]> Git Repo - J-linux.git/blob - drivers/opp/of.c
Merge tag 'vfs-6.13-rc7.fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs
[J-linux.git] / drivers / opp / of.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Generic OPP OF helpers
4  *
5  * Copyright (C) 2009-2010 Texas Instruments Incorporated.
6  *      Nishanth Menon
7  *      Romit Dasgupta
8  *      Kevin Hilman
9  */
10
11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12
13 #include <linux/cpu.h>
14 #include <linux/errno.h>
15 #include <linux/device.h>
16 #include <linux/of.h>
17 #include <linux/pm_domain.h>
18 #include <linux/slab.h>
19 #include <linux/export.h>
20 #include <linux/energy_model.h>
21
22 #include "opp.h"
23
24 /* OPP tables with uninitialized required OPPs, protected by opp_table_lock */
25 static LIST_HEAD(lazy_opp_tables);
26
27 /*
28  * Returns opp descriptor node for a device node, caller must
29  * do of_node_put().
30  */
31 static struct device_node *_opp_of_get_opp_desc_node(struct device_node *np,
32                                                      int index)
33 {
34         /* "operating-points-v2" can be an array for power domain providers */
35         return of_parse_phandle(np, "operating-points-v2", index);
36 }
37
38 /* Returns opp descriptor node for a device, caller must do of_node_put() */
39 struct device_node *dev_pm_opp_of_get_opp_desc_node(struct device *dev)
40 {
41         return _opp_of_get_opp_desc_node(dev->of_node, 0);
42 }
43 EXPORT_SYMBOL_GPL(dev_pm_opp_of_get_opp_desc_node);
44
45 struct opp_table *_managed_opp(struct device *dev, int index)
46 {
47         struct opp_table *opp_table, *managed_table = NULL;
48         struct device_node *np;
49
50         np = _opp_of_get_opp_desc_node(dev->of_node, index);
51         if (!np)
52                 return NULL;
53
54         list_for_each_entry(opp_table, &opp_tables, node) {
55                 if (opp_table->np == np) {
56                         /*
57                          * Multiple devices can point to the same OPP table and
58                          * so will have same node-pointer, np.
59                          *
60                          * But the OPPs will be considered as shared only if the
61                          * OPP table contains a "opp-shared" property.
62                          */
63                         if (opp_table->shared_opp == OPP_TABLE_ACCESS_SHARED) {
64                                 _get_opp_table_kref(opp_table);
65                                 managed_table = opp_table;
66                         }
67
68                         break;
69                 }
70         }
71
72         of_node_put(np);
73
74         return managed_table;
75 }
76
77 /* The caller must call dev_pm_opp_put() after the OPP is used */
78 static struct dev_pm_opp *_find_opp_of_np(struct opp_table *opp_table,
79                                           struct device_node *opp_np)
80 {
81         struct dev_pm_opp *opp;
82
83         mutex_lock(&opp_table->lock);
84
85         list_for_each_entry(opp, &opp_table->opp_list, node) {
86                 if (opp->np == opp_np) {
87                         dev_pm_opp_get(opp);
88                         mutex_unlock(&opp_table->lock);
89                         return opp;
90                 }
91         }
92
93         mutex_unlock(&opp_table->lock);
94
95         return NULL;
96 }
97
98 static struct device_node *of_parse_required_opp(struct device_node *np,
99                                                  int index)
100 {
101         return of_parse_phandle(np, "required-opps", index);
102 }
103
104 /* The caller must call dev_pm_opp_put_opp_table() after the table is used */
105 static struct opp_table *_find_table_of_opp_np(struct device_node *opp_np)
106 {
107         struct opp_table *opp_table;
108         struct device_node *opp_table_np;
109
110         opp_table_np = of_get_parent(opp_np);
111         if (!opp_table_np)
112                 goto err;
113
114         /* It is safe to put the node now as all we need now is its address */
115         of_node_put(opp_table_np);
116
117         mutex_lock(&opp_table_lock);
118         list_for_each_entry(opp_table, &opp_tables, node) {
119                 if (opp_table_np == opp_table->np) {
120                         _get_opp_table_kref(opp_table);
121                         mutex_unlock(&opp_table_lock);
122                         return opp_table;
123                 }
124         }
125         mutex_unlock(&opp_table_lock);
126
127 err:
128         return ERR_PTR(-ENODEV);
129 }
130
131 /* Free resources previously acquired by _opp_table_alloc_required_tables() */
132 static void _opp_table_free_required_tables(struct opp_table *opp_table)
133 {
134         struct opp_table **required_opp_tables = opp_table->required_opp_tables;
135         int i;
136
137         if (!required_opp_tables)
138                 return;
139
140         for (i = 0; i < opp_table->required_opp_count; i++) {
141                 if (IS_ERR_OR_NULL(required_opp_tables[i]))
142                         continue;
143
144                 dev_pm_opp_put_opp_table(required_opp_tables[i]);
145         }
146
147         kfree(required_opp_tables);
148
149         opp_table->required_opp_count = 0;
150         opp_table->required_opp_tables = NULL;
151
152         mutex_lock(&opp_table_lock);
153         list_del(&opp_table->lazy);
154         mutex_unlock(&opp_table_lock);
155 }
156
157 /*
158  * Populate all devices and opp tables which are part of "required-opps" list.
159  * Checking only the first OPP node should be enough.
160  */
161 static void _opp_table_alloc_required_tables(struct opp_table *opp_table,
162                                              struct device *dev,
163                                              struct device_node *opp_np)
164 {
165         struct opp_table **required_opp_tables;
166         struct device_node *required_np, *np;
167         bool lazy = false;
168         int count, i, size;
169
170         /* Traversing the first OPP node is all we need */
171         np = of_get_next_available_child(opp_np, NULL);
172         if (!np) {
173                 dev_warn(dev, "Empty OPP table\n");
174
175                 return;
176         }
177
178         count = of_count_phandle_with_args(np, "required-opps", NULL);
179         if (count <= 0)
180                 goto put_np;
181
182         size = sizeof(*required_opp_tables) + sizeof(*opp_table->required_devs);
183         required_opp_tables = kcalloc(count, size, GFP_KERNEL);
184         if (!required_opp_tables)
185                 goto put_np;
186
187         opp_table->required_opp_tables = required_opp_tables;
188         opp_table->required_devs = (void *)(required_opp_tables + count);
189         opp_table->required_opp_count = count;
190
191         for (i = 0; i < count; i++) {
192                 required_np = of_parse_required_opp(np, i);
193                 if (!required_np)
194                         goto free_required_tables;
195
196                 required_opp_tables[i] = _find_table_of_opp_np(required_np);
197                 of_node_put(required_np);
198
199                 if (IS_ERR(required_opp_tables[i]))
200                         lazy = true;
201         }
202
203         /* Let's do the linking later on */
204         if (lazy) {
205                 /*
206                  * The OPP table is not held while allocating the table, take it
207                  * now to avoid corruption to the lazy_opp_tables list.
