]> Git Repo - J-linux.git/blob - drivers/tee/optee/smc_abi.c
Merge tag 'vfs-6.13-rc7.fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs
[J-linux.git] / drivers / tee / optee / smc_abi.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2015-2021, 2023 Linaro Limited
4  * Copyright (c) 2016, EPAM Systems
5  */
6
7 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
8
9 #include <linux/arm-smccc.h>
10 #include <linux/cpuhotplug.h>
11 #include <linux/errno.h>
12 #include <linux/firmware.h>
13 #include <linux/interrupt.h>
14 #include <linux/io.h>
15 #include <linux/irqdomain.h>
16 #include <linux/kernel.h>
17 #include <linux/mm.h>
18 #include <linux/module.h>
19 #include <linux/of.h>
20 #include <linux/of_irq.h>
21 #include <linux/of_platform.h>
22 #include <linux/platform_device.h>
23 #include <linux/rpmb.h>
24 #include <linux/sched.h>
25 #include <linux/slab.h>
26 #include <linux/string.h>
27 #include <linux/tee_core.h>
28 #include <linux/types.h>
29 #include <linux/workqueue.h>
30 #include "optee_private.h"
31 #include "optee_smc.h"
32 #include "optee_rpc_cmd.h"
33 #include <linux/kmemleak.h>
34 #define CREATE_TRACE_POINTS
35 #include "optee_trace.h"
36
37 /*
38  * This file implement the SMC ABI used when communicating with secure world
39  * OP-TEE OS via raw SMCs.
40  * This file is divided into the following sections:
41  * 1. Convert between struct tee_param and struct optee_msg_param
42  * 2. Low level support functions to register shared memory in secure world
43  * 3. Dynamic shared memory pool based on alloc_pages()
44  * 4. Do a normal scheduled call into secure world
45  * 5. Asynchronous notification
46  * 6. Driver initialization.
47  */
48
49 /*
50  * A typical OP-TEE private shm allocation is 224 bytes (argument struct
51  * with 6 parameters, needed for open session). So with an alignment of 512
52  * we'll waste a bit more than 50%. However, it's only expected that we'll
53  * have a handful of these structs allocated at a time. Most memory will
54  * be allocated aligned to the page size, So all in all this should scale
55  * up and down quite well.
56  */
57 #define OPTEE_MIN_STATIC_POOL_ALIGN    9 /* 512 bytes aligned */
58
59 /* SMC ABI considers at most a single TEE firmware */
60 static unsigned int pcpu_irq_num;
61
62 static int optee_cpuhp_enable_pcpu_irq(unsigned int cpu)
63 {
64         enable_percpu_irq(pcpu_irq_num, IRQ_TYPE_NONE);
65
66         return 0;
67 }
68
69 static int optee_cpuhp_disable_pcpu_irq(unsigned int cpu)
70 {
71         disable_percpu_irq(pcpu_irq_num);
72
73         return 0;
74 }
75
76 /*
77  * 1. Convert between struct tee_param and struct optee_msg_param
78  *
79  * optee_from_msg_param() and optee_to_msg_param() are the main
80  * functions.
81  */
82
83 static int from_msg_param_tmp_mem(struct tee_param *p, u32 attr,
84                                   const struct optee_msg_param *mp)
85 {
86         struct tee_shm *shm;
87         phys_addr_t pa;
88         int rc;
89
90         p->attr = TEE_IOCTL_PARAM_ATTR_TYPE_MEMREF_INPUT +
91                   attr - OPTEE_MSG_ATTR_TYPE_TMEM_INPUT;
92         p->u.memref.size = mp->u.tmem.size;
93         shm = (struct tee_shm *)(unsigned long)mp->u.tmem.shm_ref;
94         if (!shm) {
95                 p->u.memref.shm_offs = 0;
96                 p->u.memref.shm = NULL;
97                 return 0;
98         }
99
100         rc = tee_shm_get_pa(shm, 0, &pa);
101         if (rc)
102                 return rc;
103
104         p->u.memref.shm_offs = mp->u.tmem.buf_ptr - pa;
105         p->u.memref.shm = shm;
106
107         return 0;
108 }
109
110 static void from_msg_param_reg_mem(struct tee_param *p, u32 attr,
111                                    const struct optee_msg_param *mp)
112 {
113         struct tee_shm *shm;
114
115         p->attr = TEE_IOCTL_PARAM_ATTR_TYPE_MEMREF_INPUT +
116                   attr - OPTEE_MSG_ATTR_TYPE_RMEM_INPUT;
117         p->u.memref.size = mp->u.rmem.size;
118         shm = (struct tee_shm *)(unsigned long)mp->u.rmem.shm_ref;
119
120         if (shm) {
121                 p->u.memref.shm_offs = mp->u.rmem.offs;
122                 p->u.memref.shm = shm;
123         } else {
124                 p->u.memref.shm_offs = 0;
125                 p->u.memref.shm = NULL;
126         }
127 }
128
129 /**
130  * optee_from_msg_param() - convert from OPTEE_MSG parameters to
131  *                          struct tee_param
132  * @optee:      main service struct
133  * @params:     subsystem internal parameter representation
134  * @num_params: number of elements in the parameter arrays
135  * @msg_params: OPTEE_MSG parameters
136  * Returns 0 on success or <0 on failure
137  */
138 static int optee_from_msg_param(struct optee *optee, struct tee_param *params,
139                                 size_t num_params,
140                                 const struct optee_msg_param *msg_params)
141 {
142         int rc;
143         size_t n;
144
145         for (n = 0; n < num_params; n++) {
146                 struct tee_param *p = params + n;
147                 const struct optee_msg_param *mp = msg_params + n;
148                 u32 attr = mp->attr & OPTEE_MSG_ATTR_TYPE_MASK;
149
150                 switch (attr) {
151                 case OPTEE_MSG_ATTR_TYPE_NONE:
152                         p->attr = TEE_IOCTL_PARAM_ATTR_TYPE_NONE;
153                         memset(&p->u, 0, sizeof(p->u));
154                         break;
155                 case OPTEE_MSG_ATTR_TYPE_VALUE_INPUT:
156                 case OPTEE_MSG_ATTR_TYPE_VALUE_OUTPUT:
157                 case OPTEE_MSG_ATTR_TYPE_VALUE_INOUT:
158                         optee_from_msg_param_value(p, attr, mp);
159                         break;
160                 case OPTEE_MSG_ATTR_TYPE_TMEM_INPUT:
161                 case OPTEE_MSG_ATTR_TYPE_TMEM_OUTPUT:
162                 case OPTEE_MSG_ATTR_TYPE_TMEM_INOUT:
163                         rc = from_msg_param_tmp_mem(p, attr, mp);
164                         if (rc)
165                                 return rc;
166                         break;
167                 case OPTEE_MSG_ATTR_TYPE_RMEM_INPUT:
168                 case OPTEE_MSG_ATTR_TYPE_RMEM_OUTPUT:
169                 case OPTEE_MSG_ATTR_TYPE_RMEM_INOUT:
170                         from_msg_param_reg_mem(p, attr, mp);
171                         break;
172
173                 default:
174                         return -EINVAL;
175                 }
176         }
177         return 0;
178 }
179
180 static int to_msg_param_tmp_mem(struct optee_msg_param *mp,
181                                 const struct tee_param *p)
182 {
183         int rc;
184         phys_addr_t pa;
185
186         mp->attr = OPTEE_MSG_ATTR_TYPE_TMEM_INPUT + p->attr -
187                    TEE_IOCTL_PARAM_ATTR_TYPE_MEMREF_INPUT;
188
189         mp->u.tmem.shm_ref = (unsigned long)p->u.memref.shm;
190         mp->u.tmem.size = p->u.memref.size;
191
192         if (!p->u.memref.shm) {
193                 mp->u.tmem.buf_ptr = 0;
194                 return 0;
195         }
196
197         rc = tee_shm_get_pa(p->u.memref.shm, p->u.memref.shm_offs, &pa);
198         if (rc)
199                 return rc;
200
201         mp->u.tmem.buf_ptr = pa;
202         mp->attr |= OPTEE_MSG_ATTR_CACHE_PREDEFINED <<
203                     OPTEE_MSG_ATTR_CACHE_SHIFT;
204
205         return 0;
206 }
207
208 static int to_msg_param_reg_mem(struct optee_msg_param *mp,
209                                 const struct tee_param *p)
210 {
211         mp->attr = OPTEE_MSG_ATTR_TYPE_RMEM_INPUT + p->attr -
212                    TEE_IOCTL_PARAM_ATTR_TYPE_MEMREF_INPUT;
213
214         mp->u.rmem.shm_ref = (unsigned long)p->u.memref.shm;
215         mp->u.rmem.size = p->u.memref.size;
216         mp->u.rmem.offs = p->u.memref.shm_offs;
217         return 0;
218 }
219
220 /**
221  * optee_to_msg_param() - convert from struct tee_params to OPTEE_MSG parameters
222  * @optee:      main service struct
223  * @msg_params: OPTEE_MSG parameters
224  * @num_params: number of elements in the parameter arrays
225  * @params:     subsystem itnernal parameter representation
226  * Returns 0 on success or <0 on failure
227  */
228 static int optee_to_msg_param(struct optee *optee,
229                               struct optee_msg_param *msg_params,
230                               size_t num_params, const struct tee_param *params)
231 {
232         int rc;
233         size_t n;
234
235         for (n = 0; n < num_params; n++) {
236                 const struct tee_param *p = params + n;
237                 struct optee_msg_param *mp = msg_params + n;
238
239                 switch (p->attr) {
240                 case TEE_IOCTL_PARAM_ATTR_TYPE_NONE:
241                         mp->attr = TEE_IOCTL_PARAM_ATTR_TYPE_NONE;
242                         memset(&mp->u, 0, sizeof(mp->u));
243                         break;
244                 case TEE_IOCTL_PARAM_ATTR_TYPE_VALUE_INPUT:
245                 case TEE_IOCTL_PARAM_ATTR_TYPE_VALUE_OUTPUT:
246                 case TEE_IOCTL_PARAM_ATTR_TYPE_VALUE_INOUT:
247                         optee_to_msg_param_value(mp, p);
248                         break;
249                 case TEE_IOCTL_PARAM_ATTR_TYPE_MEMREF_INPUT:
250                 case TEE_IOCTL_PARAM_ATTR_TYPE_MEMREF_OUTPUT:
251                 case TEE_IOCTL_PARAM_ATTR_TYPE_MEMREF_INOUT:
252                         if (tee_shm_is_dynamic(p->u.memref.shm))
253                                 rc = to_msg_param_reg_mem(mp, p);
254                         else
255                                 rc = to_msg_param_tmp_mem(mp, p);
256                         if (rc)
257                                 return rc;
258                         break;
259                 default:
260                         return -EINVAL;
261                 }
262         }
263         return 0;
264 }
265
266 /*
267  * 2. Low level support functions to register shared memory in secure world
268  *
269  * Functions to enable/disable shared memory caching in secure world, that
270  * is, lazy freeing of previously allocated shared memory. Freeing is
271  * performed when a request has been compled.
