]> Git Repo - J-linux.git/blob - drivers/thermal/cpufreq_cooling.c
Merge tag 'vfs-6.13-rc7.fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs
[J-linux.git] / drivers / thermal / cpufreq_cooling.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/drivers/thermal/cpufreq_cooling.c
4  *
5  *  Copyright (C) 2012  Samsung Electronics Co., Ltd(http://www.samsung.com)
6  *
7  *  Copyright (C) 2012-2018 Linaro Limited.
8  *
9  *  Authors:    Amit Daniel <[email protected]>
10  *              Viresh Kumar <[email protected]>
11  *
12  */
13 #include <linux/cpu.h>
14 #include <linux/cpufreq.h>
15 #include <linux/cpu_cooling.h>
16 #include <linux/device.h>
17 #include <linux/energy_model.h>
18 #include <linux/err.h>
19 #include <linux/export.h>
20 #include <linux/pm_opp.h>
21 #include <linux/pm_qos.h>
22 #include <linux/slab.h>
23 #include <linux/thermal.h>
24 #include <linux/units.h>
25
26 #include "thermal_trace.h"
27
28 /*
29  * Cooling state <-> CPUFreq frequency
30  *
31  * Cooling states are translated to frequencies throughout this driver and this
32  * is the relation between them.
33  *
34  * Highest cooling state corresponds to lowest possible frequency.
35  *
36  * i.e.
37  *      level 0 --> 1st Max Freq
38  *      level 1 --> 2nd Max Freq
39  *      ...
40  */
41
42 /**
43  * struct time_in_idle - Idle time stats
44  * @time: previous reading of the absolute time that this cpu was idle
45  * @timestamp: wall time of the last invocation of get_cpu_idle_time_us()
46  */
47 struct time_in_idle {
48         u64 time;
49         u64 timestamp;
50 };
51
52 /**
53  * struct cpufreq_cooling_device - data for cooling device with cpufreq
54  * @last_load: load measured by the latest call to cpufreq_get_requested_power()
55  * @cpufreq_state: integer value representing the current state of cpufreq
56  *      cooling devices.
57  * @max_level: maximum cooling level. One less than total number of valid
58  *      cpufreq frequencies.
59  * @em: Reference on the Energy Model of the device
60  * @cdev: thermal_cooling_device pointer to keep track of the
61  *      registered cooling device.
62  * @policy: cpufreq policy.
63  * @cooling_ops: cpufreq callbacks to thermal cooling device ops
64  * @idle_time: idle time stats
65  * @qos_req: PM QoS contraint to apply
66  *
67  * This structure is required for keeping information of each registered
68  * cpufreq_cooling_device.
69  */
70 struct cpufreq_cooling_device {
71         u32 last_load;
72         unsigned int cpufreq_state;
73         unsigned int max_level;
74         struct em_perf_domain *em;
75         struct cpufreq_policy *policy;
76         struct thermal_cooling_device_ops cooling_ops;
77 #ifndef CONFIG_SMP
78         struct time_in_idle *idle_time;
79 #endif
80         struct freq_qos_request qos_req;
81 };
82
83 #ifdef CONFIG_THERMAL_GOV_POWER_ALLOCATOR
84 /**
85  * get_level: Find the level for a particular frequency
86  * @cpufreq_cdev: cpufreq_cdev for which the property is required
87  * @freq: Frequency
88  *
89  * Return: level corresponding to the frequency.
