1 // SPDX-License-Identifier: GPL-2.0-only
3 * Keystone Queue Manager subsystem driver
5 * Copyright (C) 2014 Texas Instruments Incorporated - http://www.ti.com
11 #include <linux/debugfs.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/firmware.h>
14 #include <linux/interrupt.h>
16 #include <linux/module.h>
18 #include <linux/of_address.h>
19 #include <linux/of_irq.h>
20 #include <linux/platform_device.h>
21 #include <linux/pm_runtime.h>
22 #include <linux/property.h>
23 #include <linux/slab.h>
24 #include <linux/soc/ti/knav_qmss.h>
26 #include "knav_qmss.h"
28 static struct knav_device *kdev;
29 static DEFINE_MUTEX(knav_dev_lock);
30 #define knav_dev_lock_held() \
31 lockdep_is_held(&knav_dev_lock)
33 /* Queue manager register indices in DTS */
34 #define KNAV_QUEUE_PEEK_REG_INDEX 0
35 #define KNAV_QUEUE_STATUS_REG_INDEX 1
36 #define KNAV_QUEUE_CONFIG_REG_INDEX 2
37 #define KNAV_QUEUE_REGION_REG_INDEX 3
38 #define KNAV_QUEUE_PUSH_REG_INDEX 4
39 #define KNAV_QUEUE_POP_REG_INDEX 5
41 /* Queue manager register indices in DTS for QMSS in K2G NAVSS.
42 * There are no status and vbusm push registers on this version
43 * of QMSS. Push registers are same as pop, So all indices above 1
44 * are to be re-defined
46 #define KNAV_L_QUEUE_CONFIG_REG_INDEX 1
47 #define KNAV_L_QUEUE_REGION_REG_INDEX 2
48 #define KNAV_L_QUEUE_PUSH_REG_INDEX 3
50 /* PDSP register indices in DTS */
51 #define KNAV_QUEUE_PDSP_IRAM_REG_INDEX 0
52 #define KNAV_QUEUE_PDSP_REGS_REG_INDEX 1
53 #define KNAV_QUEUE_PDSP_INTD_REG_INDEX 2
54 #define KNAV_QUEUE_PDSP_CMD_REG_INDEX 3
56 #define knav_queue_idx_to_inst(kdev, idx) \
57 (kdev->instances + (idx << kdev->inst_shift))
59 #define for_each_handle_rcu(qh, inst) \
60 list_for_each_entry_rcu(qh, &inst->handles, list, \
63 #define for_each_instance(idx, inst, kdev) \
64 for (idx = 0, inst = kdev->instances; \
65 idx < (kdev)->num_queues_in_use; \
66 idx++, inst = knav_queue_idx_to_inst(kdev, idx))
68 /* All firmware file names end up here. List the firmware file names below.
69 * Newest followed by older ones. Search is done from start of the array
70 * until a firmware file is found.
72 static const char * const knav_acc_firmwares[] = {"ks2_qmss_pdsp_acc48.bin"};
74 static bool device_ready;
75 bool knav_qmss_device_ready(void)
79 EXPORT_SYMBOL_GPL(knav_qmss_device_ready);
82 * knav_queue_notify: qmss queue notfier call
84 * @inst: - qmss queue instance like accumulator
86 void knav_queue_notify(struct knav_queue_inst *inst)
88 struct knav_queue *qh;
94 for_each_handle_rcu(qh, inst) {
95 if (atomic_read(&qh->notifier_enabled) <= 0)
97 if (WARN_ON(!qh->notifier_fn))
99 this_cpu_inc(qh->stats->notifies);
100 qh->notifier_fn(qh->notifier_fn_arg);
104 EXPORT_SYMBOL_GPL(knav_queue_notify);
106 static irqreturn_t knav_queue_int_handler(int irq, void *_instdata)
108 struct knav_queue_inst *inst = _instdata;
110 knav_queue_notify(inst);
114 static int knav_queue_setup_irq(struct knav_range_info *range,
115 struct knav_queue_inst *inst)
117 unsigned queue = inst->id - range->queue_base;
120 if (range->flags & RANGE_HAS_IRQ) {
121 irq = range->irqs[queue].irq;
122 ret = request_irq(irq, knav_queue_int_handler, IRQF_NO_AUTOEN,
123 inst->irq_name, inst);
126 if (range->irqs[queue].cpu_mask) {
127 ret = irq_set_affinity_hint(irq, range->irqs[queue].cpu_mask);
129 dev_warn(range->kdev->dev,
130 "Failed to set IRQ affinity\n");
138 static void knav_queue_free_irq(struct knav_queue_inst *inst)
140 struct knav_range_info *range = inst->range;
141 unsigned queue = inst->id - inst->range->queue_base;
144 if (range->flags & RANGE_HAS_IRQ) {
145 irq = range->irqs[queue].irq;
146 irq_set_affinity_hint(irq, NULL);
151 static inline bool knav_queue_is_busy(struct knav_queue_inst *inst)
153 return !list_empty(&inst->handles);
156 static inline bool knav_queue_is_reserved(struct knav_queue_inst *inst)
158 return inst->range->flags & RANGE_RESERVED;
161 static inline bool knav_queue_is_shared(struct knav_queue_inst *inst)
163 struct knav_queue *tmp;
166 for_each_handle_rcu(tmp, inst) {
167 if (tmp->flags & KNAV_QUEUE_SHARED) {
176 static inline bool knav_queue_match_type(struct knav_queue_inst *inst,
179 if ((type == KNAV_QUEUE_QPEND) &&
180 (inst->range->flags & RANGE_HAS_IRQ)) {
182 } else if ((type == KNAV_QUEUE_ACC) &&
183 (inst->range->flags & RANGE_HAS_ACCUMULATOR)) {
185 } else if ((type == KNAV_QUEUE_GP) &&
186 !(inst->range->flags &
187 (RANGE_HAS_ACCUMULATOR | RANGE_HAS_IRQ))) {
193 static inline struct knav_queue_inst *
194 knav_queue_match_id_to_inst(struct knav_device *kdev, unsigned id)
196 struct knav_queue_inst *inst;
199 for_each_instance(idx, inst, kdev) {
206 static inline struct knav_queue_inst *knav_queue_find_by_id(int id)
208 if (kdev->base_id <= id &&
209 kdev->base_id + kdev->num_queues > id) {
211 return knav_queue_match_id_to_inst(kdev, id);
216 static struct knav_queue *__knav_queue_open(struct knav_queue_inst *inst,
217 const char *name, unsigned flags)
219 struct knav_queue *qh;
223 qh = devm_kzalloc(inst->kdev->dev, sizeof(*qh), GFP_KERNEL);
225 return ERR_PTR(-ENOMEM);
227 qh->stats = alloc_percpu(struct knav_queue_stats);
235 id = inst->id - inst->qmgr->start_queue;
236 qh->reg_push = &inst->qmgr->reg_push[id];
237 qh->reg_pop = &inst->qmgr->reg_pop[id];
238 qh->reg_peek = &inst->qmgr->reg_peek[id];
241 if (!knav_queue_is_busy(inst)) {
242 struct knav_range_info *range = inst->range;
244 inst->name = kstrndup(name, KNAV_NAME_SIZE - 1, GFP_KERNEL);
245 if (range->ops && range->ops->open_queue)
