]> Git Repo - J-linux.git/blob - drivers/pmdomain/qcom/cpr.c
Merge tag 'vfs-6.13-rc7.fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs
[J-linux.git] / drivers / pmdomain / qcom / cpr.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2013-2015, The Linux Foundation. All rights reserved.
4  * Copyright (c) 2019, Linaro Limited
5  */
6
7 #include <linux/cleanup.h>
8 #include <linux/module.h>
9 #include <linux/err.h>
10 #include <linux/debugfs.h>
11 #include <linux/string.h>
12 #include <linux/kernel.h>
13 #include <linux/list.h>
14 #include <linux/init.h>
15 #include <linux/io.h>
16 #include <linux/bitops.h>
17 #include <linux/slab.h>
18 #include <linux/of.h>
19 #include <linux/platform_device.h>
20 #include <linux/pm_domain.h>
21 #include <linux/pm_opp.h>
22 #include <linux/interrupt.h>
23 #include <linux/regmap.h>
24 #include <linux/mfd/syscon.h>
25 #include <linux/regulator/consumer.h>
26 #include <linux/clk.h>
27 #include <linux/nvmem-consumer.h>
28
29 /* Register Offsets for RB-CPR and Bit Definitions */
30
31 /* RBCPR Version Register */
32 #define REG_RBCPR_VERSION               0
33 #define RBCPR_VER_2                     0x02
34 #define FLAGS_IGNORE_1ST_IRQ_STATUS     BIT(0)
35
36 /* RBCPR Gate Count and Target Registers */
37 #define REG_RBCPR_GCNT_TARGET(n)        (0x60 + 4 * (n))
38
39 #define RBCPR_GCNT_TARGET_TARGET_SHIFT  0
40 #define RBCPR_GCNT_TARGET_TARGET_MASK   GENMASK(11, 0)
41 #define RBCPR_GCNT_TARGET_GCNT_SHIFT    12
42 #define RBCPR_GCNT_TARGET_GCNT_MASK     GENMASK(9, 0)
43
44 /* RBCPR Timer Control */
45 #define REG_RBCPR_TIMER_INTERVAL        0x44
46 #define REG_RBIF_TIMER_ADJUST           0x4c
47
48 #define RBIF_TIMER_ADJ_CONS_UP_MASK     GENMASK(3, 0)
49 #define RBIF_TIMER_ADJ_CONS_UP_SHIFT    0
50 #define RBIF_TIMER_ADJ_CONS_DOWN_MASK   GENMASK(3, 0)
51 #define RBIF_TIMER_ADJ_CONS_DOWN_SHIFT  4
52 #define RBIF_TIMER_ADJ_CLAMP_INT_MASK   GENMASK(7, 0)
53 #define RBIF_TIMER_ADJ_CLAMP_INT_SHIFT  8
54
55 /* RBCPR Config Register */
56 #define REG_RBIF_LIMIT                  0x48
57 #define RBIF_LIMIT_CEILING_MASK         GENMASK(5, 0)
58 #define RBIF_LIMIT_CEILING_SHIFT        6
59 #define RBIF_LIMIT_FLOOR_BITS           6
60 #define RBIF_LIMIT_FLOOR_MASK           GENMASK(5, 0)
61
62 #define RBIF_LIMIT_CEILING_DEFAULT      RBIF_LIMIT_CEILING_MASK
63 #define RBIF_LIMIT_FLOOR_DEFAULT        0
64
65 #define REG_RBIF_SW_VLEVEL              0x94
66 #define RBIF_SW_VLEVEL_DEFAULT          0x20
67
68 #define REG_RBCPR_STEP_QUOT             0x80
69 #define RBCPR_STEP_QUOT_STEPQUOT_MASK   GENMASK(7, 0)
70 #define RBCPR_STEP_QUOT_IDLE_CLK_MASK   GENMASK(3, 0)
71 #define RBCPR_STEP_QUOT_IDLE_CLK_SHIFT  8
72
73 /* RBCPR Control Register */
74 #define REG_RBCPR_CTL                   0x90
75
76 #define RBCPR_CTL_LOOP_EN                       BIT(0)
77 #define RBCPR_CTL_TIMER_EN                      BIT(3)
78 #define RBCPR_CTL_SW_AUTO_CONT_ACK_EN           BIT(5)
79 #define RBCPR_CTL_SW_AUTO_CONT_NACK_DN_EN       BIT(6)
80 #define RBCPR_CTL_COUNT_MODE                    BIT(10)
81 #define RBCPR_CTL_UP_THRESHOLD_MASK     GENMASK(3, 0)
82 #define RBCPR_CTL_UP_THRESHOLD_SHIFT    24
83 #define RBCPR_CTL_DN_THRESHOLD_MASK     GENMASK(3, 0)
84 #define RBCPR_CTL_DN_THRESHOLD_SHIFT    28
85
86 /* RBCPR Ack/Nack Response */
87 #define REG_RBIF_CONT_ACK_CMD           0x98
88 #define REG_RBIF_CONT_NACK_CMD          0x9c
89
90 /* RBCPR Result status Register */
91 #define REG_RBCPR_RESULT_0              0xa0
92
93 #define RBCPR_RESULT0_BUSY_SHIFT        19
94 #define RBCPR_RESULT0_BUSY_MASK         BIT(RBCPR_RESULT0_BUSY_SHIFT)
95 #define RBCPR_RESULT0_ERROR_LT0_SHIFT   18
96 #define RBCPR_RESULT0_ERROR_SHIFT       6
97 #define RBCPR_RESULT0_ERROR_MASK        GENMASK(11, 0)
98 #define RBCPR_RESULT0_ERROR_STEPS_SHIFT 2
99 #define RBCPR_RESULT0_ERROR_STEPS_MASK  GENMASK(3, 0)
100 #define RBCPR_RESULT0_STEP_UP_SHIFT     1
101
102 /* RBCPR Interrupt Control Register */
103 #define REG_RBIF_IRQ_EN(n)              (0x100 + 4 * (n))
104 #define REG_RBIF_IRQ_CLEAR              0x110
105 #define REG_RBIF_IRQ_STATUS             0x114
106
107 #define CPR_INT_DONE            BIT(0)
108 #define CPR_INT_MIN             BIT(1)
109 #define CPR_INT_DOWN            BIT(2)
110 #define CPR_INT_MID             BIT(3)
111 #define CPR_INT_UP              BIT(4)
112 #define CPR_INT_MAX             BIT(5)
113 #define CPR_INT_CLAMP           BIT(6)
114 #define CPR_INT_ALL     (CPR_INT_DONE | CPR_INT_MIN | CPR_INT_DOWN | \
115                         CPR_INT_MID | CPR_INT_UP | CPR_INT_MAX | CPR_INT_CLAMP)
116 #define CPR_INT_DEFAULT (CPR_INT_UP | CPR_INT_DOWN)
117
118 #define CPR_NUM_RING_OSC        8
119
120 /* CPR eFuse parameters */
121 #define CPR_FUSE_TARGET_QUOT_BITS_MASK  GENMASK(11, 0)
122
123 #define CPR_FUSE_MIN_QUOT_DIFF          50
124
125 #define FUSE_REVISION_UNKNOWN           (-1)
126
127 enum voltage_change_dir {
128         NO_CHANGE,
129         DOWN,
130         UP,
131 };
132
133 struct cpr_fuse {
134         char *ring_osc;
135         char *init_voltage;
136         char *quotient;
137         char *quotient_offset;
138 };
139
140 struct fuse_corner_data {
141         int ref_uV;
142         int max_uV;
143         int min_uV;
144         int max_volt_scale;
145         int max_quot_scale;
146         /* fuse quot */
147         int quot_offset;
148         int quot_scale;
149         int quot_adjust;
150         /* fuse quot_offset */
151         int quot_offset_scale;
152         int quot_offset_adjust;
153 };
154
155 struct cpr_fuses {
156         int init_voltage_step;
157         int init_voltage_width;
158         struct fuse_corner_data *fuse_corner_data;
159 };
160
161 struct corner_data {
162         unsigned int fuse_corner;
163         unsigned long freq;
164 };
165
166 struct cpr_desc {
167         unsigned int num_fuse_corners;
168         int min_diff_quot;
169         int *step_quot;
170
171         unsigned int            timer_delay_us;
172         unsigned int            timer_cons_up;
173         unsigned int            timer_cons_down;
174         unsigned int            up_threshold;
175         unsigned int            down_threshold;
176         unsigned int            idle_clocks;
177         unsigned int            gcnt_us;
178         unsigned int            vdd_apc_step_up_limit;
179         unsigned int            vdd_apc_step_down_limit;
180         unsigned int            clamp_timer_interval;
181
182         struct cpr_fuses cpr_fuses;
183         bool reduce_to_fuse_uV;
184         bool reduce_to_corner_uV;
185 };
186
187 struct acc_desc {
188         unsigned int    enable_reg;
189         u32             enable_mask;
190
191         struct reg_sequence     *config;
192         struct reg_sequence     *settings;
193         int                     num_regs_per_fuse;
194 };
195
196 struct cpr_acc_desc {
197         const struct cpr_desc *cpr_desc;
198         const struct acc_desc *acc_desc;
199 };
200
201 struct fuse_corner {
202         int min_uV;
203         int max_uV;
204         int uV;
205         int quot;
206         int step_quot;
207         const struct reg_sequence *accs;
208         int num_accs;
209         unsigned long max_freq;
210         u8 ring_osc_idx;
211 };
212
213 struct corner {
214         int min_uV;
215         int max_uV;
216         int uV;
217         int last_uV;
218         int quot_adjust;
219         u32 save_ctl;
220         u32 save_irq;
221         unsigned long freq;
222         struct fuse_corner *fuse_corner;
223 };
224
225 struct cpr_drv {
226         unsigned int            num_corners;
227         unsigned int            ref_clk_khz;
228
229         struct generic_pm_domain pd;
230         struct device           *dev;
