]> Git Repo - J-linux.git/blob - drivers/nvme/target/core.c
Merge tag 'vfs-6.13-rc7.fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs
[J-linux.git] / drivers / nvme / target / core.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Common code for the NVMe target.
4  * Copyright (c) 2015-2016 HGST, a Western Digital Company.
5  */
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 #include <linux/module.h>
8 #include <linux/random.h>
9 #include <linux/rculist.h>
10 #include <linux/pci-p2pdma.h>
11 #include <linux/scatterlist.h>
12
13 #include <generated/utsrelease.h>
14
15 #define CREATE_TRACE_POINTS
16 #include "trace.h"
17
18 #include "nvmet.h"
19 #include "debugfs.h"
20
21 struct kmem_cache *nvmet_bvec_cache;
22 struct workqueue_struct *buffered_io_wq;
23 struct workqueue_struct *zbd_wq;
24 static const struct nvmet_fabrics_ops *nvmet_transports[NVMF_TRTYPE_MAX];
25 static DEFINE_IDA(cntlid_ida);
26
27 struct workqueue_struct *nvmet_wq;
28 EXPORT_SYMBOL_GPL(nvmet_wq);
29
30 /*
31  * This read/write semaphore is used to synchronize access to configuration
32  * information on a target system that will result in discovery log page
33  * information change for at least one host.
34  * The full list of resources to protected by this semaphore is:
35  *
36  *  - subsystems list
37  *  - per-subsystem allowed hosts list
38  *  - allow_any_host subsystem attribute
39  *  - nvmet_genctr
40  *  - the nvmet_transports array
41  *
42  * When updating any of those lists/structures write lock should be obtained,
43  * while when reading (popolating discovery log page or checking host-subsystem
44  * link) read lock is obtained to allow concurrent reads.
45  */
46 DECLARE_RWSEM(nvmet_config_sem);
47
48 u32 nvmet_ana_group_enabled[NVMET_MAX_ANAGRPS + 1];
49 u64 nvmet_ana_chgcnt;
50 DECLARE_RWSEM(nvmet_ana_sem);
51
52 inline u16 errno_to_nvme_status(struct nvmet_req *req, int errno)
53 {
54         switch (errno) {
55         case 0:
56                 return NVME_SC_SUCCESS;
57         case -ENOSPC:
58                 req->error_loc = offsetof(struct nvme_rw_command, length);
59                 return NVME_SC_CAP_EXCEEDED | NVME_STATUS_DNR;
60         case -EREMOTEIO:
61                 req->error_loc = offsetof(struct nvme_rw_command, slba);
62                 return  NVME_SC_LBA_RANGE | NVME_STATUS_DNR;
63         case -EOPNOTSUPP:
64                 req->error_loc = offsetof(struct nvme_common_command, opcode);
65                 switch (req->cmd->common.opcode) {
66                 case nvme_cmd_dsm:
67                 case nvme_cmd_write_zeroes:
68                         return NVME_SC_ONCS_NOT_SUPPORTED | NVME_STATUS_DNR;
69                 default:
70                         return NVME_SC_INVALID_OPCODE | NVME_STATUS_DNR;
71                 }
72                 break;
73         case -ENODATA:
74                 req->error_loc = offsetof(struct nvme_rw_command, nsid);
75                 return NVME_SC_ACCESS_DENIED;
76         case -EIO:
77                 fallthrough;
78         default:
79                 req->error_loc = offsetof(struct nvme_common_command, opcode);
80                 return NVME_SC_INTERNAL | NVME_STATUS_DNR;
81         }
82 }
83
84 u16 nvmet_report_invalid_opcode(struct nvmet_req *req)
85 {
86         pr_debug("unhandled cmd %d on qid %d\n", req->cmd->common.opcode,
87                  req->sq->qid);
88
89         req->error_loc = offsetof(struct nvme_common_command, opcode);
90         return NVME_SC_INVALID_OPCODE | NVME_STATUS_DNR;
91 }
92
93 static struct nvmet_subsys *nvmet_find_get_subsys(struct nvmet_port *port,
94                 const char *subsysnqn);
95
96 u16 nvmet_copy_to_sgl(struct nvmet_req *req, off_t off, const void *buf,
97                 size_t len)
98 {
99         if (sg_pcopy_from_buffer(req->sg, req->sg_cnt, buf, len, off) != len) {
100                 req->error_loc = offsetof(struct nvme_common_command, dptr);
101                 return NVME_SC_SGL_INVALID_DATA | NVME_STATUS_DNR;
102         }
103         return 0;
104 }
105
106 u16 nvmet_copy_from_sgl(struct nvmet_req *req, off_t off, void *buf, size_t len)
107 {
108         if (sg_pcopy_to_buffer(req->sg, req->sg_cnt, buf, len, off) != len) {
109                 req->error_loc = offsetof(struct nvme_common_command, dptr);
110                 return NVME_SC_SGL_INVALID_DATA | NVME_STATUS_DNR;
111         }
112         return 0;
113 }
114
115 u16 nvmet_zero_sgl(struct nvmet_req *req, off_t off, size_t len)
116 {
117         if (sg_zero_buffer(req->sg, req->sg_cnt, len, off) != len) {
118                 req->error_loc = offsetof(struct nvme_common_command, dptr);
119                 return NVME_SC_SGL_INVALID_DATA | NVME_STATUS_DNR;
120         }
121         return 0;
122 }
123
124 static u32 nvmet_max_nsid(struct nvmet_subsys *subsys)
125 {
126         struct nvmet_ns *cur;
127         unsigned long idx;
128         u32 nsid = 0;
129
130         nvmet_for_each_enabled_ns(&subsys->namespaces, idx, cur)
131                 nsid = cur->nsid;
132
133         return nsid;
134 }
135
136 static u32 nvmet_async_event_result(struct nvmet_async_event *aen)
137 {
138         return aen->event_type | (aen->event_info << 8) | (aen->log_page << 16);
139 }
140
141 static void nvmet_async_events_failall(struct nvmet_ctrl *ctrl)
142 {
143         struct nvmet_req *req;
144
145         mutex_lock(&ctrl->lock);
146         while (ctrl->nr_async_event_cmds) {
147                 req = ctrl->async_event_cmds[--ctrl->nr_async_event_cmds];
148                 mutex_unlock(&ctrl->lock);
149                 nvmet_req_complete(req, NVME_SC_INTERNAL | NVME_STATUS_DNR);
150                 mutex_lock(&ctrl->lock);
151         }
152         mutex_unlock(&ctrl->lock);
153 }
154
155 static void nvmet_async_events_process(struct nvmet_ctrl *ctrl)
156 {
157         struct nvmet_async_event *aen;
158         struct nvmet_req *req;
159
160         mutex_lock(&ctrl->lock);
161         while (ctrl->nr_async_event_cmds && !list_empty(&ctrl->async_events)) {
162                 aen = list_first_entry(&ctrl->async_events,
163                                        struct nvmet_async_event, entry);
164                 req = ctrl->async_event_cmds[--ctrl->nr_async_event_cmds];
165                 nvmet_set_result(req, nvmet_async_event_result(aen));
166
167                 list_del(&aen->entry);
168                 kfree(aen);
169
170                 mutex_unlock(&ctrl->lock);
171                 trace_nvmet_async_event(ctrl, req->cqe->result.u32);
172                 nvmet_req_complete(req, 0);
173                 mutex_lock(&ctrl->lock);
174         }
175         mutex_unlock(&ctrl->lock);
176 }
177
178 static void nvmet_async_events_free(struct nvmet_ctrl *ctrl)
179 {
180         struct nvmet_async_event *aen, *tmp;
181
182         mutex_lock(&ctrl->lock);
183         list_for_each_entry_safe(aen, tmp, &ctrl->async_events, entry) {
184                 list_del(&aen->entry);
185                 kfree(aen);
186         }
187         mutex_unlock(&ctrl->lock);
188 }
189
190 static void nvmet_async_event_work(struct work_struct *work)
191 {
192         struct nvmet_ctrl *ctrl =
193                 container_of(work, struct nvmet_ctrl, async_event_work);
194
195         nvmet_async_events_process(ctrl);
196 }
197
198 void nvmet_add_async_event(struct nvmet_ctrl *ctrl, u8 event_type,
199                 u8 event_info, u8 log_page)
200 {
201         struct nvmet_async_event *aen;
202
203         aen = kmalloc(sizeof(*aen), GFP_KERNEL);
204         if (!aen)
205                 return;
206
207         aen->event_type = event_type;
208         aen->event_info = event_info;
209         aen->log_page = log_page;
210
211         mutex_lock(&ctrl->lock);
212         list_add_tail(&aen->entry, &ctrl->async_events);
213         mutex_unlock(&ctrl->lock);
214
215         queue_work(nvmet_wq, &ctrl->async_event_work);
216 }
217
218 static void nvmet_add_to_changed_ns_log(struct nvmet_ctrl *ctrl, __le32 nsid)
219 {
220         u32 i;
221
222         mutex_lock(&ctrl->lock);
223         if (ctrl->nr_changed_ns > NVME_MAX_CHANGED_NAMESPACES)
224                 goto out_unlock;
225
226         for (i = 0; i < ctrl->nr_changed_ns; i++) {
227                 if (ctrl->changed_ns_list[i] == nsid)
228                         goto out_unlock;
229         }
230
231         if (ctrl->nr_changed_ns == NVME_MAX_CHANGED_NAMESPACES) {
232                 ctrl->changed_ns_list[0] = cpu_to_le32(0xffffffff);
233                 ctrl->nr_changed_ns = U32_MAX;
234                 goto out_unlock;
235         }
236
237         ctrl->changed_ns_list[ctrl->nr_changed_ns++] = nsid;
238 out_unlock:
239         mutex_unlock(&ctrl->lock);
240 }
241
242 void nvmet_ns_changed(struct nvmet_subsys *subsys, u32 nsid)
243 {
244         struct nvmet_ctrl *ctrl;
245
246         lockdep_assert_held(&subsys->lock);
247
248         list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) {