246 ret = range->ops->open_queue(range, inst, flags);
251 list_add_tail_rcu(&qh->list, &inst->handles);
256 free_percpu(qh->stats);
257 devm_kfree(inst->kdev->dev, qh);
261 static struct knav_queue *
262 knav_queue_open_by_id(const char *name, unsigned id, unsigned flags)
264 struct knav_queue_inst *inst;
265 struct knav_queue *qh;
267 mutex_lock(&knav_dev_lock);
269 qh = ERR_PTR(-ENODEV);
270 inst = knav_queue_find_by_id(id);
274 qh = ERR_PTR(-EEXIST);
275 if (!(flags & KNAV_QUEUE_SHARED) && knav_queue_is_busy(inst))
278 qh = ERR_PTR(-EBUSY);
279 if ((flags & KNAV_QUEUE_SHARED) &&
280 (knav_queue_is_busy(inst) && !knav_queue_is_shared(inst)))
283 qh = __knav_queue_open(inst, name, flags);
286 mutex_unlock(&knav_dev_lock);
291 static struct knav_queue *knav_queue_open_by_type(const char *name,
292 unsigned type, unsigned flags)
294 struct knav_queue_inst *inst;
295 struct knav_queue *qh = ERR_PTR(-EINVAL);
298 mutex_lock(&knav_dev_lock);
300 for_each_instance(idx, inst, kdev) {
301 if (knav_queue_is_reserved(inst))
303 if (!knav_queue_match_type(inst, type))
305 if (knav_queue_is_busy(inst))
307 qh = __knav_queue_open(inst, name, flags);
312 mutex_unlock(&knav_dev_lock);
316 static void knav_queue_set_notify(struct knav_queue_inst *inst, bool enabled)
318 struct knav_range_info *range = inst->range;
320 if (range->ops && range->ops->set_notify)
321 range->ops->set_notify(range, inst, enabled);
324 static int knav_queue_enable_notifier(struct knav_queue *qh)
326 struct knav_queue_inst *inst = qh->inst;
329 if (WARN_ON(!qh->notifier_fn))
332 /* Adjust the per handle notifier count */
333 first = (atomic_inc_return(&qh->notifier_enabled) == 1);
335 return 0; /* nothing to do */
337 /* Now adjust the per instance notifier count */
338 first = (atomic_inc_return(&inst->num_notifiers) == 1);
340 knav_queue_set_notify(inst, true);
345 static int knav_queue_disable_notifier(struct knav_queue *qh)
347 struct knav_queue_inst *inst = qh->inst;
350 last = (atomic_dec_return(&qh->notifier_enabled) == 0);
352 return 0; /* nothing to do */
354 last = (atomic_dec_return(&inst->num_notifiers) == 0);
356 knav_queue_set_notify(inst, false);
361 static int knav_queue_set_notifier(struct knav_queue *qh,
362 struct knav_queue_notify_config *cfg)
364 knav_queue_notify_fn old_fn = qh->notifier_fn;
369 if (!(qh->inst->range->flags & (RANGE_HAS_ACCUMULATOR | RANGE_HAS_IRQ)))
372 if (!cfg->fn && old_fn)
373 knav_queue_disable_notifier(qh);
375 qh->notifier_fn = cfg->fn;
376 qh->notifier_fn_arg = cfg->fn_arg;
378 if (cfg->fn && !old_fn)
379 knav_queue_enable_notifier(qh);
384 static int knav_gp_set_notify(struct knav_range_info *range,
385 struct knav_queue_inst *inst,
390 if (range->flags & RANGE_HAS_IRQ) {
391 queue = inst->id - range->queue_base;
393 enable_irq(range->irqs[queue].irq);
395 disable_irq_nosync(range->irqs[queue].irq);
400 static int knav_gp_open_queue(struct knav_range_info *range,
401 struct knav_queue_inst *inst, unsigned flags)
403 return knav_queue_setup_irq(range, inst);
406 static int knav_gp_close_queue(struct knav_range_info *range,
407 struct knav_queue_inst *inst)
409 knav_queue_free_irq(inst);
413 static const struct knav_range_ops knav_gp_range_ops = {
414 .set_notify = knav_gp_set_notify,
415 .open_queue = knav_gp_open_queue,
416 .close_queue = knav_gp_close_queue,
420 static int knav_queue_get_count(void *qhandle)
422 struct knav_queue *qh = qhandle;
423 struct knav_queue_inst *inst = qh->inst;
425 return readl_relaxed(&qh->reg_peek[0].entry_count) +
426 atomic_read(&inst->desc_count);
429 static void knav_queue_debug_show_instance(struct seq_file *s,
430 struct knav_queue_inst *inst)
432 struct knav_device *kdev = inst->kdev;
433 struct knav_queue *qh;
441 if (!knav_queue_is_busy(inst))
444 seq_printf(s, "\tqueue id %d (%s)\n",
445 kdev->base_id + inst->id, inst->name);
446 for_each_handle_rcu(qh, inst) {
447 for_each_possible_cpu(cpu) {
448 pushes += per_cpu_ptr(qh->stats, cpu)->pushes;
449 pops += per_cpu_ptr(qh->stats, cpu)->pops;
450 push_errors += per_cpu_ptr(qh->stats, cpu)->push_errors;
451 pop_errors += per_cpu_ptr(qh->stats, cpu)->pop_errors;
452 notifies += per_cpu_ptr(qh->stats, cpu)->notifies;
455 seq_printf(s, "\t\thandle %p: pushes %8d, pops %8d, count %8d, notifies %8d, push errors %8d, pop errors %8d\n",
459 knav_queue_get_count(qh),
466 static int knav_queue_debug_show(struct seq_file *s, void *v)
468 struct knav_queue_inst *inst;
471 mutex_lock(&knav_dev_lock);
472 seq_printf(s, "%s: %u-%u\n",
473 dev_name(kdev->dev), kdev->base_id,
474 kdev->base_id + kdev->num_queues - 1);
475 for_each_instance(idx, inst, kdev)
476 knav_queue_debug_show_instance(s, inst);
477 mutex_unlock(&knav_dev_lock);
482 DEFINE_SHOW_ATTRIBUTE(knav_queue_debug);
484 static inline int knav_queue_pdsp_wait(u32 * __iomem addr, unsigned timeout,
490 end = jiffies + msecs_to_jiffies(timeout);
491 while (time_after(end, jiffies)) {
492 val = readl_relaxed(addr);
499 return val ? -ETIMEDOUT : 0;
503 static int knav_queue_flush(struct knav_queue *qh)
505 struct knav_queue_inst *inst = qh->inst;
506 unsigned id = inst->id - inst->qmgr->start_queue;
508 atomic_set(&inst->desc_count, 0);
509 writel_relaxed(0, &inst->qmgr->reg_push[id].ptr_size_thresh);
514 * knav_queue_open() - open a hardware queue
515 * @name: - name to give the queue handle
516 * @id: - desired queue number if any or specifes the type
518 * @flags: - the following flags are applicable to queues:
519 * KNAV_QUEUE_SHARED - allow the queue to be shared. Queues are
520 * exclusive by default.