90  */
91 static unsigned long get_level(struct cpufreq_cooling_device *cpufreq_cdev,
92                                unsigned int freq)
93 {
94         struct em_perf_state *table;
95         int i;
96
97         rcu_read_lock();
98         table = em_perf_state_from_pd(cpufreq_cdev->em);
99         for (i = cpufreq_cdev->max_level - 1; i >= 0; i--) {
100                 if (freq > table[i].frequency)
101                         break;
102         }
103         rcu_read_unlock();
104
105         return cpufreq_cdev->max_level - i - 1;
106 }
107
108 static u32 cpu_freq_to_power(struct cpufreq_cooling_device *cpufreq_cdev,
109                              u32 freq)
110 {
111         struct em_perf_state *table;
112         unsigned long power_mw;
113         int i;
114
115         rcu_read_lock();
116         table = em_perf_state_from_pd(cpufreq_cdev->em);
117         for (i = cpufreq_cdev->max_level - 1; i >= 0; i--) {
118                 if (freq > table[i].frequency)
119                         break;
120         }
121
122         power_mw = table[i + 1].power;
123         power_mw /= MICROWATT_PER_MILLIWATT;
124         rcu_read_unlock();
125
126         return power_mw;
127 }
128
129 static u32 cpu_power_to_freq(struct cpufreq_cooling_device *cpufreq_cdev,
130                              u32 power)
131 {
132         struct em_perf_state *table;
133         unsigned long em_power_mw;
134         u32 freq;
135         int i;
136
137         rcu_read_lock();
138         table = em_perf_state_from_pd(cpufreq_cdev->em);
139         for (i = cpufreq_cdev->max_level; i > 0; i--) {
140                 /* Convert EM power to milli-Watts to make safe comparison */
141                 em_power_mw = table[i].power;
142                 em_power_mw /= MICROWATT_PER_MILLIWATT;
143                 if (power >= em_power_mw)
144                         break;
145         }
146         freq = table[i].frequency;
147         rcu_read_unlock();
148
149         return freq;
150 }
151
152 /**
153  * get_load() - get load for a cpu
154  * @cpufreq_cdev: struct cpufreq_cooling_device for the cpu
155  * @cpu: cpu number
156  * @cpu_idx: index of the cpu in time_in_idle array
157  *
158  * Return: The average load of cpu @cpu in percentage since this
159  * function was last called.
160  */
161 #ifdef CONFIG_SMP
162 static u32 get_load(struct cpufreq_cooling_device *cpufreq_cdev, int cpu,
163                     int cpu_idx)
164 {
165         unsigned long util = sched_cpu_util(cpu);
166
167         return (util * 100) / arch_scale_cpu_capacity(cpu);
168 }
169 #else /* !CONFIG_SMP */
170 static u32 get_load(struct cpufreq_cooling_device *cpufreq_cdev, int cpu,
171                     int cpu_idx)
172 {
173         u32 load;
174         u64 now, now_idle, delta_time, delta_idle;
175         struct time_in_idle *idle_time = &cpufreq_cdev->idle_time[cpu_idx];
176
177         now_idle = get_cpu_idle_time(cpu, &now, 0);
178         delta_idle = now_idle - idle_time->time;
179         delta_time = now - idle_time->timestamp;
180
181         if (delta_time <= delta_idle)
182                 load = 0;
183         else
184                 load = div64_u64(100 * (delta_time - delta_idle), delta_time);
185
186         idle_time->time = now_idle;
187         idle_time->timestamp = now;
188
189         return load;
190 }
191 #endif /* CONFIG_SMP */
192
193 /**
194  * get_dynamic_power() - calculate the dynamic power
195  * @cpufreq_cdev:       &cpufreq_cooling_device for this cdev
196  * @freq:       current frequency
197  *
198  * Return: the dynamic power consumed by the cpus described by
199  * @cpufreq_cdev.
200  */
201 static u32 get_dynamic_power(struct cpufreq_cooling_device *cpufreq_cdev,
202                              unsigned long freq)
203 {
204         u32 raw_cpu_power;
205
206         raw_cpu_power = cpu_freq_to_power(cpufreq_cdev, freq);
207         return (raw_cpu_power * cpufreq_cdev->last_load) / 100;
208 }
209
210 /**
211  * cpufreq_get_requested_power() - get the current power
212  * @cdev:       &thermal_cooling_device pointer
213  * @power:      pointer in which to store the resulting power
214  *
215  * Calculate the current power consumption of the cpus in milliwatts
216  * and store it in @power.  This function should actually calculate
217  * the requested power, but it's hard to get the frequency that
218  * cpufreq would have assigned if there were no thermal limits.
219  * Instead, we calculate the current power on the assumption that the
220  * immediate future will look like the immediate past.
221  *
222  * We use the current frequency and the average load since this
223  * function was last called.  In reality, there could have been
224  * multiple opps since this function was last called and that affects
225  * the load calculation.  While it's not perfectly accurate, this
226  * simplification is good enough and works.  REVISIT this, as more
227  * complex code may be needed if experiments show that it's not
228  * accurate enough.
229  *
230  * Return: 0 on success, this function doesn't fail.