249                 nvmet_add_to_changed_ns_log(ctrl, cpu_to_le32(nsid));
250                 if (nvmet_aen_bit_disabled(ctrl, NVME_AEN_BIT_NS_ATTR))
251                         continue;
252                 nvmet_add_async_event(ctrl, NVME_AER_NOTICE,
253                                 NVME_AER_NOTICE_NS_CHANGED,
254                                 NVME_LOG_CHANGED_NS);
255         }
256 }
257
258 void nvmet_send_ana_event(struct nvmet_subsys *subsys,
259                 struct nvmet_port *port)
260 {
261         struct nvmet_ctrl *ctrl;
262
263         mutex_lock(&subsys->lock);
264         list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) {
265                 if (port && ctrl->port != port)
266                         continue;
267                 if (nvmet_aen_bit_disabled(ctrl, NVME_AEN_BIT_ANA_CHANGE))
268                         continue;
269                 nvmet_add_async_event(ctrl, NVME_AER_NOTICE,
270                                 NVME_AER_NOTICE_ANA, NVME_LOG_ANA);
271         }
272         mutex_unlock(&subsys->lock);
273 }
274
275 void nvmet_port_send_ana_event(struct nvmet_port *port)
276 {
277         struct nvmet_subsys_link *p;
278
279         down_read(&nvmet_config_sem);
280         list_for_each_entry(p, &port->subsystems, entry)
281                 nvmet_send_ana_event(p->subsys, port);
282         up_read(&nvmet_config_sem);
283 }
284
285 int nvmet_register_transport(const struct nvmet_fabrics_ops *ops)
286 {
287         int ret = 0;
288
289         down_write(&nvmet_config_sem);
290         if (nvmet_transports[ops->type])
291                 ret = -EINVAL;
292         else
293                 nvmet_transports[ops->type] = ops;
294         up_write(&nvmet_config_sem);
295
296         return ret;
297 }
298 EXPORT_SYMBOL_GPL(nvmet_register_transport);
299
300 void nvmet_unregister_transport(const struct nvmet_fabrics_ops *ops)
301 {
302         down_write(&nvmet_config_sem);
303         nvmet_transports[ops->type] = NULL;
304         up_write(&nvmet_config_sem);
305 }
306 EXPORT_SYMBOL_GPL(nvmet_unregister_transport);
307
308 void nvmet_port_del_ctrls(struct nvmet_port *port, struct nvmet_subsys *subsys)
309 {
310         struct nvmet_ctrl *ctrl;
311
312         mutex_lock(&subsys->lock);
313         list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) {
314                 if (ctrl->port == port)
315                         ctrl->ops->delete_ctrl(ctrl);
316         }
317         mutex_unlock(&subsys->lock);
318 }
319
320 int nvmet_enable_port(struct nvmet_port *port)
321 {
322         const struct nvmet_fabrics_ops *ops;
323         int ret;
324
325         lockdep_assert_held(&nvmet_config_sem);
326
327         ops = nvmet_transports[port->disc_addr.trtype];
328         if (!ops) {
329                 up_write(&nvmet_config_sem);
330                 request_module("nvmet-transport-%d", port->disc_addr.trtype);
331                 down_write(&nvmet_config_sem);
332                 ops = nvmet_transports[port->disc_addr.trtype];
333                 if (!ops) {
334                         pr_err("transport type %d not supported\n",
335                                 port->disc_addr.trtype);
336                         return -EINVAL;
337                 }
338         }
339
340         if (!try_module_get(ops->owner))
341                 return -EINVAL;
342
343         /*
344          * If the user requested PI support and the transport isn't pi capable,
345          * don't enable the port.
346          */
347         if (port->pi_enable && !(ops->flags & NVMF_METADATA_SUPPORTED)) {
348                 pr_err("T10-PI is not supported by transport type %d\n",
349                        port->disc_addr.trtype);
350                 ret = -EINVAL;
351                 goto out_put;
352         }
353
354         ret = ops->add_port(port);
355         if (ret)
356                 goto out_put;
357
358         /* If the transport didn't set inline_data_size, then disable it. */
359         if (port->inline_data_size < 0)
360                 port->inline_data_size = 0;
361
362         /*
363          * If the transport didn't set the max_queue_size properly, then clamp
364          * it to the target limits. Also set default values in case the
365          * transport didn't set it at all.
366          */
367         if (port->max_queue_size < 0)
368                 port->max_queue_size = NVMET_MAX_QUEUE_SIZE;
369         else
370                 port->max_queue_size = clamp_t(int, port->max_queue_size,
371                                                NVMET_MIN_QUEUE_SIZE,
372                                                NVMET_MAX_QUEUE_SIZE);
373
374         port->enabled = true;
375         port->tr_ops = ops;
376         return 0;
377
378 out_put:
379         module_put(ops->owner);
380         return ret;
381 }
382
383 void nvmet_disable_port(struct nvmet_port *port)
384 {
385         const struct nvmet_fabrics_ops *ops;
386
387         lockdep_assert_held(&nvmet_config_sem);
388
389         port->enabled = false;
390         port->tr_ops = NULL;
391
392         ops = nvmet_transports[port->disc_addr.trtype];
393         ops->remove_port(port);
394         module_put(ops->owner);
395 }
396
397 static void nvmet_keep_alive_timer(struct work_struct *work)
398 {
399         struct nvmet_ctrl *ctrl = container_of(to_delayed_work(work),
400                         struct nvmet_ctrl, ka_work);
401         bool reset_tbkas = ctrl->reset_tbkas;
402
403         ctrl->reset_tbkas = false;
404         if (reset_tbkas) {
405                 pr_debug("ctrl %d reschedule traffic based keep-alive timer\n",
406                         ctrl->cntlid);
407                 queue_delayed_work(nvmet_wq, &ctrl->ka_work, ctrl->kato * HZ);
408                 return;
409         }
410
411         pr_err("ctrl %d keep-alive timer (%d seconds) expired!\n",
412                 ctrl->cntlid, ctrl->kato);
413
414         nvmet_ctrl_fatal_error(ctrl);
415 }
416
417 void nvmet_start_keep_alive_timer(struct nvmet_ctrl *ctrl)
418 {
419         if (unlikely(ctrl->kato == 0))
420                 return;
421
422         pr_debug("ctrl %d start keep-alive timer for %d secs\n",
423                 ctrl->cntlid, ctrl->kato);
424
425         queue_delayed_work(nvmet_wq, &ctrl->ka_work, ctrl->kato * HZ);
426 }
427
428 void nvmet_stop_keep_alive_timer(struct nvmet_ctrl *ctrl)
429 {
430         if (unlikely(ctrl->kato == 0))
431                 return;
432
433         pr_debug("ctrl %d stop keep-alive\n", ctrl->cntlid);
434
435         cancel_delayed_work_sync(&ctrl->ka_work);
436 }
437
438 u16 nvmet_req_find_ns(struct nvmet_req *req)
439 {
440         u32 nsid = le32_to_cpu(req->cmd->common.nsid);
441         struct nvmet_subsys *subsys = nvmet_req_subsys(req);
442
443         req->ns = xa_load(&subsys->namespaces, nsid);
444         if (unlikely(!req->ns || !req->ns->enabled)) {
445                 req->error_loc = offsetof(struct nvme_common_command, nsid);
446                 if (!req->ns) /* ns doesn't exist! */
447                         return NVME_SC_INVALID_NS | NVME_STATUS_DNR;
448
449                 /* ns exists but it's disabled */
450                 req->ns = NULL;
451                 return NVME_SC_INTERNAL_PATH_ERROR;
452         }
453
454         percpu_ref_get(&req->ns->ref);
455         return NVME_SC_SUCCESS;
456 }
457
458 static void nvmet_destroy_namespace(struct percpu_ref *ref)
459 {
460         struct nvmet_ns *ns = container_of(ref, struct nvmet_ns, ref);
461
462         complete(&ns->disable_done);
463 }
464
465 void nvmet_put_namespace(struct nvmet_ns *ns)
466 {
467         percpu_ref_put(&ns->ref);
468 }
469
470 static void nvmet_ns_dev_disable(struct nvmet_ns *ns)
471 {
472         nvmet_bdev_ns_disable(ns);
473         nvmet_file_ns_disable(ns);
474 }
475
476 static int nvmet_p2pmem_ns_enable(struct nvmet_ns *ns)
477 {
478         int ret;
479         struct pci_dev *p2p_dev;
480
481         if (!ns->use_p2pmem)
482                 return 0;
483
484         if (!ns->bdev) {
485                 pr_err("peer-to-peer DMA is not supported by non-block device namespaces\n");
486                 return -EINVAL;
487         }
488
489         if (!blk_queue_pci_p2pdma(ns->bdev->bd_disk->queue)) {
490                 pr_err("peer-to-peer DMA is not supported by the driver of %s\n",
491                        ns->device_path);
492                 return -EINVAL;
493         }
494
495         if (ns->p2p_dev) {
496                 ret = pci_p2pdma_distance(ns->p2p_dev, nvmet_ns_dev(ns), true);
497                 if (ret < 0)
498                         return -EINVAL;
499         } else {
500                 /*
501                  * Right now we just check that there is p2pmem available so
502                  * we can report an error to the user right away if there
503                  * is not. We'll find the actual device to use once we
504                  * setup the controller when the port's device is available.