521 * Subsequent attempts to open a shared queue should
522 * also have this flag.
524 * Returns a handle to the open hardware queue if successful. Use IS_ERR()
525 * to check the returned value for error codes.
527 void *knav_queue_open(const char *name, unsigned id,
530 struct knav_queue *qh = ERR_PTR(-EINVAL);
533 case KNAV_QUEUE_QPEND:
536 qh = knav_queue_open_by_type(name, id, flags);
540 qh = knav_queue_open_by_id(name, id, flags);
545 EXPORT_SYMBOL_GPL(knav_queue_open);
548 * knav_queue_close() - close a hardware queue handle
549 * @qhandle: - handle to close
551 void knav_queue_close(void *qhandle)
553 struct knav_queue *qh = qhandle;
554 struct knav_queue_inst *inst = qh->inst;
556 while (atomic_read(&qh->notifier_enabled) > 0)
557 knav_queue_disable_notifier(qh);
559 mutex_lock(&knav_dev_lock);
560 list_del_rcu(&qh->list);
561 mutex_unlock(&knav_dev_lock);
563 if (!knav_queue_is_busy(inst)) {
564 struct knav_range_info *range = inst->range;
566 if (range->ops && range->ops->close_queue)
567 range->ops->close_queue(range, inst);
569 free_percpu(qh->stats);
570 devm_kfree(inst->kdev->dev, qh);
572 EXPORT_SYMBOL_GPL(knav_queue_close);
575 * knav_queue_device_control() - Perform control operations on a queue
576 * @qhandle: - queue handle
577 * @cmd: - control commands
578 * @arg: - command argument
580 * Returns 0 on success, errno otherwise.
582 int knav_queue_device_control(void *qhandle, enum knav_queue_ctrl_cmd cmd,
585 struct knav_queue *qh = qhandle;
586 struct knav_queue_notify_config *cfg;
590 case KNAV_QUEUE_GET_ID:
591 ret = qh->inst->kdev->base_id + qh->inst->id;
594 case KNAV_QUEUE_FLUSH:
595 ret = knav_queue_flush(qh);
598 case KNAV_QUEUE_SET_NOTIFIER:
600 ret = knav_queue_set_notifier(qh, cfg);
603 case KNAV_QUEUE_ENABLE_NOTIFY:
604 ret = knav_queue_enable_notifier(qh);
607 case KNAV_QUEUE_DISABLE_NOTIFY:
608 ret = knav_queue_disable_notifier(qh);
611 case KNAV_QUEUE_GET_COUNT:
612 ret = knav_queue_get_count(qh);
621 EXPORT_SYMBOL_GPL(knav_queue_device_control);
626 * knav_queue_push() - push data (or descriptor) to the tail of a queue
627 * @qhandle: - hardware queue handle
628 * @dma: - DMA data to push
629 * @size: - size of data to push
630 * @flags: - can be used to pass additional information
632 * Returns 0 on success, errno otherwise.
634 int knav_queue_push(void *qhandle, dma_addr_t dma,
635 unsigned size, unsigned flags)
637 struct knav_queue *qh = qhandle;
640 val = (u32)dma | ((size / 16) - 1);
641 writel_relaxed(val, &qh->reg_push[0].ptr_size_thresh);
643 this_cpu_inc(qh->stats->pushes);
646 EXPORT_SYMBOL_GPL(knav_queue_push);
649 * knav_queue_pop() - pop data (or descriptor) from the head of a queue
650 * @qhandle: - hardware queue handle
651 * @size: - (optional) size of the data pop'ed.
653 * Returns a DMA address on success, 0 on failure.
655 dma_addr_t knav_queue_pop(void *qhandle, unsigned *size)
657 struct knav_queue *qh = qhandle;
658 struct knav_queue_inst *inst = qh->inst;
662 /* are we accumulated? */
664 if (unlikely(atomic_dec_return(&inst->desc_count) < 0)) {
665 atomic_inc(&inst->desc_count);
668 idx = atomic_inc_return(&inst->desc_head);
669 idx &= ACC_DESCS_MASK;
670 val = inst->descs[idx];
672 val = readl_relaxed(&qh->reg_pop[0].ptr_size_thresh);
677 dma = val & DESC_PTR_MASK;
679 *size = ((val & DESC_SIZE_MASK) + 1) * 16;
681 this_cpu_inc(qh->stats->pops);
684 EXPORT_SYMBOL_GPL(knav_queue_pop);
686 /* carve out descriptors and push into queue */
687 static void kdesc_fill_pool(struct knav_pool *pool)
689 struct knav_region *region;
692 region = pool->region;
693 pool->desc_size = region->desc_size;
694 for (i = 0; i < pool->num_desc; i++) {
695 int index = pool->region_offset + i;
698 dma_addr = region->dma_start + (region->desc_size * index);
699 dma_size = ALIGN(pool->desc_size, SMP_CACHE_BYTES);
700 dma_sync_single_for_device(pool->dev, dma_addr, dma_size,
702 knav_queue_push(pool->queue, dma_addr, dma_size, 0);
706 /* pop out descriptors and close the queue */
707 static void kdesc_empty_pool(struct knav_pool *pool)
718 dma = knav_queue_pop(pool->queue, &size);
721 desc = knav_pool_desc_dma_to_virt(pool, dma);
723 dev_dbg(pool->kdev->dev,
724 "couldn't unmap desc, continuing\n");
727 WARN_ON(i != pool->num_desc);
728 knav_queue_close(pool->queue);
732 /* Get the DMA address of a descriptor */
733 dma_addr_t knav_pool_desc_virt_to_dma(void *ph, void *virt)
735 struct knav_pool *pool = ph;
736 return pool->region->dma_start + (virt - pool->region->virt_start);
738 EXPORT_SYMBOL_GPL(knav_pool_desc_virt_to_dma);
740 void *knav_pool_desc_dma_to_virt(void *ph, dma_addr_t dma)
742 struct knav_pool *pool = ph;
743 return pool->region->virt_start + (dma - pool->region->dma_start);
745 EXPORT_SYMBOL_GPL(knav_pool_desc_dma_to_virt);
748 * knav_pool_create() - Create a pool of descriptors
749 * @name: - name to give the pool handle
750 * @num_desc: - numbers of descriptors in the pool
751 * @region_id: - QMSS region id from which the descriptors are to be
754 * Returns a pool handle on success.