272  *
273  * Functions to register and unregister shared memory both for normal
274  * clients and for tee-supplicant.
275  */
276
277 /**
278  * optee_enable_shm_cache() - Enables caching of some shared memory allocation
279  *                            in OP-TEE
280  * @optee:      main service struct
281  */
282 static void optee_enable_shm_cache(struct optee *optee)
283 {
284         struct optee_call_waiter w;
285
286         /* We need to retry until secure world isn't busy. */
287         optee_cq_wait_init(&optee->call_queue, &w, false);
288         while (true) {
289                 struct arm_smccc_res res;
290
291                 optee->smc.invoke_fn(OPTEE_SMC_ENABLE_SHM_CACHE,
292                                      0, 0, 0, 0, 0, 0, 0, &res);
293                 if (res.a0 == OPTEE_SMC_RETURN_OK)
294                         break;
295                 optee_cq_wait_for_completion(&optee->call_queue, &w);
296         }
297         optee_cq_wait_final(&optee->call_queue, &w);
298 }
299
300 /**
301  * __optee_disable_shm_cache() - Disables caching of some shared memory
302  *                               allocation in OP-TEE
303  * @optee:      main service struct
304  * @is_mapped:  true if the cached shared memory addresses were mapped by this
305  *              kernel, are safe to dereference, and should be freed
306  */
307 static void __optee_disable_shm_cache(struct optee *optee, bool is_mapped)
308 {
309         struct optee_call_waiter w;
310
311         /* We need to retry until secure world isn't busy. */
312         optee_cq_wait_init(&optee->call_queue, &w, false);
313         while (true) {
314                 union {
315                         struct arm_smccc_res smccc;
316                         struct optee_smc_disable_shm_cache_result result;
317                 } res;
318
319                 optee->smc.invoke_fn(OPTEE_SMC_DISABLE_SHM_CACHE,
320                                      0, 0, 0, 0, 0, 0, 0, &res.smccc);
321                 if (res.result.status == OPTEE_SMC_RETURN_ENOTAVAIL)
322                         break; /* All shm's freed */
323                 if (res.result.status == OPTEE_SMC_RETURN_OK) {
324                         struct tee_shm *shm;
325
326                         /*
327                          * Shared memory references that were not mapped by
328                          * this kernel must be ignored to prevent a crash.
329                          */
330                         if (!is_mapped)
331                                 continue;
332
333                         shm = reg_pair_to_ptr(res.result.shm_upper32,
334                                               res.result.shm_lower32);
335                         tee_shm_free(shm);
336                 } else {
337                         optee_cq_wait_for_completion(&optee->call_queue, &w);
338                 }
339         }
340         optee_cq_wait_final(&optee->call_queue, &w);
341 }
342
343 /**
344  * optee_disable_shm_cache() - Disables caching of mapped shared memory
345  *                             allocations in OP-TEE
346  * @optee:      main service struct
347  */
348 static void optee_disable_shm_cache(struct optee *optee)
349 {
350         return __optee_disable_shm_cache(optee, true);
351 }
352
353 /**
354  * optee_disable_unmapped_shm_cache() - Disables caching of shared memory
355  *                                      allocations in OP-TEE which are not
356  *                                      currently mapped
357  * @optee:      main service struct
358  */
359 static void optee_disable_unmapped_shm_cache(struct optee *optee)
360 {
361         return __optee_disable_shm_cache(optee, false);
362 }
363
364 #define PAGELIST_ENTRIES_PER_PAGE                               \
365         ((OPTEE_MSG_NONCONTIG_PAGE_SIZE / sizeof(u64)) - 1)
366
367 /*
368  * The final entry in each pagelist page is a pointer to the next
369  * pagelist page.
370  */
371 static size_t get_pages_list_size(size_t num_entries)
372 {
373         int pages = DIV_ROUND_UP(num_entries, PAGELIST_ENTRIES_PER_PAGE);
374
375         return pages * OPTEE_MSG_NONCONTIG_PAGE_SIZE;
376 }
377
378 static u64 *optee_allocate_pages_list(size_t num_entries)
379 {
380         return alloc_pages_exact(get_pages_list_size(num_entries), GFP_KERNEL);
381 }
382
383 static void optee_free_pages_list(void *list, size_t num_entries)
384 {
385         free_pages_exact(list, get_pages_list_size(num_entries));
386 }
387
388 /**
389  * optee_fill_pages_list() - write list of user pages to given shared
390  * buffer.
391  *
392  * @dst: page-aligned buffer where list of pages will be stored
393  * @pages: array of pages that represents shared buffer
394  * @num_pages: number of entries in @pages
395  * @page_offset: offset of user buffer from page start
396  *
397  * @dst should be big enough to hold list of user page addresses and
398  *      links to the next pages of buffer
399  */
400 static void optee_fill_pages_list(u64 *dst, struct page **pages, int num_pages,
401                                   size_t page_offset)
402 {
403         int n = 0;
404         phys_addr_t optee_page;
405         /*
406          * Refer to OPTEE_MSG_ATTR_NONCONTIG description in optee_msg.h
407          * for details.
408          */
409         struct {
410                 u64 pages_list[PAGELIST_ENTRIES_PER_PAGE];
411                 u64 next_page_data;
412         } *pages_data;
413
414         /*
415          * Currently OP-TEE uses 4k page size and it does not looks
416          * like this will change in the future.  On other hand, there are
417          * no know ARM architectures with page size < 4k.
418          * Thus the next built assert looks redundant. But the following
419          * code heavily relies on this assumption, so it is better be
420          * safe than sorry.
421          */
422         BUILD_BUG_ON(PAGE_SIZE < OPTEE_MSG_NONCONTIG_PAGE_SIZE);
423
424         pages_data = (void *)dst;
425         /*
426          * If linux page is bigger than 4k, and user buffer offset is
427          * larger than 4k/8k/12k/etc this will skip first 4k pages,
428          * because they bear no value data for OP-TEE.
429          */
430         optee_page = page_to_phys(*pages) +
431                 round_down(page_offset, OPTEE_MSG_NONCONTIG_PAGE_SIZE);
432
433         while (true) {
434                 pages_data->pages_list[n++] = optee_page;
435
436                 if (n == PAGELIST_ENTRIES_PER_PAGE) {
437                         pages_data->next_page_data =
438                                 virt_to_phys(pages_data + 1);
439                         pages_data++;
440                         n = 0;
441                 }
442
443                 optee_page += OPTEE_MSG_NONCONTIG_PAGE_SIZE;
444                 if (!(optee_page & ~PAGE_MASK)) {
445                         if (!--num_pages)
446                                 break;
447                         pages++;
448                         optee_page = page_to_phys(*pages);
449                 }
450         }
451 }
452
453 static int optee_shm_register(struct tee_context *ctx, struct tee_shm *shm,
454                               struct page **pages, size_t num_pages,
455                               unsigned long start)
456 {
457         struct optee *optee = tee_get_drvdata(ctx->teedev);
458         struct optee_msg_arg *msg_arg;
459         struct tee_shm *shm_arg;
460         u64 *pages_list;
461         size_t sz;
462         int rc;
463
464         if (!num_pages)
465                 return -EINVAL;
466
467         rc = optee_check_mem_type(start, num_pages);
468         if (rc)
469                 return rc;
470
471         pages_list = optee_allocate_pages_list(num_pages);
472         if (!pages_list)
473                 return -ENOMEM;
474
475         /*
476          * We're about to register shared memory we can't register shared
477          * memory for this request or there's a catch-22.
