1 // SPDX-License-Identifier: GPL-2.0
3 * Common code for the NVMe target.
4 * Copyright (c) 2015-2016 HGST, a Western Digital Company.
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 #include <linux/module.h>
8 #include <linux/random.h>
9 #include <linux/rculist.h>
10 #include <linux/pci-p2pdma.h>
11 #include <linux/scatterlist.h>
13 #include <generated/utsrelease.h>
15 #define CREATE_TRACE_POINTS
21 struct kmem_cache *nvmet_bvec_cache;
22 struct workqueue_struct *buffered_io_wq;
23 struct workqueue_struct *zbd_wq;
24 static const struct nvmet_fabrics_ops *nvmet_transports[NVMF_TRTYPE_MAX];
25 static DEFINE_IDA(cntlid_ida);
27 struct workqueue_struct *nvmet_wq;
28 EXPORT_SYMBOL_GPL(nvmet_wq);
31 * This read/write semaphore is used to synchronize access to configuration
32 * information on a target system that will result in discovery log page
33 * information change for at least one host.
34 * The full list of resources to protected by this semaphore is:
37 * - per-subsystem allowed hosts list
38 * - allow_any_host subsystem attribute
40 * - the nvmet_transports array
42 * When updating any of those lists/structures write lock should be obtained,
43 * while when reading (popolating discovery log page or checking host-subsystem
44 * link) read lock is obtained to allow concurrent reads.
46 DECLARE_RWSEM(nvmet_config_sem);
48 u32 nvmet_ana_group_enabled[NVMET_MAX_ANAGRPS + 1];
50 DECLARE_RWSEM(nvmet_ana_sem);
52 inline u16 errno_to_nvme_status(struct nvmet_req *req, int errno)
56 return NVME_SC_SUCCESS;
58 req->error_loc = offsetof(struct nvme_rw_command, length);
59 return NVME_SC_CAP_EXCEEDED | NVME_STATUS_DNR;
61 req->error_loc = offsetof(struct nvme_rw_command, slba);
62 return NVME_SC_LBA_RANGE | NVME_STATUS_DNR;
64 req->error_loc = offsetof(struct nvme_common_command, opcode);
65 switch (req->cmd->common.opcode) {
67 case nvme_cmd_write_zeroes:
68 return NVME_SC_ONCS_NOT_SUPPORTED | NVME_STATUS_DNR;
70 return NVME_SC_INVALID_OPCODE | NVME_STATUS_DNR;
74 req->error_loc = offsetof(struct nvme_rw_command, nsid);
75 return NVME_SC_ACCESS_DENIED;
79 req->error_loc = offsetof(struct nvme_common_command, opcode);
80 return NVME_SC_INTERNAL | NVME_STATUS_DNR;
84 u16 nvmet_report_invalid_opcode(struct nvmet_req *req)
86 pr_debug("unhandled cmd %d on qid %d\n", req->cmd->common.opcode,
89 req->error_loc = offsetof(struct nvme_common_command, opcode);
90 return NVME_SC_INVALID_OPCODE | NVME_STATUS_DNR;
93 static struct nvmet_subsys *nvmet_find_get_subsys(struct nvmet_port *port,
94 const char *subsysnqn);
96 u16 nvmet_copy_to_sgl(struct nvmet_req *req, off_t off, const void *buf,
99 if (sg_pcopy_from_buffer(req->sg, req->sg_cnt, buf, len, off) != len) {
100 req->error_loc = offsetof(struct nvme_common_command, dptr);
101 return NVME_SC_SGL_INVALID_DATA | NVME_STATUS_DNR;
106 u16 nvmet_copy_from_sgl(struct nvmet_req *req, off_t off, void *buf, size_t len)
108 if (sg_pcopy_to_buffer(req->sg, req->sg_cnt, buf, len, off) != len) {
109 req->error_loc = offsetof(struct nvme_common_command, dptr);
110 return NVME_SC_SGL_INVALID_DATA | NVME_STATUS_DNR;
115 u16 nvmet_zero_sgl(struct nvmet_req *req, off_t off, size_t len)
117 if (sg_zero_buffer(req->sg, req->sg_cnt, len, off) != len) {
118 req->error_loc = offsetof(struct nvme_common_command, dptr);
119 return NVME_SC_SGL_INVALID_DATA | NVME_STATUS_DNR;
124 static u32 nvmet_max_nsid(struct nvmet_subsys *subsys)
126 struct nvmet_ns *cur;
130 nvmet_for_each_enabled_ns(&subsys->namespaces, idx, cur)
136 static u32 nvmet_async_event_result(struct nvmet_async_event *aen)
138 return aen->event_type | (aen->event_info << 8) | (aen->log_page << 16);
141 static void nvmet_async_events_failall(struct nvmet_ctrl *ctrl)
143 struct nvmet_req *req;
145 mutex_lock(&ctrl->lock);
146 while (ctrl->nr_async_event_cmds) {
147 req = ctrl->async_event_cmds[--ctrl->nr_async_event_cmds];
148 mutex_unlock(&ctrl->lock);
149 nvmet_req_complete(req, NVME_SC_INTERNAL | NVME_STATUS_DNR);
150 mutex_lock(&ctrl->lock);
152 mutex_unlock(&ctrl->lock);
155 static void nvmet_async_events_process(struct nvmet_ctrl *ctrl)
157 struct nvmet_async_event *aen;
158 struct nvmet_req *req;
160 mutex_lock(&ctrl->lock);
161 while (ctrl->nr_async_event_cmds && !list_empty(&ctrl->async_events)) {
162 aen = list_first_entry(&ctrl->async_events,
163 struct nvmet_async_event, entry);
164 req = ctrl->async_event_cmds[--ctrl->nr_async_event_cmds];
165 nvmet_set_result(req, nvmet_async_event_result(aen));
167 list_del(&aen->entry);
170 mutex_unlock(&ctrl->lock);
171 trace_nvmet_async_event(ctrl, req->cqe->result.u32);
172 nvmet_req_complete(req, 0);
173 mutex_lock(&ctrl->lock);
175 mutex_unlock(&ctrl->lock);
178 static void nvmet_async_events_free(struct nvmet_ctrl *ctrl)
180 struct nvmet_async_event *aen, *tmp;
182 mutex_lock(&ctrl->lock);
183 list_for_each_entry_safe(aen, tmp, &ctrl->async_events, entry) {
184 list_del(&aen->entry);
187 mutex_unlock(&ctrl->lock);
190 static void nvmet_async_event_work(struct work_struct *work)
192 struct nvmet_ctrl *ctrl =
193 container_of(work, struct nvmet_ctrl, async_event_work);
195 nvmet_async_events_process(ctrl);
198 void nvmet_add_async_event(struct nvmet_ctrl *ctrl, u8 event_type,
199 u8 event_info, u8 log_page)
201 struct nvmet_async_event *aen;
203 aen = kmalloc(sizeof(*aen), GFP_KERNEL);
207 aen->event_type = event_type;
208 aen->event_info = event_info;
209 aen->log_page = log_page;
211 mutex_lock(&ctrl->lock);
212 list_add_tail(&aen->entry, &ctrl->async_events);
213 mutex_unlock(&ctrl->lock);
215 queue_work(nvmet_wq, &ctrl->async_event_work);
218 static void nvmet_add_to_changed_ns_log(struct nvmet_ctrl *ctrl, __le32 nsid)
222 mutex_lock(&ctrl->lock);
223 if (ctrl->nr_changed_ns > NVME_MAX_CHANGED_NAMESPACES)
226 for (i = 0; i < ctrl->nr_changed_ns; i++) {
227 if (ctrl->changed_ns_list[i] == nsid)
231 if (ctrl->nr_changed_ns == NVME_MAX_CHANGED_NAMESPACES) {
232 ctrl->changed_ns_list[0] = cpu_to_le32(0xffffffff);
233 ctrl->nr_changed_ns = U32_MAX;
237 ctrl->changed_ns_list[ctrl->nr_changed_ns++] = nsid;
