]> Git Repo - J-linux.git/blob - drivers/power/supply/power_supply_core.c
Merge tag 'vfs-6.13-rc7.fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs
[J-linux.git] / drivers / power / supply / power_supply_core.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Universal power supply monitor class
4  *
5  *  Copyright © 2007  Anton Vorontsov <[email protected]>
6  *  Copyright © 2004  Szabolcs Gyurko
7  *  Copyright © 2003  Ian Molton <[email protected]>
8  *
9  *  Modified: 2004, Oct     Szabolcs Gyurko
10  */
11
12 #include <linux/cleanup.h>
13 #include <linux/module.h>
14 #include <linux/types.h>
15 #include <linux/init.h>
16 #include <linux/slab.h>
17 #include <linux/delay.h>
18 #include <linux/device.h>
19 #include <linux/notifier.h>
20 #include <linux/err.h>
21 #include <linux/of.h>
22 #include <linux/power_supply.h>
23 #include <linux/property.h>
24 #include <linux/thermal.h>
25 #include <linux/fixp-arith.h>
26 #include "power_supply.h"
27 #include "samsung-sdi-battery.h"
28
29 static const struct class power_supply_class = {
30         .name = "power_supply",
31         .dev_uevent = power_supply_uevent,
32 };
33
34 static BLOCKING_NOTIFIER_HEAD(power_supply_notifier);
35
36 static const struct device_type power_supply_dev_type = {
37         .name = "power_supply",
38         .groups = power_supply_attr_groups,
39 };
40
41 #define POWER_SUPPLY_DEFERRED_REGISTER_TIME     msecs_to_jiffies(10)
42
43 static bool __power_supply_is_supplied_by(struct power_supply *supplier,
44                                          struct power_supply *supply)
45 {
46         int i;
47
48         if (!supply->supplied_from && !supplier->supplied_to)
49                 return false;
50
51         /* Support both supplied_to and supplied_from modes */
52         if (supply->supplied_from) {
53                 if (!supplier->desc->name)
54                         return false;
55                 for (i = 0; i < supply->num_supplies; i++)
56                         if (!strcmp(supplier->desc->name, supply->supplied_from[i]))
57                                 return true;
58         } else {
59                 if (!supply->desc->name)
60                         return false;
61                 for (i = 0; i < supplier->num_supplicants; i++)
62                         if (!strcmp(supplier->supplied_to[i], supply->desc->name))
63                                 return true;
64         }
65
66         return false;
67 }
68
69 static int __power_supply_changed_work(struct device *dev, void *data)
70 {
71         struct power_supply *psy = data;
72         struct power_supply *pst = dev_get_drvdata(dev);
73
74         if (__power_supply_is_supplied_by(psy, pst)) {
75                 if (pst->desc->external_power_changed)
76                         pst->desc->external_power_changed(pst);
77         }
78
79         return 0;
80 }
81
82 static void power_supply_changed_work(struct work_struct *work)
83 {
84         unsigned long flags;
85         struct power_supply *psy = container_of(work, struct power_supply,
86                                                 changed_work);
87
88         dev_dbg(&psy->dev, "%s\n", __func__);
89
90         spin_lock_irqsave(&psy->changed_lock, flags);
91         /*
92          * Check 'changed' here to avoid issues due to race between
93          * power_supply_changed() and this routine. In worst case
94          * power_supply_changed() can be called again just before we take above
95          * lock. During the first call of this routine we will mark 'changed' as
96          * false and it will stay false for the next call as well.
97          */
98         if (likely(psy->changed)) {
99                 psy->changed = false;
100                 spin_unlock_irqrestore(&psy->changed_lock, flags);
101                 power_supply_for_each_device(psy, __power_supply_changed_work);
102                 power_supply_update_leds(psy);
103                 blocking_notifier_call_chain(&power_supply_notifier,
104                                 PSY_EVENT_PROP_CHANGED, psy);
105                 kobject_uevent(&psy->dev.kobj, KOBJ_CHANGE);
106                 spin_lock_irqsave(&psy->changed_lock, flags);
107         }
108
109         /*
110          * Hold the wakeup_source until all events are processed.
111          * power_supply_changed() might have called again and have set 'changed'
112          * to true.
113          */
114         if (likely(!psy->changed))
115                 pm_relax(&psy->dev);
116         spin_unlock_irqrestore(&psy->changed_lock, flags);
117 }
118
119 int power_supply_for_each_device(void *data, int (*fn)(struct device *dev, void *data))
120 {
121         return class_for_each_device(&power_supply_class, NULL, data, fn);
122 }
123 EXPORT_SYMBOL_GPL(power_supply_for_each_device);
124
125 void power_supply_changed(struct power_supply *psy)
126 {
127         unsigned long flags;
128
129         dev_dbg(&psy->dev, "%s\n", __func__);
130
131         spin_lock_irqsave(&psy->changed_lock, flags);
132         psy->changed = true;
133         pm_stay_awake(&psy->dev);
134         spin_unlock_irqrestore(&psy->changed_lock, flags);
135         schedule_work(&psy->changed_work);
136 }
137 EXPORT_SYMBOL_GPL(power_supply_changed);
138
139 /*
140  * Notify that power supply was registered after parent finished the probing.
141  *
142  * Often power supply is registered from driver's probe function. However
143  * calling power_supply_changed() directly from power_supply_register()
144  * would lead to execution of get_property() function provided by the driver
145  * too early - before the probe ends.
146  *
147  * Avoid that by waiting on parent's mutex.
148  */
149 static void power_supply_deferred_register_work(struct work_struct *work)
150 {
151         struct power_supply *psy = container_of(work, struct power_supply,
152                                                 deferred_register_work.work);
153
154         if (psy->dev.parent) {
155                 while (!device_trylock(psy->dev.parent)) {
156                         if (psy->removing)
157                                 return;
158                         msleep(10);
159                 }
160         }
161
162         power_supply_changed(psy);
163
164         if (psy->dev.parent)
165                 device_unlock(psy->dev.parent);
166 }
167
168 #ifdef CONFIG_OF
169 static int __power_supply_populate_supplied_from(struct device *dev,
170                                                  void *data)
171 {
172         struct power_supply *psy = data;
173         struct power_supply *epsy = dev_get_drvdata(dev);
174         struct device_node *np;
175         int i = 0;
176
177         do {
178                 np = of_parse_phandle(psy->of_node, "power-supplies", i++);
179                 if (!np)
180                         break;
181
182                 if (np == epsy->of_node) {
183                         dev_dbg(&psy->dev, "%s: Found supply : %s\n",
184                                 psy->desc->name, epsy->desc->name);
185                         psy->supplied_from[i-1] = (char *)epsy->desc->name;
186                         psy->num_supplies++;
187                         of_node_put(np);
188                         break;
189                 }
190                 of_node_put(np);
191         } while (np);
192
193         return 0;
194 }
195
196 static int power_supply_populate_supplied_from(struct power_supply *psy)
197 {
198         int error;
199
200         error = power_supply_for_each_device(psy, __power_supply_populate_supplied_from);
201
202         dev_dbg(&psy->dev, "%s %d\n", __func__, error);
203
204         return error;
205 }
206
207 static int  __power_supply_find_supply_from_node(struct device *dev,
208                                                  void *data)
209 {
210         struct device_node *np = data;
211         struct power_supply *epsy = dev_get_drvdata(dev);
212
213         /* returning non-zero breaks out of power_supply_for_each_device loop */
214         if (epsy->of_node == np)
215                 return 1;
216
217         return 0;
218 }
219
220 static int power_supply_find_supply_from_node(struct device_node *supply_node)
221 {
222         int error;
223
224         /*
225          * power_supply_for_each_device() either returns its own errors or values
226          * returned by __power_supply_find_supply_from_node().
