]> Git Repo - J-linux.git/blob - drivers/net/hyperv/netvsc_drv.c
Merge tag 'vfs-6.13-rc7.fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs
[J-linux.git] / drivers / net / hyperv / netvsc_drv.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2009, Microsoft Corporation.
4  *
5  * Authors:
6  *   Haiyang Zhang <[email protected]>
7  *   Hank Janssen  <[email protected]>
8  */
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11 #include <linux/init.h>
12 #include <linux/atomic.h>
13 #include <linux/ethtool.h>
14 #include <linux/module.h>
15 #include <linux/highmem.h>
16 #include <linux/device.h>
17 #include <linux/io.h>
18 #include <linux/delay.h>
19 #include <linux/netdevice.h>
20 #include <linux/inetdevice.h>
21 #include <linux/etherdevice.h>
22 #include <linux/pci.h>
23 #include <linux/skbuff.h>
24 #include <linux/if_vlan.h>
25 #include <linux/in.h>
26 #include <linux/slab.h>
27 #include <linux/rtnetlink.h>
28 #include <linux/netpoll.h>
29 #include <linux/bpf.h>
30
31 #include <net/arp.h>
32 #include <net/route.h>
33 #include <net/sock.h>
34 #include <net/pkt_sched.h>
35 #include <net/checksum.h>
36 #include <net/ip6_checksum.h>
37
38 #include "hyperv_net.h"
39
40 #define RING_SIZE_MIN   64
41
42 #define LINKCHANGE_INT (2 * HZ)
43 #define VF_TAKEOVER_INT (HZ / 10)
44
45 /* Macros to define the context of vf registration */
46 #define VF_REG_IN_PROBE         1
47 #define VF_REG_IN_NOTIFIER      2
48
49 static unsigned int ring_size __ro_after_init = 128;
50 module_param(ring_size, uint, 0444);
51 MODULE_PARM_DESC(ring_size, "Ring buffer size (# of 4K pages)");
52 unsigned int netvsc_ring_bytes __ro_after_init;
53
54 static const u32 default_msg = NETIF_MSG_DRV | NETIF_MSG_PROBE |
55                                 NETIF_MSG_LINK | NETIF_MSG_IFUP |
56                                 NETIF_MSG_IFDOWN | NETIF_MSG_RX_ERR |
57                                 NETIF_MSG_TX_ERR;
58
59 static int debug = -1;
60 module_param(debug, int, 0444);
61 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
62
63 static LIST_HEAD(netvsc_dev_list);
64
65 static void netvsc_change_rx_flags(struct net_device *net, int change)
66 {
67         struct net_device_context *ndev_ctx = netdev_priv(net);
68         struct net_device *vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
69         int inc;
70
71         if (!vf_netdev)
72                 return;
73
74         if (change & IFF_PROMISC) {
75                 inc = (net->flags & IFF_PROMISC) ? 1 : -1;
76                 dev_set_promiscuity(vf_netdev, inc);
77         }
78
79         if (change & IFF_ALLMULTI) {
80                 inc = (net->flags & IFF_ALLMULTI) ? 1 : -1;
81                 dev_set_allmulti(vf_netdev, inc);
82         }
83 }
84
85 static void netvsc_set_rx_mode(struct net_device *net)
86 {
87         struct net_device_context *ndev_ctx = netdev_priv(net);
88         struct net_device *vf_netdev;
89         struct netvsc_device *nvdev;
90
91         rcu_read_lock();
92         vf_netdev = rcu_dereference(ndev_ctx->vf_netdev);
93         if (vf_netdev) {
94                 dev_uc_sync(vf_netdev, net);
95                 dev_mc_sync(vf_netdev, net);
96         }
97
98         nvdev = rcu_dereference(ndev_ctx->nvdev);
99         if (nvdev)
100                 rndis_filter_update(nvdev);
101         rcu_read_unlock();
102 }
103
104 static void netvsc_tx_enable(struct netvsc_device *nvscdev,
105                              struct net_device *ndev)
106 {
107         nvscdev->tx_disable = false;
108         virt_wmb(); /* ensure queue wake up mechanism is on */
109
110         netif_tx_wake_all_queues(ndev);
111 }
112
113 static int netvsc_open(struct net_device *net)
114 {
115         struct net_device_context *ndev_ctx = netdev_priv(net);
116         struct net_device *vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
117         struct netvsc_device *nvdev = rtnl_dereference(ndev_ctx->nvdev);
118         struct rndis_device *rdev;
119         int ret = 0;
120
121         netif_carrier_off(net);
122
123         /* Open up the device */
124         ret = rndis_filter_open(nvdev);
125         if (ret != 0) {
126                 netdev_err(net, "unable to open device (ret %d).\n", ret);
127                 return ret;
128         }
129
130         rdev = nvdev->extension;
131         if (!rdev->link_state) {
132                 netif_carrier_on(net);
133                 netvsc_tx_enable(nvdev, net);
134         }
135
136         if (vf_netdev) {
137                 /* Setting synthetic device up transparently sets
138                  * slave as up. If open fails, then slave will be
139                  * still be offline (and not used).
140                  */
141                 ret = dev_open(vf_netdev, NULL);
142                 if (ret)
143                         netdev_warn(net,
144                                     "unable to open slave: %s: %d\n",
145                                     vf_netdev->name, ret);
146         }
147         return 0;
148 }
149
150 static int netvsc_wait_until_empty(struct netvsc_device *nvdev)
151 {
152         unsigned int retry = 0;
153         int i;
154
155         /* Ensure pending bytes in ring are read */
156         for (;;) {
157                 u32 aread = 0;
158
159                 for (i = 0; i < nvdev->num_chn; i++) {
160                         struct vmbus_channel *chn
161                                 = nvdev->chan_table[i].channel;
162
163                         if (!chn)
164                                 continue;
165
166                         /* make sure receive not running now */
167                         napi_synchronize(&nvdev->chan_table[i].napi);
168
169                         aread = hv_get_bytes_to_read(&chn->inbound);
170                         if (aread)
171                                 break;
172
173                         aread = hv_get_bytes_to_read(&chn->outbound);
174                         if (aread)
175                                 break;
176                 }
177
178                 if (aread == 0)
179                         return 0;
180
181                 if (++retry > RETRY_MAX)
182                         return -ETIMEDOUT;
183
184                 usleep_range(RETRY_US_LO, RETRY_US_HI);
185         }
186 }
187
188 static void netvsc_tx_disable(struct netvsc_device *nvscdev,
189                               struct net_device *ndev)
190 {
191         if (nvscdev) {
192                 nvscdev->tx_disable = true;
193                 virt_wmb(); /* ensure txq will not wake up after stop */
194         }
195
196         netif_tx_disable(ndev);
197 }
198
199 static int netvsc_close(struct net_device *net)
200 {
201         struct net_device_context *net_device_ctx = netdev_priv(net);
202         struct net_device *vf_netdev
203                 = rtnl_dereference(net_device_ctx->vf_netdev);
204         struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
205         int ret;
206
207         netvsc_tx_disable(nvdev, net);
208
209         /* No need to close rndis filter if it is removed already */
210         if (!nvdev)
211                 return 0;
212
213         ret = rndis_filter_close(nvdev);
214         if (ret != 0) {
215                 netdev_err(net, "unable to close device (ret %d).\n", ret);
216                 return ret;
217         }
218
219         ret = netvsc_wait_until_empty(nvdev);
220         if (ret)
221                 netdev_err(net, "Ring buffer not empty after closing rndis\n");
222
223         if (vf_netdev)
224                 dev_close(vf_netdev);
225
226         return ret;
227 }
228
229 static inline void *init_ppi_data(struct rndis_message *msg,
230                                   u32 ppi_size, u32 pkt_type)
231 {
232         struct rndis_packet *rndis_pkt = &msg->msg.pkt;
233         struct rndis_per_packet_info *ppi;
234
235         rndis_pkt->data_offset += ppi_size;
236         ppi = (void *)rndis_pkt + rndis_pkt->per_pkt_info_offset
237                 + rndis_pkt->per_pkt_info_len;
238
239         ppi->size = ppi_size;
240         ppi->type = pkt_type;
241         ppi->internal = 0;
242         ppi->ppi_offset = sizeof(struct rndis_per_packet_info);
243
244         rndis_pkt->per_pkt_info_len += ppi_size;
245
246         return ppi + 1;
247 }
248
249 static inline int netvsc_get_tx_queue(struct net_device *ndev,
250                                       struct sk_buff *skb, int old_idx)
251 {
252         const struct net_device_context *ndc = netdev_priv(ndev);
253         struct sock *sk = skb->sk;
254         int q_idx;
255
256         q_idx = ndc->tx_table[netvsc_get_hash(skb, ndc) &
257                               (VRSS_SEND_TAB_SIZE - 1)];
258
259         /* If queue index changed record the new value */
260         if (q_idx != old_idx &&
261             sk && sk_fullsock(sk) && rcu_access_pointer(sk->sk_dst_cache))
262                 sk_tx_queue_set(sk, q_idx);
263
264         return q_idx;
265 }
266
267 /*
268  * Select queue for transmit.
