]> Git Repo - J-linux.git/blob - drivers/net/wireless/realtek/rtw88/phy.c
Merge tag 'vfs-6.13-rc7.fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs
[J-linux.git] / drivers / net / wireless / realtek / rtw88 / phy.c
1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2 /* Copyright(c) 2018-2019  Realtek Corporation
3  */
4
5 #include <linux/bcd.h>
6
7 #include "main.h"
8 #include "reg.h"
9 #include "fw.h"
10 #include "phy.h"
11 #include "debug.h"
12 #include "regd.h"
13 #include "sar.h"
14
15 struct phy_cfg_pair {
16         u32 addr;
17         u32 data;
18 };
19
20 union phy_table_tile {
21         struct {
22                 struct rtw_phy_cond cond;
23                 struct rtw_phy_cond2 cond2;
24         } __packed;
25         struct phy_cfg_pair cfg;
26 };
27
28 static const u32 db_invert_table[12][8] = {
29         {10,            13,             16,             20,
30          25,            32,             40,             50},
31         {64,            80,             101,            128,
32          160,           201,            256,            318},
33         {401,           505,            635,            800,
34          1007,          1268,           1596,           2010},
35         {316,           398,            501,            631,
36          794,           1000,           1259,           1585},
37         {1995,          2512,           3162,           3981,
38          5012,          6310,           7943,           10000},
39         {12589,         15849,          19953,          25119,
40          31623,         39811,          50119,          63098},
41         {79433,         100000,         125893,         158489,
42          199526,        251189,         316228,         398107},
43         {501187,        630957,         794328,         1000000,
44          1258925,       1584893,        1995262,        2511886},
45         {3162278,       3981072,        5011872,        6309573,
46          7943282,       1000000,        12589254,       15848932},
47         {19952623,      25118864,       31622777,       39810717,
48          50118723,      63095734,       79432823,       100000000},
49         {125892541,     158489319,      199526232,      251188643,
50          316227766,     398107171,      501187234,      630957345},
51         {794328235,     1000000000,     1258925412,     1584893192,
52          1995262315,    2511886432U,    3162277660U,    3981071706U}
53 };
54
55 u8 rtw_cck_rates[] = { DESC_RATE1M, DESC_RATE2M, DESC_RATE5_5M, DESC_RATE11M };
56 u8 rtw_ofdm_rates[] = {
57         DESC_RATE6M,  DESC_RATE9M,  DESC_RATE12M,
58         DESC_RATE18M, DESC_RATE24M, DESC_RATE36M,
59         DESC_RATE48M, DESC_RATE54M
60 };
61 u8 rtw_ht_1s_rates[] = {
62         DESC_RATEMCS0, DESC_RATEMCS1, DESC_RATEMCS2,
63         DESC_RATEMCS3, DESC_RATEMCS4, DESC_RATEMCS5,
64         DESC_RATEMCS6, DESC_RATEMCS7
65 };
66 u8 rtw_ht_2s_rates[] = {
67         DESC_RATEMCS8,  DESC_RATEMCS9,  DESC_RATEMCS10,
68         DESC_RATEMCS11, DESC_RATEMCS12, DESC_RATEMCS13,
69         DESC_RATEMCS14, DESC_RATEMCS15
70 };
71 u8 rtw_vht_1s_rates[] = {
72         DESC_RATEVHT1SS_MCS0, DESC_RATEVHT1SS_MCS1,
73         DESC_RATEVHT1SS_MCS2, DESC_RATEVHT1SS_MCS3,
74         DESC_RATEVHT1SS_MCS4, DESC_RATEVHT1SS_MCS5,
75         DESC_RATEVHT1SS_MCS6, DESC_RATEVHT1SS_MCS7,
76         DESC_RATEVHT1SS_MCS8, DESC_RATEVHT1SS_MCS9
77 };
78 u8 rtw_vht_2s_rates[] = {
79         DESC_RATEVHT2SS_MCS0, DESC_RATEVHT2SS_MCS1,
80         DESC_RATEVHT2SS_MCS2, DESC_RATEVHT2SS_MCS3,
81         DESC_RATEVHT2SS_MCS4, DESC_RATEVHT2SS_MCS5,
82         DESC_RATEVHT2SS_MCS6, DESC_RATEVHT2SS_MCS7,
83         DESC_RATEVHT2SS_MCS8, DESC_RATEVHT2SS_MCS9
84 };
85 u8 *rtw_rate_section[RTW_RATE_SECTION_MAX] = {
86         rtw_cck_rates, rtw_ofdm_rates,
87         rtw_ht_1s_rates, rtw_ht_2s_rates,
88         rtw_vht_1s_rates, rtw_vht_2s_rates
89 };
90 EXPORT_SYMBOL(rtw_rate_section);
91
92 u8 rtw_rate_size[RTW_RATE_SECTION_MAX] = {
93         ARRAY_SIZE(rtw_cck_rates),
94         ARRAY_SIZE(rtw_ofdm_rates),
95         ARRAY_SIZE(rtw_ht_1s_rates),
96         ARRAY_SIZE(rtw_ht_2s_rates),
97         ARRAY_SIZE(rtw_vht_1s_rates),
98         ARRAY_SIZE(rtw_vht_2s_rates)
99 };
100 EXPORT_SYMBOL(rtw_rate_size);
101
102 static const u8 rtw_cck_size = ARRAY_SIZE(rtw_cck_rates);
103 static const u8 rtw_ofdm_size = ARRAY_SIZE(rtw_ofdm_rates);
104 static const u8 rtw_ht_1s_size = ARRAY_SIZE(rtw_ht_1s_rates);
105 static const u8 rtw_ht_2s_size = ARRAY_SIZE(rtw_ht_2s_rates);
106 static const u8 rtw_vht_1s_size = ARRAY_SIZE(rtw_vht_1s_rates);
107 static const u8 rtw_vht_2s_size = ARRAY_SIZE(rtw_vht_2s_rates);
108
109 enum rtw_phy_band_type {
110         PHY_BAND_2G     = 0,
111         PHY_BAND_5G     = 1,
112 };
113
114 static void rtw_phy_cck_pd_init(struct rtw_dev *rtwdev)
115 {
116         struct rtw_dm_info *dm_info = &rtwdev->dm_info;
117         u8 i, j;
118
119         for (i = 0; i <= RTW_CHANNEL_WIDTH_40; i++) {
120                 for (j = 0; j < RTW_RF_PATH_MAX; j++)
121                         dm_info->cck_pd_lv[i][j] = CCK_PD_LV0;
122         }
123
124         dm_info->cck_fa_avg = CCK_FA_AVG_RESET;
125 }
126
127 void rtw_phy_set_edcca_th(struct rtw_dev *rtwdev, u8 l2h, u8 h2l)
128 {
129         const struct rtw_hw_reg_offset *edcca_th = rtwdev->chip->edcca_th;
130
131         rtw_write32_mask(rtwdev,
132                          edcca_th[EDCCA_TH_L2H_IDX].hw_reg.addr,
133                          edcca_th[EDCCA_TH_L2H_IDX].hw_reg.mask,
134                          l2h + edcca_th[EDCCA_TH_L2H_IDX].offset);
135         rtw_write32_mask(rtwdev,
136                          edcca_th[EDCCA_TH_H2L_IDX].hw_reg.addr,
137                          edcca_th[EDCCA_TH_H2L_IDX].hw_reg.mask,
138                          h2l + edcca_th[EDCCA_TH_H2L_IDX].offset);
139 }
140 EXPORT_SYMBOL(rtw_phy_set_edcca_th);
141
142 void rtw_phy_adaptivity_set_mode(struct rtw_dev *rtwdev)
143 {
144         const struct rtw_chip_info *chip = rtwdev->chip;
145         struct rtw_dm_info *dm_info = &rtwdev->dm_info;
146
147         /* turn off in debugfs for debug usage */
148         if (!rtw_edcca_enabled) {
149                 dm_info->edcca_mode = RTW_EDCCA_NORMAL;
150                 rtw_dbg(rtwdev, RTW_DBG_PHY, "EDCCA disabled, cannot be set\n");
151                 return;
152         }
153
154         switch (rtwdev->regd.dfs_region) {
155         case NL80211_DFS_ETSI:
156                 dm_info->edcca_mode = RTW_EDCCA_ADAPTIVITY;
157                 dm_info->l2h_th_ini = chip->l2h_th_ini_ad;
158                 break;
159         case NL80211_DFS_JP:
160                 dm_info->edcca_mode = RTW_EDCCA_ADAPTIVITY;
161                 dm_info->l2h_th_ini = chip->l2h_th_ini_cs;
162                 break;
163         default:
164                 dm_info->edcca_mode = RTW_EDCCA_NORMAL;
165                 break;
166         }
167 }
168
169 static void rtw_phy_adaptivity_init(struct rtw_dev *rtwdev)
170 {
171         const struct rtw_chip_info *chip = rtwdev->chip;
172
173         rtw_phy_adaptivity_set_mode(rtwdev);
174         if (chip->ops->adaptivity_init)
175                 chip->ops->adaptivity_init(rtwdev);
176 }
177
178 static void rtw_phy_adaptivity(struct rtw_dev *rtwdev)
179 {
180         if (rtwdev->chip->ops->adaptivity)
181                 rtwdev->chip->ops->adaptivity(rtwdev);
182 }
183
184 static void rtw_phy_cfo_init(struct rtw_dev *rtwdev)
185 {
186         const struct rtw_chip_info *chip = rtwdev->chip;
187
188         if (chip->ops->cfo_init)
189                 chip->ops->cfo_init(rtwdev);
190 }
191
192 static void rtw_phy_tx_path_div_init(struct rtw_dev *rtwdev)
193 {
194         struct rtw_path_div *path_div = &rtwdev->dm_path_div;
195
196         path_div->current_tx_path = rtwdev->chip->default_1ss_tx_path;
197         path_div->path_a_cnt = 0;
198         path_div->path_a_sum = 0;
199         path_div->path_b_cnt = 0;
200         path_div->path_b_sum = 0;
201 }
202
203 void rtw_phy_init(struct rtw_dev *rtwdev)
204 {
205         const struct rtw_chip_info *chip = rtwdev->chip;
206         struct rtw_dm_info *dm_info = &rtwdev->dm_info;
207         u32 addr, mask;
208
209         dm_info->fa_history[3] = 0;
210         dm_info->fa_history[2] = 0;
211         dm_info->fa_history[1] = 0;
212         dm_info->fa_history[0] = 0;
213         dm_info->igi_bitmap = 0;
214         dm_info->igi_history[3] = 0;
215         dm_info->igi_history[2] = 0;
216         dm_info->igi_history[1] = 0;
217
218         addr = chip->dig[0].addr;
219         mask = chip->dig[0].mask;
220         dm_info->igi_history[0] = rtw_read32_mask(rtwdev, addr, mask);
221         rtw_phy_cck_pd_init(rtwdev);
222
223         dm_info->iqk.done = false;
224         rtw_phy_adaptivity_init(rtwdev);
225         rtw_phy_cfo_init(rtwdev);
226         rtw_phy_tx_path_div_init(rtwdev);
227 }
228 EXPORT_SYMBOL(rtw_phy_init);
229
230 void rtw_phy_dig_write(struct rtw_dev *rtwdev, u8 igi)
231 {
232         const struct rtw_chip_info *chip = rtwdev->chip;
233         struct rtw_hal *hal = &rtwdev->hal;
234         u32 addr, mask;
235         u8 path;
236
237         if (chip->dig_cck) {
238                 const struct rtw_hw_reg *dig_cck = &chip->dig_cck[0];
239                 rtw_write32_mask(rtwdev, dig_cck->addr, dig_cck->mask, igi >> 1);
240         }
241
242         for (path = 0; path < hal->rf_path_num; path++) {
243                 addr = chip->dig[path].addr;
244                 mask = chip->dig[path].mask;
245                 rtw_write32_mask(rtwdev, addr, mask, igi);
246         }
247 }
248
249 static void rtw_phy_stat_false_alarm(struct rtw_dev *rtwdev)
250 {
251         const struct rtw_chip_info *chip = rtwdev->chip;
252
253         chip->ops->false_alarm_statistics(rtwdev);
254 }
255
256 #define RA_FLOOR_TABLE_SIZE     7
257 #define RA_FLOOR_UP_GAP         3
258
259 static u8 rtw_phy_get_rssi_level(u8 old_level, u8 rssi)
260 {
261         u8 table[RA_FLOOR_TABLE_SIZE] = {20, 34, 38, 42, 46, 50, 100};
262         u8 new_level = 0;
263         int i;
264
265         for (i = 0; i < RA_FLOOR_TABLE_SIZE; i++)
266                 if (i >= old_level)
267                         table[i] += RA_FLOOR_UP_GAP;
268
269         for (i = 0; i < RA_FLOOR_TABLE_SIZE; i++) {
270                 if (rssi < table[i]) {
271                         new_level = i;
272                         break;
273                 }
274         }
275
276         return new_level;
277 }
278
279 struct rtw_phy_stat_iter_data {
280         struct rtw_dev *rtwdev;
281         u8 min_rssi;
282 };
283
284 static void rtw_phy_stat_rssi_iter(void *data, struct ieee80211_sta *sta)
285 {
286         struct rtw_phy_stat_iter_data *iter_data = data;
287         struct rtw_dev *rtwdev = iter_data->rtwdev;
288         struct rtw_sta_info *si = (struct rtw_sta_info *)sta->drv_priv;
289         u8 rssi;
290
291         rssi = ewma_rssi_read(&si->avg_rssi);
292         si->rssi_level = rtw_phy_get_rssi_level(si->rssi_level, rssi);
293
294         rtw_fw_send_rssi_info(rtwdev, si);
295
296         iter_data->min_rssi = min_t(u8, rssi, iter_data->min_rssi);
297 }
298
299 static void rtw_phy_stat_rssi(struct rtw_dev *rtwdev)
300 {
301         struct rtw_dm_info *dm_info = &rtwdev->dm_info;
302         struct rtw_phy_stat_iter_data data = {};
303
304         data.rtwdev = rtwdev;
305         data.min_rssi = U8_MAX;
306         rtw_iterate_stas(rtwdev, rtw_phy_stat_rssi_iter, &data);
307
308         dm_info->pre_min_rssi = dm_info->min_rssi;
309         dm_info->min_rssi = data.min_rssi;
310 }
311
312 static void rtw_phy_stat_rate_cnt(struct rtw_dev *rtwdev)
313 {
314         struct rtw_dm_info *dm_info = &rtwdev->dm_info;
315
316         dm_info->last_pkt_count = dm_info->cur_pkt_count;
317         memset(&dm_info->cur_pkt_count, 0, sizeof(dm_info->cur_pkt_count));
318 }
319
320 static void rtw_phy_statistics(struct rtw_dev *rtwdev)
321 {
322         rtw_phy_stat_rssi(rtwdev);
323         rtw_phy_stat_false_alarm(rtwdev);
324         rtw_phy_stat_rate_cnt(rtwdev);
325 }
326
327 #define DIG_PERF_FA_TH_LOW                      250
328 #define DIG_PERF_FA_TH_HIGH                     500
329 #define DIG_PERF_FA_TH_EXTRA_HIGH               750
330 #define DIG_PERF_MAX                            0x5a
331 #define DIG_PERF_MID                            0x40
332 #define DIG_CVRG_FA_TH_LOW                      2000
333 #define DIG_CVRG_FA_TH_HIGH                     4000
334 #define DIG_CVRG_FA_TH_EXTRA_HIGH               5000
335 #define DIG_CVRG_MAX                            0x2a
336 #define DIG_CVRG_MID                            0x26
337 #define DIG_CVRG_MIN                            0x1c
338 #define DIG_RSSI_GAIN_OFFSET                    15
339
340 static bool
341 rtw_phy_dig_check_damping(struct rtw_dm_info *dm_info)
342 {
343         u16 fa_lo = DIG_PERF_FA_TH_LOW;
344         u16 fa_hi = DIG_PERF_FA_TH_HIGH;
345         u16 *fa_history;
346         u8 *igi_history;
347         u8 damping_rssi;
348         u8 min_rssi;
349         u8 diff;
350         u8 igi_bitmap;
351         bool damping = false;
352
353         min_rssi = dm_info->min_rssi;