505                  */
506
507                 p2p_dev = pci_p2pmem_find(nvmet_ns_dev(ns));
508                 if (!p2p_dev) {
509                         pr_err("no peer-to-peer memory is available for %s\n",
510                                ns->device_path);
511                         return -EINVAL;
512                 }
513
514                 pci_dev_put(p2p_dev);
515         }
516
517         return 0;
518 }
519
520 /*
521  * Note: ctrl->subsys->lock should be held when calling this function
522  */
523 static void nvmet_p2pmem_ns_add_p2p(struct nvmet_ctrl *ctrl,
524                                     struct nvmet_ns *ns)
525 {
526         struct device *clients[2];
527         struct pci_dev *p2p_dev;
528         int ret;
529
530         if (!ctrl->p2p_client || !ns->use_p2pmem)
531                 return;
532
533         if (ns->p2p_dev) {
534                 ret = pci_p2pdma_distance(ns->p2p_dev, ctrl->p2p_client, true);
535                 if (ret < 0)
536                         return;
537
538                 p2p_dev = pci_dev_get(ns->p2p_dev);
539         } else {
540                 clients[0] = ctrl->p2p_client;
541                 clients[1] = nvmet_ns_dev(ns);
542
543                 p2p_dev = pci_p2pmem_find_many(clients, ARRAY_SIZE(clients));
544                 if (!p2p_dev) {
545                         pr_err("no peer-to-peer memory is available that's supported by %s and %s\n",
546                                dev_name(ctrl->p2p_client), ns->device_path);
547                         return;
548                 }
549         }
550
551         ret = radix_tree_insert(&ctrl->p2p_ns_map, ns->nsid, p2p_dev);
552         if (ret < 0)
553                 pci_dev_put(p2p_dev);
554
555         pr_info("using p2pmem on %s for nsid %d\n", pci_name(p2p_dev),
556                 ns->nsid);
557 }
558
559 bool nvmet_ns_revalidate(struct nvmet_ns *ns)
560 {
561         loff_t oldsize = ns->size;
562
563         if (ns->bdev)
564                 nvmet_bdev_ns_revalidate(ns);
565         else
566                 nvmet_file_ns_revalidate(ns);
567
568         return oldsize != ns->size;
569 }
570
571 int nvmet_ns_enable(struct nvmet_ns *ns)
572 {
573         struct nvmet_subsys *subsys = ns->subsys;
574         struct nvmet_ctrl *ctrl;
575         int ret;
576
577         mutex_lock(&subsys->lock);
578         ret = 0;
579
580         if (nvmet_is_passthru_subsys(subsys)) {
581                 pr_info("cannot enable both passthru and regular namespaces for a single subsystem");
582                 goto out_unlock;
583         }
584
585         if (ns->enabled)
586                 goto out_unlock;
587
588         ret = -EMFILE;
589
590         ret = nvmet_bdev_ns_enable(ns);
591         if (ret == -ENOTBLK)
592                 ret = nvmet_file_ns_enable(ns);
593         if (ret)
594                 goto out_unlock;
595
596         ret = nvmet_p2pmem_ns_enable(ns);
597         if (ret)
598                 goto out_dev_disable;
599
600         list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry)
601                 nvmet_p2pmem_ns_add_p2p(ctrl, ns);
602
603         if (ns->pr.enable) {
604                 ret = nvmet_pr_init_ns(ns);
605                 if (ret)
606                         goto out_dev_put;
607         }
608
609         nvmet_ns_changed(subsys, ns->nsid);
610         ns->enabled = true;
611         xa_set_mark(&subsys->namespaces, ns->nsid, NVMET_NS_ENABLED);
612         ret = 0;
613 out_unlock:
614         mutex_unlock(&subsys->lock);
615         return ret;
616 out_dev_put:
617         list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry)
618                 pci_dev_put(radix_tree_delete(&ctrl->p2p_ns_map, ns->nsid));
619 out_dev_disable:
620         nvmet_ns_dev_disable(ns);
621         goto out_unlock;
622 }
623
624 void nvmet_ns_disable(struct nvmet_ns *ns)
625 {
626         struct nvmet_subsys *subsys = ns->subsys;
627         struct nvmet_ctrl *ctrl;
628
629         mutex_lock(&subsys->lock);
630         if (!ns->enabled)
631                 goto out_unlock;
632
633         ns->enabled = false;
634         xa_clear_mark(&subsys->namespaces, ns->nsid, NVMET_NS_ENABLED);
635
636         list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry)
637                 pci_dev_put(radix_tree_delete(&ctrl->p2p_ns_map, ns->nsid));
638
639         mutex_unlock(&subsys->lock);
640
641         if (ns->pr.enable)
642                 nvmet_pr_exit_ns(ns);
643
644         mutex_lock(&subsys->lock);
645         nvmet_ns_changed(subsys, ns->nsid);
646         nvmet_ns_dev_disable(ns);
647 out_unlock:
648         mutex_unlock(&subsys->lock);
649 }
650
651 void nvmet_ns_free(struct nvmet_ns *ns)
652 {
653         struct nvmet_subsys *subsys = ns->subsys;
654
655         nvmet_ns_disable(ns);
656
657         mutex_lock(&subsys->lock);
658
659         xa_erase(&subsys->namespaces, ns->nsid);
660         if (ns->nsid == subsys->max_nsid)
661                 subsys->max_nsid = nvmet_max_nsid(subsys);
662
663         mutex_unlock(&subsys->lock);
664
665         /*
666          * Now that we removed the namespaces from the lookup list, we
667          * can kill the per_cpu ref and wait for any remaining references
668          * to be dropped, as well as a RCU grace period for anyone only
669          * using the namepace under rcu_read_lock().  Note that we can't
670          * use call_rcu here as we need to ensure the namespaces have
671          * been fully destroyed before unloading the module.