269  *
270  * If a valid queue has already been assigned, then use that.
271  * Otherwise compute tx queue based on hash and the send table.
272  *
273  * This is basically similar to default (netdev_pick_tx) with the added step
274  * of using the host send_table when no other queue has been assigned.
275  *
276  * TODO support XPS - but get_xps_queue not exported
277  */
278 static u16 netvsc_pick_tx(struct net_device *ndev, struct sk_buff *skb)
279 {
280         int q_idx = sk_tx_queue_get(skb->sk);
281
282         if (q_idx < 0 || skb->ooo_okay || q_idx >= ndev->real_num_tx_queues) {
283                 /* If forwarding a packet, we use the recorded queue when
284                  * available for better cache locality.
285                  */
286                 if (skb_rx_queue_recorded(skb))
287                         q_idx = skb_get_rx_queue(skb);
288                 else
289                         q_idx = netvsc_get_tx_queue(ndev, skb, q_idx);
290         }
291
292         return q_idx;
293 }
294
295 static u16 netvsc_select_queue(struct net_device *ndev, struct sk_buff *skb,
296                                struct net_device *sb_dev)
297 {
298         struct net_device_context *ndc = netdev_priv(ndev);
299         struct net_device *vf_netdev;
300         u16 txq;
301
302         rcu_read_lock();
303         vf_netdev = rcu_dereference(ndc->vf_netdev);
304         if (vf_netdev) {
305                 const struct net_device_ops *vf_ops = vf_netdev->netdev_ops;
306
307                 if (vf_ops->ndo_select_queue)
308                         txq = vf_ops->ndo_select_queue(vf_netdev, skb, sb_dev);
309                 else
310                         txq = netdev_pick_tx(vf_netdev, skb, NULL);
311
312                 /* Record the queue selected by VF so that it can be
313                  * used for common case where VF has more queues than
314                  * the synthetic device.
315                  */
316                 qdisc_skb_cb(skb)->slave_dev_queue_mapping = txq;
317         } else {
318                 txq = netvsc_pick_tx(ndev, skb);
319         }
320         rcu_read_unlock();
321
322         while (txq >= ndev->real_num_tx_queues)
323                 txq -= ndev->real_num_tx_queues;
324
325         return txq;
326 }
327
328 static u32 fill_pg_buf(unsigned long hvpfn, u32 offset, u32 len,
329                        struct hv_page_buffer *pb)
330 {
331         int j = 0;
332
333         hvpfn += offset >> HV_HYP_PAGE_SHIFT;
334         offset = offset & ~HV_HYP_PAGE_MASK;
335
336         while (len > 0) {
337                 unsigned long bytes;
338
339                 bytes = HV_HYP_PAGE_SIZE - offset;
340                 if (bytes > len)
341                         bytes = len;
342                 pb[j].pfn = hvpfn;
343                 pb[j].offset = offset;
344                 pb[j].len = bytes;
345
346                 offset += bytes;
347                 len -= bytes;
348
349                 if (offset == HV_HYP_PAGE_SIZE && len) {
350                         hvpfn++;
351                         offset = 0;
352                         j++;
353                 }
354         }
355
356         return j + 1;
357 }
358
359 static u32 init_page_array(void *hdr, u32 len, struct sk_buff *skb,
360                            struct hv_netvsc_packet *packet,
361                            struct hv_page_buffer *pb)
362 {
363         u32 slots_used = 0;
364         char *data = skb->data;
365         int frags = skb_shinfo(skb)->nr_frags;
366         int i;
367
368         /* The packet is laid out thus:
369          * 1. hdr: RNDIS header and PPI
370          * 2. skb linear data
371          * 3. skb fragment data
372          */
373         slots_used += fill_pg_buf(virt_to_hvpfn(hdr),
374                                   offset_in_hvpage(hdr),
375                                   len,
376                                   &pb[slots_used]);
377
378         packet->rmsg_size = len;
379         packet->rmsg_pgcnt = slots_used;
380
381         slots_used += fill_pg_buf(virt_to_hvpfn(data),
382                                   offset_in_hvpage(data),
383                                   skb_headlen(skb),
384                                   &pb[slots_used]);
385
386         for (i = 0; i < frags; i++) {
387                 skb_frag_t *frag = skb_shinfo(skb)->frags + i;
388
389                 slots_used += fill_pg_buf(page_to_hvpfn(skb_frag_page(frag)),
390                                           skb_frag_off(frag),
391                                           skb_frag_size(frag),
392                                           &pb[slots_used]);
393         }
394         return slots_used;
395 }
396
397 static int count_skb_frag_slots(struct sk_buff *skb)
398 {
399         int i, frags = skb_shinfo(skb)->nr_frags;
400         int pages = 0;
401
402         for (i = 0; i < frags; i++) {
403                 skb_frag_t *frag = skb_shinfo(skb)->frags + i;
404                 unsigned long size = skb_frag_size(frag);
405                 unsigned long offset = skb_frag_off(frag);
406
407                 /* Skip unused frames from start of page */
408                 offset &= ~HV_HYP_PAGE_MASK;
409                 pages += HVPFN_UP(offset + size);
410         }
411         return pages;
412 }
413
414 static int netvsc_get_slots(struct sk_buff *skb)
415 {
416         char *data = skb->data;
417         unsigned int offset = offset_in_hvpage(data);
418         unsigned int len = skb_headlen(skb);
419         int slots;
420         int frag_slots;
421
422         slots = DIV_ROUND_UP(offset + len, HV_HYP_PAGE_SIZE);
423         frag_slots = count_skb_frag_slots(skb);
424         return slots + frag_slots;
425 }
426
427 static u32 net_checksum_info(struct sk_buff *skb)
428 {
429         if (skb->protocol == htons(ETH_P_IP)) {
430                 struct iphdr *ip = ip_hdr(skb);
431
432                 if (ip->protocol == IPPROTO_TCP)
433                         return TRANSPORT_INFO_IPV4_TCP;
434                 else if (ip->protocol == IPPROTO_UDP)
435                         return TRANSPORT_INFO_IPV4_UDP;
436         } else {
437                 struct ipv6hdr *ip6 = ipv6_hdr(skb);
438
439                 if (ip6->nexthdr == IPPROTO_TCP)
440                         return TRANSPORT_INFO_IPV6_TCP;
441                 else if (ip6->nexthdr == IPPROTO_UDP)
442                         return TRANSPORT_INFO_IPV6_UDP;
443         }
444
445         return TRANSPORT_INFO_NOT_IP;
446 }
447
448 /* Send skb on the slave VF device. */
449 static int netvsc_vf_xmit(struct net_device *net, struct net_device *vf_netdev,
450                           struct sk_buff *skb)
451 {
452         struct net_device_context *ndev_ctx = netdev_priv(net);
453         unsigned int len = skb->len;
454         int rc;
455
456         skb->dev = vf_netdev;
457         skb_record_rx_queue(skb, qdisc_skb_cb(skb)->slave_dev_queue_mapping);
458
459         rc = dev_queue_xmit(skb);
460         if (likely(rc == NET_XMIT_SUCCESS || rc == NET_XMIT_CN)) {
461                 struct netvsc_vf_pcpu_stats *pcpu_stats
462                         = this_cpu_ptr(ndev_ctx->vf_stats);
463
464                 u64_stats_update_begin(&pcpu_stats->syncp);
465                 pcpu_stats->tx_packets++;
466                 pcpu_stats->tx_bytes += len;
467                 u64_stats_update_end(&pcpu_stats->syncp);
468         } else {
469                 this_cpu_inc(ndev_ctx->vf_stats->tx_dropped);
470         }
471
472         return rc;
473 }
474
475 static int netvsc_xmit(struct sk_buff *skb, struct net_device *net, bool xdp_tx)
476 {
477         struct net_device_context *net_device_ctx = netdev_priv(net);
478         struct hv_netvsc_packet *packet = NULL;
479         int ret;
480         unsigned int num_data_pgs;
481         struct rndis_message *rndis_msg;
482         struct net_device *vf_netdev;
483         u32 rndis_msg_size;
484         u32 hash;
485         struct hv_page_buffer pb[MAX_PAGE_BUFFER_COUNT];
486
487         /* If VF is present and up then redirect packets to it.
488          * Skip the VF if it is marked down or has no carrier.
489          * If netpoll is in uses, then VF can not be used either.