231         struct device           *attached_cpu_dev;
232         struct mutex            lock;
233         void __iomem            *base;
234         struct corner           *corner;
235         struct regulator        *vdd_apc;
236         struct clk              *cpu_clk;
237         struct regmap           *tcsr;
238         bool                    loop_disabled;
239         u32                     gcnt;
240         unsigned long           flags;
241
242         struct fuse_corner      *fuse_corners;
243         struct corner           *corners;
244
245         const struct cpr_desc *desc;
246         const struct acc_desc *acc_desc;
247         const struct cpr_fuse *cpr_fuses;
248
249         struct dentry *debugfs;
250 };
251
252 static bool cpr_is_allowed(struct cpr_drv *drv)
253 {
254         return !drv->loop_disabled;
255 }
256
257 static void cpr_write(struct cpr_drv *drv, u32 offset, u32 value)
258 {
259         writel_relaxed(value, drv->base + offset);
260 }
261
262 static u32 cpr_read(struct cpr_drv *drv, u32 offset)
263 {
264         return readl_relaxed(drv->base + offset);
265 }
266
267 static void
268 cpr_masked_write(struct cpr_drv *drv, u32 offset, u32 mask, u32 value)
269 {
270         u32 val;
271
272         val = readl_relaxed(drv->base + offset);
273         val &= ~mask;
274         val |= value & mask;
275         writel_relaxed(val, drv->base + offset);
276 }
277
278 static void cpr_irq_clr(struct cpr_drv *drv)
279 {
280         cpr_write(drv, REG_RBIF_IRQ_CLEAR, CPR_INT_ALL);
281 }
282
283 static void cpr_irq_clr_nack(struct cpr_drv *drv)
284 {
285         cpr_irq_clr(drv);
286         cpr_write(drv, REG_RBIF_CONT_NACK_CMD, 1);
287 }
288
289 static void cpr_irq_clr_ack(struct cpr_drv *drv)
290 {
291         cpr_irq_clr(drv);
292         cpr_write(drv, REG_RBIF_CONT_ACK_CMD, 1);
293 }
294
295 static void cpr_irq_set(struct cpr_drv *drv, u32 int_bits)
296 {
297         cpr_write(drv, REG_RBIF_IRQ_EN(0), int_bits);
298 }
299
300 static void cpr_ctl_modify(struct cpr_drv *drv, u32 mask, u32 value)
301 {
302         cpr_masked_write(drv, REG_RBCPR_CTL, mask, value);
303 }
304
305 static void cpr_ctl_enable(struct cpr_drv *drv, struct corner *corner)
306 {
307         u32 val, mask;
308         const struct cpr_desc *desc = drv->desc;
309
310         /* Program Consecutive Up & Down */
311         val = desc->timer_cons_down << RBIF_TIMER_ADJ_CONS_DOWN_SHIFT;
312         val |= desc->timer_cons_up << RBIF_TIMER_ADJ_CONS_UP_SHIFT;
313         mask = RBIF_TIMER_ADJ_CONS_UP_MASK | RBIF_TIMER_ADJ_CONS_DOWN_MASK;
314         cpr_masked_write(drv, REG_RBIF_TIMER_ADJUST, mask, val);
315         cpr_masked_write(drv, REG_RBCPR_CTL,
316                          RBCPR_CTL_SW_AUTO_CONT_NACK_DN_EN |
317                          RBCPR_CTL_SW_AUTO_CONT_ACK_EN,
318                          corner->save_ctl);
319         cpr_irq_set(drv, corner->save_irq);
320
321         if (cpr_is_allowed(drv) && corner->max_uV > corner->min_uV)
322                 val = RBCPR_CTL_LOOP_EN;
323         else
324                 val = 0;
325         cpr_ctl_modify(drv, RBCPR_CTL_LOOP_EN, val);
326 }
327
328 static void cpr_ctl_disable(struct cpr_drv *drv)
329 {
330         cpr_irq_set(drv, 0);
331         cpr_ctl_modify(drv, RBCPR_CTL_SW_AUTO_CONT_NACK_DN_EN |
332                        RBCPR_CTL_SW_AUTO_CONT_ACK_EN, 0);
333         cpr_masked_write(drv, REG_RBIF_TIMER_ADJUST,
334                          RBIF_TIMER_ADJ_CONS_UP_MASK |
335                          RBIF_TIMER_ADJ_CONS_DOWN_MASK, 0);
336         cpr_irq_clr(drv);
337         cpr_write(drv, REG_RBIF_CONT_ACK_CMD, 1);
338         cpr_write(drv, REG_RBIF_CONT_NACK_CMD, 1);
339         cpr_ctl_modify(drv, RBCPR_CTL_LOOP_EN, 0);
340 }
341
342 static bool cpr_ctl_is_enabled(struct cpr_drv *drv)
343 {
344         u32 reg_val;
345
346         reg_val = cpr_read(drv, REG_RBCPR_CTL);
347         return reg_val & RBCPR_CTL_LOOP_EN;
348 }
349
350 static bool cpr_ctl_is_busy(struct cpr_drv *drv)
351 {
352         u32 reg_val;
353
354         reg_val = cpr_read(drv, REG_RBCPR_RESULT_0);
355         return reg_val & RBCPR_RESULT0_BUSY_MASK;
356 }
357
358 static void cpr_corner_save(struct cpr_drv *drv, struct corner *corner)
359 {
360         corner->save_ctl = cpr_read(drv, REG_RBCPR_CTL);
361         corner->save_irq = cpr_read(drv, REG_RBIF_IRQ_EN(0));
362 }
363
364 static void cpr_corner_restore(struct cpr_drv *drv, struct corner *corner)
365 {
366         u32 gcnt, ctl, irq, ro_sel, step_quot;
367         struct fuse_corner *fuse = corner->fuse_corner;
368         const struct cpr_desc *desc = drv->desc;
369         int i;
370
371         ro_sel = fuse->ring_osc_idx;
372         gcnt = drv->gcnt;
373         gcnt |= fuse->quot - corner->quot_adjust;
374
375         /* Program the step quotient and idle clocks */
376         step_quot = desc->idle_clocks << RBCPR_STEP_QUOT_IDLE_CLK_SHIFT;
377         step_quot |= fuse->step_quot & RBCPR_STEP_QUOT_STEPQUOT_MASK;
378         cpr_write(drv, REG_RBCPR_STEP_QUOT, step_quot);
379
380         /* Clear the target quotient value and gate count of all ROs */
381         for (i = 0; i < CPR_NUM_RING_OSC; i++)
382                 cpr_write(drv, REG_RBCPR_GCNT_TARGET(i), 0);
383
384         cpr_write(drv, REG_RBCPR_GCNT_TARGET(ro_sel), gcnt);
385         ctl = corner->save_ctl;
386         cpr_write(drv, REG_RBCPR_CTL, ctl);
387         irq = corner->save_irq;
388         cpr_irq_set(drv, irq);
389         dev_dbg(drv->dev, "gcnt = %#08x, ctl = %#08x, irq = %#08x\n", gcnt,
390                 ctl, irq);
391 }
392
393 static void cpr_set_acc(struct regmap *tcsr, struct fuse_corner *f,
394                         struct fuse_corner *end)
395 {
396         if (f == end)
397                 return;
398
399         if (f < end) {
400                 for (f += 1; f <= end; f++)
401                         regmap_multi_reg_write(tcsr, f->accs, f->num_accs);
402         } else {
403                 for (f -= 1; f >= end; f--)
404                         regmap_multi_reg_write(tcsr, f->accs, f->num_accs);
405         }
406 }
407
408 static int cpr_pre_voltage(struct cpr_drv *drv,
409                            struct fuse_corner *fuse_corner,
410                            enum voltage_change_dir dir)
411 {
412         struct fuse_corner *prev_fuse_corner = drv->corner->fuse_corner;
413
414         if (drv->tcsr && dir == DOWN)
415                 cpr_set_acc(drv->tcsr, prev_fuse_corner, fuse_corner);
416
417         return 0;
418 }
419
420 static int cpr_post_voltage(struct cpr_drv *drv,
421                             struct fuse_corner *fuse_corner,
422                             enum voltage_change_dir dir)
423 {
424         struct fuse_corner *prev_fuse_corner = drv->corner->fuse_corner;
425
426         if (drv->tcsr && dir == UP)
427                 cpr_set_acc(drv->tcsr, prev_fuse_corner, fuse_corner);
428
429         return 0;
430 }
431
432 static int cpr_scale_voltage(struct cpr_drv *drv, struct corner *corner,
433                              int new_uV, enum voltage_change_dir dir)
434 {
435         int ret;
436         struct fuse_corner *fuse_corner = corner->fuse_corner;
437
438         ret = cpr_pre_voltage(drv, fuse_corner, dir);
439         if (ret)
440                 return ret;
441
442         ret = regulator_set_voltage(drv->vdd_apc, new_uV, new_uV);
443         if (ret) {
444                 dev_err_ratelimited(drv->dev, "failed to set apc voltage %d\n",
445                                     new_uV);
446                 return ret;
447         }
448
449         ret = cpr_post_voltage(drv, fuse_corner, dir);
450         if (ret)
451                 return ret;
452
453         return 0;
454 }
455
456 static unsigned int cpr_get_cur_perf_state(struct cpr_drv *drv)