239 mutex_unlock(&ctrl->lock);
242 void nvmet_ns_changed(struct nvmet_subsys *subsys, u32 nsid)
244 struct nvmet_ctrl *ctrl;
246 lockdep_assert_held(&subsys->lock);
248 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) {
249 nvmet_add_to_changed_ns_log(ctrl, cpu_to_le32(nsid));
250 if (nvmet_aen_bit_disabled(ctrl, NVME_AEN_BIT_NS_ATTR))
252 nvmet_add_async_event(ctrl, NVME_AER_NOTICE,
253 NVME_AER_NOTICE_NS_CHANGED,
254 NVME_LOG_CHANGED_NS);
258 void nvmet_send_ana_event(struct nvmet_subsys *subsys,
259 struct nvmet_port *port)
261 struct nvmet_ctrl *ctrl;
263 mutex_lock(&subsys->lock);
264 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) {
265 if (port && ctrl->port != port)
267 if (nvmet_aen_bit_disabled(ctrl, NVME_AEN_BIT_ANA_CHANGE))
269 nvmet_add_async_event(ctrl, NVME_AER_NOTICE,
270 NVME_AER_NOTICE_ANA, NVME_LOG_ANA);
272 mutex_unlock(&subsys->lock);
275 void nvmet_port_send_ana_event(struct nvmet_port *port)
277 struct nvmet_subsys_link *p;
279 down_read(&nvmet_config_sem);
280 list_for_each_entry(p, &port->subsystems, entry)
281 nvmet_send_ana_event(p->subsys, port);
282 up_read(&nvmet_config_sem);
285 int nvmet_register_transport(const struct nvmet_fabrics_ops *ops)
289 down_write(&nvmet_config_sem);
290 if (nvmet_transports[ops->type])
293 nvmet_transports[ops->type] = ops;
294 up_write(&nvmet_config_sem);
298 EXPORT_SYMBOL_GPL(nvmet_register_transport);
300 void nvmet_unregister_transport(const struct nvmet_fabrics_ops *ops)
302 down_write(&nvmet_config_sem);
303 nvmet_transports[ops->type] = NULL;
304 up_write(&nvmet_config_sem);
306 EXPORT_SYMBOL_GPL(nvmet_unregister_transport);
308 void nvmet_port_del_ctrls(struct nvmet_port *port, struct nvmet_subsys *subsys)
310 struct nvmet_ctrl *ctrl;
312 mutex_lock(&subsys->lock);
313 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) {
314 if (ctrl->port == port)
315 ctrl->ops->delete_ctrl(ctrl);
317 mutex_unlock(&subsys->lock);
320 int nvmet_enable_port(struct nvmet_port *port)
322 const struct nvmet_fabrics_ops *ops;
325 lockdep_assert_held(&nvmet_config_sem);
327 ops = nvmet_transports[port->disc_addr.trtype];
329 up_write(&nvmet_config_sem);
330 request_module("nvmet-transport-%d", port->disc_addr.trtype);
331 down_write(&nvmet_config_sem);
332 ops = nvmet_transports[port->disc_addr.trtype];
334 pr_err("transport type %d not supported\n",
335 port->disc_addr.trtype);
340 if (!try_module_get(ops->owner))
344 * If the user requested PI support and the transport isn't pi capable,
345 * don't enable the port.
347 if (port->pi_enable && !(ops->flags & NVMF_METADATA_SUPPORTED)) {
348 pr_err("T10-PI is not supported by transport type %d\n",
349 port->disc_addr.trtype);
354 ret = ops->add_port(port);
358 /* If the transport didn't set inline_data_size, then disable it. */
359 if (port->inline_data_size < 0)
360 port->inline_data_size = 0;
363 * If the transport didn't set the max_queue_size properly, then clamp
364 * it to the target limits. Also set default values in case the
365 * transport didn't set it at all.
367 if (port->max_queue_size < 0)
368 port->max_queue_size = NVMET_MAX_QUEUE_SIZE;
370 port->max_queue_size = clamp_t(int, port->max_queue_size,
371 NVMET_MIN_QUEUE_SIZE,
372 NVMET_MAX_QUEUE_SIZE);
374 port->enabled = true;
379 module_put(ops->owner);
383 void nvmet_disable_port(struct nvmet_port *port)
385 const struct nvmet_fabrics_ops *ops;
387 lockdep_assert_held(&nvmet_config_sem);
389 port->enabled = false;
392 ops = nvmet_transports[port->disc_addr.trtype];
393 ops->remove_port(port);
394 module_put(ops->owner);
397 static void nvmet_keep_alive_timer(struct work_struct *work)
399 struct nvmet_ctrl *ctrl = container_of(to_delayed_work(work),
400 struct nvmet_ctrl, ka_work);
401 bool reset_tbkas = ctrl->reset_tbkas;
403 ctrl->reset_tbkas = false;
405 pr_debug("ctrl %d reschedule traffic based keep-alive timer\n",
407 queue_delayed_work(nvmet_wq, &ctrl->ka_work, ctrl->kato * HZ);
411 pr_err("ctrl %d keep-alive timer (%d seconds) expired!\n",
412 ctrl->cntlid, ctrl->kato);
414 nvmet_ctrl_fatal_error(ctrl);
417 void nvmet_start_keep_alive_timer(struct nvmet_ctrl *ctrl)
419 if (unlikely(ctrl->kato == 0))
422 pr_debug("ctrl %d start keep-alive timer for %d secs\n",
423 ctrl->cntlid, ctrl->kato);
425 queue_delayed_work(nvmet_wq, &ctrl->ka_work, ctrl->kato * HZ);
428 void nvmet_stop_keep_alive_timer(struct nvmet_ctrl *ctrl)
430 if (unlikely(ctrl->kato == 0))
433 pr_debug("ctrl %d stop keep-alive\n", ctrl->cntlid);
435 cancel_delayed_work_sync(&ctrl->ka_work);
438 u16 nvmet_req_find_ns(struct nvmet_req *req)
440 u32 nsid = le32_to_cpu(req->cmd->common.nsid);
441 struct nvmet_subsys *subsys = nvmet_req_subsys(req);
443 req->ns = xa_load(&subsys->namespaces, nsid);
444 if (unlikely(!req->ns || !req->ns->enabled)) {
445 req->error_loc = offsetof(struct nvme_common_command, nsid);
446 if (!req->ns) /* ns doesn't exist! */
447 return NVME_SC_INVALID_NS | NVME_STATUS_DNR;
449 /* ns exists but it's disabled */
451 return NVME_SC_INTERNAL_PATH_ERROR;
454 percpu_ref_get(&req->ns->ref);
455 return NVME_SC_SUCCESS;
458 static void nvmet_destroy_namespace(struct percpu_ref *ref)
460 struct nvmet_ns *ns = container_of(ref, struct nvmet_ns, ref);
462 complete(&ns->disable_done);
465 void nvmet_put_namespace(struct nvmet_ns *ns)
467 percpu_ref_put(&ns->ref);
470 static void nvmet_ns_dev_disable(struct nvmet_ns *ns)
472 nvmet_bdev_ns_disable(ns);
473 nvmet_file_ns_disable(ns);
476 static int nvmet_p2pmem_ns_enable(struct nvmet_ns *ns)
479 struct pci_dev *p2p_dev;
485 pr_err("peer-to-peer DMA is not supported by non-block device namespaces\n");
489 if (!blk_queue_pci_p2pdma(ns->bdev->bd_disk->queue)) {
490 pr_err("peer-to-peer DMA is not supported by the driver of %s\n",
496 ret = pci_p2pdma_distance(ns->p2p_dev, nvmet_ns_dev(ns), true);
501 * Right now we just check that there is p2pmem available so
502 * we can report an error to the user right away if there
503 * is not. We'll find the actual device to use once we
504 * setup the controller when the port's device is available.