227          *
228          * __power_supply_find_supply_from_node() will return 0 (no match)
229          * or 1 (match).
230          *
231          * We return 0 if power_supply_for_each_device() returned 1, -EPROBE_DEFER if
232          * it returned 0, or error as returned by it.
233          */
234         error = power_supply_for_each_device(supply_node, __power_supply_find_supply_from_node);
235
236         return error ? (error == 1 ? 0 : error) : -EPROBE_DEFER;
237 }
238
239 static int power_supply_check_supplies(struct power_supply *psy)
240 {
241         struct device_node *np;
242         int cnt = 0;
243
244         /* If there is already a list honor it */
245         if (psy->supplied_from && psy->num_supplies > 0)
246                 return 0;
247
248         /* No device node found, nothing to do */
249         if (!psy->of_node)
250                 return 0;
251
252         do {
253                 int ret;
254
255                 np = of_parse_phandle(psy->of_node, "power-supplies", cnt++);
256                 if (!np)
257                         break;
258
259                 ret = power_supply_find_supply_from_node(np);
260                 of_node_put(np);
261
262                 if (ret) {
263                         dev_dbg(&psy->dev, "Failed to find supply!\n");
264                         return ret;
265                 }
266         } while (np);
267
268         /* Missing valid "power-supplies" entries */
269         if (cnt == 1)
270                 return 0;
271
272         /* All supplies found, allocate char ** array for filling */
273         psy->supplied_from = devm_kzalloc(&psy->dev, sizeof(*psy->supplied_from),
274                                           GFP_KERNEL);
275         if (!psy->supplied_from)
276                 return -ENOMEM;
277
278         *psy->supplied_from = devm_kcalloc(&psy->dev,
279                                            cnt - 1, sizeof(**psy->supplied_from),
280                                            GFP_KERNEL);
281         if (!*psy->supplied_from)
282                 return -ENOMEM;
283
284         return power_supply_populate_supplied_from(psy);
285 }
286 #else
287 static int power_supply_check_supplies(struct power_supply *psy)
288 {
289         int nval, ret;
290
291         if (!psy->dev.parent)
292                 return 0;
293
294         nval = device_property_string_array_count(psy->dev.parent, "supplied-from");
295         if (nval <= 0)
296                 return 0;
297
298         psy->supplied_from = devm_kmalloc_array(&psy->dev, nval,
299                                                 sizeof(char *), GFP_KERNEL);
300         if (!psy->supplied_from)
301                 return -ENOMEM;
302
303         ret = device_property_read_string_array(psy->dev.parent,
304                 "supplied-from", (const char **)psy->supplied_from, nval);
305         if (ret < 0)
306                 return ret;
307
308         psy->num_supplies = nval;
309
310         return 0;
311 }
312 #endif
313
314 struct psy_am_i_supplied_data {
315         struct power_supply *psy;
316         unsigned int count;
317 };
318
319 static int __power_supply_am_i_supplied(struct device *dev, void *_data)
320 {
321         union power_supply_propval ret = {0,};
322         struct power_supply *epsy = dev_get_drvdata(dev);
323         struct psy_am_i_supplied_data *data = _data;
324
325         if (__power_supply_is_supplied_by(epsy, data->psy)) {
326                 data->count++;
327                 if (!epsy->desc->get_property(epsy, POWER_SUPPLY_PROP_ONLINE,
328                                         &ret))
329                         return ret.intval;
330         }
331
332         return 0;
333 }
334
335 int power_supply_am_i_supplied(struct power_supply *psy)
336 {
337         struct psy_am_i_supplied_data data = { psy, 0 };
338         int error;
339
340         error = power_supply_for_each_device(&data, __power_supply_am_i_supplied);
341
342         dev_dbg(&psy->dev, "%s count %u err %d\n", __func__, data.count, error);
343
344         if (data.count == 0)
345                 return -ENODEV;
346
347         return error;
348 }
349 EXPORT_SYMBOL_GPL(power_supply_am_i_supplied);
350
351 static int __power_supply_is_system_supplied(struct device *dev, void *data)
352 {
353         union power_supply_propval ret = {0,};
354         struct power_supply *psy = dev_get_drvdata(dev);
355         unsigned int *count = data;
356
357         if (!psy->desc->get_property(psy, POWER_SUPPLY_PROP_SCOPE, &ret))
358                 if (ret.intval == POWER_SUPPLY_SCOPE_DEVICE)
359                         return 0;
360
361         (*count)++;
362         if (psy->desc->type != POWER_SUPPLY_TYPE_BATTERY)
363                 if (!psy->desc->get_property(psy, POWER_SUPPLY_PROP_ONLINE,
364                                         &ret))
365                         return ret.intval;
366
367         return 0;
368 }
369
370 int power_supply_is_system_supplied(void)
371 {
372         int error;
373         unsigned int count = 0;
374
375         error = power_supply_for_each_device(&count, __power_supply_is_system_supplied);
376
377         /*
378          * If no system scope power class device was found at all, most probably we
379          * are running on a desktop system, so assume we are on mains power.
380          */
381         if (count == 0)
382                 return 1;
383
384         return error;
385 }
386 EXPORT_SYMBOL_GPL(power_supply_is_system_supplied);
387
388 struct psy_get_supplier_prop_data {
389         struct power_supply *psy;
390         enum power_supply_property psp;
391         union power_supply_propval *val;
392 };
393
394 static int __power_supply_get_supplier_property(struct device *dev, void *_data)
395 {
396         struct power_supply *epsy = dev_get_drvdata(dev);
397         struct psy_get_supplier_prop_data *data = _data;
398
399         if (__power_supply_is_supplied_by(epsy, data->psy))
400                 if (!power_supply_get_property(epsy, data->psp, data->val))
401                         return 1; /* Success */
402
403         return 0; /* Continue iterating */
404 }
405
406 int power_supply_get_property_from_supplier(struct power_supply *psy,
407                                             enum power_supply_property psp,
408                                             union power_supply_propval *val)
409 {
410         struct psy_get_supplier_prop_data data = {
411                 .psy = psy,
412                 .psp = psp,
413                 .val = val,
414         };
415         int ret;
416
417         /*
418          * This function is not intended for use with a supply with multiple
419          * suppliers, we simply pick the first supply to report the psp.
420          */
421         ret = power_supply_for_each_device(&data, __power_supply_get_supplier_property);
422         if (ret < 0)
423                 return ret;
424         if (ret == 0)
425                 return -ENODEV;
426
427         return 0;
428 }
429 EXPORT_SYMBOL_GPL(power_supply_get_property_from_supplier);
430
431 int power_supply_set_battery_charged(struct power_supply *psy)
432 {
433         if (atomic_read(&psy->use_cnt) >= 0 &&
434                         psy->desc->type == POWER_SUPPLY_TYPE_BATTERY &&
435                         psy->desc->set_charged) {
436                 psy->desc->set_charged(psy);
437                 return 0;
438         }
439
440         return -EINVAL;
441 }
442 EXPORT_SYMBOL_GPL(power_supply_set_battery_charged);
443
444 static int power_supply_match_device_by_name(struct device *dev, const void *data)
445 {
446         const char *name = data;
447         struct power_supply *psy = dev_get_drvdata(dev);
448
449         return strcmp(psy->desc->name, name) == 0;
450 }
451
452 /**
453  * power_supply_get_by_name() - Search for a power supply and returns its ref
454  * @name: Power supply name to fetch
455  *
456  * If power supply was found, it increases reference count for the
457  * internal power supply's device. The user should power_supply_put()
458  * after usage.
