1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * PTP 1588 clock support
5 * Copyright (C) 2010 OMICRON electronics GmbH
7 #include <linux/device.h>
9 #include <linux/init.h>
10 #include <linux/kernel.h>
11 #include <linux/module.h>
12 #include <linux/posix-clock.h>
13 #include <linux/pps_kernel.h>
14 #include <linux/slab.h>
15 #include <linux/syscalls.h>
16 #include <linux/uaccess.h>
17 #include <linux/debugfs.h>
18 #include <linux/xarray.h>
19 #include <uapi/linux/sched/types.h>
21 #include "ptp_private.h"
23 #define PTP_MAX_ALARMS 4
24 #define PTP_PPS_DEFAULTS (PPS_CAPTUREASSERT | PPS_OFFSETASSERT)
25 #define PTP_PPS_EVENT PPS_CAPTUREASSERT
26 #define PTP_PPS_MODE (PTP_PPS_DEFAULTS | PPS_CANWAIT | PPS_TSFMT_TSPEC)
28 const struct class ptp_class = {
30 .dev_groups = ptp_groups
35 static dev_t ptp_devt;
37 static DEFINE_XARRAY_ALLOC(ptp_clocks_map);
39 /* time stamp event queue operations */
41 static inline int queue_free(struct timestamp_event_queue *q)
43 return PTP_MAX_TIMESTAMPS - queue_cnt(q) - 1;
46 static void enqueue_external_timestamp(struct timestamp_event_queue *queue,
47 struct ptp_clock_event *src)
49 struct ptp_extts_event *dst;
50 struct timespec64 offset_ts;
55 if (src->type == PTP_CLOCK_EXTTS) {
56 seconds = div_u64_rem(src->timestamp, 1000000000, &remainder);
57 } else if (src->type == PTP_CLOCK_EXTOFF) {
58 offset_ts = ns_to_timespec64(src->offset);
59 seconds = offset_ts.tv_sec;
60 remainder = offset_ts.tv_nsec;
62 WARN(1, "%s: unknown type %d\n", __func__, src->type);
66 spin_lock_irqsave(&queue->lock, flags);
68 dst = &queue->buf[queue->tail];
69 dst->index = src->index;
70 dst->flags = PTP_EXTTS_EVENT_VALID;
72 dst->t.nsec = remainder;
73 if (src->type == PTP_CLOCK_EXTOFF)
74 dst->flags |= PTP_EXT_OFFSET;
76 /* Both WRITE_ONCE() are paired with READ_ONCE() in queue_cnt() */
77 if (!queue_free(queue))
78 WRITE_ONCE(queue->head, (queue->head + 1) % PTP_MAX_TIMESTAMPS);
80 WRITE_ONCE(queue->tail, (queue->tail + 1) % PTP_MAX_TIMESTAMPS);
82 spin_unlock_irqrestore(&queue->lock, flags);
85 /* posix clock implementation */
87 static int ptp_clock_getres(struct posix_clock *pc, struct timespec64 *tp)
94 static int ptp_clock_settime(struct posix_clock *pc, const struct timespec64 *tp)
96 struct ptp_clock *ptp = container_of(pc, struct ptp_clock, clock);
98 if (ptp_clock_freerun(ptp)) {
99 pr_err("ptp: physical clock is free running\n");
103 return ptp->info->settime64(ptp->info, tp);
106 static int ptp_clock_gettime(struct posix_clock *pc, struct timespec64 *tp)
108 struct ptp_clock *ptp = container_of(pc, struct ptp_clock, clock);
111 if (ptp->info->gettimex64)
112 err = ptp->info->gettimex64(ptp->info, tp, NULL);
114 err = ptp->info->gettime64(ptp->info, tp);
118 static int ptp_clock_adjtime(struct posix_clock *pc, struct __kernel_timex *tx)
120 struct ptp_clock *ptp = container_of(pc, struct ptp_clock, clock);
121 struct ptp_clock_info *ops;
122 int err = -EOPNOTSUPP;
124 if (ptp_clock_freerun(ptp)) {
125 pr_err("ptp: physical clock is free running\n");
131 if (tx->modes & ADJ_SETOFFSET) {