457 {
458         return drv->corner ? drv->corner - drv->corners + 1 : 0;
459 }
460
461 static int cpr_scale(struct cpr_drv *drv, enum voltage_change_dir dir)
462 {
463         u32 val, error_steps, reg_mask;
464         int last_uV, new_uV, step_uV, ret;
465         struct corner *corner;
466         const struct cpr_desc *desc = drv->desc;
467
468         if (dir != UP && dir != DOWN)
469                 return 0;
470
471         step_uV = regulator_get_linear_step(drv->vdd_apc);
472         if (!step_uV)
473                 return -EINVAL;
474
475         corner = drv->corner;
476
477         val = cpr_read(drv, REG_RBCPR_RESULT_0);
478
479         error_steps = val >> RBCPR_RESULT0_ERROR_STEPS_SHIFT;
480         error_steps &= RBCPR_RESULT0_ERROR_STEPS_MASK;
481         last_uV = corner->last_uV;
482
483         if (dir == UP) {
484                 if (desc->clamp_timer_interval &&
485                     error_steps < desc->up_threshold) {
486                         /*
487                          * Handle the case where another measurement started
488                          * after the interrupt was triggered due to a core
489                          * exiting from power collapse.
490                          */
491                         error_steps = max(desc->up_threshold,
492                                           desc->vdd_apc_step_up_limit);
493                 }
494
495                 if (last_uV >= corner->max_uV) {
496                         cpr_irq_clr_nack(drv);
497
498                         /* Maximize the UP threshold */
499                         reg_mask = RBCPR_CTL_UP_THRESHOLD_MASK;
500                         reg_mask <<= RBCPR_CTL_UP_THRESHOLD_SHIFT;
501                         val = reg_mask;
502                         cpr_ctl_modify(drv, reg_mask, val);
503
504                         /* Disable UP interrupt */
505                         cpr_irq_set(drv, CPR_INT_DEFAULT & ~CPR_INT_UP);
506
507                         return 0;
508                 }
509
510                 if (error_steps > desc->vdd_apc_step_up_limit)
511                         error_steps = desc->vdd_apc_step_up_limit;
512
513                 /* Calculate new voltage */
514                 new_uV = last_uV + error_steps * step_uV;
515                 new_uV = min(new_uV, corner->max_uV);
516
517                 dev_dbg(drv->dev,
518                         "UP: -> new_uV: %d last_uV: %d perf state: %u\n",
519                         new_uV, last_uV, cpr_get_cur_perf_state(drv));
520         } else {
521                 if (desc->clamp_timer_interval &&
522                     error_steps < desc->down_threshold) {
523                         /*
524                          * Handle the case where another measurement started
525                          * after the interrupt was triggered due to a core
526                          * exiting from power collapse.
527                          */
528                         error_steps = max(desc->down_threshold,
529                                           desc->vdd_apc_step_down_limit);
530                 }
531
532                 if (last_uV <= corner->min_uV) {
533                         cpr_irq_clr_nack(drv);
534
535                         /* Enable auto nack down */
536                         reg_mask = RBCPR_CTL_SW_AUTO_CONT_NACK_DN_EN;
537                         val = RBCPR_CTL_SW_AUTO_CONT_NACK_DN_EN;
538
539                         cpr_ctl_modify(drv, reg_mask, val);
540
541                         /* Disable DOWN interrupt */
542                         cpr_irq_set(drv, CPR_INT_DEFAULT & ~CPR_INT_DOWN);
543
544                         return 0;
545                 }
546
547                 if (error_steps > desc->vdd_apc_step_down_limit)
548                         error_steps = desc->vdd_apc_step_down_limit;
549
550                 /* Calculate new voltage */
551                 new_uV = last_uV - error_steps * step_uV;
552                 new_uV = max(new_uV, corner->min_uV);
553
554                 dev_dbg(drv->dev,
555                         "DOWN: -> new_uV: %d last_uV: %d perf state: %u\n",
556                         new_uV, last_uV, cpr_get_cur_perf_state(drv));
557         }
558
559         ret = cpr_scale_voltage(drv, corner, new_uV, dir);
560         if (ret) {
561                 cpr_irq_clr_nack(drv);
562                 return ret;
563         }
564         drv->corner->last_uV = new_uV;
565
566         if (dir == UP) {
567                 /* Disable auto nack down */
568                 reg_mask = RBCPR_CTL_SW_AUTO_CONT_NACK_DN_EN;
569                 val = 0;
570         } else {
571                 /* Restore default threshold for UP */
572                 reg_mask = RBCPR_CTL_UP_THRESHOLD_MASK;
573                 reg_mask <<= RBCPR_CTL_UP_THRESHOLD_SHIFT;
574                 val = desc->up_threshold;
575                 val <<= RBCPR_CTL_UP_THRESHOLD_SHIFT;
576         }
577
578         cpr_ctl_modify(drv, reg_mask, val);
579
580         /* Re-enable default interrupts */
581         cpr_irq_set(drv, CPR_INT_DEFAULT);
582
583         /* Ack */
584         cpr_irq_clr_ack(drv);
585
586         return 0;
587 }
588
589 static irqreturn_t cpr_irq_handler(int irq, void *dev)
590 {
591         struct cpr_drv *drv = dev;
592         const struct cpr_desc *desc = drv->desc;
593         irqreturn_t ret = IRQ_HANDLED;
594         u32 val;
595
596         mutex_lock(&drv->lock);
597
598         val = cpr_read(drv, REG_RBIF_IRQ_STATUS);
599         if (drv->flags & FLAGS_IGNORE_1ST_IRQ_STATUS)
600                 val = cpr_read(drv, REG_RBIF_IRQ_STATUS);
601
602         dev_dbg(drv->dev, "IRQ_STATUS = %#02x\n", val);
603
604         if (!cpr_ctl_is_enabled(drv)) {
605                 dev_dbg(drv->dev, "CPR is disabled\n");
606                 ret = IRQ_NONE;
607         } else if (cpr_ctl_is_busy(drv) && !desc->clamp_timer_interval) {
608                 dev_dbg(drv->dev, "CPR measurement is not ready\n");
609         } else if (!cpr_is_allowed(drv)) {
610                 val = cpr_read(drv, REG_RBCPR_CTL);
611                 dev_err_ratelimited(drv->dev,
612                                     "Interrupt broken? RBCPR_CTL = %#02x\n",
613                                     val);
614                 ret = IRQ_NONE;
615         } else {
616                 /*
617                  * Following sequence of handling is as per each IRQ's
618                  * priority
619                  */
620                 if (val & CPR_INT_UP) {
621                         cpr_scale(drv, UP);
622                 } else if (val & CPR_INT_DOWN) {
623                         cpr_scale(drv, DOWN);
624                 } else if (val & CPR_INT_MIN) {
625                         cpr_irq_clr_nack(drv);
626                 } else if (val & CPR_INT_MAX) {
627                         cpr_irq_clr_nack(drv);
628                 } else if (val & CPR_INT_MID) {
629                         /* RBCPR_CTL_SW_AUTO_CONT_ACK_EN is enabled */
630                         dev_dbg(drv->dev, "IRQ occurred for Mid Flag\n");
631                 } else {
632                         dev_dbg(drv->dev,
633                                 "IRQ occurred for unknown flag (%#08x)\n", val);
634                 }
635
636                 /* Save register values for the corner */
637                 cpr_corner_save(drv, drv->corner);
638         }
639
640         mutex_unlock(&drv->lock);
641
642         return ret;
643 }
644
645 static int cpr_enable(struct cpr_drv *drv)
646 {
647         int ret;
648
649         ret = regulator_enable(drv->vdd_apc);
650         if (ret)
651                 return ret;
652
653         mutex_lock(&drv->lock);
654
655         if (cpr_is_allowed(drv) && drv->corner) {