459  *
460  * Return: On success returns a reference to a power supply with
461  * matching name equals to @name, a NULL otherwise.
462  */
463 struct power_supply *power_supply_get_by_name(const char *name)
464 {
465         struct power_supply *psy = NULL;
466         struct device *dev = class_find_device(&power_supply_class, NULL, name,
467                                                power_supply_match_device_by_name);
468
469         if (dev) {
470                 psy = dev_get_drvdata(dev);
471                 atomic_inc(&psy->use_cnt);
472         }
473
474         return psy;
475 }
476 EXPORT_SYMBOL_GPL(power_supply_get_by_name);
477
478 /**
479  * power_supply_put() - Drop reference obtained with power_supply_get_by_name
480  * @psy: Reference to put
481  *
482  * The reference to power supply should be put before unregistering
483  * the power supply.
484  */
485 void power_supply_put(struct power_supply *psy)
486 {
487         atomic_dec(&psy->use_cnt);
488         put_device(&psy->dev);
489 }
490 EXPORT_SYMBOL_GPL(power_supply_put);
491
492 #ifdef CONFIG_OF
493 static int power_supply_match_device_node(struct device *dev, const void *data)
494 {
495         return dev->parent && dev->parent->of_node == data;
496 }
497
498 /**
499  * power_supply_get_by_phandle() - Search for a power supply and returns its ref
500  * @np: Pointer to device node holding phandle property
501  * @property: Name of property holding a power supply name
502  *
503  * If power supply was found, it increases reference count for the
504  * internal power supply's device. The user should power_supply_put()
505  * after usage.
506  *
507  * Return: On success returns a reference to a power supply with
508  * matching name equals to value under @property, NULL or ERR_PTR otherwise.
509  */
510 struct power_supply *power_supply_get_by_phandle(struct device_node *np,
511                                                         const char *property)
512 {
513         struct device_node *power_supply_np;
514         struct power_supply *psy = NULL;
515         struct device *dev;
516
517         power_supply_np = of_parse_phandle(np, property, 0);
518         if (!power_supply_np)
519                 return ERR_PTR(-ENODEV);
520
521         dev = class_find_device(&power_supply_class, NULL, power_supply_np,
522                                 power_supply_match_device_node);
523
524         of_node_put(power_supply_np);
525
526         if (dev) {
527                 psy = dev_get_drvdata(dev);
528                 atomic_inc(&psy->use_cnt);
529         }
530
531         return psy;
532 }
533 EXPORT_SYMBOL_GPL(power_supply_get_by_phandle);
534
535 static void devm_power_supply_put(struct device *dev, void *res)
536 {
537         struct power_supply **psy = res;
538
539         power_supply_put(*psy);
540 }
541
542 /**
543  * devm_power_supply_get_by_phandle() - Resource managed version of
544  *  power_supply_get_by_phandle()
545  * @dev: Pointer to device holding phandle property
546  * @property: Name of property holding a power supply phandle
547  *
548  * Return: On success returns a reference to a power supply with
549  * matching name equals to value under @property, NULL or ERR_PTR otherwise.
550  */
551 struct power_supply *devm_power_supply_get_by_phandle(struct device *dev,
552                                                       const char *property)
553 {
554         struct power_supply **ptr, *psy;
555
556         if (!dev->of_node)
557                 return ERR_PTR(-ENODEV);
558
559         ptr = devres_alloc(devm_power_supply_put, sizeof(*ptr), GFP_KERNEL);
560         if (!ptr)
561                 return ERR_PTR(-ENOMEM);
562
563         psy = power_supply_get_by_phandle(dev->of_node, property);
564         if (IS_ERR_OR_NULL(psy)) {
565                 devres_free(ptr);
566         } else {
567                 *ptr = psy;
568                 devres_add(dev, ptr);
569         }
570         return psy;
571 }
572 EXPORT_SYMBOL_GPL(devm_power_supply_get_by_phandle);
573 #endif /* CONFIG_OF */
574
575 int power_supply_get_battery_info(struct power_supply *psy,
576                                   struct power_supply_battery_info **info_out)
577 {
578         struct power_supply_resistance_temp_table *resist_table;
579         struct power_supply_battery_info *info;
580         struct device_node *battery_np = NULL;
581         struct fwnode_reference_args args;
582         struct fwnode_handle *fwnode = NULL;
583         const char *value;
584         int err, len, index;
585         const __be32 *list;
586         u32 min_max[2];
587
588         if (psy->of_node) {
589                 battery_np = of_parse_phandle(psy->of_node, "monitored-battery", 0);
590                 if (!battery_np)
591                         return -ENODEV;
592
593                 fwnode = fwnode_handle_get(of_fwnode_handle(battery_np));
594         } else if (psy->dev.parent) {
595                 err = fwnode_property_get_reference_args(
596                                         dev_fwnode(psy->dev.parent),
597                                         "monitored-battery", NULL, 0, 0, &args);
598                 if (err)
599                         return err;
600
601                 fwnode = args.fwnode;
602         }
603
604         if (!fwnode)
605                 return -ENOENT;
606
607         err = fwnode_property_read_string(fwnode, "compatible", &value);
608         if (err)
609                 goto out_put_node;
610
611
612         /* Try static batteries first */
613         err = samsung_sdi_battery_get_info(&psy->dev, value, &info);
614         if (!err)
615                 goto out_ret_pointer;
616         else if (err == -ENODEV)
617                 /*
618                  * Device does not have a static battery.
619                  * Proceed to look for a simple battery.
620                  */
621                 err = 0;
622
623         if (strcmp("simple-battery", value)) {
624                 err = -ENODEV;
625                 goto out_put_node;
626         }
627
628         info = devm_kzalloc(&psy->dev, sizeof(*info), GFP_KERNEL);
629         if (!info) {
630                 err = -ENOMEM;
631                 goto out_put_node;
632         }
633
634         info->technology                     = POWER_SUPPLY_TECHNOLOGY_UNKNOWN;
635         info->energy_full_design_uwh         = -EINVAL;
636         info->charge_full_design_uah         = -EINVAL;
637         info->voltage_min_design_uv          = -EINVAL;
638         info->voltage_max_design_uv          = -EINVAL;
639         info->precharge_current_ua           = -EINVAL;
640         info->charge_term_current_ua         = -EINVAL;
641         info->constant_charge_current_max_ua = -EINVAL;
642         info->constant_charge_voltage_max_uv = -EINVAL;
643         info->tricklecharge_current_ua       = -EINVAL;
644         info->precharge_voltage_max_uv       = -EINVAL;
645         info->charge_restart_voltage_uv      = -EINVAL;
646         info->overvoltage_limit_uv           = -EINVAL;
647         info->maintenance_charge             = NULL;
648         info->alert_low_temp_charge_current_ua = -EINVAL;
649         info->alert_low_temp_charge_voltage_uv = -EINVAL;
650         info->alert_high_temp_charge_current_ua = -EINVAL;
651         info->alert_high_temp_charge_voltage_uv = -EINVAL;
652         info->temp_ambient_alert_min         = INT_MIN;
653         info->temp_ambient_alert_max         = INT_MAX;
654         info->temp_alert_min                 = INT_MIN;
655         info->temp_alert_max                 = INT_MAX;
656         info->temp_min                       = INT_MIN;
657         info->temp_max                       = INT_MAX;
658         info->factory_internal_resistance_uohm  = -EINVAL;
659         info->resist_table                   = NULL;
660         info->bti_resistance_ohm             = -EINVAL;
661         info->bti_resistance_tolerance       = -EINVAL;
662
663         for (index = 0; index < POWER_SUPPLY_OCV_TEMP_MAX; index++) {
664                 info->ocv_table[index]       = NULL;
665                 info->ocv_temp[index]        = -EINVAL;
666                 info->ocv_table_size[index]  = -EINVAL;
667         }
668
669         /* The property and field names below must correspond to elements
670          * in enum power_supply_property. For reasoning, see
671          * Documentation/power/power_supply_class.rst.
