]> Git Repo - J-linux.git/blob - drivers/ptp/ptp_clock.c
Merge tag 'vfs-6.13-rc7.fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs
[J-linux.git] / drivers / ptp / ptp_clock.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * PTP 1588 clock support
4  *
5  * Copyright (C) 2010 OMICRON electronics GmbH
6  */
7 #include <linux/device.h>
8 #include <linux/err.h>
9 #include <linux/init.h>
10 #include <linux/kernel.h>
11 #include <linux/module.h>
12 #include <linux/posix-clock.h>
13 #include <linux/pps_kernel.h>
14 #include <linux/slab.h>
15 #include <linux/syscalls.h>
16 #include <linux/uaccess.h>
17 #include <linux/debugfs.h>
18 #include <linux/xarray.h>
19 #include <uapi/linux/sched/types.h>
20
21 #include "ptp_private.h"
22
23 #define PTP_MAX_ALARMS 4
24 #define PTP_PPS_DEFAULTS (PPS_CAPTUREASSERT | PPS_OFFSETASSERT)
25 #define PTP_PPS_EVENT PPS_CAPTUREASSERT
26 #define PTP_PPS_MODE (PTP_PPS_DEFAULTS | PPS_CANWAIT | PPS_TSFMT_TSPEC)
27
28 const struct class ptp_class = {
29         .name = "ptp",
30         .dev_groups = ptp_groups
31 };
32
33 /* private globals */
34
35 static dev_t ptp_devt;
36
37 static DEFINE_XARRAY_ALLOC(ptp_clocks_map);
38
39 /* time stamp event queue operations */
40
41 static inline int queue_free(struct timestamp_event_queue *q)
42 {
43         return PTP_MAX_TIMESTAMPS - queue_cnt(q) - 1;
44 }
45
46 static void enqueue_external_timestamp(struct timestamp_event_queue *queue,
47                                        struct ptp_clock_event *src)
48 {
49         struct ptp_extts_event *dst;
50         struct timespec64 offset_ts;
51         unsigned long flags;
52         s64 seconds;
53         u32 remainder;
54
55         if (src->type == PTP_CLOCK_EXTTS) {
56                 seconds = div_u64_rem(src->timestamp, 1000000000, &remainder);
57         } else if (src->type == PTP_CLOCK_EXTOFF) {
58                 offset_ts = ns_to_timespec64(src->offset);
59                 seconds = offset_ts.tv_sec;
60                 remainder = offset_ts.tv_nsec;
61         } else {
62                 WARN(1, "%s: unknown type %d\n", __func__, src->type);
63                 return;
64         }
65
66         spin_lock_irqsave(&queue->lock, flags);
67
68         dst = &queue->buf[queue->tail];
69         dst->index = src->index;
70         dst->flags = PTP_EXTTS_EVENT_VALID;
71         dst->t.sec = seconds;
72         dst->t.nsec = remainder;
73         if (src->type == PTP_CLOCK_EXTOFF)
74                 dst->flags |= PTP_EXT_OFFSET;
75
76         /* Both WRITE_ONCE() are paired with READ_ONCE() in queue_cnt() */
77         if (!queue_free(queue))
78                 WRITE_ONCE(queue->head, (queue->head + 1) % PTP_MAX_TIMESTAMPS);
79
80         WRITE_ONCE(queue->tail, (queue->tail + 1) % PTP_MAX_TIMESTAMPS);
81
82         spin_unlock_irqrestore(&queue->lock, flags);
83 }
84
85 /* posix clock implementation */
86
87 static int ptp_clock_getres(struct posix_clock *pc, struct timespec64 *tp)
88 {
89         tp->tv_sec = 0;
90         tp->tv_nsec = 1;
91         return 0;
92 }
93
94 static int ptp_clock_settime(struct posix_clock *pc, const struct timespec64 *tp)
95 {
96         struct ptp_clock *ptp = container_of(pc, struct ptp_clock, clock);
97
98         if (ptp_clock_freerun(ptp)) {
99                 pr_err("ptp: physical clock is free running\n");
100                 return -EBUSY;
101         }
102
103         return  ptp->info->settime64(ptp->info, tp);
104 }
105
106 static int ptp_clock_gettime(struct posix_clock *pc, struct timespec64 *tp)
107 {
108         struct ptp_clock *ptp = container_of(pc, struct ptp_clock, clock);
109         int err;
110
111         if (ptp->info->gettimex64)
112                 err = ptp->info->gettimex64(ptp->info, tp, NULL);
113         else
114                 err = ptp->info->gettime64(ptp->info, tp);
115         return err;
116 }
117