507 p2p_dev = pci_p2pmem_find(nvmet_ns_dev(ns));
509 pr_err("no peer-to-peer memory is available for %s\n",
514 pci_dev_put(p2p_dev);
521 * Note: ctrl->subsys->lock should be held when calling this function
523 static void nvmet_p2pmem_ns_add_p2p(struct nvmet_ctrl *ctrl,
526 struct device *clients[2];
527 struct pci_dev *p2p_dev;
530 if (!ctrl->p2p_client || !ns->use_p2pmem)
534 ret = pci_p2pdma_distance(ns->p2p_dev, ctrl->p2p_client, true);
538 p2p_dev = pci_dev_get(ns->p2p_dev);
540 clients[0] = ctrl->p2p_client;
541 clients[1] = nvmet_ns_dev(ns);
543 p2p_dev = pci_p2pmem_find_many(clients, ARRAY_SIZE(clients));
545 pr_err("no peer-to-peer memory is available that's supported by %s and %s\n",
546 dev_name(ctrl->p2p_client), ns->device_path);
551 ret = radix_tree_insert(&ctrl->p2p_ns_map, ns->nsid, p2p_dev);
553 pci_dev_put(p2p_dev);
555 pr_info("using p2pmem on %s for nsid %d\n", pci_name(p2p_dev),
559 bool nvmet_ns_revalidate(struct nvmet_ns *ns)
561 loff_t oldsize = ns->size;
564 nvmet_bdev_ns_revalidate(ns);
566 nvmet_file_ns_revalidate(ns);
568 return oldsize != ns->size;
571 int nvmet_ns_enable(struct nvmet_ns *ns)
573 struct nvmet_subsys *subsys = ns->subsys;
574 struct nvmet_ctrl *ctrl;
577 mutex_lock(&subsys->lock);
580 if (nvmet_is_passthru_subsys(subsys)) {
581 pr_info("cannot enable both passthru and regular namespaces for a single subsystem");
590 ret = nvmet_bdev_ns_enable(ns);
592 ret = nvmet_file_ns_enable(ns);
596 ret = nvmet_p2pmem_ns_enable(ns);
598 goto out_dev_disable;
600 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry)
601 nvmet_p2pmem_ns_add_p2p(ctrl, ns);
604 ret = nvmet_pr_init_ns(ns);
609 nvmet_ns_changed(subsys, ns->nsid);
611 xa_set_mark(&subsys->namespaces, ns->nsid, NVMET_NS_ENABLED);
614 mutex_unlock(&subsys->lock);
617 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry)
618 pci_dev_put(radix_tree_delete(&ctrl->p2p_ns_map, ns->nsid));
620 nvmet_ns_dev_disable(ns);
624 void nvmet_ns_disable(struct nvmet_ns *ns)
626 struct nvmet_subsys *subsys = ns->subsys;
627 struct nvmet_ctrl *ctrl;
629 mutex_lock(&subsys->lock);
634 xa_clear_mark(&subsys->namespaces, ns->nsid, NVMET_NS_ENABLED);
636 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry)
637 pci_dev_put(radix_tree_delete(&ctrl->p2p_ns_map, ns->nsid));
639 mutex_unlock(&subsys->lock);
642 nvmet_pr_exit_ns(ns);
644 mutex_lock(&subsys->lock);
645 nvmet_ns_changed(subsys, ns->nsid);
646 nvmet_ns_dev_disable(ns);
648 mutex_unlock(&subsys->lock);
651 void nvmet_ns_free(struct nvmet_ns *ns)
653 struct nvmet_subsys *subsys = ns->subsys;
655 nvmet_ns_disable(ns);
657 mutex_lock(&subsys->lock);
659 xa_erase(&subsys->namespaces, ns->nsid);
660 if (ns->nsid == subsys->max_nsid)
661 subsys->max_nsid = nvmet_max_nsid(subsys);
663 mutex_unlock(&subsys->lock);
666 * Now that we removed the namespaces from the lookup list, we
667 * can kill the per_cpu ref and wait for any remaining references
668 * to be dropped, as well as a RCU grace period for anyone only
669 * using the namepace under rcu_read_lock(). Note that we can't
670 * use call_rcu here as we need to ensure the namespaces have
671 * been fully destroyed before unloading the module.
