsotg);
5389         usb_put_hcd(hcd);
5390
5391 #ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS
5392         kfree(hsotg->last_frame_num_array);
5393         kfree(hsotg->frame_num_array);
5394 #endif
5395 }
5396
5397 /**
5398  * dwc2_backup_host_registers() - Backup controller host registers.
5399  * When suspending usb bus, registers needs to be backuped
5400  * if controller power is disabled once suspended.
5401  *
5402  * @hsotg: Programming view of the DWC_otg controller
5403  */
5404 int dwc2_backup_host_registers(struct dwc2_hsotg *hsotg)
5405 {
5406         struct dwc2_hregs_backup *hr;
5407         int i;
5408
5409         dev_dbg(hsotg->dev, "%s\n", __func__);
5410
5411         /* Backup Host regs */
5412         hr = &hsotg->hr_backup;
5413         hr->hcfg = dwc2_readl(hsotg, HCFG);
5414         hr->hflbaddr = dwc2_readl(hsotg, HFLBADDR);
5415         hr->haintmsk = dwc2_readl(hsotg, HAINTMSK);
5416         for (i = 0; i < hsotg->params.host_channels; ++i) {
5417                 hr->hcchar[i] = dwc2_readl(hsotg, HCCHAR(i));
5418                 hr->hcsplt[i] = dwc2_readl(hsotg, HCSPLT(i));
5419                 hr->hcintmsk[i] = dwc2_readl(hsotg, HCINTMSK(i));
5420                 hr->hctsiz[i] = dwc2_readl(hsotg, HCTSIZ(i));
5421                 hr->hcidma[i] = dwc2_readl(hsotg, HCDMA(i));
5422                 hr->hcidmab[i] = dwc2_readl(hsotg, HCDMAB(i));
5423         }
5424
5425         hr->hprt0 = dwc2_read_hprt0(hsotg);
5426         hr->hfir = dwc2_readl(hsotg, HFIR);
5427         hr->hptxfsiz = dwc2_readl(hsotg, HPTXFSIZ);
5428         hr->valid = true;
5429
5430         return 0;
5431 }
5432
5433 /**
5434  * dwc2_restore_host_registers() - Restore controller host registers.
5435  * When resuming usb bus, device registers needs to be restored
5436  * if controller power were disabled.
5437  *
5438  * @hsotg: Programming view of the DWC_otg controller
5439  */
5440 int dwc2_restore_host_registers(struct dwc2_hsotg *hsotg)
5441 {
5442         struct dwc2_hregs_backup *hr;
5443         int i;
5444
5445         dev_dbg(hsotg->dev, "%s\n", __func__);
5446
5447         /* Restore host regs */
5448         hr = &hsotg->hr_backup;
5449         if (!hr->valid) {
5450                 dev_err(hsotg->dev, "%s: no host registers to restore\n",
5451                         __func__);
5452                 return -EINVAL;
5453         }
5454         hr->valid = false;
5455
5456         dwc2_writel(hsotg, hr->hcfg, HCFG);
5457         dwc2_writel(hsotg, hr->hflbaddr, HFLBADDR);
5458         dwc2_writel(hsotg, hr->haintmsk, HAINTMSK);
5459
5460         for (i = 0; i < hsotg->params.host_channels; ++i) {
5461                 dwc2_writel(hsotg, hr->hcchar[i], HCCHAR(i));
5462                 dwc2_writel(hsotg, hr->hcsplt[i], HCSPLT(i));
5463                 dwc2_writel(hsotg, hr->hcintmsk[i], HCINTMSK(i));
5464                 dwc2_writel(hsotg, hr->hctsiz[i], HCTSIZ(i));
5465                 dwc2_writel(hsotg, hr->hcidma[i], HCDMA(i));
5466                 dwc2_writel(hsotg, hr->hcidmab[i], HCDMAB(i));
5467         }
5468
5469         dwc2_writel(hsotg, hr->hprt0, HPRT0);
5470         dwc2_writel(hsotg, hr->hfir, HFIR);
5471         dwc2_writel(hsotg, hr->hptxfsiz, HPTXFSIZ);
5472         hsotg->frame_number = 0;
5473
5474         return 0;
5475 }
5476
5477 /**
5478  * dwc2_host_enter_hibernation() - Put controller in Hibernation.