656                 cpr_irq_clr(drv);
657                 cpr_corner_restore(drv, drv->corner);
658                 cpr_ctl_enable(drv, drv->corner);
659         }
660
661         mutex_unlock(&drv->lock);
662
663         return 0;
664 }
665
666 static int cpr_disable(struct cpr_drv *drv)
667 {
668         mutex_lock(&drv->lock);
669
670         if (cpr_is_allowed(drv)) {
671                 cpr_ctl_disable(drv);
672                 cpr_irq_clr(drv);
673         }
674
675         mutex_unlock(&drv->lock);
676
677         return regulator_disable(drv->vdd_apc);
678 }
679
680 static int cpr_config(struct cpr_drv *drv)
681 {
682         int i;
683         u32 val, gcnt;
684         struct corner *corner;
685         const struct cpr_desc *desc = drv->desc;
686
687         /* Disable interrupt and CPR */
688         cpr_write(drv, REG_RBIF_IRQ_EN(0), 0);
689         cpr_write(drv, REG_RBCPR_CTL, 0);
690
691         /* Program the default HW ceiling, floor and vlevel */
692         val = (RBIF_LIMIT_CEILING_DEFAULT & RBIF_LIMIT_CEILING_MASK)
693                 << RBIF_LIMIT_CEILING_SHIFT;
694         val |= RBIF_LIMIT_FLOOR_DEFAULT & RBIF_LIMIT_FLOOR_MASK;
695         cpr_write(drv, REG_RBIF_LIMIT, val);
696         cpr_write(drv, REG_RBIF_SW_VLEVEL, RBIF_SW_VLEVEL_DEFAULT);
697
698         /*
699          * Clear the target quotient value and gate count of all
700          * ring oscillators
701          */
702         for (i = 0; i < CPR_NUM_RING_OSC; i++)
703                 cpr_write(drv, REG_RBCPR_GCNT_TARGET(i), 0);
704
705         /* Init and save gcnt */
706         gcnt = (drv->ref_clk_khz * desc->gcnt_us) / 1000;
707         gcnt = gcnt & RBCPR_GCNT_TARGET_GCNT_MASK;
708         gcnt <<= RBCPR_GCNT_TARGET_GCNT_SHIFT;
709         drv->gcnt = gcnt;
710
711         /* Program the delay count for the timer */
712         val = (drv->ref_clk_khz * desc->timer_delay_us) / 1000;
713         cpr_write(drv, REG_RBCPR_TIMER_INTERVAL, val);
714         dev_dbg(drv->dev, "Timer count: %#0x (for %d us)\n", val,
715                 desc->timer_delay_us);
716
717         /* Program Consecutive Up & Down */
718         val = desc->timer_cons_down << RBIF_TIMER_ADJ_CONS_DOWN_SHIFT;
719         val |= desc->timer_cons_up << RBIF_TIMER_ADJ_CONS_UP_SHIFT;
720         val |= desc->clamp_timer_interval << RBIF_TIMER_ADJ_CLAMP_INT_SHIFT;
721         cpr_write(drv, REG_RBIF_TIMER_ADJUST, val);
722
723         /* Program the control register */
724         val = desc->up_threshold << RBCPR_CTL_UP_THRESHOLD_SHIFT;
725         val |= desc->down_threshold << RBCPR_CTL_DN_THRESHOLD_SHIFT;
726         val |= RBCPR_CTL_TIMER_EN | RBCPR_CTL_COUNT_MODE;
727         val |= RBCPR_CTL_SW_AUTO_CONT_ACK_EN;
728         cpr_write(drv, REG_RBCPR_CTL, val);
729
730         for (i = 0; i < drv->num_corners; i++) {
731                 corner = &drv->corners[i];
732                 corner->save_ctl = val;
733                 corner->save_irq = CPR_INT_DEFAULT;
734         }
735
736         cpr_irq_set(drv, CPR_INT_DEFAULT);
737
738         val = cpr_read(drv, REG_RBCPR_VERSION);
739         if (val <= RBCPR_VER_2)
740                 drv->flags |= FLAGS_IGNORE_1ST_IRQ_STATUS;
741
742         return 0;
743 }
744
745 static int cpr_set_performance_state(struct generic_pm_domain *domain,
746                                      unsigned int state)
747 {
748         struct cpr_drv *drv = container_of(domain, struct cpr_drv, pd);
749         struct corner *corner, *end;
750         enum voltage_change_dir dir;
751         int ret, new_uV;
752
753         guard(mutex)(&drv->lock);
754
755         dev_dbg(drv->dev, "%s: setting perf state: %u (prev state: %u)\n",
756                 __func__, state, cpr_get_cur_perf_state(drv));
757
758         /*
759          * Determine new corner we're going to.
760          * Remove one since lowest performance state is 1.
761          */
762         corner = drv->corners + state - 1;
763         end = &drv->corners[drv->num_corners - 1];
764         if (corner > end || corner < drv->corners)
765                 return -EINVAL;
766
767         /* Determine direction */
768         if (drv->corner > corner)
769                 dir = DOWN;
770         else if (drv->corner < corner)
771                 dir = UP;
772         else
773                 dir = NO_CHANGE;
774
775         if (cpr_is_allowed(drv))
776                 new_uV = corner->last_uV;
777         else
778                 new_uV = corner->uV;
779
780         if (cpr_is_allowed(drv))
781                 cpr_ctl_disable(drv);
782
783         ret = cpr_scale_voltage(drv, corner, new_uV, dir);
784         if (ret)
785                 return ret;
786
787         if (cpr_is_allowed(drv)) {
788                 cpr_irq_clr(drv);
789                 if (drv->corner != corner)
790                         cpr_corner_restore(drv, corner);
791                 cpr_ctl_enable(drv, corner);
792         }
793
794         drv->corner = corner;
795
796         return 0;
797 }
798
799 static int
800 cpr_populate_ring_osc_idx(struct cpr_drv *drv)
801 {
802         struct fuse_corner *fuse = drv->fuse_corners;
803         struct fuse_corner *end = fuse + drv->desc->num_fuse_corners;
804         const struct cpr_fuse *fuses = drv->cpr_fuses;
805         u32 data;
806         int ret;
807
808         for (; fuse < end; fuse++, fuses++) {
809                 ret = nvmem_cell_read_variable_le_u32(drv->dev, fuses->ring_osc, &data);
810                 if (ret)
811                         return ret;
812                 fuse->ring_osc_idx = data;
813         }
814
815         return 0;
816 }
817
818 static int cpr_read_fuse_uV(const struct cpr_desc *desc,
819                             const struct fuse_corner_data *fdata,
820                             const char *init_v_efuse,
821                             int step_volt,
822                             struct cpr_drv *drv)
823 {
824         int step_size_uV, steps, uV;
825         u32 bits = 0;
826         int ret;
827
828         ret = nvmem_cell_read_variable_le_u32(drv->dev, init_v_efuse, &bits);
829         if (ret)
830                 return ret;
831
832         steps = bits & ~BIT(desc->cpr_fuses.init_voltage_width - 1);
833         /* Not two's complement.. instead highest bit is sign bit */
834         if (bits & BIT(desc->cpr_fuses.init_voltage_width - 1))
835                 steps = -steps;
836
837         step_size_uV = desc->cpr_fuses.init_voltage_step;
838
839         uV = fdata->ref_uV + steps * step_size_uV;
840         return DIV_ROUND_UP(uV, step_volt) * step_volt;
841 }
842
843 static int cpr_fuse_corner_init(struct cpr_drv *drv)
844 {
845         const struct cpr_desc *desc = drv->desc;
846         const struct cpr_fuse *fuses = drv->cpr_fuses;
847         const struct acc_desc *acc_desc = drv->acc_desc;
848         int i;
849         unsigned int step_volt;
850         struct fuse_corner_data *fdata;
851         struct fuse_corner *fuse, *end;
852         int uV;
853         const struct reg_sequence *accs;
854         int ret;
855
856         accs = acc_desc->settings;
857
858         step_volt = regulator_get_linear_step(drv->vdd_apc);
859         if (!step_volt)
860                 return -EINVAL;
861
862         /* Populate fuse_corner members */
863         fuse = drv->fuse_corners;
864         end = &fuse[desc->num_fuse_corners - 1];
865         fdata = desc->cpr_fuses.fuse_corner_data;
866
867         for (i = 0; fuse <= end; fuse++, fuses++, i++, fdata++) {
868                 /*
869                  * Update SoC voltages: platforms might choose a different
870                  * regulators than the one used to characterize the algorithms
871                  * (ie, init_voltage_step).
