]> Git Repo - J-linux.git/blob - drivers/nvme/target/tcp.c
Merge tag 'vfs-6.13-rc7.fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs
[J-linux.git] / drivers / nvme / target / tcp.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVMe over Fabrics TCP target.
4  * Copyright (c) 2018 Lightbits Labs. All rights reserved.
5  */
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 #include <linux/module.h>
8 #include <linux/init.h>
9 #include <linux/slab.h>
10 #include <linux/err.h>
11 #include <linux/key.h>
12 #include <linux/nvme-tcp.h>
13 #include <linux/nvme-keyring.h>
14 #include <net/sock.h>
15 #include <net/tcp.h>
16 #include <net/tls.h>
17 #include <net/tls_prot.h>
18 #include <net/handshake.h>
19 #include <linux/inet.h>
20 #include <linux/llist.h>
21 #include <crypto/hash.h>
22 #include <trace/events/sock.h>
23
24 #include "nvmet.h"
25
26 #define NVMET_TCP_DEF_INLINE_DATA_SIZE  (4 * PAGE_SIZE)
27 #define NVMET_TCP_MAXH2CDATA            0x400000 /* 16M arbitrary limit */
28 #define NVMET_TCP_BACKLOG 128
29
30 static int param_store_val(const char *str, int *val, int min, int max)
31 {
32         int ret, new_val;
33
34         ret = kstrtoint(str, 10, &new_val);
35         if (ret)
36                 return -EINVAL;
37
38         if (new_val < min || new_val > max)
39                 return -EINVAL;
40
41         *val = new_val;
42         return 0;
43 }
44
45 static int set_params(const char *str, const struct kernel_param *kp)
46 {
47         return param_store_val(str, kp->arg, 0, INT_MAX);
48 }
49
50 static const struct kernel_param_ops set_param_ops = {
51         .set    = set_params,
52         .get    = param_get_int,
53 };
54
55 /* Define the socket priority to use for connections were it is desirable
56  * that the NIC consider performing optimized packet processing or filtering.
57  * A non-zero value being sufficient to indicate general consideration of any
58  * possible optimization.  Making it a module param allows for alternative
59  * values that may be unique for some NIC implementations.
60  */
61 static int so_priority;
62 device_param_cb(so_priority, &set_param_ops, &so_priority, 0644);
63 MODULE_PARM_DESC(so_priority, "nvmet tcp socket optimize priority: Default 0");
64
65 /* Define a time period (in usecs) that io_work() shall sample an activated
66  * queue before determining it to be idle.  This optional module behavior
67  * can enable NIC solutions that support socket optimized packet processing
68  * using advanced interrupt moderation techniques.
69  */
70 static int idle_poll_period_usecs;
71 device_param_cb(idle_poll_period_usecs, &set_param_ops,
72                 &idle_poll_period_usecs, 0644);
73 MODULE_PARM_DESC(idle_poll_period_usecs,
74                 "nvmet tcp io_work poll till idle time period in usecs: Default 0");
75
76 #ifdef CONFIG_NVME_TARGET_TCP_TLS
77 /*
78  * TLS handshake timeout
79  */
80 static int tls_handshake_timeout = 10;
81 module_param(tls_handshake_timeout, int, 0644);
82 MODULE_PARM_DESC(tls_handshake_timeout,
83                  "nvme TLS handshake timeout in seconds (default 10)");
84 #endif
85
86 #define NVMET_TCP_RECV_BUDGET           8
87 #define NVMET_TCP_SEND_BUDGET           8
88 #define NVMET_TCP_IO_WORK_BUDGET        64
89
90 enum nvmet_tcp_send_state {
91         NVMET_TCP_SEND_DATA_PDU,
92         NVMET_TCP_SEND_DATA,
93         NVMET_TCP_SEND_R2T,
94         NVMET_TCP_SEND_DDGST,
95         NVMET_TCP_SEND_RESPONSE
96 };
97
98 enum nvmet_tcp_recv_state {
99         NVMET_TCP_RECV_PDU,
100         NVMET_TCP_RECV_DATA,
101         NVMET_TCP_RECV_DDGST,
102         NVMET_TCP_RECV_ERR,
103 };
104
105 enum {
106         NVMET_TCP_F_INIT_FAILED = (1 << 0),
107 };
108
109 struct nvmet_tcp_cmd {
110         struct nvmet_tcp_queue          *queue;
111         struct nvmet_req                req;
112
113         struct nvme_tcp_cmd_pdu         *cmd_pdu;
114         struct nvme_tcp_rsp_pdu         *rsp_pdu;
115         struct nvme_tcp_data_pdu        *data_pdu;
116         struct nvme_tcp_r2t_pdu         *r2t_pdu;
117
118         u32                             rbytes_done;
119         u32                             wbytes_done;
120
121         u32                             pdu_len;
122         u32                             pdu_recv;
123         int                             sg_idx;
124         char                            recv_cbuf[CMSG_LEN(sizeof(char))];
125         struct msghdr                   recv_msg;
126         struct bio_vec                  *iov;
127         u32                             flags;
128
129         struct list_head                entry;
130         struct llist_node               lentry;
131
132         /* send state */
133         u32                             offset;
134         struct scatterlist              *cur_sg;
135         enum nvmet_tcp_send_state       state;
136
137         __le32                          exp_ddgst;
138         __le32                          recv_ddgst;
139 };
140
141 enum nvmet_tcp_queue_state {
142         NVMET_TCP_Q_CONNECTING,
143         NVMET_TCP_Q_TLS_HANDSHAKE,
144         NVMET_TCP_Q_LIVE,
145         NVMET_TCP_Q_DISCONNECTING,
146         NVMET_TCP_Q_FAILED,
147 };
148
149 struct nvmet_tcp_queue {
150         struct socket           *sock;
151         struct nvmet_tcp_port   *port;
152         struct work_struct      io_work;
153         struct nvmet_cq         nvme_cq;
154         struct nvmet_sq         nvme_sq;
155         struct kref             kref;
156
157         /* send state */
158         struct nvmet_tcp_cmd    *cmds;
159         unsigned int            nr_cmds;
160         struct list_head        free_list;
161         struct llist_head       resp_list;
162         struct list_head        resp_send_list;
163         int                     send_list_len;
164         struct nvmet_tcp_cmd    *snd_cmd;
165
166         /* recv state */
167         int                     offset;
168         int                     left;
169         enum nvmet_tcp_recv_state rcv_state;
170         struct nvmet_tcp_cmd    *cmd;
171         union nvme_tcp_pdu      pdu;
172
173         /* digest state */
174         bool                    hdr_digest;
175         bool                    data_digest;
176         struct ahash_request    *snd_hash;
177         struct ahash_request    *rcv_hash;
178
179         /* TLS state */
180         key_serial_t            tls_pskid;
181         struct delayed_work     tls_handshake_tmo_work;
182
183         unsigned long           poll_end;
184
185         spinlock_t              state_lock;
186         enum nvmet_tcp_queue_state state;
187
188         struct sockaddr_storage sockaddr;
189         struct sockaddr_storage sockaddr_peer;
190         struct work_struct      release_work;
191
192         int                     idx;
193         struct list_head        queue_list;
194
195         struct nvmet_tcp_cmd    connect;
196
197         struct page_frag_cache  pf_cache;
198
199         void (*data_ready)(struct sock *);
200         void (*state_change)(struct sock *);
201         void (*write_space)(struct sock *);
202 };
203
204 struct nvmet_tcp_port {
205         struct socket           *sock;
206         struct work_struct      accept_work;
207         struct nvmet_port       *nport;
208         struct sockaddr_storage addr;
209         void (*data_ready)(struct sock *);
210 };
211
212 static DEFINE_IDA(nvmet_tcp_queue_ida);
213 static LIST_HEAD(nvmet_tcp_queue_list);
214 static DEFINE_MUTEX(nvmet_tcp_queue_mutex);
215
216 static struct workqueue_struct *nvmet_tcp_wq;
217 static const struct nvmet_fabrics_ops nvmet_tcp_ops;
218 static void nvmet_tcp_free_cmd(struct nvmet_tcp_cmd *c);
219 static void nvmet_tcp_free_cmd_buffers(struct nvmet_tcp_cmd *cmd);
220
221 static inline u16 nvmet_tcp_cmd_tag(struct nvmet_tcp_queue *queue,
222                 struct nvmet_tcp_cmd *cmd)
223 {
224         if (unlikely(!queue->nr_cmds)) {
225                 /* We didn't allocate cmds yet, send 0xffff */
226                 return USHRT_MAX;
227         }
228
229         return cmd - queue->cmds;
230 }
231
232 static inline bool nvmet_tcp_has_data_in(struct nvmet_tcp_cmd *cmd)
233 {
234         return nvme_is_write(cmd->req.cmd) &&
235                 cmd->rbytes_done < cmd->req.transfer_len;
236 }
237
238 static inline bool nvmet_tcp_need_data_in(struct nvmet_tcp_cmd *cmd)
239 {
240         return nvmet_tcp_has_data_in(cmd) && !cmd->req.cqe->status;
241 }
242
243 static inline bool nvmet_tcp_need_data_out(struct nvmet_tcp_cmd *cmd)
244 {
245         return !nvme_is_write(cmd->req.cmd) &&
246                 cmd->req.transfer_len > 0 &&
247                 !cmd->req.cqe->status;
248 }
249
250 static inline bool nvmet_tcp_has_inline_data(struct nvmet_tcp_cmd *cmd)
251 {
252         return nvme_is_write(cmd->req.cmd) && cmd->pdu_len &&
253                 !cmd->rbytes_done;
254 }
255
256 static inline struct nvmet_tcp_cmd *
257 nvmet_tcp_get_cmd(struct nvmet_tcp_queue *queue)
258 {
259         struct nvmet_tcp_cmd *cmd;
260
261         cmd = list_first_entry_or_null(&queue->free_list,
262                                 struct nvmet_tcp_cmd, entry);
263         if (!cmd)
264                 return NULL;
265         list_del_init(&cmd->entry);
266
267         cmd->rbytes_done = cmd->wbytes_done = 0;
268         cmd->pdu_len = 0;
269         cmd->pdu_recv = 0;
270         cmd->iov = NULL;
271         cmd->flags = 0;
272         return cmd;
273 }
274
275 static inline void nvmet_tcp_put_cmd(struct nvmet_tcp_cmd *cmd)
276 {
277         if (unlikely(cmd == &cmd->queue->connect))
278                 return;
279
280         list_add_tail(&cmd->entry, &cmd->queue->free_list);
281 }
282
283 static inline int queue_cpu(struct nvmet_tcp_queue *queue)
284 {
285         return queue->sock->sk->sk_incoming_cpu;
286 }
287
288 static inline u8 nvmet_tcp_hdgst_len(struct nvmet_tcp_queue *queue)
289 {
290         return queue->hdr_digest ? NVME_TCP_DIGEST_LENGTH : 0;
291 }
292
293 static inline u8 nvmet_tcp_ddgst_len(struct nvmet_tcp_queue *queue)
294 {
295         return queue->data_digest ? NVME_TCP_DIGEST_LENGTH : 0;
296 }
297
298 static inline void nvmet_tcp_hdgst(struct ahash_request *hash,
299                 void *pdu, size_t len)
300 {
301         struct scatterlist sg;
302
303         sg_init_one(&sg, pdu, len);
304         ahash_request_set_crypt(hash, &sg, pdu + len, len);