478          *
479          * So in this we'll have to do the good old temporary private
480          * allocation instead of using optee_get_msg_arg().
481          */
482         sz = optee_msg_arg_size(optee->rpc_param_count);
483         shm_arg = tee_shm_alloc_priv_buf(ctx, sz);
484         if (IS_ERR(shm_arg)) {
485                 rc = PTR_ERR(shm_arg);
486                 goto out;
487         }
488         msg_arg = tee_shm_get_va(shm_arg, 0);
489         if (IS_ERR(msg_arg)) {
490                 rc = PTR_ERR(msg_arg);
491                 goto out;
492         }
493
494         optee_fill_pages_list(pages_list, pages, num_pages,
495                               tee_shm_get_page_offset(shm));
496
497         memset(msg_arg, 0, OPTEE_MSG_GET_ARG_SIZE(1));
498         msg_arg->num_params = 1;
499         msg_arg->cmd = OPTEE_MSG_CMD_REGISTER_SHM;
500         msg_arg->params->attr = OPTEE_MSG_ATTR_TYPE_TMEM_OUTPUT |
501                                 OPTEE_MSG_ATTR_NONCONTIG;
502         msg_arg->params->u.tmem.shm_ref = (unsigned long)shm;
503         msg_arg->params->u.tmem.size = tee_shm_get_size(shm);
504         /*
505          * In the least bits of msg_arg->params->u.tmem.buf_ptr we
506          * store buffer offset from 4k page, as described in OP-TEE ABI.
507          */
508         msg_arg->params->u.tmem.buf_ptr = virt_to_phys(pages_list) |
509           (tee_shm_get_page_offset(shm) & (OPTEE_MSG_NONCONTIG_PAGE_SIZE - 1));
510
511         if (optee->ops->do_call_with_arg(ctx, shm_arg, 0, false) ||
512             msg_arg->ret != TEEC_SUCCESS)
513                 rc = -EINVAL;
514
515         tee_shm_free(shm_arg);
516 out:
517         optee_free_pages_list(pages_list, num_pages);
518         return rc;
519 }
520
521 static int optee_shm_unregister(struct tee_context *ctx, struct tee_shm *shm)
522 {
523         struct optee *optee = tee_get_drvdata(ctx->teedev);
524         struct optee_msg_arg *msg_arg;
525         struct tee_shm *shm_arg;
526         int rc = 0;
527         size_t sz;
528
529         /*
530          * We're about to unregister shared memory and we may not be able
531          * register shared memory for this request in case we're called
532          * from optee_shm_arg_cache_uninit().
533          *
534          * So in order to keep things simple in this function just as in
535          * optee_shm_register() we'll use temporary private allocation
536          * instead of using optee_get_msg_arg().
537          */
538         sz = optee_msg_arg_size(optee->rpc_param_count);
539         shm_arg = tee_shm_alloc_priv_buf(ctx, sz);
540         if (IS_ERR(shm_arg))
541                 return PTR_ERR(shm_arg);
542         msg_arg = tee_shm_get_va(shm_arg, 0);
543         if (IS_ERR(msg_arg)) {
544                 rc = PTR_ERR(msg_arg);
545                 goto out;
546         }
547
548         memset(msg_arg, 0, sz);
549         msg_arg->num_params = 1;
550         msg_arg->cmd = OPTEE_MSG_CMD_UNREGISTER_SHM;
551         msg_arg->params[0].attr = OPTEE_MSG_ATTR_TYPE_RMEM_INPUT;
552         msg_arg->params[0].u.rmem.shm_ref = (unsigned long)shm;
553
554         if (optee->ops->do_call_with_arg(ctx, shm_arg, 0, false) ||
555             msg_arg->ret != TEEC_SUCCESS)
556                 rc = -EINVAL;
557 out:
558         tee_shm_free(shm_arg);
559         return rc;
560 }
561
562 static int optee_shm_register_supp(struct tee_context *ctx, struct tee_shm *shm,
563                                    struct page **pages, size_t num_pages,
564                                    unsigned long start)
565 {
566         /*
567          * We don't want to register supplicant memory in OP-TEE.
568          * Instead information about it will be passed in RPC code.
569          */
570         return optee_check_mem_type(start, num_pages);
571 }
572
573 static int optee_shm_unregister_supp(struct tee_context *ctx,
574                                      struct tee_shm *shm)
575 {
576         return 0;
577 }
578
579 /*
580  * 3. Dynamic shared memory pool based on alloc_pages()
581  *
582  * Implements an OP-TEE specific shared memory pool which is used
583  * when dynamic shared memory is supported by secure world.
584  *
585  * The main function is optee_shm_pool_alloc_pages().
586  */
587
588 static int pool_op_alloc(struct tee_shm_pool *pool,
589                          struct tee_shm *shm, size_t size, size_t align)
590 {
591         /*
592          * Shared memory private to the OP-TEE driver doesn't need
593          * to be registered with OP-TEE.
594          */
595         if (shm->flags & TEE_SHM_PRIV)
596                 return tee_dyn_shm_alloc_helper(shm, size, align, NULL);
597
598         return tee_dyn_shm_alloc_helper(shm, size, align, optee_shm_register);
599 }
600
601 static void pool_op_free(struct tee_shm_pool *pool,
602                          struct tee_shm *shm)
603 {
604         if (!(shm->flags & TEE_SHM_PRIV))
605                 tee_dyn_shm_free_helper(shm, optee_shm_unregister);
606         else
607                 tee_dyn_shm_free_helper(shm, NULL);
608 }
609
610 static void pool_op_destroy_pool(struct tee_shm_pool *pool)
611 {
612         kfree(pool);
613 }
614
615 static const struct tee_shm_pool_ops pool_ops = {
616         .alloc = pool_op_alloc,
617         .free = pool_op_free,
618         .destroy_pool = pool_op_destroy_pool,
619 };
620
621 /**
622  * optee_shm_pool_alloc_pages() - create page-based allocator pool
623  *
624  * This pool is used when OP-TEE supports dymanic SHM. In this case
625  * command buffers and such are allocated from kernel's own memory.
626  */
627 static struct tee_shm_pool *optee_shm_pool_alloc_pages(void)
628 {
629         struct tee_shm_pool *pool = kzalloc(sizeof(*pool), GFP_KERNEL);
630
631         if (!pool)
632                 return ERR_PTR(-ENOMEM);
633
634         pool->ops = &pool_ops;
635
636         return pool;
637 }
638
639 /*
640  * 4. Do a normal scheduled call into secure world
641  *
642  * The function optee_smc_do_call_with_arg() performs a normal scheduled
643  * call into secure world. During this call may normal world request help
644  * from normal world using RPCs, Remote Procedure Calls. This includes
645  * delivery of non-secure interrupts to for instance allow rescheduling of
646  * the current task.
647  */
648
649 static void handle_rpc_func_cmd_shm_free(struct tee_context *ctx,
650                                          struct optee_msg_arg *arg)
651 {
652         struct tee_shm *shm;
653
654         arg->ret_origin = TEEC_ORIGIN_COMMS;
655
656         if (arg->num_params != 1 ||
657             arg->params[0].attr != OPTEE_MSG_ATTR_TYPE_VALUE_INPUT) {
658                 arg->ret = TEEC_ERROR_BAD_PARAMETERS;
659                 return;
660         }
661
662         shm = (struct tee_shm *)(unsigned long)arg->params[0].u.value.b;
663         switch (arg->params[0].u.value.a) {
664         case OPTEE_RPC_SHM_TYPE_APPL:
665                 optee_rpc_cmd_free_suppl(ctx, shm);
666                 break;
667         case OPTEE_RPC_SHM_TYPE_KERNEL:
668                 tee_shm_free(shm);
669                 break;
670         default:
671                 arg->ret = TEEC_ERROR_BAD_PARAMETERS;
672         }
673         arg->ret = TEEC_SUCCESS;
674 }
675
676 static void handle_rpc_func_cmd_shm_alloc(struct tee_context *ctx,
677                                           struct optee *optee,
678                                           struct optee_msg_arg *arg,
679                                           struct optee_call_ctx *call_ctx)
680 {
681         struct tee_shm *shm;
682         size_t sz;
683         size_t n;
684         struct page **pages;
685         size_t page_count;
686
687         arg->ret_origin = TEEC_ORIGIN_COMMS;
688
689         if (!arg->num_params ||
690             arg->params[0].attr != OPTEE_MSG_ATTR_TYPE_VALUE_INPUT) {
691                 arg->ret = TEEC_ERROR_BAD_PARAMETERS;
692                 return;
693         }
694
695         for (n = 1; n < arg->num_params; n++) {
696                 if (arg->params[n].attr != OPTEE_MSG_ATTR_TYPE_NONE) {
697                         arg->ret = TEEC_ERROR_BAD_PARAMETERS;
698                         return;
699                 }
700         }
701
702         sz = arg->params[0].u.value.b;
703         switch (arg->params[0].u.value.a) {
704         case OPTEE_RPC_SHM_TYPE_APPL:
705                 shm = optee_rpc_cmd_alloc_suppl(ctx, sz);
706                 break;
707         case OPTEE_RPC_SHM_TYPE_KERNEL:
708                 shm = tee_shm_alloc_priv_buf(optee->ctx, sz);
709                 break;
710         default:
711                 arg->ret = TEEC_ERROR_BAD_PARAMETERS;
712                 return;
713         }
714
715         if (IS_ERR(shm)) {
716                 arg->ret = TEEC_ERROR_OUT_OF_MEMORY;
717                 return;
718         }
719
720         /*
721          * If there are pages it's dynamically allocated shared memory (not
722          * from the reserved shared memory pool) and needs to be
723          * registered.
