]> Git Repo - J-linux.git/blob - drivers/soc/ti/knav_qmss_queue.c
Merge tag 'vfs-6.13-rc7.fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs
[J-linux.git] / drivers / soc / ti / knav_qmss_queue.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Keystone Queue Manager subsystem driver
4  *
5  * Copyright (C) 2014 Texas Instruments Incorporated - http://www.ti.com
6  * Authors:     Sandeep Nair <[email protected]>
7  *              Cyril Chemparathy <[email protected]>
8  *              Santosh Shilimkar <[email protected]>
9  */
10
11 #include <linux/debugfs.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/firmware.h>
14 #include <linux/interrupt.h>
15 #include <linux/io.h>
16 #include <linux/module.h>
17 #include <linux/of.h>
18 #include <linux/of_address.h>
19 #include <linux/of_irq.h>
20 #include <linux/platform_device.h>
21 #include <linux/pm_runtime.h>
22 #include <linux/property.h>
23 #include <linux/slab.h>
24 #include <linux/soc/ti/knav_qmss.h>
25
26 #include "knav_qmss.h"
27
28 static struct knav_device *kdev;
29 static DEFINE_MUTEX(knav_dev_lock);
30 #define knav_dev_lock_held() \
31         lockdep_is_held(&knav_dev_lock)
32
33 /* Queue manager register indices in DTS */
34 #define KNAV_QUEUE_PEEK_REG_INDEX       0
35 #define KNAV_QUEUE_STATUS_REG_INDEX     1
36 #define KNAV_QUEUE_CONFIG_REG_INDEX     2
37 #define KNAV_QUEUE_REGION_REG_INDEX     3
38 #define KNAV_QUEUE_PUSH_REG_INDEX       4
39 #define KNAV_QUEUE_POP_REG_INDEX        5
40
41 /* Queue manager register indices in DTS for QMSS in K2G NAVSS.
42  * There are no status and vbusm push registers on this version
43  * of QMSS. Push registers are same as pop, So all indices above 1
44  * are to be re-defined
45  */
46 #define KNAV_L_QUEUE_CONFIG_REG_INDEX   1
47 #define KNAV_L_QUEUE_REGION_REG_INDEX   2
48 #define KNAV_L_QUEUE_PUSH_REG_INDEX     3
49
50 /* PDSP register indices in DTS */
51 #define KNAV_QUEUE_PDSP_IRAM_REG_INDEX  0
52 #define KNAV_QUEUE_PDSP_REGS_REG_INDEX  1
53 #define KNAV_QUEUE_PDSP_INTD_REG_INDEX  2
54 #define KNAV_QUEUE_PDSP_CMD_REG_INDEX   3
55
56 #define knav_queue_idx_to_inst(kdev, idx)                       \
57         (kdev->instances + (idx << kdev->inst_shift))
58
59 #define for_each_handle_rcu(qh, inst)                           \
60         list_for_each_entry_rcu(qh, &inst->handles, list,       \
61                                 knav_dev_lock_held())
62
63 #define for_each_instance(idx, inst, kdev)              \
64         for (idx = 0, inst = kdev->instances;           \
65              idx < (kdev)->num_queues_in_use;                   \
66              idx++, inst = knav_queue_idx_to_inst(kdev, idx))
67
68 /* All firmware file names end up here. List the firmware file names below.
69  * Newest followed by older ones. Search is done from start of the array
70  * until a firmware file is found.
71  */
72 static const char * const knav_acc_firmwares[] = {"ks2_qmss_pdsp_acc48.bin"};
73
74 static bool device_ready;
75 bool knav_qmss_device_ready(void)
76 {
77         return device_ready;
78 }
79 EXPORT_SYMBOL_GPL(knav_qmss_device_ready);
80
81 /**
82  * knav_queue_notify: qmss queue notfier call
83  *
84  * @inst:               - qmss queue instance like accumulator
85  */
86 void knav_queue_notify(struct knav_queue_inst *inst)
87 {
88         struct knav_queue *qh;
89
90         if (!inst)
91                 return;
92
93         rcu_read_lock();
94         for_each_handle_rcu(qh, inst) {
95                 if (atomic_read(&qh->notifier_enabled) <= 0)
96                         continue;
97                 if (WARN_ON(!qh->notifier_fn))
98                         continue;
99                 this_cpu_inc(qh->stats->notifies);
100                 qh->notifier_fn(qh->notifier_fn_arg);
101         }
102         rcu_read_unlock();
103 }
104 EXPORT_SYMBOL_GPL(knav_queue_notify);
105
106 static irqreturn_t knav_queue_int_handler(int irq, void *_instdata)
107 {
108         struct knav_queue_inst *inst = _instdata;
109
110         knav_queue_notify(inst);
111         return IRQ_HANDLED;
112 }
113
114 static int knav_queue_setup_irq(struct knav_range_info *range,
115                           struct knav_queue_inst *inst)
116 {
117         unsigned queue = inst->id - range->queue_base;
118         int ret = 0, irq;
119
120         if (range->flags & RANGE_HAS_IRQ) {
121                 irq = range->irqs[queue].irq;
122                 ret = request_irq(irq, knav_queue_int_handler, IRQF_NO_AUTOEN,
123                                   inst->irq_name, inst);
124                 if (ret)
125                         return ret;
126                 if (range->irqs[queue].cpu_mask) {
127                         ret = irq_set_affinity_hint(irq, range->irqs[queue].cpu_mask);
128                         if (ret) {
129                                 dev_warn(range->kdev->dev,
130                                          "Failed to set IRQ affinity\n");
131                                 return ret;
132                         }
133                 }
134         }
135         return ret;
136 }
137
138 static void knav_queue_free_irq(struct knav_queue_inst *inst)
139 {
140         struct knav_range_info *range = inst->range;
141         unsigned queue = inst->id - inst->range->queue_base;
142         int irq;
143
144         if (range->flags & RANGE_HAS_IRQ) {
145                 irq = range->irqs[queue].irq;
146                 irq_set_affinity_hint(irq, NULL);
147                 free_irq(irq, inst);
148         }
149 }
150
151 static inline bool knav_queue_is_busy(struct knav_queue_inst *inst)
152 {
153         return !list_empty(&inst->handles);
154 }
155
156 static inline bool knav_queue_is_reserved(struct knav_queue_inst *inst)
157 {
158         return inst->range->flags & RANGE_RESERVED;
159 }
160
161 static inline bool knav_queue_is_shared(struct knav_queue_inst *inst)
162 {
163         struct knav_queue *tmp;
164
165         rcu_read_lock();
166         for_each_handle_rcu(tmp, inst) {
167                 if (tmp->flags & KNAV_QUEUE_SHARED) {
168                         rcu_read_unlock();
169                         return true;
170                 }
171         }
172         rcu_read_unlock();
173         return false;
174 }
175
176 static inline bool knav_queue_match_type(struct knav_queue_inst *inst,
177                                                 unsigned type)
178 {
179         if ((type == KNAV_QUEUE_QPEND) &&
180             (inst->range->flags & RANGE_HAS_IRQ)) {
181                 return true;
182         } else if ((type == KNAV_QUEUE_ACC) &&
183                 (inst->range->flags & RANGE_HAS_ACCUMULATOR)) {
184                 return true;
185         } else if ((type == KNAV_QUEUE_GP) &&
186                 !(inst->range->flags &
187                         (RANGE_HAS_ACCUMULATOR | RANGE_HAS_IRQ))) {
188                 return true;
189         }
190         return false;
191 }
192
193 static inline struct knav_queue_inst *
194 knav_queue_match_id_to_inst(struct knav_device *kdev, unsigned id)
195 {
196         struct knav_queue_inst *inst;
197         int idx;
198
199         for_each_instance(idx, inst, kdev) {
200                 if (inst->id == id)
201                         return inst;
202         }
203         return NULL;
204 }
205
206 static inline struct knav_queue_inst *knav_queue_find_by_id(int id)
207 {
208         if (kdev->base_id <= id &&
209             kdev->base_id + kdev->num_queues > id) {
210                 id -= kdev->base_id;
211                 return knav_queue_match_id_to_inst(kdev, id);
212         }
213         return NULL;
214 }
215
216 static struct knav_queue *__knav_queue_open(struct knav_queue_inst *inst,
217                                       const char *name, unsigned flags)
218 {
219         struct knav_queue *qh;
220         unsigned id;
221         int ret = 0;
222
223         qh = devm_kzalloc(inst->kdev->dev, sizeof(*qh), GFP_KERNEL);
224         if (!qh)
225                 return ERR_PTR(-ENOMEM);
226
227         qh->stats = alloc_percpu(struct knav_queue_stats);
228         if (!qh->stats) {
229                 ret = -ENOMEM;
230                 goto err;
231         }
232
233         qh->flags = flags;
234         qh->inst = inst;
235         id = inst->id - inst->qmgr->start_queue;
236         qh->reg_push = &inst->qmgr->reg_push[id];
237         qh->reg_pop = &inst->qmgr->reg_pop[id];
238         qh->reg_peek = &inst->qmgr->reg_peek[id];
239
240         /* first opener? */
241         if (!knav_queue_is_busy(inst)) {
242                 struct knav_range_info *range = inst->range;
243
244                 inst->name = kstrndup(name, KNAV_NAME_SIZE - 1, GFP_KERNEL);
245                 if (range->ops && range->ops->open_queue)
246                         ret = range->ops->open_queue(range, inst, flags);
247
248                 if (ret)
249                         goto err;
250         }
251         list_add_tail_rcu(&qh->list, &inst->handles);
252         return qh;
253
254 err:
255         if (qh->stats)