672          */
673
674         if (!fwnode_property_read_string(fwnode, "device-chemistry", &value)) {
675                 if (!strcmp("nickel-cadmium", value))
676                         info->technology = POWER_SUPPLY_TECHNOLOGY_NiCd;
677                 else if (!strcmp("nickel-metal-hydride", value))
678                         info->technology = POWER_SUPPLY_TECHNOLOGY_NiMH;
679                 else if (!strcmp("lithium-ion", value))
680                         /* Imprecise lithium-ion type */
681                         info->technology = POWER_SUPPLY_TECHNOLOGY_LION;
682                 else if (!strcmp("lithium-ion-polymer", value))
683                         info->technology = POWER_SUPPLY_TECHNOLOGY_LIPO;
684                 else if (!strcmp("lithium-ion-iron-phosphate", value))
685                         info->technology = POWER_SUPPLY_TECHNOLOGY_LiFe;
686                 else if (!strcmp("lithium-ion-manganese-oxide", value))
687                         info->technology = POWER_SUPPLY_TECHNOLOGY_LiMn;
688                 else
689                         dev_warn(&psy->dev, "%s unknown battery type\n", value);
690         }
691
692         fwnode_property_read_u32(fwnode, "energy-full-design-microwatt-hours",
693                              &info->energy_full_design_uwh);
694         fwnode_property_read_u32(fwnode, "charge-full-design-microamp-hours",
695                              &info->charge_full_design_uah);
696         fwnode_property_read_u32(fwnode, "voltage-min-design-microvolt",
697                              &info->voltage_min_design_uv);
698         fwnode_property_read_u32(fwnode, "voltage-max-design-microvolt",
699                              &info->voltage_max_design_uv);
700         fwnode_property_read_u32(fwnode, "trickle-charge-current-microamp",
701                              &info->tricklecharge_current_ua);
702         fwnode_property_read_u32(fwnode, "precharge-current-microamp",
703                              &info->precharge_current_ua);
704         fwnode_property_read_u32(fwnode, "precharge-upper-limit-microvolt",
705                              &info->precharge_voltage_max_uv);
706         fwnode_property_read_u32(fwnode, "charge-term-current-microamp",
707                              &info->charge_term_current_ua);
708         fwnode_property_read_u32(fwnode, "re-charge-voltage-microvolt",
709                              &info->charge_restart_voltage_uv);
710         fwnode_property_read_u32(fwnode, "over-voltage-threshold-microvolt",
711                              &info->overvoltage_limit_uv);
712         fwnode_property_read_u32(fwnode, "constant-charge-current-max-microamp",
713                              &info->constant_charge_current_max_ua);
714         fwnode_property_read_u32(fwnode, "constant-charge-voltage-max-microvolt",
715                              &info->constant_charge_voltage_max_uv);
716         fwnode_property_read_u32(fwnode, "factory-internal-resistance-micro-ohms",
717                              &info->factory_internal_resistance_uohm);
718
719         if (!fwnode_property_read_u32_array(fwnode, "ambient-celsius",
720                                             min_max, ARRAY_SIZE(min_max))) {
721                 info->temp_ambient_alert_min = min_max[0];
722                 info->temp_ambient_alert_max = min_max[1];
723         }
724         if (!fwnode_property_read_u32_array(fwnode, "alert-celsius",
725                                             min_max, ARRAY_SIZE(min_max))) {
726                 info->temp_alert_min = min_max[0];
727                 info->temp_alert_max = min_max[1];
728         }
729         if (!fwnode_property_read_u32_array(fwnode, "operating-range-celsius",
730                                             min_max, ARRAY_SIZE(min_max))) {
731                 info->temp_min = min_max[0];
732                 info->temp_max = min_max[1];
733         }
734
735         /*
736          * The below code uses raw of-data parsing to parse
737          * /schemas/types.yaml#/definitions/uint32-matrix
738          * data, so for now this is only support with of.
739          */
740         if (!battery_np)
741                 goto out_ret_pointer;
742
743         len = of_property_count_u32_elems(battery_np, "ocv-capacity-celsius");
744         if (len < 0 && len != -EINVAL) {
745                 err = len;
746                 goto out_put_node;
747         } else if (len > POWER_SUPPLY_OCV_TEMP_MAX) {
748                 dev_err(&psy->dev, "Too many temperature values\n");
749                 err = -EINVAL;
750                 goto out_put_node;
751         } else if (len > 0) {
752                 of_property_read_u32_array(battery_np, "ocv-capacity-celsius",
753                                            info->ocv_temp, len);
754         }
755
756         for (index = 0; index < len; index++) {
757                 struct power_supply_battery_ocv_table *table;
758                 int i, tab_len, size;
759
760                 char *propname __free(kfree) = kasprintf(GFP_KERNEL, "ocv-capacity-table-%d",
761                                                          index);
762                 if (!propname) {
763                         power_supply_put_battery_info(psy, info);
764                         err = -ENOMEM;
765                         goto out_put_node;
766                 }
767                 list = of_get_property(battery_np, propname, &size);
768                 if (!list || !size) {
769                         dev_err(&psy->dev, "failed to get %s\n", propname);
770                         power_supply_put_battery_info(psy, info);
771                         err = -EINVAL;
772                         goto out_put_node;
773                 }
774
775                 tab_len = size / (2 * sizeof(__be32));
776                 info->ocv_table_size[index] = tab_len;
777
778                 info->ocv_table[index] = table =
779                         devm_kcalloc(&psy->dev, tab_len, sizeof(*table), GFP_KERNEL);
780                 if (!info->ocv_table[index]) {
781                         power_supply_put_battery_info(psy, info);
782                         err = -ENOMEM;
783                         goto out_put_node;
784                 }
785
786                 for (i = 0; i < tab_len; i++) {
787                         table[i].ocv = be32_to_cpu(*list);
788                         list++;
789                         table[i].capacity = be32_to_cpu(*list);
790                         list++;
791                 }
792         }
793
794         list = of_get_property(battery_np, "resistance-temp-table", &len);
795         if (!list || !len)
796                 goto out_ret_pointer;
797
798         info->resist_table_size = len / (2 * sizeof(__be32));
799         info->resist_table = resist_table = devm_kcalloc(&psy->dev,
800                                                          info->resist_table_size,
801                                                          sizeof(*resist_table),
802                                                          GFP_KERNEL);
803         if (!info->resist_table) {
804                 power_supply_put_battery_info(psy, info);
805                 err = -ENOMEM;
806                 goto out_put_node;
807         }
808
809         for (index = 0; index < info->resist_table_size; index++) {
810                 resist_table[index].temp = be32_to_cpu(*list++);
811                 resist_table[index].resistance = be32_to_cpu(*list++);
812         }
813
814 out_ret_pointer:
815         /* Finally return the whole thing */
816         *info_out = info;