118 static int ptp_clock_adjtime(struct posix_clock *pc, struct __kernel_timex *tx)
119 {
120         struct ptp_clock *ptp = container_of(pc, struct ptp_clock, clock);
121         struct ptp_clock_info *ops;
122         int err = -EOPNOTSUPP;
123
124         if (ptp_clock_freerun(ptp)) {
125                 pr_err("ptp: physical clock is free running\n");
126                 return -EBUSY;
127         }
128
129         ops = ptp->info;
130
131         if (tx->modes & ADJ_SETOFFSET) {
132                 struct timespec64 ts;
133                 ktime_t kt;
134                 s64 delta;
135
136                 ts.tv_sec  = tx->time.tv_sec;
137                 ts.tv_nsec = tx->time.tv_usec;
138
139                 if (!(tx->modes & ADJ_NANO))
140                         ts.tv_nsec *= 1000;
141
142                 if ((unsigned long) ts.tv_nsec >= NSEC_PER_SEC)
143                         return -EINVAL;
144
145                 kt = timespec64_to_ktime(ts);
146                 delta = ktime_to_ns(kt);
147                 err = ops->adjtime(ops, delta);
148         } else if (tx->modes & ADJ_FREQUENCY) {
149                 long ppb = scaled_ppm_to_ppb(tx->freq);
150                 if (ppb > ops->max_adj || ppb < -ops->max_adj)
151                         return -ERANGE;
152                 err = ops->adjfine(ops, tx->freq);
153                 if (!err)
154                         ptp->dialed_frequency = tx->freq;
155         } else if (tx->modes & ADJ_OFFSET) {
156                 if (ops->adjphase) {
157                         s32 max_phase_adj = ops->getmaxphase(ops);
158                         s32 offset = tx->offset;
159
160                         if (!(tx->modes & ADJ_NANO))
161                                 offset *= NSEC_PER_USEC;
162
163                         if (offset > max_phase_adj || offset < -max_phase_adj)
164                                 return -ERANGE;
165
166                         err = ops->adjphase(ops, offset);
167                 }
168         } else if (tx->modes == 0) {
169                 tx->freq = ptp->dialed_frequency;
170                 err = 0;
171         }
172
173         return err;
174 }
175
176 static struct posix_clock_operations ptp_clock_ops = {
177         .owner          = THIS_MODULE,
178         .clock_adjtime  = ptp_clock_adjtime,
179         .clock_gettime  = ptp_clock_gettime,
180         .clock_getres   = ptp_clock_getres,
181         .clock_settime  = ptp_clock_settime,
182         .ioctl          = ptp_ioctl,
183         .open           = ptp_open,
184         .release        = ptp_release,
185         .poll           = ptp_poll,
186         .read           = ptp_read,
187 };
188
189 static void ptp_clock_release(struct device *dev)
190 {
191         struct ptp_clock *ptp = container_of(dev, struct ptp_clock, dev);
192         struct timestamp_event_queue *tsevq;
193         unsigned long flags;
194
195         ptp_cleanup_pin_groups(ptp);
196         kfree(ptp->vclock_index);
197         mutex_destroy(&ptp->pincfg_mux);
198         mutex_destroy(&ptp->n_vclocks_mux);
199         /* Delete first entry */
200         spin_lock_irqsave(&ptp->tsevqs_lock, flags);
201         tsevq = list_first_entry(&ptp->tsevqs, struct timestamp_event_queue,
202                                  qlist);
203         list_del(&tsevq->qlist);
204         spin_unlock_irqrestore(&ptp->tsevqs_lock, flags);
205         bitmap_free(tsevq->mask);
206         kfree(tsevq);
207         debugfs_remove(ptp->debugfs_root);
208         xa_erase(&ptp_clocks_map, ptp->index);
209         kfree(ptp);
210 }
211
212 static int ptp_getcycles64(struct ptp_clock_info *info, struct timespec64 *ts)
213 {
214         if (info->getcyclesx64)
215                 return info->getcyclesx64(info, ts, NULL);
216         else
217                 return info->gettime64(info, ts);
218 }
219
220 static void ptp_aux_kworker(struct kthread_work *work)