256                 free_percpu(qh->stats);
257         devm_kfree(inst->kdev->dev, qh);
258         return ERR_PTR(ret);
259 }
260
261 static struct knav_queue *
262 knav_queue_open_by_id(const char *name, unsigned id, unsigned flags)
263 {
264         struct knav_queue_inst *inst;
265         struct knav_queue *qh;
266
267         mutex_lock(&knav_dev_lock);
268
269         qh = ERR_PTR(-ENODEV);
270         inst = knav_queue_find_by_id(id);
271         if (!inst)
272                 goto unlock_ret;
273
274         qh = ERR_PTR(-EEXIST);
275         if (!(flags & KNAV_QUEUE_SHARED) && knav_queue_is_busy(inst))
276                 goto unlock_ret;
277
278         qh = ERR_PTR(-EBUSY);
279         if ((flags & KNAV_QUEUE_SHARED) &&
280             (knav_queue_is_busy(inst) && !knav_queue_is_shared(inst)))
281                 goto unlock_ret;
282
283         qh = __knav_queue_open(inst, name, flags);
284
285 unlock_ret:
286         mutex_unlock(&knav_dev_lock);
287
288         return qh;
289 }
290
291 static struct knav_queue *knav_queue_open_by_type(const char *name,
292                                                 unsigned type, unsigned flags)
293 {
294         struct knav_queue_inst *inst;
295         struct knav_queue *qh = ERR_PTR(-EINVAL);
296         int idx;
297
298         mutex_lock(&knav_dev_lock);
299
300         for_each_instance(idx, inst, kdev) {
301                 if (knav_queue_is_reserved(inst))
302                         continue;
303                 if (!knav_queue_match_type(inst, type))
304                         continue;
305                 if (knav_queue_is_busy(inst))
306                         continue;
307                 qh = __knav_queue_open(inst, name, flags);
308                 goto unlock_ret;
309         }
310
311 unlock_ret:
312         mutex_unlock(&knav_dev_lock);
313         return qh;
314 }
315
316 static void knav_queue_set_notify(struct knav_queue_inst *inst, bool enabled)
317 {
318         struct knav_range_info *range = inst->range;
319
320         if (range->ops && range->ops->set_notify)
321                 range->ops->set_notify(range, inst, enabled);
322 }
323
324 static int knav_queue_enable_notifier(struct knav_queue *qh)
325 {
326         struct knav_queue_inst *inst = qh->inst;
327         bool first;
328
329         if (WARN_ON(!qh->notifier_fn))
330                 return -EINVAL;
331
332         /* Adjust the per handle notifier count */
333         first = (atomic_inc_return(&qh->notifier_enabled) == 1);
334         if (!first)
335                 return 0; /* nothing to do */
336
337         /* Now adjust the per instance notifier count */
338         first = (atomic_inc_return(&inst->num_notifiers) == 1);
339         if (first)
340                 knav_queue_set_notify(inst, true);
341
342         return 0;
343 }
344
345 static int knav_queue_disable_notifier(struct knav_queue *qh)
346 {
347         struct knav_queue_inst *inst = qh->inst;
348         bool last;
349
350         last = (atomic_dec_return(&qh->notifier_enabled) == 0);
351         if (!last)
352                 return 0; /* nothing to do */
353
354         last = (atomic_dec_return(&inst->num_notifiers) == 0);
355         if (last)
356                 knav_queue_set_notify(inst, false);
357
358         return 0;
359 }
360
361 static int knav_queue_set_notifier(struct knav_queue *qh,
362                                 struct knav_queue_notify_config *cfg)
363 {
364         knav_queue_notify_fn old_fn = qh->notifier_fn;
365
366         if (!cfg)
367                 return -EINVAL;
368
369         if (!(qh->inst->range->flags & (RANGE_HAS_ACCUMULATOR | RANGE_HAS_IRQ)))
370                 return -ENOTSUPP;
371
372         if (!cfg->fn && old_fn)
373                 knav_queue_disable_notifier(qh);
374
375         qh->notifier_fn = cfg->fn;
376         qh->notifier_fn_arg = cfg->fn_arg;
377
378         if (cfg->fn && !old_fn)
379                 knav_queue_enable_notifier(qh);
380
381         return 0;
382 }
383
384 static int knav_gp_set_notify(struct knav_range_info *range,
385                                struct knav_queue_inst *inst,
386                                bool enabled)
387 {
388         unsigned queue;
389
390         if (range->flags & RANGE_HAS_IRQ) {
391                 queue = inst->id - range->queue_base;
392                 if (enabled)
393                         enable_irq(range->irqs[queue].irq);
394                 else
395                         disable_irq_nosync(range->irqs[queue].irq);
396         }
397         return 0;
398 }
399
400 static int knav_gp_open_queue(struct knav_range_info *range,
401                                 struct knav_queue_inst *inst, unsigned flags)
402 {
403         return knav_queue_setup_irq(range, inst);
404 }
405
406 static int knav_gp_close_queue(struct knav_range_info *range,
407                                 struct knav_queue_inst *inst)
408 {
409         knav_queue_free_irq(inst);
410         return 0;
411 }
412
413 static const struct knav_range_ops knav_gp_range_ops = {
414         .set_notify     = knav_gp_set_notify,
415         .open_queue     = knav_gp_open_queue,
416         .close_queue    = knav_gp_close_queue,
417 };
418
419
420 static int knav_queue_get_count(void *qhandle)
421 {
422         struct knav_queue *qh = qhandle;
423         struct knav_queue_inst *inst = qh->inst;
424
425         return readl_relaxed(&qh->reg_peek[0].entry_count) +
426                 atomic_read(&inst->desc_count);
427 }
428
429 static void knav_queue_debug_show_instance(struct seq_file *s,
430                                         struct knav_queue_inst *inst)
431 {
432         struct knav_device *kdev = inst->kdev;
433         struct knav_queue *qh;
434         int cpu = 0;
435         int pushes = 0;
436         int pops = 0;
437         int push_errors = 0;
438         int pop_errors = 0;
439         int notifies = 0;
440
441         if (!knav_queue_is_busy(inst))
442                 return;
443
444         seq_printf(s, "\tqueue id %d (%s)\n",
445                    kdev->base_id + inst->id, inst->name);
446         for_each_handle_rcu(qh, inst) {
447                 for_each_possible_cpu(cpu) {
448                         pushes += per_cpu_ptr(qh->stats, cpu)->pushes;
449                         pops += per_cpu_ptr(qh->stats, cpu)->pops;
450                         push_errors += per_cpu_ptr(qh->stats, cpu)->push_errors;
451                         pop_errors += per_cpu_ptr(qh->stats, cpu)->pop_errors;
452                         notifies += per_cpu_ptr(qh->stats, cpu)->notifies;
453                 }
454
455                 seq_printf(s, "\t\thandle %p: pushes %8d, pops %8d, count %8d, notifies %8d, push errors %8d, pop errors %8d\n",
456                                 qh,
457                                 pushes,
458                                 pops,
459                                 knav_queue_get_count(qh),
460                                 notifies,
461                                 push_errors,
462                                 pop_errors);
463         }
464 }
465
466 static int knav_queue_debug_show(struct seq_file *s, void *v)
467 {
468         struct knav_queue_inst *inst;
469         int idx;
470
471         mutex_lock(&knav_dev_lock);
472         seq_printf(s, "%s: %u-%u\n",
473                    dev_name(kdev->dev), kdev->base_id,
474                    kdev->base_id + kdev->num_queues - 1);
475         for_each_instance(idx, inst, kdev)
476                 knav_queue_debug_show_instance(s, inst);
477         mutex_unlock(&knav_dev_lock);
478
479         return 0;
480 }
481
482 DEFINE_SHOW_ATTRIBUTE(knav_queue_debug);
483
484 static inline int knav_queue_pdsp_wait(u32 * __iomem addr, unsigned timeout,
485                                         u32 flags)
486 {
487         unsigned long end;
488         u32 val = 0;
489
490         end = jiffies + msecs_to_jiffies(timeout);
491         while (time_after(end, jiffies)) {
492                 val = readl_relaxed(addr);
493                 if (flags)
494                         val &= flags;
495                 if (!val)
496                         break;
497                 cpu_relax();
498         }
499         return val ? -ETIMEDOUT : 0;
500 }
501
502
503 static int knav_queue_flush(struct knav_queue *qh)
504 {
505         struct knav_queue_inst *inst = qh->inst;
506         unsigned id = inst->id - inst->qmgr->start_queue;
507
508         atomic_set(&inst->desc_count, 0);
509         writel_relaxed(0, &inst->qmgr->reg_push[id].ptr_size_thresh);
510         return 0;
511 }
512
513 /**
514  * knav_queue_open()    - open a hardware queue
515  * @name:               - name to give the queue handle
516  * @id:                 - desired queue number if any or specifes the type
517  *                        of queue
518  * @flags:              - the following flags are applicable to queues:
519  *      KNAV_QUEUE_SHARED - allow the queue to be shared. Queues are
520  *                           exclusive by default.