817
818 out_put_node:
819         fwnode_handle_put(fwnode);
820         of_node_put(battery_np);
821         return err;
822 }
823 EXPORT_SYMBOL_GPL(power_supply_get_battery_info);
824
825 void power_supply_put_battery_info(struct power_supply *psy,
826                                    struct power_supply_battery_info *info)
827 {
828         int i;
829
830         for (i = 0; i < POWER_SUPPLY_OCV_TEMP_MAX; i++) {
831                 if (info->ocv_table[i])
832                         devm_kfree(&psy->dev, info->ocv_table[i]);
833         }
834
835         if (info->resist_table)
836                 devm_kfree(&psy->dev, info->resist_table);
837
838         devm_kfree(&psy->dev, info);
839 }
840 EXPORT_SYMBOL_GPL(power_supply_put_battery_info);
841
842 const enum power_supply_property power_supply_battery_info_properties[] = {
843         POWER_SUPPLY_PROP_TECHNOLOGY,
844         POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN,
845         POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN,
846         POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN,
847         POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN,
848         POWER_SUPPLY_PROP_PRECHARGE_CURRENT,
849         POWER_SUPPLY_PROP_CHARGE_TERM_CURRENT,
850         POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX,
851         POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE_MAX,
852         POWER_SUPPLY_PROP_TEMP_AMBIENT_ALERT_MIN,
853         POWER_SUPPLY_PROP_TEMP_AMBIENT_ALERT_MAX,
854         POWER_SUPPLY_PROP_TEMP_ALERT_MIN,
855         POWER_SUPPLY_PROP_TEMP_ALERT_MAX,
856         POWER_SUPPLY_PROP_TEMP_MIN,
857         POWER_SUPPLY_PROP_TEMP_MAX,
858 };
859 EXPORT_SYMBOL_GPL(power_supply_battery_info_properties);
860
861 const size_t power_supply_battery_info_properties_size = ARRAY_SIZE(power_supply_battery_info_properties);
862 EXPORT_SYMBOL_GPL(power_supply_battery_info_properties_size);
863
864 bool power_supply_battery_info_has_prop(struct power_supply_battery_info *info,
865                                         enum power_supply_property psp)
866 {
867         if (!info)
868                 return false;
869
870         switch (psp) {
871         case POWER_SUPPLY_PROP_TECHNOLOGY:
872                 return info->technology != POWER_SUPPLY_TECHNOLOGY_UNKNOWN;
873         case POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN:
874                 return info->energy_full_design_uwh >= 0;
875         case POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN:
876                 return info->charge_full_design_uah >= 0;
877         case POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN:
878                 return info->voltage_min_design_uv >= 0;
879         case POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN:
880                 return info->voltage_max_design_uv >= 0;
881         case POWER_SUPPLY_PROP_PRECHARGE_CURRENT:
882                 return info->precharge_current_ua >= 0;
883         case POWER_SUPPLY_PROP_CHARGE_TERM_CURRENT:
884                 return info->charge_term_current_ua >= 0;
885         case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX:
886                 return info->constant_charge_current_max_ua >= 0;
887         case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE_MAX:
888                 return info->constant_charge_voltage_max_uv >= 0;
889         case POWER_SUPPLY_PROP_TEMP_AMBIENT_ALERT_MIN:
890                 return info->temp_ambient_alert_min > INT_MIN;
891         case POWER_SUPPLY_PROP_TEMP_AMBIENT_ALERT_MAX:
892                 return info->temp_ambient_alert_max < INT_MAX;
893         case POWER_SUPPLY_PROP_TEMP_ALERT_MIN:
894                 return info->temp_alert_min > INT_MIN;
895         case POWER_SUPPLY_PROP_TEMP_ALERT_MAX:
896                 return info->temp_alert_max < INT_MAX;
897         case POWER_SUPPLY_PROP_TEMP_MIN:
898                 return info->temp_min > INT_MIN;
899         case POWER_SUPPLY_PROP_TEMP_MAX:
900                 return info->temp_max < INT_MAX;
901         default:
902                 return false;
903         }
904 }
905 EXPORT_SYMBOL_GPL(power_supply_battery_info_has_prop);
906
907 int power_supply_battery_info_get_prop(struct power_supply_battery_info *info,
908                                        enum power_supply_property psp,
909                                        union power_supply_propval *val)
910 {
911         if (!info)
912                 return -EINVAL;
913
914         if (!power_supply_battery_info_has_prop(info, psp))
915                 return -EINVAL;
916
917         switch (psp) {
918         case POWER_SUPPLY_PROP_TECHNOLOGY:
919                 val->intval = info->technology;
920                 return 0;
921         case POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN:
922                 val->intval = info->energy_full_design_uwh;
923                 return 0;
924         case POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN:
925                 val->intval = info->charge_full_design_uah;
926                 return 0;
927         case POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN:
928                 val->intval = info->voltage_min_design_uv;
929                 return 0;
930         case POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN:
931                 val->intval = info->voltage_max_design_uv;
932                 return 0;
933         case POWER_SUPPLY_PROP_PRECHARGE_CURRENT:
934                 val->intval = info->precharge_current_ua;
935                 return 0;
936         case POWER_SUPPLY_PROP_CHARGE_TERM_CURRENT:
937                 val->intval = info->charge_term_current_ua;
938                 return 0;
939         case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX:
940                 val->intval = info->constant_charge_current_max_ua;
941                 return 0;
942         case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE_MAX:
943                 val->intval = info->constant_charge_voltage_max_uv;
944                 return 0;
945         case POWER_SUPPLY_PROP_TEMP_AMBIENT_ALERT_MIN:
946                 val->intval = info->temp_ambient_alert_min;
947                 return 0;
948         case POWER_SUPPLY_PROP_TEMP_AMBIENT_ALERT_MAX:
949                 val->intval = info->temp_ambient_alert_max;
950                 return 0;
951         case POWER_SUPPLY_PROP_TEMP_ALERT_MIN:
952                 val->intval = info->temp_alert_min;
953                 return 0;
954         case POWER_SUPPLY_PROP_TEMP_ALERT_MAX:
955                 val->intval = info->temp_alert_max;
956                 return 0;
957         case POWER_SUPPLY_PROP_TEMP_MIN:
958                 val->intval = info->temp_min;
959                 return 0;
960         case POWER_SUPPLY_PROP_TEMP_MAX:
961                 val->intval = info->temp_max;
962                 return 0;
963         default:
964                 return -EINVAL;
965         }
966 }
967 EXPORT_SYMBOL_GPL(power_supply_battery_info_get_prop);
968
969 /**
970  * power_supply_temp2resist_simple() - find the battery internal resistance
971  * percent from temperature
972  * @table: Pointer to battery resistance temperature table
973  * @table_len: The table length
974  * @temp: Current temperature
975  *
976  * This helper function is used to look up battery internal resistance percent
977  * according to current temperature value from the resistance temperature table,
978  * and the table must be ordered descending. Then the actual battery internal
979  * resistance = the ideal battery internal resistance * percent / 100.