490          */
491         vf_netdev = rcu_dereference_bh(net_device_ctx->vf_netdev);
492         if (vf_netdev && netif_running(vf_netdev) &&
493             netif_carrier_ok(vf_netdev) && !netpoll_tx_running(net) &&
494             net_device_ctx->data_path_is_vf)
495                 return netvsc_vf_xmit(net, vf_netdev, skb);
496
497         /* We will atmost need two pages to describe the rndis
498          * header. We can only transmit MAX_PAGE_BUFFER_COUNT number
499          * of pages in a single packet. If skb is scattered around
500          * more pages we try linearizing it.
501          */
502
503         num_data_pgs = netvsc_get_slots(skb) + 2;
504
505         if (unlikely(num_data_pgs > MAX_PAGE_BUFFER_COUNT)) {
506                 ++net_device_ctx->eth_stats.tx_scattered;
507
508                 if (skb_linearize(skb))
509                         goto no_memory;
510
511                 num_data_pgs = netvsc_get_slots(skb) + 2;
512                 if (num_data_pgs > MAX_PAGE_BUFFER_COUNT) {
513                         ++net_device_ctx->eth_stats.tx_too_big;
514                         goto drop;
515                 }
516         }
517
518         /*
519          * Place the rndis header in the skb head room and
520          * the skb->cb will be used for hv_netvsc_packet
521          * structure.
522          */
523         ret = skb_cow_head(skb, RNDIS_AND_PPI_SIZE);
524         if (ret)
525                 goto no_memory;
526
527         /* Use the skb control buffer for building up the packet */
528         BUILD_BUG_ON(sizeof(struct hv_netvsc_packet) >
529                         sizeof_field(struct sk_buff, cb));
530         packet = (struct hv_netvsc_packet *)skb->cb;
531
532         packet->q_idx = skb_get_queue_mapping(skb);
533
534         packet->total_data_buflen = skb->len;
535         packet->total_bytes = skb->len;
536         packet->total_packets = 1;
537
538         rndis_msg = (struct rndis_message *)skb->head;
539
540         /* Add the rndis header */
541         rndis_msg->ndis_msg_type = RNDIS_MSG_PACKET;
542         rndis_msg->msg_len = packet->total_data_buflen;
543
544         rndis_msg->msg.pkt = (struct rndis_packet) {
545                 .data_offset = sizeof(struct rndis_packet),
546                 .data_len = packet->total_data_buflen,
547                 .per_pkt_info_offset = sizeof(struct rndis_packet),
548         };
549
550         rndis_msg_size = RNDIS_MESSAGE_SIZE(struct rndis_packet);
551
552         hash = skb_get_hash_raw(skb);
553         if (hash != 0 && net->real_num_tx_queues > 1) {
554                 u32 *hash_info;
555
556                 rndis_msg_size += NDIS_HASH_PPI_SIZE;
557                 hash_info = init_ppi_data(rndis_msg, NDIS_HASH_PPI_SIZE,
558                                           NBL_HASH_VALUE);
559                 *hash_info = hash;
560         }
561
562         /* When using AF_PACKET we need to drop VLAN header from
563          * the frame and update the SKB to allow the HOST OS
564          * to transmit the 802.1Q packet
565          */
566         if (skb->protocol == htons(ETH_P_8021Q)) {
567                 u16 vlan_tci;
568
569                 skb_reset_mac_header(skb);
570                 if (eth_type_vlan(eth_hdr(skb)->h_proto)) {
571                         if (unlikely(__skb_vlan_pop(skb, &vlan_tci) != 0)) {
572                                 ++net_device_ctx->eth_stats.vlan_error;
573                                 goto drop;
574                         }
575
576                         __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tci);
577                         /* Update the NDIS header pkt lengths */
578                         packet->total_data_buflen -= VLAN_HLEN;
579                         packet->total_bytes -= VLAN_HLEN;
580                         rndis_msg->msg_len = packet->total_data_buflen;
581                         rndis_msg->msg.pkt.data_len = packet->total_data_buflen;
582                 }
583         }
584
585         if (skb_vlan_tag_present(skb)) {
586                 struct ndis_pkt_8021q_info *vlan;
587
588                 rndis_msg_size += NDIS_VLAN_PPI_SIZE;
589                 vlan = init_ppi_data(rndis_msg, NDIS_VLAN_PPI_SIZE,
590                                      IEEE_8021Q_INFO);
591
592                 vlan->value = 0;
593                 vlan->vlanid = skb_vlan_tag_get_id(skb);
594                 vlan->cfi = skb_vlan_tag_get_cfi(skb);
595                 vlan->pri = skb_vlan_tag_get_prio(skb);
596         }
597
598         if (skb_is_gso(skb)) {
599                 struct ndis_tcp_lso_info *lso_info;
600
601                 rndis_msg_size += NDIS_LSO_PPI_SIZE;
602                 lso_info = init_ppi_data(rndis_msg, NDIS_LSO_PPI_SIZE,
603                                          TCP_LARGESEND_PKTINFO);
604
605                 lso_info->value = 0;
606                 lso_info->lso_v2_transmit.type = NDIS_TCP_LARGE_SEND_OFFLOAD_V2_TYPE;
607                 if (skb->protocol == htons(ETH_P_IP)) {
608                         lso_info->lso_v2_transmit.ip_version =
609                                 NDIS_TCP_LARGE_SEND_OFFLOAD_IPV4;
610                         ip_hdr(skb)->tot_len = 0;
611                         ip_hdr(skb)->check = 0;
612                         tcp_hdr(skb)->check =
613                                 ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
614                                                    ip_hdr(skb)->daddr, 0, IPPROTO_TCP, 0);
615                 } else {
616                         lso_info->lso_v2_transmit.ip_version =
617                                 NDIS_TCP_LARGE_SEND_OFFLOAD_IPV6;
618                         tcp_v6_gso_csum_prep(skb);
619                 }
620                 lso_info->lso_v2_transmit.tcp_header_offset = skb_transport_offset(skb);
621                 lso_info->lso_v2_transmit.mss = skb_shinfo(skb)->gso_size;
622         } else if (skb->ip_summed == CHECKSUM_PARTIAL) {
623                 if (net_checksum_info(skb) & net_device_ctx->tx_checksum_mask) {
624                         struct ndis_tcp_ip_checksum_info *csum_info;
625
626                         rndis_msg_size += NDIS_CSUM_PPI_SIZE;
627                         csum_info = init_ppi_data(rndis_msg, NDIS_CSUM_PPI_SIZE,
628                                                   TCPIP_CHKSUM_PKTINFO);
629
630                         csum_info->value = 0;
631                         csum_info->transmit.tcp_header_offset = skb_transport_offset(skb);
632
633                         if (skb->protocol == htons(ETH_P_IP)) {
634                                 csum_info->transmit.is_ipv4 = 1;
635
636                                 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
637                                         csum_info->transmit.tcp_checksum = 1;
638                                 else
639                                         csum_info->transmit.udp_checksum = 1;
640                         } else {
641                                 csum_info->transmit.is_ipv6 = 1;
642
643                                 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
644                                         csum_info->transmit.tcp_checksum = 1;
645                                 else
646                                         csum_info->transmit.udp_checksum = 1;
647                         }
648                 } else {
649                         /* Can't do offload of this type of checksum */
650                         if (skb_checksum_help(skb))
651                                 goto drop;
652                 }
653         }
654
655         /* Start filling in the page buffers with the rndis hdr */
656         rndis_msg->msg_len += rndis_msg_size;
657         packet->total_data_buflen = rndis_msg->msg_len;
658         packet->page_buf_cnt = init_page_array(rndis_msg, rndis_msg_size,
659                                                skb, packet, pb);
660
661         /* timestamp packet in software */
662         skb_tx_timestamp(skb);
663
664         ret = netvsc_send(net, packet, rndis_msg, pb, skb, xdp_tx);
665         if (likely(ret == 0))
666                 return NETDEV_TX_OK;
667
668         if (ret == -EAGAIN) {
669                 ++net_device_ctx->eth_stats.tx_busy;
670                 return NETDEV_TX_BUSY;
671         }
672
673         if (ret == -ENOSPC)
674                 ++net_device_ctx->eth_stats.tx_no_space;
675
676 drop:
677         dev_kfree_skb_any(skb);
678         net->stats.tx_dropped++;
679
680         return NETDEV_TX_OK;
681
682 no_memory:
683         ++net_device_ctx->eth_stats.tx_no_memory;
684         goto drop;
685 }
686
687 static netdev_tx_t netvsc_start_xmit(struct sk_buff *skb,
688                                      struct net_device *ndev)
689 {
690         return netvsc_xmit(skb, ndev, false);
691 }
692
693 /*
694  * netvsc_linkstatus_callback - Link up/down notification
695  */
696 void netvsc_linkstatus_callback(struct net_device *net,
697                                 struct rndis_message *resp,
698                                 void *data, u32 data_buflen)
699 {
700         struct rndis_indicate_status *indicate = &resp->msg.indicate_status;
701         struct net_device_context *ndev_ctx = netdev_priv(net);
702         struct netvsc_reconfig *event;
703         unsigned long flags;
704
705         /* Ensure the packet is big enough to access its fields */
706         if (resp->msg_len - RNDIS_HEADER_SIZE < sizeof(struct rndis_indicate_status)) {
707                 netdev_err(net, "invalid rndis_indicate_status packet, len: %u\n",
708                            resp->msg_len);
709                 return;
710         }
711
712         /* Copy the RNDIS indicate status into nvchan->recv_buf */
713         memcpy(indicate, data + RNDIS_HEADER_SIZE, sizeof(*indicate));
714
715         /* Update the physical link speed when changing to another vSwitch */
716         if (indicate->status == RNDIS_STATUS_LINK_SPEED_CHANGE) {
717                 u32 speed;
718
719                 /* Validate status_buf_offset and status_buflen.