673 percpu_ref_kill(&ns->ref);
675 wait_for_completion(&ns->disable_done);
676 percpu_ref_exit(&ns->ref);
678 mutex_lock(&subsys->lock);
679 subsys->nr_namespaces--;
680 mutex_unlock(&subsys->lock);
682 down_write(&nvmet_ana_sem);
683 nvmet_ana_group_enabled[ns->anagrpid]--;
684 up_write(&nvmet_ana_sem);
686 kfree(ns->device_path);
690 struct nvmet_ns *nvmet_ns_alloc(struct nvmet_subsys *subsys, u32 nsid)
694 mutex_lock(&subsys->lock);
696 if (subsys->nr_namespaces == NVMET_MAX_NAMESPACES)
699 ns = kzalloc(sizeof(*ns), GFP_KERNEL);
703 init_completion(&ns->disable_done);
708 if (percpu_ref_init(&ns->ref, nvmet_destroy_namespace, 0, GFP_KERNEL))
711 if (ns->nsid > subsys->max_nsid)
712 subsys->max_nsid = nsid;
714 if (xa_insert(&subsys->namespaces, ns->nsid, ns, GFP_KERNEL))
717 subsys->nr_namespaces++;
719 mutex_unlock(&subsys->lock);
721 down_write(&nvmet_ana_sem);
722 ns->anagrpid = NVMET_DEFAULT_ANA_GRPID;
723 nvmet_ana_group_enabled[ns->anagrpid]++;
724 up_write(&nvmet_ana_sem);
727 ns->buffered_io = false;
728 ns->csi = NVME_CSI_NVM;
732 subsys->max_nsid = nvmet_max_nsid(subsys);
733 percpu_ref_exit(&ns->ref);
737 mutex_unlock(&subsys->lock);
741 static void nvmet_update_sq_head(struct nvmet_req *req)
744 u32 old_sqhd, new_sqhd;
746 old_sqhd = READ_ONCE(req->sq->sqhd);
748 new_sqhd = (old_sqhd + 1) % req->sq->size;
749 } while (!try_cmpxchg(&req->sq->sqhd, &old_sqhd, new_sqhd));
751 req->cqe->sq_head = cpu_to_le16(req->sq->sqhd & 0x0000FFFF);
754 static void nvmet_set_error(struct nvmet_req *req, u16 status)
756 struct nvmet_ctrl *ctrl = req->sq->ctrl;
757 struct nvme_error_slot *new_error_slot;
760 req->cqe->status = cpu_to_le16(status << 1);
762 if (!ctrl || req->error_loc == NVMET_NO_ERROR_LOC)
765 spin_lock_irqsave(&ctrl->error_lock, flags);
768 &ctrl->slots[ctrl->err_counter % NVMET_ERROR_LOG_SLOTS];
770 new_error_slot->error_count = cpu_to_le64(ctrl->err_counter);
771 new_error_slot->sqid = cpu_to_le16(req->sq->qid);
772 new_error_slot->cmdid = cpu_to_le16(req->cmd->common.command_id);
773 new_error_slot->status_field = cpu_to_le16(status << 1);
774 new_error_slot->param_error_location = cpu_to_le16(req->error_loc);
775 new_error_slot->lba = cpu_to_le64(req->error_slba);
776 new_error_slot->nsid = req->cmd->common.nsid;
777 spin_unlock_irqrestore(&ctrl->error_lock, flags);
779 /* set the more bit for this request */
780 req->cqe->status |= cpu_to_le16(1 << 14);
783 static void __nvmet_req_complete(struct nvmet_req *req, u16 status)
785 struct nvmet_ns *ns = req->ns;
786 struct nvmet_pr_per_ctrl_ref *pc_ref = req->pc_ref;
788 if (!req->sq->sqhd_disabled)
789 nvmet_update_sq_head(req);
790 req->cqe->sq_id = cpu_to_le16(req->sq->qid);
791 req->cqe->command_id = req->cmd->common.command_id;
793 if (unlikely(status))
794 nvmet_set_error(req, status);
796 trace_nvmet_req_complete(req);
798 req->ops->queue_response(req);
801 nvmet_pr_put_ns_pc_ref(pc_ref);
803 nvmet_put_namespace(ns);
806 void nvmet_req_complete(struct nvmet_req *req, u16 status)
808 struct nvmet_sq *sq = req->sq;
810 __nvmet_req_complete(req, status);
811 percpu_ref_put(&sq->ref);
813 EXPORT_SYMBOL_GPL(nvmet_req_complete);
815 void nvmet_cq_setup(struct nvmet_ctrl *ctrl, struct nvmet_cq *cq,
822 void nvmet_sq_setup(struct nvmet_ctrl *ctrl, struct nvmet_sq *sq,
832 static void nvmet_confirm_sq(struct percpu_ref *ref)
834 struct nvmet_sq *sq = container_of(ref, struct nvmet_sq, ref);
836 complete(&sq->confirm_done);
839 void nvmet_sq_destroy(struct nvmet_sq *sq)
841 struct nvmet_ctrl *ctrl = sq->ctrl;
844 * If this is the admin queue, complete all AERs so that our
845 * queue doesn't have outstanding requests on it.
847 if (ctrl && ctrl->sqs && ctrl->sqs[0] == sq)
848 nvmet_async_events_failall(ctrl);
849 percpu_ref_kill_and_confirm(&sq->ref, nvmet_confirm_sq);
850 wait_for_completion(&sq->confirm_done);
851 wait_for_completion(&sq->free_done);
852 percpu_ref_exit(&sq->ref);
853 nvmet_auth_sq_free(sq);
856 * we must reference the ctrl again after waiting for inflight IO
857 * to complete. Because admin connect may have sneaked in after we
858 * store sq->ctrl locally, but before we killed the percpu_ref. the
859 * admin connect allocates and assigns sq->ctrl, which now needs a
860 * final ref put, as this ctrl is going away.
866 * The teardown flow may take some time, and the host may not
867 * send us keep-alive during this period, hence reset the
868 * traffic based keep-alive timer so we don't trigger a
869 * controller teardown as a result of a keep-alive expiration.
871 ctrl->reset_tbkas = true;
872 sq->ctrl->sqs[sq->qid] = NULL;
873 nvmet_ctrl_put(ctrl);
874 sq->ctrl = NULL; /* allows reusing the queue later */
877 EXPORT_SYMBOL_GPL(nvmet_sq_destroy);
879 static void nvmet_sq_free(struct percpu_ref *ref)
881 struct nvmet_sq *sq = container_of(ref, struct nvmet_sq, ref);
883 complete(&sq->free_done);
886 int nvmet_sq_init(struct nvmet_sq *sq)
890 ret = percpu_ref_init(&sq->ref, nvmet_sq_free, 0, GFP_KERNEL);
892 pr_err("percpu_ref init failed!\n");
895 init_completion(&sq->free_done);
896 init_completion(&sq->confirm_done);
897 nvmet_auth_sq_init(sq);
901 EXPORT_SYMBOL_GPL(nvmet_sq_init);
903 static inline u16 nvmet_check_ana_state(struct nvmet_port *port,
906 enum nvme_ana_state state = port->ana_state[ns->anagrpid];
908 if (unlikely(state == NVME_ANA_INACCESSIBLE))
909 return NVME_SC_ANA_INACCESSIBLE;
910 if (unlikely(state == NVME_ANA_PERSISTENT_LOSS))
911 return NVME_SC_ANA_PERSISTENT_LOSS;
912 if (unlikely(state == NVME_ANA_CHANGE))
913 return NVME_SC_ANA_TRANSITION;
917 static inline u16 nvmet_io_cmd_check_access(struct nvmet_req *req)
919 if (unlikely(req->ns->readonly)) {
920 switch (req->cmd->common.opcode) {
925 return NVME_SC_NS_WRITE_PROTECTED;
932 static u16 nvmet_parse_io_cmd(struct nvmet_req *req)
934 struct nvme_command *cmd = req->cmd;
937 if (nvme_is_fabrics(cmd))