305         crypto_ahash_digest(hash);
306 }
307
308 static int nvmet_tcp_verify_hdgst(struct nvmet_tcp_queue *queue,
309         void *pdu, size_t len)
310 {
311         struct nvme_tcp_hdr *hdr = pdu;
312         __le32 recv_digest;
313         __le32 exp_digest;
314
315         if (unlikely(!(hdr->flags & NVME_TCP_F_HDGST))) {
316                 pr_err("queue %d: header digest enabled but no header digest\n",
317                         queue->idx);
318                 return -EPROTO;
319         }
320
321         recv_digest = *(__le32 *)(pdu + hdr->hlen);
322         nvmet_tcp_hdgst(queue->rcv_hash, pdu, len);
323         exp_digest = *(__le32 *)(pdu + hdr->hlen);
324         if (recv_digest != exp_digest) {
325                 pr_err("queue %d: header digest error: recv %#x expected %#x\n",
326                         queue->idx, le32_to_cpu(recv_digest),
327                         le32_to_cpu(exp_digest));
328                 return -EPROTO;
329         }
330
331         return 0;
332 }
333
334 static int nvmet_tcp_check_ddgst(struct nvmet_tcp_queue *queue, void *pdu)
335 {
336         struct nvme_tcp_hdr *hdr = pdu;
337         u8 digest_len = nvmet_tcp_hdgst_len(queue);
338         u32 len;
339
340         len = le32_to_cpu(hdr->plen) - hdr->hlen -
341                 (hdr->flags & NVME_TCP_F_HDGST ? digest_len : 0);
342
343         if (unlikely(len && !(hdr->flags & NVME_TCP_F_DDGST))) {
344                 pr_err("queue %d: data digest flag is cleared\n", queue->idx);
345                 return -EPROTO;
346         }
347
348         return 0;
349 }
350
351 /* If cmd buffers are NULL, no operation is performed */
352 static void nvmet_tcp_free_cmd_buffers(struct nvmet_tcp_cmd *cmd)
353 {
354         kfree(cmd->iov);
355         sgl_free(cmd->req.sg);
356         cmd->iov = NULL;
357         cmd->req.sg = NULL;
358 }
359
360 static void nvmet_tcp_build_pdu_iovec(struct nvmet_tcp_cmd *cmd)
361 {
362         struct bio_vec *iov = cmd->iov;
363         struct scatterlist *sg;
364         u32 length, offset, sg_offset;
365         int nr_pages;
366
367         length = cmd->pdu_len;
368         nr_pages = DIV_ROUND_UP(length, PAGE_SIZE);
369         offset = cmd->rbytes_done;
370         cmd->sg_idx = offset / PAGE_SIZE;
371         sg_offset = offset % PAGE_SIZE;
372         sg = &cmd->req.sg[cmd->sg_idx];
373
374         while (length) {
375                 u32 iov_len = min_t(u32, length, sg->length - sg_offset);
376
377                 bvec_set_page(iov, sg_page(sg), iov_len,
378                                 sg->offset + sg_offset);
379
380                 length -= iov_len;
381                 sg = sg_next(sg);
382                 iov++;
383                 sg_offset = 0;
384         }
385
386         iov_iter_bvec(&cmd->recv_msg.msg_iter, ITER_DEST, cmd->iov,
387                       nr_pages, cmd->pdu_len);
388 }
389
390 static void nvmet_tcp_fatal_error(struct nvmet_tcp_queue *queue)
391 {
392         queue->rcv_state = NVMET_TCP_RECV_ERR;
393         if (queue->nvme_sq.ctrl)
394                 nvmet_ctrl_fatal_error(queue->nvme_sq.ctrl);
395         else
396                 kernel_sock_shutdown(queue->sock, SHUT_RDWR);
397 }
398
399 static void nvmet_tcp_socket_error(struct nvmet_tcp_queue *queue, int status)
400 {
401         queue->rcv_state = NVMET_TCP_RECV_ERR;
402         if (status == -EPIPE || status == -ECONNRESET)
403                 kernel_sock_shutdown(queue->sock, SHUT_RDWR);
404         else
405                 nvmet_tcp_fatal_error(queue);
406 }
407
408 static int nvmet_tcp_map_data(struct nvmet_tcp_cmd *cmd)
409 {
410         struct nvme_sgl_desc *sgl = &cmd->req.cmd->common.dptr.sgl;
411         u32 len = le32_to_cpu(sgl->length);
412
413         if (!len)
414                 return 0;
415
416         if (sgl->type == ((NVME_SGL_FMT_DATA_DESC << 4) |
417                           NVME_SGL_FMT_OFFSET)) {
418                 if (!nvme_is_write(cmd->req.cmd))
419                         return NVME_SC_INVALID_FIELD | NVME_STATUS_DNR;
420
421                 if (len > cmd->req.port->inline_data_size)
422                         return NVME_SC_SGL_INVALID_OFFSET | NVME_STATUS_DNR;
423                 cmd->pdu_len = len;
424         }
425         cmd->req.transfer_len += len;
426
427         cmd->req.sg = sgl_alloc(len, GFP_KERNEL, &cmd->req.sg_cnt);
428         if (!cmd->req.sg)
429                 return NVME_SC_INTERNAL;
430         cmd->cur_sg = cmd->req.sg;
431
432         if (nvmet_tcp_has_data_in(cmd)) {
433                 cmd->iov = kmalloc_array(cmd->req.sg_cnt,
434                                 sizeof(*cmd->iov), GFP_KERNEL);
435                 if (!cmd->iov)
436                         goto err;
437         }
438
439         return 0;
440 err:
441         nvmet_tcp_free_cmd_buffers(cmd);
442         return NVME_SC_INTERNAL;
443 }
444
445 static void nvmet_tcp_calc_ddgst(struct ahash_request *hash,
446                 struct nvmet_tcp_cmd *cmd)
447 {
448         ahash_request_set_crypt(hash, cmd->req.sg,
449                 (void *)&cmd->exp_ddgst, cmd->req.transfer_len);
450         crypto_ahash_digest(hash);
451 }
452
453 static void nvmet_setup_c2h_data_pdu(struct nvmet_tcp_cmd *cmd)
454 {
455         struct nvme_tcp_data_pdu *pdu = cmd->data_pdu;
456         struct nvmet_tcp_queue *queue = cmd->queue;
457         u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue);
458         u8 ddgst = nvmet_tcp_ddgst_len(cmd->queue);
459
460         cmd->offset = 0;
461         cmd->state = NVMET_TCP_SEND_DATA_PDU;
462
463         pdu->hdr.type = nvme_tcp_c2h_data;
464         pdu->hdr.flags = NVME_TCP_F_DATA_LAST | (queue->nvme_sq.sqhd_disabled ?
465                                                 NVME_TCP_F_DATA_SUCCESS : 0);
466         pdu->hdr.hlen = sizeof(*pdu);
467         pdu->hdr.pdo = pdu->hdr.hlen + hdgst;
468         pdu->hdr.plen =
469                 cpu_to_le32(pdu->hdr.hlen + hdgst +
470                                 cmd->req.transfer_len + ddgst);
471         pdu->command_id = cmd->req.cqe->command_id;
472         pdu->data_length = cpu_to_le32(cmd->req.transfer_len);
473         pdu->data_offset = cpu_to_le32(cmd->wbytes_done);
474
475         if (queue->data_digest) {
476                 pdu->hdr.flags |= NVME_TCP_F_DDGST;
477                 nvmet_tcp_calc_ddgst(queue->snd_hash, cmd);
478         }
479
480         if (cmd->queue->hdr_digest) {
481                 pdu->hdr.flags |= NVME_TCP_F_HDGST;
482                 nvmet_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
483         }
484 }
485
486 static void nvmet_setup_r2t_pdu(struct nvmet_tcp_cmd *cmd)
487 {
488         struct nvme_tcp_r2t_pdu *pdu = cmd->r2t_pdu;
489         struct nvmet_tcp_queue *queue = cmd->queue;
490         u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue);
491
492         cmd->offset = 0;
493         cmd->state = NVMET_TCP_SEND_R2T;
494
495         pdu->hdr.type = nvme_tcp_r2t;
496         pdu->hdr.flags = 0;
497         pdu->hdr.hlen = sizeof(*pdu);
498         pdu->hdr.pdo = 0;
499         pdu->hdr.plen = cpu_to_le32(pdu->hdr.hlen + hdgst);
500
501         pdu->command_id = cmd->req.cmd->common.command_id;
502         pdu->ttag = nvmet_tcp_cmd_tag(cmd->queue, cmd);
503         pdu->r2t_length = cpu_to_le32(cmd->req.transfer_len - cmd->rbytes_done);
504         pdu->r2t_offset = cpu_to_le32(cmd->rbytes_done);
505         if (cmd->queue->hdr_digest) {
506                 pdu->hdr.flags |= NVME_TCP_F_HDGST;
507                 nvmet_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
508         }
509 }
510
511 static void nvmet_setup_response_pdu(struct nvmet_tcp_cmd *cmd)
512 {
513         struct nvme_tcp_rsp_pdu *pdu = cmd->rsp_pdu;
514         struct nvmet_tcp_queue *queue = cmd->queue;
515         u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue);
516
517         cmd->offset = 0;
518         cmd->state = NVMET_TCP_SEND_RESPONSE;
519
520         pdu->hdr.type = nvme_tcp_rsp;
521         pdu->hdr.flags = 0;
522         pdu->hdr.hlen = sizeof(*pdu);
523         pdu->hdr.pdo = 0;
524         pdu->hdr.plen = cpu_to_le32(pdu->hdr.hlen + hdgst);
525         if (cmd->queue->hdr_digest) {
526                 pdu->hdr.flags |= NVME_TCP_F_HDGST;
527                 nvmet_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
528         }
529 }
530
531 static void nvmet_tcp_process_resp_list(struct nvmet_tcp_queue *queue)
532 {
533         struct llist_node *node;
534         struct nvmet_tcp_cmd *cmd;
535
536         for (node = llist_del_all(&queue->resp_list); node; node = node->next) {
537                 cmd = llist_entry(node, struct nvmet_tcp_cmd, lentry);
538                 list_add(&cmd->entry, &queue->resp_send_list);
539                 queue->send_list_len++;
540         }
541 }
542
543 static struct nvmet_tcp_cmd *nvmet_tcp_fetch_cmd(struct nvmet_tcp_queue *queue)
544 {
545         queue->snd_cmd = list_first_entry_or_null(&queue->resp_send_list,
546                                 struct nvmet_tcp_cmd, entry);
547         if (!queue->snd_cmd) {
548                 nvmet_tcp_process_resp_list(queue);
549                 queue->snd_cmd =
550                         list_first_entry_or_null(&queue->resp_send_list,
551                                         struct nvmet_tcp_cmd, entry);
552                 if (unlikely(!queue->snd_cmd))
553                         return NULL;
554         }
555
556         list_del_init(&queue->snd_cmd->entry);
557         queue->send_list_len--;
558
559         if (nvmet_tcp_need_data_out(queue->snd_cmd))
560                 nvmet_setup_c2h_data_pdu(queue->snd_cmd);
561         else if (nvmet_tcp_need_data_in(queue->snd_cmd))
562                 nvmet_setup_r2t_pdu(queue->snd_cmd);
563         else
564                 nvmet_setup_response_pdu(queue->snd_cmd);
565
566         return queue->snd_cmd;
567 }
568
569 static void nvmet_tcp_queue_response(struct nvmet_req *req)
570 {
571         struct nvmet_tcp_cmd *cmd =
572                 container_of(req, struct nvmet_tcp_cmd, req);
573         struct nvmet_tcp_queue  *queue = cmd->queue;
574         struct nvme_sgl_desc *sgl;
575         u32 len;
576
577         if (unlikely(cmd == queue->cmd)) {
578                 sgl = &cmd->req.cmd->common.dptr.sgl;
579                 len = le32_to_cpu(sgl->length);
580
581                 /*
582                  * Wait for inline data before processing the response.