231  */
232 static int cpufreq_get_requested_power(struct thermal_cooling_device *cdev,
233                                        u32 *power)
234 {
235         unsigned long freq;
236         int i = 0, cpu;
237         u32 total_load = 0;
238         struct cpufreq_cooling_device *cpufreq_cdev = cdev->devdata;
239         struct cpufreq_policy *policy = cpufreq_cdev->policy;
240
241         freq = cpufreq_quick_get(policy->cpu);
242
243         for_each_cpu(cpu, policy->related_cpus) {
244                 u32 load;
245
246                 if (cpu_online(cpu))
247                         load = get_load(cpufreq_cdev, cpu, i);
248                 else
249                         load = 0;
250
251                 total_load += load;
252         }
253
254         cpufreq_cdev->last_load = total_load;
255
256         *power = get_dynamic_power(cpufreq_cdev, freq);
257
258         trace_thermal_power_cpu_get_power_simple(policy->cpu, *power);
259
260         return 0;
261 }
262
263 /**
264  * cpufreq_state2power() - convert a cpu cdev state to power consumed
265  * @cdev:       &thermal_cooling_device pointer
266  * @state:      cooling device state to be converted
267  * @power:      pointer in which to store the resulting power
268  *
269  * Convert cooling device state @state into power consumption in
270  * milliwatts assuming 100% load.  Store the calculated power in
271  * @power.
272  *
273  * Return: 0 on success, -EINVAL if the cooling device state is bigger
274  * than maximum allowed.
275  */
276 static int cpufreq_state2power(struct thermal_cooling_device *cdev,
277                                unsigned long state, u32 *power)
278 {
279         struct cpufreq_cooling_device *cpufreq_cdev = cdev->devdata;
280         unsigned int freq, num_cpus, idx;
281         struct em_perf_state *table;
282
283         /* Request state should be less than max_level */
284         if (state > cpufreq_cdev->max_level)
285                 return -EINVAL;
286
287         num_cpus = cpumask_weight(cpufreq_cdev->policy->cpus);
288
289         idx = cpufreq_cdev->max_level - state;
290
291         rcu_read_lock();
292         table = em_perf_state_from_pd(cpufreq_cdev->em);
293         freq = table[idx].frequency;
294         rcu_read_unlock();
295
296         *power = cpu_freq_to_power(cpufreq_cdev, freq) * num_cpus;
297
298         return 0;
299 }
300
301 /**
302  * cpufreq_power2state() - convert power to a cooling device state
303  * @cdev:       &thermal_cooling_device pointer
304  * @power:      power in milliwatts to be converted
305  * @state:      pointer in which to store the resulting state
306  *
307  * Calculate a cooling device state for the cpus described by @cdev
308  * that would allow them to consume at most @power mW and store it in
309  * @state.  Note that this calculation depends on external factors
310  * such as the CPUs load.  Calling this function with the same power
311  * as input can yield different cooling device states depending on those
312  * external factors.
313  *
314  * Return: 0 on success, this function doesn't fail.
315  */
316 static int cpufreq_power2state(struct thermal_cooling_device *cdev,
317                                u32 power, unsigned long *state)
318 {
319         unsigned int target_freq;
320         u32 last_load, normalised_power;
321         struct cpufreq_cooling_device *cpufreq_cdev = cdev->devdata;
322         struct cpufreq_policy *policy = cpufreq_cdev->policy;
323
324         last_load = cpufreq_cdev->last_load ?: 1;
325         normalised_power = (power * 100) / last_load;
326         target_freq = cpu_power_to_freq(cpufreq_cdev, normalised_power);
327
328         *state = get_level(cpufreq_cdev, target_freq);
329         trace_thermal_power_cpu_limit(policy->related_cpus, target_freq, *state,
330                                       power);
331         return 0;
332 }
333
334 static inline bool em_is_sane(struct cpufreq_cooling_device *cpufreq_cdev,
335                               struct em_perf_domain *em) {
336         struct cpufreq_policy *policy;
337         unsigned int nr_levels;
338
339         if (!em || em_is_artificial(em))
340                 return false;
341
342         policy = cpufreq_cdev->policy;
343         if (!cpumask_equal(policy->related_cpus, em_span_cpus(em))) {
344                 pr_err("The span of pd %*pbl is misaligned with cpufreq policy %*pbl\n",
345                         cpumask_pr_args(em_span_cpus(em)),
