1 // SPDX-License-Identifier: GPL-2.0+
3 * Renesas RZ/N1 Real Time Clock interface for Linux
6 * - 2014 Renesas Electronics Europe Limited
7 * - 2022 Schneider Electric
14 #include <linux/bcd.h>
15 #include <linux/init.h>
16 #include <linux/iopoll.h>
17 #include <linux/module.h>
18 #include <linux/mod_devicetable.h>
19 #include <linux/platform_device.h>
20 #include <linux/pm_runtime.h>
21 #include <linux/rtc.h>
23 #define RZN1_RTC_CTL0 0x00
24 #define RZN1_RTC_CTL0_SLSB_SUBU 0
25 #define RZN1_RTC_CTL0_SLSB_SCMP BIT(4)
26 #define RZN1_RTC_CTL0_AMPM BIT(5)
27 #define RZN1_RTC_CTL0_CE BIT(7)
29 #define RZN1_RTC_CTL1 0x04
30 #define RZN1_RTC_CTL1_ALME BIT(4)
32 #define RZN1_RTC_CTL2 0x08
33 #define RZN1_RTC_CTL2_WAIT BIT(0)
34 #define RZN1_RTC_CTL2_WST BIT(1)
35 #define RZN1_RTC_CTL2_WUST BIT(5)
36 #define RZN1_RTC_CTL2_STOPPED (RZN1_RTC_CTL2_WAIT | RZN1_RTC_CTL2_WST)
38 #define RZN1_RTC_TIME 0x30
39 #define RZN1_RTC_TIME_MIN_SHIFT 8
40 #define RZN1_RTC_TIME_HOUR_SHIFT 16
41 #define RZN1_RTC_CAL 0x34
42 #define RZN1_RTC_CAL_DAY_SHIFT 8
43 #define RZN1_RTC_CAL_MON_SHIFT 16
44 #define RZN1_RTC_CAL_YEAR_SHIFT 24
46 #define RZN1_RTC_SUBU 0x38
47 #define RZN1_RTC_SUBU_DEV BIT(7)
48 #define RZN1_RTC_SUBU_DECR BIT(6)
50 #define RZN1_RTC_ALM 0x40
51 #define RZN1_RTC_ALH 0x44
52 #define RZN1_RTC_ALW 0x48
54 #define RZN1_RTC_SECC 0x4c
55 #define RZN1_RTC_TIMEC 0x68
56 #define RZN1_RTC_CALC 0x6c
59 struct rtc_device *rtcdev;
63 static void rzn1_rtc_get_time_snapshot(struct rzn1_rtc *rtc, struct rtc_time *tm)
67 val = readl(rtc->base + RZN1_RTC_TIMEC);
68 tm->tm_sec = bcd2bin(val);
69 tm->tm_min = bcd2bin(val >> RZN1_RTC_TIME_MIN_SHIFT);
70 tm->tm_hour = bcd2bin(val >> RZN1_RTC_TIME_HOUR_SHIFT);
72 val = readl(rtc->base + RZN1_RTC_CALC);
73 tm->tm_wday = val & 0x0f;
74 tm->tm_mday = bcd2bin(val >> RZN1_RTC_CAL_DAY_SHIFT);
75 tm->tm_mon = bcd2bin(val >> RZN1_RTC_CAL_MON_SHIFT) - 1;
76 tm->tm_year = bcd2bin(val >> RZN1_RTC_CAL_YEAR_SHIFT) + 100;
79 static int rzn1_rtc_read_time(struct device *dev, struct rtc_time *tm)
81 struct rzn1_rtc *rtc = dev_get_drvdata(dev);
85 * The RTC was not started or is stopped and thus does not carry the
88 val = readl(rtc->base + RZN1_RTC_CTL2);
89 if (val & RZN1_RTC_CTL2_STOPPED)
92 rzn1_rtc_get_time_snapshot(rtc, tm);
93 secs = readl(rtc->base + RZN1_RTC_SECC);
94 if (tm->tm_sec != bcd2bin(secs))
95 rzn1_rtc_get_time_snapshot(rtc, tm);
100 static int rzn1_rtc_set_time(struct device *dev, struct rtc_time *tm)
102 struct rzn1_rtc *rtc = dev_get_drvdata(dev);
106 val = readl(rtc->base + RZN1_RTC_CTL2);
107 if (!(val & RZN1_RTC_CTL2_STOPPED)) {
108 /* Hold the counter if it was counting up */
109 writel(RZN1_RTC_CTL2_WAIT, rtc->base + RZN1_RTC_CTL2);
111 /* Wait for the counter to stop: two 32k clock cycles */
112 usleep_range(61, 100);
113 ret = readl_poll_timeout(rtc->base + RZN1_RTC_CTL2, val,
114 val & RZN1_RTC_CTL2_WST, 0, 100);
119 val = bin2bcd(tm->tm_sec);
120 val |= bin2bcd(tm->tm_min) << RZN1_RTC_TIME_MIN_SHIFT;