720                  *
721                  * Certain (pre-Fe) implementations of Hyper-V's vSwitch didn't account
722                  * for the status buffer field in resp->msg_len; perform the validation
723                  * using data_buflen (>= resp->msg_len).
724                  */
725                 if (indicate->status_buflen < sizeof(speed) ||
726                     indicate->status_buf_offset < sizeof(*indicate) ||
727                     data_buflen - RNDIS_HEADER_SIZE < indicate->status_buf_offset ||
728                     data_buflen - RNDIS_HEADER_SIZE - indicate->status_buf_offset
729                                 < indicate->status_buflen) {
730                         netdev_err(net, "invalid rndis_indicate_status packet\n");
731                         return;
732                 }
733
734                 speed = *(u32 *)(data + RNDIS_HEADER_SIZE + indicate->status_buf_offset) / 10000;
735                 ndev_ctx->speed = speed;
736                 return;
737         }
738
739         /* Handle these link change statuses below */
740         if (indicate->status != RNDIS_STATUS_NETWORK_CHANGE &&
741             indicate->status != RNDIS_STATUS_MEDIA_CONNECT &&
742             indicate->status != RNDIS_STATUS_MEDIA_DISCONNECT)
743                 return;
744
745         if (net->reg_state != NETREG_REGISTERED)
746                 return;
747
748         event = kzalloc(sizeof(*event), GFP_ATOMIC);
749         if (!event)
750                 return;
751         event->event = indicate->status;
752
753         spin_lock_irqsave(&ndev_ctx->lock, flags);
754         list_add_tail(&event->list, &ndev_ctx->reconfig_events);
755         spin_unlock_irqrestore(&ndev_ctx->lock, flags);
756
757         schedule_delayed_work(&ndev_ctx->dwork, 0);
758 }
759
760 /* This function should only be called after skb_record_rx_queue() */
761 void netvsc_xdp_xmit(struct sk_buff *skb, struct net_device *ndev)
762 {
763         int rc;
764
765         skb->queue_mapping = skb_get_rx_queue(skb);
766         __skb_push(skb, ETH_HLEN);
767
768         rc = netvsc_xmit(skb, ndev, true);
769
770         if (dev_xmit_complete(rc))
771                 return;
772
773         dev_kfree_skb_any(skb);
774         ndev->stats.tx_dropped++;
775 }
776
777 static void netvsc_comp_ipcsum(struct sk_buff *skb)
778 {
779         struct iphdr *iph = (struct iphdr *)skb->data;
780
781         iph->check = 0;
782         iph->check = ip_fast_csum(iph, iph->ihl);
783 }
784
785 static struct sk_buff *netvsc_alloc_recv_skb(struct net_device *net,
786                                              struct netvsc_channel *nvchan,
787                                              struct xdp_buff *xdp)
788 {
789         struct napi_struct *napi = &nvchan->napi;
790         const struct ndis_pkt_8021q_info *vlan = &nvchan->rsc.vlan;
791         const struct ndis_tcp_ip_checksum_info *csum_info =
792                                                 &nvchan->rsc.csum_info;
793         const u32 *hash_info = &nvchan->rsc.hash_info;
794         u8 ppi_flags = nvchan->rsc.ppi_flags;
795         struct sk_buff *skb;
796         void *xbuf = xdp->data_hard_start;
797         int i;
798
799         if (xbuf) {
800                 unsigned int hdroom = xdp->data - xdp->data_hard_start;
801                 unsigned int xlen = xdp->data_end - xdp->data;
802                 unsigned int frag_size = xdp->frame_sz;
803
804                 skb = build_skb(xbuf, frag_size);
805
806                 if (!skb) {
807                         __free_page(virt_to_page(xbuf));
808                         return NULL;
809                 }
810
811                 skb_reserve(skb, hdroom);
812                 skb_put(skb, xlen);
813                 skb->dev = napi->dev;
814         } else {
815                 skb = napi_alloc_skb(napi, nvchan->rsc.pktlen);
816
817                 if (!skb)
818                         return NULL;
819
820                 /* Copy to skb. This copy is needed here since the memory
821                  * pointed by hv_netvsc_packet cannot be deallocated.
822                  */
823                 for (i = 0; i < nvchan->rsc.cnt; i++)
824                         skb_put_data(skb, nvchan->rsc.data[i],
825                                      nvchan->rsc.len[i]);
826         }
827
828         skb->protocol = eth_type_trans(skb, net);
829
830         /* skb is already created with CHECKSUM_NONE */
831         skb_checksum_none_assert(skb);
832
833         /* Incoming packets may have IP header checksum verified by the host.
834          * They may not have IP header checksum computed after coalescing.
835          * We compute it here if the flags are set, because on Linux, the IP
836          * checksum is always checked.
837          */
838         if ((ppi_flags & NVSC_RSC_CSUM_INFO) && csum_info->receive.ip_checksum_value_invalid &&
839             csum_info->receive.ip_checksum_succeeded &&
840             skb->protocol == htons(ETH_P_IP)) {
841                 /* Check that there is enough space to hold the IP header. */
842                 if (skb_headlen(skb) < sizeof(struct iphdr)) {
843                         kfree_skb(skb);
844                         return NULL;
845                 }
846                 netvsc_comp_ipcsum(skb);
847         }
848
849         /* Do L4 checksum offload if enabled and present. */
850         if ((ppi_flags & NVSC_RSC_CSUM_INFO) && (net->features & NETIF_F_RXCSUM)) {
851                 if (csum_info->receive.tcp_checksum_succeeded ||
852                     csum_info->receive.udp_checksum_succeeded)
853                         skb->ip_summed = CHECKSUM_UNNECESSARY;
854         }
855
856         if ((ppi_flags & NVSC_RSC_HASH_INFO) && (net->features & NETIF_F_RXHASH))
857                 skb_set_hash(skb, *hash_info, PKT_HASH_TYPE_L4);
858
859         if (ppi_flags & NVSC_RSC_VLAN) {
860                 u16 vlan_tci = vlan->vlanid | (vlan->pri << VLAN_PRIO_SHIFT) |
861                         (vlan->cfi ? VLAN_CFI_MASK : 0);
862
863                 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
864                                        vlan_tci);
865         }
866
867         return skb;
868 }
869
870 /*
871  * netvsc_recv_callback -  Callback when we receive a packet from the
872  * "wire" on the specified device.
873  */
874 int netvsc_recv_callback(struct net_device *net,
875                          struct netvsc_device *net_device,
876                          struct netvsc_channel *nvchan)
877 {
878         struct net_device_context *net_device_ctx = netdev_priv(net);
879         struct vmbus_channel *channel = nvchan->channel;
880         u16 q_idx = channel->offermsg.offer.sub_channel_index;
881         struct sk_buff *skb;
882         struct netvsc_stats_rx *rx_stats = &nvchan->rx_stats;
883         struct xdp_buff xdp;
884         u32 act;
885
886         if (net->reg_state != NETREG_REGISTERED)
887                 return NVSP_STAT_FAIL;
888
889         act = netvsc_run_xdp(net, nvchan, &xdp);
890
891         if (act == XDP_REDIRECT)
892                 return NVSP_STAT_SUCCESS;
893
894         if (act != XDP_PASS && act != XDP_TX) {
895                 u64_stats_update_begin(&rx_stats->syncp);
896                 rx_stats->xdp_drop++;
897                 u64_stats_update_end(&rx_stats->syncp);
898
899                 return NVSP_STAT_SUCCESS; /* consumed by XDP */
900         }
901
902         /* Allocate a skb - TODO direct I/O to pages? */
903         skb = netvsc_alloc_recv_skb(net, nvchan, &xdp);
904
905         if (unlikely(!skb)) {
906                 ++net_device_ctx->eth_stats.rx_no_memory;
907                 return NVSP_STAT_FAIL;
908         }
909
910         skb_record_rx_queue(skb, q_idx);
911
912         /*
913          * Even if injecting the packet, record the statistics
914          * on the synthetic device because modifying the VF device
915          * statistics will not work correctly.