354         if (dm_info->damping) {
355                 damping_rssi = dm_info->damping_rssi;
356                 diff = min_rssi > damping_rssi ? min_rssi - damping_rssi :
357                                                  damping_rssi - min_rssi;
358                 if (diff > 3 || dm_info->damping_cnt++ > 20) {
359                         dm_info->damping = false;
360                         return false;
361                 }
362
363                 return true;
364         }
365
366         igi_history = dm_info->igi_history;
367         fa_history = dm_info->fa_history;
368         igi_bitmap = dm_info->igi_bitmap & 0xf;
369         switch (igi_bitmap) {
370         case 5:
371                 /* down -> up -> down -> up */
372                 if (igi_history[0] > igi_history[1] &&
373                     igi_history[2] > igi_history[3] &&
374                     igi_history[0] - igi_history[1] >= 2 &&
375                     igi_history[2] - igi_history[3] >= 2 &&
376                     fa_history[0] > fa_hi && fa_history[1] < fa_lo &&
377                     fa_history[2] > fa_hi && fa_history[3] < fa_lo)
378                         damping = true;
379                 break;
380         case 9:
381                 /* up -> down -> down -> up */
382                 if (igi_history[0] > igi_history[1] &&
383                     igi_history[3] > igi_history[2] &&
384                     igi_history[0] - igi_history[1] >= 4 &&
385                     igi_history[3] - igi_history[2] >= 2 &&
386                     fa_history[0] > fa_hi && fa_history[1] < fa_lo &&
387                     fa_history[2] < fa_lo && fa_history[3] > fa_hi)
388                         damping = true;
389                 break;
390         default:
391                 return false;
392         }
393
394         if (damping) {
395                 dm_info->damping = true;
396                 dm_info->damping_cnt = 0;
397                 dm_info->damping_rssi = min_rssi;
398         }
399
400         return damping;
401 }
402
403 static void rtw_phy_dig_get_boundary(struct rtw_dev *rtwdev,
404                                      struct rtw_dm_info *dm_info,
405                                      u8 *upper, u8 *lower, bool linked)
406 {
407         u8 dig_max, dig_min, dig_mid;
408         u8 min_rssi;
409
410         if (linked) {
411                 dig_max = DIG_PERF_MAX;
412                 dig_mid = DIG_PERF_MID;
413                 dig_min = rtwdev->chip->dig_min;
414                 min_rssi = max_t(u8, dm_info->min_rssi, dig_min);
415         } else {
416                 dig_max = DIG_CVRG_MAX;
417                 dig_mid = DIG_CVRG_MID;
418                 dig_min = DIG_CVRG_MIN;
419                 min_rssi = dig_min;
420         }
421
422         /* DIG MAX should be bounded by minimum RSSI with offset +15 */
423         dig_max = min_t(u8, dig_max, min_rssi + DIG_RSSI_GAIN_OFFSET);
424
425         *lower = clamp_t(u8, min_rssi, dig_min, dig_mid);
426         *upper = clamp_t(u8, *lower + DIG_RSSI_GAIN_OFFSET, dig_min, dig_max);
427 }
428
429 static void rtw_phy_dig_get_threshold(struct rtw_dm_info *dm_info,
430                                       u16 *fa_th, u8 *step, bool linked)
431 {
432         u8 min_rssi, pre_min_rssi;
433
434         min_rssi = dm_info->min_rssi;
435         pre_min_rssi = dm_info->pre_min_rssi;
436         step[0] = 4;
437         step[1] = 3;
438         step[2] = 2;
439
440         if (linked) {
441                 fa_th[0] = DIG_PERF_FA_TH_EXTRA_HIGH;
442                 fa_th[1] = DIG_PERF_FA_TH_HIGH;
443                 fa_th[2] = DIG_PERF_FA_TH_LOW;
444                 if (pre_min_rssi > min_rssi) {
445                         step[0] = 6;
446                         step[1] = 4;
447                         step[2] = 2;
448                 }
449         } else {
450                 fa_th[0] = DIG_CVRG_FA_TH_EXTRA_HIGH;
451                 fa_th[1] = DIG_CVRG_FA_TH_HIGH;
452                 fa_th[2] = DIG_CVRG_FA_TH_LOW;
453         }
454 }
455
456 static void rtw_phy_dig_recorder(struct rtw_dm_info *dm_info, u8 igi, u16 fa)
457 {
458         u8 *igi_history;
459         u16 *fa_history;
460         u8 igi_bitmap;
461         bool up;
462
463         igi_bitmap = dm_info->igi_bitmap << 1 & 0xfe;
464         igi_history = dm_info->igi_history;
465         fa_history = dm_info->fa_history;
466
467         up = igi > igi_history[0];
468         igi_bitmap |= up;
469
470         igi_history[3] = igi_history[2];
471         igi_history[2] = igi_history[1];
472         igi_history[1] = igi_history[0];
473         igi_history[0] = igi;
474
475         fa_history[3] = fa_history[2];
476         fa_history[2] = fa_history[1];
477         fa_history[1] = fa_history[0];
478         fa_history[0] = fa;
479
480         dm_info->igi_bitmap = igi_bitmap;
481 }
482
483 static void rtw_phy_dig(struct rtw_dev *rtwdev)
484 {
485         struct rtw_dm_info *dm_info = &rtwdev->dm_info;
486         u8 upper_bound, lower_bound;
487         u8 pre_igi, cur_igi;
488         u16 fa_th[3], fa_cnt;
489         u8 level;
490         u8 step[3];
491         bool linked;
492
493         if (test_bit(RTW_FLAG_DIG_DISABLE, rtwdev->flags))
494                 return;
495
496         if (rtw_phy_dig_check_damping(dm_info))
497                 return;
498
499         linked = !!rtwdev->sta_cnt;
500
501         fa_cnt = dm_info->total_fa_cnt;
502         pre_igi = dm_info->igi_history[0];
503
504         rtw_phy_dig_get_threshold(dm_info, fa_th, step, linked);
505
506         /* test the false alarm count from the highest threshold level first,
507          * and increase it by corresponding step size
508          *
509          * note that the step size is offset by -2, compensate it afterall
510          */
511         cur_igi = pre_igi;
512         for (level = 0; level < 3; level++) {
513                 if (fa_cnt > fa_th[level]) {
514                         cur_igi += step[level];
515                         break;
516                 }
517         }
518         cur_igi -= 2;
519
520         /* calculate the upper/lower bound by the minimum rssi we have among
521          * the peers connected with us, meanwhile make sure the igi value does
522          * not beyond the hardware limitation
523          */
524         rtw_phy_dig_get_boundary(rtwdev, dm_info, &upper_bound, &lower_bound,
525                                  linked);
526         cur_igi = clamp_t(u8, cur_igi, lower_bound, upper_bound);
527
528         /* record current igi value and false alarm statistics for further
529          * damping checks, and record the trend of igi values
530          */
531         rtw_phy_dig_recorder(dm_info, cur_igi, fa_cnt);
532
533         /* Mitigate beacon loss and connectivity issues, mainly (only?)
534          * in the 5 GHz band
535          */
536         if (rtwdev->chip->id == RTW_CHIP_TYPE_8812A && rtwdev->beacon_loss &&
537             linked && dm_info->total_fa_cnt < DIG_PERF_FA_TH_EXTRA_HIGH)
538                 cur_igi = DIG_CVRG_MIN;
539
540         if (cur_igi != pre_igi)
541                 rtw_phy_dig_write(rtwdev, cur_igi);
542 }
543
544 static void rtw_phy_ra_info_update_iter(void *data, struct ieee80211_sta *sta)
545 {
546         struct rtw_dev *rtwdev = data;
547         struct rtw_sta_info *si = (struct rtw_sta_info *)sta->drv_priv;
548
549         rtw_update_sta_info(rtwdev, si, false);
550 }
551
552 static void rtw_phy_ra_info_update(struct rtw_dev *rtwdev)
553 {
554         if (rtwdev->watch_dog_cnt & 0x3)
555                 return;
556
557         rtw_iterate_stas(rtwdev, rtw_phy_ra_info_update_iter, rtwdev);
558 }
559
560 static u32 rtw_phy_get_rrsr_mask(struct rtw_dev *rtwdev, u8 rate_idx)
561 {
562         u8 rate_order;
563
564         rate_order = rate_idx;
565
566         if (rate_idx >= DESC_RATEVHT4SS_MCS0)
567                 rate_order -= DESC_RATEVHT4SS_MCS0;
568         else if (rate_idx >= DESC_RATEVHT3SS_MCS0)
569                 rate_order -= DESC_RATEVHT3SS_MCS0;
570         else if (rate_idx >= DESC_RATEVHT2SS_MCS0)
571                 rate_order -= DESC_RATEVHT2SS_MCS0;
572         else if (rate_idx >= DESC_RATEVHT1SS_MCS0)
573                 rate_order -= DESC_RATEVHT1SS_MCS0;
574         else if (rate_idx >= DESC_RATEMCS24)
575                 rate_order -= DESC_RATEMCS24;
576         else if (rate_idx >= DESC_RATEMCS16)
577                 rate_order -= DESC_RATEMCS16;
578         else if (rate_idx >= DESC_RATEMCS8)
579                 rate_order -= DESC_RATEMCS8;
580         else if (rate_idx >= DESC_RATEMCS0)
581                 rate_order -= DESC_RATEMCS0;
582         else if (rate_idx >= DESC_RATE6M)
583                 rate_order -= DESC_RATE6M;
584         else
585                 rate_order -= DESC_RATE1M;
586
587         if (rate_idx >= DESC_RATEMCS0 || rate_order == 0)
588                 rate_order++;
589
590         return GENMASK(rate_order + RRSR_RATE_ORDER_CCK_LEN - 1, 0);
591 }
592
593 static void rtw_phy_rrsr_mask_min_iter(void *data, struct ieee80211_sta *sta)
594 {
595         struct rtw_dev *rtwdev = (struct rtw_dev *)data;
596         struct rtw_sta_info *si = (struct rtw_sta_info *)sta->drv_priv;
597         struct rtw_dm_info *dm_info = &rtwdev->dm_info;
598         u32 mask = 0;
599
600         mask = rtw_phy_get_rrsr_mask(rtwdev, si->ra_report.desc_rate);
601         if (mask < dm_info->rrsr_mask_min)
602                 dm_info->rrsr_mask_min = mask;
603 }
604
605 static void rtw_phy_rrsr_update(struct rtw_dev *rtwdev)
606 {
607         struct rtw_dm_info *dm_info = &rtwdev->dm_info;
608
609         dm_info->rrsr_mask_min = RRSR_RATE_ORDER_MAX;
610         rtw_iterate_stas(rtwdev, rtw_phy_rrsr_mask_min_iter, rtwdev);
611         rtw_write32(rtwdev, REG_RRSR, dm_info->rrsr_val_init & dm_info->rrsr_mask_min);
612 }
613
614 static void rtw_phy_dpk_track(struct rtw_dev *rtwdev)
615 {
616         const struct rtw_chip_info *chip = rtwdev->chip;
617
618         if (chip->ops->dpk_track)
619                 chip->ops->dpk_track(rtwdev);
620 }
621
622 struct rtw_rx_addr_match_data {
623         struct rtw_dev *rtwdev;
624         struct ieee80211_hdr *hdr;
625         struct rtw_rx_pkt_stat *pkt_stat;
626         u8 *bssid;
627 };
628
629 static void rtw_phy_parsing_cfo_iter(void *data, u8 *mac,
630                                      struct ieee80211_vif *vif)
631 {
632         struct rtw_rx_addr_match_data *iter_data = data;
633         struct rtw_dev *rtwdev = iter_data->rtwdev;
634         struct rtw_rx_pkt_stat *pkt_stat = iter_data->pkt_stat;
635         struct rtw_dm_info *dm_info = &rtwdev->dm_info;
636         struct rtw_cfo_track *cfo = &dm_info->cfo_track;
637         u8 *bssid = iter_data->bssid;
638         u8 i;
639
640         if (!ether_addr_equal(vif->bss_conf.bssid, bssid))
641                 return;
642
643         for (i = 0; i < rtwdev->hal.rf_path_num; i++) {
644                 cfo->cfo_tail[i] += pkt_stat->cfo_tail[i];
645                 cfo->cfo_cnt[i]++;
646         }
647
648         cfo->packet_count++;
649 }
650
651 void rtw_phy_parsing_cfo(struct rtw_dev *rtwdev,
652                          struct rtw_rx_pkt_stat *pkt_stat)
653 {
654         struct ieee80211_hdr *hdr = pkt_stat->hdr;
655         struct rtw_rx_addr_match_data data = {};
656
657         if (pkt_stat->crc_err || pkt_stat->icv_err || !pkt_stat->phy_status ||
658             ieee80211_is_ctl(hdr->frame_control))
659                 return;
660
661         data.rtwdev = rtwdev;
662         data.hdr = hdr;
663         data.pkt_stat = pkt_stat;
664         data.bssid = get_hdr_bssid(hdr);
665
666         rtw_iterate_vifs_atomic(rtwdev, rtw_phy_parsing_cfo_iter, &data);
667 }
668 EXPORT_SYMBOL(rtw_phy_parsing_cfo);
669
670 static void rtw_phy_cfo_track(struct rtw_dev *rtwdev)
671 {
672         const struct rtw_chip_info *chip = rtwdev->chip;
673
674         if (chip->ops->cfo_track)
675                 chip->ops->cfo_track(rtwdev);
676 }
677
678 #define CCK_PD_FA_LV1_MIN       1000
679 #define CCK_PD_FA_LV0_MAX       500
680
681 static u8 rtw_phy_cck_pd_lv_unlink(struct rtw_dev *rtwdev)
682 {
683         struct rtw_dm_info *dm_info = &rtwdev->dm_info;
684         u32 cck_fa_avg = dm_info->cck_fa_avg;
685
686         if (cck_fa_avg > CCK_PD_FA_LV1_MIN)
687                 return CCK_PD_LV1;
688
689         if (cck_fa_avg < CCK_PD_FA_LV0_MAX)
690                 return CCK_PD_LV0;
691
692         return CCK_PD_LV_MAX;
693 }
694
695 #define CCK_PD_IGI_LV4_VAL 0x38
696 #define CCK_PD_IGI_LV3_VAL 0x2a
697 #define CCK_PD_IGI_LV2_VAL 0x24
698 #define CCK_PD_RSSI_LV4_VAL 32
699 #define CCK_PD_RSSI_LV3_VAL 32
700 #define CCK_PD_RSSI_LV2_VAL 24
701
702 static u8 rtw_phy_cck_pd_lv_link(struct rtw_dev *rtwdev)
703 {
704         struct rtw_dm_info *dm_info = &rtwdev->dm_info;
705         u8 igi = dm_info->igi_history[0];
706         u8 rssi = dm_info->min_rssi;
707         u32 cck_fa_avg = dm_info->cck_fa_avg;
708
709         if (igi > CCK_PD_IGI_LV4_VAL && rssi > CCK_PD_RSSI_LV4_VAL)
710                 return CCK_PD_LV4;
711         if (igi > CCK_PD_IGI_LV3_VAL && rssi > CCK_PD_RSSI_LV3_VAL)