121 val |= bin2bcd(tm->tm_hour) << RZN1_RTC_TIME_HOUR_SHIFT;
122 writel(val, rtc->base + RZN1_RTC_TIME);
125 val |= bin2bcd(tm->tm_mday) << RZN1_RTC_CAL_DAY_SHIFT;
126 val |= bin2bcd(tm->tm_mon + 1) << RZN1_RTC_CAL_MON_SHIFT;
127 val |= bin2bcd(tm->tm_year - 100) << RZN1_RTC_CAL_YEAR_SHIFT;
128 writel(val, rtc->base + RZN1_RTC_CAL);
130 writel(0, rtc->base + RZN1_RTC_CTL2);
135 static irqreturn_t rzn1_rtc_alarm_irq(int irq, void *dev_id)
137 struct rzn1_rtc *rtc = dev_id;
139 rtc_update_irq(rtc->rtcdev, 1, RTC_AF | RTC_IRQF);
144 static int rzn1_rtc_alarm_irq_enable(struct device *dev, unsigned int enable)
146 struct rzn1_rtc *rtc = dev_get_drvdata(dev);
147 u32 ctl1 = readl(rtc->base + RZN1_RTC_CTL1);
150 ctl1 |= RZN1_RTC_CTL1_ALME;
152 ctl1 &= ~RZN1_RTC_CTL1_ALME;
154 writel(ctl1, rtc->base + RZN1_RTC_CTL1);
159 static int rzn1_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
161 struct rzn1_rtc *rtc = dev_get_drvdata(dev);
162 struct rtc_time *tm = &alrm->time;
163 unsigned int min, hour, wday, delta_days;
168 ret = rzn1_rtc_read_time(dev, tm);
172 min = readl(rtc->base + RZN1_RTC_ALM);
173 hour = readl(rtc->base + RZN1_RTC_ALH);
174 wday = readl(rtc->base + RZN1_RTC_ALW);
177 tm->tm_min = bcd2bin(min);
178 tm->tm_hour = bcd2bin(hour);
179 delta_days = ((fls(wday) - 1) - tm->tm_wday + 7) % 7;
180 tm->tm_wday = fls(wday) - 1;
183 alarm = rtc_tm_to_time64(tm) + (delta_days * 86400);
184 rtc_time64_to_tm(alarm, tm);
187 ctl1 = readl(rtc->base + RZN1_RTC_CTL1);
188 alrm->enabled = !!(ctl1 & RZN1_RTC_CTL1_ALME);
193 static int rzn1_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
195 struct rzn1_rtc *rtc = dev_get_drvdata(dev);
196 struct rtc_time *tm = &alrm->time, tm_now;
197 unsigned long alarm, farest;
198 unsigned int days_ahead, wday;
201 ret = rzn1_rtc_read_time(dev, &tm_now);
205 /* We cannot set alarms more than one week ahead */
206 farest = rtc_tm_to_time64(&tm_now) + rtc->rtcdev->alarm_offset_max;
207 alarm = rtc_tm_to_time64(tm);
208 if (time_after(alarm, farest))
211 /* Convert alarm day into week day */
212 days_ahead = tm->tm_mday - tm_now.tm_mday;
213 wday = (tm_now.tm_wday + days_ahead) % 7;
215 writel(bin2bcd(tm->tm_min), rtc->base + RZN1_RTC_ALM);
216 writel(bin2bcd(tm->tm_hour), rtc->base + RZN1_RTC_ALH);
217 writel(BIT(wday), rtc->base + RZN1_RTC_ALW);
219 rzn1_rtc_alarm_irq_enable(dev, alrm->enabled);
224 static int rzn1_rtc_read_offset(struct device *dev, long *offset)
226 struct rzn1_rtc *rtc = dev_get_drvdata(dev);
227 unsigned int ppb_per_step;
231 val = readl(rtc->base + RZN1_RTC_SUBU);
232 ppb_per_step = val & RZN1_RTC_SUBU_DEV ? 1017 : 3051;
233 subtract = val & RZN1_RTC_SUBU_DECR;
239 *offset = -(((~val) & 0x3F) + 1) * ppb_per_step;
241 *offset = (val - 1) * ppb_per_step;
246 static int rzn1_rtc_set_offset(struct device *dev, long offset)
248 struct rzn1_rtc *rtc = dev_get_drvdata(dev);
249 int stepsh, stepsl, steps;
254 * Check which resolution mode (every 20 or 60s) can be used.