5479  *
5480  * @hsotg: Programming view of the DWC_otg controller
5481  */
5482 int dwc2_host_enter_hibernation(struct dwc2_hsotg *hsotg)
5483 {
5484         unsigned long flags;
5485         int ret = 0;
5486         u32 hprt0;
5487         u32 pcgcctl;
5488         u32 gusbcfg;
5489         u32 gpwrdn;
5490
5491         dev_dbg(hsotg->dev, "Preparing host for hibernation\n");
5492         ret = dwc2_backup_global_registers(hsotg);
5493         if (ret) {
5494                 dev_err(hsotg->dev, "%s: failed to backup global registers\n",
5495                         __func__);
5496                 return ret;
5497         }
5498         ret = dwc2_backup_host_registers(hsotg);
5499         if (ret) {
5500                 dev_err(hsotg->dev, "%s: failed to backup host registers\n",
5501                         __func__);
5502                 return ret;
5503         }
5504
5505         /* Enter USB Suspend Mode */
5506         hprt0 = dwc2_readl(hsotg, HPRT0);
5507         hprt0 |= HPRT0_SUSP;
5508         hprt0 &= ~HPRT0_ENA;
5509         dwc2_writel(hsotg, hprt0, HPRT0);
5510
5511         /* Wait for the HPRT0.PrtSusp register field to be set */
5512         if (dwc2_hsotg_wait_bit_set(hsotg, HPRT0, HPRT0_SUSP, 5000))
5513                 dev_warn(hsotg->dev, "Suspend wasn't generated\n");
5514
5515         /*
5516          * We need to disable interrupts to prevent servicing of any IRQ
5517          * during going to hibernation
5518          */
5519         spin_lock_irqsave(&hsotg->lock, flags);
5520         hsotg->lx_state = DWC2_L2;
5521
5522         gusbcfg = dwc2_readl(hsotg, GUSBCFG);
5523         if (gusbcfg & GUSBCFG_ULPI_UTMI_SEL) {
5524                 /* ULPI interface */
5525                 udelay(10);
5526                 gpwrdn = dwc2_readl(hsotg, GPWRDN);
5527                 gpwrdn |= GPWRDN_ULPI_LATCH_EN_DURING_HIB_ENTRY;
5528                 dwc2_writel(hsotg, gpwrdn, GPWRDN);
5529                 udelay(10);
5530                 /* Suspend the Phy Clock */
5531                 pcgcctl = dwc2_readl(hsotg, PCGCTL);
5532                 pcgcctl |= PCGCTL_STOPPCLK;
5533                 dwc2_writel(hsotg, pcgcctl, PCGCTL);
5534                 udelay(10);
5535
5536                 gpwrdn = dwc2_readl(hsotg, GPWRDN);
5537                 gpwrdn |= GPWRDN_PMUACTV;
5538                 dwc2_writel(hsotg, gpwrdn, GPWRDN);
5539                 udelay(10);
5540         } else {
5541                 /* UTMI+ Interface */
5542                 gpwrdn = dwc2_readl(hsotg, GPWRDN);
5543                 gpwrdn |= GPWRDN_PMUACTV;
5544                 dwc2_writel(hsotg, gpwrdn, GPWRDN);
5545                 udelay(10);
5546
5547                 pcgcctl = dwc2_readl(hsotg, PCGCTL);
5548                 pcgcctl |= PCGCTL_STOPPCLK;
5549                 dwc2_writel(hsotg, pcgcctl, PCGCTL);
5550                 udelay(10);
5551         }
5552
5553         /* Enable interrupts from wake up logic */
5554         gpwrdn = dwc2_readl(hsotg, GPWRDN);
5555         gpwrdn |= GPWRDN_PMUINTSEL;