916          */
917         u64_stats_update_begin(&rx_stats->syncp);
918         if (act == XDP_TX)
919                 rx_stats->xdp_tx++;
920
921         rx_stats->packets++;
922         rx_stats->bytes += nvchan->rsc.pktlen;
923
924         if (skb->pkt_type == PACKET_BROADCAST)
925                 ++rx_stats->broadcast;
926         else if (skb->pkt_type == PACKET_MULTICAST)
927                 ++rx_stats->multicast;
928         u64_stats_update_end(&rx_stats->syncp);
929
930         if (act == XDP_TX) {
931                 netvsc_xdp_xmit(skb, net);
932                 return NVSP_STAT_SUCCESS;
933         }
934
935         napi_gro_receive(&nvchan->napi, skb);
936         return NVSP_STAT_SUCCESS;
937 }
938
939 static void netvsc_get_drvinfo(struct net_device *net,
940                                struct ethtool_drvinfo *info)
941 {
942         strscpy(info->driver, KBUILD_MODNAME, sizeof(info->driver));
943         strscpy(info->fw_version, "N/A", sizeof(info->fw_version));
944 }
945
946 static void netvsc_get_channels(struct net_device *net,
947                                 struct ethtool_channels *channel)
948 {
949         struct net_device_context *net_device_ctx = netdev_priv(net);
950         struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
951
952         if (nvdev) {
953                 channel->max_combined   = nvdev->max_chn;
954                 channel->combined_count = nvdev->num_chn;
955         }
956 }
957
958 /* Alloc struct netvsc_device_info, and initialize it from either existing
959  * struct netvsc_device, or from default values.
960  */
961 static
962 struct netvsc_device_info *netvsc_devinfo_get(struct netvsc_device *nvdev)
963 {
964         struct netvsc_device_info *dev_info;
965         struct bpf_prog *prog;
966
967         dev_info = kzalloc(sizeof(*dev_info), GFP_ATOMIC);
968
969         if (!dev_info)
970                 return NULL;
971
972         if (nvdev) {
973                 ASSERT_RTNL();
974
975                 dev_info->num_chn = nvdev->num_chn;
976                 dev_info->send_sections = nvdev->send_section_cnt;
977                 dev_info->send_section_size = nvdev->send_section_size;
978                 dev_info->recv_sections = nvdev->recv_section_cnt;
979                 dev_info->recv_section_size = nvdev->recv_section_size;
980
981                 memcpy(dev_info->rss_key, nvdev->extension->rss_key,
982                        NETVSC_HASH_KEYLEN);
983
984                 prog = netvsc_xdp_get(nvdev);
985                 if (prog) {
986                         bpf_prog_inc(prog);
987                         dev_info->bprog = prog;
988                 }
989         } else {
990                 dev_info->num_chn = max(VRSS_CHANNEL_DEFAULT,
991                                         netif_get_num_default_rss_queues());
992                 dev_info->send_sections = NETVSC_DEFAULT_TX;
993                 dev_info->send_section_size = NETVSC_SEND_SECTION_SIZE;
994                 dev_info->recv_sections = NETVSC_DEFAULT_RX;
995                 dev_info->recv_section_size = NETVSC_RECV_SECTION_SIZE;
996         }
997
998         return dev_info;
999 }
1000
1001 /* Free struct netvsc_device_info */
1002 static void netvsc_devinfo_put(struct netvsc_device_info *dev_info)
1003 {
1004         if (dev_info->bprog) {
1005                 ASSERT_RTNL();
1006                 bpf_prog_put(dev_info->bprog);
1007         }
1008
1009         kfree(dev_info);
1010 }
1011
1012 static int netvsc_detach(struct net_device *ndev,
1013                          struct netvsc_device *nvdev)
1014 {
1015         struct net_device_context *ndev_ctx = netdev_priv(ndev);
1016         struct hv_device *hdev = ndev_ctx->device_ctx;
1017         int ret;
1018
1019         /* Don't try continuing to try and setup sub channels */
1020         if (cancel_work_sync(&nvdev->subchan_work))
1021                 nvdev->num_chn = 1;
1022
1023         netvsc_xdp_set(ndev, NULL, NULL, nvdev);
1024
1025         /* If device was up (receiving) then shutdown */
1026         if (netif_running(ndev)) {
1027                 netvsc_tx_disable(nvdev, ndev);
1028
1029                 ret = rndis_filter_close(nvdev);
1030                 if (ret) {
1031                         netdev_err(ndev,
1032                                    "unable to close device (ret %d).\n", ret);
1033                         return ret;
1034                 }
1035
1036                 ret = netvsc_wait_until_empty(nvdev);
1037                 if (ret) {
1038                         netdev_err(ndev,
1039                                    "Ring buffer not empty after closing rndis\n");
1040                         return ret;
1041                 }
1042         }
1043
1044         netif_device_detach(ndev);
1045
1046         rndis_filter_device_remove(hdev, nvdev);
1047
1048         return 0;
1049 }
1050
1051 static int netvsc_attach(struct net_device *ndev,
1052                          struct netvsc_device_info *dev_info)
1053 {
1054         struct net_device_context *ndev_ctx = netdev_priv(ndev);
1055         struct hv_device *hdev = ndev_ctx->device_ctx;
1056         struct netvsc_device *nvdev;
1057         struct rndis_device *rdev;
1058         struct bpf_prog *prog;
1059         int ret = 0;
1060
1061         nvdev = rndis_filter_device_add(hdev, dev_info);
1062         if (IS_ERR(nvdev))
1063                 return PTR_ERR(nvdev);
1064
1065         if (nvdev->num_chn > 1) {
1066                 ret = rndis_set_subchannel(ndev, nvdev, dev_info);
1067
1068                 /* if unavailable, just proceed with one queue */
1069                 if (ret) {
1070                         nvdev->max_chn = 1;
1071                         nvdev->num_chn = 1;
1072                 }
1073         }
1074
1075         prog = dev_info->bprog;
1076         if (prog) {
1077                 bpf_prog_inc(prog);
1078                 ret = netvsc_xdp_set(ndev, prog, NULL, nvdev);
1079                 if (ret) {
1080                         bpf_prog_put(prog);
1081                         goto err1;
1082                 }
1083         }
1084
1085         /* In any case device is now ready */
1086         nvdev->tx_disable = false;
1087         netif_device_attach(ndev);
1088
1089         /* Note: enable and attach happen when sub-channels setup */
1090         netif_carrier_off(ndev);
1091
1092         if (netif_running(ndev)) {
1093                 ret = rndis_filter_open(nvdev);
1094                 if (ret)
1095                         goto err2;
1096
1097                 rdev = nvdev->extension;
1098                 if (!rdev->link_state)
1099                         netif_carrier_on(ndev);
1100         }
1101
1102         return 0;
1103
1104 err2:
1105         netif_device_detach(ndev);
1106
1107 err1:
1108         rndis_filter_device_remove(hdev, nvdev);
1109
1110         return ret;
1111 }
1112
1113 static int netvsc_set_channels(struct net_device *net,
1114                                struct ethtool_channels *channels)
1115 {
1116         struct net_device_context *net_device_ctx = netdev_priv(net);
1117         struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
1118         unsigned int orig, count = channels->combined_count;
1119         struct netvsc_device_info *device_info;
1120         int ret;
1121
1122         /* We do not support separate count for rx, tx, or other */
1123         if (count == 0 ||
1124             channels->rx_count || channels->tx_count || channels->other_count)
1125                 return -EINVAL;
1126
1127         if (!nvdev || nvdev->destroy)
1128                 return -ENODEV;
1129
1130         if (nvdev->nvsp_version < NVSP_PROTOCOL_VERSION_5)
1131                 return -EINVAL;
1132
1133         if (count > nvdev->max_chn)
1134                 return -EINVAL;
1135
1136         orig = nvdev->num_chn;
1137
1138         device_info = netvsc_devinfo_get(nvdev);
1139
1140         if (!device_info)
1141                 return -ENOMEM;
1142
1143         device_info->num_chn = count;
1144
1145         ret = netvsc_detach(net, nvdev);
1146         if (ret)
1147                 goto out;
1148
1149         ret = netvsc_attach(net, device_info);
1150         if (ret) {
1151                 device_info->num_chn = orig;
1152                 if (netvsc_attach(net, device_info))
1153                         netdev_err(net, "restoring channel setting failed\n");