755 * Use IS_ERR_OR_NULL() to identify error values on return.
757 void *knav_pool_create(const char *name,
758 int num_desc, int region_id)
760 struct knav_region *reg_itr, *region = NULL;
761 struct knav_pool *pool, *pi = NULL, *iter;
762 struct list_head *node;
763 unsigned last_offset;
767 return ERR_PTR(-EPROBE_DEFER);
770 return ERR_PTR(-ENODEV);
772 pool = devm_kzalloc(kdev->dev, sizeof(*pool), GFP_KERNEL);
774 dev_err(kdev->dev, "out of memory allocating pool\n");
775 return ERR_PTR(-ENOMEM);
778 for_each_region(kdev, reg_itr) {
779 if (reg_itr->id != region_id)
786 dev_err(kdev->dev, "region-id(%d) not found\n", region_id);
791 pool->queue = knav_queue_open(name, KNAV_QUEUE_GP, 0);
792 if (IS_ERR(pool->queue)) {
794 "failed to open queue for pool(%s), error %ld\n",
795 name, PTR_ERR(pool->queue));
796 ret = PTR_ERR(pool->queue);
800 pool->name = kstrndup(name, KNAV_NAME_SIZE - 1, GFP_KERNEL);
802 pool->dev = kdev->dev;
804 mutex_lock(&knav_dev_lock);
806 if (num_desc > (region->num_desc - region->used_desc)) {
807 dev_err(kdev->dev, "out of descs in region(%d) for pool(%s)\n",
813 /* Region maintains a sorted (by region offset) list of pools
814 * use the first free slot which is large enough to accomodate
818 node = ®ion->pools;
819 list_for_each_entry(iter, ®ion->pools, region_inst) {
820 if ((iter->region_offset - last_offset) >= num_desc) {
824 last_offset = iter->region_offset + iter->num_desc;
828 node = &pi->region_inst;
829 pool->region = region;
830 pool->num_desc = num_desc;
831 pool->region_offset = last_offset;
832 region->used_desc += num_desc;
833 list_add_tail(&pool->list, &kdev->pools);
834 list_add_tail(&pool->region_inst, node);
836 dev_err(kdev->dev, "pool(%s) create failed: fragmented desc pool in region(%d)\n",
842 mutex_unlock(&knav_dev_lock);
843 kdesc_fill_pool(pool);
847 mutex_unlock(&knav_dev_lock);
850 devm_kfree(kdev->dev, pool);
853 EXPORT_SYMBOL_GPL(knav_pool_create);
856 * knav_pool_destroy() - Free a pool of descriptors
859 void knav_pool_destroy(void *ph)
861 struct knav_pool *pool = ph;
869 kdesc_empty_pool(pool);
870 mutex_lock(&knav_dev_lock);
872 pool->region->used_desc -= pool->num_desc;
873 list_del(&pool->region_inst);
874 list_del(&pool->list);
876 mutex_unlock(&knav_dev_lock);
878 devm_kfree(kdev->dev, pool);
880 EXPORT_SYMBOL_GPL(knav_pool_destroy);
884 * knav_pool_desc_get() - Get a descriptor from the pool
887 * Returns descriptor from the pool.
889 void *knav_pool_desc_get(void *ph)
891 struct knav_pool *pool = ph;
896 dma = knav_queue_pop(pool->queue, &size);
898 return ERR_PTR(-ENOMEM);
899 data = knav_pool_desc_dma_to_virt(pool, dma);
902 EXPORT_SYMBOL_GPL(knav_pool_desc_get);
905 * knav_pool_desc_put() - return a descriptor to the pool
907 * @desc: - virtual address
909 void knav_pool_desc_put(void *ph, void *desc)
911 struct knav_pool *pool = ph;
913 dma = knav_pool_desc_virt_to_dma(pool, desc);
914 knav_queue_push(pool->queue, dma, pool->region->desc_size, 0);
916 EXPORT_SYMBOL_GPL(knav_pool_desc_put);
919 * knav_pool_desc_map() - Map descriptor for DMA transfer
921 * @desc: - address of descriptor to map
922 * @size: - size of descriptor to map
923 * @dma: - DMA address return pointer
924 * @dma_sz: - adjusted return pointer
926 * Returns 0 on success, errno otherwise.
928 int knav_pool_desc_map(void *ph, void *desc, unsigned size,
929 dma_addr_t *dma, unsigned *dma_sz)
931 struct knav_pool *pool = ph;
932 *dma = knav_pool_desc_virt_to_dma(pool, desc);
933 size = min(size, pool->region->desc_size);
934 size = ALIGN(size, SMP_CACHE_BYTES);
936 dma_sync_single_for_device(pool->dev, *dma, size, DMA_TO_DEVICE);
938 /* Ensure the descriptor reaches to the memory */
943 EXPORT_SYMBOL_GPL(knav_pool_desc_map);
946 * knav_pool_desc_unmap() - Unmap descriptor after DMA transfer
948 * @dma: - DMA address of descriptor to unmap
949 * @dma_sz: - size of descriptor to unmap
951 * Returns descriptor address on success, Use IS_ERR_OR_NULL() to identify
952 * error values on return.
954 void *knav_pool_desc_unmap(void *ph, dma_addr_t dma, unsigned dma_sz)
956 struct knav_pool *pool = ph;
960 desc_sz = min(dma_sz, pool->region->desc_size);
961 desc = knav_pool_desc_dma_to_virt(pool, dma);
962 dma_sync_single_for_cpu(pool->dev, dma, desc_sz, DMA_FROM_DEVICE);
966 EXPORT_SYMBOL_GPL(knav_pool_desc_unmap);
969 * knav_pool_count() - Get the number of descriptors in pool.
971 * Returns number of elements in the pool.