712                 return CCK_PD_LV3;
713         if (igi > CCK_PD_IGI_LV2_VAL || rssi > CCK_PD_RSSI_LV2_VAL)
714                 return CCK_PD_LV2;
715         if (cck_fa_avg > CCK_PD_FA_LV1_MIN)
716                 return CCK_PD_LV1;
717         if (cck_fa_avg < CCK_PD_FA_LV0_MAX)
718                 return CCK_PD_LV0;
719
720         return CCK_PD_LV_MAX;
721 }
722
723 static u8 rtw_phy_cck_pd_lv(struct rtw_dev *rtwdev)
724 {
725         if (!rtw_is_assoc(rtwdev))
726                 return rtw_phy_cck_pd_lv_unlink(rtwdev);
727         else
728                 return rtw_phy_cck_pd_lv_link(rtwdev);
729 }
730
731 static void rtw_phy_cck_pd(struct rtw_dev *rtwdev)
732 {
733         const struct rtw_chip_info *chip = rtwdev->chip;
734         struct rtw_dm_info *dm_info = &rtwdev->dm_info;
735         u32 cck_fa = dm_info->cck_fa_cnt;
736         u8 level;
737
738         if (rtwdev->hal.current_band_type != RTW_BAND_2G)
739                 return;
740
741         if (dm_info->cck_fa_avg == CCK_FA_AVG_RESET)
742                 dm_info->cck_fa_avg = cck_fa;
743         else
744                 dm_info->cck_fa_avg = (dm_info->cck_fa_avg * 3 + cck_fa) >> 2;
745
746         rtw_dbg(rtwdev, RTW_DBG_PHY, "IGI=0x%x, rssi_min=%d, cck_fa=%d\n",
747                 dm_info->igi_history[0], dm_info->min_rssi,
748                 dm_info->fa_history[0]);
749         rtw_dbg(rtwdev, RTW_DBG_PHY, "cck_fa_avg=%d, cck_pd_default=%d\n",
750                 dm_info->cck_fa_avg, dm_info->cck_pd_default);
751
752         level = rtw_phy_cck_pd_lv(rtwdev);
753
754         if (level >= CCK_PD_LV_MAX)
755                 return;
756
757         if (chip->ops->cck_pd_set)
758                 chip->ops->cck_pd_set(rtwdev, level);
759 }
760
761 static void rtw_phy_pwr_track(struct rtw_dev *rtwdev)
762 {
763         rtwdev->chip->ops->pwr_track(rtwdev);
764 }
765
766 static void rtw_phy_ra_track(struct rtw_dev *rtwdev)
767 {
768         rtw_fw_update_wl_phy_info(rtwdev);
769         rtw_phy_ra_info_update(rtwdev);
770         rtw_phy_rrsr_update(rtwdev);
771 }
772
773 void rtw_phy_dynamic_mechanism(struct rtw_dev *rtwdev)
774 {
775         /* for further calculation */
776         rtw_phy_statistics(rtwdev);
777         rtw_phy_dig(rtwdev);
778         rtw_phy_cck_pd(rtwdev);
779         rtw_phy_ra_track(rtwdev);
780         rtw_phy_tx_path_diversity(rtwdev);
781         rtw_phy_cfo_track(rtwdev);
782         rtw_phy_dpk_track(rtwdev);
783         rtw_phy_pwr_track(rtwdev);
784
785         if (rtw_fw_feature_check(&rtwdev->fw, FW_FEATURE_ADAPTIVITY))
786                 rtw_fw_adaptivity(rtwdev);
787         else
788                 rtw_phy_adaptivity(rtwdev);
789 }
790
791 #define FRAC_BITS 3
792
793 static u8 rtw_phy_power_2_db(s8 power)
794 {
795         if (power <= -100 || power >= 20)
796                 return 0;
797         else if (power >= 0)
798                 return 100;
799         else
800                 return 100 + power;
801 }
802
803 static u64 rtw_phy_db_2_linear(u8 power_db)
804 {
805         u8 i, j;
806         u64 linear;
807
808         if (power_db > 96)
809                 power_db = 96;
810         else if (power_db < 1)
811                 return 1;
812
813         /* 1dB ~ 96dB */
814         i = (power_db - 1) >> 3;
815         j = (power_db - 1) - (i << 3);
816
817         linear = db_invert_table[i][j];
818         linear = i > 2 ? linear << FRAC_BITS : linear;
819
820         return linear;
821 }
822
823 static u8 rtw_phy_linear_2_db(u64 linear)
824 {
825         u8 i;
826         u8 j;
827         u32 dB;
828
829         for (i = 0; i < 12; i++) {
830                 for (j = 0; j < 8; j++) {
831                         if (i <= 2 && (linear << FRAC_BITS) <= db_invert_table[i][j])
832                                 goto cnt;
833                         else if (i > 2 && linear <= db_invert_table[i][j])
834                                 goto cnt;
835                 }
836         }
837
838         return 96; /* maximum 96 dB */
839
840 cnt:
841         if (j == 0 && i == 0)
842                 goto end;
843
844         if (j == 0) {
845                 if (i != 3) {
846                         if (db_invert_table[i][0] - linear >
847                             linear - db_invert_table[i - 1][7]) {
848                                 i = i - 1;
849                                 j = 7;
850                         }
851                 } else {
852                         if (db_invert_table[3][0] - linear >
853                             linear - db_invert_table[2][7]) {
854                                 i = 2;
855                                 j = 7;
856                         }
857                 }
858         } else {
859                 if (db_invert_table[i][j] - linear >
860                     linear - db_invert_table[i][j - 1]) {
861                         j = j - 1;
862                 }
863         }
864 end:
865         dB = (i << 3) + j + 1;
866
867         return dB;
868 }
869
870 u8 rtw_phy_rf_power_2_rssi(s8 *rf_power, u8 path_num)
871 {
872         s8 power;
873         u8 power_db;
874         u64 linear;
875         u64 sum = 0;
876         u8 path;
877
878         for (path = 0; path < path_num; path++) {
879                 power = rf_power[path];
880                 power_db = rtw_phy_power_2_db(power);
881                 linear = rtw_phy_db_2_linear(power_db);
882                 sum += linear;
883         }
884
885         sum = (sum + (1 << (FRAC_BITS - 1))) >> FRAC_BITS;
886         switch (path_num) {
887         case 2:
888                 sum >>= 1;
889                 break;
890         case 3:
891                 sum = ((sum) + ((sum) << 1) + ((sum) << 3)) >> 5;
892                 break;
893         case 4:
894                 sum >>= 2;
895                 break;
896         default:
897                 break;
898         }
899
900         return rtw_phy_linear_2_db(sum);
901 }
902 EXPORT_SYMBOL(rtw_phy_rf_power_2_rssi);
903
904 u32 rtw_phy_read_rf(struct rtw_dev *rtwdev, enum rtw_rf_path rf_path,
905                     u32 addr, u32 mask)
906 {
907         struct rtw_hal *hal = &rtwdev->hal;
908         const struct rtw_chip_info *chip = rtwdev->chip;
909         const u32 *base_addr = chip->rf_base_addr;
910         u32 val, direct_addr;
911
912         if (rf_path >= hal->rf_phy_num) {
913                 rtw_err(rtwdev, "unsupported rf path (%d)\n", rf_path);
914                 return INV_RF_DATA;
915         }
916
917         addr &= 0xff;
918         direct_addr = base_addr[rf_path] + (addr << 2);
919         mask &= RFREG_MASK;
920
921         val = rtw_read32_mask(rtwdev, direct_addr, mask);
922
923         return val;
924 }
925 EXPORT_SYMBOL(rtw_phy_read_rf);
926
927 u32 rtw_phy_read_rf_sipi(struct rtw_dev *rtwdev, enum rtw_rf_path rf_path,
928                          u32 addr, u32 mask)
929 {
930         struct rtw_hal *hal = &rtwdev->hal;
931         const struct rtw_chip_info *chip = rtwdev->chip;
932         const struct rtw_rf_sipi_addr *rf_sipi_addr;
933         const struct rtw_rf_sipi_addr *rf_sipi_addr_a;
934         u32 val32;
935         u32 en_pi;
936         u32 r_addr;
937         u32 shift;
938
939         if (rf_path >= hal->rf_phy_num) {
940                 rtw_err(rtwdev, "unsupported rf path (%d)\n", rf_path);
941                 return INV_RF_DATA;
942         }
943
944         if (!chip->rf_sipi_read_addr) {
945                 rtw_err(rtwdev, "rf_sipi_read_addr isn't defined\n");
946                 return INV_RF_DATA;
947         }
948
949         rf_sipi_addr = &chip->rf_sipi_read_addr[rf_path];
950         rf_sipi_addr_a = &chip->rf_sipi_read_addr[RF_PATH_A];
951
952         addr &= 0xff;
953
954         val32 = rtw_read32(rtwdev, rf_sipi_addr->hssi_2);
955         val32 = (val32 & ~LSSI_READ_ADDR_MASK) | (addr << 23);
956         rtw_write32(rtwdev, rf_sipi_addr->hssi_2, val32);
957
958         /* toggle read edge of path A */
959         val32 = rtw_read32(rtwdev, rf_sipi_addr_a->hssi_2);
960         rtw_write32(rtwdev, rf_sipi_addr_a->hssi_2, val32 & ~LSSI_READ_EDGE_MASK);
961         rtw_write32(rtwdev, rf_sipi_addr_a->hssi_2, val32 | LSSI_READ_EDGE_MASK);
962
963         udelay(120);
964
965         en_pi = rtw_read32_mask(rtwdev, rf_sipi_addr->hssi_1, BIT(8));
966         r_addr = en_pi ? rf_sipi_addr->lssi_read_pi : rf_sipi_addr->lssi_read;
967
968         val32 = rtw_read32_mask(rtwdev, r_addr, LSSI_READ_DATA_MASK);
969
970         shift = __ffs(mask);
971
972         return (val32 & mask) >> shift;
973 }
974 EXPORT_SYMBOL(rtw_phy_read_rf_sipi);
975
976 bool rtw_phy_write_rf_reg_sipi(struct rtw_dev *rtwdev, enum rtw_rf_path rf_path,
977                                u32 addr, u32 mask, u32 data)
978 {
979         struct rtw_hal *hal = &rtwdev->hal;
980         const struct rtw_chip_info *chip = rtwdev->chip;
981         const u32 *sipi_addr = chip->rf_sipi_addr;
982         u32 data_and_addr;
983         u32 old_data = 0;
984         u32 shift;
985
986         if (rf_path >= hal->rf_phy_num) {
987                 rtw_err(rtwdev, "unsupported rf path (%d)\n", rf_path);
988                 return false;
989         }
990
991         addr &= 0xff;
992         mask &= RFREG_MASK;
993
994         if (mask != RFREG_MASK) {
995                 old_data = chip->ops->read_rf(rtwdev, rf_path, addr, RFREG_MASK);
996
997                 if (old_data == INV_RF_DATA) {
998                         rtw_err(rtwdev, "Write fail, rf is disabled\n");
999                         return false;
1000                 }
1001
1002                 shift = __ffs(mask);
1003                 data = ((old_data) & (~mask)) | (data << shift);
1004         }
1005
1006         data_and_addr = ((addr << 20) | (data & 0x000fffff)) & 0x0fffffff;
1007
1008         rtw_write32(rtwdev, sipi_addr[rf_path], data_and_addr);
1009
1010         udelay(13);
1011
1012         return true;
1013 }
1014 EXPORT_SYMBOL(rtw_phy_write_rf_reg_sipi);
1015
1016 bool rtw_phy_write_rf_reg(struct rtw_dev *rtwdev, enum rtw_rf_path rf_path,
1017                           u32 addr, u32 mask, u32 data)
1018 {
1019         struct rtw_hal *hal = &rtwdev->hal;
1020         const struct rtw_chip_info *chip = rtwdev->chip;
1021         const u32 *base_addr = chip->rf_base_addr;
1022         u32 direct_addr;
1023
1024         if (rf_path >= hal->rf_phy_num) {
1025                 rtw_err(rtwdev, "unsupported rf path (%d)\n", rf_path);
1026                 return false;
1027         }
1028
1029         addr &= 0xff;
1030         direct_addr = base_addr[rf_path] + (addr << 2);
1031         mask &= RFREG_MASK;
1032
1033         rtw_write32_mask(rtwdev, direct_addr, mask, data);
1034
1035         udelay(1);
1036
1037         return true;
1038 }
1039
1040 bool rtw_phy_write_rf_reg_mix(struct rtw_dev *rtwdev, enum rtw_rf_path rf_path,
1041                               u32 addr, u32 mask, u32 data)
1042 {
1043         if (addr != 0x00)
1044                 return rtw_phy_write_rf_reg(rtwdev, rf_path, addr, mask, data);
1045
1046         return rtw_phy_write_rf_reg_sipi(rtwdev, rf_path, addr, mask, data);
1047 }
1048 EXPORT_SYMBOL(rtw_phy_write_rf_reg_mix);
1049
1050 void rtw_phy_setup_phy_cond(struct rtw_dev *rtwdev, u32 pkg)
1051 {
1052         struct rtw_hal *hal = &rtwdev->hal;
1053         struct rtw_efuse *efuse = &rtwdev->efuse;
1054         struct rtw_phy_cond cond = {};
1055         struct rtw_phy_cond2 cond2 = {};
1056
1057         cond.cut = hal->cut_version ? hal->cut_version : 15;
1058         cond.pkg = pkg ? pkg : 15;
1059         cond.plat = 0x04;
1060         cond.rfe = efuse->rfe_option;
1061
1062         switch (rtw_hci_type(rtwdev)) {
1063         case RTW_HCI_TYPE_USB:
1064                 cond.intf = INTF_USB;
1065                 break;
1066         case RTW_HCI_TYPE_SDIO:
1067                 cond.intf = INTF_SDIO;
1068                 break;
1069         case RTW_HCI_TYPE_PCIE:
1070         default:
1071                 cond.intf = INTF_PCIE;
1072                 break;
1073         }
1074
1075         if (rtwdev->chip->id == RTW_CHIP_TYPE_8812A ||
1076             rtwdev->chip->id == RTW_CHIP_TYPE_8821A) {
1077                 cond.rfe = 0;
1078                 cond.rfe |= efuse->ext_lna_2g;
1079                 cond.rfe |= efuse->ext_pa_2g  << 1;
1080                 cond.rfe |= efuse->ext_lna_5g << 2;
1081                 cond.rfe |= efuse->ext_pa_5g  << 3;
1082                 cond.rfe |= efuse->btcoex     << 4;
1083
1084                 cond2.type_alna = efuse->alna_type;
1085                 cond2.type_glna = efuse->glna_type;
1086                 cond2.type_apa = efuse->apa_type;
1087                 cond2.type_gpa = efuse->gpa_type;
1088         }
1089
1090         hal->phy_cond = cond;
1091         hal->phy_cond2 = cond2;
1092
1093         rtw_dbg(rtwdev, RTW_DBG_PHY, "phy cond=0x%08x cond2=0x%08x\n",
1094                 *((u32 *)&hal->phy_cond), *((u32 *)&hal->phy_cond2));
1095 }
1096
1097 static bool check_positive(struct rtw_dev *rtwdev, struct rtw_phy_cond cond,
1098                            struct rtw_phy_cond2 cond2)
1099 {
1100         struct rtw_hal *hal = &rtwdev->hal;