1154         }
1155
1156 out:
1157         netvsc_devinfo_put(device_info);
1158         return ret;
1159 }
1160
1161 static void netvsc_init_settings(struct net_device *dev)
1162 {
1163         struct net_device_context *ndc = netdev_priv(dev);
1164
1165         ndc->l4_hash = HV_DEFAULT_L4HASH;
1166
1167         ndc->speed = SPEED_UNKNOWN;
1168         ndc->duplex = DUPLEX_FULL;
1169
1170         dev->features = NETIF_F_LRO;
1171 }
1172
1173 static int netvsc_get_link_ksettings(struct net_device *dev,
1174                                      struct ethtool_link_ksettings *cmd)
1175 {
1176         struct net_device_context *ndc = netdev_priv(dev);
1177         struct net_device *vf_netdev;
1178
1179         vf_netdev = rtnl_dereference(ndc->vf_netdev);
1180
1181         if (vf_netdev)
1182                 return __ethtool_get_link_ksettings(vf_netdev, cmd);
1183
1184         cmd->base.speed = ndc->speed;
1185         cmd->base.duplex = ndc->duplex;
1186         cmd->base.port = PORT_OTHER;
1187
1188         return 0;
1189 }
1190
1191 static int netvsc_set_link_ksettings(struct net_device *dev,
1192                                      const struct ethtool_link_ksettings *cmd)
1193 {
1194         struct net_device_context *ndc = netdev_priv(dev);
1195         struct net_device *vf_netdev = rtnl_dereference(ndc->vf_netdev);
1196
1197         if (vf_netdev) {
1198                 if (!vf_netdev->ethtool_ops->set_link_ksettings)
1199                         return -EOPNOTSUPP;
1200
1201                 return vf_netdev->ethtool_ops->set_link_ksettings(vf_netdev,
1202                                                                   cmd);
1203         }
1204
1205         return ethtool_virtdev_set_link_ksettings(dev, cmd,
1206                                                   &ndc->speed, &ndc->duplex);
1207 }
1208
1209 static int netvsc_change_mtu(struct net_device *ndev, int mtu)
1210 {
1211         struct net_device_context *ndevctx = netdev_priv(ndev);
1212         struct net_device *vf_netdev = rtnl_dereference(ndevctx->vf_netdev);
1213         struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1214         int orig_mtu = ndev->mtu;
1215         struct netvsc_device_info *device_info;
1216         int ret = 0;
1217
1218         if (!nvdev || nvdev->destroy)
1219                 return -ENODEV;
1220
1221         device_info = netvsc_devinfo_get(nvdev);
1222
1223         if (!device_info)
1224                 return -ENOMEM;
1225
1226         /* Change MTU of underlying VF netdev first. */
1227         if (vf_netdev) {
1228                 ret = dev_set_mtu(vf_netdev, mtu);
1229                 if (ret)
1230                         goto out;
1231         }
1232
1233         ret = netvsc_detach(ndev, nvdev);
1234         if (ret)
1235                 goto rollback_vf;
1236
1237         WRITE_ONCE(ndev->mtu, mtu);
1238
1239         ret = netvsc_attach(ndev, device_info);
1240         if (!ret)
1241                 goto out;
1242
1243         /* Attempt rollback to original MTU */
1244         WRITE_ONCE(ndev->mtu, orig_mtu);
1245
1246         if (netvsc_attach(ndev, device_info))
1247                 netdev_err(ndev, "restoring mtu failed\n");
1248 rollback_vf:
1249         if (vf_netdev)
1250                 dev_set_mtu(vf_netdev, orig_mtu);
1251
1252 out:
1253         netvsc_devinfo_put(device_info);
1254         return ret;
1255 }
1256
1257 static void netvsc_get_vf_stats(struct net_device *net,
1258                                 struct netvsc_vf_pcpu_stats *tot)
1259 {
1260         struct net_device_context *ndev_ctx = netdev_priv(net);
1261         int i;
1262
1263         memset(tot, 0, sizeof(*tot));
1264
1265         for_each_possible_cpu(i) {
1266                 const struct netvsc_vf_pcpu_stats *stats
1267                         = per_cpu_ptr(ndev_ctx->vf_stats, i);
1268                 u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
1269                 unsigned int start;
1270
1271                 do {
1272                         start = u64_stats_fetch_begin(&stats->syncp);
1273                         rx_packets = stats->rx_packets;
1274                         tx_packets = stats->tx_packets;
1275                         rx_bytes = stats->rx_bytes;
1276                         tx_bytes = stats->tx_bytes;
1277                 } while (u64_stats_fetch_retry(&stats->syncp, start));
1278
1279                 tot->rx_packets += rx_packets;
1280                 tot->tx_packets += tx_packets;
1281                 tot->rx_bytes   += rx_bytes;
1282                 tot->tx_bytes   += tx_bytes;
1283                 tot->tx_dropped += stats->tx_dropped;
1284         }
1285 }
1286
1287 static void netvsc_get_pcpu_stats(struct net_device *net,
1288                                   struct netvsc_ethtool_pcpu_stats *pcpu_tot)
1289 {
1290         struct net_device_context *ndev_ctx = netdev_priv(net);
1291         struct netvsc_device *nvdev = rcu_dereference_rtnl(ndev_ctx->nvdev);
1292         int i;
1293
1294         /* fetch percpu stats of vf */
1295         for_each_possible_cpu(i) {
1296                 const struct netvsc_vf_pcpu_stats *stats =
1297                         per_cpu_ptr(ndev_ctx->vf_stats, i);
1298                 struct netvsc_ethtool_pcpu_stats *this_tot = &pcpu_tot[i];
1299                 unsigned int start;
1300
1301                 do {
1302                         start = u64_stats_fetch_begin(&stats->syncp);
1303                         this_tot->vf_rx_packets = stats->rx_packets;
1304                         this_tot->vf_tx_packets = stats->tx_packets;
1305                         this_tot->vf_rx_bytes = stats->rx_bytes;
1306                         this_tot->vf_tx_bytes = stats->tx_bytes;
1307                 } while (u64_stats_fetch_retry(&stats->syncp, start));
1308                 this_tot->rx_packets = this_tot->vf_rx_packets;
1309                 this_tot->tx_packets = this_tot->vf_tx_packets;
1310                 this_tot->rx_bytes   = this_tot->vf_rx_bytes;
1311                 this_tot->tx_bytes   = this_tot->vf_tx_bytes;
1312         }
1313
1314         /* fetch percpu stats of netvsc */
1315         for (i = 0; i < nvdev->num_chn; i++) {
1316                 const struct netvsc_channel *nvchan = &nvdev->chan_table[i];
1317                 const struct netvsc_stats_tx *tx_stats;
1318                 const struct netvsc_stats_rx *rx_stats;
1319                 struct netvsc_ethtool_pcpu_stats *this_tot =
1320                         &pcpu_tot[nvchan->channel->target_cpu];
1321                 u64 packets, bytes;
1322                 unsigned int start;
1323
1324                 tx_stats = &nvchan->tx_stats;
1325                 do {
1326                         start = u64_stats_fetch_begin(&tx_stats->syncp);
1327                         packets = tx_stats->packets;
1328                         bytes = tx_stats->bytes;
1329                 } while (u64_stats_fetch_retry(&tx_stats->syncp, start));
1330
1331                 this_tot->tx_bytes      += bytes;
1332                 this_tot->tx_packets    += packets;
1333
1334                 rx_stats = &nvchan->rx_stats;
1335                 do {
1336                         start = u64_stats_fetch_begin(&rx_stats->syncp);
1337                         packets = rx_stats->packets;
1338                         bytes = rx_stats->bytes;
1339                 } while (u64_stats_fetch_retry(&rx_stats->syncp, start));
1340
1341                 this_tot->rx_bytes      += bytes;
1342                 this_tot->rx_packets    += packets;
1343         }
1344 }
1345
1346 static void netvsc_get_stats64(struct net_device *net,
1347                                struct rtnl_link_stats64 *t)
1348 {
1349         struct net_device_context *ndev_ctx = netdev_priv(net);
1350         struct netvsc_device *nvdev;
1351         struct netvsc_vf_pcpu_stats vf_tot;
1352         int i;
1353
1354         rcu_read_lock();
1355
1356         nvdev = rcu_dereference(ndev_ctx->nvdev);
1357         if (!nvdev)
1358                 goto out;
1359
1360         netdev_stats_to_stats64(t, &net->stats);
1361
1362         netvsc_get_vf_stats(net, &vf_tot);
1363         t->rx_packets += vf_tot.rx_packets;
1364         t->tx_packets += vf_tot.tx_packets;
1365         t->rx_bytes   += vf_tot.rx_bytes;
1366         t->tx_bytes   += vf_tot.tx_bytes;
1367         t->tx_dropped += vf_tot.tx_dropped;