583                  * Avoid using helpers, this might happen before
584                  * nvmet_req_init is completed.
585                  */
586                 if (queue->rcv_state == NVMET_TCP_RECV_PDU &&
587                     len && len <= cmd->req.port->inline_data_size &&
588                     nvme_is_write(cmd->req.cmd))
589                         return;
590         }
591
592         llist_add(&cmd->lentry, &queue->resp_list);
593         queue_work_on(queue_cpu(queue), nvmet_tcp_wq, &cmd->queue->io_work);
594 }
595
596 static void nvmet_tcp_execute_request(struct nvmet_tcp_cmd *cmd)
597 {
598         if (unlikely(cmd->flags & NVMET_TCP_F_INIT_FAILED))
599                 nvmet_tcp_queue_response(&cmd->req);
600         else
601                 cmd->req.execute(&cmd->req);
602 }
603
604 static int nvmet_try_send_data_pdu(struct nvmet_tcp_cmd *cmd)
605 {
606         struct msghdr msg = {
607                 .msg_flags = MSG_DONTWAIT | MSG_MORE | MSG_SPLICE_PAGES,
608         };
609         struct bio_vec bvec;
610         u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue);
611         int left = sizeof(*cmd->data_pdu) - cmd->offset + hdgst;
612         int ret;
613
614         bvec_set_virt(&bvec, (void *)cmd->data_pdu + cmd->offset, left);
615         iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, left);
616         ret = sock_sendmsg(cmd->queue->sock, &msg);
617         if (ret <= 0)
618                 return ret;
619
620         cmd->offset += ret;
621         left -= ret;
622
623         if (left)
624                 return -EAGAIN;
625
626         cmd->state = NVMET_TCP_SEND_DATA;
627         cmd->offset  = 0;
628         return 1;
629 }
630
631 static int nvmet_try_send_data(struct nvmet_tcp_cmd *cmd, bool last_in_batch)
632 {
633         struct nvmet_tcp_queue *queue = cmd->queue;
634         int ret;
635
636         while (cmd->cur_sg) {
637                 struct msghdr msg = {
638                         .msg_flags = MSG_DONTWAIT | MSG_SPLICE_PAGES,
639                 };
640                 struct page *page = sg_page(cmd->cur_sg);
641                 struct bio_vec bvec;
642                 u32 left = cmd->cur_sg->length - cmd->offset;
643
644                 if ((!last_in_batch && cmd->queue->send_list_len) ||
645                     cmd->wbytes_done + left < cmd->req.transfer_len ||
646                     queue->data_digest || !queue->nvme_sq.sqhd_disabled)
647                         msg.msg_flags |= MSG_MORE;
648
649                 bvec_set_page(&bvec, page, left, cmd->offset);
650                 iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, left);
651                 ret = sock_sendmsg(cmd->queue->sock, &msg);
652                 if (ret <= 0)
653                         return ret;
654
655                 cmd->offset += ret;
656                 cmd->wbytes_done += ret;
657
658                 /* Done with sg?*/
659                 if (cmd->offset == cmd->cur_sg->length) {
660                         cmd->cur_sg = sg_next(cmd->cur_sg);
661                         cmd->offset = 0;
662                 }
663         }
664
665         if (queue->data_digest) {
666                 cmd->state = NVMET_TCP_SEND_DDGST;
667                 cmd->offset = 0;
668         } else {
669                 if (queue->nvme_sq.sqhd_disabled) {
670                         cmd->queue->snd_cmd = NULL;
671                         nvmet_tcp_put_cmd(cmd);
672                 } else {
673                         nvmet_setup_response_pdu(cmd);
674                 }
675         }
676
677         if (queue->nvme_sq.sqhd_disabled)
678                 nvmet_tcp_free_cmd_buffers(cmd);
679
680         return 1;
681
682 }
683
684 static int nvmet_try_send_response(struct nvmet_tcp_cmd *cmd,
685                 bool last_in_batch)
686 {
687         struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_SPLICE_PAGES, };
688         struct bio_vec bvec;
689         u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue);
690         int left = sizeof(*cmd->rsp_pdu) - cmd->offset + hdgst;
691         int ret;
692
693         if (!last_in_batch && cmd->queue->send_list_len)
694                 msg.msg_flags |= MSG_MORE;
695         else
696                 msg.msg_flags |= MSG_EOR;
697
698         bvec_set_virt(&bvec, (void *)cmd->rsp_pdu + cmd->offset, left);
699         iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, left);
700         ret = sock_sendmsg(cmd->queue->sock, &msg);
701         if (ret <= 0)
702                 return ret;
703         cmd->offset += ret;
704         left -= ret;
705
706         if (left)
707                 return -EAGAIN;
708
709         nvmet_tcp_free_cmd_buffers(cmd);
710         cmd->queue->snd_cmd = NULL;
711         nvmet_tcp_put_cmd(cmd);
712         return 1;
713 }
714
715 static int nvmet_try_send_r2t(struct nvmet_tcp_cmd *cmd, bool last_in_batch)
716 {
717         struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_SPLICE_PAGES, };
718         struct bio_vec bvec;
719         u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue);
720         int left = sizeof(*cmd->r2t_pdu) - cmd->offset + hdgst;
721         int ret;
722
723         if (!last_in_batch && cmd->queue->send_list_len)
724                 msg.msg_flags |= MSG_MORE;
725         else
726                 msg.msg_flags |= MSG_EOR;
727
728         bvec_set_virt(&bvec, (void *)cmd->r2t_pdu + cmd->offset, left);
729         iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, left);
730         ret = sock_sendmsg(cmd->queue->sock, &msg);
731         if (ret <= 0)
732                 return ret;
733         cmd->offset += ret;
734         left -= ret;
735
736         if (left)
737                 return -EAGAIN;
738
739         cmd->queue->snd_cmd = NULL;
740         return 1;
741 }
742
743 static int nvmet_try_send_ddgst(struct nvmet_tcp_cmd *cmd, bool last_in_batch)
744 {
745         struct nvmet_tcp_queue *queue = cmd->queue;
746         int left = NVME_TCP_DIGEST_LENGTH - cmd->offset;
747         struct msghdr msg = { .msg_flags = MSG_DONTWAIT };
748         struct kvec iov = {
749                 .iov_base = (u8 *)&cmd->exp_ddgst + cmd->offset,
750                 .iov_len = left
751         };
752         int ret;
753
754         if (!last_in_batch && cmd->queue->send_list_len)
755                 msg.msg_flags |= MSG_MORE;
756         else
757                 msg.msg_flags |= MSG_EOR;
758
759         ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len);
760         if (unlikely(ret <= 0))
761                 return ret;
762
763         cmd->offset += ret;
764         left -= ret;
765
766         if (left)
767                 return -EAGAIN;
768
769         if (queue->nvme_sq.sqhd_disabled) {
770                 cmd->queue->snd_cmd = NULL;
771                 nvmet_tcp_put_cmd(cmd);
772         } else {
773                 nvmet_setup_response_pdu(cmd);
774         }
775         return 1;
776 }
777
778 static int nvmet_tcp_try_send_one(struct nvmet_tcp_queue *queue,
779                 bool last_in_batch)
780 {
781         struct nvmet_tcp_cmd *cmd = queue->snd_cmd;
782         int ret = 0;
783
784         if (!cmd || queue->state == NVMET_TCP_Q_DISCONNECTING) {
785                 cmd = nvmet_tcp_fetch_cmd(queue);
786                 if (unlikely(!cmd))
787                         return 0;
788         }
789
790         if (cmd->state == NVMET_TCP_SEND_DATA_PDU) {
791                 ret = nvmet_try_send_data_pdu(cmd);
792                 if (ret <= 0)
793                         goto done_send;
794         }
795
796         if (cmd->state == NVMET_TCP_SEND_DATA) {
797                 ret = nvmet_try_send_data(cmd, last_in_batch);
798                 if (ret <= 0)
799                         goto done_send;
800         }
801
802         if (cmd->state == NVMET_TCP_SEND_DDGST) {
803                 ret = nvmet_try_send_ddgst(cmd, last_in_batch);
804                 if (ret <= 0)
805                         goto done_send;
806         }
807
808         if (cmd->state == NVMET_TCP_SEND_R2T) {
809                 ret = nvmet_try_send_r2t(cmd, last_in_batch);
810                 if (ret <= 0)
811                         goto done_send;
812         }
813
814         if (cmd->state == NVMET_TCP_SEND_RESPONSE)
815                 ret = nvmet_try_send_response(cmd, last_in_batch);
816
817 done_send:
818         if (ret < 0) {
819                 if (ret == -EAGAIN)
820                         return 0;
821                 return ret;
822         }
823
824         return 1;
825 }
826
827 static int nvmet_tcp_try_send(struct nvmet_tcp_queue *queue,
828                 int budget, int *sends)
829 {
830         int i, ret = 0;
831
832         for (i = 0; i < budget; i++) {
833                 ret = nvmet_tcp_try_send_one(queue, i == budget - 1);
834                 if (unlikely(ret < 0)) {
835                         nvmet_tcp_socket_error(queue, ret);
836                         goto done;
837                 } else if (ret == 0) {
838                         break;
839                 }
840                 (*sends)++;
841         }
842 done:
843         return ret;
844 }
845
846 static void nvmet_prepare_receive_pdu(struct nvmet_tcp_queue *queue)
847 {
848         queue->offset = 0;
849         queue->left = sizeof(struct nvme_tcp_hdr);
850         queue->cmd = NULL;
851         queue->rcv_state = NVMET_TCP_RECV_PDU;
852 }
853
854 static void nvmet_tcp_free_crypto(struct nvmet_tcp_queue *queue)
855 {
856         struct crypto_ahash *tfm = crypto_ahash_reqtfm(queue->rcv_hash);
857
858         ahash_request_free(queue->rcv_hash);
859         ahash_request_free(queue->snd_hash);
860         crypto_free_ahash(tfm);
861 }
862
863 static int nvmet_tcp_alloc_crypto(struct nvmet_tcp_queue *queue)
864 {
865         struct crypto_ahash *tfm;
866
867         tfm = crypto_alloc_ahash("crc32c", 0, CRYPTO_ALG_ASYNC);
868         if (IS_ERR(tfm))
869                 return PTR_ERR(tfm);
870
871         queue->snd_hash = ahash_request_alloc(tfm, GFP_KERNEL);
872         if (!queue->snd_hash)