132 struct timespec64 ts;
136 ts.tv_sec = tx->time.tv_sec;
137 ts.tv_nsec = tx->time.tv_usec;
139 if (!(tx->modes & ADJ_NANO))
142 if ((unsigned long) ts.tv_nsec >= NSEC_PER_SEC)
145 kt = timespec64_to_ktime(ts);
146 delta = ktime_to_ns(kt);
147 err = ops->adjtime(ops, delta);
148 } else if (tx->modes & ADJ_FREQUENCY) {
149 long ppb = scaled_ppm_to_ppb(tx->freq);
150 if (ppb > ops->max_adj || ppb < -ops->max_adj)
152 err = ops->adjfine(ops, tx->freq);
154 ptp->dialed_frequency = tx->freq;
155 } else if (tx->modes & ADJ_OFFSET) {
157 s32 max_phase_adj = ops->getmaxphase(ops);
158 s32 offset = tx->offset;
160 if (!(tx->modes & ADJ_NANO))
161 offset *= NSEC_PER_USEC;
163 if (offset > max_phase_adj || offset < -max_phase_adj)
166 err = ops->adjphase(ops, offset);
168 } else if (tx->modes == 0) {
169 tx->freq = ptp->dialed_frequency;
176 static struct posix_clock_operations ptp_clock_ops = {
177 .owner = THIS_MODULE,
178 .clock_adjtime = ptp_clock_adjtime,
179 .clock_gettime = ptp_clock_gettime,
180 .clock_getres = ptp_clock_getres,
181 .clock_settime = ptp_clock_settime,
184 .release = ptp_release,
189 static void ptp_clock_release(struct device *dev)
191 struct ptp_clock *ptp = container_of(dev, struct ptp_clock, dev);
192 struct timestamp_event_queue *tsevq;
195 ptp_cleanup_pin_groups(ptp);
196 kfree(ptp->vclock_index);
197 mutex_destroy(&ptp->pincfg_mux);
198 mutex_destroy(&ptp->n_vclocks_mux);
199 /* Delete first entry */
200 spin_lock_irqsave(&ptp->tsevqs_lock, flags);
201 tsevq = list_first_entry(&ptp->tsevqs, struct timestamp_event_queue,
203 list_del(&tsevq->qlist);
204 spin_unlock_irqrestore(&ptp->tsevqs_lock, flags);
205 bitmap_free(tsevq->mask);
207 debugfs_remove(ptp->debugfs_root);
208 xa_erase(&ptp_clocks_map, ptp->index);
212 static int ptp_getcycles64(struct ptp_clock_info *info, struct timespec64 *ts)
214 if (info->getcyclesx64)
215 return info->getcyclesx64(info, ts, NULL);
217 return info->gettime64(info, ts);
220 static void ptp_aux_kworker(struct kthread_work *work)
222 struct ptp_clock *ptp = container_of(work, struct ptp_clock,
224 struct ptp_clock_info *info = ptp->info;
227 delay = info->do_aux_work(info);
230 kthread_queue_delayed_work(ptp->kworker, &ptp->aux_work, delay);
233 /* public interface */
235 struct ptp_clock *ptp_clock_register(struct ptp_clock_info *info,
236 struct device *parent)
238 struct ptp_clock *ptp;
239 struct timestamp_event_queue *queue = NULL;
240 int err, index, major = MAJOR(ptp_devt);
241 char debugfsname[16];
244 if (info->n_alarm > PTP_MAX_ALARMS)
245 return ERR_PTR(-EINVAL);
247 /* Initialize a clock structure. */
248 ptp = kzalloc(sizeof(struct ptp_clock), GFP_KERNEL);
254 err = xa_alloc(&ptp_clocks_map, &index, ptp, xa_limit_31b,
259 ptp->clock.ops = ptp_clock_ops;
261 ptp->devid = MKDEV(major, index);
263 INIT_LIST_HEAD(&ptp->tsevqs);
264 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
267 goto no_memory_queue;
269 list_add_tail(&queue->qlist, &ptp->tsevqs);
270 spin_lock_init(&ptp->tsevqs_lock);
271 queue->mask = bitmap_alloc(PTP_MAX_CHANNELS, GFP_KERNEL);