980  *
981  * Return: the battery internal resistance percent
982  */
983 int power_supply_temp2resist_simple(const struct power_supply_resistance_temp_table *table,
984                                     int table_len, int temp)
985 {
986         int i, high, low;
987
988         for (i = 0; i < table_len; i++)
989                 if (temp > table[i].temp)
990                         break;
991
992         /* The library function will deal with high == low */
993         if (i == 0)
994                 high = low = i;
995         else if (i == table_len)
996                 high = low = i - 1;
997         else
998                 high = (low = i) - 1;
999
1000         return fixp_linear_interpolate(table[low].temp,
1001                                        table[low].resistance,
1002                                        table[high].temp,
1003                                        table[high].resistance,
1004                                        temp);
1005 }
1006 EXPORT_SYMBOL_GPL(power_supply_temp2resist_simple);
1007
1008 /**
1009  * power_supply_vbat2ri() - find the battery internal resistance
1010  * from the battery voltage
1011  * @info: The battery information container
1012  * @vbat_uv: The battery voltage in microvolt
1013  * @charging: If we are charging (true) or not (false)
1014  *
1015  * This helper function is used to look up battery internal resistance
1016  * according to current battery voltage. Depending on whether the battery
1017  * is currently charging or not, different resistance will be returned.
1018  *
1019  * Returns the internal resistance in microohm or negative error code.
1020  */
1021 int power_supply_vbat2ri(struct power_supply_battery_info *info,
1022                          int vbat_uv, bool charging)
1023 {
1024         const struct power_supply_vbat_ri_table *vbat2ri;
1025         int table_len;
1026         int i, high, low;
1027
1028         /*
1029          * If we are charging, and the battery supplies a separate table
1030          * for this state, we use that in order to compensate for the
1031          * charging voltage. Otherwise we use the main table.
1032          */
1033         if (charging && info->vbat2ri_charging) {
1034                 vbat2ri = info->vbat2ri_charging;
1035                 table_len = info->vbat2ri_charging_size;
1036         } else {
1037                 vbat2ri = info->vbat2ri_discharging;
1038                 table_len = info->vbat2ri_discharging_size;
1039         }
1040
1041         /*
1042          * If no tables are specified, or if we are above the highest voltage in
1043          * the voltage table, just return the factory specified internal resistance.
1044          */
1045         if (!vbat2ri || (table_len <= 0) || (vbat_uv > vbat2ri[0].vbat_uv)) {
1046                 if (charging && (info->factory_internal_resistance_charging_uohm > 0))
1047                         return info->factory_internal_resistance_charging_uohm;
1048                 else
1049                         return info->factory_internal_resistance_uohm;
1050         }
1051
1052         /* Break loop at table_len - 1 because that is the highest index */
1053         for (i = 0; i < table_len - 1; i++)
1054                 if (vbat_uv > vbat2ri[i].vbat_uv)
1055                         break;
1056
1057         /* The library function will deal with high == low */
1058         if ((i == 0) || (i == (table_len - 1)))
1059                 high = i;
1060         else
1061                 high = i - 1;
1062         low = i;
1063
1064         return fixp_linear_interpolate(vbat2ri[low].vbat_uv,
1065                                        vbat2ri[low].ri_uohm,
1066                                        vbat2ri[high].vbat_uv,
1067                                        vbat2ri[high].ri_uohm,
1068                                        vbat_uv);
1069 }
1070 EXPORT_SYMBOL_GPL(power_supply_vbat2ri);
1071
1072 const struct power_supply_maintenance_charge_table *
1073 power_supply_get_maintenance_charging_setting(struct power_supply_battery_info *info,
1074                                               int index)
1075 {
1076         if (index >= info->maintenance_charge_size)
1077                 return NULL;
1078         return &info->maintenance_charge[index];
1079 }
1080 EXPORT_SYMBOL_GPL(power_supply_get_maintenance_charging_setting);
1081
1082 /**
1083  * power_supply_ocv2cap_simple() - find the battery capacity
1084  * @table: Pointer to battery OCV lookup table
1085  * @table_len: OCV table length
1086  * @ocv: Current OCV value
1087  *
1088  * This helper function is used to look up battery capacity according to
1089  * current OCV value from one OCV table, and the OCV table must be ordered
1090  * descending.
1091  *
1092  * Return: the battery capacity.
1093  */
1094 int power_supply_ocv2cap_simple(const struct power_supply_battery_ocv_table *table,
1095                                 int table_len, int ocv)
1096 {
1097         int i, high, low;
1098
1099         for (i = 0; i < table_len; i++)
1100                 if (ocv > table[i].ocv)
1101                         break;
1102
1103         /* The library function will deal with high == low */
1104         if (i == 0)
1105                 high = low = i;
1106         else if (i == table_len)
1107                 high = low = i - 1;
1108         else
1109                 high = (low = i) - 1;
1110
1111         return fixp_linear_interpolate(table[low].ocv,
1112                                        table[low].capacity,
1113                                        table[high].ocv,
1114                                        table[high].capacity,
1115                                        ocv);
1116 }
1117 EXPORT_SYMBOL_GPL(power_supply_ocv2cap_simple);
1118
1119 const struct power_supply_battery_ocv_table *
1120 power_supply_find_ocv2cap_table(struct power_supply_battery_info *info,
1121                                 int temp, int *table_len)
1122 {
1123         int best_temp_diff = INT_MAX, temp_diff;
1124         u8 i, best_index = 0;
1125
1126         if (!info->ocv_table[0])
1127                 return NULL;
1128
1129         for (i = 0; i < POWER_SUPPLY_OCV_TEMP_MAX; i++) {
1130                 /* Out of capacity tables */
1131                 if (!info->ocv_table[i])
1132                         break;
1133
1134                 temp_diff = abs(info->ocv_temp[i] - temp);
1135
1136                 if (temp_diff < best_temp_diff) {
1137                         best_temp_diff = temp_diff;
1138                         best_index = i;
1139                 }
1140         }
1141
1142         *table_len = info->ocv_table_size[best_index];
1143         return info->ocv_table[best_index];
1144 }
1145 EXPORT_SYMBOL_GPL(power_supply_find_ocv2cap_table);
1146
1147 int power_supply_batinfo_ocv2cap(struct power_supply_battery_info *info,
1148                                  int ocv, int temp)
1149 {
1150         const struct power_supply_battery_ocv_table *table;
1151         int table_len;
1152
1153         table = power_supply_find_ocv2cap_table(info, temp, &table_len);
1154         if (!table)
1155                 return -EINVAL;
1156
1157         return power_supply_ocv2cap_simple(table, table_len, ocv);
1158 }
1159 EXPORT_SYMBOL_GPL(power_supply_batinfo_ocv2cap);
1160
1161 bool power_supply_battery_bti_in_range(struct power_supply_battery_info *info,
1162                                        int resistance)
1163 {
1164         int low, high;
1165
1166         /* Nothing like this can be checked */
1167         if (info->bti_resistance_ohm <= 0)
1168                 return false;
1169
1170         /* This will be extremely strict and unlikely to work */
1171         if (info->bti_resistance_tolerance <= 0)
1172                 return (info->bti_resistance_ohm == resistance);
1173
1174         low = info->bti_resistance_ohm -
1175                 (info->bti_resistance_ohm * info->bti_resistance_tolerance) / 100;
1176         high = info->bti_resistance_ohm +