208                  */
209                 mutex_lock(&opp_table_lock);
210                 list_add(&opp_table->lazy, &lazy_opp_tables);
211                 mutex_unlock(&opp_table_lock);
212         }
213
214         goto put_np;
215
216 free_required_tables:
217         _opp_table_free_required_tables(opp_table);
218 put_np:
219         of_node_put(np);
220 }
221
222 void _of_init_opp_table(struct opp_table *opp_table, struct device *dev,
223                         int index)
224 {
225         struct device_node *np, *opp_np;
226         u32 val;
227
228         /*
229          * Only required for backward compatibility with v1 bindings, but isn't
230          * harmful for other cases. And so we do it unconditionally.
231          */
232         np = of_node_get(dev->of_node);
233         if (!np)
234                 return;
235
236         if (!of_property_read_u32(np, "clock-latency", &val))
237                 opp_table->clock_latency_ns_max = val;
238         of_property_read_u32(np, "voltage-tolerance",
239                              &opp_table->voltage_tolerance_v1);
240
241         if (of_property_present(np, "#power-domain-cells"))
242                 opp_table->is_genpd = true;
243
244         /* Get OPP table node */
245         opp_np = _opp_of_get_opp_desc_node(np, index);
246         of_node_put(np);
247
248         if (!opp_np)
249                 return;
250
251         if (of_property_read_bool(opp_np, "opp-shared"))
252                 opp_table->shared_opp = OPP_TABLE_ACCESS_SHARED;
253         else
254                 opp_table->shared_opp = OPP_TABLE_ACCESS_EXCLUSIVE;
255
256         opp_table->np = opp_np;
257
258         _opp_table_alloc_required_tables(opp_table, dev, opp_np);
259 }
260
261 void _of_clear_opp_table(struct opp_table *opp_table)
262 {
263         _opp_table_free_required_tables(opp_table);
264         of_node_put(opp_table->np);
265 }
266
267 /*
268  * Release all resources previously acquired with a call to
269  * _of_opp_alloc_required_opps().
270  */
271 static void _of_opp_free_required_opps(struct opp_table *opp_table,
272                                        struct dev_pm_opp *opp)
273 {
274         struct dev_pm_opp **required_opps = opp->required_opps;
275         int i;
276
277         if (!required_opps)
278                 return;
279
280         for (i = 0; i < opp_table->required_opp_count; i++) {
281                 if (!required_opps[i])
282                         continue;
283
284                 /* Put the reference back */
285                 dev_pm_opp_put(required_opps[i]);
286         }
287
288         opp->required_opps = NULL;
289         kfree(required_opps);
290 }
291
292 void _of_clear_opp(struct opp_table *opp_table, struct dev_pm_opp *opp)
293 {
294         _of_opp_free_required_opps(opp_table, opp);
295         of_node_put(opp->np);
296 }
297
298 static int _link_required_opps(struct dev_pm_opp *opp,
299                                struct opp_table *required_table, int index)
300 {
301         struct device_node *np;
302
303         np = of_parse_required_opp(opp->np, index);
304         if (unlikely(!np))
305                 return -ENODEV;
306
307         opp->required_opps[index] = _find_opp_of_np(required_table, np);
308         of_node_put(np);
309
310         if (!opp->required_opps[index]) {
311                 pr_err("%s: Unable to find required OPP node: %pOF (%d)\n",
312                        __func__, opp->np, index);
313                 return -ENODEV;
314         }
315
316         return 0;
317 }
318
319 /* Populate all required OPPs which are part of "required-opps" list */
320 static int _of_opp_alloc_required_opps(struct opp_table *opp_table,
321                                        struct dev_pm_opp *opp)
322 {
323         struct opp_table *required_table;
324         int i, ret, count = opp_table->required_opp_count;
325
326         if (!count)
327                 return 0;
328
329         opp->required_opps = kcalloc(count, sizeof(*opp->required_opps), GFP_KERNEL);
330         if (!opp->required_opps)
331                 return -ENOMEM;
332
333         for (i = 0; i < count; i++) {
334                 required_table = opp_table->required_opp_tables[i];
335
336                 /* Required table not added yet, we will link later */
337                 if (IS_ERR_OR_NULL(required_table))
338                         continue;
339
340                 ret = _link_required_opps(opp, required_table, i);
341                 if (ret)
342                         goto free_required_opps;
343         }
344
345         return 0;
346
347 free_required_opps:
348         _of_opp_free_required_opps(opp_table, opp);
349
350         return ret;
351 }
352
353 /* Link required OPPs for an individual OPP */
354 static int lazy_link_required_opps(struct opp_table *opp_table,
355                                    struct opp_table *new_table, int index)
356 {
357         struct dev_pm_opp *opp;
358         int ret;
359
360         list_for_each_entry(opp, &opp_table->opp_list, node) {
361                 ret = _link_required_opps(opp, new_table, index);
362                 if (ret)
363                         return ret;
364         }
365
366         return 0;
367 }
368
369 /* Link required OPPs for all OPPs of the newly added OPP table */
370 static void lazy_link_required_opp_table(struct opp_table *new_table)
371 {
372         struct opp_table *opp_table, *temp, **required_opp_tables;
373         struct device_node *required_np, *opp_np, *required_table_np;
374         struct dev_pm_opp *opp;
375         int i, ret;
376
377         mutex_lock(&opp_table_lock);
378
379         list_for_each_entry_safe(opp_table, temp, &lazy_opp_tables, lazy) {
380                 bool lazy = false;
381
382                 /* opp_np can't be invalid here */
383                 opp_np = of_get_next_available_child(opp_table->np, NULL);
384
385                 for (i = 0; i < opp_table->required_opp_count; i++) {
386                         required_opp_tables = opp_table->required_opp_tables;
387
388                         /* Required opp-table is already parsed */
389                         if (!IS_ERR(required_opp_tables[i]))
390                                 continue;
391
392                         /* required_np can't be invalid here */
393                         required_np = of_parse_required_opp(opp_np, i);
394                         required_table_np = of_get_parent(required_np);
395
396                         of_node_put(required_table_np);
397                         of_node_put(required_np);
398
399                         /*
400                          * Newly added table isn't the required opp-table for
401                          * opp_table.