672          */
673         percpu_ref_kill(&ns->ref);
674         synchronize_rcu();
675         wait_for_completion(&ns->disable_done);
676         percpu_ref_exit(&ns->ref);
677
678         mutex_lock(&subsys->lock);
679         subsys->nr_namespaces--;
680         mutex_unlock(&subsys->lock);
681
682         down_write(&nvmet_ana_sem);
683         nvmet_ana_group_enabled[ns->anagrpid]--;
684         up_write(&nvmet_ana_sem);
685
686         kfree(ns->device_path);
687         kfree(ns);
688 }
689
690 struct nvmet_ns *nvmet_ns_alloc(struct nvmet_subsys *subsys, u32 nsid)
691 {
692         struct nvmet_ns *ns;
693
694         mutex_lock(&subsys->lock);
695
696         if (subsys->nr_namespaces == NVMET_MAX_NAMESPACES)
697                 goto out_unlock;
698
699         ns = kzalloc(sizeof(*ns), GFP_KERNEL);
700         if (!ns)
701                 goto out_unlock;
702
703         init_completion(&ns->disable_done);
704
705         ns->nsid = nsid;
706         ns->subsys = subsys;
707
708         if (percpu_ref_init(&ns->ref, nvmet_destroy_namespace, 0, GFP_KERNEL))
709                 goto out_free;
710
711         if (ns->nsid > subsys->max_nsid)
712                 subsys->max_nsid = nsid;
713
714         if (xa_insert(&subsys->namespaces, ns->nsid, ns, GFP_KERNEL))
715                 goto out_exit;
716
717         subsys->nr_namespaces++;
718
719         mutex_unlock(&subsys->lock);
720
721         down_write(&nvmet_ana_sem);
722         ns->anagrpid = NVMET_DEFAULT_ANA_GRPID;
723         nvmet_ana_group_enabled[ns->anagrpid]++;
724         up_write(&nvmet_ana_sem);
725
726         uuid_gen(&ns->uuid);
727         ns->buffered_io = false;
728         ns->csi = NVME_CSI_NVM;
729
730         return ns;
731 out_exit:
732         subsys->max_nsid = nvmet_max_nsid(subsys);
733         percpu_ref_exit(&ns->ref);
734 out_free:
735         kfree(ns);
736 out_unlock:
737         mutex_unlock(&subsys->lock);
738         return NULL;
739 }
740
741 static void nvmet_update_sq_head(struct nvmet_req *req)
742 {
743         if (req->sq->size) {
744                 u32 old_sqhd, new_sqhd;
745
746                 old_sqhd = READ_ONCE(req->sq->sqhd);
747                 do {
748                         new_sqhd = (old_sqhd + 1) % req->sq->size;
749                 } while (!try_cmpxchg(&req->sq->sqhd, &old_sqhd, new_sqhd));
750         }
751         req->cqe->sq_head = cpu_to_le16(req->sq->sqhd & 0x0000FFFF);
752 }
753
754 static void nvmet_set_error(struct nvmet_req *req, u16 status)
755 {
756         struct nvmet_ctrl *ctrl = req->sq->ctrl;
757         struct nvme_error_slot *new_error_slot;
758         unsigned long flags;
759
760         req->cqe->status = cpu_to_le16(status << 1);
761
762         if (!ctrl || req->error_loc == NVMET_NO_ERROR_LOC)
763                 return;
764
765         spin_lock_irqsave(&ctrl->error_lock, flags);
766         ctrl->err_counter++;
767         new_error_slot =
768                 &ctrl->slots[ctrl->err_counter % NVMET_ERROR_LOG_SLOTS];
769
770         new_error_slot->error_count = cpu_to_le64(ctrl->err_counter);
771         new_error_slot->sqid = cpu_to_le16(req->sq->qid);
772         new_error_slot->cmdid = cpu_to_le16(req->cmd->common.command_id);
773         new_error_slot->status_field = cpu_to_le16(status << 1);
774         new_error_slot->param_error_location = cpu_to_le16(req->error_loc);
775         new_error_slot->lba = cpu_to_le64(req->error_slba);
776         new_error_slot->nsid = req->cmd->common.nsid;
777         spin_unlock_irqrestore(&ctrl->error_lock, flags);
778
779         /* set the more bit for this request */
780         req->cqe->status |= cpu_to_le16(1 << 14);
781 }
782
783 static void __nvmet_req_complete(struct nvmet_req *req, u16 status)
784 {
785         struct nvmet_ns *ns = req->ns;
786         struct nvmet_pr_per_ctrl_ref *pc_ref = req->pc_ref;
787
788         if (!req->sq->sqhd_disabled)
789                 nvmet_update_sq_head(req);
790         req->cqe->sq_id = cpu_to_le16(req->sq->qid);
791         req->cqe->command_id = req->cmd->common.command_id;
792
793         if (unlikely(status))
794                 nvmet_set_error(req, status);
795
796         trace_nvmet_req_complete(req);
797
798         req->ops->queue_response(req);
799
800         if (pc_ref)
801                 nvmet_pr_put_ns_pc_ref(pc_ref);
802         if (ns)
803                 nvmet_put_namespace(ns);
804 }
805
806 void nvmet_req_complete(struct nvmet_req *req, u16 status)
807 {
808         struct nvmet_sq *sq = req->sq;
809
810         __nvmet_req_complete(req, status);
811         percpu_ref_put(&sq->ref);
812 }
813 EXPORT_SYMBOL_GPL(nvmet_req_complete);
814
815 void nvmet_cq_setup(struct nvmet_ctrl *ctrl, struct nvmet_cq *cq,
816                 u16 qid, u16 size)
817 {
818         cq->qid = qid;
819         cq->size = size;
820 }
821
822 void nvmet_sq_setup(struct nvmet_ctrl *ctrl, struct nvmet_sq *sq,
823                 u16 qid, u16 size)
824 {
825         sq->sqhd = 0;
826         sq->qid = qid;
827         sq->size = size;
828
829         ctrl->sqs[qid] = sq;
830 }
831
832 static void nvmet_confirm_sq(struct percpu_ref *ref)
833 {
834         struct nvmet_sq *sq = container_of(ref, struct nvmet_sq, ref);
835
836         complete(&sq->confirm_done);
837 }
838
839 void nvmet_sq_destroy(struct nvmet_sq *sq)
840 {
841         struct nvmet_ctrl *ctrl = sq->ctrl;
842
843         /*
844          * If this is the admin queue, complete all AERs so that our
845          * queue doesn't have outstanding requests on it.
846          */
847         if (ctrl && ctrl->sqs && ctrl->sqs[0] == sq)
848                 nvmet_async_events_failall(ctrl);
849         percpu_ref_kill_and_confirm(&sq->ref, nvmet_confirm_sq);
850         wait_for_completion(&sq->confirm_done);
851         wait_for_completion(&sq->free_done);
852         percpu_ref_exit(&sq->ref);
853         nvmet_auth_sq_free(sq);
854
855         /*
856          * we must reference the ctrl again after waiting for inflight IO
857          * to complete. Because admin connect may have sneaked in after we
858          * store sq->ctrl locally, but before we killed the percpu_ref. the
859          * admin connect allocates and assigns sq->ctrl, which now needs a
860          * final ref put, as this ctrl is going away.
861          */
862         ctrl = sq->ctrl;
863
864         if (ctrl) {
865                 /*
866                  * The teardown flow may take some time, and the host may not
867                  * send us keep-alive during this period, hence reset the
868                  * traffic based keep-alive timer so we don't trigger a
869                  * controller teardown as a result of a keep-alive expiration.
870                  */
871                 ctrl->reset_tbkas = true;
872                 sq->ctrl->sqs[sq->qid] = NULL;
873                 nvmet_ctrl_put(ctrl);
874                 sq->ctrl = NULL; /* allows reusing the queue later */
875         }
876 }
877 EXPORT_SYMBOL_GPL(nvmet_sq_destroy);
878
879 static void nvmet_sq_free(struct percpu_ref *ref)
880 {
881         struct nvmet_sq *sq = container_of(ref, struct nvmet_sq, ref);
882
883         complete(&sq->free_done);
884 }
885
886 int nvmet_sq_init(struct nvmet_sq *sq)
887 {
888         int ret;
889
890         ret = percpu_ref_init(&sq->ref, nvmet_sq_free, 0, GFP_KERNEL);
891         if (ret) {
892                 pr_err("percpu_ref init failed!\n");
893                 return ret;
894         }
895         init_completion(&sq->free_done);
896         init_completion(&sq->confirm_done);
897         nvmet_auth_sq_init(sq);
898
899         return 0;
900 }
901 EXPORT_SYMBOL_GPL(nvmet_sq_init);
902
903 static inline u16 nvmet_check_ana_state(struct nvmet_port *port,
904                 struct nvmet_ns *ns)
905 {
906         enum nvme_ana_state state = port->ana_state[ns->anagrpid];
907
908         if (unlikely(state == NVME_ANA_INACCESSIBLE))
909                 return NVME_SC_ANA_INACCESSIBLE;
910         if (unlikely(state == NVME_ANA_PERSISTENT_LOSS))
911                 return NVME_SC_ANA_PERSISTENT_LOSS;
912         if (unlikely(state == NVME_ANA_CHANGE))
913                 return NVME_SC_ANA_TRANSITION;
914         return 0;
915 }
916
917 static inline u16 nvmet_io_cmd_check_access(struct nvmet_req *req)
918 {
919         if (unlikely(req->ns->readonly)) {
920                 switch (req->cmd->common.opcode) {
921                 case nvme_cmd_read:
922                 case nvme_cmd_flush:
923                         break;
924                 default:
925                         return NVME_SC_NS_WRITE_PROTECTED;
926                 }
927         }
928
929         return 0;
930 }
931
932 static u16 nvmet_parse_io_cmd(struct nvmet_req *req)
933 {
934         struct nvme_command *cmd = req->cmd;
935         u16 ret;
936
937         if (nvme_is_fabrics(cmd))
938                 return nvmet_parse_fabrics_io_cmd(req);
939
940         if (unlikely(!nvmet_check_auth_status(req)))
941                 return NVME_SC_AUTH_REQUIRED | NVME_STATUS_DNR;
942
943         ret = nvmet_check_ctrl_status(req);
944         if (unlikely(ret))
945                 return ret;
946
947         if (nvmet_is_passthru_req(req))
948                 return nvmet_parse_passthru_io_cmd(req);
949
950         ret = nvmet_req_find_ns(req);
951         if (unlikely(ret))
952                 return ret;
953
954         ret = nvmet_check_ana_state(req->port, req->ns);
955         if (unlikely(ret)) {
956                 req->error_loc = offsetof(struct nvme_common_command, nsid);
957                 return ret;
958         }
959         ret = nvmet_io_cmd_check_access(req);
960         if (unlikely(ret)) {
961                 req->error_loc = offsetof(struct nvme_common_command, nsid);
962                 return ret;
963         }
964
965         if (req->ns->pr.enable) {
966                 ret = nvmet_parse_pr_cmd(req);
967                 if (!ret)
968                         return ret;
969         }
970
971         switch (req->ns->csi) {
972         case NVME_CSI_NVM:
973                 if (req->ns->file)
974                         ret = nvmet_file_parse_io_cmd(req);
975                 else
976                         ret = nvmet_bdev_parse_io_cmd(req);
977                 break;
978         case NVME_CSI_ZNS:
979                 if (IS_ENABLED(CONFIG_BLK_DEV_ZONED))
980                         ret = nvmet_bdev_zns_parse_io_cmd(req);
981                 else
982                         ret = NVME_SC_INVALID_IO_CMD_SET;
983                 break;
984         default:
985                 ret = NVME_SC_INVALID_IO_CMD_SET;
986         }
987         if (ret)
988                 return ret;
989
990         if (req->ns->pr.enable) {
991                 ret = nvmet_pr_check_cmd_access(req);
992                 if (ret)
993                         return ret;
994
995                 ret = nvmet_pr_get_ns_pc_ref(req);
996         }
997         return ret;
998 }
999
1000 bool nvmet_req_init(struct nvmet_req *req, struct nvmet_cq *cq,
1001                 struct nvmet_sq *sq, const struct nvmet_fabrics_ops *ops)
1002 {
1003         u8 flags = req->cmd->common.flags;
1004         u16 status;
1005
1006         req->cq = cq;
1007         req->sq = sq;
1008         req->ops = ops;
1009         req->sg = NULL;
1010         req->metadata_sg = NULL;
1011         req->sg_cnt = 0;
1012         req->metadata_sg_cnt = 0;
1013         req->transfer_len = 0;
1014         req->metadata_len = 0;
1015         req->cqe->result.u64 = 0;
1016         req->cqe->status = 0;
1017         req->cqe->sq_head = 0;
1018         req->ns = NULL;
1019         req->error_loc = NVMET_NO_ERROR_LOC;
1020         req->error_slba = 0;
1021         req->pc_ref = NULL;
1022
1023         /* no support for fused commands yet */
1024         if (unlikely(flags & (NVME_CMD_FUSE_FIRST | NVME_CMD_FUSE_SECOND))) {
1025                 req->error_loc = offsetof(struct nvme_common_command, flags);
1026                 status = NVME_SC_INVALID_FIELD | NVME_STATUS_DNR;
1027                 goto fail;
1028         }
1029
1030         /*
1031          * For fabrics, PSDT field shall describe metadata pointer (MPTR) that
1032          * contains an address of a single contiguous physical buffer that is
1033          * byte aligned.