938 return nvmet_parse_fabrics_io_cmd(req);
940 if (unlikely(!nvmet_check_auth_status(req)))
941 return NVME_SC_AUTH_REQUIRED | NVME_STATUS_DNR;
943 ret = nvmet_check_ctrl_status(req);
947 if (nvmet_is_passthru_req(req))
948 return nvmet_parse_passthru_io_cmd(req);
950 ret = nvmet_req_find_ns(req);
954 ret = nvmet_check_ana_state(req->port, req->ns);
956 req->error_loc = offsetof(struct nvme_common_command, nsid);
959 ret = nvmet_io_cmd_check_access(req);
961 req->error_loc = offsetof(struct nvme_common_command, nsid);
965 if (req->ns->pr.enable) {
966 ret = nvmet_parse_pr_cmd(req);
971 switch (req->ns->csi) {
974 ret = nvmet_file_parse_io_cmd(req);
976 ret = nvmet_bdev_parse_io_cmd(req);
979 if (IS_ENABLED(CONFIG_BLK_DEV_ZONED))
980 ret = nvmet_bdev_zns_parse_io_cmd(req);
982 ret = NVME_SC_INVALID_IO_CMD_SET;
985 ret = NVME_SC_INVALID_IO_CMD_SET;
990 if (req->ns->pr.enable) {
991 ret = nvmet_pr_check_cmd_access(req);
995 ret = nvmet_pr_get_ns_pc_ref(req);
1000 bool nvmet_req_init(struct nvmet_req *req, struct nvmet_cq *cq,
1001 struct nvmet_sq *sq, const struct nvmet_fabrics_ops *ops)
1003 u8 flags = req->cmd->common.flags;
1010 req->metadata_sg = NULL;
1012 req->metadata_sg_cnt = 0;
1013 req->transfer_len = 0;
1014 req->metadata_len = 0;
1015 req->cqe->result.u64 = 0;
1016 req->cqe->status = 0;
1017 req->cqe->sq_head = 0;
1019 req->error_loc = NVMET_NO_ERROR_LOC;
1020 req->error_slba = 0;
1023 /* no support for fused commands yet */
1024 if (unlikely(flags & (NVME_CMD_FUSE_FIRST | NVME_CMD_FUSE_SECOND))) {
1025 req->error_loc = offsetof(struct nvme_common_command, flags);
1026 status = NVME_SC_INVALID_FIELD | NVME_STATUS_DNR;
1031 * For fabrics, PSDT field shall describe metadata pointer (MPTR) that
1032 * contains an address of a single contiguous physical buffer that is
1035 if (unlikely((flags & NVME_CMD_SGL_ALL) != NVME_CMD_SGL_METABUF)) {
1036 req->error_loc = offsetof(struct nvme_common_command, flags);
1037 status = NVME_SC_INVALID_FIELD | NVME_STATUS_DNR;
1041 if (unlikely(!req->sq->ctrl))
1042 /* will return an error for any non-connect command: */
1043 status = nvmet_parse_connect_cmd(req);
1044 else if (likely(req->sq->qid != 0))
1045 status = nvmet_parse_io_cmd(req);
1047 status = nvmet_parse_admin_cmd(req);
1052 trace_nvmet_req_init(req, req->cmd);
1054 if (unlikely(!percpu_ref_tryget_live(&sq->ref))) {
1055 status = NVME_SC_INVALID_FIELD | NVME_STATUS_DNR;
1060 sq->ctrl->reset_tbkas = true;
1065 __nvmet_req_complete(req, status);
1068 EXPORT_SYMBOL_GPL(nvmet_req_init);
1070 void nvmet_req_uninit(struct nvmet_req *req)
1072 percpu_ref_put(&req->sq->ref);
1074 nvmet_pr_put_ns_pc_ref(req->pc_ref);
1076 nvmet_put_namespace(req->ns);
1078 EXPORT_SYMBOL_GPL(nvmet_req_uninit);
1080 bool nvmet_check_transfer_len(struct nvmet_req *req, size_t len)
1082 if (unlikely(len != req->transfer_len)) {
1083 req->error_loc = offsetof(struct nvme_common_command, dptr);
1084 nvmet_req_complete(req, NVME_SC_SGL_INVALID_DATA | NVME_STATUS_DNR);
1090 EXPORT_SYMBOL_GPL(nvmet_check_transfer_len);
1092 bool nvmet_check_data_len_lte(struct nvmet_req *req, size_t data_len)
1094 if (unlikely(data_len > req->transfer_len)) {
1095 req->error_loc = offsetof(struct nvme_common_command, dptr);
1096 nvmet_req_complete(req, NVME_SC_SGL_INVALID_DATA | NVME_STATUS_DNR);
1103 static unsigned int nvmet_data_transfer_len(struct nvmet_req *req)
1105 return req->transfer_len - req->metadata_len;
1108 static int nvmet_req_alloc_p2pmem_sgls(struct pci_dev *p2p_dev,
1109 struct nvmet_req *req)
1111 req->sg = pci_p2pmem_alloc_sgl(p2p_dev, &req->sg_cnt,
1112 nvmet_data_transfer_len(req));
1116 if (req->metadata_len) {
1117 req->metadata_sg = pci_p2pmem_alloc_sgl(p2p_dev,
1118 &req->metadata_sg_cnt, req->metadata_len);
1119 if (!req->metadata_sg)
1123 req->p2p_dev = p2p_dev;
1127 pci_p2pmem_free_sgl(req->p2p_dev, req->sg);
1132 static struct pci_dev *nvmet_req_find_p2p_dev(struct nvmet_req *req)
1134 if (!IS_ENABLED(CONFIG_PCI_P2PDMA) ||
1135 !req->sq->ctrl || !req->sq->qid || !req->ns)
1137 return radix_tree_lookup(&req->sq->ctrl->p2p_ns_map, req->ns->nsid);
1140 int nvmet_req_alloc_sgls(struct nvmet_req *req)
1142 struct pci_dev *p2p_dev = nvmet_req_find_p2p_dev(req);
1144 if (p2p_dev && !nvmet_req_alloc_p2pmem_sgls(p2p_dev, req))
1147 req->sg = sgl_alloc(nvmet_data_transfer_len(req), GFP_KERNEL,
1149 if (unlikely(!req->sg))
1152 if (req->metadata_len) {
1153 req->metadata_sg = sgl_alloc(req->metadata_len, GFP_KERNEL,
1154 &req->metadata_sg_cnt);
1155 if (unlikely(!req->metadata_sg))
1165 EXPORT_SYMBOL_GPL(nvmet_req_alloc_sgls);
1167 void nvmet_req_free_sgls(struct nvmet_req *req)
1170 pci_p2pmem_free_sgl(req->p2p_dev, req->sg);
1171 if (req->metadata_sg)
1172 pci_p2pmem_free_sgl(req->p2p_dev, req->metadata_sg);
1173 req->p2p_dev = NULL;
1176 if (req->metadata_sg)
1177 sgl_free(req->metadata_sg);
1181 req->metadata_sg = NULL;
1183 req->metadata_sg_cnt = 0;
1185 EXPORT_SYMBOL_GPL(nvmet_req_free_sgls);
1187 static inline bool nvmet_cc_en(u32 cc)
1189 return (cc >> NVME_CC_EN_SHIFT) & 0x1;
1192 static inline u8 nvmet_cc_css(u32 cc)
1194 return (cc >> NVME_CC_CSS_SHIFT) & 0x7;
1197 static inline u8 nvmet_cc_mps(u32 cc)
1199 return (cc >> NVME_CC_MPS_SHIFT) & 0xf;
1202 static inline u8 nvmet_cc_ams(u32 cc)
1204 return (cc >> NVME_CC_AMS_SHIFT) & 0x7;
1207 static inline u8 nvmet_cc_shn(u32 cc)
1209 return (cc >> NVME_CC_SHN_SHIFT) & 0x3;
1212 static inline u8 nvmet_cc_iosqes(u32 cc)
1214 return (cc >> NVME_CC_IOSQES_SHIFT) & 0xf;
1217 static inline u8 nvmet_cc_iocqes(u32 cc)
1219 return (cc >> NVME_CC_IOCQES_SHIFT) & 0xf;
1222 static inline bool nvmet_css_supported(u8 cc_css)
1224 switch (cc_css << NVME_CC_CSS_SHIFT) {
1225 case NVME_CC_CSS_NVM:
1226 case NVME_CC_CSS_CSI:
1233 static void nvmet_start_ctrl(struct nvmet_ctrl *ctrl)
1235 lockdep_assert_held(&ctrl->lock);
1238 * Only I/O controllers should verify iosqes,iocqes.