872                  */
873                 fdata->min_uV = roundup(fdata->min_uV, step_volt);
874                 fdata->max_uV = roundup(fdata->max_uV, step_volt);
875
876                 /* Populate uV */
877                 uV = cpr_read_fuse_uV(desc, fdata, fuses->init_voltage,
878                                       step_volt, drv);
879                 if (uV < 0)
880                         return uV;
881
882                 fuse->min_uV = fdata->min_uV;
883                 fuse->max_uV = fdata->max_uV;
884                 fuse->uV = clamp(uV, fuse->min_uV, fuse->max_uV);
885
886                 if (fuse == end) {
887                         /*
888                          * Allow the highest fuse corner's PVS voltage to
889                          * define the ceiling voltage for that corner in order
890                          * to support SoC's in which variable ceiling values
891                          * are required.
892                          */
893                         end->max_uV = max(end->max_uV, end->uV);
894                 }
895
896                 /* Populate target quotient by scaling */
897                 ret = nvmem_cell_read_variable_le_u32(drv->dev, fuses->quotient, &fuse->quot);
898                 if (ret)
899                         return ret;
900
901                 fuse->quot *= fdata->quot_scale;
902                 fuse->quot += fdata->quot_offset;
903                 fuse->quot += fdata->quot_adjust;
904                 fuse->step_quot = desc->step_quot[fuse->ring_osc_idx];
905
906                 /* Populate acc settings */
907                 fuse->accs = accs;
908                 fuse->num_accs = acc_desc->num_regs_per_fuse;
909                 accs += acc_desc->num_regs_per_fuse;
910         }
911
912         /*
913          * Restrict all fuse corner PVS voltages based upon per corner
914          * ceiling and floor voltages.
915          */
916         for (fuse = drv->fuse_corners, i = 0; fuse <= end; fuse++, i++) {
917                 if (fuse->uV > fuse->max_uV)
918                         fuse->uV = fuse->max_uV;
919                 else if (fuse->uV < fuse->min_uV)
920                         fuse->uV = fuse->min_uV;
921
922                 ret = regulator_is_supported_voltage(drv->vdd_apc,
923                                                      fuse->min_uV,
924                                                      fuse->min_uV);
925                 if (!ret) {
926                         dev_err(drv->dev,
927                                 "min uV: %d (fuse corner: %d) not supported by regulator\n",
928                                 fuse->min_uV, i);
929                         return -EINVAL;
930                 }
931
932                 ret = regulator_is_supported_voltage(drv->vdd_apc,
933                                                      fuse->max_uV,
934                                                      fuse->max_uV);
935                 if (!ret) {
936                         dev_err(drv->dev,
937                                 "max uV: %d (fuse corner: %d) not supported by regulator\n",
938                                 fuse->max_uV, i);
939                         return -EINVAL;
940                 }
941
942                 dev_dbg(drv->dev,
943                         "fuse corner %d: [%d %d %d] RO%hhu quot %d squot %d\n",
944                         i, fuse->min_uV, fuse->uV, fuse->max_uV,
945                         fuse->ring_osc_idx, fuse->quot, fuse->step_quot);
946         }
947
948         return 0;
949 }
950
951 static int cpr_calculate_scaling(const char *quot_offset,
952                                  struct cpr_drv *drv,
953                                  const struct fuse_corner_data *fdata,
954                                  const struct corner *corner)
955 {
956         u32 quot_diff = 0;
957         unsigned long freq_diff;
958         int scaling;
959         const struct fuse_corner *fuse, *prev_fuse;
960         int ret;
961
962         fuse = corner->fuse_corner;
963         prev_fuse = fuse - 1;
964
965         if (quot_offset) {
966                 ret = nvmem_cell_read_variable_le_u32(drv->dev, quot_offset, &quot_diff);
967                 if (ret)
968                         return ret;
969
970                 quot_diff *= fdata->quot_offset_scale;
971                 quot_diff += fdata->quot_offset_adjust;
972         } else {
973                 quot_diff = fuse->quot - prev_fuse->quot;
974         }
975
976         freq_diff = fuse->max_freq - prev_fuse->max_freq;
977         freq_diff /= 1000000; /* Convert to MHz */
978         scaling = 1000 * quot_diff / freq_diff;
979         return min(scaling, fdata->max_quot_scale);
980 }
981
982 static int cpr_interpolate(const struct corner *corner, int step_volt,
983                            const struct fuse_corner_data *fdata)
984 {
985         unsigned long f_high, f_low, f_diff;
986         int uV_high, uV_low, uV;
987         u64 temp, temp_limit;
988         const struct fuse_corner *fuse, *prev_fuse;
989
990         fuse = corner->fuse_corner;
991         prev_fuse = fuse - 1;
992
993         f_high = fuse->max_freq;
994         f_low = prev_fuse->max_freq;
995         uV_high = fuse->uV;
996         uV_low = prev_fuse->uV;
997         f_diff = fuse->max_freq - corner->freq;
998
999         /*
1000          * Don't interpolate in the wrong direction. This could happen
1001          * if the adjusted fuse voltage overlaps with the previous fuse's
1002          * adjusted voltage.
1003          */
1004         if (f_high <= f_low || uV_high <= uV_low || f_high <= corner->freq)
1005                 return corner->uV;
1006
1007         temp = f_diff * (uV_high - uV_low);
1008         temp = div64_ul(temp, f_high - f_low);
1009
1010         /*
1011          * max_volt_scale has units of uV/MHz while freq values
1012          * have units of Hz.  Divide by 1000000 to convert to.
1013          */
1014         temp_limit = f_diff * fdata->max_volt_scale;
1015         do_div(temp_limit, 1000000);
1016
1017         uV = uV_high - min(temp, temp_limit);
1018         return roundup(uV, step_volt);
1019 }
1020
1021 static unsigned int cpr_get_fuse_corner(struct dev_pm_opp *opp)
1022 {
1023         struct device_node *np;
1024         unsigned int fuse_corner = 0;
1025
1026         np = dev_pm_opp_get_of_node(opp);
1027         if (of_property_read_u32(np, "qcom,opp-fuse-level", &fuse_corner))
1028                 pr_err("%s: missing 'qcom,opp-fuse-level' property\n",
1029                        __func__);
1030
1031         of_node_put(np);
1032
1033         return fuse_corner;
1034 }
1035
1036 static unsigned long cpr_get_opp_hz_for_req(struct dev_pm_opp *ref,
1037                                             struct device *cpu_dev)
1038 {
1039         struct device_node *ref_np __free(device_node) = NULL;
1040         struct device_node *desc_np __free(device_node) =
1041                 dev_pm_opp_of_get_opp_desc_node(cpu_dev);
1042
1043         if (!desc_np)
1044                 return 0;
1045
1046         ref_np = dev_pm_opp_get_of_node(ref);
1047         if (!ref_np)
1048                 return 0;
1049
1050         for_each_available_child_of_node_scoped(desc_np, child_np) {
1051                 struct device_node *child_req_np __free(device_node) =
1052                         of_parse_phandle(child_np, "required-opps", 0);
1053
1054                 if (child_req_np == ref_np) {
1055                         u64 rate = 0;
1056
1057                         of_property_read_u64(child_np, "opp-hz", &rate);
1058                         return (unsigned long) rate;
1059                 }
1060         }
1061
1062         return 0;
1063 }
1064
1065 static int cpr_corner_init(struct cpr_drv *drv)
1066 {
1067         const struct cpr_desc *desc = drv->desc;
1068         const struct cpr_fuse *fuses = drv->cpr_fuses;
1069         int i, level, scaling = 0;
1070         unsigned int fnum, fc;
1071         const char *quot_offset;
1072         struct fuse_corner *fuse, *prev_fuse;
1073         struct corner *corner, *end;
1074         struct corner_data *cdata;
1075         const struct fuse_corner_data *fdata;
1076         bool apply_scaling;
1077         unsigned long freq_diff, freq_diff_mhz;
1078         unsigned long freq;
1079         int step_volt = regulator_get_linear_step(drv->vdd_apc);
1080         struct dev_pm_opp *opp;
1081
1082         if (!step_volt)
1083                 return -EINVAL;
1084
1085         corner = drv->corners;
1086         end = &corner[drv->num_corners - 1];
1087
1088         cdata = devm_kcalloc(drv->dev, drv->num_corners,
1089                              sizeof(struct corner_data),
1090                              GFP_KERNEL);
1091         if (!cdata)
1092                 return -ENOMEM;
1093
1094         /*
1095          * Store maximum frequency for each fuse corner based on the frequency
1096          * plan
1097          */
1098         for (level = 1; level <= drv->num_corners; level++) {
1099                 opp = dev_pm_opp_find_level_exact(&drv->pd.dev, level);
1100                 if (IS_ERR(opp))