973 int knav_pool_count(void *ph)
975 struct knav_pool *pool = ph;
976 return knav_queue_get_count(pool->queue);
978 EXPORT_SYMBOL_GPL(knav_pool_count);
980 static void knav_queue_setup_region(struct knav_device *kdev,
981 struct knav_region *region)
983 unsigned hw_num_desc, hw_desc_size, size;
984 struct knav_reg_region __iomem *regs;
985 struct knav_qmgr_info *qmgr;
986 struct knav_pool *pool;
991 if (!region->num_desc) {
992 dev_warn(kdev->dev, "unused region %s\n", region->name);
996 /* get hardware descriptor value */
997 hw_num_desc = ilog2(region->num_desc - 1) + 1;
999 /* did we force fit ourselves into nothingness? */
1000 if (region->num_desc < 32) {
1001 region->num_desc = 0;
1002 dev_warn(kdev->dev, "too few descriptors in region %s\n",
1007 size = region->num_desc * region->desc_size;
1008 region->virt_start = alloc_pages_exact(size, GFP_KERNEL | GFP_DMA |
1010 if (!region->virt_start) {
1011 region->num_desc = 0;
1012 dev_err(kdev->dev, "memory alloc failed for region %s\n",
1016 region->virt_end = region->virt_start + size;
1017 page = virt_to_page(region->virt_start);
1019 region->dma_start = dma_map_page(kdev->dev, page, 0, size,
1021 if (dma_mapping_error(kdev->dev, region->dma_start)) {
1022 dev_err(kdev->dev, "dma map failed for region %s\n",
1026 region->dma_end = region->dma_start + size;
1028 pool = devm_kzalloc(kdev->dev, sizeof(*pool), GFP_KERNEL);
1030 dev_err(kdev->dev, "out of memory allocating dummy pool\n");
1034 pool->region_offset = region->num_desc;
1035 list_add(&pool->region_inst, ®ion->pools);
1038 "region %s (%d): size:%d, link:%d@%d, dma:%pad-%pad, virt:%p-%p\n",
1039 region->name, id, region->desc_size, region->num_desc,
1040 region->link_index, ®ion->dma_start, ®ion->dma_end,
1041 region->virt_start, region->virt_end);
1043 hw_desc_size = (region->desc_size / 16) - 1;
1046 for_each_qmgr(kdev, qmgr) {
1047 regs = qmgr->reg_region + id;
1048 writel_relaxed((u32)region->dma_start, ®s->base);
1049 writel_relaxed(region->link_index, ®s->start_index);
1050 writel_relaxed(hw_desc_size << 16 | hw_num_desc,
1056 if (region->dma_start)
1057 dma_unmap_page(kdev->dev, region->dma_start, size,
1059 if (region->virt_start)
1060 free_pages_exact(region->virt_start, size);
1061 region->num_desc = 0;
1065 static const char *knav_queue_find_name(struct device_node *node)
1069 if (of_property_read_string(node, "label", &name) < 0)
1076 static int knav_queue_setup_regions(struct knav_device *kdev,
1077 struct device_node *node)
1079 struct device *dev = kdev->dev;
1080 struct device_node *regions __free(device_node) =
1081 of_get_child_by_name(node, "descriptor-regions");
1082 struct knav_region *region;
1083 struct device_node *child;
1088 return dev_err_probe(dev, -ENODEV,
1089 "descriptor-regions not specified\n");
1091 for_each_child_of_node(regions, child) {
1092 region = devm_kzalloc(dev, sizeof(*region), GFP_KERNEL);
1095 dev_err(dev, "out of memory allocating region\n");
1099 region->name = knav_queue_find_name(child);
1100 of_property_read_u32(child, "id", ®ion->id);
1101 ret = of_property_read_u32_array(child, "region-spec", temp, 2);
1103 region->num_desc = temp[0];
1104 region->desc_size = temp[1];
1106 dev_err(dev, "invalid region info %s\n", region->name);
1107 devm_kfree(dev, region);
1111 ret = of_property_read_u32(child, "link-index",
1112 ®ion->link_index);
1114 dev_err(dev, "link index not found for %s\n",
1116 devm_kfree(dev, region);
1120 INIT_LIST_HEAD(®ion->pools);
1121 list_add_tail(®ion->list, &kdev->regions);
1123 if (list_empty(&kdev->regions))
1124 return dev_err_probe(dev, -ENODEV,
1125 "no valid region information found\n");
1127 /* Next, we run through the regions and set things up */
1128 for_each_region(kdev, region)
1129 knav_queue_setup_region(kdev, region);
1134 static int knav_get_link_ram(struct knav_device *kdev,
1136 struct knav_link_ram_block *block)
1138 struct platform_device *pdev = to_platform_device(kdev->dev);
1139 struct device_node *node = pdev->dev.of_node;
1143 * Note: link ram resources are specified in "entry" sized units. In
1144 * reality, although entries are ~40bits in hardware, we treat them as
1145 * 64-bit entities here.
1147 * For example, to specify the internal link ram for Keystone-I class
1148 * devices, we would set the linkram0 resource to 0x80000-0x83fff.
1150 * This gets a bit weird when other link rams are used. For example,
1151 * if the range specified is 0x0c000000-0x0c003fff (i.e., 16K entries
1152 * in MSMC SRAM), the actual memory used is 0x0c000000-0x0c020000,
1153 * which accounts for 64-bits per entry, for 16K entries.
1155 if (!of_property_read_u32_array(node, name , temp, 2)) {
1158 * queue_base specified => using internal or onchip
1159 * link ram WARNING - we do not "reserve" this block
1161 block->dma = (dma_addr_t)temp[0];
1163 block->size = temp[1];
1165 block->size = temp[1];
1166 /* queue_base not specific => allocate requested size */
1167 block->virt = dmam_alloc_coherent(kdev->dev,
1168 8 * block->size, &block->dma,
1171 dev_err(kdev->dev, "failed to alloc linkram\n");
1181 static int knav_queue_setup_link_ram(struct knav_device *kdev)
1183 struct knav_link_ram_block *block;
1184 struct knav_qmgr_info *qmgr;
1186 for_each_qmgr(kdev, qmgr) {
1187 block = &kdev->link_rams[0];
1188 dev_dbg(kdev->dev, "linkram0: dma:%pad, virt:%p, size:%x\n",
1189 &block->dma, block->virt, block->size);
1190 writel_relaxed((u32)block->dma, &qmgr->reg_config->link_ram_base0);
1191 if (kdev->version == QMSS_66AK2G)
1192 writel_relaxed(block->size,
1193 &qmgr->reg_config->link_ram_size0);
1195 writel_relaxed(block->size - 1,
1196 &qmgr->reg_config->link_ram_size0);
1201 dev_dbg(kdev->dev, "linkram1: dma:%pad, virt:%p, size:%x\n",
1202 &block->dma, block->virt, block->size);
1203 writel_relaxed(block->dma, &qmgr->reg_config->link_ram_base1);