521  *                           Subsequent attempts to open a shared queue should
522  *                           also have this flag.
523  *
524  * Returns a handle to the open hardware queue if successful. Use IS_ERR()
525  * to check the returned value for error codes.
526  */
527 void *knav_queue_open(const char *name, unsigned id,
528                                         unsigned flags)
529 {
530         struct knav_queue *qh = ERR_PTR(-EINVAL);
531
532         switch (id) {
533         case KNAV_QUEUE_QPEND:
534         case KNAV_QUEUE_ACC:
535         case KNAV_QUEUE_GP:
536                 qh = knav_queue_open_by_type(name, id, flags);
537                 break;
538
539         default:
540                 qh = knav_queue_open_by_id(name, id, flags);
541                 break;
542         }
543         return qh;
544 }
545 EXPORT_SYMBOL_GPL(knav_queue_open);
546
547 /**
548  * knav_queue_close()   - close a hardware queue handle
549  * @qhandle:            - handle to close
550  */
551 void knav_queue_close(void *qhandle)
552 {
553         struct knav_queue *qh = qhandle;
554         struct knav_queue_inst *inst = qh->inst;
555
556         while (atomic_read(&qh->notifier_enabled) > 0)
557                 knav_queue_disable_notifier(qh);
558
559         mutex_lock(&knav_dev_lock);
560         list_del_rcu(&qh->list);
561         mutex_unlock(&knav_dev_lock);
562         synchronize_rcu();
563         if (!knav_queue_is_busy(inst)) {
564                 struct knav_range_info *range = inst->range;
565
566                 if (range->ops && range->ops->close_queue)
567                         range->ops->close_queue(range, inst);
568         }
569         free_percpu(qh->stats);
570         devm_kfree(inst->kdev->dev, qh);
571 }
572 EXPORT_SYMBOL_GPL(knav_queue_close);
573
574 /**
575  * knav_queue_device_control()  - Perform control operations on a queue
576  * @qhandle:                    - queue handle
577  * @cmd:                        - control commands
578  * @arg:                        - command argument
579  *
580  * Returns 0 on success, errno otherwise.
581  */
582 int knav_queue_device_control(void *qhandle, enum knav_queue_ctrl_cmd cmd,
583                                 unsigned long arg)
584 {
585         struct knav_queue *qh = qhandle;
586         struct knav_queue_notify_config *cfg;
587         int ret;
588
589         switch ((int)cmd) {
590         case KNAV_QUEUE_GET_ID:
591                 ret = qh->inst->kdev->base_id + qh->inst->id;
592                 break;
593
594         case KNAV_QUEUE_FLUSH:
595                 ret = knav_queue_flush(qh);
596                 break;
597
598         case KNAV_QUEUE_SET_NOTIFIER:
599                 cfg = (void *)arg;
600                 ret = knav_queue_set_notifier(qh, cfg);
601                 break;
602
603         case KNAV_QUEUE_ENABLE_NOTIFY:
604                 ret = knav_queue_enable_notifier(qh);
605                 break;
606
607         case KNAV_QUEUE_DISABLE_NOTIFY:
608                 ret = knav_queue_disable_notifier(qh);
609                 break;
610
611         case KNAV_QUEUE_GET_COUNT:
612                 ret = knav_queue_get_count(qh);
613                 break;
614
615         default:
616                 ret = -ENOTSUPP;
617                 break;
618         }
619         return ret;
620 }
621 EXPORT_SYMBOL_GPL(knav_queue_device_control);
622
623
624
625 /**
626  * knav_queue_push()    - push data (or descriptor) to the tail of a queue
627  * @qhandle:            - hardware queue handle
628  * @dma:                - DMA data to push
629  * @size:               - size of data to push
630  * @flags:              - can be used to pass additional information
631  *
632  * Returns 0 on success, errno otherwise.
633  */
634 int knav_queue_push(void *qhandle, dma_addr_t dma,
635                                         unsigned size, unsigned flags)
636 {
637         struct knav_queue *qh = qhandle;
638         u32 val;
639
640         val = (u32)dma | ((size / 16) - 1);
641         writel_relaxed(val, &qh->reg_push[0].ptr_size_thresh);
642
643         this_cpu_inc(qh->stats->pushes);
644         return 0;
645 }
646 EXPORT_SYMBOL_GPL(knav_queue_push);
647
648 /**
649  * knav_queue_pop()     - pop data (or descriptor) from the head of a queue
650  * @qhandle:            - hardware queue handle
651  * @size:               - (optional) size of the data pop'ed.
652  *
653  * Returns a DMA address on success, 0 on failure.
654  */
655 dma_addr_t knav_queue_pop(void *qhandle, unsigned *size)
656 {
657         struct knav_queue *qh = qhandle;
658         struct knav_queue_inst *inst = qh->inst;
659         dma_addr_t dma;
660         u32 val, idx;
661
662         /* are we accumulated? */
663         if (inst->descs) {
664                 if (unlikely(atomic_dec_return(&inst->desc_count) < 0)) {
665                         atomic_inc(&inst->desc_count);
666                         return 0;
667                 }
668                 idx  = atomic_inc_return(&inst->desc_head);
669                 idx &= ACC_DESCS_MASK;
670                 val = inst->descs[idx];
671         } else {
672                 val = readl_relaxed(&qh->reg_pop[0].ptr_size_thresh);
673                 if (unlikely(!val))
674                         return 0;
675         }
676
677         dma = val & DESC_PTR_MASK;
678         if (size)
679                 *size = ((val & DESC_SIZE_MASK) + 1) * 16;
680
681         this_cpu_inc(qh->stats->pops);
682         return dma;
683 }
684 EXPORT_SYMBOL_GPL(knav_queue_pop);
685
686 /* carve out descriptors and push into queue */
687 static void kdesc_fill_pool(struct knav_pool *pool)
688 {
689         struct knav_region *region;
690         int i;
691
692         region = pool->region;
693         pool->desc_size = region->desc_size;
694         for (i = 0; i < pool->num_desc; i++) {
695                 int index = pool->region_offset + i;
696                 dma_addr_t dma_addr;
697                 unsigned dma_size;
698                 dma_addr = region->dma_start + (region->desc_size * index);
699                 dma_size = ALIGN(pool->desc_size, SMP_CACHE_BYTES);
700                 dma_sync_single_for_device(pool->dev, dma_addr, dma_size,
701                                            DMA_TO_DEVICE);
702                 knav_queue_push(pool->queue, dma_addr, dma_size, 0);
703         }
704 }
705
706 /* pop out descriptors and close the queue */
707 static void kdesc_empty_pool(struct knav_pool *pool)
708 {
709         dma_addr_t dma;
710         unsigned size;
711         void *desc;
712         int i;
713
714         if (!pool->queue)
715                 return;
716
717         for (i = 0;; i++) {
718                 dma = knav_queue_pop(pool->queue, &size);
719                 if (!dma)
720                         break;
721                 desc = knav_pool_desc_dma_to_virt(pool, dma);
722                 if (!desc) {
723                         dev_dbg(pool->kdev->dev,
724                                 "couldn't unmap desc, continuing\n");
725                 }
726         }
727         WARN_ON(i != pool->num_desc);
728         knav_queue_close(pool->queue);
729 }
730
731
732 /* Get the DMA address of a descriptor */
733 dma_addr_t knav_pool_desc_virt_to_dma(void *ph, void *virt)
734 {
735         struct knav_pool *pool = ph;
736         return pool->region->dma_start + (virt - pool->region->virt_start);
737 }
738 EXPORT_SYMBOL_GPL(knav_pool_desc_virt_to_dma);
739
740 void *knav_pool_desc_dma_to_virt(void *ph, dma_addr_t dma)
741 {
742         struct knav_pool *pool = ph;
743         return pool->region->virt_start + (dma - pool->region->dma_start);
744 }
745 EXPORT_SYMBOL_GPL(knav_pool_desc_dma_to_virt);
746
747 /**
748  * knav_pool_create()   - Create a pool of descriptors
749  * @name:               - name to give the pool handle
750  * @num_desc:           - numbers of descriptors in the pool
751  * @region_id:          - QMSS region id from which the descriptors are to be
752  *                        allocated.
753  *
754  * Returns a pool handle on success.
755  * Use IS_ERR_OR_NULL() to identify error values on return.