1101                         return -EINVAL;
1102                 fc = cpr_get_fuse_corner(opp);
1103                 if (!fc) {
1104                         dev_pm_opp_put(opp);
1105                         return -EINVAL;
1106                 }
1107                 fnum = fc - 1;
1108                 freq = cpr_get_opp_hz_for_req(opp, drv->attached_cpu_dev);
1109                 if (!freq) {
1110                         dev_pm_opp_put(opp);
1111                         return -EINVAL;
1112                 }
1113                 cdata[level - 1].fuse_corner = fnum;
1114                 cdata[level - 1].freq = freq;
1115
1116                 fuse = &drv->fuse_corners[fnum];
1117                 dev_dbg(drv->dev, "freq: %lu level: %u fuse level: %u\n",
1118                         freq, dev_pm_opp_get_level(opp) - 1, fnum);
1119                 if (freq > fuse->max_freq)
1120                         fuse->max_freq = freq;
1121                 dev_pm_opp_put(opp);
1122         }
1123
1124         /*
1125          * Get the quotient adjustment scaling factor, according to:
1126          *
1127          * scaling = min(1000 * (QUOT(corner_N) - QUOT(corner_N-1))
1128          *              / (freq(corner_N) - freq(corner_N-1)), max_factor)
1129          *
1130          * QUOT(corner_N):      quotient read from fuse for fuse corner N
1131          * QUOT(corner_N-1):    quotient read from fuse for fuse corner (N - 1)
1132          * freq(corner_N):      max frequency in MHz supported by fuse corner N
1133          * freq(corner_N-1):    max frequency in MHz supported by fuse corner
1134          *                       (N - 1)
1135          *
1136          * Then walk through the corners mapped to each fuse corner
1137          * and calculate the quotient adjustment for each one using the
1138          * following formula:
1139          *
1140          * quot_adjust = (freq_max - freq_corner) * scaling / 1000
1141          *
1142          * freq_max: max frequency in MHz supported by the fuse corner
1143          * freq_corner: frequency in MHz corresponding to the corner
1144          * scaling: calculated from above equation
1145          *
1146          *
1147          *     +                           +
1148          *     |                         v |
1149          *   q |           f c           o |           f c
1150          *   u |         c               l |         c
1151          *   o |       f                 t |       f
1152          *   t |     c                   a |     c
1153          *     | c f                     g | c f
1154          *     |                         e |
1155          *     +---------------            +----------------
1156          *       0 1 2 3 4 5 6               0 1 2 3 4 5 6
1157          *          corner                      corner
1158          *
1159          *    c = corner
1160          *    f = fuse corner
1161          *
1162          */
1163         for (apply_scaling = false, i = 0; corner <= end; corner++, i++) {
1164                 fnum = cdata[i].fuse_corner;
1165                 fdata = &desc->cpr_fuses.fuse_corner_data[fnum];
1166                 quot_offset = fuses[fnum].quotient_offset;
1167                 fuse = &drv->fuse_corners[fnum];
1168                 if (fnum)
1169                         prev_fuse = &drv->fuse_corners[fnum - 1];
1170                 else
1171                         prev_fuse = NULL;
1172
1173                 corner->fuse_corner = fuse;
1174                 corner->freq = cdata[i].freq;
1175                 corner->uV = fuse->uV;
1176
1177                 if (prev_fuse && cdata[i - 1].freq == prev_fuse->max_freq) {
1178                         scaling = cpr_calculate_scaling(quot_offset, drv,
1179                                                         fdata, corner);
1180                         if (scaling < 0)
1181                                 return scaling;
1182
1183                         apply_scaling = true;
1184                 } else if (corner->freq == fuse->max_freq) {
1185                         /* This is a fuse corner; don't scale anything */
1186                         apply_scaling = false;
1187                 }
1188
1189                 if (apply_scaling) {
1190                         freq_diff = fuse->max_freq - corner->freq;
1191                         freq_diff_mhz = freq_diff / 1000000;
1192                         corner->quot_adjust = scaling * freq_diff_mhz / 1000;
1193
1194                         corner->uV = cpr_interpolate(corner, step_volt, fdata);
1195                 }
1196
1197                 corner->max_uV = fuse->max_uV;
1198                 corner->min_uV = fuse->min_uV;
1199                 corner->uV = clamp(corner->uV, corner->min_uV, corner->max_uV);
1200                 corner->last_uV = corner->uV;
1201
1202                 /* Reduce the ceiling voltage if needed */
1203                 if (desc->reduce_to_corner_uV && corner->uV < corner->max_uV)
1204                         corner->max_uV = corner->uV;
1205                 else if (desc->reduce_to_fuse_uV && fuse->uV < corner->max_uV)
1206                         corner->max_uV = max(corner->min_uV, fuse->uV);
1207
1208                 dev_dbg(drv->dev, "corner %d: [%d %d %d] quot %d\n", i,
1209                         corner->min_uV, corner->uV, corner->max_uV,
1210                         fuse->quot - corner->quot_adjust);
1211         }
1212
1213         return 0;
1214 }
1215
1216 static const struct cpr_fuse *cpr_get_fuses(struct cpr_drv *drv)
1217 {
1218         const struct cpr_desc *desc = drv->desc;
1219         struct cpr_fuse *fuses;
1220         int i;
1221
1222         fuses = devm_kcalloc(drv->dev, desc->num_fuse_corners,
1223                              sizeof(struct cpr_fuse),
1224                              GFP_KERNEL);
1225         if (!fuses)
1226                 return ERR_PTR(-ENOMEM);
1227
1228         for (i = 0; i < desc->num_fuse_corners; i++) {
1229                 char tbuf[32];
1230
1231                 snprintf(tbuf, 32, "cpr_ring_osc%d", i + 1);
1232                 fuses[i].ring_osc = devm_kstrdup(drv->dev, tbuf, GFP_KERNEL);
1233                 if (!fuses[i].ring_osc)
1234                         return ERR_PTR(-ENOMEM);
1235
1236                 snprintf(tbuf, 32, "cpr_init_voltage%d", i + 1);
1237                 fuses[i].init_voltage = devm_kstrdup(drv->dev, tbuf,
1238                                                      GFP_KERNEL);
1239                 if (!fuses[i].init_voltage)
1240                         return ERR_PTR(-ENOMEM);
1241
1242                 snprintf(tbuf, 32, "cpr_quotient%d", i + 1);
1243                 fuses[i].quotient = devm_kstrdup(drv->dev, tbuf, GFP_KERNEL);
1244                 if (!fuses[i].quotient)
1245                         return ERR_PTR(-ENOMEM);
1246
1247                 snprintf(tbuf, 32, "cpr_quotient_offset%d", i + 1);
1248                 fuses[i].quotient_offset = devm_kstrdup(drv->dev, tbuf,
1249                                                         GFP_KERNEL);
1250                 if (!fuses[i].quotient_offset)
1251                         return ERR_PTR(-ENOMEM);
1252         }
1253
1254         return fuses;
1255 }
1256
1257 static void cpr_set_loop_allowed(struct cpr_drv *drv)
1258 {
1259         drv->loop_disabled = false;
1260 }
1261
1262 static int cpr_init_parameters(struct cpr_drv *drv)
1263 {
1264         const struct cpr_desc *desc = drv->desc;
1265         struct clk *clk;
1266
1267         clk = clk_get(drv->dev, "ref");
1268         if (IS_ERR(clk))
1269                 return PTR_ERR(clk);
1270
1271         drv->ref_clk_khz = clk_get_rate(clk) / 1000;
1272         clk_put(clk);
1273
1274         if (desc->timer_cons_up > RBIF_TIMER_ADJ_CONS_UP_MASK ||
1275             desc->timer_cons_down > RBIF_TIMER_ADJ_CONS_DOWN_MASK ||
1276             desc->up_threshold > RBCPR_CTL_UP_THRESHOLD_MASK ||
1277             desc->down_threshold > RBCPR_CTL_DN_THRESHOLD_MASK ||
1278             desc->idle_clocks > RBCPR_STEP_QUOT_IDLE_CLK_MASK ||
1279             desc->clamp_timer_interval > RBIF_TIMER_ADJ_CLAMP_INT_MASK)
1280                 return -EINVAL;
1281
1282         dev_dbg(drv->dev, "up threshold = %u, down threshold = %u\n",
1283                 desc->up_threshold, desc->down_threshold);
1284
1285         return 0;
1286 }
1287
1288 static int cpr_find_initial_corner(struct cpr_drv *drv)
1289 {
1290         unsigned long rate;
1291         const struct corner *end;
1292         struct corner *iter;
1293         unsigned int i = 0;
1294
1295         if (!drv->cpu_clk) {
1296                 dev_err(drv->dev, "cannot get rate from NULL clk\n");
1297                 return -EINVAL;
1298         }
1299
1300         end = &drv->corners[drv->num_corners - 1];
1301         rate = clk_get_rate(drv->cpu_clk);
1302
1303         /*
1304          * Some bootloaders set a CPU clock frequency that is not defined
1305          * in the OPP table. When running at an unlisted frequency,
1306          * cpufreq_online() will change to the OPP which has the lowest
1307          * frequency, at or above the unlisted frequency.