1368
1369         for (i = 0; i < nvdev->num_chn; i++) {
1370                 const struct netvsc_channel *nvchan = &nvdev->chan_table[i];
1371                 const struct netvsc_stats_tx *tx_stats;
1372                 const struct netvsc_stats_rx *rx_stats;
1373                 u64 packets, bytes, multicast;
1374                 unsigned int start;
1375
1376                 tx_stats = &nvchan->tx_stats;
1377                 do {
1378                         start = u64_stats_fetch_begin(&tx_stats->syncp);
1379                         packets = tx_stats->packets;
1380                         bytes = tx_stats->bytes;
1381                 } while (u64_stats_fetch_retry(&tx_stats->syncp, start));
1382
1383                 t->tx_bytes     += bytes;
1384                 t->tx_packets   += packets;
1385
1386                 rx_stats = &nvchan->rx_stats;
1387                 do {
1388                         start = u64_stats_fetch_begin(&rx_stats->syncp);
1389                         packets = rx_stats->packets;
1390                         bytes = rx_stats->bytes;
1391                         multicast = rx_stats->multicast + rx_stats->broadcast;
1392                 } while (u64_stats_fetch_retry(&rx_stats->syncp, start));
1393
1394                 t->rx_bytes     += bytes;
1395                 t->rx_packets   += packets;
1396                 t->multicast    += multicast;
1397         }
1398 out:
1399         rcu_read_unlock();
1400 }
1401
1402 static int netvsc_set_mac_addr(struct net_device *ndev, void *p)
1403 {
1404         struct net_device_context *ndc = netdev_priv(ndev);
1405         struct net_device *vf_netdev = rtnl_dereference(ndc->vf_netdev);
1406         struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1407         struct sockaddr *addr = p;
1408         int err;
1409
1410         err = eth_prepare_mac_addr_change(ndev, p);
1411         if (err)
1412                 return err;
1413
1414         if (!nvdev)
1415                 return -ENODEV;
1416
1417         if (vf_netdev) {
1418                 err = dev_set_mac_address(vf_netdev, addr, NULL);
1419                 if (err)
1420                         return err;
1421         }
1422
1423         err = rndis_filter_set_device_mac(nvdev, addr->sa_data);
1424         if (!err) {
1425                 eth_commit_mac_addr_change(ndev, p);
1426         } else if (vf_netdev) {
1427                 /* rollback change on VF */
1428                 memcpy(addr->sa_data, ndev->dev_addr, ETH_ALEN);
1429                 dev_set_mac_address(vf_netdev, addr, NULL);
1430         }
1431
1432         return err;
1433 }
1434
1435 static const struct {
1436         char name[ETH_GSTRING_LEN];
1437         u16 offset;
1438 } netvsc_stats[] = {
1439         { "tx_scattered", offsetof(struct netvsc_ethtool_stats, tx_scattered) },
1440         { "tx_no_memory", offsetof(struct netvsc_ethtool_stats, tx_no_memory) },
1441         { "tx_no_space",  offsetof(struct netvsc_ethtool_stats, tx_no_space) },
1442         { "tx_too_big",   offsetof(struct netvsc_ethtool_stats, tx_too_big) },
1443         { "tx_busy",      offsetof(struct netvsc_ethtool_stats, tx_busy) },
1444         { "tx_send_full", offsetof(struct netvsc_ethtool_stats, tx_send_full) },
1445         { "rx_comp_busy", offsetof(struct netvsc_ethtool_stats, rx_comp_busy) },
1446         { "rx_no_memory", offsetof(struct netvsc_ethtool_stats, rx_no_memory) },
1447         { "stop_queue", offsetof(struct netvsc_ethtool_stats, stop_queue) },
1448         { "wake_queue", offsetof(struct netvsc_ethtool_stats, wake_queue) },
1449         { "vlan_error", offsetof(struct netvsc_ethtool_stats, vlan_error) },
1450 }, pcpu_stats[] = {
1451         { "cpu%u_rx_packets",
1452                 offsetof(struct netvsc_ethtool_pcpu_stats, rx_packets) },
1453         { "cpu%u_rx_bytes",
1454                 offsetof(struct netvsc_ethtool_pcpu_stats, rx_bytes) },
1455         { "cpu%u_tx_packets",
1456                 offsetof(struct netvsc_ethtool_pcpu_stats, tx_packets) },
1457         { "cpu%u_tx_bytes",
1458                 offsetof(struct netvsc_ethtool_pcpu_stats, tx_bytes) },
1459         { "cpu%u_vf_rx_packets",
1460                 offsetof(struct netvsc_ethtool_pcpu_stats, vf_rx_packets) },
1461         { "cpu%u_vf_rx_bytes",
1462                 offsetof(struct netvsc_ethtool_pcpu_stats, vf_rx_bytes) },
1463         { "cpu%u_vf_tx_packets",
1464                 offsetof(struct netvsc_ethtool_pcpu_stats, vf_tx_packets) },
1465         { "cpu%u_vf_tx_bytes",
1466                 offsetof(struct netvsc_ethtool_pcpu_stats, vf_tx_bytes) },
1467 }, vf_stats[] = {
1468         { "vf_rx_packets", offsetof(struct netvsc_vf_pcpu_stats, rx_packets) },
1469         { "vf_rx_bytes",   offsetof(struct netvsc_vf_pcpu_stats, rx_bytes) },
1470         { "vf_tx_packets", offsetof(struct netvsc_vf_pcpu_stats, tx_packets) },
1471         { "vf_tx_bytes",   offsetof(struct netvsc_vf_pcpu_stats, tx_bytes) },
1472         { "vf_tx_dropped", offsetof(struct netvsc_vf_pcpu_stats, tx_dropped) },
1473 };
1474
1475 #define NETVSC_GLOBAL_STATS_LEN ARRAY_SIZE(netvsc_stats)
1476 #define NETVSC_VF_STATS_LEN     ARRAY_SIZE(vf_stats)
1477
1478 /* statistics per queue (rx/tx packets/bytes) */
1479 #define NETVSC_PCPU_STATS_LEN (num_present_cpus() * ARRAY_SIZE(pcpu_stats))
1480
1481 /* 8 statistics per queue (rx/tx packets/bytes, XDP actions) */
1482 #define NETVSC_QUEUE_STATS_LEN(dev) ((dev)->num_chn * 8)
1483
1484 static int netvsc_get_sset_count(struct net_device *dev, int string_set)
1485 {
1486         struct net_device_context *ndc = netdev_priv(dev);
1487         struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1488
1489         if (!nvdev)
1490                 return -ENODEV;
1491
1492         switch (string_set) {
1493         case ETH_SS_STATS:
1494                 return NETVSC_GLOBAL_STATS_LEN
1495                         + NETVSC_VF_STATS_LEN
1496                         + NETVSC_QUEUE_STATS_LEN(nvdev)
1497                         + NETVSC_PCPU_STATS_LEN;
1498         default:
1499                 return -EINVAL;
1500         }
1501 }
1502
1503 static void netvsc_get_ethtool_stats(struct net_device *dev,
1504                                      struct ethtool_stats *stats, u64 *data)
1505 {
1506         struct net_device_context *ndc = netdev_priv(dev);
1507         struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1508         const void *nds = &ndc->eth_stats;
1509         const struct netvsc_stats_tx *tx_stats;
1510         const struct netvsc_stats_rx *rx_stats;
1511         struct netvsc_vf_pcpu_stats sum;
1512         struct netvsc_ethtool_pcpu_stats *pcpu_sum;
1513         unsigned int start;
1514         u64 packets, bytes;
1515         u64 xdp_drop;
1516         u64 xdp_redirect;
1517         u64 xdp_tx;
1518         u64 xdp_xmit;
1519         int i, j, cpu;
1520
1521         if (!nvdev)
1522                 return;
1523
1524         for (i = 0; i < NETVSC_GLOBAL_STATS_LEN; i++)
1525                 data[i] = *(unsigned long *)(nds + netvsc_stats[i].offset);
1526
1527         netvsc_get_vf_stats(dev, &sum);
1528         for (j = 0; j < NETVSC_VF_STATS_LEN; j++)
1529                 data[i++] = *(u64 *)((void *)&sum + vf_stats[j].offset);
1530
1531         for (j = 0; j < nvdev->num_chn; j++) {
1532                 tx_stats = &nvdev->chan_table[j].tx_stats;
1533
1534                 do {
1535                         start = u64_stats_fetch_begin(&tx_stats->syncp);
1536                         packets = tx_stats->packets;
1537                         bytes = tx_stats->bytes;
1538                         xdp_xmit = tx_stats->xdp_xmit;
1539                 } while (u64_stats_fetch_retry(&tx_stats->syncp, start));
1540                 data[i++] = packets;
1541                 data[i++] = bytes;
1542                 data[i++] = xdp_xmit;
1543
1544                 rx_stats = &nvdev->chan_table[j].rx_stats;
1545                 do {
1546                         start = u64_stats_fetch_begin(&rx_stats->syncp);
1547                         packets = rx_stats->packets;
1548                         bytes = rx_stats->bytes;
1549                         xdp_drop = rx_stats->xdp_drop;
1550                         xdp_redirect = rx_stats->xdp_redirect;
1551                         xdp_tx = rx_stats->xdp_tx;
1552                 } while (u64_stats_fetch_retry(&rx_stats->syncp, start));