756  */
757 void *knav_pool_create(const char *name,
758                                         int num_desc, int region_id)
759 {
760         struct knav_region *reg_itr, *region = NULL;
761         struct knav_pool *pool, *pi = NULL, *iter;
762         struct list_head *node;
763         unsigned last_offset;
764         int ret;
765
766         if (!kdev)
767                 return ERR_PTR(-EPROBE_DEFER);
768
769         if (!kdev->dev)
770                 return ERR_PTR(-ENODEV);
771
772         pool = devm_kzalloc(kdev->dev, sizeof(*pool), GFP_KERNEL);
773         if (!pool) {
774                 dev_err(kdev->dev, "out of memory allocating pool\n");
775                 return ERR_PTR(-ENOMEM);
776         }
777
778         for_each_region(kdev, reg_itr) {
779                 if (reg_itr->id != region_id)
780                         continue;
781                 region = reg_itr;
782                 break;
783         }
784
785         if (!region) {
786                 dev_err(kdev->dev, "region-id(%d) not found\n", region_id);
787                 ret = -EINVAL;
788                 goto err;
789         }
790
791         pool->queue = knav_queue_open(name, KNAV_QUEUE_GP, 0);
792         if (IS_ERR(pool->queue)) {
793                 dev_err(kdev->dev,
794                         "failed to open queue for pool(%s), error %ld\n",
795                         name, PTR_ERR(pool->queue));
796                 ret = PTR_ERR(pool->queue);
797                 goto err;
798         }
799
800         pool->name = kstrndup(name, KNAV_NAME_SIZE - 1, GFP_KERNEL);
801         pool->kdev = kdev;
802         pool->dev = kdev->dev;
803
804         mutex_lock(&knav_dev_lock);
805
806         if (num_desc > (region->num_desc - region->used_desc)) {
807                 dev_err(kdev->dev, "out of descs in region(%d) for pool(%s)\n",
808                         region_id, name);
809                 ret = -ENOMEM;
810                 goto err_unlock;
811         }
812
813         /* Region maintains a sorted (by region offset) list of pools
814          * use the first free slot which is large enough to accomodate
815          * the request
816          */
817         last_offset = 0;
818         node = &region->pools;
819         list_for_each_entry(iter, &region->pools, region_inst) {
820                 if ((iter->region_offset - last_offset) >= num_desc) {
821                         pi = iter;
822                         break;
823                 }
824                 last_offset = iter->region_offset + iter->num_desc;
825         }
826
827         if (pi) {
828                 node = &pi->region_inst;
829                 pool->region = region;
830                 pool->num_desc = num_desc;
831                 pool->region_offset = last_offset;
832                 region->used_desc += num_desc;
833                 list_add_tail(&pool->list, &kdev->pools);
834                 list_add_tail(&pool->region_inst, node);
835         } else {
836                 dev_err(kdev->dev, "pool(%s) create failed: fragmented desc pool in region(%d)\n",
837                         name, region_id);
838                 ret = -ENOMEM;
839                 goto err_unlock;
840         }
841
842         mutex_unlock(&knav_dev_lock);
843         kdesc_fill_pool(pool);
844         return pool;
845
846 err_unlock:
847         mutex_unlock(&knav_dev_lock);
848 err:
849         kfree(pool->name);
850         devm_kfree(kdev->dev, pool);
851         return ERR_PTR(ret);
852 }
853 EXPORT_SYMBOL_GPL(knav_pool_create);
854
855 /**
856  * knav_pool_destroy()  - Free a pool of descriptors
857  * @ph:         - pool handle
858  */
859 void knav_pool_destroy(void *ph)
860 {
861         struct knav_pool *pool = ph;
862
863         if (!pool)
864                 return;
865
866         if (!pool->region)
867                 return;
868
869         kdesc_empty_pool(pool);
870         mutex_lock(&knav_dev_lock);
871
872         pool->region->used_desc -= pool->num_desc;
873         list_del(&pool->region_inst);
874         list_del(&pool->list);
875
876         mutex_unlock(&knav_dev_lock);
877         kfree(pool->name);
878         devm_kfree(kdev->dev, pool);
879 }
880 EXPORT_SYMBOL_GPL(knav_pool_destroy);
881
882
883 /**
884  * knav_pool_desc_get() - Get a descriptor from the pool
885  * @ph:         - pool handle
886  *
887  * Returns descriptor from the pool.
888  */
889 void *knav_pool_desc_get(void *ph)
890 {
891         struct knav_pool *pool = ph;
892         dma_addr_t dma;
893         unsigned size;
894         void *data;
895
896         dma = knav_queue_pop(pool->queue, &size);
897         if (unlikely(!dma))
898                 return ERR_PTR(-ENOMEM);
899         data = knav_pool_desc_dma_to_virt(pool, dma);
900         return data;
901 }
902 EXPORT_SYMBOL_GPL(knav_pool_desc_get);
903
904 /**
905  * knav_pool_desc_put() - return a descriptor to the pool
906  * @ph:         - pool handle
907  * @desc:       - virtual address
908  */
909 void knav_pool_desc_put(void *ph, void *desc)
910 {
911         struct knav_pool *pool = ph;
912         dma_addr_t dma;
913         dma = knav_pool_desc_virt_to_dma(pool, desc);
914         knav_queue_push(pool->queue, dma, pool->region->desc_size, 0);
915 }
916 EXPORT_SYMBOL_GPL(knav_pool_desc_put);
917
918 /**
919  * knav_pool_desc_map() - Map descriptor for DMA transfer
920  * @ph:                         - pool handle
921  * @desc:                       - address of descriptor to map
922  * @size:                       - size of descriptor to map
923  * @dma:                        - DMA address return pointer
924  * @dma_sz:                     - adjusted return pointer
925  *
926  * Returns 0 on success, errno otherwise.
927  */
928 int knav_pool_desc_map(void *ph, void *desc, unsigned size,
929                                         dma_addr_t *dma, unsigned *dma_sz)
930 {
931         struct knav_pool *pool = ph;
932         *dma = knav_pool_desc_virt_to_dma(pool, desc);
933         size = min(size, pool->region->desc_size);
934         size = ALIGN(size, SMP_CACHE_BYTES);
935         *dma_sz = size;
936         dma_sync_single_for_device(pool->dev, *dma, size, DMA_TO_DEVICE);
937
938         /* Ensure the descriptor reaches to the memory */
939         __iowmb();
940
941         return 0;
942 }
943 EXPORT_SYMBOL_GPL(knav_pool_desc_map);
944
945 /**
946  * knav_pool_desc_unmap()       - Unmap descriptor after DMA transfer
947  * @ph:                         - pool handle
948  * @dma:                        - DMA address of descriptor to unmap
949  * @dma_sz:                     - size of descriptor to unmap
950  *
951  * Returns descriptor address on success, Use IS_ERR_OR_NULL() to identify
952  * error values on return.
953  */
954 void *knav_pool_desc_unmap(void *ph, dma_addr_t dma, unsigned dma_sz)
955 {
956         struct knav_pool *pool = ph;
957         unsigned desc_sz;
958         void *desc;
959
960         desc_sz = min(dma_sz, pool->region->desc_size);
961         desc = knav_pool_desc_dma_to_virt(pool, dma);
962         dma_sync_single_for_cpu(pool->dev, dma, desc_sz, DMA_FROM_DEVICE);
963         prefetch(desc);
964         return desc;
965 }
966 EXPORT_SYMBOL_GPL(knav_pool_desc_unmap);
967
968 /**
969  * knav_pool_count()    - Get the number of descriptors in pool.
970  * @ph:                 - pool handle
971  * Returns number of elements in the pool.