724          */
725         pages = tee_shm_get_pages(shm, &page_count);
726         if (pages) {
727                 u64 *pages_list;
728
729                 pages_list = optee_allocate_pages_list(page_count);
730                 if (!pages_list) {
731                         arg->ret = TEEC_ERROR_OUT_OF_MEMORY;
732                         goto bad;
733                 }
734
735                 call_ctx->pages_list = pages_list;
736                 call_ctx->num_entries = page_count;
737
738                 arg->params[0].attr = OPTEE_MSG_ATTR_TYPE_TMEM_OUTPUT |
739                                       OPTEE_MSG_ATTR_NONCONTIG;
740                 /*
741                  * In the least bits of u.tmem.buf_ptr we store buffer offset
742                  * from 4k page, as described in OP-TEE ABI.
743                  */
744                 arg->params[0].u.tmem.buf_ptr = virt_to_phys(pages_list) |
745                         (tee_shm_get_page_offset(shm) &
746                          (OPTEE_MSG_NONCONTIG_PAGE_SIZE - 1));
747
748                 optee_fill_pages_list(pages_list, pages, page_count,
749                                       tee_shm_get_page_offset(shm));
750         } else {
751                 phys_addr_t pa;
752
753                 if (tee_shm_get_pa(shm, 0, &pa)) {
754                         arg->ret = TEEC_ERROR_BAD_PARAMETERS;
755                         goto bad;
756                 }
757
758                 arg->params[0].attr = OPTEE_MSG_ATTR_TYPE_TMEM_OUTPUT;
759                 arg->params[0].u.tmem.buf_ptr = pa;
760         }
761         arg->params[0].u.tmem.size = tee_shm_get_size(shm);
762         arg->params[0].u.tmem.shm_ref = (unsigned long)shm;
763
764         arg->ret = TEEC_SUCCESS;
765         return;
766 bad:
767         tee_shm_free(shm);
768 }
769
770 static void free_pages_list(struct optee_call_ctx *call_ctx)
771 {
772         if (call_ctx->pages_list) {
773                 optee_free_pages_list(call_ctx->pages_list,
774                                       call_ctx->num_entries);
775                 call_ctx->pages_list = NULL;
776                 call_ctx->num_entries = 0;
777         }
778 }
779
780 static void optee_rpc_finalize_call(struct optee_call_ctx *call_ctx)
781 {
782         free_pages_list(call_ctx);
783 }
784
785 static void handle_rpc_func_cmd(struct tee_context *ctx, struct optee *optee,
786                                 struct optee_msg_arg *arg,
787                                 struct optee_call_ctx *call_ctx)
788 {
789
790         switch (arg->cmd) {
791         case OPTEE_RPC_CMD_SHM_ALLOC:
792                 free_pages_list(call_ctx);
793                 handle_rpc_func_cmd_shm_alloc(ctx, optee, arg, call_ctx);
794                 break;
795         case OPTEE_RPC_CMD_SHM_FREE:
796                 handle_rpc_func_cmd_shm_free(ctx, arg);
797                 break;
798         default:
799                 optee_rpc_cmd(ctx, optee, arg);
800         }
801 }
802
803 /**
804  * optee_handle_rpc() - handle RPC from secure world
805  * @ctx:        context doing the RPC
806  * @rpc_arg:    pointer to RPC arguments if any, or NULL if none
807  * @param:      value of registers for the RPC
808  * @call_ctx:   call context. Preserved during one OP-TEE invocation
809  *
810  * Result of RPC is written back into @param.
811  */
812 static void optee_handle_rpc(struct tee_context *ctx,
813                              struct optee_msg_arg *rpc_arg,
814                              struct optee_rpc_param *param,
815                              struct optee_call_ctx *call_ctx)
816 {
817         struct tee_device *teedev = ctx->teedev;
818         struct optee *optee = tee_get_drvdata(teedev);
819         struct optee_msg_arg *arg;
820         struct tee_shm *shm;
821         phys_addr_t pa;
822
823         switch (OPTEE_SMC_RETURN_GET_RPC_FUNC(param->a0)) {
824         case OPTEE_SMC_RPC_FUNC_ALLOC:
825                 shm = tee_shm_alloc_priv_buf(optee->ctx, param->a1);
826                 if (!IS_ERR(shm) && !tee_shm_get_pa(shm, 0, &pa)) {
827                         reg_pair_from_64(&param->a1, &param->a2, pa);
828                         reg_pair_from_64(&param->a4, &param->a5,
829                                          (unsigned long)shm);
830                 } else {
831                         param->a1 = 0;
832                         param->a2 = 0;
833                         param->a4 = 0;
834                         param->a5 = 0;
835                 }
836                 kmemleak_not_leak(shm);
837                 break;
838         case OPTEE_SMC_RPC_FUNC_FREE:
839                 shm = reg_pair_to_ptr(param->a1, param->a2);
840                 tee_shm_free(shm);
841                 break;
842         case OPTEE_SMC_RPC_FUNC_FOREIGN_INTR:
843                 /*
844                  * A foreign interrupt was raised while secure world was
845                  * executing, since they are handled in Linux a dummy RPC is
846                  * performed to let Linux take the interrupt through the normal
847                  * vector.
848                  */
849                 break;
850         case OPTEE_SMC_RPC_FUNC_CMD:
851                 if (rpc_arg) {
852                         arg = rpc_arg;
853                 } else {
854                         shm = reg_pair_to_ptr(param->a1, param->a2);
855                         arg = tee_shm_get_va(shm, 0);
856                         if (IS_ERR(arg)) {
857                                 pr_err("%s: tee_shm_get_va %p failed\n",
858                                        __func__, shm);
859                                 break;
860                         }
861                 }
862
863                 handle_rpc_func_cmd(ctx, optee, arg, call_ctx);
864                 break;
865         default:
866                 pr_warn("Unknown RPC func 0x%x\n",
867                         (u32)OPTEE_SMC_RETURN_GET_RPC_FUNC(param->a0));
868                 break;
869         }
870
871         param->a0 = OPTEE_SMC_CALL_RETURN_FROM_RPC;
872 }
873
874 /**
875  * optee_smc_do_call_with_arg() - Do an SMC to OP-TEE in secure world
876  * @ctx:        calling context
877  * @shm:        shared memory holding the message to pass to secure world
878  * @offs:       offset of the message in @shm
879  * @system_thread: true if caller requests TEE system thread support
880  *
881  * Does and SMC to OP-TEE in secure world and handles eventual resulting
882  * Remote Procedure Calls (RPC) from OP-TEE.
883  *
884  * Returns return code from secure world, 0 is OK
885  */
886 static int optee_smc_do_call_with_arg(struct tee_context *ctx,
887                                       struct tee_shm *shm, u_int offs,
888                                       bool system_thread)
889 {
890         struct optee *optee = tee_get_drvdata(ctx->teedev);
891         struct optee_call_waiter w;
892         struct optee_rpc_param param = { };
893         struct optee_call_ctx call_ctx = { };
894         struct optee_msg_arg *rpc_arg = NULL;
895         int rc;
896
897         if (optee->rpc_param_count) {
898                 struct optee_msg_arg *arg;
899                 unsigned int rpc_arg_offs;
900
901                 arg = tee_shm_get_va(shm, offs);
902                 if (IS_ERR(arg))
903                         return PTR_ERR(arg);
904
905                 rpc_arg_offs = OPTEE_MSG_GET_ARG_SIZE(arg->num_params);
906                 rpc_arg = tee_shm_get_va(shm, offs + rpc_arg_offs);
907                 if (IS_ERR(rpc_arg))
908                         return PTR_ERR(rpc_arg);
909         }
910
911         if  (rpc_arg && tee_shm_is_dynamic(shm)) {
912                 param.a0 = OPTEE_SMC_CALL_WITH_REGD_ARG;
913                 reg_pair_from_64(&param.a1, &param.a2, (u_long)shm);
914                 param.a3 = offs;
915         } else {
916                 phys_addr_t parg;
917
918                 rc = tee_shm_get_pa(shm, offs, &parg);
919                 if (rc)
920                         return rc;
921
922                 if (rpc_arg)
923                         param.a0 = OPTEE_SMC_CALL_WITH_RPC_ARG;
924                 else
925                         param.a0 = OPTEE_SMC_CALL_WITH_ARG;
926                 reg_pair_from_64(&param.a1, &param.a2, parg);
927         }
928         /* Initialize waiter */
929         optee_cq_wait_init(&optee->call_queue, &w, system_thread);
930         while (true) {
931                 struct arm_smccc_res res;
932
933                 trace_optee_invoke_fn_begin(&param);
934                 optee->smc.invoke_fn(param.a0, param.a1, param.a2, param.a3,
935                                      param.a4, param.a5, param.a6, param.a7,
936                                      &res);
937                 trace_optee_invoke_fn_end(&param, &res);
938
939                 if (res.a0 == OPTEE_SMC_RETURN_ETHREAD_LIMIT) {
940                         /*
941                          * Out of threads in secure world, wait for a thread
942                          * become available.