1101         struct rtw_phy_cond drv_cond = hal->phy_cond;
1102         struct rtw_phy_cond2 drv_cond2 = hal->phy_cond2;
1103
1104         if (cond.cut && cond.cut != drv_cond.cut)
1105                 return false;
1106
1107         if (cond.pkg && cond.pkg != drv_cond.pkg)
1108                 return false;
1109
1110         if (cond.intf && cond.intf != drv_cond.intf)
1111                 return false;
1112
1113         if (rtwdev->chip->id == RTW_CHIP_TYPE_8812A ||
1114             rtwdev->chip->id == RTW_CHIP_TYPE_8821A) {
1115                 if (!(cond.rfe & 0x0f))
1116                         return true;
1117
1118                 if ((cond.rfe & drv_cond.rfe) != cond.rfe)
1119                         return false;
1120
1121                 if ((cond.rfe & BIT(0)) && cond2.type_glna != drv_cond2.type_glna)
1122                         return false;
1123
1124                 if ((cond.rfe & BIT(1)) && cond2.type_gpa != drv_cond2.type_gpa)
1125                         return false;
1126
1127                 if ((cond.rfe & BIT(2)) && cond2.type_alna != drv_cond2.type_alna)
1128                         return false;
1129
1130                 if ((cond.rfe & BIT(3)) && cond2.type_apa != drv_cond2.type_apa)
1131                         return false;
1132         } else {
1133                 if (cond.rfe != drv_cond.rfe)
1134                         return false;
1135         }
1136
1137         return true;
1138 }
1139
1140 void rtw_parse_tbl_phy_cond(struct rtw_dev *rtwdev, const struct rtw_table *tbl)
1141 {
1142         const union phy_table_tile *p = tbl->data;
1143         const union phy_table_tile *end = p + tbl->size / 2;
1144         struct rtw_phy_cond pos_cond = {};
1145         struct rtw_phy_cond2 pos_cond2 = {};
1146         bool is_matched = true, is_skipped = false;
1147
1148         BUILD_BUG_ON(sizeof(union phy_table_tile) != sizeof(struct phy_cfg_pair));
1149
1150         for (; p < end; p++) {
1151                 if (p->cond.pos) {
1152                         switch (p->cond.branch) {
1153                         case BRANCH_ENDIF:
1154                                 is_matched = true;
1155                                 is_skipped = false;
1156                                 break;
1157                         case BRANCH_ELSE:
1158                                 is_matched = is_skipped ? false : true;
1159                                 break;
1160                         case BRANCH_IF:
1161                         case BRANCH_ELIF:
1162                         default:
1163                                 pos_cond = p->cond;
1164                                 pos_cond2 = p->cond2;
1165                                 break;
1166                         }
1167                 } else if (p->cond.neg) {
1168                         if (!is_skipped) {
1169                                 if (check_positive(rtwdev, pos_cond, pos_cond2)) {
1170                                         is_matched = true;
1171                                         is_skipped = true;
1172                                 } else {
1173                                         is_matched = false;
1174                                         is_skipped = false;
1175                                 }
1176                         } else {
1177                                 is_matched = false;
1178                         }
1179                 } else if (is_matched) {
1180                         (*tbl->do_cfg)(rtwdev, tbl, p->cfg.addr, p->cfg.data);
1181                 }
1182         }
1183 }
1184 EXPORT_SYMBOL(rtw_parse_tbl_phy_cond);
1185
1186 #define bcd_to_dec_pwr_by_rate(val, i) bcd2bin(val >> (i * 8))
1187
1188 static u8 tbl_to_dec_pwr_by_rate(struct rtw_dev *rtwdev, u32 hex, u8 i)
1189 {
1190         if (rtwdev->chip->is_pwr_by_rate_dec)
1191                 return bcd_to_dec_pwr_by_rate(hex, i);
1192
1193         return (hex >> (i * 8)) & 0xFF;
1194 }
1195
1196 static void
1197 rtw_phy_get_rate_values_of_txpwr_by_rate(struct rtw_dev *rtwdev,
1198                                          u32 addr, u32 mask, u32 val, u8 *rate,
1199                                          u8 *pwr_by_rate, u8 *rate_num)
1200 {
1201         int i;
1202
1203         switch (addr) {
1204         case 0xE00:
1205         case 0x830:
1206                 rate[0] = DESC_RATE6M;
1207                 rate[1] = DESC_RATE9M;
1208                 rate[2] = DESC_RATE12M;
1209                 rate[3] = DESC_RATE18M;
1210                 for (i = 0; i < 4; ++i)
1211                         pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1212                 *rate_num = 4;
1213                 break;
1214         case 0xE04:
1215         case 0x834:
1216                 rate[0] = DESC_RATE24M;
1217                 rate[1] = DESC_RATE36M;
1218                 rate[2] = DESC_RATE48M;
1219                 rate[3] = DESC_RATE54M;
1220                 for (i = 0; i < 4; ++i)
1221                         pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1222                 *rate_num = 4;
1223                 break;
1224         case 0xE08:
1225                 rate[0] = DESC_RATE1M;
1226                 pwr_by_rate[0] = bcd_to_dec_pwr_by_rate(val, 1);
1227                 *rate_num = 1;
1228                 break;
1229         case 0x86C:
1230                 if (mask == 0xffffff00) {
1231                         rate[0] = DESC_RATE2M;
1232                         rate[1] = DESC_RATE5_5M;
1233                         rate[2] = DESC_RATE11M;
1234                         for (i = 1; i < 4; ++i)
1235                                 pwr_by_rate[i - 1] =
1236                                         tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1237                         *rate_num = 3;
1238                 } else if (mask == 0x000000ff) {
1239                         rate[0] = DESC_RATE11M;
1240                         pwr_by_rate[0] = bcd_to_dec_pwr_by_rate(val, 0);
1241                         *rate_num = 1;
1242                 }
1243                 break;
1244         case 0xE10:
1245         case 0x83C:
1246                 rate[0] = DESC_RATEMCS0;
1247                 rate[1] = DESC_RATEMCS1;
1248                 rate[2] = DESC_RATEMCS2;
1249                 rate[3] = DESC_RATEMCS3;
1250                 for (i = 0; i < 4; ++i)
1251                         pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1252                 *rate_num = 4;
1253                 break;
1254         case 0xE14:
1255         case 0x848:
1256                 rate[0] = DESC_RATEMCS4;
1257                 rate[1] = DESC_RATEMCS5;
1258                 rate[2] = DESC_RATEMCS6;
1259                 rate[3] = DESC_RATEMCS7;
1260                 for (i = 0; i < 4; ++i)
1261                         pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1262                 *rate_num = 4;
1263                 break;
1264         case 0xE18:
1265         case 0x84C:
1266                 rate[0] = DESC_RATEMCS8;
1267                 rate[1] = DESC_RATEMCS9;
1268                 rate[2] = DESC_RATEMCS10;
1269                 rate[3] = DESC_RATEMCS11;
1270                 for (i = 0; i < 4; ++i)
1271                         pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1272                 *rate_num = 4;
1273                 break;
1274         case 0xE1C:
1275         case 0x868:
1276                 rate[0] = DESC_RATEMCS12;
1277                 rate[1] = DESC_RATEMCS13;
1278                 rate[2] = DESC_RATEMCS14;
1279                 rate[3] = DESC_RATEMCS15;
1280                 for (i = 0; i < 4; ++i)
1281                         pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1282                 *rate_num = 4;
1283                 break;
1284         case 0x838:
1285                 rate[0] = DESC_RATE1M;
1286                 rate[1] = DESC_RATE2M;
1287                 rate[2] = DESC_RATE5_5M;
1288                 for (i = 1; i < 4; ++i)
1289                         pwr_by_rate[i - 1] = tbl_to_dec_pwr_by_rate(rtwdev,
1290                                                                     val, i);
1291                 *rate_num = 3;
1292                 break;
1293         case 0xC20:
1294         case 0xE20:
1295         case 0x1820:
1296         case 0x1A20:
1297                 rate[0] = DESC_RATE1M;
1298                 rate[1] = DESC_RATE2M;
1299                 rate[2] = DESC_RATE5_5M;
1300                 rate[3] = DESC_RATE11M;
1301                 for (i = 0; i < 4; ++i)
1302                         pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1303                 *rate_num = 4;
1304                 break;
1305         case 0xC24:
1306         case 0xE24:
1307         case 0x1824:
1308         case 0x1A24:
1309                 rate[0] = DESC_RATE6M;
1310                 rate[1] = DESC_RATE9M;
1311                 rate[2] = DESC_RATE12M;
1312                 rate[3] = DESC_RATE18M;
1313                 for (i = 0; i < 4; ++i)
1314                         pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1315                 *rate_num = 4;
1316                 break;
1317         case 0xC28:
1318         case 0xE28:
1319         case 0x1828:
1320         case 0x1A28:
1321                 rate[0] = DESC_RATE24M;
1322                 rate[1] = DESC_RATE36M;
1323                 rate[2] = DESC_RATE48M;
1324                 rate[3] = DESC_RATE54M;
1325                 for (i = 0; i < 4; ++i)
1326                         pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1327                 *rate_num = 4;
1328                 break;
1329         case 0xC2C:
1330         case 0xE2C:
1331         case 0x182C:
1332         case 0x1A2C:
1333                 rate[0] = DESC_RATEMCS0;
1334                 rate[1] = DESC_RATEMCS1;
1335                 rate[2] = DESC_RATEMCS2;
1336                 rate[3] = DESC_RATEMCS3;
1337                 for (i = 0; i < 4; ++i)
1338                         pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1339                 *rate_num = 4;
1340                 break;
1341         case 0xC30:
1342         case 0xE30:
1343         case 0x1830:
1344         case 0x1A30:
1345                 rate[0] = DESC_RATEMCS4;
1346                 rate[1] = DESC_RATEMCS5;
1347                 rate[2] = DESC_RATEMCS6;
1348                 rate[3] = DESC_RATEMCS7;
1349                 for (i = 0; i < 4; ++i)
1350                         pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1351                 *rate_num = 4;
1352                 break;
1353         case 0xC34:
1354         case 0xE34:
1355         case 0x1834:
1356         case 0x1A34:
1357                 rate[0] = DESC_RATEMCS8;
1358                 rate[1] = DESC_RATEMCS9;
1359                 rate[2] = DESC_RATEMCS10;
1360                 rate[3] = DESC_RATEMCS11;
1361                 for (i = 0; i < 4; ++i)
1362                         pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1363                 *rate_num = 4;
1364                 break;
1365         case 0xC38:
1366         case 0xE38:
1367         case 0x1838:
1368         case 0x1A38:
1369                 rate[0] = DESC_RATEMCS12;
1370                 rate[1] = DESC_RATEMCS13;
1371                 rate[2] = DESC_RATEMCS14;
1372                 rate[3] = DESC_RATEMCS15;
1373                 for (i = 0; i < 4; ++i)
1374                         pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1375                 *rate_num = 4;
1376                 break;
1377         case 0xC3C:
1378         case 0xE3C:
1379         case 0x183C:
1380         case 0x1A3C:
1381                 rate[0] = DESC_RATEVHT1SS_MCS0;
1382                 rate[1] = DESC_RATEVHT1SS_MCS1;
1383                 rate[2] = DESC_RATEVHT1SS_MCS2;
1384                 rate[3] = DESC_RATEVHT1SS_MCS3;
1385                 for (i = 0; i < 4; ++i)
1386                         pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1387                 *rate_num = 4;
1388                 break;
1389         case 0xC40:
1390         case 0xE40:
1391         case 0x1840:
1392         case 0x1A40:
1393                 rate[0] = DESC_RATEVHT1SS_MCS4;
1394                 rate[1] = DESC_RATEVHT1SS_MCS5;
1395                 rate[2] = DESC_RATEVHT1SS_MCS6;
1396                 rate[3] = DESC_RATEVHT1SS_MCS7;
1397                 for (i = 0; i < 4; ++i)
1398                         pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1399                 *rate_num = 4;
1400                 break;
1401         case 0xC44:
1402         case 0xE44:
1403         case 0x1844:
1404         case 0x1A44:
1405                 rate[0] = DESC_RATEVHT1SS_MCS8;
1406                 rate[1] = DESC_RATEVHT1SS_MCS9;
1407                 rate[2] = DESC_RATEVHT2SS_MCS0;
1408                 rate[3] = DESC_RATEVHT2SS_MCS1;
1409                 for (i = 0; i < 4; ++i)
1410                         pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1411                 *rate_num = 4;
1412                 break;
1413         case 0xC48:
1414         case 0xE48:
1415         case 0x1848:
1416         case 0x1A48:
1417                 rate[0] = DESC_RATEVHT2SS_MCS2;
1418                 rate[1] = DESC_RATEVHT2SS_MCS3;
1419                 rate[2] = DESC_RATEVHT2SS_MCS4;
1420                 rate[3] = DESC_RATEVHT2SS_MCS5;
1421                 for (i = 0; i < 4; ++i)
1422                         pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1423                 *rate_num = 4;
1424                 break;
1425         case 0xC4C:
1426         case 0xE4C:
1427         case 0x184C:
1428         case 0x1A4C:
1429                 rate[0] = DESC_RATEVHT2SS_MCS6;
1430                 rate[1] = DESC_RATEVHT2SS_MCS7;
1431                 rate[2] = DESC_RATEVHT2SS_MCS8;
1432                 rate[3] = DESC_RATEVHT2SS_MCS9;
1433                 for (i = 0; i < 4; ++i)
1434                         pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1435                 *rate_num = 4;
1436                 break;
1437         case 0xCD8:
1438         case 0xED8:
1439         case 0x18D8:
1440         case 0x1AD8:
1441                 rate[0] = DESC_RATEMCS16;
1442                 rate[1] = DESC_RATEMCS17;
1443                 rate[2] = DESC_RATEMCS18;
1444                 rate[3] = DESC_RATEMCS19;
1445                 for (i = 0; i < 4; ++i)
1446                         pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1447                 *rate_num = 4;
1448                 break;
1449         case 0xCDC:
1450         case 0xEDC:
1451         case 0x18DC:
1452         case 0x1ADC:
1453                 rate[0] = DESC_RATEMCS20;
1454                 rate[1] = DESC_RATEMCS21;
1455                 rate[2] = DESC_RATEMCS22;
1456                 rate[3] = DESC_RATEMCS23;
1457                 for (i = 0; i < 4; ++i)
1458                         pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1459                 *rate_num = 4;
1460                 break;
1461         case 0xCE0:
1462         case 0xEE0:
1463         case 0x18E0:
1464         case 0x1AE0:
1465                 rate[0] = DESC_RATEVHT3SS_MCS0;
1466                 rate[1] = DESC_RATEVHT3SS_MCS1;
1467                 rate[2] = DESC_RATEVHT3SS_MCS2;
1468                 rate[3] = DESC_RATEVHT3SS_MCS3;
1469                 for (i = 0; i < 4; ++i)
1470                         pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1471                 *rate_num = 4;
1472                 break;
1473         case 0xCE4:
1474         case 0xEE4:
1475         case 0x18E4:
1476         case 0x1AE4:
1477                 rate[0] = DESC_RATEVHT3SS_MCS4;
1478                 rate[1] = DESC_RATEVHT3SS_MCS5;
1479                 rate[2] = DESC_RATEVHT3SS_MCS6;
1480                 rate[3] = DESC_RATEVHT3SS_MCS7;
1481                 for (i = 0; i < 4; ++i)
1482                         pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1483                 *rate_num = 4;
1484                 break;
1485         case 0xCE8:
1486         case 0xEE8:
1487         case 0x18E8:
1488         case 0x1AE8:
1489                 rate[0] = DESC_RATEVHT3SS_MCS8;
1490                 rate[1] = DESC_RATEVHT3SS_MCS9;
1491                 for (i = 0; i < 2; ++i)
1492                         pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1493                 *rate_num = 2;
1494                 break;
1495         default:
1496                 rtw_warn(rtwdev, "invalid tx power index addr 0x%08x\n", addr);
1497                 break;
1498         }
1499 }
1500
1501 static void rtw_phy_store_tx_power_by_rate(struct rtw_dev *rtwdev,
1502                                            u32 band, u32 rfpath, u32 txnum,
1503                                            u32 regaddr, u32 bitmask, u32 data)
1504 {
1505         struct rtw_hal *hal = &rtwdev->hal;
1506         u8 rate_num = 0;
1507         u8 rate;
1508         u8 rates[RTW_RF_PATH_MAX] = {0};
1509         s8 offset;
1510         s8 pwr_by_rate[RTW_RF_PATH_MAX] = {0};
1511         int i;
1512
1513         rtw_phy_get_rate_values_of_txpwr_by_rate(rtwdev, regaddr, bitmask, data,
1514                                                  rates, pwr_by_rate, &rate_num);
1515
1516         if (WARN_ON(rfpath >= RTW_RF_PATH_MAX ||
1517                     (band != PHY_BAND_2G && band != PHY_BAND_5G) ||
1518                     rate_num > RTW_RF_PATH_MAX))
1519                 return;
1520
1521         for (i = 0; i < rate_num; i++) {
1522                 offset = pwr_by_rate[i];
1523                 rate = rates[i];
1524                 if (band == PHY_BAND_2G)
1525                         hal->tx_pwr_by_rate_offset_2g[rfpath][rate] = offset;
1526                 else
1527                         hal->tx_pwr_by_rate_offset_5g[rfpath][rate] = offset;
1528         }
1529 }
1530
1531 void rtw_parse_tbl_bb_pg(struct rtw_dev *rtwdev, const struct rtw_table *tbl)
1532 {
1533         const struct rtw_phy_pg_cfg_pair *p = tbl->data;
1534         const struct rtw_phy_pg_cfg_pair *end = p + tbl->size;
1535
1536         for (; p < end; p++) {
1537                 if (p->addr == 0xfe || p->addr == 0xffe) {
1538                         msleep(50);
1539                         continue;
1540                 }
1541                 rtw_phy_store_tx_power_by_rate(rtwdev, p->band, p->rf_path,
1542                                                p->tx_num, p->addr, p->bitmask,
1543                                                p->data);
1544         }
1545 }
1546 EXPORT_SYMBOL(rtw_parse_tbl_bb_pg);
1547
1548 static const u8 rtw_channel_idx_5g[RTW_MAX_CHANNEL_NUM_5G] = {
1549         36,  38,  40,  42,  44,  46,  48, /* Band 1 */
1550         52,  54,  56,  58,  60,  62,  64, /* Band 2 */
1551         100, 102, 104, 106, 108, 110, 112, /* Band 3 */
1552         116, 118, 120, 122, 124, 126, 128, /* Band 3 */
1553         132, 134, 136, 138, 140, 142, 144, /* Band 3 */
1554         149, 151, 153, 155, 157, 159, 161, /* Band 4 */
1555         165, 167, 169, 171, 173, 175, 177}; /* Band 4 */
1556
1557 static int rtw_channel_to_idx(u8 band, u8 channel)
1558 {
1559         int ch_idx;
1560         u8 n_channel;
1561
1562         if (band == PHY_BAND_2G) {
1563                 ch_idx = channel - 1;
1564                 n_channel = RTW_MAX_CHANNEL_NUM_2G;
1565         } else if (band == PHY_BAND_5G) {
1566                 n_channel = RTW_MAX_CHANNEL_NUM_5G;
1567                 for (ch_idx = 0; ch_idx < n_channel; ch_idx++)
1568                         if (rtw_channel_idx_5g[ch_idx] == channel)
1569                                 break;
1570         } else {
1571                 return -1;
1572         }
1573
1574         if (ch_idx >= n_channel)
1575                 return -1;
1576
1577         return ch_idx;
1578 }
1579
1580 static void rtw_phy_set_tx_power_limit(struct rtw_dev *rtwdev, u8 regd, u8 band,
1581                                        u8 bw, u8 rs, u8 ch, s8 pwr_limit)
1582 {
1583         struct rtw_hal *hal = &rtwdev->hal;
1584         u8 max_power_index = rtwdev->chip->max_power_index;
1585         s8 ww;
1586         int ch_idx;
1587
1588         pwr_limit = clamp_t(s8, pwr_limit,
1589                             -max_power_index, max_power_index);
1590         ch_idx = rtw_channel_to_idx(band, ch);
1591
1592         if (regd >= RTW_REGD_MAX || bw >= RTW_CHANNEL_WIDTH_MAX ||
1593             rs >= RTW_RATE_SECTION_MAX || ch_idx < 0) {
1594                 WARN(1,
1595                      "wrong txpwr_lmt regd=%u, band=%u bw=%u, rs=%u, ch_idx=%u, pwr_limit=%d\n",
1596                      regd, band, bw, rs, ch_idx, pwr_limit);
1597                 return;
1598         }
1599
1600         if (band == PHY_BAND_2G) {
1601                 hal->tx_pwr_limit_2g[regd][bw][rs][ch_idx] = pwr_limit;
1602                 ww = hal->tx_pwr_limit_2g[RTW_REGD_WW][bw][rs][ch_idx];
1603                 ww = min_t(s8, ww, pwr_limit);
1604                 hal->tx_pwr_limit_2g[RTW_REGD_WW][bw][rs][ch_idx] = ww;
1605         } else if (band == PHY_BAND_5G) {
1606                 hal->tx_pwr_limit_5g[regd][bw][rs][ch_idx] = pwr_limit;
1607                 ww = hal->tx_pwr_limit_5g[RTW_REGD_WW][bw][rs][ch_idx];
1608                 ww = min_t(s8, ww, pwr_limit);
1609                 hal->tx_pwr_limit_5g[RTW_REGD_WW][bw][rs][ch_idx] = ww;
1610         }
1611 }
1612
1613 /* cross-reference 5G power limits if values are not assigned */
1614 static void
1615 rtw_xref_5g_txpwr_lmt(struct rtw_dev *rtwdev, u8 regd,
1616                       u8 bw, u8 ch_idx, u8 rs_ht, u8 rs_vht)
1617 {
1618         struct rtw_hal *hal = &rtwdev->hal;
1619         u8 max_power_index = rtwdev->chip->max_power_index;
1620         s8 lmt_ht = hal->tx_pwr_limit_5g[regd][bw][rs_ht][ch_idx];
1621         s8 lmt_vht = hal->tx_pwr_limit_5g[regd][bw][rs_vht][ch_idx];
1622
1623         if (lmt_ht == lmt_vht)
1624                 return;
1625
1626         if (lmt_ht == max_power_index)
1627                 hal->tx_pwr_limit_5g[regd][bw][rs_ht][ch_idx] = lmt_vht;
1628
1629         else if (lmt_vht == max_power_index)
1630                 hal->tx_pwr_limit_5g[regd][bw][rs_vht][ch_idx] = lmt_ht;
1631 }
1632
1633 /* cross-reference power limits for ht and vht */
1634 static void
1635 rtw_xref_txpwr_lmt_by_rs(struct rtw_dev *rtwdev, u8 regd, u8 bw, u8 ch_idx)
1636 {
1637         u8 rs_idx, rs_ht, rs_vht;
1638         u8 rs_cmp[2][2] = {{RTW_RATE_SECTION_HT_1S, RTW_RATE_SECTION_VHT_1S},
1639                            {RTW_RATE_SECTION_HT_2S, RTW_RATE_SECTION_VHT_2S} };
1640
1641         for (rs_idx = 0; rs_idx < 2; rs_idx++) {
1642                 rs_ht = rs_cmp[rs_idx][0];
1643                 rs_vht = rs_cmp[rs_idx][1];
1644
1645                 rtw_xref_5g_txpwr_lmt(rtwdev, regd, bw, ch_idx, rs_ht, rs_vht);
1646         }
1647 }
1648
1649 /* cross-reference power limits for 5G channels */
1650 static void
1651 rtw_xref_5g_txpwr_lmt_by_ch(struct rtw_dev *rtwdev, u8 regd, u8 bw)
1652 {
1653         u8 ch_idx;
1654
1655         for (ch_idx = 0; ch_idx < RTW_MAX_CHANNEL_NUM_5G; ch_idx++)
1656                 rtw_xref_txpwr_lmt_by_rs(rtwdev, regd, bw, ch_idx);
1657 }
1658
1659 /* cross-reference power limits for 20/40M bandwidth */
1660 static void
1661 rtw_xref_txpwr_lmt_by_bw(struct rtw_dev *rtwdev, u8 regd)
1662 {
1663         u8 bw;
1664
1665         for (bw = RTW_CHANNEL_WIDTH_20; bw <= RTW_CHANNEL_WIDTH_40; bw++)
1666                 rtw_xref_5g_txpwr_lmt_by_ch(rtwdev, regd, bw);
1667 }
1668
1669 /* cross-reference power limits */
1670 static void rtw_xref_txpwr_lmt(struct rtw_dev *rtwdev)
1671 {
1672         u8 regd;
1673
1674         for (regd = 0; regd < RTW_REGD_MAX; regd++)
1675                 rtw_xref_txpwr_lmt_by_bw(rtwdev, regd);
1676 }
1677
1678 static void
1679 __cfg_txpwr_lmt_by_alt(struct rtw_hal *hal, u8 regd, u8 regd_alt, u8 bw, u8 rs)
1680 {
1681         u8 ch;
1682
1683         for (ch = 0; ch < RTW_MAX_CHANNEL_NUM_2G; ch++)
1684                 hal->tx_pwr_limit_2g[regd][bw][rs][ch] =
1685                         hal->tx_pwr_limit_2g[regd_alt][bw][rs][ch];
1686
1687         for (ch = 0; ch < RTW_MAX_CHANNEL_NUM_5G; ch++)
1688                 hal->tx_pwr_limit_5g[regd][bw][rs][ch] =
1689                         hal->tx_pwr_limit_5g[regd_alt][bw][rs][ch];
1690 }
1691
1692 static void
1693 rtw_cfg_txpwr_lmt_by_alt(struct rtw_dev *rtwdev, u8 regd, u8 regd_alt)
1694 {
1695         u8 bw, rs;
1696
1697         for (bw = 0; bw < RTW_CHANNEL_WIDTH_MAX; bw++)
1698                 for (rs = 0; rs < RTW_RATE_SECTION_MAX; rs++)
1699                         __cfg_txpwr_lmt_by_alt(&rtwdev->hal, regd, regd_alt,
1700                                                bw, rs);
1701 }
1702
1703 void rtw_parse_tbl_txpwr_lmt(struct rtw_dev *rtwdev,
1704                              const struct rtw_table *tbl)
1705 {
1706         const struct rtw_txpwr_lmt_cfg_pair *p = tbl->data;
1707         const struct rtw_txpwr_lmt_cfg_pair *end = p + tbl->size;
1708         u32 regd_cfg_flag = 0;
1709         u8 regd_alt;
1710         u8 i;
1711
1712         for (; p < end; p++) {
1713                 regd_cfg_flag |= BIT(p->regd);
1714                 rtw_phy_set_tx_power_limit(rtwdev, p->regd, p->band,
1715                                            p->bw, p->rs, p->ch, p->txpwr_lmt);
1716         }
1717
1718         for (i = 0; i < RTW_REGD_MAX; i++) {
1719                 if (i == RTW_REGD_WW)
1720                         continue;
1721
1722                 if (regd_cfg_flag & BIT(i))
1723                         continue;
1724
1725                 rtw_dbg(rtwdev, RTW_DBG_REGD,
1726                         "txpwr regd %d does not be configured\n", i);
1727
1728                 if (rtw_regd_has_alt(i, &regd_alt) &&
1729                     regd_cfg_flag & BIT(regd_alt)) {
1730                         rtw_dbg(rtwdev, RTW_DBG_REGD,
1731                                 "cfg txpwr regd %d by regd %d as alternative\n",
1732                                 i, regd_alt);
1733
1734                         rtw_cfg_txpwr_lmt_by_alt(rtwdev, i, regd_alt);
1735                         continue;
1736                 }
1737
1738                 rtw_dbg(rtwdev, RTW_DBG_REGD, "cfg txpwr regd %d by WW\n", i);
1739                 rtw_cfg_txpwr_lmt_by_alt(rtwdev, i, RTW_REGD_WW);