221 {
222         struct ptp_clock *ptp = container_of(work, struct ptp_clock,
223                                              aux_work.work);
224         struct ptp_clock_info *info = ptp->info;
225         long delay;
226
227         delay = info->do_aux_work(info);
228
229         if (delay >= 0)
230                 kthread_queue_delayed_work(ptp->kworker, &ptp->aux_work, delay);
231 }
232
233 /* public interface */
234
235 struct ptp_clock *ptp_clock_register(struct ptp_clock_info *info,
236                                      struct device *parent)
237 {
238         struct ptp_clock *ptp;
239         struct timestamp_event_queue *queue = NULL;
240         int err, index, major = MAJOR(ptp_devt);
241         char debugfsname[16];
242         size_t size;
243
244         if (info->n_alarm > PTP_MAX_ALARMS)
245                 return ERR_PTR(-EINVAL);
246
247         /* Initialize a clock structure. */
248         ptp = kzalloc(sizeof(struct ptp_clock), GFP_KERNEL);
249         if (!ptp) {
250                 err = -ENOMEM;
251                 goto no_memory;
252         }
253
254         err = xa_alloc(&ptp_clocks_map, &index, ptp, xa_limit_31b,
255                        GFP_KERNEL);
256         if (err)
257                 goto no_slot;
258
259         ptp->clock.ops = ptp_clock_ops;
260         ptp->info = info;
261         ptp->devid = MKDEV(major, index);
262         ptp->index = index;
263         INIT_LIST_HEAD(&ptp->tsevqs);
264         queue = kzalloc(sizeof(*queue), GFP_KERNEL);
265         if (!queue) {
266                 err = -ENOMEM;
267                 goto no_memory_queue;
268         }
269         list_add_tail(&queue->qlist, &ptp->tsevqs);
270         spin_lock_init(&ptp->tsevqs_lock);
271         queue->mask = bitmap_alloc(PTP_MAX_CHANNELS, GFP_KERNEL);
272         if (!queue->mask) {
273                 err = -ENOMEM;
274                 goto no_memory_bitmap;
275         }
276         bitmap_set(queue->mask, 0, PTP_MAX_CHANNELS);
277         spin_lock_init(&queue->lock);
278         mutex_init(&ptp->pincfg_mux);
279         mutex_init(&ptp->n_vclocks_mux);
280         init_waitqueue_head(&ptp->tsev_wq);
281
282         if (ptp->info->getcycles64 || ptp->info->getcyclesx64) {
283                 ptp->has_cycles = true;
284                 if (!ptp->info->getcycles64 && ptp->info->getcyclesx64)
285                         ptp->info->getcycles64 = ptp_getcycles64;
286         } else {
287                 /* Free running cycle counter not supported, use time. */
288                 ptp->info->getcycles64 = ptp_getcycles64;
289
290                 if (ptp->info->gettimex64)
291                         ptp->info->getcyclesx64 = ptp->info->gettimex64;
292
293                 if (ptp->info->getcrosststamp)
294                         ptp->info->getcrosscycles = ptp->info->getcrosststamp;
295         }
296
297         if (ptp->info->do_aux_work) {
298                 kthread_init_delayed_work(&ptp->aux_work, ptp_aux_kworker);
299                 ptp->kworker = kthread_create_worker(0, "ptp%d", ptp->index);
300                 if (IS_ERR(ptp->kworker)) {
301                         err = PTR_ERR(ptp->kworker);
302                         pr_err("failed to create ptp aux_worker %d\n", err);
303                         goto kworker_err;
304                 }
305         }
306
307         /* PTP virtual clock is being registered under physical clock */
308         if (parent && parent->class && parent->class->name &&
309             strcmp(parent->class->name, "ptp") == 0)
310                 ptp->is_virtual_clock = true;
311
312         if (!ptp->is_virtual_clock) {
313                 ptp->max_vclocks = PTP_DEFAULT_MAX_VCLOCKS;
314
315                 size = sizeof(int) * ptp->max_vclocks;
316                 ptp->vclock_index = kzalloc(size, GFP_KERNEL);
317                 if (!ptp->vclock_index) {