972  */
973 int knav_pool_count(void *ph)
974 {
975         struct knav_pool *pool = ph;
976         return knav_queue_get_count(pool->queue);
977 }
978 EXPORT_SYMBOL_GPL(knav_pool_count);
979
980 static void knav_queue_setup_region(struct knav_device *kdev,
981                                         struct knav_region *region)
982 {
983         unsigned hw_num_desc, hw_desc_size, size;
984         struct knav_reg_region __iomem  *regs;
985         struct knav_qmgr_info *qmgr;
986         struct knav_pool *pool;
987         int id = region->id;
988         struct page *page;
989
990         /* unused region? */
991         if (!region->num_desc) {
992                 dev_warn(kdev->dev, "unused region %s\n", region->name);
993                 return;
994         }
995
996         /* get hardware descriptor value */
997         hw_num_desc = ilog2(region->num_desc - 1) + 1;
998
999         /* did we force fit ourselves into nothingness? */
1000         if (region->num_desc < 32) {
1001                 region->num_desc = 0;
1002                 dev_warn(kdev->dev, "too few descriptors in region %s\n",
1003                          region->name);
1004                 return;
1005         }
1006
1007         size = region->num_desc * region->desc_size;
1008         region->virt_start = alloc_pages_exact(size, GFP_KERNEL | GFP_DMA |
1009                                                 GFP_DMA32);
1010         if (!region->virt_start) {
1011                 region->num_desc = 0;
1012                 dev_err(kdev->dev, "memory alloc failed for region %s\n",
1013                         region->name);
1014                 return;
1015         }
1016         region->virt_end = region->virt_start + size;
1017         page = virt_to_page(region->virt_start);
1018
1019         region->dma_start = dma_map_page(kdev->dev, page, 0, size,
1020                                          DMA_BIDIRECTIONAL);
1021         if (dma_mapping_error(kdev->dev, region->dma_start)) {
1022                 dev_err(kdev->dev, "dma map failed for region %s\n",
1023                         region->name);
1024                 goto fail;
1025         }
1026         region->dma_end = region->dma_start + size;
1027
1028         pool = devm_kzalloc(kdev->dev, sizeof(*pool), GFP_KERNEL);
1029         if (!pool) {
1030                 dev_err(kdev->dev, "out of memory allocating dummy pool\n");
1031                 goto fail;
1032         }
1033         pool->num_desc = 0;
1034         pool->region_offset = region->num_desc;
1035         list_add(&pool->region_inst, &region->pools);
1036
1037         dev_dbg(kdev->dev,
1038                 "region %s (%d): size:%d, link:%d@%d, dma:%pad-%pad, virt:%p-%p\n",
1039                 region->name, id, region->desc_size, region->num_desc,
1040                 region->link_index, &region->dma_start, &region->dma_end,
1041                 region->virt_start, region->virt_end);
1042
1043         hw_desc_size = (region->desc_size / 16) - 1;
1044         hw_num_desc -= 5;
1045
1046         for_each_qmgr(kdev, qmgr) {
1047                 regs = qmgr->reg_region + id;
1048                 writel_relaxed((u32)region->dma_start, &regs->base);
1049                 writel_relaxed(region->link_index, &regs->start_index);
1050                 writel_relaxed(hw_desc_size << 16 | hw_num_desc,
1051                                &regs->size_count);
1052         }
1053         return;
1054
1055 fail:
1056         if (region->dma_start)
1057                 dma_unmap_page(kdev->dev, region->dma_start, size,
1058                                 DMA_BIDIRECTIONAL);
1059         if (region->virt_start)
1060                 free_pages_exact(region->virt_start, size);
1061         region->num_desc = 0;
1062         return;
1063 }
1064
1065 static const char *knav_queue_find_name(struct device_node *node)
1066 {
1067         const char *name;
1068
1069         if (of_property_read_string(node, "label", &name) < 0)
1070                 name = node->name;
1071         if (!name)
1072                 name = "unknown";
1073         return name;
1074 }
1075
1076 static int knav_queue_setup_regions(struct knav_device *kdev,
1077                                     struct device_node *node)
1078 {
1079         struct device *dev = kdev->dev;
1080         struct device_node *regions __free(device_node) =
1081                         of_get_child_by_name(node, "descriptor-regions");
1082         struct knav_region *region;
1083         struct device_node *child;
1084         u32 temp[2];
1085         int ret;
1086
1087         if (!regions)
1088                 return dev_err_probe(dev, -ENODEV,
1089                                      "descriptor-regions not specified\n");
1090
1091         for_each_child_of_node(regions, child) {
1092                 region = devm_kzalloc(dev, sizeof(*region), GFP_KERNEL);
1093                 if (!region) {
1094                         of_node_put(child);
1095                         dev_err(dev, "out of memory allocating region\n");
1096                         return -ENOMEM;
1097                 }
1098
1099                 region->name = knav_queue_find_name(child);
1100                 of_property_read_u32(child, "id", &region->id);
1101                 ret = of_property_read_u32_array(child, "region-spec", temp, 2);
1102                 if (!ret) {
1103                         region->num_desc  = temp[0];
1104                         region->desc_size = temp[1];
1105                 } else {
1106                         dev_err(dev, "invalid region info %s\n", region->name);
1107                         devm_kfree(dev, region);
1108                         continue;
1109                 }
1110
1111                 ret = of_property_read_u32(child, "link-index",
1112                                            &region->link_index);
1113                 if (ret) {
1114                         dev_err(dev, "link index not found for %s\n",
1115                                 region->name);
1116                         devm_kfree(dev, region);
1117                         continue;
1118                 }
1119
1120                 INIT_LIST_HEAD(&region->pools);
1121                 list_add_tail(&region->list, &kdev->regions);
1122         }
1123         if (list_empty(&kdev->regions))
1124                 return dev_err_probe(dev, -ENODEV,
1125                                      "no valid region information found\n");
1126
1127         /* Next, we run through the regions and set things up */
1128         for_each_region(kdev, region)
1129                 knav_queue_setup_region(kdev, region);
1130
1131         return 0;
1132 }
1133
1134 static int knav_get_link_ram(struct knav_device *kdev,
1135                                        const char *name,
1136                                        struct knav_link_ram_block *block)
1137 {
1138         struct platform_device *pdev = to_platform_device(kdev->dev);
1139         struct device_node *node = pdev->dev.of_node;
1140         u32 temp[2];
1141
1142         /*
1143          * Note: link ram resources are specified in "entry" sized units. In
1144          * reality, although entries are ~40bits in hardware, we treat them as
1145          * 64-bit entities here.
1146          *
1147          * For example, to specify the internal link ram for Keystone-I class
1148          * devices, we would set the linkram0 resource to 0x80000-0x83fff.
1149          *
1150          * This gets a bit weird when other link rams are used.  For example,
1151          * if the range specified is 0x0c000000-0x0c003fff (i.e., 16K entries
1152          * in MSMC SRAM), the actual memory used is 0x0c000000-0x0c020000,
1153          * which accounts for 64-bits per entry, for 16K entries.
1154          */
1155         if (!of_property_read_u32_array(node, name , temp, 2)) {
1156                 if (temp[0]) {
1157                         /*
1158                          * queue_base specified => using internal or onchip
1159                          * link ram WARNING - we do not "reserve" this block
1160                          */
1161                         block->dma = (dma_addr_t)temp[0];
1162                         block->virt = NULL;
1163                         block->size = temp[1];
1164                 } else {
1165                         block->size = temp[1];
1166                         /* queue_base not specific => allocate requested size */
1167                         block->virt = dmam_alloc_coherent(kdev->dev,
1168                                                   8 * block->size, &block->dma,
1169                                                   GFP_KERNEL);
1170                         if (!block->virt) {
1171                                 dev_err(kdev->dev, "failed to alloc linkram\n");
1172                                 return -ENOMEM;
1173                         }
1174                 }
1175         } else {
1176                 return -ENODEV;
1177         }
1178         return 0;
1179 }
1180
1181 static int knav_queue_setup_link_ram(struct knav_device *kdev)
1182 {
1183         struct knav_link_ram_block *block;
1184         struct knav_qmgr_info *qmgr;
1185
1186         for_each_qmgr(kdev, qmgr) {
1187                 block = &kdev->link_rams[0];
1188                 dev_dbg(kdev->dev, "linkram0: dma:%pad, virt:%p, size:%x\n",
1189                         &block->dma, block->virt, block->size);
1190                 writel_relaxed((u32)block->dma, &qmgr->reg_config->link_ram_base0);
1191                 if (kdev->version == QMSS_66AK2G)
1192                         writel_relaxed(block->size,
1193                                        &qmgr->reg_config->link_ram_size0);
1194                 else
1195                         writel_relaxed(block->size - 1,
1196                                        &qmgr->reg_config->link_ram_size0);
1197                 block++;
1198                 if (!block->size)
1199                         continue;
1200
1201                 dev_dbg(kdev->dev, "linkram1: dma:%pad, virt:%p, size:%x\n",
1202                         &block->dma, block->virt, block->size);
1203                 writel_relaxed(block->dma, &qmgr->reg_config->link_ram_base1);
1204         }
1205
1206         return 0;
1207 }
1208
1209 static int knav_setup_queue_range(struct knav_device *kdev,
1210                                         struct device_node *node)