346                         cpumask_pr_args(policy->related_cpus));
347                 return false;
348         }
349
350         nr_levels = cpufreq_cdev->max_level + 1;
351         if (em_pd_nr_perf_states(em) != nr_levels) {
352                 pr_err("The number of performance states in pd %*pbl (%u) doesn't match the number of cooling levels (%u)\n",
353                         cpumask_pr_args(em_span_cpus(em)),
354                         em_pd_nr_perf_states(em), nr_levels);
355                 return false;
356         }
357
358         return true;
359 }
360 #endif /* CONFIG_THERMAL_GOV_POWER_ALLOCATOR */
361
362 #ifdef CONFIG_SMP
363 static inline int allocate_idle_time(struct cpufreq_cooling_device *cpufreq_cdev)
364 {
365         return 0;
366 }
367
368 static inline void free_idle_time(struct cpufreq_cooling_device *cpufreq_cdev)
369 {
370 }
371 #else
372 static int allocate_idle_time(struct cpufreq_cooling_device *cpufreq_cdev)
373 {
374         unsigned int num_cpus = cpumask_weight(cpufreq_cdev->policy->related_cpus);
375
376         cpufreq_cdev->idle_time = kcalloc(num_cpus,
377                                           sizeof(*cpufreq_cdev->idle_time),
378                                           GFP_KERNEL);
379         if (!cpufreq_cdev->idle_time)
380                 return -ENOMEM;
381
382         return 0;
383 }
384
385 static void free_idle_time(struct cpufreq_cooling_device *cpufreq_cdev)
386 {
387         kfree(cpufreq_cdev->idle_time);
388         cpufreq_cdev->idle_time = NULL;
389 }
390 #endif /* CONFIG_SMP */
391
392 static unsigned int get_state_freq(struct cpufreq_cooling_device *cpufreq_cdev,
393                                    unsigned long state)
394 {
395         struct cpufreq_policy *policy;
396         unsigned long idx;
397
398 #ifdef CONFIG_THERMAL_GOV_POWER_ALLOCATOR
399         /* Use the Energy Model table if available */
400         if (cpufreq_cdev->em) {
401                 struct em_perf_state *table;
402                 unsigned int freq;
403
404                 idx = cpufreq_cdev->max_level - state;
405
406                 rcu_read_lock();
407                 table = em_perf_state_from_pd(cpufreq_cdev->em);
408                 freq = table[idx].frequency;
409                 rcu_read_unlock();
410
411                 return freq;
412         }
413 #endif
414
415         /* Otherwise, fallback on the CPUFreq table */
416         policy = cpufreq_cdev->policy;
417         if (policy->freq_table_sorted == CPUFREQ_TABLE_SORTED_ASCENDING)
418                 idx = cpufreq_cdev->max_level - state;
419         else
420                 idx = state;
421
422         return policy->freq_table[idx].frequency;
423 }
424
425 /* cpufreq cooling device callback functions are defined below */
426
427 /**
428  * cpufreq_get_max_state - callback function to get the max cooling state.
429  * @cdev: thermal cooling device pointer.
430  * @state: fill this variable with the max cooling state.
431  *
432  * Callback for the thermal cooling device to return the cpufreq
433  * max cooling state.
434  *
435  * Return: 0 on success, this function doesn't fail.
436  */
437 static int cpufreq_get_max_state(struct thermal_cooling_device *cdev,
438                                  unsigned long *state)
439 {
440         struct cpufreq_cooling_device *cpufreq_cdev = cdev->devdata;
441
442         *state = cpufreq_cdev->max_level;
443         return 0;
444 }
445
446 /**
447  * cpufreq_get_cur_state - callback function to get the current cooling state.
448  * @cdev: thermal cooling device pointer.
449  * @state: fill this variable with the current cooling state.
450  *
451  * Callback for the thermal cooling device to return the cpufreq
452  * current cooling state.
453  *
454  * Return: 0 on success, this function doesn't fail.
455  */
456 static int cpufreq_get_cur_state(struct thermal_cooling_device *cdev,
457                                  unsigned long *state)
458 {
459         struct cpufreq_cooling_device *cpufreq_cdev = cdev->devdata;
460
461         *state = cpufreq_cdev->cpufreq_state;
462
463         return 0;
464 }
465
466 /**
467  * cpufreq_set_cur_state - callback function to set the current cooling state.
468  * @cdev: thermal cooling device pointer.
469  * @state: set this variable to the current cooling state.
470  *
471  * Callback for the thermal cooling device to change the cpufreq
472  * current cooling state.
473  *
474  * Return: 0 on success, an error code otherwise.