943                          */
944                         optee_cq_wait_for_completion(&optee->call_queue, &w);
945                 } else if (OPTEE_SMC_RETURN_IS_RPC(res.a0)) {
946                         cond_resched();
947                         param.a0 = res.a0;
948                         param.a1 = res.a1;
949                         param.a2 = res.a2;
950                         param.a3 = res.a3;
951                         optee_handle_rpc(ctx, rpc_arg, &param, &call_ctx);
952                 } else {
953                         rc = res.a0;
954                         break;
955                 }
956         }
957
958         optee_rpc_finalize_call(&call_ctx);
959         /*
960          * We're done with our thread in secure world, if there's any
961          * thread waiters wake up one.
962          */
963         optee_cq_wait_final(&optee->call_queue, &w);
964
965         return rc;
966 }
967
968 /*
969  * 5. Asynchronous notification
970  */
971
972 static u32 get_async_notif_value(optee_invoke_fn *invoke_fn, bool *value_valid,
973                                  bool *value_pending)
974 {
975         struct arm_smccc_res res;
976
977         invoke_fn(OPTEE_SMC_GET_ASYNC_NOTIF_VALUE, 0, 0, 0, 0, 0, 0, 0, &res);
978
979         if (res.a0) {
980                 *value_valid = false;
981                 return 0;
982         }
983         *value_valid = (res.a2 & OPTEE_SMC_ASYNC_NOTIF_VALUE_VALID);
984         *value_pending = (res.a2 & OPTEE_SMC_ASYNC_NOTIF_VALUE_PENDING);
985         return res.a1;
986 }
987
988 static irqreturn_t irq_handler(struct optee *optee)
989 {
990         bool do_bottom_half = false;
991         bool value_valid;
992         bool value_pending;
993         u32 value;
994
995         do {
996                 value = get_async_notif_value(optee->smc.invoke_fn,
997                                               &value_valid, &value_pending);
998                 if (!value_valid)
999                         break;
1000
1001                 if (value == OPTEE_SMC_ASYNC_NOTIF_VALUE_DO_BOTTOM_HALF)
1002                         do_bottom_half = true;
1003                 else
1004                         optee_notif_send(optee, value);
1005         } while (value_pending);
1006
1007         if (do_bottom_half)
1008                 return IRQ_WAKE_THREAD;
1009         return IRQ_HANDLED;
1010 }
1011
1012 static irqreturn_t notif_irq_handler(int irq, void *dev_id)
1013 {
1014         struct optee *optee = dev_id;
1015
1016         return irq_handler(optee);
1017 }
1018
1019 static irqreturn_t notif_irq_thread_fn(int irq, void *dev_id)
1020 {
1021         struct optee *optee = dev_id;
1022
1023         optee_do_bottom_half(optee->ctx);
1024
1025         return IRQ_HANDLED;
1026 }
1027
1028 static int init_irq(struct optee *optee, u_int irq)
1029 {
1030         int rc;
1031
1032         rc = request_threaded_irq(irq, notif_irq_handler,
1033                                   notif_irq_thread_fn,
1034                                   0, "optee_notification", optee);
1035         if (rc)
1036                 return rc;
1037
1038         optee->smc.notif_irq = irq;
1039
1040         return 0;
1041 }
1042
1043 static irqreturn_t notif_pcpu_irq_handler(int irq, void *dev_id)
1044 {
1045         struct optee_pcpu *pcpu = dev_id;
1046         struct optee *optee = pcpu->optee;
1047
1048         if (irq_handler(optee) == IRQ_WAKE_THREAD)
1049                 queue_work(optee->smc.notif_pcpu_wq,
1050                            &optee->smc.notif_pcpu_work);
1051
1052         return IRQ_HANDLED;
1053 }
1054
1055 static void notif_pcpu_irq_work_fn(struct work_struct *work)
1056 {
1057         struct optee_smc *optee_smc = container_of(work, struct optee_smc,
1058                                                    notif_pcpu_work);
1059         struct optee *optee = container_of(optee_smc, struct optee, smc);
1060
1061         optee_do_bottom_half(optee->ctx);
1062 }
1063
1064 static int init_pcpu_irq(struct optee *optee, u_int irq)
1065 {
1066         struct optee_pcpu __percpu *optee_pcpu;
1067         int cpu, rc;
1068
1069         optee_pcpu = alloc_percpu(struct optee_pcpu);
1070         if (!optee_pcpu)
1071                 return -ENOMEM;
1072
1073         for_each_present_cpu(cpu)
1074                 per_cpu_ptr(optee_pcpu, cpu)->optee = optee;
1075
1076         rc = request_percpu_irq(irq, notif_pcpu_irq_handler,
1077                                 "optee_pcpu_notification", optee_pcpu);
1078         if (rc)
1079                 goto err_free_pcpu;
1080
1081         INIT_WORK(&optee->smc.notif_pcpu_work, notif_pcpu_irq_work_fn);
1082         optee->smc.notif_pcpu_wq = create_workqueue("optee_pcpu_notification");
1083         if (!optee->smc.notif_pcpu_wq) {
1084                 rc = -EINVAL;
1085                 goto err_free_pcpu_irq;
1086         }
1087
1088         optee->smc.optee_pcpu = optee_pcpu;
1089         optee->smc.notif_irq = irq;
1090
1091         pcpu_irq_num = irq;
1092         rc = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "optee/pcpu-notif:starting",
1093                                optee_cpuhp_enable_pcpu_irq,
1094                                optee_cpuhp_disable_pcpu_irq);
1095         if (!rc)
1096                 rc = -EINVAL;
1097         if (rc < 0)
1098                 goto err_free_pcpu_irq;
1099
1100         optee->smc.notif_cpuhp_state = rc;
1101
1102         return 0;
1103
1104 err_free_pcpu_irq:
1105         free_percpu_irq(irq, optee_pcpu);
1106 err_free_pcpu:
1107         free_percpu(optee_pcpu);
1108
1109         return rc;
1110 }
1111
1112 static int optee_smc_notif_init_irq(struct optee *optee, u_int irq)
1113 {
1114         if (irq_is_percpu_devid(irq))
1115                 return init_pcpu_irq(optee, irq);
1116         else
1117                 return init_irq(optee, irq);
1118 }
1119
1120 static void uninit_pcpu_irq(struct optee *optee)
1121 {
1122         cpuhp_remove_state(optee->smc.notif_cpuhp_state);
1123
1124         destroy_workqueue(optee->smc.notif_pcpu_wq);
1125
1126         free_percpu_irq(optee->smc.notif_irq, optee->smc.optee_pcpu);
1127         free_percpu(optee->smc.optee_pcpu);
1128 }
1129
1130 static void optee_smc_notif_uninit_irq(struct optee *optee)
1131 {
1132         if (optee->smc.sec_caps & OPTEE_SMC_SEC_CAP_ASYNC_NOTIF) {
1133                 optee_stop_async_notif(optee->ctx);
1134                 if (optee->smc.notif_irq) {
1135                         if (irq_is_percpu_devid(optee->smc.notif_irq))
1136                                 uninit_pcpu_irq(optee);
1137                         else
1138                                 free_irq(optee->smc.notif_irq, optee);
1139
1140                         irq_dispose_mapping(optee->smc.notif_irq);
1141                 }
1142         }
1143 }
1144
1145 /*
1146  * 6. Driver initialization
1147  *
1148  * During driver initialization is secure world probed to find out which
1149  * features it supports so the driver can be initialized with a matching
1150  * configuration. This involves for instance support for dynamic shared
1151  * memory instead of a static memory carvout.