1211 {
1212         struct device *dev = kdev->dev;
1213         struct knav_range_info *range;
1214         struct knav_qmgr_info *qmgr;
1215         u32 temp[2], start, end, id, index;
1216         int ret, i;
1217
1218         range = devm_kzalloc(dev, sizeof(*range), GFP_KERNEL);
1219         if (!range) {
1220                 dev_err(dev, "out of memory allocating range\n");
1221                 return -ENOMEM;
1222         }
1223
1224         range->kdev = kdev;
1225         range->name = knav_queue_find_name(node);
1226         ret = of_property_read_u32_array(node, "qrange", temp, 2);
1227         if (!ret) {
1228                 range->queue_base = temp[0] - kdev->base_id;
1229                 range->num_queues = temp[1];
1230         } else {
1231                 dev_err(dev, "invalid queue range %s\n", range->name);
1232                 devm_kfree(dev, range);
1233                 return -EINVAL;
1234         }
1235
1236         for (i = 0; i < RANGE_MAX_IRQS; i++) {
1237                 struct of_phandle_args oirq;
1238
1239                 if (of_irq_parse_one(node, i, &oirq))
1240                         break;
1241
1242                 range->irqs[i].irq = irq_create_of_mapping(&oirq);
1243                 if (range->irqs[i].irq == IRQ_NONE)
1244                         break;
1245
1246                 range->num_irqs++;
1247
1248                 if (IS_ENABLED(CONFIG_SMP) && oirq.args_count == 3) {
1249                         unsigned long mask;
1250                         int bit;
1251
1252                         range->irqs[i].cpu_mask = devm_kzalloc(dev,
1253                                                                cpumask_size(), GFP_KERNEL);
1254                         if (!range->irqs[i].cpu_mask)
1255                                 return -ENOMEM;
1256
1257                         mask = (oirq.args[2] & 0x0000ff00) >> 8;
1258                         for_each_set_bit(bit, &mask, BITS_PER_LONG)
1259                                 cpumask_set_cpu(bit, range->irqs[i].cpu_mask);
1260                 }
1261         }
1262
1263         range->num_irqs = min(range->num_irqs, range->num_queues);
1264         if (range->num_irqs)
1265                 range->flags |= RANGE_HAS_IRQ;
1266
1267         if (of_property_read_bool(node, "qalloc-by-id"))
1268                 range->flags |= RANGE_RESERVED;
1269
1270         if (of_property_present(node, "accumulator")) {
1271                 ret = knav_init_acc_range(kdev, node, range);
1272                 if (ret < 0) {
1273                         devm_kfree(dev, range);
1274                         return ret;
1275                 }
1276         } else {
1277                 range->ops = &knav_gp_range_ops;
1278         }
1279
1280         /* set threshold to 1, and flush out the queues */
1281         for_each_qmgr(kdev, qmgr) {
1282                 start = max(qmgr->start_queue, range->queue_base);
1283                 end   = min(qmgr->start_queue + qmgr->num_queues,
1284                             range->queue_base + range->num_queues);
1285                 for (id = start; id < end; id++) {
1286                         index = id - qmgr->start_queue;
1287                         writel_relaxed(THRESH_GTE | 1,
1288                                        &qmgr->reg_peek[index].ptr_size_thresh);
1289                         writel_relaxed(0,
1290                                        &qmgr->reg_push[index].ptr_size_thresh);
1291                 }
1292         }
1293
1294         list_add_tail(&range->list, &kdev->queue_ranges);
1295         dev_dbg(dev, "added range %s: %d-%d, %d irqs%s%s%s\n",
1296                 range->name, range->queue_base,
1297                 range->queue_base + range->num_queues - 1,
1298                 range->num_irqs,
1299                 (range->flags & RANGE_HAS_IRQ) ? ", has irq" : "",
1300                 (range->flags & RANGE_RESERVED) ? ", reserved" : "",
1301                 (range->flags & RANGE_HAS_ACCUMULATOR) ? ", acc" : "");
1302         kdev->num_queues_in_use += range->num_queues;
1303         return 0;
1304 }
1305
1306 static int knav_setup_queue_pools(struct knav_device *kdev,
1307                                   struct device_node *node)
1308 {
1309         struct device_node *queue_pools __free(device_node) =
1310                         of_get_child_by_name(node, "queue-pools");
1311         struct device_node *type, *range;
1312
1313         if (!queue_pools)
1314                 return dev_err_probe(kdev->dev, -ENODEV,
1315                                      "queue-pools not specified\n");
1316
1317         for_each_child_of_node(queue_pools, type) {
1318                 for_each_child_of_node(type, range) {
1319                         /* return value ignored, we init the rest... */
1320                         knav_setup_queue_range(kdev, range);
1321                 }
1322         }
1323
1324         /* ... and barf if they all failed! */
1325         if (list_empty(&kdev->queue_ranges))
1326                 return dev_err_probe(kdev->dev, -ENODEV,
1327                                      "no valid queue range found\n");
1328         return 0;
1329 }
1330
1331 static void knav_free_queue_range(struct knav_device *kdev,
1332                                   struct knav_range_info *range)
1333 {
1334         if (range->ops && range->ops->free_range)
1335                 range->ops->free_range(range);
1336         list_del(&range->list);
1337         devm_kfree(kdev->dev, range);
1338 }
1339
1340 static void knav_free_queue_ranges(struct knav_device *kdev)
1341 {
1342         struct knav_range_info *range;
1343
1344         for (;;) {
1345                 range = first_queue_range(kdev);
1346                 if (!range)
1347                         break;
1348                 knav_free_queue_range(kdev, range);
1349         }
1350 }
1351
1352 static void knav_queue_free_regions(struct knav_device *kdev)
1353 {
1354         struct knav_region *region;
1355         struct knav_pool *pool, *tmp;
1356         unsigned size;
1357
1358         for (;;) {
1359                 region = first_region(kdev);
1360                 if (!region)
1361                         break;
1362                 list_for_each_entry_safe(pool, tmp, &region->pools, region_inst)
1363                         knav_pool_destroy(pool);
1364
1365                 size = region->virt_end - region->virt_start;
1366                 if (size)
1367                         free_pages_exact(region->virt_start, size);
1368                 list_del(&region->list);
1369                 devm_kfree(kdev->dev, region);
1370         }
1371 }
1372
1373 static void __iomem *knav_queue_map_reg(struct knav_device *kdev,
1374                                         struct device_node *node, int index)
1375 {
1376         struct resource res;
1377         void __iomem *regs;
1378         int ret;
1379
1380         ret = of_address_to_resource(node, index, &res);
1381         if (ret) {
1382                 dev_err(kdev->dev, "Can't translate of node(%pOFn) address for index(%d)\n",
1383                         node, index);
1384                 return ERR_PTR(ret);
1385         }
1386
1387         regs = devm_ioremap_resource(kdev->dev, &res);
1388         if (IS_ERR(regs))
1389                 dev_err(kdev->dev, "Failed to map register base for index(%d) node(%pOFn)\n",
1390                         index, node);
1391         return regs;
1392 }
1393
1394 static int knav_queue_init_qmgrs(struct knav_device *kdev,
1395                                  struct device_node *node)
1396 {
1397         struct device *dev = kdev->dev;
1398         struct device_node *qmgrs __free(device_node) =
1399                         of_get_child_by_name(node, "qmgrs");
1400         struct knav_qmgr_info *qmgr;
1401         struct device_node *child;
1402         u32 temp[2];
1403         int ret;
1404
1405         if (!qmgrs)
1406                 return dev_err_probe(dev, -ENODEV,
1407                                      "queue manager info not specified\n");
1408
1409         for_each_child_of_node(qmgrs, child) {
1410                 qmgr = devm_kzalloc(dev, sizeof(*qmgr), GFP_KERNEL);
1411                 if (!qmgr) {
1412                         of_node_put(child);
1413                         dev_err(dev, "out of memory allocating qmgr\n");
1414                         return -ENOMEM;
1415                 }
1416
1417                 ret = of_property_read_u32_array(child, "managed-queues",
1418                                                  temp, 2);
1419                 if (!ret) {
1420                         qmgr->start_queue = temp[0];
1421                         qmgr->num_queues = temp[1];
1422                 } else {
1423                         dev_err(dev, "invalid qmgr queue range\n");
1424                         devm_kfree(dev, qmgr);
1425                         continue;
1426                 }
1427
1428                 dev_info(dev, "qmgr start queue %d, number of queues %d\n",
1429                          qmgr->start_queue, qmgr->num_queues);
1430
1431                 qmgr->reg_peek =
1432                         knav_queue_map_reg(kdev, child,
1433                                            KNAV_QUEUE_PEEK_REG_INDEX);
1434
1435                 if (kdev->version == QMSS) {
1436                         qmgr->reg_status =
1437                                 knav_queue_map_reg(kdev, child,
1438                                                    KNAV_QUEUE_STATUS_REG_INDEX);
1439                 }
1440
1441                 qmgr->reg_config =
1442                         knav_queue_map_reg(kdev, child,
1443                                            (kdev->version == QMSS_66AK2G) ?
1444                                            KNAV_L_QUEUE_CONFIG_REG_INDEX :
1445                                            KNAV_QUEUE_CONFIG_REG_INDEX);
1446                 qmgr->reg_region =
1447                         knav_queue_map_reg(kdev, child,
1448                                            (kdev->version == QMSS_66AK2G) ?
1449                                            KNAV_L_QUEUE_REGION_REG_INDEX :
1450                                            KNAV_QUEUE_REGION_REG_INDEX);
1451
1452                 qmgr->reg_push =
1453                         knav_queue_map_reg(kdev, child,
1454                                            (kdev->version == QMSS_66AK2G) ?