5556         dwc2_writel(hsotg, gpwrdn, GPWRDN);
5557         udelay(10);
5558
5559         /* Unmask host mode interrupts in GPWRDN */
5560         gpwrdn = dwc2_readl(hsotg, GPWRDN);
5561         gpwrdn |= GPWRDN_DISCONN_DET_MSK;
5562         gpwrdn |= GPWRDN_LNSTSCHG_MSK;
5563         gpwrdn |= GPWRDN_STS_CHGINT_MSK;
5564         dwc2_writel(hsotg, gpwrdn, GPWRDN);
5565         udelay(10);
5566
5567         /* Enable Power Down Clamp */
5568         gpwrdn = dwc2_readl(hsotg, GPWRDN);
5569         gpwrdn |= GPWRDN_PWRDNCLMP;
5570         dwc2_writel(hsotg, gpwrdn, GPWRDN);
5571         udelay(10);
5572
5573         /* Switch off VDD */
5574         gpwrdn = dwc2_readl(hsotg, GPWRDN);
5575         gpwrdn |= GPWRDN_PWRDNSWTCH;
5576         dwc2_writel(hsotg, gpwrdn, GPWRDN);
5577
5578         hsotg->hibernated = 1;
5579         hsotg->bus_suspended = 1;
5580         dev_dbg(hsotg->dev, "Host hibernation completed\n");
5581         spin_unlock_irqrestore(&hsotg->lock, flags);
5582         return ret;
5583 }
5584
5585 /*
5586  * dwc2_host_exit_hibernation()
5587  *
5588  * @hsotg: Programming view of the DWC_otg controller
5589  * @rem_wakeup: indicates whether resume is initiated by Device or Host.
5590  * @param reset: indicates whether resume is initiated by Reset.
5591  *
5592  * Return: non-zero if failed to enter to hibernation.
5593  *
5594  * This function is for exiting from Host mode hibernation by
5595  * Host Initiated Resume/Reset and Device Initiated Remote-Wakeup.
5596  */
5597 int dwc2_host_exit_hibernation(struct dwc2_hsotg *hsotg, int rem_wakeup,
5598                                int reset)
5599 {
5600         u32 gpwrdn;
5601         u32 hprt0;
5602         int ret = 0;
5603         struct dwc2_gregs_backup *gr;
5604         struct dwc2_hregs_backup *hr;
5605
5606         gr = &hsotg->gr_backup;
5607         hr = &hsotg->hr_backup;
5608
5609         dev_dbg(hsotg->dev,
5610                 "%s: called with rem_wakeup = %d reset = %d\n",
5611                 __func__, rem_wakeup, reset);
5612
5613         dwc2_hib_restore_common(hsotg, rem_wakeup, 1);
5614         hsotg->hibernated = 0;
5615
5616         /*
5617          * This step is not described in functional spec but if not wait for
5618          * this delay, mismatch interrupts occurred because just after restore
5619          * core is in Device mode(gintsts.curmode == 0)
5620          */
5621         mdelay(100);
5622
5623         /* Clear all pending interupts */
5624         dwc2_writel(hsotg, 0xffffffff, GINTSTS);
5625
5626         /* De-assert Restore */
5627         gpwrdn = dwc2_readl(hsotg, GPWRDN);
5628         gpwrdn &= ~GPWRDN_RESTORE;
5629         dwc2_writel(hsotg, gpwrdn, GPWRDN);
5630         udelay(10);
5631
5632         /* Restore GUSBCFG, HCFG */
5633         dwc2_writel(hsotg, gr->gusbcfg, GUSBCFG);
5634         dwc2_writel(hsotg, hr->hcfg, HCFG);
5635
5636         /* Reset ULPI latch */
5637         gpwrdn = dwc2_readl(hsotg, GPWRDN);
5638         gpwrdn &= ~GPWRDN_ULPI_LATCH_EN_DURING_HIB_ENTRY;
5639         dwc2_writel(hsotg, gpwrdn, GPWRDN);