1740         }
1741
1742         rtw_xref_txpwr_lmt(rtwdev);
1743 }
1744 EXPORT_SYMBOL(rtw_parse_tbl_txpwr_lmt);
1745
1746 void rtw_phy_cfg_mac(struct rtw_dev *rtwdev, const struct rtw_table *tbl,
1747                      u32 addr, u32 data)
1748 {
1749         rtw_write8(rtwdev, addr, data);
1750 }
1751 EXPORT_SYMBOL(rtw_phy_cfg_mac);
1752
1753 void rtw_phy_cfg_agc(struct rtw_dev *rtwdev, const struct rtw_table *tbl,
1754                      u32 addr, u32 data)
1755 {
1756         rtw_write32(rtwdev, addr, data);
1757 }
1758 EXPORT_SYMBOL(rtw_phy_cfg_agc);
1759
1760 void rtw_phy_cfg_bb(struct rtw_dev *rtwdev, const struct rtw_table *tbl,
1761                     u32 addr, u32 data)
1762 {
1763         if (addr == 0xfe)
1764                 msleep(50);
1765         else if (addr == 0xfd)
1766                 mdelay(5);
1767         else if (addr == 0xfc)
1768                 mdelay(1);
1769         else if (addr == 0xfb)
1770                 usleep_range(50, 60);
1771         else if (addr == 0xfa)
1772                 udelay(5);
1773         else if (addr == 0xf9)
1774                 udelay(1);
1775         else
1776                 rtw_write32(rtwdev, addr, data);
1777 }
1778 EXPORT_SYMBOL(rtw_phy_cfg_bb);
1779
1780 void rtw_phy_cfg_rf(struct rtw_dev *rtwdev, const struct rtw_table *tbl,
1781                     u32 addr, u32 data)
1782 {
1783         if (addr == 0xffe) {
1784                 msleep(50);
1785         } else if (addr == 0xfe) {
1786                 usleep_range(100, 110);
1787         } else {
1788                 rtw_write_rf(rtwdev, tbl->rf_path, addr, RFREG_MASK, data);
1789                 udelay(1);
1790         }
1791 }
1792 EXPORT_SYMBOL(rtw_phy_cfg_rf);
1793
1794 static void rtw_load_rfk_table(struct rtw_dev *rtwdev)
1795 {
1796         const struct rtw_chip_info *chip = rtwdev->chip;
1797         struct rtw_dpk_info *dpk_info = &rtwdev->dm_info.dpk_info;
1798
1799         if (!chip->rfk_init_tbl)
1800                 return;
1801
1802         rtw_write32_mask(rtwdev, 0x1e24, BIT(17), 0x1);
1803         rtw_write32_mask(rtwdev, 0x1cd0, BIT(28), 0x1);
1804         rtw_write32_mask(rtwdev, 0x1cd0, BIT(29), 0x1);
1805         rtw_write32_mask(rtwdev, 0x1cd0, BIT(30), 0x1);
1806         rtw_write32_mask(rtwdev, 0x1cd0, BIT(31), 0x0);
1807
1808         rtw_load_table(rtwdev, chip->rfk_init_tbl);
1809
1810         dpk_info->is_dpk_pwr_on = true;
1811 }
1812
1813 void rtw_phy_load_tables(struct rtw_dev *rtwdev)
1814 {
1815         const struct rtw_rfe_def *rfe_def = rtw_get_rfe_def(rtwdev);
1816         const struct rtw_chip_info *chip = rtwdev->chip;
1817         u8 rf_path;
1818
1819         rtw_load_table(rtwdev, chip->mac_tbl);
1820         rtw_load_table(rtwdev, chip->bb_tbl);
1821         rtw_load_table(rtwdev, chip->agc_tbl);
1822         if (rfe_def->agc_btg_tbl)
1823                 rtw_load_table(rtwdev, rfe_def->agc_btg_tbl);
1824         rtw_load_rfk_table(rtwdev);
1825
1826         for (rf_path = 0; rf_path < rtwdev->hal.rf_path_num; rf_path++) {
1827                 const struct rtw_table *tbl;
1828
1829                 tbl = chip->rf_tbl[rf_path];
1830                 rtw_load_table(rtwdev, tbl);
1831         }
1832 }
1833 EXPORT_SYMBOL(rtw_phy_load_tables);
1834
1835 static u8 rtw_get_channel_group(u8 channel, u8 rate)
1836 {
1837         switch (channel) {
1838         default:
1839                 WARN_ON(1);
1840                 fallthrough;
1841         case 1:
1842         case 2:
1843         case 36:
1844         case 38:
1845         case 40:
1846         case 42:
1847                 return 0;
1848         case 3:
1849         case 4:
1850         case 5:
1851         case 44:
1852         case 46:
1853         case 48:
1854         case 50:
1855                 return 1;
1856         case 6:
1857         case 7:
1858         case 8:
1859         case 52:
1860         case 54:
1861         case 56:
1862         case 58:
1863                 return 2;
1864         case 9:
1865         case 10:
1866         case 11:
1867         case 60:
1868         case 62:
1869         case 64:
1870                 return 3;
1871         case 12:
1872         case 13:
1873         case 100:
1874         case 102:
1875         case 104:
1876         case 106:
1877                 return 4;
1878         case 14:
1879                 return rate <= DESC_RATE11M ? 5 : 4;
1880         case 108:
1881         case 110:
1882         case 112:
1883         case 114:
1884                 return 5;
1885         case 116:
1886         case 118:
1887         case 120:
1888         case 122:
1889                 return 6;
1890         case 124:
1891         case 126:
1892         case 128:
1893         case 130:
1894                 return 7;
1895         case 132:
1896         case 134:
1897         case 136:
1898         case 138:
1899                 return 8;
1900         case 140:
1901         case 142:
1902         case 144:
1903                 return 9;
1904         case 149:
1905         case 151:
1906         case 153:
1907         case 155:
1908                 return 10;
1909         case 157:
1910         case 159:
1911         case 161:
1912                 return 11;
1913         case 165:
1914         case 167:
1915         case 169:
1916         case 171:
1917                 return 12;
1918         case 173:
1919         case 175:
1920         case 177:
1921                 return 13;
1922         }
1923 }
1924
1925 static s8 rtw_phy_get_dis_dpd_by_rate_diff(struct rtw_dev *rtwdev, u16 rate)
1926 {
1927         const struct rtw_chip_info *chip = rtwdev->chip;
1928         s8 dpd_diff = 0;
1929
1930         if (!chip->en_dis_dpd)
1931                 return 0;
1932
1933 #define RTW_DPD_RATE_CHECK(_rate)                                       \
1934         case DESC_RATE ## _rate:                                        \
1935         if (DIS_DPD_RATE ## _rate & chip->dpd_ratemask)                 \
1936                 dpd_diff = -6 * chip->txgi_factor;                      \
1937         break
1938
1939         switch (rate) {
1940         RTW_DPD_RATE_CHECK(6M);
1941         RTW_DPD_RATE_CHECK(9M);
1942         RTW_DPD_RATE_CHECK(MCS0);
1943         RTW_DPD_RATE_CHECK(MCS1);
1944         RTW_DPD_RATE_CHECK(MCS8);
1945         RTW_DPD_RATE_CHECK(MCS9);
1946         RTW_DPD_RATE_CHECK(VHT1SS_MCS0);
1947         RTW_DPD_RATE_CHECK(VHT1SS_MCS1);
1948         RTW_DPD_RATE_CHECK(VHT2SS_MCS0);
1949         RTW_DPD_RATE_CHECK(VHT2SS_MCS1);
1950         }
1951 #undef RTW_DPD_RATE_CHECK
1952
1953         return dpd_diff;
1954 }
1955
1956 static u8 rtw_phy_get_2g_tx_power_index(struct rtw_dev *rtwdev,
1957                                         struct rtw_2g_txpwr_idx *pwr_idx_2g,
1958                                         enum rtw_bandwidth bandwidth,
1959                                         u8 rate, u8 group)
1960 {
1961         const struct rtw_chip_info *chip = rtwdev->chip;
1962         u8 tx_power;
1963         bool mcs_rate;
1964         bool above_2ss;
1965         u8 factor = chip->txgi_factor;
1966
1967         if (rate <= DESC_RATE11M)
1968                 tx_power = pwr_idx_2g->cck_base[group];
1969         else
1970                 tx_power = pwr_idx_2g->bw40_base[group];
1971
1972         if (rate >= DESC_RATE6M && rate <= DESC_RATE54M)
1973                 tx_power += pwr_idx_2g->ht_1s_diff.ofdm * factor;
1974
1975         mcs_rate = (rate >= DESC_RATEMCS0 && rate <= DESC_RATEMCS15) ||
1976                    (rate >= DESC_RATEVHT1SS_MCS0 &&
1977                     rate <= DESC_RATEVHT2SS_MCS9);
1978         above_2ss = (rate >= DESC_RATEMCS8 && rate <= DESC_RATEMCS15) ||
1979                     (rate >= DESC_RATEVHT2SS_MCS0);
1980
1981         if (!mcs_rate)
1982                 return tx_power;
1983
1984         switch (bandwidth) {
1985         default:
1986                 WARN_ON(1);
1987                 fallthrough;
1988         case RTW_CHANNEL_WIDTH_20:
1989                 tx_power += pwr_idx_2g->ht_1s_diff.bw20 * factor;
1990                 if (above_2ss)
1991                         tx_power += pwr_idx_2g->ht_2s_diff.bw20 * factor;
1992                 break;
1993         case RTW_CHANNEL_WIDTH_40:
1994                 /* bw40 is the base power */
1995                 if (above_2ss)
1996                         tx_power += pwr_idx_2g->ht_2s_diff.bw40 * factor;
1997                 break;
1998         }
1999
2000         return tx_power;
2001 }
2002
2003 static u8 rtw_phy_get_5g_tx_power_index(struct rtw_dev *rtwdev,
2004                                         struct rtw_5g_txpwr_idx *pwr_idx_5g,
2005                                         enum rtw_bandwidth bandwidth,
2006                                         u8 rate, u8 group)
2007 {
2008         const struct rtw_chip_info *chip = rtwdev->chip;
2009         u8 tx_power;
2010         u8 upper, lower;
2011         bool mcs_rate;
2012         bool above_2ss;
2013         u8 factor = chip->txgi_factor;
2014
2015         tx_power = pwr_idx_5g->bw40_base[group];
2016
2017         mcs_rate = (rate >= DESC_RATEMCS0 && rate <= DESC_RATEMCS15) ||
2018                    (rate >= DESC_RATEVHT1SS_MCS0 &&
2019                     rate <= DESC_RATEVHT2SS_MCS9);
2020         above_2ss = (rate >= DESC_RATEMCS8 && rate <= DESC_RATEMCS15) ||
2021                     (rate >= DESC_RATEVHT2SS_MCS0);
2022
2023         if (!mcs_rate) {
2024                 tx_power += pwr_idx_5g->ht_1s_diff.ofdm * factor;
2025                 return tx_power;
2026         }
2027
2028         switch (bandwidth) {
2029         default:
2030                 WARN_ON(1);
2031                 fallthrough;
2032         case RTW_CHANNEL_WIDTH_20:
2033                 tx_power += pwr_idx_5g->ht_1s_diff.bw20 * factor;
2034                 if (above_2ss)
2035                         tx_power += pwr_idx_5g->ht_2s_diff.bw20 * factor;
2036                 break;
2037         case RTW_CHANNEL_WIDTH_40:
2038                 /* bw40 is the base power */
2039                 if (above_2ss)
2040                         tx_power += pwr_idx_5g->ht_2s_diff.bw40 * factor;
2041                 break;
2042         case RTW_CHANNEL_WIDTH_80:
2043                 /* the base idx of bw80 is the average of bw40+/bw40- */
2044                 lower = pwr_idx_5g->bw40_base[group];
2045                 upper = pwr_idx_5g->bw40_base[group + 1];
2046
2047                 tx_power = (lower + upper) / 2;
2048                 tx_power += pwr_idx_5g->vht_1s_diff.bw80 * factor;
2049                 if (above_2ss)
2050                         tx_power += pwr_idx_5g->vht_2s_diff.bw80 * factor;
2051                 break;
2052         }
2053
2054         return tx_power;
2055 }
2056
2057 /* return RTW_RATE_SECTION_MAX to indicate rate is invalid */
2058 static u8 rtw_phy_rate_to_rate_section(u8 rate)
2059 {
2060         if (rate >= DESC_RATE1M && rate <= DESC_RATE11M)
2061                 return RTW_RATE_SECTION_CCK;
2062         else if (rate >= DESC_RATE6M && rate <= DESC_RATE54M)
2063                 return RTW_RATE_SECTION_OFDM;
2064         else if (rate >= DESC_RATEMCS0 && rate <= DESC_RATEMCS7)
2065                 return RTW_RATE_SECTION_HT_1S;
2066         else if (rate >= DESC_RATEMCS8 && rate <= DESC_RATEMCS15)
2067                 return RTW_RATE_SECTION_HT_2S;
2068         else if (rate >= DESC_RATEVHT1SS_MCS0 && rate <= DESC_RATEVHT1SS_MCS9)
2069                 return RTW_RATE_SECTION_VHT_1S;
2070         else if (rate >= DESC_RATEVHT2SS_MCS0 && rate <= DESC_RATEVHT2SS_MCS9)
2071                 return RTW_RATE_SECTION_VHT_2S;
2072         else
2073                 return RTW_RATE_SECTION_MAX;
2074 }
2075
2076 static s8 rtw_phy_get_tx_power_limit(struct rtw_dev *rtwdev, u8 band,
2077                                      enum rtw_bandwidth bw, u8 rf_path,
2078                                      u8 rate, u8 channel, u8 regd)
2079 {
2080         struct rtw_hal *hal = &rtwdev->hal;
2081         u8 *cch_by_bw = hal->cch_by_bw;
2082         s8 power_limit = (s8)rtwdev->chip->max_power_index;
2083         u8 rs = rtw_phy_rate_to_rate_section(rate);
2084         int ch_idx;
2085         u8 cur_bw, cur_ch;
2086         s8 cur_lmt;
2087
2088         if (regd > RTW_REGD_WW)
2089                 return power_limit;
2090
2091         if (rs == RTW_RATE_SECTION_MAX)
2092                 goto err;
2093
2094         /* only 20M BW with cck and ofdm */
2095         if (rs == RTW_RATE_SECTION_CCK || rs == RTW_RATE_SECTION_OFDM)
2096                 bw = RTW_CHANNEL_WIDTH_20;
2097
2098         /* only 20/40M BW with ht */
2099         if (rs == RTW_RATE_SECTION_HT_1S || rs == RTW_RATE_SECTION_HT_2S)
2100                 bw = min_t(u8, bw, RTW_CHANNEL_WIDTH_40);
2101
2102         /* select min power limit among [20M BW ~ current BW] */
2103         for (cur_bw = RTW_CHANNEL_WIDTH_20; cur_bw <= bw; cur_bw++) {
2104                 cur_ch = cch_by_bw[cur_bw];
2105
2106                 ch_idx = rtw_channel_to_idx(band, cur_ch);
2107                 if (ch_idx < 0)
2108                         goto err;
2109
2110                 cur_lmt = cur_ch <= RTW_MAX_CHANNEL_NUM_2G ?