402                          */
403                         if (required_table_np != new_table->np) {
404                                 lazy = true;
405                                 continue;
406                         }
407
408                         required_opp_tables[i] = new_table;
409                         _get_opp_table_kref(new_table);
410
411                         /* Link OPPs now */
412                         ret = lazy_link_required_opps(opp_table, new_table, i);
413                         if (ret) {
414                                 /* The OPPs will be marked unusable */
415                                 lazy = false;
416                                 break;
417                         }
418                 }
419
420                 of_node_put(opp_np);
421
422                 /* All required opp-tables found, remove from lazy list */
423                 if (!lazy) {
424                         list_del_init(&opp_table->lazy);
425
426                         list_for_each_entry(opp, &opp_table->opp_list, node)
427                                 _required_opps_available(opp, opp_table->required_opp_count);
428                 }
429         }
430
431         mutex_unlock(&opp_table_lock);
432 }
433
434 static int _bandwidth_supported(struct device *dev, struct opp_table *opp_table)
435 {
436         struct device_node *np, *opp_np;
437         struct property *prop;
438
439         if (!opp_table) {
440                 np = of_node_get(dev->of_node);
441                 if (!np)
442                         return -ENODEV;
443
444                 opp_np = _opp_of_get_opp_desc_node(np, 0);
445                 of_node_put(np);
446         } else {
447                 opp_np = of_node_get(opp_table->np);
448         }
449
450         /* Lets not fail in case we are parsing opp-v1 bindings */
451         if (!opp_np)
452                 return 0;
453
454         /* Checking only first OPP is sufficient */
455         np = of_get_next_available_child(opp_np, NULL);
456         of_node_put(opp_np);
457         if (!np) {
458                 dev_err(dev, "OPP table empty\n");
459                 return -EINVAL;
460         }
461
462         prop = of_find_property(np, "opp-peak-kBps", NULL);
463         of_node_put(np);
464
465         if (!prop || !prop->length)
466                 return 0;
467
468         return 1;
469 }
470
471 int dev_pm_opp_of_find_icc_paths(struct device *dev,
472                                  struct opp_table *opp_table)
473 {
474         struct device_node *np;
475         int ret, i, count, num_paths;
476         struct icc_path **paths;
477
478         ret = _bandwidth_supported(dev, opp_table);
479         if (ret == -EINVAL)
480                 return 0; /* Empty OPP table is a valid corner-case, let's not fail */
481         else if (ret <= 0)
482                 return ret;
483
484         ret = 0;
485
486         np = of_node_get(dev->of_node);
487         if (!np)
488                 return 0;
489
490         count = of_count_phandle_with_args(np, "interconnects",
491                                            "#interconnect-cells");
492         of_node_put(np);
493         if (count < 0)
494                 return 0;
495
496         /* two phandles when #interconnect-cells = <1> */
497         if (count % 2) {
498                 dev_err(dev, "%s: Invalid interconnects values\n", __func__);
499                 return -EINVAL;
500         }
501
502         num_paths = count / 2;
503         paths = kcalloc(num_paths, sizeof(*paths), GFP_KERNEL);
504         if (!paths)
505                 return -ENOMEM;
506
507         for (i = 0; i < num_paths; i++) {
508                 paths[i] = of_icc_get_by_index(dev, i);
509                 if (IS_ERR(paths[i])) {
510                         ret = dev_err_probe(dev, PTR_ERR(paths[i]), "%s: Unable to get path%d\n", __func__, i);
511                         goto err;
512                 }
513         }
514
515         if (opp_table) {
516                 opp_table->paths = paths;
517                 opp_table->path_count = num_paths;
518                 return 0;
519         }
520
521 err:
522         while (i--)
523                 icc_put(paths[i]);
524
525         kfree(paths);
526
527         return ret;
528 }
529 EXPORT_SYMBOL_GPL(dev_pm_opp_of_find_icc_paths);
530
531 static bool _opp_is_supported(struct device *dev, struct opp_table *opp_table,
532                               struct device_node *np)
533 {
534         unsigned int levels = opp_table->supported_hw_count;
535         int count, versions, ret, i, j;
536         u32 val;
537
538         if (!opp_table->supported_hw) {
539                 /*
540                  * In the case that no supported_hw has been set by the
541                  * platform but there is an opp-supported-hw value set for
542                  * an OPP then the OPP should not be enabled as there is
543                  * no way to see if the hardware supports it.
544                  */
545                 if (of_property_present(np, "opp-supported-hw"))
546                         return false;
547                 else
548                         return true;
549         }
550
551         count = of_property_count_u32_elems(np, "opp-supported-hw");
552         if (count <= 0 || count % levels) {
553                 dev_err(dev, "%s: Invalid opp-supported-hw property (%d)\n",
554                         __func__, count);
555                 return false;
556         }
557
558         versions = count / levels;
559
560         /* All levels in at least one of the versions should match */
561         for (i = 0; i < versions; i++) {
562                 bool supported = true;
563
564                 for (j = 0; j < levels; j++) {
565                         ret = of_property_read_u32_index(np, "opp-supported-hw",
566                                                          i * levels + j, &val);
567                         if (ret) {
568                                 dev_warn(dev, "%s: failed to read opp-supported-hw property at index %d: %d\n",
569                                          __func__, i * levels + j, ret);
570                                 return false;
571                         }
572
573                         /* Check if the level is supported */
574                         if (!(val & opp_table->supported_hw[j])) {
575                                 supported = false;
576                                 break;
577                         }
578                 }
579
580                 if (supported)
581                         return true;
582         }
583
584         return false;
585 }
586
587 static u32 *_parse_named_prop(struct dev_pm_opp *opp, struct device *dev,
588                               struct opp_table *opp_table,
589                               const char *prop_type, bool *triplet)
590 {
591         struct property *prop = NULL;
592         char name[NAME_MAX];
593         int count, ret;
594         u32 *out;
595
596         /* Search for "opp-<prop_type>-<name>" */
597         if (opp_table->prop_name) {
598                 snprintf(name, sizeof(name), "opp-%s-%s", prop_type,
599                          opp_table->prop_name);
600                 prop = of_find_property(opp->np, name, NULL);
601         }
602
603         if (!prop) {
604                 /* Search for "opp-<prop_type>" */
605                 snprintf(name, sizeof(name), "opp-%s", prop_type);
606                 prop = of_find_property(opp->np, name, NULL);
607                 if (!prop)
608                         return NULL;
609         }
610
611         count = of_property_count_u32_elems(opp->np, name);
612         if (count < 0) {
613                 dev_err(dev, "%s: Invalid %s property (%d)\n", __func__, name,
614                         count);
615                 return ERR_PTR(count);
616         }
617
618         /*
619          * Initialize regulator_count, if regulator information isn't provided
620          * by the platform. Now that one of the properties is available, fix the
621          * regulator_count to 1.
622          */
623         if (unlikely(opp_table->regulator_count == -1))
624                 opp_table->regulator_count = 1;
625
626         if (count != opp_table->regulator_count &&
627             (!triplet || count != opp_table->regulator_count * 3)) {
628                 dev_err(dev, "%s: Invalid number of elements in %s property (%u) with supplies (%d)\n",
629                         __func__, prop_type, count, opp_table->regulator_count);
630                 return ERR_PTR(-EINVAL);
631         }
632
633         out = kmalloc_array(count, sizeof(*out), GFP_KERNEL);
634         if (!out)
635                 return ERR_PTR(-EINVAL);
636
637         ret = of_property_read_u32_array(opp->np, name, out, count);
638         if (ret) {
639                 dev_err(dev, "%s: error parsing %s: %d\n", __func__, name, ret);
640                 kfree(out);
641                 return ERR_PTR(-EINVAL);
642         }
643
644         if (triplet)
645                 *triplet = count != opp_table->regulator_count;
646
647         return out;
648 }
649
650 static u32 *opp_parse_microvolt(struct dev_pm_opp *opp, struct device *dev,
651                                 struct opp_table *opp_table, bool *triplet)
652 {
653         u32 *microvolt;
654
655         microvolt = _parse_named_prop(opp, dev, opp_table, "microvolt", triplet);
656         if (IS_ERR(microvolt))
657                 return microvolt;
658
659         if (!microvolt) {
660                 /*
661                  * Missing property isn't a problem, but an invalid
662                  * entry is. This property isn't optional if regulator
663                  * information is provided. Check only for the first OPP, as
664                  * regulator_count may get initialized after that to a valid
665                  * value.