873                 goto free_tfm;
874         ahash_request_set_callback(queue->snd_hash, 0, NULL, NULL);
875
876         queue->rcv_hash = ahash_request_alloc(tfm, GFP_KERNEL);
877         if (!queue->rcv_hash)
878                 goto free_snd_hash;
879         ahash_request_set_callback(queue->rcv_hash, 0, NULL, NULL);
880
881         return 0;
882 free_snd_hash:
883         ahash_request_free(queue->snd_hash);
884 free_tfm:
885         crypto_free_ahash(tfm);
886         return -ENOMEM;
887 }
888
889
890 static int nvmet_tcp_handle_icreq(struct nvmet_tcp_queue *queue)
891 {
892         struct nvme_tcp_icreq_pdu *icreq = &queue->pdu.icreq;
893         struct nvme_tcp_icresp_pdu *icresp = &queue->pdu.icresp;
894         struct msghdr msg = {};
895         struct kvec iov;
896         int ret;
897
898         if (le32_to_cpu(icreq->hdr.plen) != sizeof(struct nvme_tcp_icreq_pdu)) {
899                 pr_err("bad nvme-tcp pdu length (%d)\n",
900                         le32_to_cpu(icreq->hdr.plen));
901                 nvmet_tcp_fatal_error(queue);
902                 return -EPROTO;
903         }
904
905         if (icreq->pfv != NVME_TCP_PFV_1_0) {
906                 pr_err("queue %d: bad pfv %d\n", queue->idx, icreq->pfv);
907                 return -EPROTO;
908         }
909
910         if (icreq->hpda != 0) {
911                 pr_err("queue %d: unsupported hpda %d\n", queue->idx,
912                         icreq->hpda);
913                 return -EPROTO;
914         }
915
916         queue->hdr_digest = !!(icreq->digest & NVME_TCP_HDR_DIGEST_ENABLE);
917         queue->data_digest = !!(icreq->digest & NVME_TCP_DATA_DIGEST_ENABLE);
918         if (queue->hdr_digest || queue->data_digest) {
919                 ret = nvmet_tcp_alloc_crypto(queue);
920                 if (ret)
921                         return ret;
922         }
923
924         memset(icresp, 0, sizeof(*icresp));
925         icresp->hdr.type = nvme_tcp_icresp;
926         icresp->hdr.hlen = sizeof(*icresp);
927         icresp->hdr.pdo = 0;
928         icresp->hdr.plen = cpu_to_le32(icresp->hdr.hlen);
929         icresp->pfv = cpu_to_le16(NVME_TCP_PFV_1_0);
930         icresp->maxdata = cpu_to_le32(NVMET_TCP_MAXH2CDATA);
931         icresp->cpda = 0;
932         if (queue->hdr_digest)
933                 icresp->digest |= NVME_TCP_HDR_DIGEST_ENABLE;
934         if (queue->data_digest)
935                 icresp->digest |= NVME_TCP_DATA_DIGEST_ENABLE;
936
937         iov.iov_base = icresp;
938         iov.iov_len = sizeof(*icresp);
939         ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len);
940         if (ret < 0) {
941                 queue->state = NVMET_TCP_Q_FAILED;
942                 return ret; /* queue removal will cleanup */
943         }
944
945         queue->state = NVMET_TCP_Q_LIVE;
946         nvmet_prepare_receive_pdu(queue);
947         return 0;
948 }
949
950 static void nvmet_tcp_handle_req_failure(struct nvmet_tcp_queue *queue,
951                 struct nvmet_tcp_cmd *cmd, struct nvmet_req *req)
952 {
953         size_t data_len = le32_to_cpu(req->cmd->common.dptr.sgl.length);
954         int ret;
955
956         /*
957          * This command has not been processed yet, hence we are trying to
958          * figure out if there is still pending data left to receive. If
959          * we don't, we can simply prepare for the next pdu and bail out,
960          * otherwise we will need to prepare a buffer and receive the
961          * stale data before continuing forward.
962          */
963         if (!nvme_is_write(cmd->req.cmd) || !data_len ||
964             data_len > cmd->req.port->inline_data_size) {
965                 nvmet_prepare_receive_pdu(queue);
966                 return;
967         }
968
969         ret = nvmet_tcp_map_data(cmd);
970         if (unlikely(ret)) {
971                 pr_err("queue %d: failed to map data\n", queue->idx);
972                 nvmet_tcp_fatal_error(queue);
973                 return;
974         }
975
976         queue->rcv_state = NVMET_TCP_RECV_DATA;
977         nvmet_tcp_build_pdu_iovec(cmd);
978         cmd->flags |= NVMET_TCP_F_INIT_FAILED;
979 }
980
981 static int nvmet_tcp_handle_h2c_data_pdu(struct nvmet_tcp_queue *queue)
982 {
983         struct nvme_tcp_data_pdu *data = &queue->pdu.data;
984         struct nvmet_tcp_cmd *cmd;
985         unsigned int exp_data_len;
986
987         if (likely(queue->nr_cmds)) {
988                 if (unlikely(data->ttag >= queue->nr_cmds)) {
989                         pr_err("queue %d: received out of bound ttag %u, nr_cmds %u\n",
990                                 queue->idx, data->ttag, queue->nr_cmds);
991                         goto err_proto;
992                 }
993                 cmd = &queue->cmds[data->ttag];
994         } else {
995                 cmd = &queue->connect;
996         }
997
998         if (le32_to_cpu(data->data_offset) != cmd->rbytes_done) {
999                 pr_err("ttag %u unexpected data offset %u (expected %u)\n",
1000                         data->ttag, le32_to_cpu(data->data_offset),
1001                         cmd->rbytes_done);
1002                 goto err_proto;
1003         }
1004
1005         exp_data_len = le32_to_cpu(data->hdr.plen) -
1006                         nvmet_tcp_hdgst_len(queue) -
1007                         nvmet_tcp_ddgst_len(queue) -
1008                         sizeof(*data);
1009
1010         cmd->pdu_len = le32_to_cpu(data->data_length);
1011         if (unlikely(cmd->pdu_len != exp_data_len ||
1012                      cmd->pdu_len == 0 ||
1013                      cmd->pdu_len > NVMET_TCP_MAXH2CDATA)) {
1014                 pr_err("H2CData PDU len %u is invalid\n", cmd->pdu_len);
1015                 goto err_proto;
1016         }
1017         cmd->pdu_recv = 0;
1018         nvmet_tcp_build_pdu_iovec(cmd);
1019         queue->cmd = cmd;
1020         queue->rcv_state = NVMET_TCP_RECV_DATA;
1021
1022         return 0;
1023
1024 err_proto:
1025         /* FIXME: use proper transport errors */
1026         nvmet_tcp_fatal_error(queue);
1027         return -EPROTO;
1028 }
1029
1030 static int nvmet_tcp_done_recv_pdu(struct nvmet_tcp_queue *queue)
1031 {
1032         struct nvme_tcp_hdr *hdr = &queue->pdu.cmd.hdr;
1033         struct nvme_command *nvme_cmd = &queue->pdu.cmd.cmd;
1034         struct nvmet_req *req;
1035         int ret;
1036
1037         if (unlikely(queue->state == NVMET_TCP_Q_CONNECTING)) {
1038                 if (hdr->type != nvme_tcp_icreq) {
1039                         pr_err("unexpected pdu type (%d) before icreq\n",
1040                                 hdr->type);
1041                         nvmet_tcp_fatal_error(queue);
1042                         return -EPROTO;
1043                 }
1044                 return nvmet_tcp_handle_icreq(queue);
1045         }
1046
1047         if (unlikely(hdr->type == nvme_tcp_icreq)) {
1048                 pr_err("queue %d: received icreq pdu in state %d\n",
1049                         queue->idx, queue->state);
1050                 nvmet_tcp_fatal_error(queue);
1051                 return -EPROTO;
1052         }
1053
1054         if (hdr->type == nvme_tcp_h2c_data) {
1055                 ret = nvmet_tcp_handle_h2c_data_pdu(queue);
1056                 if (unlikely(ret))
1057                         return ret;
1058                 return 0;
1059         }
1060
1061         queue->cmd = nvmet_tcp_get_cmd(queue);
1062         if (unlikely(!queue->cmd)) {
1063                 /* This should never happen */
1064                 pr_err("queue %d: out of commands (%d) send_list_len: %d, opcode: %d",
1065                         queue->idx, queue->nr_cmds, queue->send_list_len,
1066                         nvme_cmd->common.opcode);
1067                 nvmet_tcp_fatal_error(queue);
1068                 return -ENOMEM;
1069         }
1070
1071         req = &queue->cmd->req;
1072         memcpy(req->cmd, nvme_cmd, sizeof(*nvme_cmd));
1073
1074         if (unlikely(!nvmet_req_init(req, &queue->nvme_cq,
1075                         &queue->nvme_sq, &nvmet_tcp_ops))) {
1076                 pr_err("failed cmd %p id %d opcode %d, data_len: %d\n",
1077                         req->cmd, req->cmd->common.command_id,
1078                         req->cmd->common.opcode,
1079                         le32_to_cpu(req->cmd->common.dptr.sgl.length));
1080
1081                 nvmet_tcp_handle_req_failure(queue, queue->cmd, req);
1082                 return 0;
1083         }
1084
1085         ret = nvmet_tcp_map_data(queue->cmd);
1086         if (unlikely(ret)) {
1087                 pr_err("queue %d: failed to map data\n", queue->idx);
1088                 if (nvmet_tcp_has_inline_data(queue->cmd))
1089                         nvmet_tcp_fatal_error(queue);
1090                 else
1091                         nvmet_req_complete(req, ret);
1092                 ret = -EAGAIN;
1093                 goto out;
1094         }
1095
1096         if (nvmet_tcp_need_data_in(queue->cmd)) {
1097                 if (nvmet_tcp_has_inline_data(queue->cmd)) {
1098                         queue->rcv_state = NVMET_TCP_RECV_DATA;
1099                         nvmet_tcp_build_pdu_iovec(queue->cmd);
1100                         return 0;
1101                 }
1102                 /* send back R2T */
1103                 nvmet_tcp_queue_response(&queue->cmd->req);
1104                 goto out;
1105         }
1106
1107         queue->cmd->req.execute(&queue->cmd->req);
1108 out:
1109         nvmet_prepare_receive_pdu(queue);
1110         return ret;
1111 }
1112
1113 static const u8 nvme_tcp_pdu_sizes[] = {
1114         [nvme_tcp_icreq]        = sizeof(struct nvme_tcp_icreq_pdu),
1115         [nvme_tcp_cmd]          = sizeof(struct nvme_tcp_cmd_pdu),
1116         [nvme_tcp_h2c_data]     = sizeof(struct nvme_tcp_data_pdu),
1117 };
1118
1119 static inline u8 nvmet_tcp_pdu_size(u8 type)
1120 {
1121         size_t idx = type;
1122
1123         return (idx < ARRAY_SIZE(nvme_tcp_pdu_sizes) &&
1124                 nvme_tcp_pdu_sizes[idx]) ?