1177                 (info->bti_resistance_ohm * info->bti_resistance_tolerance) / 100;
1178
1179         return ((resistance >= low) && (resistance <= high));
1180 }
1181 EXPORT_SYMBOL_GPL(power_supply_battery_bti_in_range);
1182
1183 static bool psy_has_property(const struct power_supply_desc *psy_desc,
1184                              enum power_supply_property psp)
1185 {
1186         bool found = false;
1187         int i;
1188
1189         for (i = 0; i < psy_desc->num_properties; i++) {
1190                 if (psy_desc->properties[i] == psp) {
1191                         found = true;
1192                         break;
1193                 }
1194         }
1195
1196         return found;
1197 }
1198
1199 int power_supply_get_property(struct power_supply *psy,
1200                             enum power_supply_property psp,
1201                             union power_supply_propval *val)
1202 {
1203         if (atomic_read(&psy->use_cnt) <= 0) {
1204                 if (!psy->initialized)
1205                         return -EAGAIN;
1206                 return -ENODEV;
1207         }
1208
1209         if (psy_has_property(psy->desc, psp))
1210                 return psy->desc->get_property(psy, psp, val);
1211         else if (power_supply_battery_info_has_prop(psy->battery_info, psp))
1212                 return power_supply_battery_info_get_prop(psy->battery_info, psp, val);
1213         else
1214                 return -EINVAL;
1215 }
1216 EXPORT_SYMBOL_GPL(power_supply_get_property);
1217
1218 int power_supply_set_property(struct power_supply *psy,
1219                             enum power_supply_property psp,
1220                             const union power_supply_propval *val)
1221 {
1222         if (atomic_read(&psy->use_cnt) <= 0 || !psy->desc->set_property)
1223                 return -ENODEV;
1224
1225         return psy->desc->set_property(psy, psp, val);
1226 }
1227 EXPORT_SYMBOL_GPL(power_supply_set_property);
1228
1229 int power_supply_property_is_writeable(struct power_supply *psy,
1230                                         enum power_supply_property psp)
1231 {
1232         return psy->desc->property_is_writeable && psy->desc->property_is_writeable(psy, psp);
1233 }
1234
1235 void power_supply_external_power_changed(struct power_supply *psy)
1236 {
1237         if (atomic_read(&psy->use_cnt) <= 0 ||
1238                         !psy->desc->external_power_changed)
1239                 return;
1240
1241         psy->desc->external_power_changed(psy);
1242 }
1243 EXPORT_SYMBOL_GPL(power_supply_external_power_changed);
1244
1245 int power_supply_powers(struct power_supply *psy, struct device *dev)
1246 {
1247         return sysfs_create_link(&psy->dev.kobj, &dev->kobj, "powers");
1248 }
1249 EXPORT_SYMBOL_GPL(power_supply_powers);
1250
1251 static void power_supply_dev_release(struct device *dev)
1252 {
1253         struct power_supply *psy = to_power_supply(dev);
1254
1255         dev_dbg(dev, "%s\n", __func__);
1256         kfree(psy);
1257 }
1258
1259 int power_supply_reg_notifier(struct notifier_block *nb)
1260 {
1261         return blocking_notifier_chain_register(&power_supply_notifier, nb);
1262 }
1263 EXPORT_SYMBOL_GPL(power_supply_reg_notifier);
1264
1265 void power_supply_unreg_notifier(struct notifier_block *nb)
1266 {
1267         blocking_notifier_chain_unregister(&power_supply_notifier, nb);
1268 }
1269 EXPORT_SYMBOL_GPL(power_supply_unreg_notifier);
1270
1271 #ifdef CONFIG_THERMAL
1272 static int power_supply_read_temp(struct thermal_zone_device *tzd,
1273                 int *temp)
1274 {
1275         struct power_supply *psy;
1276         union power_supply_propval val;
1277         int ret;
1278
1279         WARN_ON(tzd == NULL);
1280         psy = thermal_zone_device_priv(tzd);
1281         ret = power_supply_get_property(psy, POWER_SUPPLY_PROP_TEMP, &val);
1282         if (ret)
1283                 return ret;
1284
1285         /* Convert tenths of degree Celsius to milli degree Celsius. */
1286         *temp = val.intval * 100;
1287
1288         return ret;
1289 }
1290
1291 static const struct thermal_zone_device_ops psy_tzd_ops = {
1292         .get_temp = power_supply_read_temp,
1293 };
1294
1295 static int psy_register_thermal(struct power_supply *psy)
1296 {
1297         int ret;
1298
1299         if (psy->desc->no_thermal)
1300                 return 0;
1301
1302         /* Register battery zone device psy reports temperature */
1303         if (psy_has_property(psy->desc, POWER_SUPPLY_PROP_TEMP)) {
1304                 /* Prefer our hwmon device and avoid duplicates */
1305                 struct thermal_zone_params tzp = {
1306                         .no_hwmon = IS_ENABLED(CONFIG_POWER_SUPPLY_HWMON)
1307                 };
1308                 psy->tzd = thermal_tripless_zone_device_register(psy->desc->name,
1309                                 psy, &psy_tzd_ops, &tzp);
1310                 if (IS_ERR(psy->tzd))
1311                         return PTR_ERR(psy->tzd);
1312                 ret = thermal_zone_device_enable(psy->tzd);
1313                 if (ret)
1314                         thermal_zone_device_unregister(psy->tzd);
1315                 return ret;
1316         }
1317
1318         return 0;
1319 }
1320
1321 static void psy_unregister_thermal(struct power_supply *psy)
1322 {
1323         if (IS_ERR_OR_NULL(psy->tzd))
1324                 return;
1325         thermal_zone_device_unregister(psy->tzd);
1326 }
1327
1328 #else
1329 static int psy_register_thermal(struct power_supply *psy)
1330 {
1331         return 0;
1332 }
1333
1334 static void psy_unregister_thermal(struct power_supply *psy)
1335 {
1336 }
1337 #endif
1338
1339 static struct power_supply *__must_check
1340 __power_supply_register(struct device *parent,
1341                                    const struct power_supply_desc *desc,
1342                                    const struct power_supply_config *cfg)
1343 {
1344         struct device *dev;
1345         struct power_supply *psy;
1346         int rc;
1347
1348         if (!desc || !desc->name || !desc->properties || !desc->num_properties)
1349                 return ERR_PTR(-EINVAL);
1350
1351         if (!parent)
1352                 pr_warn("%s: Expected proper parent device for '%s'\n",
1353                         __func__, desc->name);
1354
1355         psy = kzalloc(sizeof(*psy), GFP_KERNEL);
1356         if (!psy)
1357                 return ERR_PTR(-ENOMEM);
1358
1359         dev = &psy->dev;
1360
1361         device_initialize(dev);
1362
1363         dev->class = &power_supply_class;
1364         dev->type = &power_supply_dev_type;
1365         dev->parent = parent;
1366         dev->release = power_supply_dev_release;
1367         dev_set_drvdata(dev, psy);
1368         psy->desc = desc;
1369         if (cfg) {
1370                 dev->groups = cfg->attr_grp;
1371                 psy->drv_data = cfg->drv_data;
1372                 psy->of_node =
1373                         cfg->fwnode ? to_of_node(cfg->fwnode) : cfg->of_node;
1374                 dev->of_node = psy->of_node;
1375                 psy->supplied_to = cfg->supplied_to;
1376                 psy->num_supplicants = cfg->num_supplicants;
1377         }
1378
1379         rc = dev_set_name(dev, "%s", desc->name);
1380         if (rc)
1381                 goto dev_set_name_failed;
1382
1383         INIT_WORK(&psy->changed_work, power_supply_changed_work);
1384         INIT_DELAYED_WORK(&psy->deferred_register_work,
1385                           power_supply_deferred_register_work);
1386
1387         rc = power_supply_check_supplies(psy);
1388         if (rc) {
1389                 dev_dbg(dev, "Not all required supplies found, defer probe\n");
1390                 goto check_supplies_failed;
1391         }
1392
1393         /*
1394          * Expose constant battery info, if it is available. While there are
1395          * some chargers accessing constant battery data, we only want to
1396          * expose battery data to userspace for battery devices.