666                  */
667                 if (list_empty(&opp_table->opp_list) &&
668                     opp_table->regulator_count > 0) {
669                         dev_err(dev, "%s: opp-microvolt missing although OPP managing regulators\n",
670                                 __func__);
671                         return ERR_PTR(-EINVAL);
672                 }
673         }
674
675         return microvolt;
676 }
677
678 static int opp_parse_supplies(struct dev_pm_opp *opp, struct device *dev,
679                               struct opp_table *opp_table)
680 {
681         u32 *microvolt, *microamp, *microwatt;
682         int ret = 0, i, j;
683         bool triplet;
684
685         microvolt = opp_parse_microvolt(opp, dev, opp_table, &triplet);
686         if (IS_ERR(microvolt))
687                 return PTR_ERR(microvolt);
688
689         microamp = _parse_named_prop(opp, dev, opp_table, "microamp", NULL);
690         if (IS_ERR(microamp)) {
691                 ret = PTR_ERR(microamp);
692                 goto free_microvolt;
693         }
694
695         microwatt = _parse_named_prop(opp, dev, opp_table, "microwatt", NULL);
696         if (IS_ERR(microwatt)) {
697                 ret = PTR_ERR(microwatt);
698                 goto free_microamp;
699         }
700
701         /*
702          * Initialize regulator_count if it is uninitialized and no properties
703          * are found.
704          */
705         if (unlikely(opp_table->regulator_count == -1)) {
706                 opp_table->regulator_count = 0;
707                 return 0;
708         }
709
710         for (i = 0, j = 0; i < opp_table->regulator_count; i++) {
711                 if (microvolt) {
712                         opp->supplies[i].u_volt = microvolt[j++];
713
714                         if (triplet) {
715                                 opp->supplies[i].u_volt_min = microvolt[j++];
716                                 opp->supplies[i].u_volt_max = microvolt[j++];
717                         } else {
718                                 opp->supplies[i].u_volt_min = opp->supplies[i].u_volt;
719                                 opp->supplies[i].u_volt_max = opp->supplies[i].u_volt;
720                         }
721                 }
722
723                 if (microamp)
724                         opp->supplies[i].u_amp = microamp[i];
725
726                 if (microwatt)
727                         opp->supplies[i].u_watt = microwatt[i];
728         }
729
730         kfree(microwatt);
731 free_microamp:
732         kfree(microamp);
733 free_microvolt:
734         kfree(microvolt);
735
736         return ret;
737 }
738
739 /**
740  * dev_pm_opp_of_remove_table() - Free OPP table entries created from static DT
741  *                                entries
742  * @dev:        device pointer used to lookup OPP table.
743  *
744  * Free OPPs created using static entries present in DT.
745  */
746 void dev_pm_opp_of_remove_table(struct device *dev)
747 {
748         dev_pm_opp_remove_table(dev);
749 }
750 EXPORT_SYMBOL_GPL(dev_pm_opp_of_remove_table);
751
752 static int _read_rate(struct dev_pm_opp *new_opp, struct opp_table *opp_table,
753                       struct device_node *np)
754 {
755         struct property *prop;
756         int i, count, ret;
757         u64 *rates;
758
759         prop = of_find_property(np, "opp-hz", NULL);
760         if (!prop)
761                 return -ENODEV;
762
763         count = prop->length / sizeof(u64);
764         if (opp_table->clk_count != count) {
765                 pr_err("%s: Count mismatch between opp-hz and clk_count (%d %d)\n",
766                        __func__, count, opp_table->clk_count);
767                 return -EINVAL;
768         }
769
770         rates = kmalloc_array(count, sizeof(*rates), GFP_KERNEL);
771         if (!rates)
772                 return -ENOMEM;
773
774         ret = of_property_read_u64_array(np, "opp-hz", rates, count);
775         if (ret) {
776                 pr_err("%s: Error parsing opp-hz: %d\n", __func__, ret);
777         } else {
778                 /*
779                  * Rate is defined as an unsigned long in clk API, and so
780                  * casting explicitly to its type. Must be fixed once rate is 64
781                  * bit guaranteed in clk API.
782                  */
783                 for (i = 0; i < count; i++) {
784                         new_opp->rates[i] = (unsigned long)rates[i];
785
786                         /* This will happen for frequencies > 4.29 GHz */
787                         WARN_ON(new_opp->rates[i] != rates[i]);
788                 }
789         }
790
791         kfree(rates);
792
793         return ret;
794 }
795
796 static int _read_bw(struct dev_pm_opp *new_opp, struct opp_table *opp_table,
797                     struct device_node *np, bool peak)
798 {
799         const char *name = peak ? "opp-peak-kBps" : "opp-avg-kBps";
800         struct property *prop;
801         int i, count, ret;
802         u32 *bw;
803
804         prop = of_find_property(np, name, NULL);
805         if (!prop)
806                 return -ENODEV;
807
808         count = prop->length / sizeof(u32);
809         if (opp_table->path_count != count) {
810                 pr_err("%s: Mismatch between %s and paths (%d %d)\n",
811                                 __func__, name, count, opp_table->path_count);
812                 return -EINVAL;
813         }
814
815         bw = kmalloc_array(count, sizeof(*bw), GFP_KERNEL);
816         if (!bw)
817                 return -ENOMEM;
818
819         ret = of_property_read_u32_array(np, name, bw, count);
820         if (ret) {
821                 pr_err("%s: Error parsing %s: %d\n", __func__, name, ret);
822                 goto out;
823         }
824
825         for (i = 0; i < count; i++) {
826                 if (peak)
827                         new_opp->bandwidth[i].peak = kBps_to_icc(bw[i]);
828                 else
829                         new_opp->bandwidth[i].avg = kBps_to_icc(bw[i]);
830         }
831
832 out:
833         kfree(bw);
834         return ret;
835 }
836
837 static int _read_opp_key(struct dev_pm_opp *new_opp,
838                          struct opp_table *opp_table, struct device_node *np)
839 {
840         bool found = false;
841         int ret;
842
843         ret = _read_rate(new_opp, opp_table, np);
844         if (!ret)
845                 found = true;
846         else if (ret != -ENODEV)
847                 return ret;
848
849         /*
850          * Bandwidth consists of peak and average (optional) values:
851          * opp-peak-kBps = <path1_value path2_value>;
852          * opp-avg-kBps = <path1_value path2_value>;
853          */
854         ret = _read_bw(new_opp, opp_table, np, true);
855         if (!ret) {
856                 found = true;
857                 ret = _read_bw(new_opp, opp_table, np, false);
858         }
859
860         /* The properties were found but we failed to parse them */
861         if (ret && ret != -ENODEV)
862                 return ret;
863
864         if (!of_property_read_u32(np, "opp-level", &new_opp->level))
865                 found = true;
866
867         if (found)
868                 return 0;
869
870         return ret;
871 }
872
873 /**
874  * _opp_add_static_v2() - Allocate static OPPs (As per 'v2' DT bindings)
875  * @opp_table:  OPP table
876  * @dev:        device for which we do this operation
877  * @np:         device node
878  *
879  * This function adds an opp definition to the opp table and returns status. The
880  * opp can be controlled using dev_pm_opp_enable/disable functions and may be
881  * removed by dev_pm_opp_remove.