1152  */
1153
1154 static void optee_get_version(struct tee_device *teedev,
1155                               struct tee_ioctl_version_data *vers)
1156 {
1157         struct tee_ioctl_version_data v = {
1158                 .impl_id = TEE_IMPL_ID_OPTEE,
1159                 .impl_caps = TEE_OPTEE_CAP_TZ,
1160                 .gen_caps = TEE_GEN_CAP_GP,
1161         };
1162         struct optee *optee = tee_get_drvdata(teedev);
1163
1164         if (optee->smc.sec_caps & OPTEE_SMC_SEC_CAP_DYNAMIC_SHM)
1165                 v.gen_caps |= TEE_GEN_CAP_REG_MEM;
1166         if (optee->smc.sec_caps & OPTEE_SMC_SEC_CAP_MEMREF_NULL)
1167                 v.gen_caps |= TEE_GEN_CAP_MEMREF_NULL;
1168         *vers = v;
1169 }
1170
1171 static int optee_smc_open(struct tee_context *ctx)
1172 {
1173         struct optee *optee = tee_get_drvdata(ctx->teedev);
1174         u32 sec_caps = optee->smc.sec_caps;
1175
1176         return optee_open(ctx, sec_caps & OPTEE_SMC_SEC_CAP_MEMREF_NULL);
1177 }
1178
1179 static const struct tee_driver_ops optee_clnt_ops = {
1180         .get_version = optee_get_version,
1181         .open = optee_smc_open,
1182         .release = optee_release,
1183         .open_session = optee_open_session,
1184         .close_session = optee_close_session,
1185         .system_session = optee_system_session,
1186         .invoke_func = optee_invoke_func,
1187         .cancel_req = optee_cancel_req,
1188         .shm_register = optee_shm_register,
1189         .shm_unregister = optee_shm_unregister,
1190 };
1191
1192 static const struct tee_desc optee_clnt_desc = {
1193         .name = DRIVER_NAME "-clnt",
1194         .ops = &optee_clnt_ops,
1195         .owner = THIS_MODULE,
1196 };
1197
1198 static const struct tee_driver_ops optee_supp_ops = {
1199         .get_version = optee_get_version,
1200         .open = optee_smc_open,
1201         .release = optee_release_supp,
1202         .supp_recv = optee_supp_recv,
1203         .supp_send = optee_supp_send,
1204         .shm_register = optee_shm_register_supp,
1205         .shm_unregister = optee_shm_unregister_supp,
1206 };
1207
1208 static const struct tee_desc optee_supp_desc = {
1209         .name = DRIVER_NAME "-supp",
1210         .ops = &optee_supp_ops,
1211         .owner = THIS_MODULE,
1212         .flags = TEE_DESC_PRIVILEGED,
1213 };
1214
1215 static const struct optee_ops optee_ops = {
1216         .do_call_with_arg = optee_smc_do_call_with_arg,
1217         .to_msg_param = optee_to_msg_param,
1218         .from_msg_param = optee_from_msg_param,
1219 };
1220
1221 static int enable_async_notif(optee_invoke_fn *invoke_fn)
1222 {
1223         struct arm_smccc_res res;
1224
1225         invoke_fn(OPTEE_SMC_ENABLE_ASYNC_NOTIF, 0, 0, 0, 0, 0, 0, 0, &res);
1226
1227         if (res.a0)
1228                 return -EINVAL;
1229         return 0;
1230 }
1231
1232 static bool optee_msg_api_uid_is_optee_api(optee_invoke_fn *invoke_fn)
1233 {
1234         struct arm_smccc_res res;
1235
1236         invoke_fn(OPTEE_SMC_CALLS_UID, 0, 0, 0, 0, 0, 0, 0, &res);
1237
1238         if (res.a0 == OPTEE_MSG_UID_0 && res.a1 == OPTEE_MSG_UID_1 &&
1239             res.a2 == OPTEE_MSG_UID_2 && res.a3 == OPTEE_MSG_UID_3)
1240                 return true;
1241         return false;
1242 }
1243
1244 #ifdef CONFIG_OPTEE_INSECURE_LOAD_IMAGE
1245 static bool optee_msg_api_uid_is_optee_image_load(optee_invoke_fn *invoke_fn)
1246 {
1247         struct arm_smccc_res res;
1248
1249         invoke_fn(OPTEE_SMC_CALLS_UID, 0, 0, 0, 0, 0, 0, 0, &res);
1250
1251         if (res.a0 == OPTEE_MSG_IMAGE_LOAD_UID_0 &&
1252             res.a1 == OPTEE_MSG_IMAGE_LOAD_UID_1 &&
1253             res.a2 == OPTEE_MSG_IMAGE_LOAD_UID_2 &&
1254             res.a3 == OPTEE_MSG_IMAGE_LOAD_UID_3)
1255                 return true;
1256         return false;
1257 }
1258 #endif
1259
1260 static void optee_msg_get_os_revision(optee_invoke_fn *invoke_fn)
1261 {
1262         union {
1263                 struct arm_smccc_res smccc;
1264                 struct optee_smc_call_get_os_revision_result result;
1265         } res = {
1266                 .result = {
1267                         .build_id = 0
1268                 }
1269         };
1270
1271         invoke_fn(OPTEE_SMC_CALL_GET_OS_REVISION, 0, 0, 0, 0, 0, 0, 0,
1272                   &res.smccc);
1273
1274         if (res.result.build_id)
1275                 pr_info("revision %lu.%lu (%08lx)", res.result.major,
1276                         res.result.minor, res.result.build_id);
1277         else
1278                 pr_info("revision %lu.%lu", res.result.major, res.result.minor);
1279 }
1280
1281 static bool optee_msg_api_revision_is_compatible(optee_invoke_fn *invoke_fn)
1282 {
1283         union {
1284                 struct arm_smccc_res smccc;
1285                 struct optee_smc_calls_revision_result result;
1286         } res;
1287
1288         invoke_fn(OPTEE_SMC_CALLS_REVISION, 0, 0, 0, 0, 0, 0, 0, &res.smccc);
1289
1290         if (res.result.major == OPTEE_MSG_REVISION_MAJOR &&
1291             (int)res.result.minor >= OPTEE_MSG_REVISION_MINOR)
1292                 return true;
1293         return false;
1294 }
1295
1296 static bool optee_msg_exchange_capabilities(optee_invoke_fn *invoke_fn,
1297                                             u32 *sec_caps, u32 *max_notif_value,
1298                                             unsigned int *rpc_param_count)
1299 {
1300         union {
1301                 struct arm_smccc_res smccc;
1302                 struct optee_smc_exchange_capabilities_result result;
1303         } res;
1304         u32 a1 = 0;
1305
1306         /*
1307          * TODO This isn't enough to tell if it's UP system (from kernel
1308          * point of view) or not, is_smp() returns the information
1309          * needed, but can't be called directly from here.
1310          */
1311         if (!IS_ENABLED(CONFIG_SMP) || nr_cpu_ids == 1)
1312                 a1 |= OPTEE_SMC_NSEC_CAP_UNIPROCESSOR;
1313
1314         invoke_fn(OPTEE_SMC_EXCHANGE_CAPABILITIES, a1, 0, 0, 0, 0, 0, 0,
1315                   &res.smccc);
1316
1317         if (res.result.status != OPTEE_SMC_RETURN_OK)
1318                 return false;
1319
1320         *sec_caps = res.result.capabilities;
1321         if (*sec_caps & OPTEE_SMC_SEC_CAP_ASYNC_NOTIF)
1322                 *max_notif_value = res.result.max_notif_value;
1323         else
1324                 *max_notif_value = OPTEE_DEFAULT_MAX_NOTIF_VALUE;
1325         if (*sec_caps & OPTEE_SMC_SEC_CAP_RPC_ARG)
1326                 *rpc_param_count = (u8)res.result.data;
1327         else
1328                 *rpc_param_count = 0;
1329
1330         return true;
1331 }
1332
1333 static unsigned int optee_msg_get_thread_count(optee_invoke_fn *invoke_fn)
1334 {
1335         struct arm_smccc_res res;
1336
1337         invoke_fn(OPTEE_SMC_GET_THREAD_COUNT, 0, 0, 0, 0, 0, 0, 0, &res);
1338         if (res.a0)
1339                 return 0;
1340         return res.a1;
1341 }
1342
1343 static struct tee_shm_pool *
1344 optee_config_shm_memremap(optee_invoke_fn *invoke_fn, void **memremaped_shm)
1345 {
1346         union {
1347                 struct arm_smccc_res smccc;
1348                 struct optee_smc_get_shm_config_result result;
1349         } res;
1350         unsigned long vaddr;
1351         phys_addr_t paddr;
1352         size_t size;
1353         phys_addr_t begin;
1354         phys_addr_t end;
1355         void *va;
1356         void *rc;
1357
1358         invoke_fn(OPTEE_SMC_GET_SHM_CONFIG, 0, 0, 0, 0, 0, 0, 0, &res.smccc);
1359         if (res.result.status != OPTEE_SMC_RETURN_OK) {
1360                 pr_err("static shm service not available\n");
1361                 return ERR_PTR(-ENOENT);
1362         }
1363
1364         if (res.result.settings != OPTEE_SMC_SHM_CACHED) {
1365                 pr_err("only normal cached shared memory supported\n");
1366                 return ERR_PTR(-EINVAL);
1367         }
1368
1369         begin = roundup(res.result.start, PAGE_SIZE);
1370         end = rounddown(res.result.start + res.result.size, PAGE_SIZE);
1371         paddr = begin;
1372         size = end - begin;
1373
1374         va = memremap(paddr, size, MEMREMAP_WB);
1375         if (!va) {
1376                 pr_err("shared memory ioremap failed\n");
1377                 return ERR_PTR(-EINVAL);
1378         }
1379         vaddr = (unsigned long)va;
1380
1381         rc = tee_shm_pool_alloc_res_mem(vaddr, paddr, size,
1382                                         OPTEE_MIN_STATIC_POOL_ALIGN);
1383         if (IS_ERR(rc))
1384                 memunmap(va);
1385         else
1386                 *memremaped_shm = va;
1387
1388         return rc;
1389 }
1390
1391 /* Simple wrapper functions to be able to use a function pointer */
1392 static void optee_smccc_smc(unsigned long a0, unsigned long a1,
1393                             unsigned long a2, unsigned long a3,
1394                             unsigned long a4, unsigned long a5,
1395                             unsigned long a6, unsigned long a7,
1396                             struct arm_smccc_res *res)
1397 {
1398         arm_smccc_smc(a0, a1, a2, a3, a4, a5, a6, a7, res);
1399 }
1400
1401 static void optee_smccc_hvc(unsigned long a0, unsigned long a1,
1402                             unsigned long a2, unsigned long a3,
1403                             unsigned long a4, unsigned long a5,
1404                             unsigned long a6, unsigned long a7,
1405                             struct arm_smccc_res *res)
1406 {
1407         arm_smccc_hvc(a0, a1, a2, a3, a4, a5, a6, a7, res);
1408 }
1409
1410 static optee_invoke_fn *get_invoke_func(struct device *dev)
1411 {
1412         const char *method;
1413
1414         pr_info("probing for conduit method.\n");
1415
1416         if (device_property_read_string(dev, "method", &method)) {
1417                 pr_warn("missing \"method\" property\n");
1418                 return ERR_PTR(-ENXIO);
1419         }
1420
1421         if (!strcmp("hvc", method))
1422                 return optee_smccc_hvc;
1423         else if (!strcmp("smc", method))
1424                 return optee_smccc_smc;
1425
1426         pr_warn("invalid \"method\" property: %s\n", method);
1427         return ERR_PTR(-EINVAL);
1428 }
1429
1430 /* optee_remove - Device Removal Routine
1431  * @pdev: platform device information struct
1432  *
1433  * optee_remove is called by platform subsystem to alert the driver
1434  * that it should release the device
1435  */
1436 static void optee_smc_remove(struct platform_device *pdev)
1437 {
1438         struct optee *optee = platform_get_drvdata(pdev);
1439
1440         /*
1441          * Ask OP-TEE to free all cached shared memory objects to decrease
1442          * reference counters and also avoid wild pointers in secure world
1443          * into the old shared memory range.