475  */
476 static int cpufreq_set_cur_state(struct thermal_cooling_device *cdev,
477                                  unsigned long state)
478 {
479         struct cpufreq_cooling_device *cpufreq_cdev = cdev->devdata;
480         unsigned int frequency;
481         int ret;
482
483         /* Request state should be less than max_level */
484         if (state > cpufreq_cdev->max_level)
485                 return -EINVAL;
486
487         /* Check if the old cooling action is same as new cooling action */
488         if (cpufreq_cdev->cpufreq_state == state)
489                 return 0;
490
491         frequency = get_state_freq(cpufreq_cdev, state);
492
493         ret = freq_qos_update_request(&cpufreq_cdev->qos_req, frequency);
494         if (ret >= 0) {
495                 cpufreq_cdev->cpufreq_state = state;
496                 ret = 0;
497         }
498
499         return ret;
500 }
501
502 /**
503  * __cpufreq_cooling_register - helper function to create cpufreq cooling device
504  * @np: a valid struct device_node to the cooling device tree node
505  * @policy: cpufreq policy
506  * Normally this should be same as cpufreq policy->related_cpus.
507  * @em: Energy Model of the cpufreq policy
508  *
509  * This interface function registers the cpufreq cooling device with the name
510  * "cpufreq-%s". This API can support multiple instances of cpufreq
511  * cooling devices. It also gives the opportunity to link the cooling device
512  * with a device tree node, in order to bind it via the thermal DT code.
513  *
514  * Return: a valid struct thermal_cooling_device pointer on success,
515  * on failure, it returns a corresponding ERR_PTR().
516  */
517 static struct thermal_cooling_device *
518 __cpufreq_cooling_register(struct device_node *np,
519                         struct cpufreq_policy *policy,
520                         struct em_perf_domain *em)
521 {
522         struct thermal_cooling_device *cdev;
523         struct cpufreq_cooling_device *cpufreq_cdev;
524         unsigned int i;
525         struct device *dev;
526         int ret;
527         struct thermal_cooling_device_ops *cooling_ops;
528         char *name;
529
530         if (IS_ERR_OR_NULL(policy)) {
531                 pr_err("%s: cpufreq policy isn't valid: %p\n", __func__, policy);
532                 return ERR_PTR(-EINVAL);
533         }
534
535         dev = get_cpu_device(policy->cpu);
536         if (unlikely(!dev)) {
537                 pr_warn("No cpu device for cpu %d\n", policy->cpu);
538                 return ERR_PTR(-ENODEV);
539         }
540
541         i = cpufreq_table_count_valid_entries(policy);
542         if (!i) {
543                 pr_debug("%s: CPUFreq table not found or has no valid entries\n",
544                          __func__);
545                 return ERR_PTR(-ENODEV);
546         }
547
548         cpufreq_cdev = kzalloc(sizeof(*cpufreq_cdev), GFP_KERNEL);
549         if (!cpufreq_cdev)
550                 return ERR_PTR(-ENOMEM);
551
552         cpufreq_cdev->policy = policy;
553
554         ret = allocate_idle_time(cpufreq_cdev);
555         if (ret) {
556                 cdev = ERR_PTR(ret);
557                 goto free_cdev;
558         }
559
560         /* max_level is an index, not a counter */
561         cpufreq_cdev->max_level = i - 1;
562
563         cooling_ops = &cpufreq_cdev->cooling_ops;
564         cooling_ops->get_max_state = cpufreq_get_max_state;
565         cooling_ops->get_cur_state = cpufreq_get_cur_state;
566         cooling_ops->set_cur_state = cpufreq_set_cur_state;
567
568 #ifdef CONFIG_THERMAL_GOV_POWER_ALLOCATOR
569         if (em_is_sane(cpufreq_cdev, em)) {
570                 cpufreq_cdev->em = em;
571                 cooling_ops->get_requested_power = cpufreq_get_requested_power;
572                 cooling_ops->state2power = cpufreq_state2power;
573                 cooling_ops->power2state = cpufreq_power2state;
574         } else
575 #endif
576         if (policy->freq_table_sorted == CPUFREQ_TABLE_UNSORTED) {
577                 pr_err("%s: unsorted frequency tables are not supported\n",
578                        __func__);
579                 cdev = ERR_PTR(-EINVAL);
580                 goto free_idle_time;
581         }
582
583         ret = freq_qos_add_request(&policy->constraints,
584                                    &cpufreq_cdev->qos_req, FREQ_QOS_MAX,
585                                    get_state_freq(cpufreq_cdev, 0));
586         if (ret < 0) {
587                 pr_err("%s: Failed to add freq constraint (%d)\n", __func__,
588                        ret);
589                 cdev = ERR_PTR(ret);
590                 goto free_idle_time;
591         }
592
593         cdev = ERR_PTR(-ENOMEM);
594         name = kasprintf(GFP_KERNEL, "cpufreq-%s", dev_name(dev));
595         if (!name)
596                 goto remove_qos_req;
597
598         cdev = thermal_of_cooling_device_register(np, name, cpufreq_cdev,
599                                                   cooling_ops);
600         kfree(name);
601
602         if (IS_ERR(cdev))
603                 goto remove_qos_req;
604
605         return cdev;
606
607 remove_qos_req:
608         freq_qos_remove_request(&cpufreq_cdev->qos_req);
609 free_idle_time:
610         free_idle_time(cpufreq_cdev);
611 free_cdev:
612         kfree(cpufreq_cdev);
613         return cdev;
614 }
615
616 /**
617  * cpufreq_cooling_register - function to create cpufreq cooling device.