5640
5641         /* De-assert Wakeup Logic */
5642         if (!(rem_wakeup && hsotg->hw_params.snpsid >= DWC2_CORE_REV_4_30a)) {
5643                 gpwrdn = dwc2_readl(hsotg, GPWRDN);
5644                 gpwrdn &= ~GPWRDN_PMUACTV;
5645                 dwc2_writel(hsotg, gpwrdn, GPWRDN);
5646                 udelay(10);
5647         }
5648
5649         hprt0 = hr->hprt0;
5650         hprt0 |= HPRT0_PWR;
5651         hprt0 &= ~HPRT0_ENA;
5652         hprt0 &= ~HPRT0_SUSP;
5653         dwc2_writel(hsotg, hprt0, HPRT0);
5654
5655         hprt0 = hr->hprt0;
5656         hprt0 |= HPRT0_PWR;
5657         hprt0 &= ~HPRT0_ENA;
5658         hprt0 &= ~HPRT0_SUSP;
5659
5660         if (reset) {
5661                 hprt0 |= HPRT0_RST;
5662                 dwc2_writel(hsotg, hprt0, HPRT0);
5663
5664                 /* Wait for Resume time and then program HPRT again */
5665                 mdelay(60);
5666                 hprt0 &= ~HPRT0_RST;
5667                 dwc2_writel(hsotg, hprt0, HPRT0);
5668         } else {
5669                 hprt0 |= HPRT0_RES;
5670                 dwc2_writel(hsotg, hprt0, HPRT0);
5671
5672                 /* De-assert Wakeup Logic */
5673                 if ((rem_wakeup && hsotg->hw_params.snpsid >= DWC2_CORE_REV_4_30a)) {
5674                         gpwrdn = dwc2_readl(hsotg, GPWRDN);
5675                         gpwrdn &= ~GPWRDN_PMUACTV;
5676                         dwc2_writel(hsotg, gpwrdn, GPWRDN);
5677                         udelay(10);
5678                 }
5679                 /* Wait for Resume time and then program HPRT again */
5680                 mdelay(100);
5681                 hprt0 &= ~HPRT0_RES;
5682                 dwc2_writel(hsotg, hprt0, HPRT0);
5683         }
5684         /* Clear all interrupt status */
5685         hprt0 = dwc2_readl(hsotg, HPRT0);
5686         hprt0 |= HPRT0_CONNDET;
5687         hprt0 |= HPRT0_ENACHG;
5688         hprt0 &= ~HPRT0_ENA;
5689         dwc2_writel(hsotg, hprt0, HPRT0);
5690
5691         hprt0 = dwc2_readl(hsotg, HPRT0);
5692
5693         /* Clear all pending interupts */
5694         dwc2_writel(hsotg, 0xffffffff, GINTSTS);
5695
5696         /* Restore global registers */
5697         ret = dwc2_restore_global_registers(hsotg);
5698         if (ret) {
5699                 dev_err(hsotg->dev, "%s: failed to restore registers\n",
5700                         __func__);
5701                 return ret;
5702         }
5703
5704         /* Restore host registers */
5705         ret = dwc2_restore_host_registers(hsotg);
5706         if (ret) {
5707                 dev_err(hsotg->dev, "%s: failed to restore host registers\n",
5708                         __func__);
5709                 return ret;
5710         }
5711
5712         if (rem_wakeup) {
5713                 dwc2_hcd_rem_wakeup(hsotg);
5714                 /*
5715                  * Change "port_connect_status_change" flag to re-enumerate,
5716                  * because after exit from hibernation port connection status
5717                  * is not detected.