1034          */
1035         if (unlikely((flags & NVME_CMD_SGL_ALL) != NVME_CMD_SGL_METABUF)) {
1036                 req->error_loc = offsetof(struct nvme_common_command, flags);
1037                 status = NVME_SC_INVALID_FIELD | NVME_STATUS_DNR;
1038                 goto fail;
1039         }
1040
1041         if (unlikely(!req->sq->ctrl))
1042                 /* will return an error for any non-connect command: */
1043                 status = nvmet_parse_connect_cmd(req);
1044         else if (likely(req->sq->qid != 0))
1045                 status = nvmet_parse_io_cmd(req);
1046         else
1047                 status = nvmet_parse_admin_cmd(req);
1048
1049         if (status)
1050                 goto fail;
1051
1052         trace_nvmet_req_init(req, req->cmd);
1053
1054         if (unlikely(!percpu_ref_tryget_live(&sq->ref))) {
1055                 status = NVME_SC_INVALID_FIELD | NVME_STATUS_DNR;
1056                 goto fail;
1057         }
1058
1059         if (sq->ctrl)
1060                 sq->ctrl->reset_tbkas = true;
1061
1062         return true;
1063
1064 fail:
1065         __nvmet_req_complete(req, status);
1066         return false;
1067 }
1068 EXPORT_SYMBOL_GPL(nvmet_req_init);
1069
1070 void nvmet_req_uninit(struct nvmet_req *req)
1071 {
1072         percpu_ref_put(&req->sq->ref);
1073         if (req->pc_ref)
1074                 nvmet_pr_put_ns_pc_ref(req->pc_ref);
1075         if (req->ns)
1076                 nvmet_put_namespace(req->ns);
1077 }
1078 EXPORT_SYMBOL_GPL(nvmet_req_uninit);
1079
1080 bool nvmet_check_transfer_len(struct nvmet_req *req, size_t len)
1081 {
1082         if (unlikely(len != req->transfer_len)) {
1083                 req->error_loc = offsetof(struct nvme_common_command, dptr);
1084                 nvmet_req_complete(req, NVME_SC_SGL_INVALID_DATA | NVME_STATUS_DNR);
1085                 return false;
1086         }
1087
1088         return true;
1089 }
1090 EXPORT_SYMBOL_GPL(nvmet_check_transfer_len);
1091
1092 bool nvmet_check_data_len_lte(struct nvmet_req *req, size_t data_len)
1093 {
1094         if (unlikely(data_len > req->transfer_len)) {
1095                 req->error_loc = offsetof(struct nvme_common_command, dptr);
1096                 nvmet_req_complete(req, NVME_SC_SGL_INVALID_DATA | NVME_STATUS_DNR);
1097                 return false;
1098         }
1099
1100         return true;
1101 }
1102
1103 static unsigned int nvmet_data_transfer_len(struct nvmet_req *req)
1104 {
1105         return req->transfer_len - req->metadata_len;
1106 }
1107
1108 static int nvmet_req_alloc_p2pmem_sgls(struct pci_dev *p2p_dev,
1109                 struct nvmet_req *req)
1110 {
1111         req->sg = pci_p2pmem_alloc_sgl(p2p_dev, &req->sg_cnt,
1112                         nvmet_data_transfer_len(req));
1113         if (!req->sg)
1114                 goto out_err;
1115
1116         if (req->metadata_len) {
1117                 req->metadata_sg = pci_p2pmem_alloc_sgl(p2p_dev,
1118                                 &req->metadata_sg_cnt, req->metadata_len);
1119                 if (!req->metadata_sg)
1120                         goto out_free_sg;
1121         }
1122
1123         req->p2p_dev = p2p_dev;
1124
1125         return 0;
1126 out_free_sg:
1127         pci_p2pmem_free_sgl(req->p2p_dev, req->sg);
1128 out_err:
1129         return -ENOMEM;
1130 }
1131
1132 static struct pci_dev *nvmet_req_find_p2p_dev(struct nvmet_req *req)
1133 {
1134         if (!IS_ENABLED(CONFIG_PCI_P2PDMA) ||
1135             !req->sq->ctrl || !req->sq->qid || !req->ns)
1136                 return NULL;
1137         return radix_tree_lookup(&req->sq->ctrl->p2p_ns_map, req->ns->nsid);
1138 }
1139
1140 int nvmet_req_alloc_sgls(struct nvmet_req *req)
1141 {
1142         struct pci_dev *p2p_dev = nvmet_req_find_p2p_dev(req);
1143
1144         if (p2p_dev && !nvmet_req_alloc_p2pmem_sgls(p2p_dev, req))
1145                 return 0;
1146
1147         req->sg = sgl_alloc(nvmet_data_transfer_len(req), GFP_KERNEL,
1148                             &req->sg_cnt);
1149         if (unlikely(!req->sg))
1150                 goto out;
1151
1152         if (req->metadata_len) {
1153                 req->metadata_sg = sgl_alloc(req->metadata_len, GFP_KERNEL,
1154                                              &req->metadata_sg_cnt);
1155                 if (unlikely(!req->metadata_sg))
1156                         goto out_free;
1157         }
1158
1159         return 0;
1160 out_free:
1161         sgl_free(req->sg);
1162 out:
1163         return -ENOMEM;
1164 }
1165 EXPORT_SYMBOL_GPL(nvmet_req_alloc_sgls);
1166
1167 void nvmet_req_free_sgls(struct nvmet_req *req)
1168 {
1169         if (req->p2p_dev) {
1170                 pci_p2pmem_free_sgl(req->p2p_dev, req->sg);
1171                 if (req->metadata_sg)
1172                         pci_p2pmem_free_sgl(req->p2p_dev, req->metadata_sg);
1173                 req->p2p_dev = NULL;
1174         } else {
1175                 sgl_free(req->sg);
1176                 if (req->metadata_sg)
1177                         sgl_free(req->metadata_sg);
1178         }
1179
1180         req->sg = NULL;
1181         req->metadata_sg = NULL;
1182         req->sg_cnt = 0;
1183         req->metadata_sg_cnt = 0;
1184 }
1185 EXPORT_SYMBOL_GPL(nvmet_req_free_sgls);
1186
1187 static inline bool nvmet_cc_en(u32 cc)
1188 {
1189         return (cc >> NVME_CC_EN_SHIFT) & 0x1;
1190 }
1191
1192 static inline u8 nvmet_cc_css(u32 cc)
1193 {
1194         return (cc >> NVME_CC_CSS_SHIFT) & 0x7;
1195 }
1196
1197 static inline u8 nvmet_cc_mps(u32 cc)
1198 {
1199         return (cc >> NVME_CC_MPS_SHIFT) & 0xf;
1200 }
1201
1202 static inline u8 nvmet_cc_ams(u32 cc)
1203 {
1204         return (cc >> NVME_CC_AMS_SHIFT) & 0x7;
1205 }
1206
1207 static inline u8 nvmet_cc_shn(u32 cc)
1208 {
1209         return (cc >> NVME_CC_SHN_SHIFT) & 0x3;
1210 }
1211
1212 static inline u8 nvmet_cc_iosqes(u32 cc)
1213 {
1214         return (cc >> NVME_CC_IOSQES_SHIFT) & 0xf;
1215 }
1216
1217 static inline u8 nvmet_cc_iocqes(u32 cc)
1218 {
1219         return (cc >> NVME_CC_IOCQES_SHIFT) & 0xf;
1220 }
1221
1222 static inline bool nvmet_css_supported(u8 cc_css)
1223 {
1224         switch (cc_css << NVME_CC_CSS_SHIFT) {
1225         case NVME_CC_CSS_NVM:
1226         case NVME_CC_CSS_CSI:
1227                 return true;
1228         default:
1229                 return false;
1230         }
1231 }
1232
1233 static void nvmet_start_ctrl(struct nvmet_ctrl *ctrl)
1234 {
1235         lockdep_assert_held(&ctrl->lock);
1236
1237         /*
1238          * Only I/O controllers should verify iosqes,iocqes.