1308          * Since cpufreq_online() always "rounds up" in the case of an
1309          * unlisted frequency, this function always "rounds down" in case
1310          * of an unlisted frequency. That way, when cpufreq_online()
1311          * triggers the first ever call to cpr_set_performance_state(),
1312          * it will correctly determine the direction as UP.
1313          */
1314         for (iter = drv->corners; iter <= end; iter++) {
1315                 if (iter->freq > rate)
1316                         break;
1317                 i++;
1318                 if (iter->freq == rate) {
1319                         drv->corner = iter;
1320                         break;
1321                 }
1322                 if (iter->freq < rate)
1323                         drv->corner = iter;
1324         }
1325
1326         if (!drv->corner) {
1327                 dev_err(drv->dev, "boot up corner not found\n");
1328                 return -EINVAL;
1329         }
1330
1331         dev_dbg(drv->dev, "boot up perf state: %u\n", i);
1332
1333         return 0;
1334 }
1335
1336 static const struct cpr_desc qcs404_cpr_desc = {
1337         .num_fuse_corners = 3,
1338         .min_diff_quot = CPR_FUSE_MIN_QUOT_DIFF,
1339         .step_quot = (int []){ 25, 25, 25, },
1340         .timer_delay_us = 5000,
1341         .timer_cons_up = 0,
1342         .timer_cons_down = 2,
1343         .up_threshold = 1,
1344         .down_threshold = 3,
1345         .idle_clocks = 15,
1346         .gcnt_us = 1,
1347         .vdd_apc_step_up_limit = 1,
1348         .vdd_apc_step_down_limit = 1,
1349         .cpr_fuses = {
1350                 .init_voltage_step = 8000,
1351                 .init_voltage_width = 6,
1352                 .fuse_corner_data = (struct fuse_corner_data[]){
1353                         /* fuse corner 0 */
1354                         {
1355                                 .ref_uV = 1224000,
1356                                 .max_uV = 1224000,
1357                                 .min_uV = 1048000,
1358                                 .max_volt_scale = 0,
1359                                 .max_quot_scale = 0,
1360                                 .quot_offset = 0,
1361                                 .quot_scale = 1,
1362                                 .quot_adjust = 0,
1363                                 .quot_offset_scale = 5,
1364                                 .quot_offset_adjust = 0,
1365                         },
1366                         /* fuse corner 1 */
1367                         {
1368                                 .ref_uV = 1288000,
1369                                 .max_uV = 1288000,
1370                                 .min_uV = 1048000,
1371                                 .max_volt_scale = 2000,
1372                                 .max_quot_scale = 1400,
1373                                 .quot_offset = 0,
1374                                 .quot_scale = 1,
1375                                 .quot_adjust = -20,
1376                                 .quot_offset_scale = 5,
1377                                 .quot_offset_adjust = 0,
1378                         },
1379                         /* fuse corner 2 */
1380                         {
1381                                 .ref_uV = 1352000,
1382                                 .max_uV = 1384000,
1383                                 .min_uV = 1088000,
1384                                 .max_volt_scale = 2000,
1385                                 .max_quot_scale = 1400,
1386                                 .quot_offset = 0,
1387                                 .quot_scale = 1,
1388                                 .quot_adjust = 0,
1389                                 .quot_offset_scale = 5,
1390                                 .quot_offset_adjust = 0,
1391                         },
1392                 },
1393         },
1394 };
1395
1396 static const struct acc_desc qcs404_acc_desc = {
1397         .settings = (struct reg_sequence[]){
1398                 { 0xb120, 0x1041040 },
1399                 { 0xb124, 0x41 },
1400                 { 0xb120, 0x0 },
1401                 { 0xb124, 0x0 },
1402                 { 0xb120, 0x0 },
1403                 { 0xb124, 0x0 },
1404         },
1405         .config = (struct reg_sequence[]){
1406                 { 0xb138, 0xff },
1407                 { 0xb130, 0x5555 },
1408         },
1409         .num_regs_per_fuse = 2,
1410 };
1411
1412 static const struct cpr_acc_desc qcs404_cpr_acc_desc = {
1413         .cpr_desc = &qcs404_cpr_desc,
1414         .acc_desc = &qcs404_acc_desc,
1415 };
1416
1417 static int cpr_power_off(struct generic_pm_domain *domain)
1418 {
1419         struct cpr_drv *drv = container_of(domain, struct cpr_drv, pd);
1420
1421         return cpr_disable(drv);
1422 }
1423
1424 static int cpr_power_on(struct generic_pm_domain *domain)
1425 {
1426         struct cpr_drv *drv = container_of(domain, struct cpr_drv, pd);
1427
1428         return cpr_enable(drv);
1429 }
1430
1431 static int cpr_pd_attach_dev(struct generic_pm_domain *domain,
1432                              struct device *dev)
1433 {
1434         struct cpr_drv *drv = container_of(domain, struct cpr_drv, pd);
1435         const struct acc_desc *acc_desc = drv->acc_desc;
1436         int ret;
1437
1438         guard(mutex)(&drv->lock);
1439
1440         dev_dbg(drv->dev, "attach callback for: %s\n", dev_name(dev));
1441
1442         /*
1443          * This driver only supports scaling voltage for a CPU cluster
1444          * where all CPUs in the cluster share a single regulator.
1445          * Therefore, save the struct device pointer only for the first
1446          * CPU device that gets attached. There is no need to do any
1447          * additional initialization when further CPUs get attached.
1448          */
1449         if (drv->attached_cpu_dev)
1450                 return 0;
1451
1452         /*
1453          * cpr_scale_voltage() requires the direction (if we are changing
1454          * to a higher or lower OPP). The first time
1455          * cpr_set_performance_state() is called, there is no previous
1456          * performance state defined. Therefore, we call
1457          * cpr_find_initial_corner() that gets the CPU clock frequency
1458          * set by the bootloader, so that we can determine the direction
1459          * the first time cpr_set_performance_state() is called.
1460          */
1461         drv->cpu_clk = devm_clk_get(dev, NULL);
1462         if (IS_ERR(drv->cpu_clk))
1463                 return dev_err_probe(drv->dev, PTR_ERR(drv->cpu_clk),
1464                                      "could not get cpu clk\n");
1465
1466         drv->attached_cpu_dev = dev;
1467
1468         dev_dbg(drv->dev, "using cpu clk from: %s\n",
1469                 dev_name(drv->attached_cpu_dev));
1470
1471         /*
1472          * Everything related to (virtual) corners has to be initialized
1473          * here, when attaching to the power domain, since we need to know
1474          * the maximum frequency for each fuse corner, and this is only
1475          * available after the cpufreq driver has attached to us.
1476          * The reason for this is that we need to know the highest
1477          * frequency associated with each fuse corner.