318                         err = -ENOMEM;
319                         goto no_mem_for_vclocks;
320                 }
321         }
322
323         err = ptp_populate_pin_groups(ptp);
324         if (err)
325                 goto no_pin_groups;
326
327         /* Register a new PPS source. */
328         if (info->pps) {
329                 struct pps_source_info pps;
330                 memset(&pps, 0, sizeof(pps));
331                 snprintf(pps.name, PPS_MAX_NAME_LEN, "ptp%d", index);
332                 pps.mode = PTP_PPS_MODE;
333                 pps.owner = info->owner;
334                 ptp->pps_source = pps_register_source(&pps, PTP_PPS_DEFAULTS);
335                 if (IS_ERR(ptp->pps_source)) {
336                         err = PTR_ERR(ptp->pps_source);
337                         pr_err("failed to register pps source\n");
338                         goto no_pps;
339                 }
340                 ptp->pps_source->lookup_cookie = ptp;
341         }
342
343         /* Initialize a new device of our class in our clock structure. */
344         device_initialize(&ptp->dev);
345         ptp->dev.devt = ptp->devid;
346         ptp->dev.class = &ptp_class;
347         ptp->dev.parent = parent;
348         ptp->dev.groups = ptp->pin_attr_groups;
349         ptp->dev.release = ptp_clock_release;
350         dev_set_drvdata(&ptp->dev, ptp);
351         dev_set_name(&ptp->dev, "ptp%d", ptp->index);
352
353         /* Create a posix clock and link it to the device. */
354         err = posix_clock_register(&ptp->clock, &ptp->dev);
355         if (err) {
356                 if (ptp->pps_source)
357                         pps_unregister_source(ptp->pps_source);
358
359                 if (ptp->kworker)
360                         kthread_destroy_worker(ptp->kworker);
361
362                 put_device(&ptp->dev);
363
364                 pr_err("failed to create posix clock\n");
365                 return ERR_PTR(err);
366         }
367
368         /* Debugfs initialization */
369         snprintf(debugfsname, sizeof(debugfsname), "ptp%d", ptp->index);
370         ptp->debugfs_root = debugfs_create_dir(debugfsname, NULL);
371
372         return ptp;
373
374 no_pps:
375         ptp_cleanup_pin_groups(ptp);
376 no_pin_groups:
377         kfree(ptp->vclock_index);
378 no_mem_for_vclocks:
379         if (ptp->kworker)
380                 kthread_destroy_worker(ptp->kworker);
381 kworker_err:
382         mutex_destroy(&ptp->pincfg_mux);
383         mutex_destroy(&ptp->n_vclocks_mux);
384         bitmap_free(queue->mask);
385 no_memory_bitmap:
386         list_del(&queue->qlist);
387         kfree(queue);
388 no_memory_queue:
389         xa_erase(&ptp_clocks_map, index);
390 no_slot:
391         kfree(ptp);
392 no_memory:
393         return ERR_PTR(err);
394 }
395 EXPORT_SYMBOL(ptp_clock_register);
396
397 static int unregister_vclock(struct device *dev, void *data)
398 {
399         struct ptp_clock *ptp = dev_get_drvdata(dev);
400
401         ptp_vclock_unregister(info_to_vclock(ptp->info));
402         return 0;
403 }
404
405 int ptp_clock_unregister(struct ptp_clock *ptp)
406 {
407         if (ptp_vclock_in_use(ptp)) {
408                 device_for_each_child(&ptp->dev, NULL, unregister_vclock);
409         }
410
411         ptp->defunct = 1;
412         wake_up_interruptible(&ptp->tsev_wq);
413
414         if (ptp->kworker) {
415                 kthread_cancel_delayed_work_sync(&ptp->aux_work);
416                 kthread_destroy_worker(ptp->kworker);
417         }
418
419         /* Release the clock's resources. */
420         if (ptp->pps_source)
421                 pps_unregister_source(ptp->pps_source);
422
423         posix_clock_unregister(&ptp->clock);
424
425         return 0;
426 }
427 EXPORT_SYMBOL(ptp_clock_unregister);
428
429 void ptp_clock_event(struct ptp_clock *ptp, struct ptp_clock_event *event)