1239          * Strictly speaking, the spec says a discovery controller
1240          * should verify iosqes,iocqes are zeroed, however that
1241          * would break backwards compatibility, so don't enforce it.
1242          */
1243         if (!nvmet_is_disc_subsys(ctrl->subsys) &&
1244             (nvmet_cc_iosqes(ctrl->cc) != NVME_NVM_IOSQES ||
1245              nvmet_cc_iocqes(ctrl->cc) != NVME_NVM_IOCQES)) {
1246                 ctrl->csts = NVME_CSTS_CFS;
1247                 return;
1248         }
1249
1250         if (nvmet_cc_mps(ctrl->cc) != 0 ||
1251             nvmet_cc_ams(ctrl->cc) != 0 ||
1252             !nvmet_css_supported(nvmet_cc_css(ctrl->cc))) {
1253                 ctrl->csts = NVME_CSTS_CFS;
1254                 return;
1255         }
1256
1257         ctrl->csts = NVME_CSTS_RDY;
1258
1259         /*
1260          * Controllers that are not yet enabled should not really enforce the
1261          * keep alive timeout, but we still want to track a timeout and cleanup
1262          * in case a host died before it enabled the controller.  Hence, simply
1263          * reset the keep alive timer when the controller is enabled.
1264          */
1265         if (ctrl->kato)
1266                 mod_delayed_work(nvmet_wq, &ctrl->ka_work, ctrl->kato * HZ);
1267 }
1268
1269 static void nvmet_clear_ctrl(struct nvmet_ctrl *ctrl)
1270 {
1271         lockdep_assert_held(&ctrl->lock);
1272
1273         /* XXX: tear down queues? */
1274         ctrl->csts &= ~NVME_CSTS_RDY;
1275         ctrl->cc = 0;
1276 }
1277
1278 void nvmet_update_cc(struct nvmet_ctrl *ctrl, u32 new)
1279 {
1280         u32 old;
1281
1282         mutex_lock(&ctrl->lock);
1283         old = ctrl->cc;
1284         ctrl->cc = new;
1285
1286         if (nvmet_cc_en(new) && !nvmet_cc_en(old))
1287                 nvmet_start_ctrl(ctrl);
1288         if (!nvmet_cc_en(new) && nvmet_cc_en(old))
1289                 nvmet_clear_ctrl(ctrl);
1290         if (nvmet_cc_shn(new) && !nvmet_cc_shn(old)) {
1291                 nvmet_clear_ctrl(ctrl);
1292                 ctrl->csts |= NVME_CSTS_SHST_CMPLT;
1293         }
1294         if (!nvmet_cc_shn(new) && nvmet_cc_shn(old))
1295                 ctrl->csts &= ~NVME_CSTS_SHST_CMPLT;
1296         mutex_unlock(&ctrl->lock);
1297 }
1298
1299 static void nvmet_init_cap(struct nvmet_ctrl *ctrl)
1300 {
1301         /* command sets supported: NVMe command set: */
1302         ctrl->cap = (1ULL << 37);
1303         /* Controller supports one or more I/O Command Sets */
1304         ctrl->cap |= (1ULL << 43);
1305         /* CC.EN timeout in 500msec units: */
1306         ctrl->cap |= (15ULL << 24);
1307         /* maximum queue entries supported: */
1308         if (ctrl->ops->get_max_queue_size)
1309                 ctrl->cap |= min_t(u16, ctrl->ops->get_max_queue_size(ctrl),
1310                                    ctrl->port->max_queue_size) - 1;
1311         else
1312                 ctrl->cap |= ctrl->port->max_queue_size - 1;
1313
1314         if (nvmet_is_passthru_subsys(ctrl->subsys))
1315                 nvmet_passthrough_override_cap(ctrl);
1316 }
1317
1318 struct nvmet_ctrl *nvmet_ctrl_find_get(const char *subsysnqn,
1319                                        const char *hostnqn, u16 cntlid,
1320                                        struct nvmet_req *req)
1321 {
1322         struct nvmet_ctrl *ctrl = NULL;
1323         struct nvmet_subsys *subsys;
1324
1325         subsys = nvmet_find_get_subsys(req->port, subsysnqn);
1326         if (!subsys) {
1327                 pr_warn("connect request for invalid subsystem %s!\n",
1328                         subsysnqn);
1329                 req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(subsysnqn);
1330                 goto out;
1331         }
1332
1333         mutex_lock(&subsys->lock);
1334         list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) {
1335                 if (ctrl->cntlid == cntlid) {
1336                         if (strncmp(hostnqn, ctrl->hostnqn, NVMF_NQN_SIZE)) {
1337                                 pr_warn("hostnqn mismatch.\n");
1338                                 continue;
1339                         }
1340                         if (!kref_get_unless_zero(&ctrl->ref))
1341                                 continue;
1342
1343                         /* ctrl found */
1344                         goto found;
1345                 }
1346         }
1347
1348         ctrl = NULL; /* ctrl not found */
1349         pr_warn("could not find controller %d for subsys %s / host %s\n",
1350                 cntlid, subsysnqn, hostnqn);
1351         req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(cntlid);
1352
1353 found:
1354         mutex_unlock(&subsys->lock);
1355         nvmet_subsys_put(subsys);
1356 out:
1357         return ctrl;
1358 }
1359
1360 u16 nvmet_check_ctrl_status(struct nvmet_req *req)
1361 {
1362         if (unlikely(!(req->sq->ctrl->cc & NVME_CC_ENABLE))) {
1363                 pr_err("got cmd %d while CC.EN == 0 on qid = %d\n",
1364                        req->cmd->common.opcode, req->sq->qid);
1365                 return NVME_SC_CMD_SEQ_ERROR | NVME_STATUS_DNR;
1366         }
1367
1368         if (unlikely(!(req->sq->ctrl->csts & NVME_CSTS_RDY))) {
1369                 pr_err("got cmd %d while CSTS.RDY == 0 on qid = %d\n",
1370                        req->cmd->common.opcode, req->sq->qid);
1371                 return NVME_SC_CMD_SEQ_ERROR | NVME_STATUS_DNR;
1372         }
1373
1374         if (unlikely(!nvmet_check_auth_status(req))) {
1375                 pr_warn("qid %d not authenticated\n", req->sq->qid);
1376                 return NVME_SC_AUTH_REQUIRED | NVME_STATUS_DNR;
1377         }
1378         return 0;
1379 }
1380
1381 bool nvmet_host_allowed(struct nvmet_subsys *subsys, const char *hostnqn)
1382 {
1383         struct nvmet_host_link *p;
1384
1385         lockdep_assert_held(&nvmet_config_sem);
1386
1387         if (subsys->allow_any_host)
1388                 return true;
1389
1390         if (nvmet_is_disc_subsys(subsys)) /* allow all access to disc subsys */
1391                 return true;
1392
1393         list_for_each_entry(p, &subsys->hosts, entry) {
1394                 if (!strcmp(nvmet_host_name(p->host), hostnqn))
1395                         return true;
1396         }
1397
1398         return false;
1399 }
1400
1401 /*
1402  * Note: ctrl->subsys->lock should be held when calling this function
1403  */
1404 static void nvmet_setup_p2p_ns_map(struct nvmet_ctrl *ctrl,
1405                 struct nvmet_req *req)
1406 {
1407         struct nvmet_ns *ns;
1408         unsigned long idx;
1409
1410         if (!req->p2p_client)
1411                 return;
1412
1413         ctrl->p2p_client = get_device(req->p2p_client);
1414
1415         nvmet_for_each_enabled_ns(&ctrl->subsys->namespaces, idx, ns)
1416                 nvmet_p2pmem_ns_add_p2p(ctrl, ns);
1417 }
1418
1419 /*
1420  * Note: ctrl->subsys->lock should be held when calling this function
1421  */
1422 static void nvmet_release_p2p_ns_map(struct nvmet_ctrl *ctrl)
1423 {
1424         struct radix_tree_iter iter;
1425         void __rcu **slot;
1426
1427         radix_tree_for_each_slot(slot, &ctrl->p2p_ns_map, &iter, 0)
1428                 pci_dev_put(radix_tree_deref_slot(slot));
1429
1430         put_device(ctrl->p2p_client);