1209 static int knav_setup_queue_range(struct knav_device *kdev,
1210 struct device_node *node)
1212 struct device *dev = kdev->dev;
1213 struct knav_range_info *range;
1214 struct knav_qmgr_info *qmgr;
1215 u32 temp[2], start, end, id, index;
1218 range = devm_kzalloc(dev, sizeof(*range), GFP_KERNEL);
1220 dev_err(dev, "out of memory allocating range\n");
1225 range->name = knav_queue_find_name(node);
1226 ret = of_property_read_u32_array(node, "qrange", temp, 2);
1228 range->queue_base = temp[0] - kdev->base_id;
1229 range->num_queues = temp[1];
1231 dev_err(dev, "invalid queue range %s\n", range->name);
1232 devm_kfree(dev, range);
1236 for (i = 0; i < RANGE_MAX_IRQS; i++) {
1237 struct of_phandle_args oirq;
1239 if (of_irq_parse_one(node, i, &oirq))
1242 range->irqs[i].irq = irq_create_of_mapping(&oirq);
1243 if (range->irqs[i].irq == IRQ_NONE)
1248 if (IS_ENABLED(CONFIG_SMP) && oirq.args_count == 3) {
1252 range->irqs[i].cpu_mask = devm_kzalloc(dev,
1253 cpumask_size(), GFP_KERNEL);
1254 if (!range->irqs[i].cpu_mask)
1257 mask = (oirq.args[2] & 0x0000ff00) >> 8;
1258 for_each_set_bit(bit, &mask, BITS_PER_LONG)
1259 cpumask_set_cpu(bit, range->irqs[i].cpu_mask);
1263 range->num_irqs = min(range->num_irqs, range->num_queues);
1264 if (range->num_irqs)
1265 range->flags |= RANGE_HAS_IRQ;
1267 if (of_property_read_bool(node, "qalloc-by-id"))
1268 range->flags |= RANGE_RESERVED;
1270 if (of_property_present(node, "accumulator")) {
1271 ret = knav_init_acc_range(kdev, node, range);
1273 devm_kfree(dev, range);
1277 range->ops = &knav_gp_range_ops;
1280 /* set threshold to 1, and flush out the queues */
1281 for_each_qmgr(kdev, qmgr) {
1282 start = max(qmgr->start_queue, range->queue_base);
1283 end = min(qmgr->start_queue + qmgr->num_queues,
1284 range->queue_base + range->num_queues);
1285 for (id = start; id < end; id++) {
1286 index = id - qmgr->start_queue;
1287 writel_relaxed(THRESH_GTE | 1,
1288 &qmgr->reg_peek[index].ptr_size_thresh);
1290 &qmgr->reg_push[index].ptr_size_thresh);
1294 list_add_tail(&range->list, &kdev->queue_ranges);
1295 dev_dbg(dev, "added range %s: %d-%d, %d irqs%s%s%s\n",
1296 range->name, range->queue_base,
1297 range->queue_base + range->num_queues - 1,
1299 (range->flags & RANGE_HAS_IRQ) ? ", has irq" : "",
1300 (range->flags & RANGE_RESERVED) ? ", reserved" : "",
1301 (range->flags & RANGE_HAS_ACCUMULATOR) ? ", acc" : "");
1302 kdev->num_queues_in_use += range->num_queues;
1306 static int knav_setup_queue_pools(struct knav_device *kdev,
1307 struct device_node *node)
1309 struct device_node *queue_pools __free(device_node) =
1310 of_get_child_by_name(node, "queue-pools");
1311 struct device_node *type, *range;
1314 return dev_err_probe(kdev->dev, -ENODEV,
1315 "queue-pools not specified\n");
1317 for_each_child_of_node(queue_pools, type) {
1318 for_each_child_of_node(type, range) {
1319 /* return value ignored, we init the rest... */
1320 knav_setup_queue_range(kdev, range);
1324 /* ... and barf if they all failed! */
1325 if (list_empty(&kdev->queue_ranges))
1326 return dev_err_probe(kdev->dev, -ENODEV,
1327 "no valid queue range found\n");
1331 static void knav_free_queue_range(struct knav_device *kdev,
1332 struct knav_range_info *range)
1334 if (range->ops && range->ops->free_range)
1335 range->ops->free_range(range);
1336 list_del(&range->list);
1337 devm_kfree(kdev->dev, range);
1340 static void knav_free_queue_ranges(struct knav_device *kdev)
1342 struct knav_range_info *range;
1345 range = first_queue_range(kdev);
1348 knav_free_queue_range(kdev, range);
1352 static void knav_queue_free_regions(struct knav_device *kdev)
1354 struct knav_region *region;
1355 struct knav_pool *pool, *tmp;
1359 region = first_region(kdev);
1362 list_for_each_entry_safe(pool, tmp, ®ion->pools, region_inst)
1363 knav_pool_destroy(pool);
1365 size = region->virt_end - region->virt_start;
1367 free_pages_exact(region->virt_start, size);
1368 list_del(®ion->list);
1369 devm_kfree(kdev->dev, region);
1373 static void __iomem *knav_queue_map_reg(struct knav_device *kdev,
1374 struct device_node *node, int index)
1376 struct resource res;
1380 ret = of_address_to_resource(node, index, &res);
1382 dev_err(kdev->dev, "Can't translate of node(%pOFn) address for index(%d)\n",
1384 return ERR_PTR(ret);
1387 regs = devm_ioremap_resource(kdev->dev, &res);
1389 dev_err(kdev->dev, "Failed to map register base for index(%d) node(%pOFn)\n",
1394 static int knav_queue_init_qmgrs(struct knav_device *kdev,
1395 struct device_node *node)
1397 struct device *dev = kdev->dev;
1398 struct device_node *qmgrs __free(device_node) =
1399 of_get_child_by_name(node, "qmgrs");
1400 struct knav_qmgr_info *qmgr;
1401 struct device_node *child;
1406 return dev_err_probe(dev, -ENODEV,
1407 "queue manager info not specified\n");
1409 for_each_child_of_node(qmgrs, child) {
1410 qmgr = devm_kzalloc(dev, sizeof(*qmgr), GFP_KERNEL);
1413 dev_err(dev, "out of memory allocating qmgr\n");
1417 ret = of_property_read_u32_array(child, "managed-queues",
1420 qmgr->start_queue = temp[0];
1421 qmgr->num_queues = temp[1];
1423 dev_err(dev, "invalid qmgr queue range\n");
1424 devm_kfree(dev, qmgr);
1428 dev_info(dev, "qmgr start queue %d, number of queues %d\n",
1429 qmgr->start_queue, qmgr->num_queues);
1432 knav_queue_map_reg(kdev, child,
1433 KNAV_QUEUE_PEEK_REG_INDEX);
1435 if (kdev->version == QMSS) {
1437 knav_queue_map_reg(kdev, child,
1438 KNAV_QUEUE_STATUS_REG_INDEX);
1442 knav_queue_map_reg(kdev, child,
1443 (kdev->version == QMSS_66AK2G) ?
1444 KNAV_L_QUEUE_CONFIG_REG_INDEX :
1445 KNAV_QUEUE_CONFIG_REG_INDEX);
1447 knav_queue_map_reg(kdev, child,
1448 (kdev->version == QMSS_66AK2G) ?
1449 KNAV_L_QUEUE_REGION_REG_INDEX :
1450 KNAV_QUEUE_REGION_REG_INDEX);
1453 knav_queue_map_reg(kdev, child,
1454 (kdev->version == QMSS_66AK2G) ?