1444          */
1445         if (!optee->rpc_param_count)
1446                 optee_disable_shm_cache(optee);
1447
1448         optee_smc_notif_uninit_irq(optee);
1449
1450         optee_remove_common(optee);
1451
1452         if (optee->smc.memremaped_shm)
1453                 memunmap(optee->smc.memremaped_shm);
1454
1455         kfree(optee);
1456 }
1457
1458 /* optee_shutdown - Device Removal Routine
1459  * @pdev: platform device information struct
1460  *
1461  * platform_shutdown is called by the platform subsystem to alert
1462  * the driver that a shutdown, reboot, or kexec is happening and
1463  * device must be disabled.
1464  */
1465 static void optee_shutdown(struct platform_device *pdev)
1466 {
1467         struct optee *optee = platform_get_drvdata(pdev);
1468
1469         if (!optee->rpc_param_count)
1470                 optee_disable_shm_cache(optee);
1471 }
1472
1473 #ifdef CONFIG_OPTEE_INSECURE_LOAD_IMAGE
1474
1475 #define OPTEE_FW_IMAGE "optee/tee.bin"
1476
1477 static optee_invoke_fn *cpuhp_invoke_fn;
1478
1479 static int optee_cpuhp_probe(unsigned int cpu)
1480 {
1481         /*
1482          * Invoking a call on a CPU will cause OP-TEE to perform the required
1483          * setup for that CPU. Just invoke the call to get the UID since that
1484          * has no side effects.
1485          */
1486         if (optee_msg_api_uid_is_optee_api(cpuhp_invoke_fn))
1487                 return 0;
1488         else
1489                 return -EINVAL;
1490 }
1491
1492 static int optee_load_fw(struct platform_device *pdev,
1493                          optee_invoke_fn *invoke_fn)
1494 {
1495         const struct firmware *fw = NULL;
1496         struct arm_smccc_res res;
1497         phys_addr_t data_pa;
1498         u8 *data_buf = NULL;
1499         u64 data_size;
1500         u32 data_pa_high, data_pa_low;
1501         u32 data_size_high, data_size_low;
1502         int rc;
1503         int hp_state;
1504
1505         if (!optee_msg_api_uid_is_optee_image_load(invoke_fn))
1506                 return 0;
1507
1508         rc = request_firmware(&fw, OPTEE_FW_IMAGE, &pdev->dev);
1509         if (rc) {
1510                 /*
1511                  * The firmware in the rootfs will not be accessible until we
1512                  * are in the SYSTEM_RUNNING state, so return EPROBE_DEFER until
1513                  * that point.
1514                  */
1515                 if (system_state < SYSTEM_RUNNING)
1516                         return -EPROBE_DEFER;
1517                 goto fw_err;
1518         }
1519
1520         data_size = fw->size;
1521         /*
1522          * This uses the GFP_DMA flag to ensure we are allocated memory in the
1523          * 32-bit space since TF-A cannot map memory beyond the 32-bit boundary.
1524          */
1525         data_buf = kmemdup(fw->data, fw->size, GFP_KERNEL | GFP_DMA);
1526         if (!data_buf) {
1527                 rc = -ENOMEM;
1528                 goto fw_err;
1529         }
1530         data_pa = virt_to_phys(data_buf);
1531         reg_pair_from_64(&data_pa_high, &data_pa_low, data_pa);
1532         reg_pair_from_64(&data_size_high, &data_size_low, data_size);
1533         goto fw_load;
1534
1535 fw_err:
1536         pr_warn("image loading failed\n");
1537         data_pa_high = 0;
1538         data_pa_low = 0;
1539         data_size_high = 0;
1540         data_size_low = 0;
1541
1542 fw_load:
1543         /*
1544          * Always invoke the SMC, even if loading the image fails, to indicate
1545          * to EL3 that we have passed the point where it should allow invoking
1546          * this SMC.
1547          */
1548         pr_warn("OP-TEE image loaded from kernel, this can be insecure");
1549         invoke_fn(OPTEE_SMC_CALL_LOAD_IMAGE, data_size_high, data_size_low,
1550                   data_pa_high, data_pa_low, 0, 0, 0, &res);
1551         if (!rc)
1552                 rc = res.a0;
1553         if (fw)
1554                 release_firmware(fw);
1555         kfree(data_buf);
1556
1557         if (!rc) {
1558                 /*
1559                  * We need to initialize OP-TEE on all other running cores as
1560                  * well. Any cores that aren't running yet will get initialized
1561                  * when they are brought up by the power management functions in
1562                  * TF-A which are registered by the OP-TEE SPD. Due to that we
1563                  * can un-register the callback right after registering it.
1564                  */
1565                 cpuhp_invoke_fn = invoke_fn;
1566                 hp_state = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "optee:probe",
1567                                              optee_cpuhp_probe, NULL);
1568                 if (hp_state < 0) {
1569                         pr_warn("Failed with CPU hotplug setup for OP-TEE");
1570                         return -EINVAL;
1571                 }
1572                 cpuhp_remove_state(hp_state);
1573                 cpuhp_invoke_fn = NULL;
1574         }
1575
1576         return rc;
1577 }
1578 #else
1579 static inline int optee_load_fw(struct platform_device *pdev,
1580                                 optee_invoke_fn *invoke_fn)
1581 {
1582         return 0;
1583 }
1584 #endif
1585
1586 static int optee_probe(struct platform_device *pdev)
1587 {
1588         optee_invoke_fn *invoke_fn;
1589         struct tee_shm_pool *pool = ERR_PTR(-EINVAL);
1590         struct optee *optee = NULL;
1591         void *memremaped_shm = NULL;
1592         unsigned int rpc_param_count;
1593         unsigned int thread_count;
1594         struct tee_device *teedev;
1595         struct tee_context *ctx;
1596         u32 max_notif_value;
1597         u32 arg_cache_flags;
1598         u32 sec_caps;
1599         int rc;
1600
1601         invoke_fn = get_invoke_func(&pdev->dev);
1602         if (IS_ERR(invoke_fn))
1603                 return PTR_ERR(invoke_fn);
1604
1605         rc = optee_load_fw(pdev, invoke_fn);
1606         if (rc)
1607                 return rc;
1608
1609         if (!optee_msg_api_uid_is_optee_api(invoke_fn)) {
1610                 pr_warn("api uid mismatch\n");
1611                 return -EINVAL;
1612         }
1613
1614         optee_msg_get_os_revision(invoke_fn);
1615
1616         if (!optee_msg_api_revision_is_compatible(invoke_fn)) {
1617                 pr_warn("api revision mismatch\n");
1618                 return -EINVAL;
1619         }
1620
1621         thread_count = optee_msg_get_thread_count(invoke_fn);
1622         if (!optee_msg_exchange_capabilities(invoke_fn, &sec_caps,
1623                                              &max_notif_value,
1624                                              &rpc_param_count)) {
1625                 pr_warn("capabilities mismatch\n");
1626                 return -EINVAL;
1627         }
1628
1629         /*
1630          * Try to use dynamic shared memory if possible
1631          */
1632         if (sec_caps & OPTEE_SMC_SEC_CAP_DYNAMIC_SHM) {
1633                 /*
1634                  * If we have OPTEE_SMC_SEC_CAP_RPC_ARG we can ask
1635                  * optee_get_msg_arg() to pre-register (by having
1636                  * OPTEE_SHM_ARG_ALLOC_PRIV cleared) the page used to pass
1637                  * an argument struct.