5718                  */
5719                 hsotg->flags.b.port_connect_status_change = 1;
5720         }
5721
5722         hsotg->hibernated = 0;
5723         hsotg->bus_suspended = 0;
5724         hsotg->lx_state = DWC2_L0;
5725         dev_dbg(hsotg->dev, "Host hibernation restore complete\n");
5726         return ret;
5727 }
5728
5729 bool dwc2_host_can_poweroff_phy(struct dwc2_hsotg *dwc2)
5730 {
5731         struct usb_device *root_hub = dwc2_hsotg_to_hcd(dwc2)->self.root_hub;
5732
5733         /* If the controller isn't allowed to wakeup then we can power off. */
5734         if (!device_may_wakeup(dwc2->dev))
5735                 return true;
5736
5737         /*
5738          * We don't want to power off the PHY if something under the
5739          * root hub has wakeup enabled.
5740          */
5741         if (usb_wakeup_enabled_descendants(root_hub))
5742                 return false;
5743
5744         /* No reason to keep the PHY powered, so allow poweroff */
5745         return true;
5746 }
5747
5748 /**
5749  * dwc2_host_enter_partial_power_down() - Put controller in partial
5750  * power down.
5751  *
5752  * @hsotg: Programming view of the DWC_otg controller
5753  *
5754  * Return: non-zero if failed to enter host partial power down.
5755  *
5756  * This function is for entering Host mode partial power down.
5757  */
5758 int dwc2_host_enter_partial_power_down(struct dwc2_hsotg *hsotg)
5759 {
5760         u32 pcgcctl;
5761         u32 hprt0;
5762         int ret = 0;
5763
5764         dev_dbg(hsotg->dev, "Entering host partial power down started.\n");
5765
5766         /* Put this port in suspend mode. */
5767         hprt0 = dwc2_read_hprt0(hsotg);
5768         hprt0 |= HPRT0_SUSP;
5769         dwc2_writel(hsotg, hprt0, HPRT0);
5770         udelay(5);
5771
5772         /* Wait for the HPRT0.PrtSusp register field to be set */
5773         if (dwc2_hsotg_wait_bit_set(hsotg, HPRT0, HPRT0_SUSP, 3000))
5774                 dev_warn(hsotg->dev, "Suspend wasn't generated\n");
5775
5776         /* Backup all registers */
5777         ret = dwc2_backup_global_registers(hsotg);
5778         if (ret) {
5779                 dev_err(hsotg->dev, "%s: failed to backup global registers\n",
5780                         __func__);
5781                 return ret;
5782         }
5783
5784         ret = dwc2_backup_host_registers(hsotg);
5785         if (ret) {
5786                 dev_err(hsotg->dev, "%s: failed to backup host registers\n",
5787                         __func__);
5788                 return ret;
5789         }
5790
5791         /*
5792          * Clear any pending interrupts since dwc2 will not be able to
5793          * clear them after entering partial_power_down.
5794          */
5795         dwc2_writel(hsotg, 0xffffffff, GINTSTS);
5796
5797         /* Put the controller in low power state */
5798         pcgcctl = dwc2_readl(hsotg, PCGCTL);
5799
5800         pcgcctl |= PCGCTL_PWRCLMP;
5801         dwc2_writel(hsotg, pcgcctl, PCGCTL);
5802         udelay(5);
5803
5804         pcgcctl |= PCGCTL_RSTPDWNMODULE;
5805         dwc2_writel(hsotg, pcgcctl, PCGCTL);
5806         udelay(5);
5807
5808         pcgcctl |= PCGCTL_STOPPCLK;
5809         dwc2_writel(hsotg, pcgcctl, PCGCTL);
5810
5811         /* Set in_ppd flag to 1 as here core enters suspend. */
5812         hsotg->in_ppd = 1;
5813         hsotg->lx_state = DWC2_L2;
5814         hsotg->bus_suspended = true;
5815
5816         dev_dbg(hsotg->dev, "Entering host partial power down completed.\n");
5817
5818         return ret;
5819 }
5820
5821 /*
5822  * dwc2_host_exit_partial_power_down() - Exit controller from host partial
5823  * power down.