882  *
883  * Return:
884  * Valid OPP pointer:
885  *              On success
886  * NULL:
887  *              Duplicate OPPs (both freq and volt are same) and opp->available
888  *              OR if the OPP is not supported by hardware.
889  * ERR_PTR(-EEXIST):
890  *              Freq are same and volt are different OR
891  *              Duplicate OPPs (both freq and volt are same) and !opp->available
892  * ERR_PTR(-ENOMEM):
893  *              Memory allocation failure
894  * ERR_PTR(-EINVAL):
895  *              Failed parsing the OPP node
896  */
897 static struct dev_pm_opp *_opp_add_static_v2(struct opp_table *opp_table,
898                 struct device *dev, struct device_node *np)
899 {
900         struct dev_pm_opp *new_opp;
901         u32 val;
902         int ret;
903
904         new_opp = _opp_allocate(opp_table);
905         if (!new_opp)
906                 return ERR_PTR(-ENOMEM);
907
908         ret = _read_opp_key(new_opp, opp_table, np);
909         if (ret < 0) {
910                 dev_err(dev, "%s: opp key field not found\n", __func__);
911                 goto free_opp;
912         }
913
914         /* Check if the OPP supports hardware's hierarchy of versions or not */
915         if (!_opp_is_supported(dev, opp_table, np)) {
916                 dev_dbg(dev, "OPP not supported by hardware: %s\n",
917                         of_node_full_name(np));
918                 goto free_opp;
919         }
920
921         new_opp->turbo = of_property_read_bool(np, "turbo-mode");
922
923         new_opp->np = of_node_get(np);
924         new_opp->dynamic = false;
925         new_opp->available = true;
926
927         ret = _of_opp_alloc_required_opps(opp_table, new_opp);
928         if (ret)
929                 goto free_opp;
930
931         if (!of_property_read_u32(np, "clock-latency-ns", &val))
932                 new_opp->clock_latency_ns = val;
933
934         ret = opp_parse_supplies(new_opp, dev, opp_table);
935         if (ret)
936                 goto free_required_opps;
937
938         ret = _opp_add(dev, new_opp, opp_table);
939         if (ret) {
940                 /* Don't return error for duplicate OPPs */
941                 if (ret == -EBUSY)
942                         ret = 0;
943                 goto free_required_opps;
944         }
945
946         /* OPP to select on device suspend */
947         if (of_property_read_bool(np, "opp-suspend")) {
948                 if (opp_table->suspend_opp) {
949                         /* Pick the OPP with higher rate/bw/level as suspend OPP */
950                         if (_opp_compare_key(opp_table, new_opp, opp_table->suspend_opp) == 1) {
951                                 opp_table->suspend_opp->suspend = false;
952                                 new_opp->suspend = true;
953                                 opp_table->suspend_opp = new_opp;
954                         }
955                 } else {
956                         new_opp->suspend = true;
957                         opp_table->suspend_opp = new_opp;
958                 }
959         }
960
961         if (new_opp->clock_latency_ns > opp_table->clock_latency_ns_max)
962                 opp_table->clock_latency_ns_max = new_opp->clock_latency_ns;
963
964         pr_debug("%s: turbo:%d rate:%lu uv:%lu uvmin:%lu uvmax:%lu latency:%lu level:%u\n",
965                  __func__, new_opp->turbo, new_opp->rates[0],
966                  new_opp->supplies[0].u_volt, new_opp->supplies[0].u_volt_min,
967                  new_opp->supplies[0].u_volt_max, new_opp->clock_latency_ns,
968                  new_opp->level);
969
970         /*
971          * Notify the changes in the availability of the operable
972          * frequency/voltage list.
973          */
974         blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADD, new_opp);
975         return new_opp;
976
977 free_required_opps:
978         _of_opp_free_required_opps(opp_table, new_opp);
979 free_opp:
980         _opp_free(new_opp);
981
982         return ret ? ERR_PTR(ret) : NULL;
983 }
984
985 /* Initializes OPP tables based on new bindings */
986 static int _of_add_opp_table_v2(struct device *dev, struct opp_table *opp_table)
987 {
988         struct device_node *np;
989         int ret, count = 0;
990         struct dev_pm_opp *opp;
991
992         /* OPP table is already initialized for the device */
993         mutex_lock(&opp_table->lock);
994         if (opp_table->parsed_static_opps) {
995                 opp_table->parsed_static_opps++;
996                 mutex_unlock(&opp_table->lock);
997                 return 0;
998         }
999
1000         opp_table->parsed_static_opps = 1;
1001         mutex_unlock(&opp_table->lock);
1002
1003         /* We have opp-table node now, iterate over it and add OPPs */
1004         for_each_available_child_of_node(opp_table->np, np) {
1005                 opp = _opp_add_static_v2(opp_table, dev, np);
1006                 if (IS_ERR(opp)) {
1007                         ret = PTR_ERR(opp);
1008                         dev_err(dev, "%s: Failed to add OPP, %d\n", __func__,
1009                                 ret);
1010                         of_node_put(np);
1011                         goto remove_static_opp;
1012                 } else if (opp) {
1013                         count++;
1014                 }
1015         }
1016
1017         /* There should be one or more OPPs defined */
1018         if (!count) {
1019                 dev_err(dev, "%s: no supported OPPs", __func__);
1020                 ret = -ENOENT;
1021                 goto remove_static_opp;
1022         }
1023
1024         lazy_link_required_opp_table(opp_table);
1025
1026         return 0;
1027
1028 remove_static_opp:
1029         _opp_remove_all_static(opp_table);
1030
1031         return ret;
1032 }
1033
1034 /* Initializes OPP tables based on old-deprecated bindings */
1035 static int _of_add_opp_table_v1(struct device *dev, struct opp_table *opp_table)
1036 {
1037         const struct property *prop;
1038         const __be32 *val;
1039         int nr, ret = 0;
1040
1041         mutex_lock(&opp_table->lock);
1042         if (opp_table->parsed_static_opps) {
1043                 opp_table->parsed_static_opps++;
1044                 mutex_unlock(&opp_table->lock);
1045                 return 0;
1046         }
1047
1048         opp_table->parsed_static_opps = 1;
1049         mutex_unlock(&opp_table->lock);
1050
1051         prop = of_find_property(dev->of_node, "operating-points", NULL);
1052         if (!prop) {
1053                 ret = -ENODEV;
1054                 goto remove_static_opp;
1055         }
1056         if (!prop->value) {
1057                 ret = -ENODATA;
1058                 goto remove_static_opp;
1059         }
1060
1061         /*
1062          * Each OPP is a set of tuples consisting of frequency and
1063          * voltage like <freq-kHz vol-uV>.