1455                                             KNAV_L_QUEUE_PUSH_REG_INDEX :
1456                                             KNAV_QUEUE_PUSH_REG_INDEX);
1457
1458                 if (kdev->version == QMSS) {
1459                         qmgr->reg_pop =
1460                                 knav_queue_map_reg(kdev, child,
1461                                                    KNAV_QUEUE_POP_REG_INDEX);
1462                 }
1463
1464                 if (IS_ERR(qmgr->reg_peek) ||
1465                     ((kdev->version == QMSS) &&
1466                     (IS_ERR(qmgr->reg_status) || IS_ERR(qmgr->reg_pop))) ||
1467                     IS_ERR(qmgr->reg_config) || IS_ERR(qmgr->reg_region) ||
1468                     IS_ERR(qmgr->reg_push)) {
1469                         dev_err(dev, "failed to map qmgr regs\n");
1470                         if (kdev->version == QMSS) {
1471                                 if (!IS_ERR(qmgr->reg_status))
1472                                         devm_iounmap(dev, qmgr->reg_status);
1473                                 if (!IS_ERR(qmgr->reg_pop))
1474                                         devm_iounmap(dev, qmgr->reg_pop);
1475                         }
1476                         if (!IS_ERR(qmgr->reg_peek))
1477                                 devm_iounmap(dev, qmgr->reg_peek);
1478                         if (!IS_ERR(qmgr->reg_config))
1479                                 devm_iounmap(dev, qmgr->reg_config);
1480                         if (!IS_ERR(qmgr->reg_region))
1481                                 devm_iounmap(dev, qmgr->reg_region);
1482                         if (!IS_ERR(qmgr->reg_push))
1483                                 devm_iounmap(dev, qmgr->reg_push);
1484                         devm_kfree(dev, qmgr);
1485                         continue;
1486                 }
1487
1488                 /* Use same push register for pop as well */
1489                 if (kdev->version == QMSS_66AK2G)
1490                         qmgr->reg_pop = qmgr->reg_push;
1491
1492                 list_add_tail(&qmgr->list, &kdev->qmgrs);
1493                 dev_info(dev, "added qmgr start queue %d, num of queues %d, reg_peek %p, reg_status %p, reg_config %p, reg_region %p, reg_push %p, reg_pop %p\n",
1494                          qmgr->start_queue, qmgr->num_queues,
1495                          qmgr->reg_peek, qmgr->reg_status,
1496                          qmgr->reg_config, qmgr->reg_region,
1497                          qmgr->reg_push, qmgr->reg_pop);
1498         }
1499         return 0;
1500 }
1501
1502 static int knav_queue_init_pdsps(struct knav_device *kdev,
1503                                         struct device_node *pdsps)
1504 {
1505         struct device *dev = kdev->dev;
1506         struct knav_pdsp_info *pdsp;
1507         struct device_node *child;
1508
1509         for_each_child_of_node(pdsps, child) {
1510                 pdsp = devm_kzalloc(dev, sizeof(*pdsp), GFP_KERNEL);
1511                 if (!pdsp) {
1512                         of_node_put(child);
1513                         dev_err(dev, "out of memory allocating pdsp\n");
1514                         return -ENOMEM;
1515                 }
1516                 pdsp->name = knav_queue_find_name(child);
1517                 pdsp->iram =
1518                         knav_queue_map_reg(kdev, child,
1519                                            KNAV_QUEUE_PDSP_IRAM_REG_INDEX);
1520                 pdsp->regs =
1521                         knav_queue_map_reg(kdev, child,
1522                                            KNAV_QUEUE_PDSP_REGS_REG_INDEX);
1523                 pdsp->intd =
1524                         knav_queue_map_reg(kdev, child,
1525                                            KNAV_QUEUE_PDSP_INTD_REG_INDEX);
1526                 pdsp->command =
1527                         knav_queue_map_reg(kdev, child,
1528                                            KNAV_QUEUE_PDSP_CMD_REG_INDEX);
1529
1530                 if (IS_ERR(pdsp->command) || IS_ERR(pdsp->iram) ||
1531                     IS_ERR(pdsp->regs) || IS_ERR(pdsp->intd)) {
1532                         dev_err(dev, "failed to map pdsp %s regs\n",
1533                                 pdsp->name);
1534                         if (!IS_ERR(pdsp->command))
1535                                 devm_iounmap(dev, pdsp->command);
1536                         if (!IS_ERR(pdsp->iram))
1537                                 devm_iounmap(dev, pdsp->iram);
1538                         if (!IS_ERR(pdsp->regs))
1539                                 devm_iounmap(dev, pdsp->regs);
1540                         if (!IS_ERR(pdsp->intd))
1541                                 devm_iounmap(dev, pdsp->intd);
1542                         devm_kfree(dev, pdsp);
1543                         continue;
1544                 }
1545                 of_property_read_u32(child, "id", &pdsp->id);
1546                 list_add_tail(&pdsp->list, &kdev->pdsps);
1547                 dev_dbg(dev, "added pdsp %s: command %p, iram %p, regs %p, intd %p\n",
1548                         pdsp->name, pdsp->command, pdsp->iram, pdsp->regs,
1549                         pdsp->intd);
1550         }
1551         return 0;
1552 }
1553
1554 static int knav_queue_stop_pdsp(struct knav_device *kdev,
1555                           struct knav_pdsp_info *pdsp)
1556 {
1557         u32 val, timeout = 1000;
1558         int ret;
1559
1560         val = readl_relaxed(&pdsp->regs->control) & ~PDSP_CTRL_ENABLE;
1561         writel_relaxed(val, &pdsp->regs->control);
1562         ret = knav_queue_pdsp_wait(&pdsp->regs->control, timeout,
1563                                         PDSP_CTRL_RUNNING);
1564         if (ret < 0) {
1565                 dev_err(kdev->dev, "timed out on pdsp %s stop\n", pdsp->name);
1566                 return ret;
1567         }
1568         pdsp->loaded = false;
1569         pdsp->started = false;
1570         return 0;
1571 }
1572
1573 static int knav_queue_load_pdsp(struct knav_device *kdev,
1574                           struct knav_pdsp_info *pdsp)
1575 {
1576         int i, ret, fwlen;
1577         const struct firmware *fw;
1578         bool found = false;
1579         u32 *fwdata;
1580
1581         for (i = 0; i < ARRAY_SIZE(knav_acc_firmwares); i++) {
1582                 if (knav_acc_firmwares[i]) {
1583                         ret = request_firmware_direct(&fw,
1584                                                       knav_acc_firmwares[i],
1585                                                       kdev->dev);
1586                         if (!ret) {
1587                                 found = true;
1588                                 break;
1589                         }
1590                 }
1591         }
1592
1593         if (!found) {
1594                 dev_err(kdev->dev, "failed to get firmware for pdsp\n");
1595                 return -ENODEV;
1596         }
1597
1598         dev_info(kdev->dev, "firmware file %s downloaded for PDSP\n",
1599                  knav_acc_firmwares[i]);
1600
1601         writel_relaxed(pdsp->id + 1, pdsp->command + 0x18);
1602         /* download the firmware */
1603         fwdata = (u32 *)fw->data;
1604         fwlen = (fw->size + sizeof(u32) - 1) / sizeof(u32);
1605         for (i = 0; i < fwlen; i++)
1606                 writel_relaxed(be32_to_cpu(fwdata[i]), pdsp->iram + i);
1607
1608         release_firmware(fw);
1609         return 0;
1610 }
1611
1612 static int knav_queue_start_pdsp(struct knav_device *kdev,
1613                            struct knav_pdsp_info *pdsp)
1614 {
1615         u32 val, timeout = 1000;
1616         int ret;
1617
1618         /* write a command for sync */
1619         writel_relaxed(0xffffffff, pdsp->command);
1620         while (readl_relaxed(pdsp->command) != 0xffffffff)
1621                 cpu_relax();
1622
1623         /* soft reset the PDSP */
1624         val  = readl_relaxed(&pdsp->regs->control);
1625         val &= ~(PDSP_CTRL_PC_MASK | PDSP_CTRL_SOFT_RESET);
1626         writel_relaxed(val, &pdsp->regs->control);
1627
1628         /* enable pdsp */
1629         val = readl_relaxed(&pdsp->regs->control) | PDSP_CTRL_ENABLE;
1630         writel_relaxed(val, &pdsp->regs->control);
1631
1632         /* wait for command register to clear */
1633         ret = knav_queue_pdsp_wait(pdsp->command, timeout, 0);
1634         if (ret < 0) {
1635                 dev_err(kdev->dev,
1636                         "timed out on pdsp %s command register wait\n",
1637                         pdsp->name);
1638                 return ret;
1639         }
1640         return 0;
1641 }
1642
1643 static void knav_queue_stop_pdsps(struct knav_device *kdev)
1644 {
1645         struct knav_pdsp_info *pdsp;
1646
1647         /* disable all pdsps */
1648         for_each_pdsp(kdev, pdsp)
1649                 knav_queue_stop_pdsp(kdev, pdsp);
1650 }
1651
1652 static int knav_queue_start_pdsps(struct knav_device *kdev)
1653 {
1654         struct knav_pdsp_info *pdsp;
1655         int ret;
1656
1657         knav_queue_stop_pdsps(kdev);
1658         /* now load them all. We return success even if pdsp
1659          * is not loaded as acc channels are optional on having
1660          * firmware availability in the system. We set the loaded
1661          * and stated flag and when initialize the acc range, check
1662          * it and init the range only if pdsp is started.