5824  *
5825  * @hsotg: Programming view of the DWC_otg controller
5826  * @rem_wakeup: indicates whether resume is initiated by Reset.
5827  * @restore: indicates whether need to restore the registers or not.
5828  *
5829  * Return: non-zero if failed to exit host partial power down.
5830  *
5831  * This function is for exiting from Host mode partial power down.
5832  */
5833 int dwc2_host_exit_partial_power_down(struct dwc2_hsotg *hsotg,
5834                                       int rem_wakeup, bool restore)
5835 {
5836         u32 pcgcctl;
5837         int ret = 0;
5838         u32 hprt0;
5839
5840         dev_dbg(hsotg->dev, "Exiting host partial power down started.\n");
5841
5842         pcgcctl = dwc2_readl(hsotg, PCGCTL);
5843         pcgcctl &= ~PCGCTL_STOPPCLK;
5844         dwc2_writel(hsotg, pcgcctl, PCGCTL);
5845         udelay(5);
5846
5847         pcgcctl = dwc2_readl(hsotg, PCGCTL);
5848         pcgcctl &= ~PCGCTL_PWRCLMP;
5849         dwc2_writel(hsotg, pcgcctl, PCGCTL);
5850         udelay(5);
5851
5852         pcgcctl = dwc2_readl(hsotg, PCGCTL);
5853         pcgcctl &= ~PCGCTL_RSTPDWNMODULE;
5854         dwc2_writel(hsotg, pcgcctl, PCGCTL);
5855
5856         udelay(100);
5857         if (restore) {
5858                 ret = dwc2_restore_global_registers(hsotg);
5859                 if (ret) {
5860                         dev_err(hsotg->dev, "%s: failed to restore registers\n",
5861                                 __func__);
5862                         return ret;
5863                 }
5864
5865                 ret = dwc2_restore_host_registers(hsotg);
5866                 if (ret) {
5867                         dev_err(hsotg->dev, "%s: failed to restore host registers\n",
5868                                 __func__);
5869                         return ret;
5870                 }
5871         }
5872
5873         /* Drive resume signaling and exit suspend mode on the port. */
5874         hprt0 = dwc2_read_hprt0(hsotg);
5875         hprt0 |= HPRT0_RES;
5876         hprt0 &= ~HPRT0_SUSP;
5877         dwc2_writel(hsotg, hprt0, HPRT0);
5878         udelay(5);
5879
5880         if (!rem_wakeup) {
5881                 /* Stop driveing resume signaling on the port. */
5882                 hprt0 = dwc2_read_hprt0(hsotg);
5883                 hprt0 &= ~HPRT0_RES;
5884                 dwc2_writel(hsotg, hprt0, HPRT0);
5885
5886                 hsotg->bus_suspended = false;
5887         } else {
5888                 /* Turn on the port power bit. */
5889                 hprt0 = dwc2_read_hprt0(hsotg);
5890                 hprt0 |= HPRT0_PWR;
5891                 dwc2_writel(hsotg, hprt0, HPRT0);
5892
5893                 /* Connect hcd. */
5894                 dwc2_hcd_connect(hsotg);
5895
5896                 mod_timer(&hsotg->wkp_timer,
5897                           jiffies + msecs_to_jiffies(71));
5898         }
5899
5900         /* Set lx_state to and in_ppd to 0 as here core exits from suspend. */
5901         hsotg->in_ppd = 0;
5902         hsotg->lx_state = DWC2_L0;
5903
5904         dev_dbg(hsotg->dev, "Exiting host partial power down completed.\n");
5905         return ret;
5906 }
5907
5908 /**
5909  * dwc2_host_enter_clock_gating() - Put controller in clock gating.