2111                         hal->tx_pwr_limit_2g[regd][cur_bw][rs][ch_idx] :
2112                         hal->tx_pwr_limit_5g[regd][cur_bw][rs][ch_idx];
2113
2114                 power_limit = min_t(s8, cur_lmt, power_limit);
2115         }
2116
2117         return power_limit;
2118
2119 err:
2120         WARN(1, "invalid arguments, band=%d, bw=%d, path=%d, rate=%d, ch=%d\n",
2121              band, bw, rf_path, rate, channel);
2122         return (s8)rtwdev->chip->max_power_index;
2123 }
2124
2125 static s8 rtw_phy_get_tx_power_sar(struct rtw_dev *rtwdev, u8 sar_band,
2126                                    u8 rf_path, u8 rate)
2127 {
2128         u8 rs = rtw_phy_rate_to_rate_section(rate);
2129         struct rtw_sar_arg arg = {
2130                 .sar_band = sar_band,
2131                 .path = rf_path,
2132                 .rs = rs,
2133         };
2134
2135         if (rs == RTW_RATE_SECTION_MAX)
2136                 goto err;
2137
2138         return rtw_query_sar(rtwdev, &arg);
2139
2140 err:
2141         WARN(1, "invalid arguments, sar_band=%d, path=%d, rate=%d\n",
2142              sar_band, rf_path, rate);
2143         return (s8)rtwdev->chip->max_power_index;
2144 }
2145
2146 void rtw_get_tx_power_params(struct rtw_dev *rtwdev, u8 path, u8 rate, u8 bw,
2147                              u8 ch, u8 regd, struct rtw_power_params *pwr_param)
2148 {
2149         struct rtw_hal *hal = &rtwdev->hal;
2150         struct rtw_dm_info *dm_info = &rtwdev->dm_info;
2151         struct rtw_txpwr_idx *pwr_idx;
2152         u8 group, band;
2153         u8 *base = &pwr_param->pwr_base;
2154         s8 *offset = &pwr_param->pwr_offset;
2155         s8 *limit = &pwr_param->pwr_limit;
2156         s8 *remnant = &pwr_param->pwr_remnant;
2157         s8 *sar = &pwr_param->pwr_sar;
2158
2159         pwr_idx = &rtwdev->efuse.txpwr_idx_table[path];
2160         group = rtw_get_channel_group(ch, rate);
2161
2162         /* base power index for 2.4G/5G */
2163         if (IS_CH_2G_BAND(ch)) {
2164                 band = PHY_BAND_2G;
2165                 *base = rtw_phy_get_2g_tx_power_index(rtwdev,
2166                                                       &pwr_idx->pwr_idx_2g,
2167                                                       bw, rate, group);
2168                 *offset = hal->tx_pwr_by_rate_offset_2g[path][rate];
2169         } else {
2170                 band = PHY_BAND_5G;
2171                 *base = rtw_phy_get_5g_tx_power_index(rtwdev,
2172                                                       &pwr_idx->pwr_idx_5g,
2173                                                       bw, rate, group);
2174                 *offset = hal->tx_pwr_by_rate_offset_5g[path][rate];
2175         }
2176
2177         *limit = rtw_phy_get_tx_power_limit(rtwdev, band, bw, path,
2178                                             rate, ch, regd);
2179         *remnant = rate <= DESC_RATE11M ? dm_info->txagc_remnant_cck :
2180                                           dm_info->txagc_remnant_ofdm[path];
2181         *sar = rtw_phy_get_tx_power_sar(rtwdev, hal->sar_band, path, rate);
2182 }
2183
2184 u8
2185 rtw_phy_get_tx_power_index(struct rtw_dev *rtwdev, u8 rf_path, u8 rate,
2186                            enum rtw_bandwidth bandwidth, u8 channel, u8 regd)
2187 {
2188         struct rtw_power_params pwr_param = {0};
2189         u8 tx_power;
2190         s8 offset;
2191
2192         rtw_get_tx_power_params(rtwdev, rf_path, rate, bandwidth,
2193                                 channel, regd, &pwr_param);
2194
2195         tx_power = pwr_param.pwr_base;
2196         offset = min3(pwr_param.pwr_offset,
2197                       pwr_param.pwr_limit,
2198                       pwr_param.pwr_sar);
2199
2200         if (rtwdev->chip->en_dis_dpd)
2201                 offset += rtw_phy_get_dis_dpd_by_rate_diff(rtwdev, rate);
2202
2203         tx_power += offset + pwr_param.pwr_remnant;
2204
2205         if (tx_power > rtwdev->chip->max_power_index)
2206                 tx_power = rtwdev->chip->max_power_index;
2207
2208         return tx_power;
2209 }
2210 EXPORT_SYMBOL(rtw_phy_get_tx_power_index);
2211
2212 static void rtw_phy_set_tx_power_index_by_rs(struct rtw_dev *rtwdev,
2213                                              u8 ch, u8 path, u8 rs)
2214 {
2215         struct rtw_hal *hal = &rtwdev->hal;
2216         u8 regd = rtw_regd_get(rtwdev);
2217         u8 *rates;
2218         u8 size;
2219         u8 rate;
2220         u8 pwr_idx;
2221         u8 bw;
2222         int i;
2223
2224         if (rs >= RTW_RATE_SECTION_MAX)
2225                 return;
2226
2227         rates = rtw_rate_section[rs];
2228         size = rtw_rate_size[rs];
2229         bw = hal->current_band_width;
2230         for (i = 0; i < size; i++) {
2231                 rate = rates[i];
2232                 pwr_idx = rtw_phy_get_tx_power_index(rtwdev, path, rate,
2233                                                      bw, ch, regd);
2234                 hal->tx_pwr_tbl[path][rate] = pwr_idx;
2235         }
2236 }
2237
2238 /* set tx power level by path for each rates, note that the order of the rates
2239  * are *very* important, bacause 8822B/8821C combines every four bytes of tx
2240  * power index into a four-byte power index register, and calls set_tx_agc to
2241  * write these values into hardware
2242  */
2243 static void rtw_phy_set_tx_power_level_by_path(struct rtw_dev *rtwdev,
2244                                                u8 ch, u8 path)
2245 {
2246         struct rtw_hal *hal = &rtwdev->hal;
2247         u8 rs;
2248
2249         /* do not need cck rates if we are not in 2.4G */
2250         if (hal->current_band_type == RTW_BAND_2G)
2251                 rs = RTW_RATE_SECTION_CCK;
2252         else
2253                 rs = RTW_RATE_SECTION_OFDM;
2254
2255         for (; rs < RTW_RATE_SECTION_MAX; rs++)
2256                 rtw_phy_set_tx_power_index_by_rs(rtwdev, ch, path, rs);
2257 }
2258
2259 void rtw_phy_set_tx_power_level(struct rtw_dev *rtwdev, u8 channel)
2260 {
2261         const struct rtw_chip_info *chip = rtwdev->chip;
2262         struct rtw_hal *hal = &rtwdev->hal;
2263         u8 path;
2264
2265         mutex_lock(&hal->tx_power_mutex);
2266
2267         for (path = 0; path < hal->rf_path_num; path++)
2268                 rtw_phy_set_tx_power_level_by_path(rtwdev, channel, path);
2269
2270         chip->ops->set_tx_power_index(rtwdev);
2271         mutex_unlock(&hal->tx_power_mutex);
2272 }
2273 EXPORT_SYMBOL(rtw_phy_set_tx_power_level);
2274
2275 static void
2276 rtw_phy_tx_power_by_rate_config_by_path(struct rtw_hal *hal, u8 path,
2277                                         u8 rs, u8 size, u8 *rates)
2278 {
2279         u8 rate;
2280         u8 base_idx, rate_idx;
2281         s8 base_2g, base_5g;
2282
2283         if (rs >= RTW_RATE_SECTION_VHT_1S)
2284                 base_idx = rates[size - 3];
2285         else
2286                 base_idx = rates[size - 1];
2287         base_2g = hal->tx_pwr_by_rate_offset_2g[path][base_idx];
2288         base_5g = hal->tx_pwr_by_rate_offset_5g[path][base_idx];
2289         hal->tx_pwr_by_rate_base_2g[path][rs] = base_2g;
2290         hal->tx_pwr_by_rate_base_5g[path][rs] = base_5g;
2291         for (rate = 0; rate < size; rate++) {
2292                 rate_idx = rates[rate];
2293                 hal->tx_pwr_by_rate_offset_2g[path][rate_idx] -= base_2g;
2294                 hal->tx_pwr_by_rate_offset_5g[path][rate_idx] -= base_5g;
2295         }
2296 }
2297
2298 void rtw_phy_tx_power_by_rate_config(struct rtw_hal *hal)
2299 {
2300         u8 path;
2301
2302         for (path = 0; path < RTW_RF_PATH_MAX; path++) {
2303                 rtw_phy_tx_power_by_rate_config_by_path(hal, path,
2304                                 RTW_RATE_SECTION_CCK,
2305                                 rtw_cck_size, rtw_cck_rates);
2306                 rtw_phy_tx_power_by_rate_config_by_path(hal, path,
2307                                 RTW_RATE_SECTION_OFDM,
2308                                 rtw_ofdm_size, rtw_ofdm_rates);
2309                 rtw_phy_tx_power_by_rate_config_by_path(hal, path,
2310                                 RTW_RATE_SECTION_HT_1S,
2311                                 rtw_ht_1s_size, rtw_ht_1s_rates);
2312                 rtw_phy_tx_power_by_rate_config_by_path(hal, path,
2313                                 RTW_RATE_SECTION_HT_2S,
2314                                 rtw_ht_2s_size, rtw_ht_2s_rates);
2315                 rtw_phy_tx_power_by_rate_config_by_path(hal, path,
2316                                 RTW_RATE_SECTION_VHT_1S,
2317                                 rtw_vht_1s_size, rtw_vht_1s_rates);
2318                 rtw_phy_tx_power_by_rate_config_by_path(hal, path,
2319                                 RTW_RATE_SECTION_VHT_2S,
2320                                 rtw_vht_2s_size, rtw_vht_2s_rates);
2321         }
2322 }
2323
2324 static void
2325 __rtw_phy_tx_power_limit_config(struct rtw_hal *hal, u8 regd, u8 bw, u8 rs)
2326 {
2327         s8 base;
2328         u8 ch;
2329
2330         for (ch = 0; ch < RTW_MAX_CHANNEL_NUM_2G; ch++) {
2331                 base = hal->tx_pwr_by_rate_base_2g[0][rs];
2332                 hal->tx_pwr_limit_2g[regd][bw][rs][ch] -= base;
2333         }
2334
2335         for (ch = 0; ch < RTW_MAX_CHANNEL_NUM_5G; ch++) {
2336                 base = hal->tx_pwr_by_rate_base_5g[0][rs];
2337                 hal->tx_pwr_limit_5g[regd][bw][rs][ch] -= base;
2338         }
2339 }
2340
2341 void rtw_phy_tx_power_limit_config(struct rtw_hal *hal)
2342 {
2343         u8 regd, bw, rs;
2344
2345         /* default at channel 1 */
2346         hal->cch_by_bw[RTW_CHANNEL_WIDTH_20] = 1;
2347
2348         for (regd = 0; regd < RTW_REGD_MAX; regd++)
2349                 for (bw = 0; bw < RTW_CHANNEL_WIDTH_MAX; bw++)
2350                         for (rs = 0; rs < RTW_RATE_SECTION_MAX; rs++)
2351                                 __rtw_phy_tx_power_limit_config(hal, regd, bw, rs);
2352 }
2353
2354 static void rtw_phy_init_tx_power_limit(struct rtw_dev *rtwdev,
2355                                         u8 regd, u8 bw, u8 rs)
2356 {
2357         struct rtw_hal *hal = &rtwdev->hal;
2358         s8 max_power_index = (s8)rtwdev->chip->max_power_index;
2359         u8 ch;
2360
2361         /* 2.4G channels */