274 goto no_memory_bitmap;
276 bitmap_set(queue->mask, 0, PTP_MAX_CHANNELS);
277 spin_lock_init(&queue->lock);
278 mutex_init(&ptp->pincfg_mux);
279 mutex_init(&ptp->n_vclocks_mux);
280 init_waitqueue_head(&ptp->tsev_wq);
282 if (ptp->info->getcycles64 || ptp->info->getcyclesx64) {
283 ptp->has_cycles = true;
284 if (!ptp->info->getcycles64 && ptp->info->getcyclesx64)
285 ptp->info->getcycles64 = ptp_getcycles64;
287 /* Free running cycle counter not supported, use time. */
288 ptp->info->getcycles64 = ptp_getcycles64;
290 if (ptp->info->gettimex64)
291 ptp->info->getcyclesx64 = ptp->info->gettimex64;
293 if (ptp->info->getcrosststamp)
294 ptp->info->getcrosscycles = ptp->info->getcrosststamp;
297 if (ptp->info->do_aux_work) {
298 kthread_init_delayed_work(&ptp->aux_work, ptp_aux_kworker);
299 ptp->kworker = kthread_create_worker(0, "ptp%d", ptp->index);
300 if (IS_ERR(ptp->kworker)) {
301 err = PTR_ERR(ptp->kworker);
302 pr_err("failed to create ptp aux_worker %d\n", err);
307 /* PTP virtual clock is being registered under physical clock */
308 if (parent && parent->class && parent->class->name &&
309 strcmp(parent->class->name, "ptp") == 0)
310 ptp->is_virtual_clock = true;
312 if (!ptp->is_virtual_clock) {
313 ptp->max_vclocks = PTP_DEFAULT_MAX_VCLOCKS;
315 size = sizeof(int) * ptp->max_vclocks;
316 ptp->vclock_index = kzalloc(size, GFP_KERNEL);
317 if (!ptp->vclock_index) {
319 goto no_mem_for_vclocks;
323 err = ptp_populate_pin_groups(ptp);
327 /* Register a new PPS source. */
329 struct pps_source_info pps;
330 memset(&pps, 0, sizeof(pps));
331 snprintf(pps.name, PPS_MAX_NAME_LEN, "ptp%d", index);
332 pps.mode = PTP_PPS_MODE;
333 pps.owner = info->owner;
334 ptp->pps_source = pps_register_source(&pps, PTP_PPS_DEFAULTS);
335 if (IS_ERR(ptp->pps_source)) {
336 err = PTR_ERR(ptp->pps_source);
337 pr_err("failed to register pps source\n");
340 ptp->pps_source->lookup_cookie = ptp;
343 /* Initialize a new device of our class in our clock structure. */
344 device_initialize(&ptp->dev);
345 ptp->dev.devt = ptp->devid;
346 ptp->dev.class = &ptp_class;
347 ptp->dev.parent = parent;
348 ptp->dev.groups = ptp->pin_attr_groups;
349 ptp->dev.release = ptp_clock_release;
350 dev_set_drvdata(&ptp->dev, ptp);
351 dev_set_name(&ptp->dev, "ptp%d", ptp->index);
353 /* Create a posix clock and link it to the device. */
354 err = posix_clock_register(&ptp->clock, &ptp->dev);
357 pps_unregister_source(ptp->pps_source);
360 kthread_destroy_worker(ptp->kworker);
362 put_device(&ptp->dev);
364 pr_err("failed to create posix clock\n");
368 /* Debugfs initialization */
369 snprintf(debugfsname, sizeof(debugfsname), "ptp%d", ptp->index);
370 ptp->debugfs_root = debugfs_create_dir(debugfsname, NULL);
375 ptp_cleanup_pin_groups(ptp);
377 kfree(ptp->vclock_index);
380 kthread_destroy_worker(ptp->kworker);
382 mutex_destroy(&ptp->pincfg_mux);
383 mutex_destroy(&ptp->n_vclocks_mux);
384 bitmap_free(queue->mask);
386 list_del(&queue->qlist);
389 xa_erase(&ptp_clocks_map, index);
395 EXPORT_SYMBOL(ptp_clock_register);