618  * @policy: cpufreq policy
619  *
620  * This interface function registers the cpufreq cooling device with the name
621  * "cpufreq-%s". This API can support multiple instances of cpufreq cooling
622  * devices.
623  *
624  * Return: a valid struct thermal_cooling_device pointer on success,
625  * on failure, it returns a corresponding ERR_PTR().
626  */
627 struct thermal_cooling_device *
628 cpufreq_cooling_register(struct cpufreq_policy *policy)
629 {
630         return __cpufreq_cooling_register(NULL, policy, NULL);
631 }
632 EXPORT_SYMBOL_GPL(cpufreq_cooling_register);
633
634 /**
635  * of_cpufreq_cooling_register - function to create cpufreq cooling device.
636  * @policy: cpufreq policy
637  *
638  * This interface function registers the cpufreq cooling device with the name
639  * "cpufreq-%s". This API can support multiple instances of cpufreq cooling
640  * devices. Using this API, the cpufreq cooling device will be linked to the
641  * device tree node provided.
642  *
643  * Using this function, the cooling device will implement the power
644  * extensions by using the Energy Model (if present).  The cpus must have
645  * registered their OPPs using the OPP library.
646  *
647  * Return: a valid struct thermal_cooling_device pointer on success,
648  * and NULL on failure.
649  */
650 struct thermal_cooling_device *
651 of_cpufreq_cooling_register(struct cpufreq_policy *policy)
652 {
653         struct device_node *np = of_get_cpu_node(policy->cpu, NULL);
654         struct thermal_cooling_device *cdev = NULL;
655
656         if (!np) {
657                 pr_err("cpufreq_cooling: OF node not available for cpu%d\n",
658                        policy->cpu);
659                 return NULL;
660         }
661
662         if (of_property_present(np, "#cooling-cells")) {
663                 struct em_perf_domain *em = em_cpu_get(policy->cpu);
664
665                 cdev = __cpufreq_cooling_register(np, policy, em);
666                 if (IS_ERR(cdev)) {
667                         pr_err("cpufreq_cooling: cpu%d failed to register as cooling device: %ld\n",
668                                policy->cpu, PTR_ERR(cdev));
669                         cdev = NULL;
670                 }
671         }
672
673         of_node_put(np);
674         return cdev;
675 }
676 EXPORT_SYMBOL_GPL(of_cpufreq_cooling_register);
677
678 /**
679  * cpufreq_cooling_unregister - function to remove cpufreq cooling device.
680  * @cdev: thermal cooling device pointer.
681  *
682  * This interface function unregisters the "cpufreq-%x" cooling device.
683  */
684 void cpufreq_cooling_unregister(struct thermal_cooling_device *cdev)
685 {
686         struct cpufreq_cooling_device *cpufreq_cdev;
687
688         if (!cdev)
689                 return;
690
691         cpufreq_cdev = cdev->devdata;
692
693         thermal_cooling_device_unregister(cdev);
694         freq_qos_remove_request(&cpufreq_cdev->qos_req);
695         free_idle_time(cpufreq_cdev);
696         kfree(cpufreq_cdev);
697 }
698 EXPORT_SYMBOL_GPL(cpufreq_cooling_unregister);
This page took 0.06801 seconds and 4 git commands to generate.