1239 * Strictly speaking, the spec says a discovery controller
1240 * should verify iosqes,iocqes are zeroed, however that
1241 * would break backwards compatibility, so don't enforce it.
1243 if (!nvmet_is_disc_subsys(ctrl->subsys) &&
1244 (nvmet_cc_iosqes(ctrl->cc) != NVME_NVM_IOSQES ||
1245 nvmet_cc_iocqes(ctrl->cc) != NVME_NVM_IOCQES)) {
1246 ctrl->csts = NVME_CSTS_CFS;
1250 if (nvmet_cc_mps(ctrl->cc) != 0 ||
1251 nvmet_cc_ams(ctrl->cc) != 0 ||
1252 !nvmet_css_supported(nvmet_cc_css(ctrl->cc))) {
1253 ctrl->csts = NVME_CSTS_CFS;
1257 ctrl->csts = NVME_CSTS_RDY;
1260 * Controllers that are not yet enabled should not really enforce the
1261 * keep alive timeout, but we still want to track a timeout and cleanup
1262 * in case a host died before it enabled the controller. Hence, simply
1263 * reset the keep alive timer when the controller is enabled.
1266 mod_delayed_work(nvmet_wq, &ctrl->ka_work, ctrl->kato * HZ);
1269 static void nvmet_clear_ctrl(struct nvmet_ctrl *ctrl)
1271 lockdep_assert_held(&ctrl->lock);
1273 /* XXX: tear down queues? */
1274 ctrl->csts &= ~NVME_CSTS_RDY;
1278 void nvmet_update_cc(struct nvmet_ctrl *ctrl, u32 new)
1282 mutex_lock(&ctrl->lock);
1286 if (nvmet_cc_en(new) && !nvmet_cc_en(old))
1287 nvmet_start_ctrl(ctrl);
1288 if (!nvmet_cc_en(new) && nvmet_cc_en(old))
1289 nvmet_clear_ctrl(ctrl);
1290 if (nvmet_cc_shn(new) && !nvmet_cc_shn(old)) {
1291 nvmet_clear_ctrl(ctrl);
1292 ctrl->csts |= NVME_CSTS_SHST_CMPLT;
1294 if (!nvmet_cc_shn(new) && nvmet_cc_shn(old))
1295 ctrl->csts &= ~NVME_CSTS_SHST_CMPLT;
1296 mutex_unlock(&ctrl->lock);
1299 static void nvmet_init_cap(struct nvmet_ctrl *ctrl)
1301 /* command sets supported: NVMe command set: */
1302 ctrl->cap = (1ULL << 37);
1303 /* Controller supports one or more I/O Command Sets */
1304 ctrl->cap |= (1ULL << 43);
1305 /* CC.EN timeout in 500msec units: */
1306 ctrl->cap |= (15ULL << 24);
1307 /* maximum queue entries supported: */
1308 if (ctrl->ops->get_max_queue_size)
1309 ctrl->cap |= min_t(u16, ctrl->ops->get_max_queue_size(ctrl),
1310 ctrl->port->max_queue_size) - 1;
1312 ctrl->cap |= ctrl->port->max_queue_size - 1;
1314 if (nvmet_is_passthru_subsys(ctrl->subsys))
1315 nvmet_passthrough_override_cap(ctrl);
1318 struct nvmet_ctrl *nvmet_ctrl_find_get(const char *subsysnqn,
1319 const char *hostnqn, u16 cntlid,
1320 struct nvmet_req *req)
1322 struct nvmet_ctrl *ctrl = NULL;
1323 struct nvmet_subsys *subsys;
1325 subsys = nvmet_find_get_subsys(req->port, subsysnqn);
1327 pr_warn("connect request for invalid subsystem %s!\n",
1329 req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(subsysnqn);
1333 mutex_lock(&subsys->lock);
1334 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) {
1335 if (ctrl->cntlid == cntlid) {
1336 if (strncmp(hostnqn, ctrl->hostnqn, NVMF_NQN_SIZE)) {
1337 pr_warn("hostnqn mismatch.\n");
1340 if (!kref_get_unless_zero(&ctrl->ref))
1348 ctrl = NULL; /* ctrl not found */
1349 pr_warn("could not find controller %d for subsys %s / host %s\n",
1350 cntlid, subsysnqn, hostnqn);
1351 req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(cntlid);
1354 mutex_unlock(&subsys->lock);
1355 nvmet_subsys_put(subsys);
1360 u16 nvmet_check_ctrl_status(struct nvmet_req *req)
1362 if (unlikely(!(req->sq->ctrl->cc & NVME_CC_ENABLE))) {
1363 pr_err("got cmd %d while CC.EN == 0 on qid = %d\n",
1364 req->cmd->common.opcode, req->sq->qid);
1365 return NVME_SC_CMD_SEQ_ERROR | NVME_STATUS_DNR;
1368 if (unlikely(!(req->sq->ctrl->csts & NVME_CSTS_RDY))) {
1369 pr_err("got cmd %d while CSTS.RDY == 0 on qid = %d\n",
1370 req->cmd->common.opcode, req->sq->qid);
1371 return NVME_SC_CMD_SEQ_ERROR | NVME_STATUS_DNR;
1374 if (unlikely(!nvmet_check_auth_status(req))) {
1375 pr_warn("qid %d not authenticated\n", req->sq->qid);
1376 return NVME_SC_AUTH_REQUIRED | NVME_STATUS_DNR;
1381 bool nvmet_host_allowed(struct nvmet_subsys *subsys, const char *hostnqn)
1383 struct nvmet_host_link *p;
1385 lockdep_assert_held(&nvmet_config_sem);
1387 if (subsys->allow_any_host)
1390 if (nvmet_is_disc_subsys(subsys)) /* allow all access to disc subsys */
1393 list_for_each_entry(p, &subsys->hosts, entry) {
1394 if (!strcmp(nvmet_host_name(p->host), hostnqn))
1402 * Note: ctrl->subsys->lock should be held when calling this function
1404 static void nvmet_setup_p2p_ns_map(struct nvmet_ctrl *ctrl,
1405 struct nvmet_req *req)
1407 struct nvmet_ns *ns;
1410 if (!req->p2p_client)
1413 ctrl->p2p_client = get_device(req->p2p_client);
1415 nvmet_for_each_enabled_ns(&ctrl->subsys->namespaces, idx, ns)
1416 nvmet_p2pmem_ns_add_p2p(ctrl, ns);
1420 * Note: ctrl->subsys->lock should be held when calling this function
1422 static void nvmet_release_p2p_ns_map(struct nvmet_ctrl *ctrl)
1424 struct radix_tree_iter iter;
1427 radix_tree_for_each_slot(slot, &ctrl->p2p_ns_map, &iter, 0)