397 static int unregister_vclock(struct device *dev, void *data)
399 struct ptp_clock *ptp = dev_get_drvdata(dev);
401 ptp_vclock_unregister(info_to_vclock(ptp->info));
405 int ptp_clock_unregister(struct ptp_clock *ptp)
407 if (ptp_vclock_in_use(ptp)) {
408 device_for_each_child(&ptp->dev, NULL, unregister_vclock);
412 wake_up_interruptible(&ptp->tsev_wq);
415 kthread_cancel_delayed_work_sync(&ptp->aux_work);
416 kthread_destroy_worker(ptp->kworker);
419 /* Release the clock's resources. */
421 pps_unregister_source(ptp->pps_source);
423 posix_clock_unregister(&ptp->clock);
427 EXPORT_SYMBOL(ptp_clock_unregister);
429 void ptp_clock_event(struct ptp_clock *ptp, struct ptp_clock_event *event)
431 struct timestamp_event_queue *tsevq;
432 struct pps_event_time evt;
435 switch (event->type) {
437 case PTP_CLOCK_ALARM:
440 case PTP_CLOCK_EXTTS:
441 case PTP_CLOCK_EXTOFF:
442 /* Enqueue timestamp on selected queues */
443 spin_lock_irqsave(&ptp->tsevqs_lock, flags);
444 list_for_each_entry(tsevq, &ptp->tsevqs, qlist) {
445 if (test_bit((unsigned int)event->index, tsevq->mask))
446 enqueue_external_timestamp(tsevq, event);
448 spin_unlock_irqrestore(&ptp->tsevqs_lock, flags);
449 wake_up_interruptible(&ptp->tsev_wq);
454 pps_event(ptp->pps_source, &evt, PTP_PPS_EVENT, NULL);
457 case PTP_CLOCK_PPSUSR:
458 pps_event(ptp->pps_source, &event->pps_times,
459 PTP_PPS_EVENT, NULL);
463 EXPORT_SYMBOL(ptp_clock_event);
465 int ptp_clock_index(struct ptp_clock *ptp)
469 EXPORT_SYMBOL(ptp_clock_index);
471 int ptp_find_pin(struct ptp_clock *ptp,
472 enum ptp_pin_function func, unsigned int chan)
474 struct ptp_pin_desc *pin = NULL;
477 for (i = 0; i < ptp->info->n_pins; i++) {
478 if (ptp->info->pin_config[i].func == func &&
479 ptp->info->pin_config[i].chan == chan) {
480 pin = &ptp->info->pin_config[i];
487 EXPORT_SYMBOL(ptp_find_pin);
489 int ptp_find_pin_unlocked(struct ptp_clock *ptp,
490 enum ptp_pin_function func, unsigned int chan)
494 mutex_lock(&ptp->pincfg_mux);
496 result = ptp_find_pin(ptp, func, chan);
498 mutex_unlock(&ptp->pincfg_mux);
502 EXPORT_SYMBOL(ptp_find_pin_unlocked);
504 int ptp_schedule_worker(struct ptp_clock *ptp, unsigned long delay)
506 return kthread_mod_delayed_work(ptp->kworker, &ptp->aux_work, delay);
508 EXPORT_SYMBOL(ptp_schedule_worker);
510 void ptp_cancel_worker_sync(struct ptp_clock *ptp)
512 kthread_cancel_delayed_work_sync(&ptp->aux_work);
514 EXPORT_SYMBOL(ptp_cancel_worker_sync);
516 /* module operations */
518 static void __exit ptp_exit(void)
520 class_unregister(&ptp_class);
521 unregister_chrdev_region(ptp_devt, MINORMASK + 1);
522 xa_destroy(&ptp_clocks_map);
525 static int __init ptp_init(void)
529 err = class_register(&ptp_class);
531 pr_err("ptp: failed to allocate class\n");
535 err = alloc_chrdev_region(&ptp_devt, 0, MINORMASK + 1, "ptp");
537 pr_err("ptp: failed to allocate device region\n");
541 pr_info("PTP clock support registered\n");
545 class_unregister(&ptp_class);
549 subsys_initcall(ptp_init);
550 module_exit(ptp_exit);
553 MODULE_DESCRIPTION("PTP clocks support");
554 MODULE_LICENSE("GPL");