1125                         nvme_tcp_pdu_sizes[idx] : 0;
1126 }
1127
1128 static inline bool nvmet_tcp_pdu_valid(u8 type)
1129 {
1130         switch (type) {
1131         case nvme_tcp_icreq:
1132         case nvme_tcp_cmd:
1133         case nvme_tcp_h2c_data:
1134                 /* fallthru */
1135                 return true;
1136         }
1137
1138         return false;
1139 }
1140
1141 static int nvmet_tcp_tls_record_ok(struct nvmet_tcp_queue *queue,
1142                 struct msghdr *msg, char *cbuf)
1143 {
1144         struct cmsghdr *cmsg = (struct cmsghdr *)cbuf;
1145         u8 ctype, level, description;
1146         int ret = 0;
1147
1148         ctype = tls_get_record_type(queue->sock->sk, cmsg);
1149         switch (ctype) {
1150         case 0:
1151                 break;
1152         case TLS_RECORD_TYPE_DATA:
1153                 break;
1154         case TLS_RECORD_TYPE_ALERT:
1155                 tls_alert_recv(queue->sock->sk, msg, &level, &description);
1156                 if (level == TLS_ALERT_LEVEL_FATAL) {
1157                         pr_err("queue %d: TLS Alert desc %u\n",
1158                                queue->idx, description);
1159                         ret = -ENOTCONN;
1160                 } else {
1161                         pr_warn("queue %d: TLS Alert desc %u\n",
1162                                queue->idx, description);
1163                         ret = -EAGAIN;
1164                 }
1165                 break;
1166         default:
1167                 /* discard this record type */
1168                 pr_err("queue %d: TLS record %d unhandled\n",
1169                        queue->idx, ctype);
1170                 ret = -EAGAIN;
1171                 break;
1172         }
1173         return ret;
1174 }
1175
1176 static int nvmet_tcp_try_recv_pdu(struct nvmet_tcp_queue *queue)
1177 {
1178         struct nvme_tcp_hdr *hdr = &queue->pdu.cmd.hdr;
1179         int len, ret;
1180         struct kvec iov;
1181         char cbuf[CMSG_LEN(sizeof(char))] = {};
1182         struct msghdr msg = { .msg_flags = MSG_DONTWAIT };
1183
1184 recv:
1185         iov.iov_base = (void *)&queue->pdu + queue->offset;
1186         iov.iov_len = queue->left;
1187         if (queue->tls_pskid) {
1188                 msg.msg_control = cbuf;
1189                 msg.msg_controllen = sizeof(cbuf);
1190         }
1191         len = kernel_recvmsg(queue->sock, &msg, &iov, 1,
1192                         iov.iov_len, msg.msg_flags);
1193         if (unlikely(len < 0))
1194                 return len;
1195         if (queue->tls_pskid) {
1196                 ret = nvmet_tcp_tls_record_ok(queue, &msg, cbuf);
1197                 if (ret < 0)
1198                         return ret;
1199         }
1200
1201         queue->offset += len;
1202         queue->left -= len;
1203         if (queue->left)
1204                 return -EAGAIN;
1205
1206         if (queue->offset == sizeof(struct nvme_tcp_hdr)) {
1207                 u8 hdgst = nvmet_tcp_hdgst_len(queue);
1208
1209                 if (unlikely(!nvmet_tcp_pdu_valid(hdr->type))) {
1210                         pr_err("unexpected pdu type %d\n", hdr->type);
1211                         nvmet_tcp_fatal_error(queue);
1212                         return -EIO;
1213                 }
1214
1215                 if (unlikely(hdr->hlen != nvmet_tcp_pdu_size(hdr->type))) {
1216                         pr_err("pdu %d bad hlen %d\n", hdr->type, hdr->hlen);
1217                         return -EIO;
1218                 }
1219
1220                 queue->left = hdr->hlen - queue->offset + hdgst;
1221                 goto recv;
1222         }
1223
1224         if (queue->hdr_digest &&
1225             nvmet_tcp_verify_hdgst(queue, &queue->pdu, hdr->hlen)) {
1226                 nvmet_tcp_fatal_error(queue); /* fatal */
1227                 return -EPROTO;
1228         }
1229
1230         if (queue->data_digest &&
1231             nvmet_tcp_check_ddgst(queue, &queue->pdu)) {
1232                 nvmet_tcp_fatal_error(queue); /* fatal */
1233                 return -EPROTO;
1234         }
1235
1236         return nvmet_tcp_done_recv_pdu(queue);
1237 }
1238
1239 static void nvmet_tcp_prep_recv_ddgst(struct nvmet_tcp_cmd *cmd)
1240 {
1241         struct nvmet_tcp_queue *queue = cmd->queue;
1242
1243         nvmet_tcp_calc_ddgst(queue->rcv_hash, cmd);
1244         queue->offset = 0;
1245         queue->left = NVME_TCP_DIGEST_LENGTH;
1246         queue->rcv_state = NVMET_TCP_RECV_DDGST;
1247 }
1248
1249 static int nvmet_tcp_try_recv_data(struct nvmet_tcp_queue *queue)
1250 {
1251         struct nvmet_tcp_cmd  *cmd = queue->cmd;
1252         int len, ret;
1253
1254         while (msg_data_left(&cmd->recv_msg)) {
1255                 len = sock_recvmsg(cmd->queue->sock, &cmd->recv_msg,
1256                         cmd->recv_msg.msg_flags);
1257                 if (len <= 0)
1258                         return len;
1259                 if (queue->tls_pskid) {
1260                         ret = nvmet_tcp_tls_record_ok(cmd->queue,
1261                                         &cmd->recv_msg, cmd->recv_cbuf);
1262                         if (ret < 0)
1263                                 return ret;
1264                 }
1265
1266                 cmd->pdu_recv += len;
1267                 cmd->rbytes_done += len;
1268         }
1269
1270         if (queue->data_digest) {
1271                 nvmet_tcp_prep_recv_ddgst(cmd);
1272                 return 0;
1273         }
1274
1275         if (cmd->rbytes_done == cmd->req.transfer_len)
1276                 nvmet_tcp_execute_request(cmd);
1277
1278         nvmet_prepare_receive_pdu(queue);
1279         return 0;
1280 }
1281
1282 static int nvmet_tcp_try_recv_ddgst(struct nvmet_tcp_queue *queue)
1283 {
1284         struct nvmet_tcp_cmd *cmd = queue->cmd;
1285         int ret, len;
1286         char cbuf[CMSG_LEN(sizeof(char))] = {};
1287         struct msghdr msg = { .msg_flags = MSG_DONTWAIT };
1288         struct kvec iov = {
1289                 .iov_base = (void *)&cmd->recv_ddgst + queue->offset,
1290                 .iov_len = queue->left
1291         };
1292
1293         if (queue->tls_pskid) {
1294                 msg.msg_control = cbuf;
1295                 msg.msg_controllen = sizeof(cbuf);
1296         }
1297         len = kernel_recvmsg(queue->sock, &msg, &iov, 1,
1298                         iov.iov_len, msg.msg_flags);
1299         if (unlikely(len < 0))
1300                 return len;
1301         if (queue->tls_pskid) {
1302                 ret = nvmet_tcp_tls_record_ok(queue, &msg, cbuf);
1303                 if (ret < 0)
1304                         return ret;
1305         }
1306
1307         queue->offset += len;
1308         queue->left -= len;
1309         if (queue->left)
1310                 return -EAGAIN;
1311
1312         if (queue->data_digest && cmd->exp_ddgst != cmd->recv_ddgst) {
1313                 pr_err("queue %d: cmd %d pdu (%d) data digest error: recv %#x expected %#x\n",
1314                         queue->idx, cmd->req.cmd->common.command_id,
1315                         queue->pdu.cmd.hdr.type, le32_to_cpu(cmd->recv_ddgst),
1316                         le32_to_cpu(cmd->exp_ddgst));
1317                 nvmet_req_uninit(&cmd->req);
1318                 nvmet_tcp_free_cmd_buffers(cmd);
1319                 nvmet_tcp_fatal_error(queue);
1320                 ret = -EPROTO;
1321                 goto out;
1322         }
1323
1324         if (cmd->rbytes_done == cmd->req.transfer_len)
1325                 nvmet_tcp_execute_request(cmd);
1326
1327         ret = 0;
1328 out:
1329         nvmet_prepare_receive_pdu(queue);
1330         return ret;
1331 }
1332
1333 static int nvmet_tcp_try_recv_one(struct nvmet_tcp_queue *queue)
1334 {
1335         int result = 0;
1336
1337         if (unlikely(queue->rcv_state == NVMET_TCP_RECV_ERR))
1338                 return 0;
1339
1340         if (queue->rcv_state == NVMET_TCP_RECV_PDU) {
1341                 result = nvmet_tcp_try_recv_pdu(queue);
1342                 if (result != 0)
1343                         goto done_recv;
1344         }
1345
1346         if (queue->rcv_state == NVMET_TCP_RECV_DATA) {
1347                 result = nvmet_tcp_try_recv_data(queue);
1348                 if (result != 0)
1349                         goto done_recv;
1350         }
1351
1352         if (queue->rcv_state == NVMET_TCP_RECV_DDGST) {
1353                 result = nvmet_tcp_try_recv_ddgst(queue);
1354                 if (result != 0)
1355                         goto done_recv;
1356         }
1357
1358 done_recv:
1359         if (result < 0) {
1360                 if (result == -EAGAIN)
1361                         return 0;
1362                 return result;
1363         }
1364         return 1;
1365 }
1366
1367 static int nvmet_tcp_try_recv(struct nvmet_tcp_queue *queue,
1368                 int budget, int *recvs)
1369 {
1370         int i, ret = 0;
1371
1372         for (i = 0; i < budget; i++) {
1373                 ret = nvmet_tcp_try_recv_one(queue);
1374                 if (unlikely(ret < 0)) {
1375                         nvmet_tcp_socket_error(queue, ret);
1376                         goto done;
1377                 } else if (ret == 0) {
1378                         break;
1379                 }
1380                 (*recvs)++;
1381         }
1382 done:
1383         return ret;
1384 }
1385
1386 static void nvmet_tcp_release_queue(struct kref *kref)
1387 {
1388         struct nvmet_tcp_queue *queue =
1389                 container_of(kref, struct nvmet_tcp_queue, kref);
1390
1391         WARN_ON(queue->state != NVMET_TCP_Q_DISCONNECTING);
1392         queue_work(nvmet_wq, &queue->release_work);
1393 }
1394
1395 static void nvmet_tcp_schedule_release_queue(struct nvmet_tcp_queue *queue)
1396 {
1397         spin_lock_bh(&queue->state_lock);
1398         if (queue->state == NVMET_TCP_Q_TLS_HANDSHAKE) {
1399                 /* Socket closed during handshake */
1400                 tls_handshake_cancel(queue->sock->sk);
1401         }
1402         if (queue->state != NVMET_TCP_Q_DISCONNECTING) {
1403                 queue->state = NVMET_TCP_Q_DISCONNECTING;
1404                 kref_put(&queue->kref, nvmet_tcp_release_queue);
1405         }
1406         spin_unlock_bh(&queue->state_lock);
1407 }
1408
1409 static inline void nvmet_tcp_arm_queue_deadline(struct nvmet_tcp_queue *queue)
1410 {
1411         queue->poll_end = jiffies + usecs_to_jiffies(idle_poll_period_usecs);
1412 }
1413
1414 static bool nvmet_tcp_check_queue_deadline(struct nvmet_tcp_queue *queue,
1415                 int ops)
1416 {
1417         if (!idle_poll_period_usecs)
1418                 return false;
1419
1420         if (ops)
1421                 nvmet_tcp_arm_queue_deadline(queue);
1422
1423         return !time_after(jiffies, queue->poll_end);
1424 }
1425
1426 static void nvmet_tcp_io_work(struct work_struct *w)
1427 {
1428         struct nvmet_tcp_queue *queue =
1429                 container_of(w, struct nvmet_tcp_queue, io_work);
1430         bool pending;
1431         int ret, ops = 0;
1432
1433         do {
1434                 pending = false;
1435
1436                 ret = nvmet_tcp_try_recv(queue, NVMET_TCP_RECV_BUDGET, &ops);
1437                 if (ret > 0)
1438                         pending = true;
1439                 else if (ret < 0)
1440                         return;
1441
1442                 ret = nvmet_tcp_try_send(queue, NVMET_TCP_SEND_BUDGET, &ops);
1443                 if (ret > 0)
1444                         pending = true;
1445                 else if (ret < 0)
1446                         return;
1447
1448         } while (pending && ops < NVMET_TCP_IO_WORK_BUDGET);
1449
1450         /*
1451          * Requeue the worker if idle deadline period is in progress or any
1452          * ops activity was recorded during the do-while loop above.