1663          */
1664         for_each_pdsp(kdev, pdsp) {
1665                 ret = knav_queue_load_pdsp(kdev, pdsp);
1666                 if (!ret)
1667                         pdsp->loaded = true;
1668         }
1669
1670         for_each_pdsp(kdev, pdsp) {
1671                 if (pdsp->loaded) {
1672                         ret = knav_queue_start_pdsp(kdev, pdsp);
1673                         if (!ret)
1674                                 pdsp->started = true;
1675                 }
1676         }
1677         return 0;
1678 }
1679
1680 static int knav_queue_setup_pdsps(struct knav_device *kdev,
1681                                   struct device_node *node)
1682 {
1683         struct device_node *pdsps __free(device_node) =
1684                         of_get_child_by_name(node, "pdsps");
1685
1686         if (pdsps) {
1687                 int ret;
1688
1689                 ret = knav_queue_init_pdsps(kdev, pdsps);
1690                 if (ret)
1691                         return ret;
1692
1693                 ret = knav_queue_start_pdsps(kdev);
1694                 if (ret)
1695                         return ret;
1696         }
1697         return 0;
1698 }
1699
1700 static inline struct knav_qmgr_info *knav_find_qmgr(unsigned id)
1701 {
1702         struct knav_qmgr_info *qmgr;
1703
1704         for_each_qmgr(kdev, qmgr) {
1705                 if ((id >= qmgr->start_queue) &&
1706                     (id < qmgr->start_queue + qmgr->num_queues))
1707                         return qmgr;
1708         }
1709         return NULL;
1710 }
1711
1712 static int knav_queue_init_queue(struct knav_device *kdev,
1713                                         struct knav_range_info *range,
1714                                         struct knav_queue_inst *inst,
1715                                         unsigned id)
1716 {
1717         char irq_name[KNAV_NAME_SIZE];
1718         inst->qmgr = knav_find_qmgr(id);
1719         if (!inst->qmgr)
1720                 return -1;
1721
1722         INIT_LIST_HEAD(&inst->handles);
1723         inst->kdev = kdev;
1724         inst->range = range;
1725         inst->irq_num = -1;
1726         inst->id = id;
1727         scnprintf(irq_name, sizeof(irq_name), "hwqueue-%d", id);
1728         inst->irq_name = kstrndup(irq_name, sizeof(irq_name), GFP_KERNEL);
1729
1730         if (range->ops && range->ops->init_queue)
1731                 return range->ops->init_queue(range, inst);
1732         else
1733                 return 0;
1734 }
1735
1736 static int knav_queue_init_queues(struct knav_device *kdev)
1737 {
1738         struct knav_range_info *range;
1739         int size, id, base_idx;
1740         int idx = 0, ret = 0;
1741
1742         /* how much do we need for instance data? */
1743         size = sizeof(struct knav_queue_inst);
1744
1745         /* round this up to a power of 2, keep the index to instance
1746          * arithmetic fast.
1747          * */
1748         kdev->inst_shift = order_base_2(size);
1749         size = (1 << kdev->inst_shift) * kdev->num_queues_in_use;
1750         kdev->instances = devm_kzalloc(kdev->dev, size, GFP_KERNEL);
1751         if (!kdev->instances)
1752                 return -ENOMEM;
1753
1754         for_each_queue_range(kdev, range) {
1755                 if (range->ops && range->ops->init_range)
1756                         range->ops->init_range(range);
1757                 base_idx = idx;
1758                 for (id = range->queue_base;
1759                      id < range->queue_base + range->num_queues; id++, idx++) {
1760                         ret = knav_queue_init_queue(kdev, range,
1761                                         knav_queue_idx_to_inst(kdev, idx), id);
1762                         if (ret < 0)
1763                                 return ret;
1764                 }
1765                 range->queue_base_inst =
1766                         knav_queue_idx_to_inst(kdev, base_idx);
1767         }
1768         return 0;
1769 }
1770
1771 /* Match table for of_platform binding */
1772 static const struct of_device_id keystone_qmss_of_match[] = {
1773         {
1774                 .compatible = "ti,keystone-navigator-qmss",
1775         },
1776         {
1777                 .compatible = "ti,66ak2g-navss-qm",
1778                 .data   = (void *)QMSS_66AK2G,
1779         },
1780         {},
1781 };
1782 MODULE_DEVICE_TABLE(of, keystone_qmss_of_match);
1783
1784 static int knav_queue_probe(struct platform_device *pdev)
1785 {
1786         struct device_node *node = pdev->dev.of_node;
1787         struct device *dev = &pdev->dev;
1788         u32 temp[2];
1789         int ret;
1790
1791         if (!node) {
1792                 dev_err(dev, "device tree info unavailable\n");
1793                 return -ENODEV;
1794         }
1795
1796         kdev = devm_kzalloc(dev, sizeof(struct knav_device), GFP_KERNEL);
1797         if (!kdev) {
1798                 dev_err(dev, "memory allocation failed\n");
1799                 return -ENOMEM;
1800         }
1801
1802         if (device_get_match_data(dev))
1803                 kdev->version = QMSS_66AK2G;
1804
1805         platform_set_drvdata(pdev, kdev);
1806         kdev->dev = dev;
1807         INIT_LIST_HEAD(&kdev->queue_ranges);
1808         INIT_LIST_HEAD(&kdev->qmgrs);
1809         INIT_LIST_HEAD(&kdev->pools);
1810         INIT_LIST_HEAD(&kdev->regions);
1811         INIT_LIST_HEAD(&kdev->pdsps);
1812
1813         pm_runtime_enable(&pdev->dev);
1814         ret = pm_runtime_resume_and_get(&pdev->dev);
1815         if (ret < 0) {
1816                 pm_runtime_disable(&pdev->dev);
1817                 dev_err(dev, "Failed to enable QMSS\n");
1818                 return ret;
1819         }
1820
1821         if (of_property_read_u32_array(node, "queue-range", temp, 2)) {
1822                 dev_err(dev, "queue-range not specified\n");
1823                 ret = -ENODEV;
1824                 goto err;
1825         }
1826         kdev->base_id    = temp[0];
1827         kdev->num_queues = temp[1];
1828
1829         /* Initialize queue managers using device tree configuration */
1830         ret = knav_queue_init_qmgrs(kdev, node);
1831         if (ret)
1832                 goto err;
1833
1834         /* get pdsp configuration values from device tree */
1835         ret = knav_queue_setup_pdsps(kdev, node);
1836         if (ret)
1837                 goto err;
1838
1839         /* get usable queue range values from device tree */
1840         ret = knav_setup_queue_pools(kdev, node);
1841         if (ret)
1842                 goto err;
1843
1844         ret = knav_get_link_ram(kdev, "linkram0", &kdev->link_rams[0]);
1845         if (ret) {
1846                 dev_err(kdev->dev, "could not setup linking ram\n");
1847                 goto err;
1848         }
1849
1850         ret = knav_get_link_ram(kdev, "linkram1", &kdev->link_rams[1]);
1851         if (ret) {
1852                 /*
1853                  * nothing really, we have one linking ram already, so we just
1854                  * live within our means
1855                  */
1856         }
1857
1858         ret = knav_queue_setup_link_ram(kdev);
1859         if (ret)
1860                 goto err;
1861
1862         ret = knav_queue_setup_regions(kdev, node);
1863         if (ret)
1864                 goto err;
1865
1866         ret = knav_queue_init_queues(kdev);
1867         if (ret < 0) {
1868                 dev_err(dev, "hwqueue initialization failed\n");
1869                 goto err;
1870         }
1871
1872         debugfs_create_file("qmss", S_IFREG | S_IRUGO, NULL, NULL,
1873                             &knav_queue_debug_fops);
1874         device_ready = true;
1875         return 0;
1876
1877 err:
1878         knav_queue_stop_pdsps(kdev);
1879         knav_queue_free_regions(kdev);
1880         knav_free_queue_ranges(kdev);
1881         pm_runtime_put_sync(&pdev->dev);
1882         pm_runtime_disable(&pdev->dev);
1883         return ret;
1884 }
1885
1886 static void knav_queue_remove(struct platform_device *pdev)
1887 {
1888         /* TODO: Free resources */
1889         pm_runtime_put_sync(&pdev->dev);
1890         pm_runtime_disable(&pdev->dev);
1891 }
1892
1893 static struct platform_driver keystone_qmss_driver = {
1894         .probe          = knav_queue_probe,
1895         .remove         = knav_queue_remove,
1896         .driver         = {
1897                 .name   = "keystone-navigator-qmss",
1898                 .of_match_table = keystone_qmss_of_match,
1899         },
1900 };
1901 module_platform_driver(keystone_qmss_driver);
1902
1903 MODULE_LICENSE("GPL v2");
1904 MODULE_DESCRIPTION("TI QMSS driver for Keystone SOCs");
1905 MODULE_AUTHOR("Sandeep Nair <[email protected]>");
1906 MODULE_AUTHOR("Santosh Shilimkar <[email protected]>");
This page took 0.136613 seconds and 4 git commands to generate.