1478          */
1479         ret = dev_pm_opp_get_opp_count(&drv->pd.dev);
1480         if (ret < 0) {
1481                 dev_err(drv->dev, "could not get OPP count\n");
1482                 return ret;
1483         }
1484         drv->num_corners = ret;
1485
1486         if (drv->num_corners < 2) {
1487                 dev_err(drv->dev, "need at least 2 OPPs to use CPR\n");
1488                 return -EINVAL;
1489         }
1490
1491         drv->corners = devm_kcalloc(drv->dev, drv->num_corners,
1492                                     sizeof(*drv->corners),
1493                                     GFP_KERNEL);
1494         if (!drv->corners)
1495                 return -ENOMEM;
1496
1497         ret = cpr_corner_init(drv);
1498         if (ret)
1499                 return ret;
1500
1501         cpr_set_loop_allowed(drv);
1502
1503         ret = cpr_init_parameters(drv);
1504         if (ret)
1505                 return ret;
1506
1507         /* Configure CPR HW but keep it disabled */
1508         ret = cpr_config(drv);
1509         if (ret)
1510                 return ret;
1511
1512         ret = cpr_find_initial_corner(drv);
1513         if (ret)
1514                 return ret;
1515
1516         if (acc_desc->config)
1517                 regmap_multi_reg_write(drv->tcsr, acc_desc->config,
1518                                        acc_desc->num_regs_per_fuse);
1519
1520         /* Enable ACC if required */
1521         if (acc_desc->enable_mask)
1522                 regmap_update_bits(drv->tcsr, acc_desc->enable_reg,
1523                                    acc_desc->enable_mask,
1524                                    acc_desc->enable_mask);
1525
1526         dev_info(drv->dev, "driver initialized with %u OPPs\n",
1527                  drv->num_corners);
1528
1529         return 0;
1530 }
1531
1532 static int cpr_debug_info_show(struct seq_file *s, void *unused)
1533 {
1534         u32 gcnt, ro_sel, ctl, irq_status, reg, error_steps;
1535         u32 step_dn, step_up, error, error_lt0, busy;
1536         struct cpr_drv *drv = s->private;
1537         struct fuse_corner *fuse_corner;
1538         struct corner *corner;
1539
1540         corner = drv->corner;
1541         fuse_corner = corner->fuse_corner;
1542
1543         seq_printf(s, "corner, current_volt = %d uV\n",
1544                        corner->last_uV);
1545
1546         ro_sel = fuse_corner->ring_osc_idx;
1547         gcnt = cpr_read(drv, REG_RBCPR_GCNT_TARGET(ro_sel));
1548         seq_printf(s, "rbcpr_gcnt_target (%u) = %#02X\n", ro_sel, gcnt);
1549
1550         ctl = cpr_read(drv, REG_RBCPR_CTL);
1551         seq_printf(s, "rbcpr_ctl = %#02X\n", ctl);
1552
1553         irq_status = cpr_read(drv, REG_RBIF_IRQ_STATUS);
1554         seq_printf(s, "rbcpr_irq_status = %#02X\n", irq_status);
1555
1556         reg = cpr_read(drv, REG_RBCPR_RESULT_0);
1557         seq_printf(s, "rbcpr_result_0 = %#02X\n", reg);
1558
1559         step_dn = reg & 0x01;
1560         step_up = (reg >> RBCPR_RESULT0_STEP_UP_SHIFT) & 0x01;
1561         seq_printf(s, "  [step_dn = %u", step_dn);
1562
1563         seq_printf(s, ", step_up = %u", step_up);
1564
1565         error_steps = (reg >> RBCPR_RESULT0_ERROR_STEPS_SHIFT)
1566                                 & RBCPR_RESULT0_ERROR_STEPS_MASK;
1567         seq_printf(s, ", error_steps = %u", error_steps);
1568
1569         error = (reg >> RBCPR_RESULT0_ERROR_SHIFT) & RBCPR_RESULT0_ERROR_MASK;
1570         seq_printf(s, ", error = %u", error);
1571
1572         error_lt0 = (reg >> RBCPR_RESULT0_ERROR_LT0_SHIFT) & 0x01;
1573         seq_printf(s, ", error_lt_0 = %u", error_lt0);
1574
1575         busy = (reg >> RBCPR_RESULT0_BUSY_SHIFT) & 0x01;
1576         seq_printf(s, ", busy = %u]\n", busy);
1577
1578         return 0;
1579 }
1580 DEFINE_SHOW_ATTRIBUTE(cpr_debug_info);
1581
1582 static void cpr_debugfs_init(struct cpr_drv *drv)
1583 {
1584         drv->debugfs = debugfs_create_dir("qcom_cpr", NULL);
1585
1586         debugfs_create_file("debug_info", 0444, drv->debugfs,
1587                             drv, &cpr_debug_info_fops);
1588 }
1589
1590 static int cpr_probe(struct platform_device *pdev)
1591 {
1592         struct device *dev = &pdev->dev;
1593         struct cpr_drv *drv;
1594         int irq, ret;
1595         const struct cpr_acc_desc *data;
1596         struct device_node *np;
1597         u32 cpr_rev = FUSE_REVISION_UNKNOWN;
1598
1599         data = of_device_get_match_data(dev);
1600         if (!data || !data->cpr_desc || !data->acc_desc)
1601                 return -EINVAL;
1602
1603         drv = devm_kzalloc(dev, sizeof(*drv), GFP_KERNEL);
1604         if (!drv)
1605                 return -ENOMEM;
1606         drv->dev = dev;
1607         drv->desc = data->cpr_desc;
1608         drv->acc_desc = data->acc_desc;
1609
1610         drv->fuse_corners = devm_kcalloc(dev, drv->desc->num_fuse_corners,
1611                                          sizeof(*drv->fuse_corners),
1612                                          GFP_KERNEL);
1613         if (!drv->fuse_corners)
1614                 return -ENOMEM;
1615
1616         np = of_parse_phandle(dev->of_node, "acc-syscon", 0);
1617         if (!np)
1618                 return -ENODEV;
1619
1620         drv->tcsr = syscon_node_to_regmap(np);
1621         of_node_put(np);
1622         if (IS_ERR(drv->tcsr))
1623                 return PTR_ERR(drv->tcsr);
1624
1625         drv->base = devm_platform_ioremap_resource(pdev, 0);
1626         if (IS_ERR(drv->base))
1627                 return PTR_ERR(drv->base);
1628
1629         irq = platform_get_irq(pdev, 0);
1630         if (irq < 0)
1631                 return -EINVAL;
1632
1633         drv->vdd_apc = devm_regulator_get(dev, "vdd-apc");
1634         if (IS_ERR(drv->vdd_apc))
1635                 return PTR_ERR(drv->vdd_apc);
1636
1637         /*
1638          * Initialize fuse corners, since it simply depends
1639          * on data in efuses.
1640          * Everything related to (virtual) corners has to be
1641          * initialized after attaching to the power domain,
1642          * since it depends on the CPU's OPP table.
1643          */
1644         ret = nvmem_cell_read_variable_le_u32(dev, "cpr_fuse_revision", &cpr_rev);
1645         if (ret)
1646                 return ret;
1647
1648         drv->cpr_fuses = cpr_get_fuses(drv);
1649         if (IS_ERR(drv->cpr_fuses))
1650                 return PTR_ERR(drv->cpr_fuses);
1651
1652         ret = cpr_populate_ring_osc_idx(drv);
1653         if (ret)
1654                 return ret;
1655
1656         ret = cpr_fuse_corner_init(drv);
1657         if (ret)
1658                 return ret;
1659
1660         mutex_init(&drv->lock);
1661
1662         ret = devm_request_threaded_irq(dev, irq, NULL,
1663                                         cpr_irq_handler,
1664                                         IRQF_ONESHOT | IRQF_TRIGGER_RISING,
1665                                         "cpr", drv);
1666         if (ret)
1667                 return ret;
1668
1669         drv->pd.name = devm_kstrdup_const(dev, dev->of_node->full_name,
1670                                           GFP_KERNEL);
1671         if (!drv->pd.name)
1672                 return -EINVAL;
1673
1674         drv->pd.power_off = cpr_power_off;
1675         drv->pd.power_on = cpr_power_on;
1676         drv->pd.set_performance_state = cpr_set_performance_state;
1677         drv->pd.attach_dev = cpr_pd_attach_dev;
1678
1679         ret = pm_genpd_init(&drv->pd, NULL, true);
1680         if (ret)
1681                 return ret;
1682
1683         ret = of_genpd_add_provider_simple(dev->of_node, &drv->pd);
1684         if (ret)
1685                 goto err_remove_genpd;
1686
1687         platform_set_drvdata(pdev, drv);
1688         cpr_debugfs_init(drv);
1689
1690         return 0;
1691
1692 err_remove_genpd:
1693         pm_genpd_remove(&drv->pd);
1694         return ret;
1695 }
1696
1697 static void cpr_remove(struct platform_device *pdev)
1698 {
1699         struct cpr_drv *drv = platform_get_drvdata(pdev);
1700
1701         if (cpr_is_allowed(drv)) {
1702                 cpr_ctl_disable(drv);
1703                 cpr_irq_set(drv, 0);
1704         }
1705
1706         of_genpd_del_provider(pdev->dev.of_node);
1707         pm_genpd_remove(&drv->pd);
1708
1709         debugfs_remove_recursive(drv->debugfs);
1710 }
1711
1712 static const struct of_device_id cpr_match_table[] = {
1713         { .compatible = "qcom,qcs404-cpr", .data = &qcs404_cpr_acc_desc },
1714         { }
1715 };
1716 MODULE_DEVICE_TABLE(of, cpr_match_table);
1717
1718 static struct platform_driver cpr_driver = {
1719         .probe          = cpr_probe,
1720         .remove         = cpr_remove,
1721         .driver         = {
1722                 .name   = "qcom-cpr",
1723                 .of_match_table = cpr_match_table,
1724         },
1725 };
1726 module_platform_driver(cpr_driver);
1727
1728 MODULE_DESCRIPTION("Core Power Reduction (CPR) driver");
1729 MODULE_LICENSE("GPL v2");
This page took 0.126535 seconds and 4 git commands to generate.