1428 pci_dev_put(radix_tree_deref_slot(slot));
1430 put_device(ctrl->p2p_client);
1433 static void nvmet_fatal_error_handler(struct work_struct *work)
1435 struct nvmet_ctrl *ctrl =
1436 container_of(work, struct nvmet_ctrl, fatal_err_work);
1438 pr_err("ctrl %d fatal error occurred!\n", ctrl->cntlid);
1439 ctrl->ops->delete_ctrl(ctrl);
1442 u16 nvmet_alloc_ctrl(const char *subsysnqn, const char *hostnqn,
1443 struct nvmet_req *req, u32 kato, struct nvmet_ctrl **ctrlp,
1446 struct nvmet_subsys *subsys;
1447 struct nvmet_ctrl *ctrl;
1451 status = NVME_SC_CONNECT_INVALID_PARAM | NVME_STATUS_DNR;
1452 subsys = nvmet_find_get_subsys(req->port, subsysnqn);
1454 pr_warn("connect request for invalid subsystem %s!\n",
1456 req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(subsysnqn);
1457 req->error_loc = offsetof(struct nvme_common_command, dptr);
1461 down_read(&nvmet_config_sem);
1462 if (!nvmet_host_allowed(subsys, hostnqn)) {
1463 pr_info("connect by host %s for subsystem %s not allowed\n",
1464 hostnqn, subsysnqn);
1465 req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(hostnqn);
1466 up_read(&nvmet_config_sem);
1467 status = NVME_SC_CONNECT_INVALID_HOST | NVME_STATUS_DNR;
1468 req->error_loc = offsetof(struct nvme_common_command, dptr);
1469 goto out_put_subsystem;
1471 up_read(&nvmet_config_sem);
1473 status = NVME_SC_INTERNAL;
1474 ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
1476 goto out_put_subsystem;
1477 mutex_init(&ctrl->lock);
1479 ctrl->port = req->port;
1480 ctrl->ops = req->ops;
1482 #ifdef CONFIG_NVME_TARGET_PASSTHRU
1483 /* By default, set loop targets to clear IDS by default */
1484 if (ctrl->port->disc_addr.trtype == NVMF_TRTYPE_LOOP)
1485 subsys->clear_ids = 1;
1488 INIT_WORK(&ctrl->async_event_work, nvmet_async_event_work);
1489 INIT_LIST_HEAD(&ctrl->async_events);
1490 INIT_RADIX_TREE(&ctrl->p2p_ns_map, GFP_KERNEL);
1491 INIT_WORK(&ctrl->fatal_err_work, nvmet_fatal_error_handler);
1492 INIT_DELAYED_WORK(&ctrl->ka_work, nvmet_keep_alive_timer);
1494 memcpy(ctrl->subsysnqn, subsysnqn, NVMF_NQN_SIZE);
1495 memcpy(ctrl->hostnqn, hostnqn, NVMF_NQN_SIZE);
1497 kref_init(&ctrl->ref);
1498 ctrl->subsys = subsys;
1499 ctrl->pi_support = ctrl->port->pi_enable && ctrl->subsys->pi_support;
1500 nvmet_init_cap(ctrl);
1501 WRITE_ONCE(ctrl->aen_enabled, NVMET_AEN_CFG_OPTIONAL);
1503 ctrl->changed_ns_list = kmalloc_array(NVME_MAX_CHANGED_NAMESPACES,
1504 sizeof(__le32), GFP_KERNEL);
1505 if (!ctrl->changed_ns_list)
1508 ctrl->sqs = kcalloc(subsys->max_qid + 1,
1509 sizeof(struct nvmet_sq *),
1512 goto out_free_changed_ns_list;
1514 ret = ida_alloc_range(&cntlid_ida,
1515 subsys->cntlid_min, subsys->cntlid_max,
1518 status = NVME_SC_CONNECT_CTRL_BUSY | NVME_STATUS_DNR;
1523 uuid_copy(&ctrl->hostid, hostid);
1526 * Discovery controllers may use some arbitrary high value
1527 * in order to cleanup stale discovery sessions
1529 if (nvmet_is_disc_subsys(ctrl->subsys) && !kato)
1530 kato = NVMET_DISC_KATO_MS;
1532 /* keep-alive timeout in seconds */
1533 ctrl->kato = DIV_ROUND_UP(kato, 1000);
1535 ctrl->err_counter = 0;
1536 spin_lock_init(&ctrl->error_lock);
1538 nvmet_start_keep_alive_timer(ctrl);
1540 mutex_lock(&subsys->lock);
1541 ret = nvmet_ctrl_init_pr(ctrl);
1544 list_add_tail(&ctrl->subsys_entry, &subsys->ctrls);
1545 nvmet_setup_p2p_ns_map(ctrl, req);
1546 nvmet_debugfs_ctrl_setup(ctrl);
1547 mutex_unlock(&subsys->lock);
1553 mutex_unlock(&subsys->lock);
1554 nvmet_stop_keep_alive_timer(ctrl);
1555 ida_free(&cntlid_ida, ctrl->cntlid);
1558 out_free_changed_ns_list:
1559 kfree(ctrl->changed_ns_list);
1563 nvmet_subsys_put(subsys);
1568 static void nvmet_ctrl_free(struct kref *ref)
1570 struct nvmet_ctrl *ctrl = container_of(ref, struct nvmet_ctrl, ref);
1571 struct nvmet_subsys *subsys = ctrl->subsys;
1573 mutex_lock(&subsys->lock);
1574 nvmet_ctrl_destroy_pr(ctrl);
1575 nvmet_release_p2p_ns_map(ctrl);
1576 list_del(&ctrl->subsys_entry);
1577 mutex_unlock(&subsys->lock);
1579 nvmet_stop_keep_alive_timer(ctrl);
1581 flush_work(&ctrl->async_event_work);
1582 cancel_work_sync(&ctrl->fatal_err_work);
1584 nvmet_destroy_auth(ctrl);
1586 nvmet_debugfs_ctrl_free(ctrl);
1588 ida_free(&cntlid_ida, ctrl->cntlid);
1590 nvmet_async_events_free(ctrl);
1592 kfree(ctrl->changed_ns_list);
1595 nvmet_subsys_put(subsys);
1598 void nvmet_ctrl_put(struct nvmet_ctrl *ctrl)
1600 kref_put(&ctrl->ref, nvmet_ctrl_free);
1603 void nvmet_ctrl_fatal_error(struct nvmet_ctrl *ctrl)
1605 mutex_lock(&ctrl->lock);
1606 if (!(ctrl->csts & NVME_CSTS_CFS)) {
1607 ctrl->csts |= NVME_CSTS_CFS;
1608 queue_work(nvmet_wq, &ctrl->fatal_err_work);
1610 mutex_unlock(&ctrl->lock);
1612 EXPORT_SYMBOL_GPL(nvmet_ctrl_fatal_error);
1614 ssize_t nvmet_ctrl_host_traddr(struct nvmet_ctrl *ctrl,
1615 char *traddr, size_t traddr_len)