1455 KNAV_L_QUEUE_PUSH_REG_INDEX :
1456 KNAV_QUEUE_PUSH_REG_INDEX);
1458 if (kdev->version == QMSS) {
1460 knav_queue_map_reg(kdev, child,
1461 KNAV_QUEUE_POP_REG_INDEX);
1464 if (IS_ERR(qmgr->reg_peek) ||
1465 ((kdev->version == QMSS) &&
1466 (IS_ERR(qmgr->reg_status) || IS_ERR(qmgr->reg_pop))) ||
1467 IS_ERR(qmgr->reg_config) || IS_ERR(qmgr->reg_region) ||
1468 IS_ERR(qmgr->reg_push)) {
1469 dev_err(dev, "failed to map qmgr regs\n");
1470 if (kdev->version == QMSS) {
1471 if (!IS_ERR(qmgr->reg_status))
1472 devm_iounmap(dev, qmgr->reg_status);
1473 if (!IS_ERR(qmgr->reg_pop))
1474 devm_iounmap(dev, qmgr->reg_pop);
1476 if (!IS_ERR(qmgr->reg_peek))
1477 devm_iounmap(dev, qmgr->reg_peek);
1478 if (!IS_ERR(qmgr->reg_config))
1479 devm_iounmap(dev, qmgr->reg_config);
1480 if (!IS_ERR(qmgr->reg_region))
1481 devm_iounmap(dev, qmgr->reg_region);
1482 if (!IS_ERR(qmgr->reg_push))
1483 devm_iounmap(dev, qmgr->reg_push);
1484 devm_kfree(dev, qmgr);
1488 /* Use same push register for pop as well */
1489 if (kdev->version == QMSS_66AK2G)
1490 qmgr->reg_pop = qmgr->reg_push;
1492 list_add_tail(&qmgr->list, &kdev->qmgrs);
1493 dev_info(dev, "added qmgr start queue %d, num of queues %d, reg_peek %p, reg_status %p, reg_config %p, reg_region %p, reg_push %p, reg_pop %p\n",
1494 qmgr->start_queue, qmgr->num_queues,
1495 qmgr->reg_peek, qmgr->reg_status,
1496 qmgr->reg_config, qmgr->reg_region,
1497 qmgr->reg_push, qmgr->reg_pop);
1502 static int knav_queue_init_pdsps(struct knav_device *kdev,
1503 struct device_node *pdsps)
1505 struct device *dev = kdev->dev;
1506 struct knav_pdsp_info *pdsp;
1507 struct device_node *child;
1509 for_each_child_of_node(pdsps, child) {
1510 pdsp = devm_kzalloc(dev, sizeof(*pdsp), GFP_KERNEL);
1513 dev_err(dev, "out of memory allocating pdsp\n");
1516 pdsp->name = knav_queue_find_name(child);
1518 knav_queue_map_reg(kdev, child,
1519 KNAV_QUEUE_PDSP_IRAM_REG_INDEX);
1521 knav_queue_map_reg(kdev, child,
1522 KNAV_QUEUE_PDSP_REGS_REG_INDEX);
1524 knav_queue_map_reg(kdev, child,
1525 KNAV_QUEUE_PDSP_INTD_REG_INDEX);
1527 knav_queue_map_reg(kdev, child,
1528 KNAV_QUEUE_PDSP_CMD_REG_INDEX);
1530 if (IS_ERR(pdsp->command) || IS_ERR(pdsp->iram) ||
1531 IS_ERR(pdsp->regs) || IS_ERR(pdsp->intd)) {
1532 dev_err(dev, "failed to map pdsp %s regs\n",
1534 if (!IS_ERR(pdsp->command))
1535 devm_iounmap(dev, pdsp->command);
1536 if (!IS_ERR(pdsp->iram))
1537 devm_iounmap(dev, pdsp->iram);
1538 if (!IS_ERR(pdsp->regs))
1539 devm_iounmap(dev, pdsp->regs);
1540 if (!IS_ERR(pdsp->intd))
1541 devm_iounmap(dev, pdsp->intd);
1542 devm_kfree(dev, pdsp);
1545 of_property_read_u32(child, "id", &pdsp->id);
1546 list_add_tail(&pdsp->list, &kdev->pdsps);
1547 dev_dbg(dev, "added pdsp %s: command %p, iram %p, regs %p, intd %p\n",
1548 pdsp->name, pdsp->command, pdsp->iram, pdsp->regs,
1554 static int knav_queue_stop_pdsp(struct knav_device *kdev,
1555 struct knav_pdsp_info *pdsp)
1557 u32 val, timeout = 1000;
1560 val = readl_relaxed(&pdsp->regs->control) & ~PDSP_CTRL_ENABLE;
1561 writel_relaxed(val, &pdsp->regs->control);
1562 ret = knav_queue_pdsp_wait(&pdsp->regs->control, timeout,
1565 dev_err(kdev->dev, "timed out on pdsp %s stop\n", pdsp->name);
1568 pdsp->loaded = false;
1569 pdsp->started = false;
1573 static int knav_queue_load_pdsp(struct knav_device *kdev,
1574 struct knav_pdsp_info *pdsp)
1577 const struct firmware *fw;
1581 for (i = 0; i < ARRAY_SIZE(knav_acc_firmwares); i++) {
1582 if (knav_acc_firmwares[i]) {
1583 ret = request_firmware_direct(&fw,
1584 knav_acc_firmwares[i],
1594 dev_err(kdev->dev, "failed to get firmware for pdsp\n");
1598 dev_info(kdev->dev, "firmware file %s downloaded for PDSP\n",
1599 knav_acc_firmwares[i]);
1601 writel_relaxed(pdsp->id + 1, pdsp->command + 0x18);
1602 /* download the firmware */
1603 fwdata = (u32 *)fw->data;
1604 fwlen = (fw->size + sizeof(u32) - 1) / sizeof(u32);
1605 for (i = 0; i < fwlen; i++)
1606 writel_relaxed(be32_to_cpu(fwdata[i]), pdsp->iram + i);
1608 release_firmware(fw);
1612 static int knav_queue_start_pdsp(struct knav_device *kdev,
1613 struct knav_pdsp_info *pdsp)
1615 u32 val, timeout = 1000;
1618 /* write a command for sync */
1619 writel_relaxed(0xffffffff, pdsp->command);
1620 while (readl_relaxed(pdsp->command) != 0xffffffff)
1623 /* soft reset the PDSP */
1624 val = readl_relaxed(&pdsp->regs->control);
1625 val &= ~(PDSP_CTRL_PC_MASK | PDSP_CTRL_SOFT_RESET);
1626 writel_relaxed(val, &pdsp->regs->control);
1629 val = readl_relaxed(&pdsp->regs->control) | PDSP_CTRL_ENABLE;
1630 writel_relaxed(val, &pdsp->regs->control);
1632 /* wait for command register to clear */
1633 ret = knav_queue_pdsp_wait(pdsp->command, timeout, 0);
1636 "timed out on pdsp %s command register wait\n",
1643 static void knav_queue_stop_pdsps(struct knav_device *kdev)
1645 struct knav_pdsp_info *pdsp;
1647 /* disable all pdsps */
1648 for_each_pdsp(kdev, pdsp)
1649 knav_queue_stop_pdsp(kdev, pdsp);
1652 static int knav_queue_start_pdsps(struct knav_device *kdev)
1654 struct knav_pdsp_info *pdsp;
1657 knav_queue_stop_pdsps(kdev);
1658 /* now load them all. We return success even if pdsp
1659 * is not loaded as acc channels are optional on having
1660 * firmware availability in the system. We set the loaded
1661 * and stated flag and when initialize the acc range, check
1662 * it and init the range only if pdsp is started.