1453          */
1454         if (nvmet_tcp_check_queue_deadline(queue, ops) || pending)
1455                 queue_work_on(queue_cpu(queue), nvmet_tcp_wq, &queue->io_work);
1456 }
1457
1458 static int nvmet_tcp_alloc_cmd(struct nvmet_tcp_queue *queue,
1459                 struct nvmet_tcp_cmd *c)
1460 {
1461         u8 hdgst = nvmet_tcp_hdgst_len(queue);
1462
1463         c->queue = queue;
1464         c->req.port = queue->port->nport;
1465
1466         c->cmd_pdu = page_frag_alloc(&queue->pf_cache,
1467                         sizeof(*c->cmd_pdu) + hdgst, GFP_KERNEL | __GFP_ZERO);
1468         if (!c->cmd_pdu)
1469                 return -ENOMEM;
1470         c->req.cmd = &c->cmd_pdu->cmd;
1471
1472         c->rsp_pdu = page_frag_alloc(&queue->pf_cache,
1473                         sizeof(*c->rsp_pdu) + hdgst, GFP_KERNEL | __GFP_ZERO);
1474         if (!c->rsp_pdu)
1475                 goto out_free_cmd;
1476         c->req.cqe = &c->rsp_pdu->cqe;
1477
1478         c->data_pdu = page_frag_alloc(&queue->pf_cache,
1479                         sizeof(*c->data_pdu) + hdgst, GFP_KERNEL | __GFP_ZERO);
1480         if (!c->data_pdu)
1481                 goto out_free_rsp;
1482
1483         c->r2t_pdu = page_frag_alloc(&queue->pf_cache,
1484                         sizeof(*c->r2t_pdu) + hdgst, GFP_KERNEL | __GFP_ZERO);
1485         if (!c->r2t_pdu)
1486                 goto out_free_data;
1487
1488         if (queue->state == NVMET_TCP_Q_TLS_HANDSHAKE) {
1489                 c->recv_msg.msg_control = c->recv_cbuf;
1490                 c->recv_msg.msg_controllen = sizeof(c->recv_cbuf);
1491         }
1492         c->recv_msg.msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL;
1493
1494         list_add_tail(&c->entry, &queue->free_list);
1495
1496         return 0;
1497 out_free_data:
1498         page_frag_free(c->data_pdu);
1499 out_free_rsp:
1500         page_frag_free(c->rsp_pdu);
1501 out_free_cmd:
1502         page_frag_free(c->cmd_pdu);
1503         return -ENOMEM;
1504 }
1505
1506 static void nvmet_tcp_free_cmd(struct nvmet_tcp_cmd *c)
1507 {
1508         page_frag_free(c->r2t_pdu);
1509         page_frag_free(c->data_pdu);
1510         page_frag_free(c->rsp_pdu);
1511         page_frag_free(c->cmd_pdu);
1512 }
1513
1514 static int nvmet_tcp_alloc_cmds(struct nvmet_tcp_queue *queue)
1515 {
1516         struct nvmet_tcp_cmd *cmds;
1517         int i, ret = -EINVAL, nr_cmds = queue->nr_cmds;
1518
1519         cmds = kcalloc(nr_cmds, sizeof(struct nvmet_tcp_cmd), GFP_KERNEL);
1520         if (!cmds)
1521                 goto out;
1522
1523         for (i = 0; i < nr_cmds; i++) {
1524                 ret = nvmet_tcp_alloc_cmd(queue, cmds + i);
1525                 if (ret)
1526                         goto out_free;
1527         }
1528
1529         queue->cmds = cmds;
1530
1531         return 0;
1532 out_free:
1533         while (--i >= 0)
1534                 nvmet_tcp_free_cmd(cmds + i);
1535         kfree(cmds);
1536 out:
1537         return ret;
1538 }
1539
1540 static void nvmet_tcp_free_cmds(struct nvmet_tcp_queue *queue)
1541 {
1542         struct nvmet_tcp_cmd *cmds = queue->cmds;
1543         int i;
1544
1545         for (i = 0; i < queue->nr_cmds; i++)
1546                 nvmet_tcp_free_cmd(cmds + i);
1547
1548         nvmet_tcp_free_cmd(&queue->connect);
1549         kfree(cmds);
1550 }
1551
1552 static void nvmet_tcp_restore_socket_callbacks(struct nvmet_tcp_queue *queue)
1553 {
1554         struct socket *sock = queue->sock;
1555
1556         write_lock_bh(&sock->sk->sk_callback_lock);
1557         sock->sk->sk_data_ready =  queue->data_ready;
1558         sock->sk->sk_state_change = queue->state_change;
1559         sock->sk->sk_write_space = queue->write_space;
1560         sock->sk->sk_user_data = NULL;
1561         write_unlock_bh(&sock->sk->sk_callback_lock);
1562 }
1563
1564 static void nvmet_tcp_uninit_data_in_cmds(struct nvmet_tcp_queue *queue)
1565 {
1566         struct nvmet_tcp_cmd *cmd = queue->cmds;
1567         int i;
1568
1569         for (i = 0; i < queue->nr_cmds; i++, cmd++) {
1570                 if (nvmet_tcp_need_data_in(cmd))
1571                         nvmet_req_uninit(&cmd->req);
1572         }
1573
1574         if (!queue->nr_cmds && nvmet_tcp_need_data_in(&queue->connect)) {
1575                 /* failed in connect */
1576                 nvmet_req_uninit(&queue->connect.req);
1577         }
1578 }
1579
1580 static void nvmet_tcp_free_cmd_data_in_buffers(struct nvmet_tcp_queue *queue)
1581 {
1582         struct nvmet_tcp_cmd *cmd = queue->cmds;
1583         int i;
1584
1585         for (i = 0; i < queue->nr_cmds; i++, cmd++)
1586                 nvmet_tcp_free_cmd_buffers(cmd);
1587         nvmet_tcp_free_cmd_buffers(&queue->connect);
1588 }
1589
1590 static void nvmet_tcp_release_queue_work(struct work_struct *w)
1591 {
1592         struct nvmet_tcp_queue *queue =
1593                 container_of(w, struct nvmet_tcp_queue, release_work);
1594
1595         mutex_lock(&nvmet_tcp_queue_mutex);
1596         list_del_init(&queue->queue_list);
1597         mutex_unlock(&nvmet_tcp_queue_mutex);
1598
1599         nvmet_tcp_restore_socket_callbacks(queue);
1600         cancel_delayed_work_sync(&queue->tls_handshake_tmo_work);
1601         cancel_work_sync(&queue->io_work);
1602         /* stop accepting incoming data */
1603         queue->rcv_state = NVMET_TCP_RECV_ERR;
1604
1605         nvmet_tcp_uninit_data_in_cmds(queue);
1606         nvmet_sq_destroy(&queue->nvme_sq);
1607         cancel_work_sync(&queue->io_work);
1608         nvmet_tcp_free_cmd_data_in_buffers(queue);
1609         /* ->sock will be released by fput() */
1610         fput(queue->sock->file);
1611         nvmet_tcp_free_cmds(queue);
1612         if (queue->hdr_digest || queue->data_digest)
1613                 nvmet_tcp_free_crypto(queue);
1614         ida_free(&nvmet_tcp_queue_ida, queue->idx);
1615         page_frag_cache_drain(&queue->pf_cache);
1616         kfree(queue);
1617 }
1618
1619 static void nvmet_tcp_data_ready(struct sock *sk)
1620 {
1621         struct nvmet_tcp_queue *queue;
1622
1623         trace_sk_data_ready(sk);
1624
1625         read_lock_bh(&sk->sk_callback_lock);
1626         queue = sk->sk_user_data;
1627         if (likely(queue)) {
1628                 if (queue->data_ready)
1629                         queue->data_ready(sk);
1630                 if (queue->state != NVMET_TCP_Q_TLS_HANDSHAKE)
1631                         queue_work_on(queue_cpu(queue), nvmet_tcp_wq,
1632                                       &queue->io_work);
1633         }
1634         read_unlock_bh(&sk->sk_callback_lock);
1635 }
1636
1637 static void nvmet_tcp_write_space(struct sock *sk)
1638 {
1639         struct nvmet_tcp_queue *queue;
1640
1641         read_lock_bh(&sk->sk_callback_lock);
1642         queue = sk->sk_user_data;
1643         if (unlikely(!queue))
1644                 goto out;
1645
1646         if (unlikely(queue->state == NVMET_TCP_Q_CONNECTING)) {
1647                 queue->write_space(sk);
1648                 goto out;
1649         }
1650
1651         if (sk_stream_is_writeable(sk)) {
1652                 clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1653                 queue_work_on(queue_cpu(queue), nvmet_tcp_wq, &queue->io_work);
1654         }
1655 out:
1656         read_unlock_bh(&sk->sk_callback_lock);
1657 }
1658
1659 static void nvmet_tcp_state_change(struct sock *sk)
1660 {
1661         struct nvmet_tcp_queue *queue;
1662
1663         read_lock_bh(&sk->sk_callback_lock);
1664         queue = sk->sk_user_data;
1665         if (!queue)
1666                 goto done;
1667
1668         switch (sk->sk_state) {
1669         case TCP_FIN_WAIT2:
1670         case TCP_LAST_ACK:
1671                 break;
1672         case TCP_FIN_WAIT1:
1673         case TCP_CLOSE_WAIT:
1674         case TCP_CLOSE:
1675                 /* FALLTHRU */
1676                 nvmet_tcp_schedule_release_queue(queue);
1677                 break;
1678         default:
1679                 pr_warn("queue %d unhandled state %d\n",
1680                         queue->idx, sk->sk_state);
1681         }
1682 done:
1683         read_unlock_bh(&sk->sk_callback_lock);
1684 }
1685
1686 static int nvmet_tcp_set_queue_sock(struct nvmet_tcp_queue *queue)
1687 {
1688         struct socket *sock = queue->sock;
1689         struct inet_sock *inet = inet_sk(sock->sk);
1690         int ret;
1691
1692         ret = kernel_getsockname(sock,
1693                 (struct sockaddr *)&queue->sockaddr);
1694         if (ret < 0)
1695                 return ret;
1696
1697         ret = kernel_getpeername(sock,
1698                 (struct sockaddr *)&queue->sockaddr_peer);
1699         if (ret < 0)
1700                 return ret;
1701
1702         /*
1703          * Cleanup whatever is sitting in the TCP transmit queue on socket
1704          * close. This is done to prevent stale data from being sent should
1705          * the network connection be restored before TCP times out.