1638                  *
1639                  * With the page is pre-registered we can use a non-zero
1640                  * offset for argument struct, this is indicated with
1641                  * OPTEE_SHM_ARG_SHARED.
1642                  *
1643                  * This means that optee_smc_do_call_with_arg() will use
1644                  * OPTEE_SMC_CALL_WITH_REGD_ARG for pre-registered pages.
1645                  */
1646                 if (sec_caps & OPTEE_SMC_SEC_CAP_RPC_ARG)
1647                         arg_cache_flags = OPTEE_SHM_ARG_SHARED;
1648                 else
1649                         arg_cache_flags = OPTEE_SHM_ARG_ALLOC_PRIV;
1650
1651                 pool = optee_shm_pool_alloc_pages();
1652         }
1653
1654         /*
1655          * If dynamic shared memory is not available or failed - try static one
1656          */
1657         if (IS_ERR(pool) && (sec_caps & OPTEE_SMC_SEC_CAP_HAVE_RESERVED_SHM)) {
1658                 /*
1659                  * The static memory pool can use non-zero page offsets so
1660                  * let optee_get_msg_arg() know that with OPTEE_SHM_ARG_SHARED.
1661                  *
1662                  * optee_get_msg_arg() should not pre-register the
1663                  * allocated page used to pass an argument struct, this is
1664                  * indicated with OPTEE_SHM_ARG_ALLOC_PRIV.
1665                  *
1666                  * This means that optee_smc_do_call_with_arg() will use
1667                  * OPTEE_SMC_CALL_WITH_ARG if rpc_param_count is 0, else
1668                  * OPTEE_SMC_CALL_WITH_RPC_ARG.
1669                  */
1670                 arg_cache_flags = OPTEE_SHM_ARG_SHARED |
1671                                   OPTEE_SHM_ARG_ALLOC_PRIV;
1672                 pool = optee_config_shm_memremap(invoke_fn, &memremaped_shm);
1673         }
1674
1675         if (IS_ERR(pool))
1676                 return PTR_ERR(pool);
1677
1678         optee = kzalloc(sizeof(*optee), GFP_KERNEL);
1679         if (!optee) {
1680                 rc = -ENOMEM;
1681                 goto err_free_pool;
1682         }
1683
1684         optee->ops = &optee_ops;
1685         optee->smc.invoke_fn = invoke_fn;
1686         optee->smc.sec_caps = sec_caps;
1687         optee->rpc_param_count = rpc_param_count;
1688
1689         if (IS_REACHABLE(CONFIG_RPMB) &&
1690             (sec_caps & OPTEE_SMC_SEC_CAP_RPMB_PROBE))
1691                 optee->in_kernel_rpmb_routing = true;
1692
1693         teedev = tee_device_alloc(&optee_clnt_desc, NULL, pool, optee);
1694         if (IS_ERR(teedev)) {
1695                 rc = PTR_ERR(teedev);
1696                 goto err_free_optee;
1697         }
1698         optee->teedev = teedev;
1699
1700         teedev = tee_device_alloc(&optee_supp_desc, NULL, pool, optee);
1701         if (IS_ERR(teedev)) {
1702                 rc = PTR_ERR(teedev);
1703                 goto err_unreg_teedev;
1704         }
1705         optee->supp_teedev = teedev;
1706
1707         optee_set_dev_group(optee);
1708
1709         rc = tee_device_register(optee->teedev);
1710         if (rc)
1711                 goto err_unreg_supp_teedev;
1712
1713         rc = tee_device_register(optee->supp_teedev);
1714         if (rc)
1715                 goto err_unreg_supp_teedev;
1716
1717         optee_cq_init(&optee->call_queue, thread_count);
1718         optee_supp_init(&optee->supp);
1719         optee->smc.memremaped_shm = memremaped_shm;
1720         optee->pool = pool;
1721         optee_shm_arg_cache_init(optee, arg_cache_flags);
1722         mutex_init(&optee->rpmb_dev_mutex);
1723
1724         platform_set_drvdata(pdev, optee);
1725         ctx = teedev_open(optee->teedev);
1726         if (IS_ERR(ctx)) {
1727                 rc = PTR_ERR(ctx);
1728                 goto err_supp_uninit;
1729         }
1730         optee->ctx = ctx;
1731         rc = optee_notif_init(optee, max_notif_value);
1732         if (rc)
1733                 goto err_close_ctx;
1734
1735         if (sec_caps & OPTEE_SMC_SEC_CAP_ASYNC_NOTIF) {
1736                 unsigned int irq;
1737
1738                 rc = platform_get_irq(pdev, 0);
1739                 if (rc < 0) {
1740                         pr_err("platform_get_irq: ret %d\n", rc);
1741                         goto err_notif_uninit;
1742                 }
1743                 irq = rc;
1744
1745                 rc = optee_smc_notif_init_irq(optee, irq);
1746                 if (rc) {
1747                         irq_dispose_mapping(irq);
1748                         goto err_notif_uninit;
1749                 }
1750                 enable_async_notif(optee->smc.invoke_fn);
1751                 pr_info("Asynchronous notifications enabled\n");
1752         }
1753
1754         /*
1755          * Ensure that there are no pre-existing shm objects before enabling
1756          * the shm cache so that there's no chance of receiving an invalid
1757          * address during shutdown. This could occur, for example, if we're
1758          * kexec booting from an older kernel that did not properly cleanup the
1759          * shm cache.
1760          */
1761         optee_disable_unmapped_shm_cache(optee);
1762
1763         /*
1764          * Only enable the shm cache in case we're not able to pass the RPC
1765          * arg struct right after the normal arg struct.
1766          */
1767         if (!optee->rpc_param_count)
1768                 optee_enable_shm_cache(optee);
1769
1770         if (optee->smc.sec_caps & OPTEE_SMC_SEC_CAP_DYNAMIC_SHM)
1771                 pr_info("dynamic shared memory is enabled\n");
1772
1773         rc = optee_enumerate_devices(PTA_CMD_GET_DEVICES);
1774         if (rc)
1775                 goto err_disable_shm_cache;
1776
1777         INIT_WORK(&optee->rpmb_scan_bus_work, optee_bus_scan_rpmb);
1778         optee->rpmb_intf.notifier_call = optee_rpmb_intf_rdev;
1779         blocking_notifier_chain_register(&optee_rpmb_intf_added,
1780                                          &optee->rpmb_intf);
1781         pr_info("initialized driver\n");
1782         return 0;
1783
1784 err_disable_shm_cache:
1785         if (!optee->rpc_param_count)
1786                 optee_disable_shm_cache(optee);
1787         optee_smc_notif_uninit_irq(optee);
1788         optee_unregister_devices();
1789 err_notif_uninit:
1790         optee_notif_uninit(optee);
1791 err_close_ctx:
1792         teedev_close_context(ctx);
1793 err_supp_uninit:
1794         rpmb_dev_put(optee->rpmb_dev);
1795         mutex_destroy(&optee->rpmb_dev_mutex);
1796         optee_shm_arg_cache_uninit(optee);
1797         optee_supp_uninit(&optee->supp);
1798         mutex_destroy(&optee->call_queue.mutex);
1799 err_unreg_supp_teedev:
1800         tee_device_unregister(optee->supp_teedev);
1801 err_unreg_teedev:
1802         tee_device_unregister(optee->teedev);
1803 err_free_optee:
1804         kfree(optee);
1805 err_free_pool:
1806         tee_shm_pool_free(pool);
1807         if (memremaped_shm)
1808                 memunmap(memremaped_shm);
1809         return rc;
1810 }
1811
1812 static const struct of_device_id optee_dt_match[] = {
1813         { .compatible = "linaro,optee-tz" },
1814         {},
1815 };
1816 MODULE_DEVICE_TABLE(of, optee_dt_match);
1817
1818 static struct platform_driver optee_driver = {
1819         .probe  = optee_probe,
1820         .remove = optee_smc_remove,
1821         .shutdown = optee_shutdown,
1822         .driver = {
1823                 .name = "optee",
1824                 .of_match_table = optee_dt_match,
1825         },
1826 };
1827
1828 int optee_smc_abi_register(void)
1829 {
1830         return platform_driver_register(&optee_driver);
1831 }
1832
1833 void optee_smc_abi_unregister(void)
1834 {
1835         platform_driver_unregister(&optee_driver);
1836 }
This page took 0.13016 seconds and 4 git commands to generate.