1064          */
1065         nr = prop->length / sizeof(u32);
1066         if (nr % 2) {
1067                 dev_err(dev, "%s: Invalid OPP table\n", __func__);
1068                 ret = -EINVAL;
1069                 goto remove_static_opp;
1070         }
1071
1072         val = prop->value;
1073         while (nr) {
1074                 unsigned long freq = be32_to_cpup(val++) * 1000;
1075                 unsigned long volt = be32_to_cpup(val++);
1076                 struct dev_pm_opp_data data = {
1077                         .freq = freq,
1078                         .u_volt = volt,
1079                 };
1080
1081                 ret = _opp_add_v1(opp_table, dev, &data, false);
1082                 if (ret) {
1083                         dev_err(dev, "%s: Failed to add OPP %ld (%d)\n",
1084                                 __func__, data.freq, ret);
1085                         goto remove_static_opp;
1086                 }
1087                 nr -= 2;
1088         }
1089
1090         return 0;
1091
1092 remove_static_opp:
1093         _opp_remove_all_static(opp_table);
1094
1095         return ret;
1096 }
1097
1098 static int _of_add_table_indexed(struct device *dev, int index)
1099 {
1100         struct opp_table *opp_table;
1101         int ret, count;
1102
1103         if (index) {
1104                 /*
1105                  * If only one phandle is present, then the same OPP table
1106                  * applies for all index requests.
1107                  */
1108                 count = of_count_phandle_with_args(dev->of_node,
1109                                                    "operating-points-v2", NULL);
1110                 if (count == 1)
1111                         index = 0;
1112         }
1113
1114         opp_table = _add_opp_table_indexed(dev, index, true);
1115         if (IS_ERR(opp_table))
1116                 return PTR_ERR(opp_table);
1117
1118         /*
1119          * OPPs have two version of bindings now. Also try the old (v1)
1120          * bindings for backward compatibility with older dtbs.
1121          */
1122         if (opp_table->np)
1123                 ret = _of_add_opp_table_v2(dev, opp_table);
1124         else
1125                 ret = _of_add_opp_table_v1(dev, opp_table);
1126
1127         if (ret)
1128                 dev_pm_opp_put_opp_table(opp_table);
1129
1130         return ret;
1131 }
1132
1133 static void devm_pm_opp_of_table_release(void *data)
1134 {
1135         dev_pm_opp_of_remove_table(data);
1136 }
1137
1138 static int _devm_of_add_table_indexed(struct device *dev, int index)
1139 {
1140         int ret;
1141
1142         ret = _of_add_table_indexed(dev, index);
1143         if (ret)
1144                 return ret;
1145
1146         return devm_add_action_or_reset(dev, devm_pm_opp_of_table_release, dev);
1147 }
1148
1149 /**
1150  * devm_pm_opp_of_add_table() - Initialize opp table from device tree
1151  * @dev:        device pointer used to lookup OPP table.
1152  *
1153  * Register the initial OPP table with the OPP library for given device.
1154  *
1155  * The opp_table structure will be freed after the device is destroyed.
1156  *
1157  * Return:
1158  * 0            On success OR
1159  *              Duplicate OPPs (both freq and volt are same) and opp->available
1160  * -EEXIST      Freq are same and volt are different OR
1161  *              Duplicate OPPs (both freq and volt are same) and !opp->available
1162  * -ENOMEM      Memory allocation failure
1163  * -ENODEV      when 'operating-points' property is not found or is invalid data
1164  *              in device node.
1165  * -ENODATA     when empty 'operating-points' property is found
1166  * -EINVAL      when invalid entries are found in opp-v2 table
1167  */
1168 int devm_pm_opp_of_add_table(struct device *dev)
1169 {
1170         return _devm_of_add_table_indexed(dev, 0);
1171 }
1172 EXPORT_SYMBOL_GPL(devm_pm_opp_of_add_table);
1173
1174 /**
1175  * dev_pm_opp_of_add_table() - Initialize opp table from device tree
1176  * @dev:        device pointer used to lookup OPP table.
1177  *
1178  * Register the initial OPP table with the OPP library for given device.
1179  *
1180  * Return:
1181  * 0            On success OR
1182  *              Duplicate OPPs (both freq and volt are same) and opp->available
1183  * -EEXIST      Freq are same and volt are different OR
1184  *              Duplicate OPPs (both freq and volt are same) and !opp->available
1185  * -ENOMEM      Memory allocation failure
1186  * -ENODEV      when 'operating-points' property is not found or is invalid data
1187  *              in device node.
1188  * -ENODATA     when empty 'operating-points' property is found
1189  * -EINVAL      when invalid entries are found in opp-v2 table
1190  */
1191 int dev_pm_opp_of_add_table(struct device *dev)
1192 {
1193         return _of_add_table_indexed(dev, 0);
1194 }
1195 EXPORT_SYMBOL_GPL(dev_pm_opp_of_add_table);
1196
1197 /**
1198  * dev_pm_opp_of_add_table_indexed() - Initialize indexed opp table from device tree
1199  * @dev:        device pointer used to lookup OPP table.
1200  * @index:      Index number.
1201  *
1202  * Register the initial OPP table with the OPP library for given device only
1203  * using the "operating-points-v2" property.
1204  *
1205  * Return: Refer to dev_pm_opp_of_add_table() for return values.
1206  */
1207 int dev_pm_opp_of_add_table_indexed(struct device *dev, int index)
1208 {
1209         return _of_add_table_indexed(dev, index);
1210 }
1211 EXPORT_SYMBOL_GPL(dev_pm_opp_of_add_table_indexed);
1212
1213 /**
1214  * devm_pm_opp_of_add_table_indexed() - Initialize indexed opp table from device tree
1215  * @dev:        device pointer used to lookup OPP table.
1216  * @index:      Index number.
1217  *
1218  * This is a resource-managed variant of dev_pm_opp_of_add_table_indexed().
1219  */
1220 int devm_pm_opp_of_add_table_indexed(struct device *dev, int index)
1221 {
1222         return _devm_of_add_table_indexed(dev, index);
1223 }
1224 EXPORT_SYMBOL_GPL(devm_pm_opp_of_add_table_indexed);
1225
1226 /* CPU device specific helpers */
1227
1228 /**
1229  * dev_pm_opp_of_cpumask_remove_table() - Removes OPP table for @cpumask
1230  * @cpumask:    cpumask for which OPP table needs to be removed
1231  *
1232  * This removes the OPP tables for CPUs present in the @cpumask.
1233  * This should be used only to remove static entries created from DT.
1234  */
1235 void dev_pm_opp_of_cpumask_remove_table(const struct cpumask *cpumask)
1236 {
1237         _dev_pm_opp_cpumask_remove_table(cpumask, -1);
1238 }
1239 EXPORT_SYMBOL_GPL(dev_pm_opp_of_cpumask_remove_table);
1240
1241 /**
1242  * dev_pm_opp_of_cpumask_add_table() - Adds OPP table for @cpumask
1243  * @cpumask:    cpumask for which OPP table needs to be added.
1244  *
1245  * This adds the OPP tables for CPUs present in the @cpumask.
1246  */
1247 int dev_pm_opp_of_cpumask_add_table(const struct cpumask *cpumask)
1248 {
1249         struct device *cpu_dev;
1250         int cpu, ret;
1251
1252         if (WARN_ON(cpumask_empty(cpumask)))
1253                 return -ENODEV;
1254
1255         for_each_cpu(cpu, cpumask) {
1256                 cpu_dev = get_cpu_device(cpu);
1257                 if (!cpu_dev) {
1258                         pr_err("%s: failed to get cpu%d device\n", __func__,
1259                                cpu);
1260                         ret = -ENODEV;
1261                         goto remove_table;
1262                 }
1263
1264                 ret = dev_pm_opp_of_add_table(cpu_dev);
1265                 if (ret) {
1266                         /*
1267                          * OPP may get registered dynamically, don't print error
1268                          * message here.