1706          */
1707         sock_no_linger(sock->sk);
1708
1709         if (so_priority > 0)
1710                 sock_set_priority(sock->sk, so_priority);
1711
1712         /* Set socket type of service */
1713         if (inet->rcv_tos > 0)
1714                 ip_sock_set_tos(sock->sk, inet->rcv_tos);
1715
1716         ret = 0;
1717         write_lock_bh(&sock->sk->sk_callback_lock);
1718         if (sock->sk->sk_state != TCP_ESTABLISHED) {
1719                 /*
1720                  * If the socket is already closing, don't even start
1721                  * consuming it
1722                  */
1723                 ret = -ENOTCONN;
1724         } else {
1725                 sock->sk->sk_user_data = queue;
1726                 queue->data_ready = sock->sk->sk_data_ready;
1727                 sock->sk->sk_data_ready = nvmet_tcp_data_ready;
1728                 queue->state_change = sock->sk->sk_state_change;
1729                 sock->sk->sk_state_change = nvmet_tcp_state_change;
1730                 queue->write_space = sock->sk->sk_write_space;
1731                 sock->sk->sk_write_space = nvmet_tcp_write_space;
1732                 if (idle_poll_period_usecs)
1733                         nvmet_tcp_arm_queue_deadline(queue);
1734                 queue_work_on(queue_cpu(queue), nvmet_tcp_wq, &queue->io_work);
1735         }
1736         write_unlock_bh(&sock->sk->sk_callback_lock);
1737
1738         return ret;
1739 }
1740
1741 #ifdef CONFIG_NVME_TARGET_TCP_TLS
1742 static int nvmet_tcp_try_peek_pdu(struct nvmet_tcp_queue *queue)
1743 {
1744         struct nvme_tcp_hdr *hdr = &queue->pdu.cmd.hdr;
1745         int len, ret;
1746         struct kvec iov = {
1747                 .iov_base = (u8 *)&queue->pdu + queue->offset,
1748                 .iov_len = sizeof(struct nvme_tcp_hdr),
1749         };
1750         char cbuf[CMSG_LEN(sizeof(char))] = {};
1751         struct msghdr msg = {
1752                 .msg_control = cbuf,
1753                 .msg_controllen = sizeof(cbuf),
1754                 .msg_flags = MSG_PEEK,
1755         };
1756
1757         if (nvmet_port_secure_channel_required(queue->port->nport))
1758                 return 0;
1759
1760         len = kernel_recvmsg(queue->sock, &msg, &iov, 1,
1761                         iov.iov_len, msg.msg_flags);
1762         if (unlikely(len < 0)) {
1763                 pr_debug("queue %d: peek error %d\n",
1764                          queue->idx, len);
1765                 return len;
1766         }
1767
1768         ret = nvmet_tcp_tls_record_ok(queue, &msg, cbuf);
1769         if (ret < 0)
1770                 return ret;
1771
1772         if (len < sizeof(struct nvme_tcp_hdr)) {
1773                 pr_debug("queue %d: short read, %d bytes missing\n",
1774                          queue->idx, (int)iov.iov_len - len);
1775                 return -EAGAIN;
1776         }
1777         pr_debug("queue %d: hdr type %d hlen %d plen %d size %d\n",
1778                  queue->idx, hdr->type, hdr->hlen, hdr->plen,
1779                  (int)sizeof(struct nvme_tcp_icreq_pdu));
1780         if (hdr->type == nvme_tcp_icreq &&
1781             hdr->hlen == sizeof(struct nvme_tcp_icreq_pdu) &&
1782             hdr->plen == cpu_to_le32(sizeof(struct nvme_tcp_icreq_pdu))) {
1783                 pr_debug("queue %d: icreq detected\n",
1784                          queue->idx);
1785                 return len;
1786         }
1787         return 0;
1788 }
1789
1790 static void nvmet_tcp_tls_handshake_done(void *data, int status,
1791                                          key_serial_t peerid)
1792 {
1793         struct nvmet_tcp_queue *queue = data;
1794
1795         pr_debug("queue %d: TLS handshake done, key %x, status %d\n",
1796                  queue->idx, peerid, status);
1797         spin_lock_bh(&queue->state_lock);
1798         if (WARN_ON(queue->state != NVMET_TCP_Q_TLS_HANDSHAKE)) {
1799                 spin_unlock_bh(&queue->state_lock);
1800                 return;
1801         }
1802         if (!status) {
1803                 queue->tls_pskid = peerid;
1804                 queue->state = NVMET_TCP_Q_CONNECTING;
1805         } else
1806                 queue->state = NVMET_TCP_Q_FAILED;
1807         spin_unlock_bh(&queue->state_lock);
1808
1809         cancel_delayed_work_sync(&queue->tls_handshake_tmo_work);
1810         if (status)
1811                 nvmet_tcp_schedule_release_queue(queue);
1812         else
1813                 nvmet_tcp_set_queue_sock(queue);
1814         kref_put(&queue->kref, nvmet_tcp_release_queue);
1815 }
1816
1817 static void nvmet_tcp_tls_handshake_timeout(struct work_struct *w)
1818 {
1819         struct nvmet_tcp_queue *queue = container_of(to_delayed_work(w),
1820                         struct nvmet_tcp_queue, tls_handshake_tmo_work);
1821
1822         pr_warn("queue %d: TLS handshake timeout\n", queue->idx);
1823         /*
1824          * If tls_handshake_cancel() fails we've lost the race with
1825          * nvmet_tcp_tls_handshake_done() */
1826         if (!tls_handshake_cancel(queue->sock->sk))
1827                 return;
1828         spin_lock_bh(&queue->state_lock);
1829         if (WARN_ON(queue->state != NVMET_TCP_Q_TLS_HANDSHAKE)) {
1830                 spin_unlock_bh(&queue->state_lock);
1831                 return;
1832         }
1833         queue->state = NVMET_TCP_Q_FAILED;
1834         spin_unlock_bh(&queue->state_lock);
1835         nvmet_tcp_schedule_release_queue(queue);
1836         kref_put(&queue->kref, nvmet_tcp_release_queue);
1837 }
1838
1839 static int nvmet_tcp_tls_handshake(struct nvmet_tcp_queue *queue)
1840 {
1841         int ret = -EOPNOTSUPP;
1842         struct tls_handshake_args args;
1843
1844         if (queue->state != NVMET_TCP_Q_TLS_HANDSHAKE) {
1845                 pr_warn("cannot start TLS in state %d\n", queue->state);
1846                 return -EINVAL;
1847         }
1848
1849         kref_get(&queue->kref);
1850         pr_debug("queue %d: TLS ServerHello\n", queue->idx);
1851         memset(&args, 0, sizeof(args));
1852         args.ta_sock = queue->sock;
1853         args.ta_done = nvmet_tcp_tls_handshake_done;
1854         args.ta_data = queue;
1855         args.ta_keyring = key_serial(queue->port->nport->keyring);
1856         args.ta_timeout_ms = tls_handshake_timeout * 1000;
1857
1858         ret = tls_server_hello_psk(&args, GFP_KERNEL);
1859         if (ret) {
1860                 kref_put(&queue->kref, nvmet_tcp_release_queue);
1861                 pr_err("failed to start TLS, err=%d\n", ret);
1862         } else {
1863                 queue_delayed_work(nvmet_wq, &queue->tls_handshake_tmo_work,
1864                                    tls_handshake_timeout * HZ);
1865         }
1866         return ret;
1867 }
1868 #else
1869 static void nvmet_tcp_tls_handshake_timeout(struct work_struct *w) {}
1870 #endif
1871
1872 static void nvmet_tcp_alloc_queue(struct nvmet_tcp_port *port,
1873                 struct socket *newsock)
1874 {
1875         struct nvmet_tcp_queue *queue;
1876         struct file *sock_file = NULL;
1877         int ret;
1878
1879         queue = kzalloc(sizeof(*queue), GFP_KERNEL);
1880         if (!queue) {
1881                 ret = -ENOMEM;
1882                 goto out_release;
1883         }
1884
1885         INIT_WORK(&queue->release_work, nvmet_tcp_release_queue_work);
1886         INIT_WORK(&queue->io_work, nvmet_tcp_io_work);
1887         kref_init(&queue->kref);
1888         queue->sock = newsock;
1889         queue->port = port;
1890         queue->nr_cmds = 0;
1891         spin_lock_init(&queue->state_lock);
1892         if (queue->port->nport->disc_addr.tsas.tcp.sectype ==
1893             NVMF_TCP_SECTYPE_TLS13)
1894                 queue->state = NVMET_TCP_Q_TLS_HANDSHAKE;
1895         else
1896                 queue->state = NVMET_TCP_Q_CONNECTING;
1897         INIT_LIST_HEAD(&queue->free_list);
1898         init_llist_head(&queue->resp_list);
1899         INIT_LIST_HEAD(&queue->resp_send_list);
1900
1901         sock_file = sock_alloc_file(queue->sock, O_CLOEXEC, NULL);
1902         if (IS_ERR(sock_file)) {
1903                 ret = PTR_ERR(sock_file);
1904                 goto out_free_queue;
1905         }
1906
1907         queue->idx = ida_alloc(&nvmet_tcp_queue_ida, GFP_KERNEL);
1908         if (queue->idx < 0) {
1909                 ret = queue->idx;
1910                 goto out_sock;
1911         }
1912
1913         ret = nvmet_tcp_alloc_cmd(queue, &queue->connect);
1914         if (ret)
1915                 goto out_ida_remove;
1916
1917         ret = nvmet_sq_init(&queue->nvme_sq);
1918         if (ret)
1919                 goto out_free_connect;
1920
1921         nvmet_prepare_receive_pdu(queue);
1922
1923         mutex_lock(&nvmet_tcp_queue_mutex);
1924         list_add_tail(&queue->queue_list, &nvmet_tcp_queue_list);
1925         mutex_unlock(&nvmet_tcp_queue_mutex);
1926
1927         INIT_DELAYED_WORK(&queue->tls_handshake_tmo_work,
1928                           nvmet_tcp_tls_handshake_timeout);
1929 #ifdef CONFIG_NVME_TARGET_TCP_TLS
1930         if (queue->state == NVMET_TCP_Q_TLS_HANDSHAKE) {
1931                 struct sock *sk = queue->sock->sk;
1932
1933                 /* Restore the default callbacks before starting upcall */
1934                 read_lock_bh(&sk->sk_callback_lock);
1935                 sk->sk_user_data = NULL;
1936                 sk->sk_data_ready = port->data_ready;
1937                 read_unlock_bh(&sk->sk_callback_lock);
1938                 if (!nvmet_tcp_try_peek_pdu(queue)) {
1939                         if (!nvmet_tcp_tls_handshake(queue))
1940                                 return;
1941                         /* TLS handshake failed, terminate the connection */
1942                         goto out_destroy_sq;
1943                 }
1944                 /* Not a TLS connection, continue with normal processing */
1945                 queue->state = NVMET_TCP_Q_CONNECTING;
1946         }
1947 #endif
1948
1949         ret = nvmet_tcp_set_queue_sock(queue);
1950         if (ret)
1951                 goto out_destroy_sq;
1952
1953         return;
1954 out_destroy_sq:
1955         mutex_lock(&nvmet_tcp_queue_mutex);
1956         list_del_init(&queue->queue_list);
1957         mutex_unlock(&nvmet_tcp_queue_mutex);
1958         nvmet_sq_destroy(&queue->nvme_sq);
1959 out_free_connect:
1960         nvmet_tcp_free_cmd(&queue->connect);