255 * Between 2 and 124 clock pulses can be added or substracted.
257 * In 20s mode, the minimum resolution is 2 / (32768 * 20) which is
258 * close to 3051 ppb. In 60s mode, the resolution is closer to 1017.
260 stepsh = DIV_ROUND_CLOSEST(offset, 1017);
261 stepsl = DIV_ROUND_CLOSEST(offset, 3051);
263 if (stepsh >= -0x3E && stepsh <= 0x3E) {
264 /* 1017 ppb per step */
266 subu |= RZN1_RTC_SUBU_DEV;
267 } else if (stepsl >= -0x3E && stepsl <= 0x3E) {
268 /* 3051 ppb per step */
280 subu |= RZN1_RTC_SUBU_DECR;
281 subu |= (~(-steps - 1)) & 0x3F;
284 ret = readl_poll_timeout(rtc->base + RZN1_RTC_CTL2, ctl2,
285 !(ctl2 & RZN1_RTC_CTL2_WUST), 100, 2000000);
289 writel(subu, rtc->base + RZN1_RTC_SUBU);
294 static const struct rtc_class_ops rzn1_rtc_ops = {
295 .read_time = rzn1_rtc_read_time,
296 .set_time = rzn1_rtc_set_time,
297 .read_alarm = rzn1_rtc_read_alarm,
298 .set_alarm = rzn1_rtc_set_alarm,
299 .alarm_irq_enable = rzn1_rtc_alarm_irq_enable,
300 .read_offset = rzn1_rtc_read_offset,
301 .set_offset = rzn1_rtc_set_offset,
304 static int rzn1_rtc_probe(struct platform_device *pdev)
306 struct rzn1_rtc *rtc;
310 rtc = devm_kzalloc(&pdev->dev, sizeof(*rtc), GFP_KERNEL);
314 platform_set_drvdata(pdev, rtc);
316 rtc->base = devm_platform_ioremap_resource(pdev, 0);
317 if (IS_ERR(rtc->base))
318 return dev_err_probe(&pdev->dev, PTR_ERR(rtc->base), "Missing reg\n");
320 alarm_irq = platform_get_irq(pdev, 0);
324 rtc->rtcdev = devm_rtc_allocate_device(&pdev->dev);
325 if (IS_ERR(rtc->rtcdev))
326 return PTR_ERR(rtc->rtcdev);
328 rtc->rtcdev->range_min = RTC_TIMESTAMP_BEGIN_2000;
329 rtc->rtcdev->range_max = RTC_TIMESTAMP_END_2099;
330 rtc->rtcdev->alarm_offset_max = 7 * 86400;
331 rtc->rtcdev->ops = &rzn1_rtc_ops;
332 set_bit(RTC_FEATURE_ALARM_RES_MINUTE, rtc->rtcdev->features);
333 clear_bit(RTC_FEATURE_UPDATE_INTERRUPT, rtc->rtcdev->features);
335 ret = devm_pm_runtime_enable(&pdev->dev);
338 ret = pm_runtime_resume_and_get(&pdev->dev);
343 * Ensure the clock counter is enabled.
344 * Set 24-hour mode and possible oscillator offset compensation in SUBU mode.
346 writel(RZN1_RTC_CTL0_CE | RZN1_RTC_CTL0_AMPM | RZN1_RTC_CTL0_SLSB_SUBU,
347 rtc->base + RZN1_RTC_CTL0);
349 /* Disable all interrupts */
350 writel(0, rtc->base + RZN1_RTC_CTL1);
352 ret = devm_request_irq(&pdev->dev, alarm_irq, rzn1_rtc_alarm_irq, 0,
353 dev_name(&pdev->dev), rtc);
355 dev_err(&pdev->dev, "RTC timer interrupt not available\n");
359 ret = devm_rtc_register_device(rtc->rtcdev);
366 pm_runtime_put(&pdev->dev);
371 static void rzn1_rtc_remove(struct platform_device *pdev)
373 pm_runtime_put(&pdev->dev);
376 static const struct of_device_id rzn1_rtc_of_match[] = {
377 { .compatible = "renesas,rzn1-rtc" },
380 MODULE_DEVICE_TABLE(of, rzn1_rtc_of_match);
382 static struct platform_driver rzn1_rtc_driver = {
383 .probe = rzn1_rtc_probe,
384 .remove = rzn1_rtc_remove,
387 .of_match_table = rzn1_rtc_of_match,
390 module_platform_driver(rzn1_rtc_driver);
394 MODULE_DESCRIPTION("RZ/N1 RTC driver");
395 MODULE_LICENSE("GPL");