1397          */
1398         if (desc->type == POWER_SUPPLY_TYPE_BATTERY) {
1399                 rc = power_supply_get_battery_info(psy, &psy->battery_info);
1400                 if (rc && rc != -ENODEV && rc != -ENOENT)
1401                         goto check_supplies_failed;
1402         }
1403
1404         spin_lock_init(&psy->changed_lock);
1405         rc = device_add(dev);
1406         if (rc)
1407                 goto device_add_failed;
1408
1409         rc = device_init_wakeup(dev, cfg ? !cfg->no_wakeup_source : true);
1410         if (rc)
1411                 goto wakeup_init_failed;
1412
1413         rc = psy_register_thermal(psy);
1414         if (rc)
1415                 goto register_thermal_failed;
1416
1417         rc = power_supply_create_triggers(psy);
1418         if (rc)
1419                 goto create_triggers_failed;
1420
1421         rc = power_supply_add_hwmon_sysfs(psy);
1422         if (rc)
1423                 goto add_hwmon_sysfs_failed;
1424
1425         /*
1426          * Update use_cnt after any uevents (most notably from device_add()).
1427          * We are here still during driver's probe but
1428          * the power_supply_uevent() calls back driver's get_property
1429          * method so:
1430          * 1. Driver did not assigned the returned struct power_supply,
1431          * 2. Driver could not finish initialization (anything in its probe
1432          *    after calling power_supply_register()).
1433          */
1434         atomic_inc(&psy->use_cnt);
1435         psy->initialized = true;
1436
1437         queue_delayed_work(system_power_efficient_wq,
1438                            &psy->deferred_register_work,
1439                            POWER_SUPPLY_DEFERRED_REGISTER_TIME);
1440
1441         return psy;
1442
1443 add_hwmon_sysfs_failed:
1444         power_supply_remove_triggers(psy);
1445 create_triggers_failed:
1446         psy_unregister_thermal(psy);
1447 register_thermal_failed:
1448 wakeup_init_failed:
1449         device_del(dev);
1450 device_add_failed:
1451 check_supplies_failed:
1452 dev_set_name_failed:
1453         put_device(dev);
1454         return ERR_PTR(rc);
1455 }
1456
1457 /**
1458  * power_supply_register() - Register new power supply
1459  * @parent:     Device to be a parent of power supply's device, usually
1460  *              the device which probe function calls this
1461  * @desc:       Description of power supply, must be valid through whole
1462  *              lifetime of this power supply
1463  * @cfg:        Run-time specific configuration accessed during registering,
1464  *              may be NULL
1465  *
1466  * Return: A pointer to newly allocated power_supply on success
1467  * or ERR_PTR otherwise.
1468  * Use power_supply_unregister() on returned power_supply pointer to release
1469  * resources.
1470  */
1471 struct power_supply *__must_check power_supply_register(struct device *parent,
1472                 const struct power_supply_desc *desc,
1473                 const struct power_supply_config *cfg)
1474 {
1475         return __power_supply_register(parent, desc, cfg);
1476 }
1477 EXPORT_SYMBOL_GPL(power_supply_register);
1478
1479 static void devm_power_supply_release(struct device *dev, void *res)
1480 {
1481         struct power_supply **psy = res;
1482
1483         power_supply_unregister(*psy);
1484 }
1485
1486 /**
1487  * devm_power_supply_register() - Register managed power supply
1488  * @parent:     Device to be a parent of power supply's device, usually
1489  *              the device which probe function calls this
1490  * @desc:       Description of power supply, must be valid through whole
1491  *              lifetime of this power supply
1492  * @cfg:        Run-time specific configuration accessed during registering,
1493  *              may be NULL
1494  *
1495  * Return: A pointer to newly allocated power_supply on success
1496  * or ERR_PTR otherwise.
1497  * The returned power_supply pointer will be automatically unregistered
1498  * on driver detach.
1499  */
1500 struct power_supply *__must_check
1501 devm_power_supply_register(struct device *parent,
1502                 const struct power_supply_desc *desc,
1503                 const struct power_supply_config *cfg)
1504 {
1505         struct power_supply **ptr, *psy;
1506
1507         ptr = devres_alloc(devm_power_supply_release, sizeof(*ptr), GFP_KERNEL);
1508
1509         if (!ptr)
1510                 return ERR_PTR(-ENOMEM);
1511         psy = __power_supply_register(parent, desc, cfg);
1512         if (IS_ERR(psy)) {
1513                 devres_free(ptr);
1514         } else {
1515                 *ptr = psy;
1516                 devres_add(parent, ptr);
1517         }
1518         return psy;
1519 }
1520 EXPORT_SYMBOL_GPL(devm_power_supply_register);
1521
1522 /**
1523  * power_supply_unregister() - Remove this power supply from system
1524  * @psy:        Pointer to power supply to unregister
1525  *
1526  * Remove this power supply from the system. The resources of power supply
1527  * will be freed here or on last power_supply_put() call.
1528  */
1529 void power_supply_unregister(struct power_supply *psy)
1530 {
1531         WARN_ON(atomic_dec_return(&psy->use_cnt));
1532         psy->removing = true;
1533         cancel_work_sync(&psy->changed_work);
1534         cancel_delayed_work_sync(&psy->deferred_register_work);
1535         sysfs_remove_link(&psy->dev.kobj, "powers");
1536         power_supply_remove_hwmon_sysfs(psy);
1537         power_supply_remove_triggers(psy);
1538         psy_unregister_thermal(psy);
1539         device_init_wakeup(&psy->dev, false);
1540         device_unregister(&psy->dev);
1541 }
1542 EXPORT_SYMBOL_GPL(power_supply_unregister);
1543
1544 void *power_supply_get_drvdata(struct power_supply *psy)
1545 {
1546         return psy->drv_data;
1547 }
1548 EXPORT_SYMBOL_GPL(power_supply_get_drvdata);
1549
1550 static int __init power_supply_class_init(void)
1551 {
1552         power_supply_init_attrs();
1553         return class_register(&power_supply_class);
1554 }
1555
1556 static void __exit power_supply_class_exit(void)
1557 {
1558         class_unregister(&power_supply_class);
1559 }
1560
1561 subsys_initcall(power_supply_class_init);
1562 module_exit(power_supply_class_exit);
1563
1564 MODULE_DESCRIPTION("Universal power supply monitor class");
1565 MODULE_AUTHOR("Ian Molton <[email protected]>");
1566 MODULE_AUTHOR("Szabolcs Gyurko");
1567 MODULE_AUTHOR("Anton Vorontsov <[email protected]>");
This page took 0.120304 seconds and 4 git commands to generate.