1431 }
1432
1433 static void nvmet_fatal_error_handler(struct work_struct *work)
1434 {
1435         struct nvmet_ctrl *ctrl =
1436                         container_of(work, struct nvmet_ctrl, fatal_err_work);
1437
1438         pr_err("ctrl %d fatal error occurred!\n", ctrl->cntlid);
1439         ctrl->ops->delete_ctrl(ctrl);
1440 }
1441
1442 u16 nvmet_alloc_ctrl(const char *subsysnqn, const char *hostnqn,
1443                 struct nvmet_req *req, u32 kato, struct nvmet_ctrl **ctrlp,
1444                 uuid_t *hostid)
1445 {
1446         struct nvmet_subsys *subsys;
1447         struct nvmet_ctrl *ctrl;
1448         int ret;
1449         u16 status;
1450
1451         status = NVME_SC_CONNECT_INVALID_PARAM | NVME_STATUS_DNR;
1452         subsys = nvmet_find_get_subsys(req->port, subsysnqn);
1453         if (!subsys) {
1454                 pr_warn("connect request for invalid subsystem %s!\n",
1455                         subsysnqn);
1456                 req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(subsysnqn);
1457                 req->error_loc = offsetof(struct nvme_common_command, dptr);
1458                 goto out;
1459         }
1460
1461         down_read(&nvmet_config_sem);
1462         if (!nvmet_host_allowed(subsys, hostnqn)) {
1463                 pr_info("connect by host %s for subsystem %s not allowed\n",
1464                         hostnqn, subsysnqn);
1465                 req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(hostnqn);
1466                 up_read(&nvmet_config_sem);
1467                 status = NVME_SC_CONNECT_INVALID_HOST | NVME_STATUS_DNR;
1468                 req->error_loc = offsetof(struct nvme_common_command, dptr);
1469                 goto out_put_subsystem;
1470         }
1471         up_read(&nvmet_config_sem);
1472
1473         status = NVME_SC_INTERNAL;
1474         ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
1475         if (!ctrl)
1476                 goto out_put_subsystem;
1477         mutex_init(&ctrl->lock);
1478
1479         ctrl->port = req->port;
1480         ctrl->ops = req->ops;
1481
1482 #ifdef CONFIG_NVME_TARGET_PASSTHRU
1483         /* By default, set loop targets to clear IDS by default */
1484         if (ctrl->port->disc_addr.trtype == NVMF_TRTYPE_LOOP)
1485                 subsys->clear_ids = 1;
1486 #endif
1487
1488         INIT_WORK(&ctrl->async_event_work, nvmet_async_event_work);
1489         INIT_LIST_HEAD(&ctrl->async_events);
1490         INIT_RADIX_TREE(&ctrl->p2p_ns_map, GFP_KERNEL);
1491         INIT_WORK(&ctrl->fatal_err_work, nvmet_fatal_error_handler);
1492         INIT_DELAYED_WORK(&ctrl->ka_work, nvmet_keep_alive_timer);
1493
1494         memcpy(ctrl->subsysnqn, subsysnqn, NVMF_NQN_SIZE);
1495         memcpy(ctrl->hostnqn, hostnqn, NVMF_NQN_SIZE);
1496
1497         kref_init(&ctrl->ref);
1498         ctrl->subsys = subsys;
1499         ctrl->pi_support = ctrl->port->pi_enable && ctrl->subsys->pi_support;
1500         nvmet_init_cap(ctrl);
1501         WRITE_ONCE(ctrl->aen_enabled, NVMET_AEN_CFG_OPTIONAL);
1502
1503         ctrl->changed_ns_list = kmalloc_array(NVME_MAX_CHANGED_NAMESPACES,
1504                         sizeof(__le32), GFP_KERNEL);
1505         if (!ctrl->changed_ns_list)
1506                 goto out_free_ctrl;
1507
1508         ctrl->sqs = kcalloc(subsys->max_qid + 1,
1509                         sizeof(struct nvmet_sq *),
1510                         GFP_KERNEL);
1511         if (!ctrl->sqs)
1512                 goto out_free_changed_ns_list;
1513
1514         ret = ida_alloc_range(&cntlid_ida,
1515                              subsys->cntlid_min, subsys->cntlid_max,
1516                              GFP_KERNEL);
1517         if (ret < 0) {
1518                 status = NVME_SC_CONNECT_CTRL_BUSY | NVME_STATUS_DNR;
1519                 goto out_free_sqs;
1520         }
1521         ctrl->cntlid = ret;
1522
1523         uuid_copy(&ctrl->hostid, hostid);
1524
1525         /*
1526          * Discovery controllers may use some arbitrary high value
1527          * in order to cleanup stale discovery sessions
1528          */
1529         if (nvmet_is_disc_subsys(ctrl->subsys) && !kato)
1530                 kato = NVMET_DISC_KATO_MS;
1531
1532         /* keep-alive timeout in seconds */
1533         ctrl->kato = DIV_ROUND_UP(kato, 1000);
1534
1535         ctrl->err_counter = 0;
1536         spin_lock_init(&ctrl->error_lock);
1537
1538         nvmet_start_keep_alive_timer(ctrl);
1539
1540         mutex_lock(&subsys->lock);
1541         ret = nvmet_ctrl_init_pr(ctrl);
1542         if (ret)
1543                 goto init_pr_fail;
1544         list_add_tail(&ctrl->subsys_entry, &subsys->ctrls);
1545         nvmet_setup_p2p_ns_map(ctrl, req);
1546         nvmet_debugfs_ctrl_setup(ctrl);
1547         mutex_unlock(&subsys->lock);
1548
1549         *ctrlp = ctrl;
1550         return 0;
1551
1552 init_pr_fail:
1553         mutex_unlock(&subsys->lock);
1554         nvmet_stop_keep_alive_timer(ctrl);
1555         ida_free(&cntlid_ida, ctrl->cntlid);
1556 out_free_sqs:
1557         kfree(ctrl->sqs);
1558 out_free_changed_ns_list:
1559         kfree(ctrl->changed_ns_list);
1560 out_free_ctrl:
1561         kfree(ctrl);
1562 out_put_subsystem:
1563         nvmet_subsys_put(subsys);
1564 out:
1565         return status;
1566 }
1567
1568 static void nvmet_ctrl_free(struct kref *ref)
1569 {
1570         struct nvmet_ctrl *ctrl = container_of(ref, struct nvmet_ctrl, ref);
1571         struct nvmet_subsys *subsys = ctrl->subsys;
1572
1573         mutex_lock(&subsys->lock);
1574         nvmet_ctrl_destroy_pr(ctrl);
1575         nvmet_release_p2p_ns_map(ctrl);
1576         list_del(&ctrl->subsys_entry);
1577         mutex_unlock(&subsys->lock);
1578
1579         nvmet_stop_keep_alive_timer(ctrl);
1580
1581         flush_work(&ctrl->async_event_work);
1582         cancel_work_sync(&ctrl->fatal_err_work);
1583
1584         nvmet_destroy_auth(ctrl);
1585
1586         nvmet_debugfs_ctrl_free(ctrl);
1587
1588         ida_free(&cntlid_ida, ctrl->cntlid);
1589
1590         nvmet_async_events_free(ctrl);
1591         kfree(ctrl->sqs);
1592         kfree(ctrl->changed_ns_list);
1593         kfree(ctrl);
1594
1595         nvmet_subsys_put(subsys);
1596 }
1597
1598 void nvmet_ctrl_put(struct nvmet_ctrl *ctrl)
1599 {
1600         kref_put(&ctrl->ref, nvmet_ctrl_free);
1601 }
1602
1603 void nvmet_ctrl_fatal_error(struct nvmet_ctrl *ctrl)
1604 {
1605         mutex_lock(&ctrl->lock);
1606         if (!(ctrl->csts & NVME_CSTS_CFS)) {
1607                 ctrl->csts |= NVME_CSTS_CFS;
1608                 queue_work(nvmet_wq, &ctrl->fatal_err_work);
1609         }
1610         mutex_unlock(&ctrl->lock);
1611 }
1612 EXPORT_SYMBOL_GPL(nvmet_ctrl_fatal_error);
1613
1614 ssize_t nvmet_ctrl_host_traddr(struct nvmet_ctrl *ctrl,
1615                 char *traddr, size_t traddr_len)
1616 {
1617         if (!ctrl->ops->host_traddr)
1618                 return -EOPNOTSUPP;
1619         return ctrl->ops->host_traddr(ctrl, traddr, traddr_len);
1620 }
1621
1622 static struct nvmet_subsys *nvmet_find_get_subsys(struct nvmet_port *port,
1623                 const char *subsysnqn)
1624 {
1625         struct nvmet_subsys_link *p;
1626
1627         if (!port)
1628                 return NULL;
1629
1630         if (!strcmp(NVME_DISC_SUBSYS_NAME, subsysnqn)) {