430 {
431         struct timestamp_event_queue *tsevq;
432         struct pps_event_time evt;
433         unsigned long flags;
434
435         switch (event->type) {
436
437         case PTP_CLOCK_ALARM:
438                 break;
439
440         case PTP_CLOCK_EXTTS:
441         case PTP_CLOCK_EXTOFF:
442                 /* Enqueue timestamp on selected queues */
443                 spin_lock_irqsave(&ptp->tsevqs_lock, flags);
444                 list_for_each_entry(tsevq, &ptp->tsevqs, qlist) {
445                         if (test_bit((unsigned int)event->index, tsevq->mask))
446                                 enqueue_external_timestamp(tsevq, event);
447                 }
448                 spin_unlock_irqrestore(&ptp->tsevqs_lock, flags);
449                 wake_up_interruptible(&ptp->tsev_wq);
450                 break;
451
452         case PTP_CLOCK_PPS:
453                 pps_get_ts(&evt);
454                 pps_event(ptp->pps_source, &evt, PTP_PPS_EVENT, NULL);
455                 break;
456
457         case PTP_CLOCK_PPSUSR:
458                 pps_event(ptp->pps_source, &event->pps_times,
459                           PTP_PPS_EVENT, NULL);
460                 break;
461         }
462 }
463 EXPORT_SYMBOL(ptp_clock_event);
464
465 int ptp_clock_index(struct ptp_clock *ptp)
466 {
467         return ptp->index;
468 }
469 EXPORT_SYMBOL(ptp_clock_index);
470
471 int ptp_find_pin(struct ptp_clock *ptp,
472                  enum ptp_pin_function func, unsigned int chan)
473 {
474         struct ptp_pin_desc *pin = NULL;
475         int i;
476
477         for (i = 0; i < ptp->info->n_pins; i++) {
478                 if (ptp->info->pin_config[i].func == func &&
479                     ptp->info->pin_config[i].chan == chan) {
480                         pin = &ptp->info->pin_config[i];
481                         break;
482                 }
483         }
484
485         return pin ? i : -1;
486 }
487 EXPORT_SYMBOL(ptp_find_pin);
488
489 int ptp_find_pin_unlocked(struct ptp_clock *ptp,
490                           enum ptp_pin_function func, unsigned int chan)
491 {
492         int result;
493
494         mutex_lock(&ptp->pincfg_mux);
495
496         result = ptp_find_pin(ptp, func, chan);
497
498         mutex_unlock(&ptp->pincfg_mux);
499
500         return result;
501 }
502 EXPORT_SYMBOL(ptp_find_pin_unlocked);
503
504 int ptp_schedule_worker(struct ptp_clock *ptp, unsigned long delay)
505 {
506         return kthread_mod_delayed_work(ptp->kworker, &ptp->aux_work, delay);
507 }
508 EXPORT_SYMBOL(ptp_schedule_worker);
509
510 void ptp_cancel_worker_sync(struct ptp_clock *ptp)
511 {
512         kthread_cancel_delayed_work_sync(&ptp->aux_work);
513 }
514 EXPORT_SYMBOL(ptp_cancel_worker_sync);
515
516 /* module operations */
517
518 static void __exit ptp_exit(void)
519 {
520         class_unregister(&ptp_class);
521         unregister_chrdev_region(ptp_devt, MINORMASK + 1);
522         xa_destroy(&ptp_clocks_map);
523 }
524
525 static int __init ptp_init(void)
526 {
527         int err;
528
529         err = class_register(&ptp_class);
530         if (err) {
531                 pr_err("ptp: failed to allocate class\n");
532                 return err;
533         }
534
535         err = alloc_chrdev_region(&ptp_devt, 0, MINORMASK + 1, "ptp");
536         if (err < 0) {
537                 pr_err("ptp: failed to allocate device region\n");
538                 goto no_region;
539         }
540
541         pr_info("PTP clock support registered\n");
542         return 0;
543
544 no_region:
545         class_unregister(&ptp_class);
546         return err;
547 }
548
549 subsys_initcall(ptp_init);
550 module_exit(ptp_exit);
551
552 MODULE_AUTHOR("Richard Cochran <[email protected]>");
553 MODULE_DESCRIPTION("PTP clocks support");
554 MODULE_LICENSE("GPL");
This page took 0.058975 seconds and 4 git commands to generate.