1961 out_ida_remove:
1962         ida_free(&nvmet_tcp_queue_ida, queue->idx);
1963 out_sock:
1964         fput(queue->sock->file);
1965 out_free_queue:
1966         kfree(queue);
1967 out_release:
1968         pr_err("failed to allocate queue, error %d\n", ret);
1969         if (!sock_file)
1970                 sock_release(newsock);
1971 }
1972
1973 static void nvmet_tcp_accept_work(struct work_struct *w)
1974 {
1975         struct nvmet_tcp_port *port =
1976                 container_of(w, struct nvmet_tcp_port, accept_work);
1977         struct socket *newsock;
1978         int ret;
1979
1980         while (true) {
1981                 ret = kernel_accept(port->sock, &newsock, O_NONBLOCK);
1982                 if (ret < 0) {
1983                         if (ret != -EAGAIN)
1984                                 pr_warn("failed to accept err=%d\n", ret);
1985                         return;
1986                 }
1987                 nvmet_tcp_alloc_queue(port, newsock);
1988         }
1989 }
1990
1991 static void nvmet_tcp_listen_data_ready(struct sock *sk)
1992 {
1993         struct nvmet_tcp_port *port;
1994
1995         trace_sk_data_ready(sk);
1996
1997         read_lock_bh(&sk->sk_callback_lock);
1998         port = sk->sk_user_data;
1999         if (!port)
2000                 goto out;
2001
2002         if (sk->sk_state == TCP_LISTEN)
2003                 queue_work(nvmet_wq, &port->accept_work);
2004 out:
2005         read_unlock_bh(&sk->sk_callback_lock);
2006 }
2007
2008 static int nvmet_tcp_add_port(struct nvmet_port *nport)
2009 {
2010         struct nvmet_tcp_port *port;
2011         __kernel_sa_family_t af;
2012         int ret;
2013
2014         port = kzalloc(sizeof(*port), GFP_KERNEL);
2015         if (!port)
2016                 return -ENOMEM;
2017
2018         switch (nport->disc_addr.adrfam) {
2019         case NVMF_ADDR_FAMILY_IP4:
2020                 af = AF_INET;
2021                 break;
2022         case NVMF_ADDR_FAMILY_IP6:
2023                 af = AF_INET6;
2024                 break;
2025         default:
2026                 pr_err("address family %d not supported\n",
2027                                 nport->disc_addr.adrfam);
2028                 ret = -EINVAL;
2029                 goto err_port;
2030         }
2031
2032         ret = inet_pton_with_scope(&init_net, af, nport->disc_addr.traddr,
2033                         nport->disc_addr.trsvcid, &port->addr);
2034         if (ret) {
2035                 pr_err("malformed ip/port passed: %s:%s\n",
2036                         nport->disc_addr.traddr, nport->disc_addr.trsvcid);
2037                 goto err_port;
2038         }
2039
2040         port->nport = nport;
2041         INIT_WORK(&port->accept_work, nvmet_tcp_accept_work);
2042         if (port->nport->inline_data_size < 0)
2043                 port->nport->inline_data_size = NVMET_TCP_DEF_INLINE_DATA_SIZE;
2044
2045         ret = sock_create(port->addr.ss_family, SOCK_STREAM,
2046                                 IPPROTO_TCP, &port->sock);
2047         if (ret) {
2048                 pr_err("failed to create a socket\n");
2049                 goto err_port;
2050         }
2051
2052         port->sock->sk->sk_user_data = port;
2053         port->data_ready = port->sock->sk->sk_data_ready;
2054         port->sock->sk->sk_data_ready = nvmet_tcp_listen_data_ready;
2055         sock_set_reuseaddr(port->sock->sk);
2056         tcp_sock_set_nodelay(port->sock->sk);
2057         if (so_priority > 0)
2058                 sock_set_priority(port->sock->sk, so_priority);
2059
2060         ret = kernel_bind(port->sock, (struct sockaddr *)&port->addr,
2061                         sizeof(port->addr));
2062         if (ret) {
2063                 pr_err("failed to bind port socket %d\n", ret);
2064                 goto err_sock;
2065         }
2066
2067         ret = kernel_listen(port->sock, NVMET_TCP_BACKLOG);
2068         if (ret) {
2069                 pr_err("failed to listen %d on port sock\n", ret);
2070                 goto err_sock;
2071         }
2072
2073         nport->priv = port;
2074         pr_info("enabling port %d (%pISpc)\n",
2075                 le16_to_cpu(nport->disc_addr.portid), &port->addr);
2076
2077         return 0;
2078
2079 err_sock:
2080         sock_release(port->sock);
2081 err_port:
2082         kfree(port);
2083         return ret;
2084 }
2085
2086 static void nvmet_tcp_destroy_port_queues(struct nvmet_tcp_port *port)
2087 {
2088         struct nvmet_tcp_queue *queue;
2089
2090         mutex_lock(&nvmet_tcp_queue_mutex);
2091         list_for_each_entry(queue, &nvmet_tcp_queue_list, queue_list)
2092                 if (queue->port == port)
2093                         kernel_sock_shutdown(queue->sock, SHUT_RDWR);
2094         mutex_unlock(&nvmet_tcp_queue_mutex);
2095 }
2096
2097 static void nvmet_tcp_remove_port(struct nvmet_port *nport)
2098 {
2099         struct nvmet_tcp_port *port = nport->priv;
2100
2101         write_lock_bh(&port->sock->sk->sk_callback_lock);
2102         port->sock->sk->sk_data_ready = port->data_ready;
2103         port->sock->sk->sk_user_data = NULL;
2104         write_unlock_bh(&port->sock->sk->sk_callback_lock);
2105         cancel_work_sync(&port->accept_work);
2106         /*
2107          * Destroy the remaining queues, which are not belong to any
2108          * controller yet.
2109          */
2110         nvmet_tcp_destroy_port_queues(port);
2111
2112         sock_release(port->sock);
2113         kfree(port);
2114 }
2115
2116 static void nvmet_tcp_delete_ctrl(struct nvmet_ctrl *ctrl)
2117 {
2118         struct nvmet_tcp_queue *queue;
2119
2120         mutex_lock(&nvmet_tcp_queue_mutex);
2121         list_for_each_entry(queue, &nvmet_tcp_queue_list, queue_list)
2122                 if (queue->nvme_sq.ctrl == ctrl)
2123                         kernel_sock_shutdown(queue->sock, SHUT_RDWR);
2124         mutex_unlock(&nvmet_tcp_queue_mutex);
2125 }
2126
2127 static u16 nvmet_tcp_install_queue(struct nvmet_sq *sq)
2128 {
2129         struct nvmet_tcp_queue *queue =
2130                 container_of(sq, struct nvmet_tcp_queue, nvme_sq);
2131
2132         if (sq->qid == 0) {
2133                 struct nvmet_tcp_queue *q;
2134                 int pending = 0;
2135
2136                 /* Check for pending controller teardown */
2137                 mutex_lock(&nvmet_tcp_queue_mutex);
2138                 list_for_each_entry(q, &nvmet_tcp_queue_list, queue_list) {
2139                         if (q->nvme_sq.ctrl == sq->ctrl &&
2140                             q->state == NVMET_TCP_Q_DISCONNECTING)
2141                                 pending++;
2142                 }
2143                 mutex_unlock(&nvmet_tcp_queue_mutex);
2144                 if (pending > NVMET_TCP_BACKLOG)
2145                         return NVME_SC_CONNECT_CTRL_BUSY;
2146         }
2147
2148         queue->nr_cmds = sq->size * 2;
2149         if (nvmet_tcp_alloc_cmds(queue)) {
2150                 queue->nr_cmds = 0;
2151                 return NVME_SC_INTERNAL;
2152         }
2153         return 0;
2154 }
2155
2156 static void nvmet_tcp_disc_port_addr(struct nvmet_req *req,
2157                 struct nvmet_port *nport, char *traddr)
2158 {
2159         struct nvmet_tcp_port *port = nport->priv;
2160
2161         if (inet_addr_is_any((struct sockaddr *)&port->addr)) {
2162                 struct nvmet_tcp_cmd *cmd =
2163                         container_of(req, struct nvmet_tcp_cmd, req);
2164                 struct nvmet_tcp_queue *queue = cmd->queue;
2165
2166                 sprintf(traddr, "%pISc", (struct sockaddr *)&queue->sockaddr);
2167         } else {
2168                 memcpy(traddr, nport->disc_addr.traddr, NVMF_TRADDR_SIZE);
2169         }
2170 }
2171
2172 static ssize_t nvmet_tcp_host_port_addr(struct nvmet_ctrl *ctrl,
2173                         char *traddr, size_t traddr_len)
2174 {
2175         struct nvmet_sq *sq = ctrl->sqs[0];
2176         struct nvmet_tcp_queue *queue =
2177                 container_of(sq, struct nvmet_tcp_queue, nvme_sq);
2178
2179         if (queue->sockaddr_peer.ss_family == AF_UNSPEC)
2180                 return -EINVAL;
2181         return snprintf(traddr, traddr_len, "%pISc",
2182                         (struct sockaddr *)&queue->sockaddr_peer);
2183 }
2184
2185 static const struct nvmet_fabrics_ops nvmet_tcp_ops = {
2186         .owner                  = THIS_MODULE,
2187         .type                   = NVMF_TRTYPE_TCP,
2188         .msdbd                  = 1,
2189         .add_port               = nvmet_tcp_add_port,
2190         .remove_port            = nvmet_tcp_remove_port,
2191         .queue_response         = nvmet_tcp_queue_response,
2192         .delete_ctrl            = nvmet_tcp_delete_ctrl,
2193         .install_queue          = nvmet_tcp_install_queue,
2194         .disc_traddr            = nvmet_tcp_disc_port_addr,
2195         .host_traddr            = nvmet_tcp_host_port_addr,
2196 };
2197
2198 static int __init nvmet_tcp_init(void)
2199 {
2200         int ret;
2201
2202         nvmet_tcp_wq = alloc_workqueue("nvmet_tcp_wq",
2203                                 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
2204         if (!nvmet_tcp_wq)
2205                 return -ENOMEM;
2206
2207         ret = nvmet_register_transport(&nvmet_tcp_ops);
2208         if (ret)
2209                 goto err;
2210
2211         return 0;
2212 err:
2213         destroy_workqueue(nvmet_tcp_wq);
2214         return ret;
2215 }
2216
2217 static void __exit nvmet_tcp_exit(void)
2218 {
2219         struct nvmet_tcp_queue *queue;
2220
2221         nvmet_unregister_transport(&nvmet_tcp_ops);
2222
2223         flush_workqueue(nvmet_wq);
2224         mutex_lock(&nvmet_tcp_queue_mutex);
2225         list_for_each_entry(queue, &nvmet_tcp_queue_list, queue_list)
2226                 kernel_sock_shutdown(queue->sock, SHUT_RDWR);
2227         mutex_unlock(&nvmet_tcp_queue_mutex);
2228         flush_workqueue(nvmet_wq);
2229
2230         destroy_workqueue(nvmet_tcp_wq);
2231         ida_destroy(&nvmet_tcp_queue_ida);
2232 }
2233
2234 module_init(nvmet_tcp_init);
2235 module_exit(nvmet_tcp_exit);
2236
2237 MODULE_DESCRIPTION("NVMe target TCP transport driver");
2238 MODULE_LICENSE("GPL v2");
2239 MODULE_ALIAS("nvmet-transport-3"); /* 3 == NVMF_TRTYPE_TCP */
This page took 0.177027 seconds and 4 git commands to generate.