1617 if (!ctrl->ops->host_traddr)
1619 return ctrl->ops->host_traddr(ctrl, traddr, traddr_len);
1622 static struct nvmet_subsys *nvmet_find_get_subsys(struct nvmet_port *port,
1623 const char *subsysnqn)
1625 struct nvmet_subsys_link *p;
1630 if (!strcmp(NVME_DISC_SUBSYS_NAME, subsysnqn)) {
1631 if (!kref_get_unless_zero(&nvmet_disc_subsys->ref))
1633 return nvmet_disc_subsys;
1636 down_read(&nvmet_config_sem);
1637 if (!strncmp(nvmet_disc_subsys->subsysnqn, subsysnqn,
1639 if (kref_get_unless_zero(&nvmet_disc_subsys->ref)) {
1640 up_read(&nvmet_config_sem);
1641 return nvmet_disc_subsys;
1644 list_for_each_entry(p, &port->subsystems, entry) {
1645 if (!strncmp(p->subsys->subsysnqn, subsysnqn,
1647 if (!kref_get_unless_zero(&p->subsys->ref))
1649 up_read(&nvmet_config_sem);
1653 up_read(&nvmet_config_sem);
1657 struct nvmet_subsys *nvmet_subsys_alloc(const char *subsysnqn,
1658 enum nvme_subsys_type type)
1660 struct nvmet_subsys *subsys;
1661 char serial[NVMET_SN_MAX_SIZE / 2];
1664 subsys = kzalloc(sizeof(*subsys), GFP_KERNEL);
1666 return ERR_PTR(-ENOMEM);
1668 subsys->ver = NVMET_DEFAULT_VS;
1669 /* generate a random serial number as our controllers are ephemeral: */
1670 get_random_bytes(&serial, sizeof(serial));
1671 bin2hex(subsys->serial, &serial, sizeof(serial));
1673 subsys->model_number = kstrdup(NVMET_DEFAULT_CTRL_MODEL, GFP_KERNEL);
1674 if (!subsys->model_number) {
1679 subsys->ieee_oui = 0;
1681 subsys->firmware_rev = kstrndup(UTS_RELEASE, NVMET_FR_MAX_SIZE, GFP_KERNEL);
1682 if (!subsys->firmware_rev) {
1689 subsys->max_qid = NVMET_NR_QUEUES;
1693 subsys->max_qid = 0;
1696 pr_err("%s: Unknown Subsystem type - %d\n", __func__, type);
1700 subsys->type = type;
1701 subsys->subsysnqn = kstrndup(subsysnqn, NVMF_NQN_SIZE,
1703 if (!subsys->subsysnqn) {
1707 subsys->cntlid_min = NVME_CNTLID_MIN;
1708 subsys->cntlid_max = NVME_CNTLID_MAX;
1709 kref_init(&subsys->ref);
1711 mutex_init(&subsys->lock);
1712 xa_init(&subsys->namespaces);
1713 INIT_LIST_HEAD(&subsys->ctrls);
1714 INIT_LIST_HEAD(&subsys->hosts);
1716 ret = nvmet_debugfs_subsys_setup(subsys);
1718 goto free_subsysnqn;
1723 kfree(subsys->subsysnqn);
1725 kfree(subsys->firmware_rev);
1727 kfree(subsys->model_number);
1730 return ERR_PTR(ret);
1733 static void nvmet_subsys_free(struct kref *ref)
1735 struct nvmet_subsys *subsys =
1736 container_of(ref, struct nvmet_subsys, ref);
1738 WARN_ON_ONCE(!xa_empty(&subsys->namespaces));
1740 nvmet_debugfs_subsys_free(subsys);
1742 xa_destroy(&subsys->namespaces);
1743 nvmet_passthru_subsys_free(subsys);
1745 kfree(subsys->subsysnqn);
1746 kfree(subsys->model_number);
1747 kfree(subsys->firmware_rev);
1751 void nvmet_subsys_del_ctrls(struct nvmet_subsys *subsys)
1753 struct nvmet_ctrl *ctrl;
1755 mutex_lock(&subsys->lock);
1756 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry)
1757 ctrl->ops->delete_ctrl(ctrl);
1758 mutex_unlock(&subsys->lock);
1761 void nvmet_subsys_put(struct nvmet_subsys *subsys)
1763 kref_put(&subsys->ref, nvmet_subsys_free);
1766 static int __init nvmet_init(void)
1768 int error = -ENOMEM;
1770 nvmet_ana_group_enabled[NVMET_DEFAULT_ANA_GRPID] = 1;
1772 nvmet_bvec_cache = kmem_cache_create("nvmet-bvec",
1773 NVMET_MAX_MPOOL_BVEC * sizeof(struct bio_vec), 0,
1774 SLAB_HWCACHE_ALIGN, NULL);
1775 if (!nvmet_bvec_cache)
1778 zbd_wq = alloc_workqueue("nvmet-zbd-wq", WQ_MEM_RECLAIM, 0);
1780 goto out_destroy_bvec_cache;
1782 buffered_io_wq = alloc_workqueue("nvmet-buffered-io-wq",
1784 if (!buffered_io_wq)
1785 goto out_free_zbd_work_queue;
1787 nvmet_wq = alloc_workqueue("nvmet-wq",
1788 WQ_MEM_RECLAIM | WQ_UNBOUND | WQ_SYSFS, 0);
1790 goto out_free_buffered_work_queue;
1792 error = nvmet_init_discovery();
1794 goto out_free_nvmet_work_queue;
1796 error = nvmet_init_debugfs();
1798 goto out_exit_discovery;
1800 error = nvmet_init_configfs();
1802 goto out_exit_debugfs;
1807 nvmet_exit_debugfs();
1809 nvmet_exit_discovery();
1810 out_free_nvmet_work_queue:
1811 destroy_workqueue(nvmet_wq);
1812 out_free_buffered_work_queue:
1813 destroy_workqueue(buffered_io_wq);
1814 out_free_zbd_work_queue:
1815 destroy_workqueue(zbd_wq);
1816 out_destroy_bvec_cache:
1817 kmem_cache_destroy(nvmet_bvec_cache);
1821 static void __exit nvmet_exit(void)
1823 nvmet_exit_configfs();
1824 nvmet_exit_debugfs();
1825 nvmet_exit_discovery();
1826 ida_destroy(&cntlid_ida);
1827 destroy_workqueue(nvmet_wq);
1828 destroy_workqueue(buffered_io_wq);
1829 destroy_workqueue(zbd_wq);
1830 kmem_cache_destroy(nvmet_bvec_cache);
1832 BUILD_BUG_ON(sizeof(struct nvmf_disc_rsp_page_entry) != 1024);
1833 BUILD_BUG_ON(sizeof(struct nvmf_disc_rsp_page_hdr) != 1024);
1836 module_init(nvmet_init);
1837 module_exit(nvmet_exit);
1839 MODULE_DESCRIPTION("NVMe target core framework");
1840 MODULE_LICENSE("GPL v2");