1269                          */
1270                         pr_debug("%s: couldn't find opp table for cpu:%d, %d\n",
1271                                  __func__, cpu, ret);
1272
1273                         goto remove_table;
1274                 }
1275         }
1276
1277         return 0;
1278
1279 remove_table:
1280         /* Free all other OPPs */
1281         _dev_pm_opp_cpumask_remove_table(cpumask, cpu);
1282
1283         return ret;
1284 }
1285 EXPORT_SYMBOL_GPL(dev_pm_opp_of_cpumask_add_table);
1286
1287 /*
1288  * Works only for OPP v2 bindings.
1289  *
1290  * Returns -ENOENT if operating-points-v2 bindings aren't supported.
1291  */
1292 /**
1293  * dev_pm_opp_of_get_sharing_cpus() - Get cpumask of CPUs sharing OPPs with
1294  *                                    @cpu_dev using operating-points-v2
1295  *                                    bindings.
1296  *
1297  * @cpu_dev:    CPU device for which we do this operation
1298  * @cpumask:    cpumask to update with information of sharing CPUs
1299  *
1300  * This updates the @cpumask with CPUs that are sharing OPPs with @cpu_dev.
1301  *
1302  * Returns -ENOENT if operating-points-v2 isn't present for @cpu_dev.
1303  */
1304 int dev_pm_opp_of_get_sharing_cpus(struct device *cpu_dev,
1305                                    struct cpumask *cpumask)
1306 {
1307         struct device_node *np, *tmp_np, *cpu_np;
1308         int cpu, ret = 0;
1309
1310         /* Get OPP descriptor node */
1311         np = dev_pm_opp_of_get_opp_desc_node(cpu_dev);
1312         if (!np) {
1313                 dev_dbg(cpu_dev, "%s: Couldn't find opp node.\n", __func__);
1314                 return -ENOENT;
1315         }
1316
1317         cpumask_set_cpu(cpu_dev->id, cpumask);
1318
1319         /* OPPs are shared ? */
1320         if (!of_property_read_bool(np, "opp-shared"))
1321                 goto put_cpu_node;
1322
1323         for_each_possible_cpu(cpu) {
1324                 if (cpu == cpu_dev->id)
1325                         continue;
1326
1327                 cpu_np = of_cpu_device_node_get(cpu);
1328                 if (!cpu_np) {
1329                         dev_err(cpu_dev, "%s: failed to get cpu%d node\n",
1330                                 __func__, cpu);
1331                         ret = -ENOENT;
1332                         goto put_cpu_node;
1333                 }
1334
1335                 /* Get OPP descriptor node */
1336                 tmp_np = _opp_of_get_opp_desc_node(cpu_np, 0);
1337                 of_node_put(cpu_np);
1338                 if (!tmp_np) {
1339                         pr_err("%pOF: Couldn't find opp node\n", cpu_np);
1340                         ret = -ENOENT;
1341                         goto put_cpu_node;
1342                 }
1343
1344                 /* CPUs are sharing opp node */
1345                 if (np == tmp_np)
1346                         cpumask_set_cpu(cpu, cpumask);
1347
1348                 of_node_put(tmp_np);
1349         }
1350
1351 put_cpu_node:
1352         of_node_put(np);
1353         return ret;
1354 }
1355 EXPORT_SYMBOL_GPL(dev_pm_opp_of_get_sharing_cpus);
1356
1357 /**
1358  * of_get_required_opp_performance_state() - Search for required OPP and return its performance state.
1359  * @np: Node that contains the "required-opps" property.
1360  * @index: Index of the phandle to parse.
1361  *
1362  * Returns the performance state of the OPP pointed out by the "required-opps"
1363  * property at @index in @np.
1364  *
1365  * Return: Zero or positive performance state on success, otherwise negative
1366  * value on errors.
1367  */
1368 int of_get_required_opp_performance_state(struct device_node *np, int index)
1369 {
1370         struct dev_pm_opp *opp;
1371         struct device_node *required_np;
1372         struct opp_table *opp_table;
1373         int pstate = -EINVAL;
1374
1375         required_np = of_parse_required_opp(np, index);
1376         if (!required_np)
1377                 return -ENODEV;
1378
1379         opp_table = _find_table_of_opp_np(required_np);
1380         if (IS_ERR(opp_table)) {
1381                 pr_err("%s: Failed to find required OPP table %pOF: %ld\n",
1382                        __func__, np, PTR_ERR(opp_table));
1383                 goto put_required_np;
1384         }
1385
1386         /* The OPP tables must belong to a genpd */
1387         if (unlikely(!opp_table->is_genpd)) {
1388                 pr_err("%s: Performance state is only valid for genpds.\n", __func__);
1389                 goto put_required_np;
1390         }
1391
1392         opp = _find_opp_of_np(opp_table, required_np);
1393         if (opp) {
1394                 if (opp->level == OPP_LEVEL_UNSET) {
1395                         pr_err("%s: OPP levels aren't available for %pOF\n",
1396                                __func__, np);
1397                 } else {
1398                         pstate = opp->level;
1399                 }
1400                 dev_pm_opp_put(opp);
1401
1402         }
1403
1404         dev_pm_opp_put_opp_table(opp_table);
1405
1406 put_required_np:
1407         of_node_put(required_np);
1408
1409         return pstate;
1410 }
1411 EXPORT_SYMBOL_GPL(of_get_required_opp_performance_state);
1412
1413 /**
1414  * dev_pm_opp_of_has_required_opp - Find out if a required-opps exists.
1415  * @dev: The device to investigate.
1416  *
1417  * Returns true if the device's node has a "operating-points-v2" property and if
1418  * the corresponding node for the opp-table describes opp nodes that uses the
1419  * "required-opps" property.
1420  *
1421  * Return: True if a required-opps is present, else false.
1422  */
1423 bool dev_pm_opp_of_has_required_opp(struct device *dev)
1424 {
1425         struct device_node *opp_np, *np;
1426         int count;
1427
1428         opp_np = _opp_of_get_opp_desc_node(dev->of_node, 0);
1429         if (!opp_np)
1430                 return false;
1431
1432         np = of_get_next_available_child(opp_np, NULL);
1433         of_node_put(opp_np);
1434         if (!np) {
1435                 dev_warn(dev, "Empty OPP table\n");
1436                 return false;
1437         }
1438
1439         count = of_count_phandle_with_args(np, "required-opps", NULL);
1440         of_node_put(np);
1441
1442         return count > 0;
1443 }
1444
1445 /**
1446  * dev_pm_opp_get_of_node() - Gets the DT node corresponding to an opp
1447  * @opp:        opp for which DT node has to be returned for
1448  *
1449  * Return: DT node corresponding to the opp, else 0 on success.
1450  *
1451  * The caller needs to put the node with of_node_put() after using it.