1664 for_each_pdsp(kdev, pdsp) {
1665 ret = knav_queue_load_pdsp(kdev, pdsp);
1667 pdsp->loaded = true;
1670 for_each_pdsp(kdev, pdsp) {
1672 ret = knav_queue_start_pdsp(kdev, pdsp);
1674 pdsp->started = true;
1680 static int knav_queue_setup_pdsps(struct knav_device *kdev,
1681 struct device_node *node)
1683 struct device_node *pdsps __free(device_node) =
1684 of_get_child_by_name(node, "pdsps");
1689 ret = knav_queue_init_pdsps(kdev, pdsps);
1693 ret = knav_queue_start_pdsps(kdev);
1700 static inline struct knav_qmgr_info *knav_find_qmgr(unsigned id)
1702 struct knav_qmgr_info *qmgr;
1704 for_each_qmgr(kdev, qmgr) {
1705 if ((id >= qmgr->start_queue) &&
1706 (id < qmgr->start_queue + qmgr->num_queues))
1712 static int knav_queue_init_queue(struct knav_device *kdev,
1713 struct knav_range_info *range,
1714 struct knav_queue_inst *inst,
1717 char irq_name[KNAV_NAME_SIZE];
1718 inst->qmgr = knav_find_qmgr(id);
1722 INIT_LIST_HEAD(&inst->handles);
1724 inst->range = range;
1727 scnprintf(irq_name, sizeof(irq_name), "hwqueue-%d", id);
1728 inst->irq_name = kstrndup(irq_name, sizeof(irq_name), GFP_KERNEL);
1730 if (range->ops && range->ops->init_queue)
1731 return range->ops->init_queue(range, inst);
1736 static int knav_queue_init_queues(struct knav_device *kdev)
1738 struct knav_range_info *range;
1739 int size, id, base_idx;
1740 int idx = 0, ret = 0;
1742 /* how much do we need for instance data? */
1743 size = sizeof(struct knav_queue_inst);
1745 /* round this up to a power of 2, keep the index to instance
1748 kdev->inst_shift = order_base_2(size);
1749 size = (1 << kdev->inst_shift) * kdev->num_queues_in_use;
1750 kdev->instances = devm_kzalloc(kdev->dev, size, GFP_KERNEL);
1751 if (!kdev->instances)
1754 for_each_queue_range(kdev, range) {
1755 if (range->ops && range->ops->init_range)
1756 range->ops->init_range(range);
1758 for (id = range->queue_base;
1759 id < range->queue_base + range->num_queues; id++, idx++) {
1760 ret = knav_queue_init_queue(kdev, range,
1761 knav_queue_idx_to_inst(kdev, idx), id);
1765 range->queue_base_inst =
1766 knav_queue_idx_to_inst(kdev, base_idx);
1771 /* Match table for of_platform binding */
1772 static const struct of_device_id keystone_qmss_of_match[] = {
1774 .compatible = "ti,keystone-navigator-qmss",
1777 .compatible = "ti,66ak2g-navss-qm",
1778 .data = (void *)QMSS_66AK2G,
1782 MODULE_DEVICE_TABLE(of, keystone_qmss_of_match);
1784 static int knav_queue_probe(struct platform_device *pdev)
1786 struct device_node *node = pdev->dev.of_node;
1787 struct device *dev = &pdev->dev;
1792 dev_err(dev, "device tree info unavailable\n");
1796 kdev = devm_kzalloc(dev, sizeof(struct knav_device), GFP_KERNEL);
1798 dev_err(dev, "memory allocation failed\n");
1802 if (device_get_match_data(dev))
1803 kdev->version = QMSS_66AK2G;
1805 platform_set_drvdata(pdev, kdev);
1807 INIT_LIST_HEAD(&kdev->queue_ranges);
1808 INIT_LIST_HEAD(&kdev->qmgrs);
1809 INIT_LIST_HEAD(&kdev->pools);
1810 INIT_LIST_HEAD(&kdev->regions);
1811 INIT_LIST_HEAD(&kdev->pdsps);
1813 pm_runtime_enable(&pdev->dev);
1814 ret = pm_runtime_resume_and_get(&pdev->dev);
1816 pm_runtime_disable(&pdev->dev);
1817 dev_err(dev, "Failed to enable QMSS\n");
1821 if (of_property_read_u32_array(node, "queue-range", temp, 2)) {
1822 dev_err(dev, "queue-range not specified\n");
1826 kdev->base_id = temp[0];
1827 kdev->num_queues = temp[1];
1829 /* Initialize queue managers using device tree configuration */
1830 ret = knav_queue_init_qmgrs(kdev, node);
1834 /* get pdsp configuration values from device tree */
1835 ret = knav_queue_setup_pdsps(kdev, node);
1839 /* get usable queue range values from device tree */
1840 ret = knav_setup_queue_pools(kdev, node);
1844 ret = knav_get_link_ram(kdev, "linkram0", &kdev->link_rams[0]);
1846 dev_err(kdev->dev, "could not setup linking ram\n");
1850 ret = knav_get_link_ram(kdev, "linkram1", &kdev->link_rams[1]);
1853 * nothing really, we have one linking ram already, so we just
1854 * live within our means
1858 ret = knav_queue_setup_link_ram(kdev);
1862 ret = knav_queue_setup_regions(kdev, node);
1866 ret = knav_queue_init_queues(kdev);
1868 dev_err(dev, "hwqueue initialization failed\n");
1872 debugfs_create_file("qmss", S_IFREG | S_IRUGO, NULL, NULL,
1873 &knav_queue_debug_fops);
1874 device_ready = true;
1878 knav_queue_stop_pdsps(kdev);
1879 knav_queue_free_regions(kdev);
1880 knav_free_queue_ranges(kdev);
1881 pm_runtime_put_sync(&pdev->dev);
1882 pm_runtime_disable(&pdev->dev);
1886 static void knav_queue_remove(struct platform_device *pdev)
1888 /* TODO: Free resources */
1889 pm_runtime_put_sync(&pdev->dev);
1890 pm_runtime_disable(&pdev->dev);
1893 static struct platform_driver keystone_qmss_driver = {
1894 .probe = knav_queue_probe,
1895 .remove = knav_queue_remove,
1897 .name = "keystone-navigator-qmss",
1898 .of_match_table = keystone_qmss_of_match,
1901 module_platform_driver(keystone_qmss_driver);
1903 MODULE_LICENSE("GPL v2");
1904 MODULE_DESCRIPTION("TI QMSS driver for Keystone SOCs");