1631                 if (!kref_get_unless_zero(&nvmet_disc_subsys->ref))
1632                         return NULL;
1633                 return nvmet_disc_subsys;
1634         }
1635
1636         down_read(&nvmet_config_sem);
1637         if (!strncmp(nvmet_disc_subsys->subsysnqn, subsysnqn,
1638                                 NVMF_NQN_SIZE)) {
1639                 if (kref_get_unless_zero(&nvmet_disc_subsys->ref)) {
1640                         up_read(&nvmet_config_sem);
1641                         return nvmet_disc_subsys;
1642                 }
1643         }
1644         list_for_each_entry(p, &port->subsystems, entry) {
1645                 if (!strncmp(p->subsys->subsysnqn, subsysnqn,
1646                                 NVMF_NQN_SIZE)) {
1647                         if (!kref_get_unless_zero(&p->subsys->ref))
1648                                 break;
1649                         up_read(&nvmet_config_sem);
1650                         return p->subsys;
1651                 }
1652         }
1653         up_read(&nvmet_config_sem);
1654         return NULL;
1655 }
1656
1657 struct nvmet_subsys *nvmet_subsys_alloc(const char *subsysnqn,
1658                 enum nvme_subsys_type type)
1659 {
1660         struct nvmet_subsys *subsys;
1661         char serial[NVMET_SN_MAX_SIZE / 2];
1662         int ret;
1663
1664         subsys = kzalloc(sizeof(*subsys), GFP_KERNEL);
1665         if (!subsys)
1666                 return ERR_PTR(-ENOMEM);
1667
1668         subsys->ver = NVMET_DEFAULT_VS;
1669         /* generate a random serial number as our controllers are ephemeral: */
1670         get_random_bytes(&serial, sizeof(serial));
1671         bin2hex(subsys->serial, &serial, sizeof(serial));
1672
1673         subsys->model_number = kstrdup(NVMET_DEFAULT_CTRL_MODEL, GFP_KERNEL);
1674         if (!subsys->model_number) {
1675                 ret = -ENOMEM;
1676                 goto free_subsys;
1677         }
1678
1679         subsys->ieee_oui = 0;
1680
1681         subsys->firmware_rev = kstrndup(UTS_RELEASE, NVMET_FR_MAX_SIZE, GFP_KERNEL);
1682         if (!subsys->firmware_rev) {
1683                 ret = -ENOMEM;
1684                 goto free_mn;
1685         }
1686
1687         switch (type) {
1688         case NVME_NQN_NVME:
1689                 subsys->max_qid = NVMET_NR_QUEUES;
1690                 break;
1691         case NVME_NQN_DISC:
1692         case NVME_NQN_CURR:
1693                 subsys->max_qid = 0;
1694                 break;
1695         default:
1696                 pr_err("%s: Unknown Subsystem type - %d\n", __func__, type);
1697                 ret = -EINVAL;
1698                 goto free_fr;
1699         }
1700         subsys->type = type;
1701         subsys->subsysnqn = kstrndup(subsysnqn, NVMF_NQN_SIZE,
1702                         GFP_KERNEL);
1703         if (!subsys->subsysnqn) {
1704                 ret = -ENOMEM;
1705                 goto free_fr;
1706         }
1707         subsys->cntlid_min = NVME_CNTLID_MIN;
1708         subsys->cntlid_max = NVME_CNTLID_MAX;
1709         kref_init(&subsys->ref);
1710
1711         mutex_init(&subsys->lock);
1712         xa_init(&subsys->namespaces);
1713         INIT_LIST_HEAD(&subsys->ctrls);
1714         INIT_LIST_HEAD(&subsys->hosts);
1715
1716         ret = nvmet_debugfs_subsys_setup(subsys);
1717         if (ret)
1718                 goto free_subsysnqn;
1719
1720         return subsys;
1721
1722 free_subsysnqn:
1723         kfree(subsys->subsysnqn);
1724 free_fr:
1725         kfree(subsys->firmware_rev);
1726 free_mn:
1727         kfree(subsys->model_number);
1728 free_subsys:
1729         kfree(subsys);
1730         return ERR_PTR(ret);
1731 }
1732
1733 static void nvmet_subsys_free(struct kref *ref)
1734 {
1735         struct nvmet_subsys *subsys =
1736                 container_of(ref, struct nvmet_subsys, ref);
1737
1738         WARN_ON_ONCE(!xa_empty(&subsys->namespaces));
1739
1740         nvmet_debugfs_subsys_free(subsys);
1741
1742         xa_destroy(&subsys->namespaces);
1743         nvmet_passthru_subsys_free(subsys);
1744
1745         kfree(subsys->subsysnqn);
1746         kfree(subsys->model_number);
1747         kfree(subsys->firmware_rev);
1748         kfree(subsys);
1749 }
1750
1751 void nvmet_subsys_del_ctrls(struct nvmet_subsys *subsys)
1752 {
1753         struct nvmet_ctrl *ctrl;
1754
1755         mutex_lock(&subsys->lock);
1756         list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry)
1757                 ctrl->ops->delete_ctrl(ctrl);
1758         mutex_unlock(&subsys->lock);
1759 }
1760
1761 void nvmet_subsys_put(struct nvmet_subsys *subsys)
1762 {
1763         kref_put(&subsys->ref, nvmet_subsys_free);
1764 }
1765
1766 static int __init nvmet_init(void)
1767 {
1768         int error = -ENOMEM;
1769
1770         nvmet_ana_group_enabled[NVMET_DEFAULT_ANA_GRPID] = 1;
1771
1772         nvmet_bvec_cache = kmem_cache_create("nvmet-bvec",
1773                         NVMET_MAX_MPOOL_BVEC * sizeof(struct bio_vec), 0,
1774                         SLAB_HWCACHE_ALIGN, NULL);
1775         if (!nvmet_bvec_cache)
1776                 return -ENOMEM;
1777
1778         zbd_wq = alloc_workqueue("nvmet-zbd-wq", WQ_MEM_RECLAIM, 0);
1779         if (!zbd_wq)
1780                 goto out_destroy_bvec_cache;
1781
1782         buffered_io_wq = alloc_workqueue("nvmet-buffered-io-wq",
1783                         WQ_MEM_RECLAIM, 0);
1784         if (!buffered_io_wq)
1785                 goto out_free_zbd_work_queue;
1786
1787         nvmet_wq = alloc_workqueue("nvmet-wq",
1788                         WQ_MEM_RECLAIM | WQ_UNBOUND | WQ_SYSFS, 0);
1789         if (!nvmet_wq)
1790                 goto out_free_buffered_work_queue;
1791
1792         error = nvmet_init_discovery();
1793         if (error)
1794                 goto out_free_nvmet_work_queue;
1795
1796         error = nvmet_init_debugfs();
1797         if (error)
1798                 goto out_exit_discovery;
1799
1800         error = nvmet_init_configfs();
1801         if (error)
1802                 goto out_exit_debugfs;
1803
1804         return 0;
1805
1806 out_exit_debugfs:
1807         nvmet_exit_debugfs();
1808 out_exit_discovery:
1809         nvmet_exit_discovery();
1810 out_free_nvmet_work_queue:
1811         destroy_workqueue(nvmet_wq);
1812 out_free_buffered_work_queue:
1813         destroy_workqueue(buffered_io_wq);
1814 out_free_zbd_work_queue:
1815         destroy_workqueue(zbd_wq);
1816 out_destroy_bvec_cache:
1817         kmem_cache_destroy(nvmet_bvec_cache);
1818         return error;
1819 }
1820
1821 static void __exit nvmet_exit(void)
1822 {
1823         nvmet_exit_configfs();
1824         nvmet_exit_debugfs();
1825         nvmet_exit_discovery();
1826         ida_destroy(&cntlid_ida);
1827         destroy_workqueue(nvmet_wq);
1828         destroy_workqueue(buffered_io_wq);
1829         destroy_workqueue(zbd_wq);
1830         kmem_cache_destroy(nvmet_bvec_cache);
1831
1832         BUILD_BUG_ON(sizeof(struct nvmf_disc_rsp_page_entry) != 1024);
1833         BUILD_BUG_ON(sizeof(struct nvmf_disc_rsp_page_hdr) != 1024);
1834 }
1835
1836 module_init(nvmet_init);
1837 module_exit(nvmet_exit);
1838
1839 MODULE_DESCRIPTION("NVMe target core framework");
1840 MODULE_LICENSE("GPL v2");
This page took 0.128259 seconds and 4 git commands to generate.