5910  *
5911  * @hsotg: Programming view of the DWC_otg controller
5912  *
5913  * This function is for entering Host mode clock gating.
5914  */
5915 void dwc2_host_enter_clock_gating(struct dwc2_hsotg *hsotg)
5916 {
5917         u32 hprt0;
5918         u32 pcgctl;
5919
5920         dev_dbg(hsotg->dev, "Entering host clock gating.\n");
5921
5922         /* Put this port in suspend mode. */
5923         hprt0 = dwc2_read_hprt0(hsotg);
5924         hprt0 |= HPRT0_SUSP;
5925         dwc2_writel(hsotg, hprt0, HPRT0);
5926
5927         /* Set the Phy Clock bit as suspend is received. */
5928         pcgctl = dwc2_readl(hsotg, PCGCTL);
5929         pcgctl |= PCGCTL_STOPPCLK;
5930         dwc2_writel(hsotg, pcgctl, PCGCTL);
5931         udelay(5);
5932
5933         /* Set the Gate hclk as suspend is received. */
5934         pcgctl = dwc2_readl(hsotg, PCGCTL);
5935         pcgctl |= PCGCTL_GATEHCLK;
5936         dwc2_writel(hsotg, pcgctl, PCGCTL);
5937         udelay(5);
5938
5939         hsotg->bus_suspended = true;
5940         hsotg->lx_state = DWC2_L2;
5941 }
5942
5943 /**
5944  * dwc2_host_exit_clock_gating() - Exit controller from clock gating.
5945  *
5946  * @hsotg: Programming view of the DWC_otg controller
5947  * @rem_wakeup: indicates whether resume is initiated by remote wakeup
5948  *
5949  * This function is for exiting Host mode clock gating.
5950  */
5951 void dwc2_host_exit_clock_gating(struct dwc2_hsotg *hsotg, int rem_wakeup)
5952 {
5953         u32 hprt0;
5954         u32 pcgctl;
5955
5956         dev_dbg(hsotg->dev, "Exiting host clock gating.\n");
5957
5958         /* Clear the Gate hclk. */
5959         pcgctl = dwc2_readl(hsotg, PCGCTL);
5960         pcgctl &= ~PCGCTL_GATEHCLK;
5961         dwc2_writel(hsotg, pcgctl, PCGCTL);
5962         udelay(5);
5963
5964         /* Phy Clock bit. */
5965         pcgctl = dwc2_readl(hsotg, PCGCTL);
5966         pcgctl &= ~PCGCTL_STOPPCLK;
5967         dwc2_writel(hsotg, pcgctl, PCGCTL);
5968         udelay(5);
5969
5970         /* Drive resume signaling and exit suspend mode on the port. */
5971         hprt0 = dwc2_read_hprt0(hsotg);
5972         hprt0 |= HPRT0_RES;
5973         hprt0 &= ~HPRT0_SUSP;
5974         dwc2_writel(hsotg, hprt0, HPRT0);
5975         udelay(5);
5976
5977         if (!rem_wakeup) {
5978                 /* In case of port resume need to wait for 40 ms */
5979                 msleep(USB_RESUME_TIMEOUT);
5980
5981                 /* Stop driveing resume signaling on the port. */
5982                 hprt0 = dwc2_read_hprt0(hsotg);
5983                 hprt0 &= ~HPRT0_RES;
5984                 dwc2_writel(hsotg, hprt0, HPRT0);
5985
5986                 hsotg->bus_suspended = false;
5987                 hsotg->lx_state = DWC2_L0;
5988         } else {
5989                 mod_timer(&hsotg->wkp_timer,
5990                           jiffies + msecs_to_jiffies(71));
5991         }
5992 }
This page took 0.356997 seconds and 4 git commands to generate.