2362         for (ch = 0; ch < RTW_MAX_CHANNEL_NUM_2G; ch++)
2363                 hal->tx_pwr_limit_2g[regd][bw][rs][ch] = max_power_index;
2364
2365         /* 5G channels */
2366         for (ch = 0; ch < RTW_MAX_CHANNEL_NUM_5G; ch++)
2367                 hal->tx_pwr_limit_5g[regd][bw][rs][ch] = max_power_index;
2368 }
2369
2370 void rtw_phy_init_tx_power(struct rtw_dev *rtwdev)
2371 {
2372         struct rtw_hal *hal = &rtwdev->hal;
2373         u8 regd, path, rate, rs, bw;
2374
2375         /* init tx power by rate offset */
2376         for (path = 0; path < RTW_RF_PATH_MAX; path++) {
2377                 for (rate = 0; rate < DESC_RATE_MAX; rate++) {
2378                         hal->tx_pwr_by_rate_offset_2g[path][rate] = 0;
2379                         hal->tx_pwr_by_rate_offset_5g[path][rate] = 0;
2380                 }
2381         }
2382
2383         /* init tx power limit */
2384         for (regd = 0; regd < RTW_REGD_MAX; regd++)
2385                 for (bw = 0; bw < RTW_CHANNEL_WIDTH_MAX; bw++)
2386                         for (rs = 0; rs < RTW_RATE_SECTION_MAX; rs++)
2387                                 rtw_phy_init_tx_power_limit(rtwdev, regd, bw,
2388                                                             rs);
2389 }
2390
2391 void rtw_phy_config_swing_table(struct rtw_dev *rtwdev,
2392                                 struct rtw_swing_table *swing_table)
2393 {
2394         const struct rtw_rfe_def *rfe_def = rtw_get_rfe_def(rtwdev);
2395         const struct rtw_pwr_track_tbl *tbl = rfe_def->pwr_track_tbl;
2396         u8 channel = rtwdev->hal.current_channel;
2397
2398         if (IS_CH_2G_BAND(channel)) {
2399                 if (rtwdev->dm_info.tx_rate <= DESC_RATE11M) {
2400                         swing_table->p[RF_PATH_A] = tbl->pwrtrk_2g_ccka_p;
2401                         swing_table->n[RF_PATH_A] = tbl->pwrtrk_2g_ccka_n;
2402                         swing_table->p[RF_PATH_B] = tbl->pwrtrk_2g_cckb_p;
2403                         swing_table->n[RF_PATH_B] = tbl->pwrtrk_2g_cckb_n;
2404                 } else {
2405                         swing_table->p[RF_PATH_A] = tbl->pwrtrk_2ga_p;
2406                         swing_table->n[RF_PATH_A] = tbl->pwrtrk_2ga_n;
2407                         swing_table->p[RF_PATH_B] = tbl->pwrtrk_2gb_p;
2408                         swing_table->n[RF_PATH_B] = tbl->pwrtrk_2gb_n;
2409                 }
2410         } else if (IS_CH_5G_BAND_1(channel) || IS_CH_5G_BAND_2(channel)) {
2411                 swing_table->p[RF_PATH_A] = tbl->pwrtrk_5ga_p[RTW_PWR_TRK_5G_1];
2412                 swing_table->n[RF_PATH_A] = tbl->pwrtrk_5ga_n[RTW_PWR_TRK_5G_1];
2413                 swing_table->p[RF_PATH_B] = tbl->pwrtrk_5gb_p[RTW_PWR_TRK_5G_1];
2414                 swing_table->n[RF_PATH_B] = tbl->pwrtrk_5gb_n[RTW_PWR_TRK_5G_1];
2415         } else if (IS_CH_5G_BAND_3(channel)) {
2416                 swing_table->p[RF_PATH_A] = tbl->pwrtrk_5ga_p[RTW_PWR_TRK_5G_2];
2417                 swing_table->n[RF_PATH_A] = tbl->pwrtrk_5ga_n[RTW_PWR_TRK_5G_2];
2418                 swing_table->p[RF_PATH_B] = tbl->pwrtrk_5gb_p[RTW_PWR_TRK_5G_2];
2419                 swing_table->n[RF_PATH_B] = tbl->pwrtrk_5gb_n[RTW_PWR_TRK_5G_2];
2420         } else if (IS_CH_5G_BAND_4(channel)) {
2421                 swing_table->p[RF_PATH_A] = tbl->pwrtrk_5ga_p[RTW_PWR_TRK_5G_3];
2422                 swing_table->n[RF_PATH_A] = tbl->pwrtrk_5ga_n[RTW_PWR_TRK_5G_3];
2423                 swing_table->p[RF_PATH_B] = tbl->pwrtrk_5gb_p[RTW_PWR_TRK_5G_3];
2424                 swing_table->n[RF_PATH_B] = tbl->pwrtrk_5gb_n[RTW_PWR_TRK_5G_3];
2425         } else {
2426                 swing_table->p[RF_PATH_A] = tbl->pwrtrk_2ga_p;
2427                 swing_table->n[RF_PATH_A] = tbl->pwrtrk_2ga_n;
2428                 swing_table->p[RF_PATH_B] = tbl->pwrtrk_2gb_p;
2429                 swing_table->n[RF_PATH_B] = tbl->pwrtrk_2gb_n;
2430         }
2431 }
2432 EXPORT_SYMBOL(rtw_phy_config_swing_table);
2433
2434 void rtw_phy_pwrtrack_avg(struct rtw_dev *rtwdev, u8 thermal, u8 path)
2435 {
2436         struct rtw_dm_info *dm_info = &rtwdev->dm_info;
2437
2438         ewma_thermal_add(&dm_info->avg_thermal[path], thermal);
2439         dm_info->thermal_avg[path] =
2440                 ewma_thermal_read(&dm_info->avg_thermal[path]);
2441 }
2442 EXPORT_SYMBOL(rtw_phy_pwrtrack_avg);
2443
2444 bool rtw_phy_pwrtrack_thermal_changed(struct rtw_dev *rtwdev, u8 thermal,
2445                                       u8 path)
2446 {
2447         struct rtw_dm_info *dm_info = &rtwdev->dm_info;
2448         u8 avg = ewma_thermal_read(&dm_info->avg_thermal[path]);
2449
2450         if (avg == thermal)
2451                 return false;
2452
2453         return true;
2454 }
2455 EXPORT_SYMBOL(rtw_phy_pwrtrack_thermal_changed);
2456
2457 u8 rtw_phy_pwrtrack_get_delta(struct rtw_dev *rtwdev, u8 path)
2458 {
2459         struct rtw_dm_info *dm_info = &rtwdev->dm_info;
2460         u8 therm_avg, therm_efuse, therm_delta;
2461
2462         therm_avg = dm_info->thermal_avg[path];
2463         therm_efuse = rtwdev->efuse.thermal_meter[path];
2464         therm_delta = abs(therm_avg - therm_efuse);
2465
2466         return min_t(u8, therm_delta, RTW_PWR_TRK_TBL_SZ - 1);
2467 }
2468 EXPORT_SYMBOL(rtw_phy_pwrtrack_get_delta);
2469
2470 s8 rtw_phy_pwrtrack_get_pwridx(struct rtw_dev *rtwdev,
2471                                struct rtw_swing_table *swing_table,
2472                                u8 tbl_path, u8 therm_path, u8 delta)
2473 {
2474         struct rtw_dm_info *dm_info = &rtwdev->dm_info;
2475         const u8 *delta_swing_table_idx_pos;
2476         const u8 *delta_swing_table_idx_neg;
2477
2478         if (delta >= RTW_PWR_TRK_TBL_SZ) {
2479                 rtw_warn(rtwdev, "power track table overflow\n");
2480                 return 0;
2481         }
2482
2483         if (!swing_table) {
2484                 rtw_warn(rtwdev, "swing table not configured\n");
2485                 return 0;
2486         }
2487
2488         delta_swing_table_idx_pos = swing_table->p[tbl_path];
2489         delta_swing_table_idx_neg = swing_table->n[tbl_path];
2490
2491         if (!delta_swing_table_idx_pos || !delta_swing_table_idx_neg) {
2492                 rtw_warn(rtwdev, "invalid swing table index\n");
2493                 return 0;
2494         }
2495
2496         if (dm_info->thermal_avg[therm_path] >
2497             rtwdev->efuse.thermal_meter[therm_path])
2498                 return delta_swing_table_idx_pos[delta];
2499         else
2500                 return -delta_swing_table_idx_neg[delta];
2501 }
2502 EXPORT_SYMBOL(rtw_phy_pwrtrack_get_pwridx);
2503
2504 bool rtw_phy_pwrtrack_need_lck(struct rtw_dev *rtwdev)
2505 {
2506         struct rtw_dm_info *dm_info = &rtwdev->dm_info;
2507         u8 delta_lck;
2508
2509         delta_lck = abs(dm_info->thermal_avg[0] - dm_info->thermal_meter_lck);
2510         if (delta_lck >= rtwdev->chip->lck_threshold) {
2511                 dm_info->thermal_meter_lck = dm_info->thermal_avg[0];
2512                 return true;
2513         }
2514         return false;
2515 }
2516 EXPORT_SYMBOL(rtw_phy_pwrtrack_need_lck);
2517
2518 bool rtw_phy_pwrtrack_need_iqk(struct rtw_dev *rtwdev)
2519 {
2520         struct rtw_dm_info *dm_info = &rtwdev->dm_info;
2521         u8 delta_iqk;
2522
2523         delta_iqk = abs(dm_info->thermal_avg[0] - dm_info->thermal_meter_k);
2524         if (delta_iqk >= rtwdev->chip->iqk_threshold) {
2525                 dm_info->thermal_meter_k = dm_info->thermal_avg[0];
2526                 return true;
2527         }
2528         return false;
2529 }
2530 EXPORT_SYMBOL(rtw_phy_pwrtrack_need_iqk);
2531
2532 static void rtw_phy_set_tx_path_by_reg(struct rtw_dev *rtwdev,
2533                                        enum rtw_bb_path tx_path_sel_1ss)
2534 {
2535         struct rtw_path_div *path_div = &rtwdev->dm_path_div;
2536         enum rtw_bb_path tx_path_sel_cck = tx_path_sel_1ss;
2537         const struct rtw_chip_info *chip = rtwdev->chip;
2538
2539         if (tx_path_sel_1ss == path_div->current_tx_path)
2540                 return;
2541
2542         path_div->current_tx_path = tx_path_sel_1ss;
2543         rtw_dbg(rtwdev, RTW_DBG_PATH_DIV, "Switch TX path=%s\n",
2544                 tx_path_sel_1ss == BB_PATH_A ? "A" : "B");
2545         chip->ops->config_tx_path(rtwdev, rtwdev->hal.antenna_tx,
2546                                   tx_path_sel_1ss, tx_path_sel_cck, false);
2547 }
2548
2549 static void rtw_phy_tx_path_div_select(struct rtw_dev *rtwdev)
2550 {
2551         struct rtw_path_div *path_div = &rtwdev->dm_path_div;
2552         enum rtw_bb_path path = path_div->current_tx_path;
2553         s32 rssi_a = 0, rssi_b = 0;
2554
2555         if (path_div->path_a_cnt)
2556                 rssi_a = path_div->path_a_sum / path_div->path_a_cnt;
2557         else
2558                 rssi_a = 0;
2559         if (path_div->path_b_cnt)
2560                 rssi_b = path_div->path_b_sum / path_div->path_b_cnt;
2561         else
2562                 rssi_b = 0;
2563
2564         if (rssi_a != rssi_b)
2565                 path = (rssi_a > rssi_b) ? BB_PATH_A : BB_PATH_B;
2566
2567         path_div->path_a_cnt = 0;
2568         path_div->path_a_sum = 0;
2569         path_div->path_b_cnt = 0;
2570         path_div->path_b_sum = 0;
2571         rtw_phy_set_tx_path_by_reg(rtwdev, path);
2572 }
2573
2574 static void rtw_phy_tx_path_diversity_2ss(struct rtw_dev *rtwdev)
2575 {
2576         if (rtwdev->hal.antenna_rx != BB_PATH_AB) {
2577                 rtw_dbg(rtwdev, RTW_DBG_PATH_DIV,
2578                         "[Return] tx_Path_en=%d, rx_Path_en=%d\n",
2579                         rtwdev->hal.antenna_tx, rtwdev->hal.antenna_rx);
2580                 return;
2581         }
2582         if (rtwdev->sta_cnt == 0) {
2583                 rtw_dbg(rtwdev, RTW_DBG_PATH_DIV, "No Link\n");
2584                 return;
2585         }
2586
2587         rtw_phy_tx_path_div_select(rtwdev);
2588 }
2589
2590 void rtw_phy_tx_path_diversity(struct rtw_dev *rtwdev)
2591 {
2592         const struct rtw_chip_info *chip = rtwdev->chip;
2593
2594         if (!chip->path_div_supported)
2595                 return;
2596
2597         rtw_phy_tx_path_diversity_2ss(rtwdev);
2598 }
This page took 0.18327 seconds and 4 git commands to generate.