1452  */
1453 struct device_node *dev_pm_opp_get_of_node(struct dev_pm_opp *opp)
1454 {
1455         if (IS_ERR_OR_NULL(opp)) {
1456                 pr_err("%s: Invalid parameters\n", __func__);
1457                 return NULL;
1458         }
1459
1460         return of_node_get(opp->np);
1461 }
1462 EXPORT_SYMBOL_GPL(dev_pm_opp_get_of_node);
1463
1464 /*
1465  * Callback function provided to the Energy Model framework upon registration.
1466  * It provides the power used by @dev at @kHz if it is the frequency of an
1467  * existing OPP, or at the frequency of the first OPP above @kHz otherwise
1468  * (see dev_pm_opp_find_freq_ceil()). This function updates @kHz to the ceiled
1469  * frequency and @uW to the associated power.
1470  *
1471  * Returns 0 on success or a proper -EINVAL value in case of error.
1472  */
1473 static int __maybe_unused
1474 _get_dt_power(struct device *dev, unsigned long *uW, unsigned long *kHz)
1475 {
1476         struct dev_pm_opp *opp;
1477         unsigned long opp_freq, opp_power;
1478
1479         /* Find the right frequency and related OPP */
1480         opp_freq = *kHz * 1000;
1481         opp = dev_pm_opp_find_freq_ceil(dev, &opp_freq);
1482         if (IS_ERR(opp))
1483                 return -EINVAL;
1484
1485         opp_power = dev_pm_opp_get_power(opp);
1486         dev_pm_opp_put(opp);
1487         if (!opp_power)
1488                 return -EINVAL;
1489
1490         *kHz = opp_freq / 1000;
1491         *uW = opp_power;
1492
1493         return 0;
1494 }
1495
1496 /**
1497  * dev_pm_opp_calc_power() - Calculate power value for device with EM
1498  * @dev         : Device for which an Energy Model has to be registered
1499  * @uW          : New power value that is calculated
1500  * @kHz         : Frequency for which the new power is calculated
1501  *
1502  * This computes the power estimated by @dev at @kHz if it is the frequency
1503  * of an existing OPP, or at the frequency of the first OPP above @kHz otherwise
1504  * (see dev_pm_opp_find_freq_ceil()). This function updates @kHz to the ceiled
1505  * frequency and @uW to the associated power. The power is estimated as
1506  * P = C * V^2 * f with C being the device's capacitance and V and f
1507  * respectively the voltage and frequency of the OPP.
1508  * It is also used as a callback function provided to the Energy Model
1509  * framework upon registration.
1510  *
1511  * Returns -EINVAL if the power calculation failed because of missing
1512  * parameters, 0 otherwise.
1513  */
1514 int dev_pm_opp_calc_power(struct device *dev, unsigned long *uW,
1515                           unsigned long *kHz)
1516 {
1517         struct dev_pm_opp *opp;
1518         struct device_node *np;
1519         unsigned long mV, Hz;
1520         u32 cap;
1521         u64 tmp;
1522         int ret;
1523
1524         np = of_node_get(dev->of_node);
1525         if (!np)
1526                 return -EINVAL;
1527
1528         ret = of_property_read_u32(np, "dynamic-power-coefficient", &cap);
1529         of_node_put(np);
1530         if (ret)
1531                 return -EINVAL;
1532
1533         Hz = *kHz * 1000;
1534         opp = dev_pm_opp_find_freq_ceil(dev, &Hz);
1535         if (IS_ERR(opp))
1536                 return -EINVAL;
1537
1538         mV = dev_pm_opp_get_voltage(opp) / 1000;
1539         dev_pm_opp_put(opp);
1540         if (!mV)
1541                 return -EINVAL;
1542
1543         tmp = (u64)cap * mV * mV * (Hz / 1000000);
1544         /* Provide power in micro-Watts */
1545         do_div(tmp, 1000000);
1546
1547         *uW = (unsigned long)tmp;
1548         *kHz = Hz / 1000;
1549
1550         return 0;
1551 }
1552 EXPORT_SYMBOL_GPL(dev_pm_opp_calc_power);
1553
1554 static bool _of_has_opp_microwatt_property(struct device *dev)
1555 {
1556         unsigned long power, freq = 0;
1557         struct dev_pm_opp *opp;
1558
1559         /* Check if at least one OPP has needed property */
1560         opp = dev_pm_opp_find_freq_ceil(dev, &freq);
1561         if (IS_ERR(opp))
1562                 return false;
1563
1564         power = dev_pm_opp_get_power(opp);
1565         dev_pm_opp_put(opp);
1566         if (!power)
1567                 return false;
1568
1569         return true;
1570 }
1571
1572 /**
1573  * dev_pm_opp_of_register_em() - Attempt to register an Energy Model
1574  * @dev         : Device for which an Energy Model has to be registered
1575  * @cpus        : CPUs for which an Energy Model has to be registered. For
1576  *              other type of devices it should be set to NULL.
1577  *
1578  * This checks whether the "dynamic-power-coefficient" devicetree property has
1579  * been specified, and tries to register an Energy Model with it if it has.
1580  * Having this property means the voltages are known for OPPs and the EM
1581  * might be calculated.
1582  */
1583 int dev_pm_opp_of_register_em(struct device *dev, struct cpumask *cpus)
1584 {
1585         struct em_data_callback em_cb;
1586         struct device_node *np;
1587         int ret, nr_opp;
1588         u32 cap;
1589
1590         if (IS_ERR_OR_NULL(dev)) {
1591                 ret = -EINVAL;
1592                 goto failed;
1593         }
1594
1595         nr_opp = dev_pm_opp_get_opp_count(dev);
1596         if (nr_opp <= 0) {
1597                 ret = -EINVAL;
1598                 goto failed;
1599         }
1600
1601         /* First, try to find more precised Energy Model in DT */
1602         if (_of_has_opp_microwatt_property(dev)) {
1603                 EM_SET_ACTIVE_POWER_CB(em_cb, _get_dt_power);
1604                 goto register_em;
1605         }
1606
1607         np = of_node_get(dev->of_node);
1608         if (!np) {
1609                 ret = -EINVAL;
1610                 goto failed;
1611         }
1612
1613         /*
1614          * Register an EM only if the 'dynamic-power-coefficient' property is
1615          * set in devicetree. It is assumed the voltage values are known if that
1616          * property is set since it is useless otherwise. If voltages are not
1617          * known, just let the EM registration fail with an error to alert the
1618          * user about the inconsistent configuration.
1619          */
1620         ret = of_property_read_u32(np, "dynamic-power-coefficient", &cap);
1621         of_node_put(np);
1622         if (ret || !cap) {
1623                 dev_dbg(dev, "Couldn't find proper 'dynamic-power-coefficient' in DT\n");
1624                 ret = -EINVAL;
1625                 goto failed;
1626         }
1627
1628         EM_SET_ACTIVE_POWER_CB(em_cb, dev_pm_opp_calc_power);
1629
1630 register_em:
1631         ret = em_dev_register_perf_domain(dev, nr_opp, &em_cb, cpus, true);
1632         if (ret)
1633                 goto failed;
1634
1635         return 0;
1636
1637 failed:
1638         dev_dbg(dev, "Couldn't register Energy Model %d\n", ret);
1639         return ret;
1640 }
1641 EXPORT_SYMBOL_GPL(dev_pm_opp_of_register_em);
This page took 0.122537 seconds and 4 git commands to generate.