1553                 data[i++] = packets;
1554                 data[i++] = bytes;
1555                 data[i++] = xdp_drop;
1556                 data[i++] = xdp_redirect;
1557                 data[i++] = xdp_tx;
1558         }
1559
1560         pcpu_sum = kvmalloc_array(nr_cpu_ids,
1561                                   sizeof(struct netvsc_ethtool_pcpu_stats),
1562                                   GFP_KERNEL);
1563         if (!pcpu_sum)
1564                 return;
1565
1566         netvsc_get_pcpu_stats(dev, pcpu_sum);
1567         for_each_present_cpu(cpu) {
1568                 struct netvsc_ethtool_pcpu_stats *this_sum = &pcpu_sum[cpu];
1569
1570                 for (j = 0; j < ARRAY_SIZE(pcpu_stats); j++)
1571                         data[i++] = *(u64 *)((void *)this_sum
1572                                              + pcpu_stats[j].offset);
1573         }
1574         kvfree(pcpu_sum);
1575 }
1576
1577 static void netvsc_get_strings(struct net_device *dev, u32 stringset, u8 *data)
1578 {
1579         struct net_device_context *ndc = netdev_priv(dev);
1580         struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1581         u8 *p = data;
1582         int i, cpu;
1583
1584         if (!nvdev)
1585                 return;
1586
1587         switch (stringset) {
1588         case ETH_SS_STATS:
1589                 for (i = 0; i < ARRAY_SIZE(netvsc_stats); i++)
1590                         ethtool_puts(&p, netvsc_stats[i].name);
1591
1592                 for (i = 0; i < ARRAY_SIZE(vf_stats); i++)
1593                         ethtool_puts(&p, vf_stats[i].name);
1594
1595                 for (i = 0; i < nvdev->num_chn; i++) {
1596                         ethtool_sprintf(&p, "tx_queue_%u_packets", i);
1597                         ethtool_sprintf(&p, "tx_queue_%u_bytes", i);
1598                         ethtool_sprintf(&p, "tx_queue_%u_xdp_xmit", i);
1599                         ethtool_sprintf(&p, "rx_queue_%u_packets", i);
1600                         ethtool_sprintf(&p, "rx_queue_%u_bytes", i);
1601                         ethtool_sprintf(&p, "rx_queue_%u_xdp_drop", i);
1602                         ethtool_sprintf(&p, "rx_queue_%u_xdp_redirect", i);
1603                         ethtool_sprintf(&p, "rx_queue_%u_xdp_tx", i);
1604                 }
1605
1606                 for_each_present_cpu(cpu) {
1607                         for (i = 0; i < ARRAY_SIZE(pcpu_stats); i++)
1608                                 ethtool_sprintf(&p, pcpu_stats[i].name, cpu);
1609                 }
1610
1611                 break;
1612         }
1613 }
1614
1615 static int
1616 netvsc_get_rss_hash_opts(struct net_device_context *ndc,
1617                          struct ethtool_rxnfc *info)
1618 {
1619         const u32 l4_flag = RXH_L4_B_0_1 | RXH_L4_B_2_3;
1620
1621         info->data = RXH_IP_SRC | RXH_IP_DST;
1622
1623         switch (info->flow_type) {
1624         case TCP_V4_FLOW:
1625                 if (ndc->l4_hash & HV_TCP4_L4HASH)
1626                         info->data |= l4_flag;
1627
1628                 break;
1629
1630         case TCP_V6_FLOW:
1631                 if (ndc->l4_hash & HV_TCP6_L4HASH)
1632                         info->data |= l4_flag;
1633
1634                 break;
1635
1636         case UDP_V4_FLOW:
1637                 if (ndc->l4_hash & HV_UDP4_L4HASH)
1638                         info->data |= l4_flag;
1639
1640                 break;
1641
1642         case UDP_V6_FLOW:
1643                 if (ndc->l4_hash & HV_UDP6_L4HASH)
1644                         info->data |= l4_flag;
1645
1646                 break;
1647
1648         case IPV4_FLOW:
1649         case IPV6_FLOW:
1650                 break;
1651         default:
1652                 info->data = 0;
1653                 break;
1654         }
1655
1656         return 0;
1657 }
1658
1659 static int
1660 netvsc_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *info,
1661                  u32 *rules)
1662 {
1663         struct net_device_context *ndc = netdev_priv(dev);
1664         struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1665
1666         if (!nvdev)
1667                 return -ENODEV;
1668
1669         switch (info->cmd) {
1670         case ETHTOOL_GRXRINGS:
1671                 info->data = nvdev->num_chn;
1672                 return 0;
1673
1674         case ETHTOOL_GRXFH:
1675                 return netvsc_get_rss_hash_opts(ndc, info);
1676         }
1677         return -EOPNOTSUPP;
1678 }
1679
1680 static int netvsc_set_rss_hash_opts(struct net_device_context *ndc,
1681                                     struct ethtool_rxnfc *info)
1682 {
1683         if (info->data == (RXH_IP_SRC | RXH_IP_DST |
1684                            RXH_L4_B_0_1 | RXH_L4_B_2_3)) {
1685                 switch (info->flow_type) {
1686                 case TCP_V4_FLOW:
1687                         ndc->l4_hash |= HV_TCP4_L4HASH;
1688                         break;
1689
1690                 case TCP_V6_FLOW:
1691                         ndc->l4_hash |= HV_TCP6_L4HASH;
1692                         break;
1693
1694                 case UDP_V4_FLOW:
1695                         ndc->l4_hash |= HV_UDP4_L4HASH;
1696                         break;
1697
1698                 case UDP_V6_FLOW:
1699                         ndc->l4_hash |= HV_UDP6_L4HASH;
1700                         break;
1701
1702                 default:
1703                         return -EOPNOTSUPP;
1704                 }
1705
1706                 return 0;
1707         }
1708
1709         if (info->data == (RXH_IP_SRC | RXH_IP_DST)) {
1710                 switch (info->flow_type) {
1711                 case TCP_V4_FLOW:
1712                         ndc->l4_hash &= ~HV_TCP4_L4HASH;
1713                         break;
1714
1715                 case TCP_V6_FLOW:
1716                         ndc->l4_hash &= ~HV_TCP6_L4HASH;
1717                         break;
1718
1719                 case UDP_V4_FLOW:
1720                         ndc->l4_hash &= ~HV_UDP4_L4HASH;
1721                         break;
1722
1723                 case UDP_V6_FLOW:
1724                         ndc->l4_hash &= ~HV_UDP6_L4HASH;
1725                         break;
1726
1727                 default:
1728                         return -EOPNOTSUPP;
1729                 }
1730
1731                 return 0;
1732         }
1733
1734         return -EOPNOTSUPP;
1735 }
1736
1737 static int
1738 netvsc_set_rxnfc(struct net_device *ndev, struct ethtool_rxnfc *info)
1739 {
1740         struct net_device_context *ndc = netdev_priv(ndev);
1741
1742         if (info->cmd == ETHTOOL_SRXFH)
1743                 return netvsc_set_rss_hash_opts(ndc, info);
1744
1745         return -EOPNOTSUPP;
1746 }
1747
1748 static u32 netvsc_get_rxfh_key_size(struct net_device *dev)
1749 {
1750         return NETVSC_HASH_KEYLEN;
1751 }
1752
1753 static u32 netvsc_rss_indir_size(struct net_device *dev)
1754 {
1755         struct net_device_context *ndc = netdev_priv(dev);
1756
1757         return ndc->rx_table_sz;
1758 }
1759
1760 static int netvsc_get_rxfh(struct net_device *dev,
1761                            struct ethtool_rxfh_param *rxfh)
1762 {
1763         struct net_device_context *ndc = netdev_priv(dev);
1764         struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev);
1765         struct rndis_device *rndis_dev;
1766         int i;
1767
1768         if (!ndev)
1769                 return -ENODEV;
1770
1771         rxfh->hfunc = ETH_RSS_HASH_TOP; /* Toeplitz */
1772
1773         rndis_dev = ndev->extension;
1774         if (rxfh->indir) {
1775                 for (i = 0; i < ndc->rx_table_sz; i++)
1776                         rxfh->indir[i] = ndc->rx_table[i];
1777         }
1778
1779         if (rxfh->key)
1780                 memcpy(rxfh->key, rndis_dev->rss_key, NETVSC_HASH_KEYLEN);
1781
1782         return 0;
1783 }
1784
1785 static int netvsc_set_rxfh(struct net_device *dev,
1786                            struct ethtool_rxfh_param *rxfh,
1787                            struct netlink_ext_ack *extack)
1788 {
1789         struct net_device_context *ndc = netdev_priv(dev);
1790         struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev);
1791         struct rndis_device *rndis_dev;
1792         u8 *key = rxfh->key;
1793         int i;
1794
1795         if (!ndev)
1796                 return -ENODEV;
1797
1798         if (rxfh->hfunc != ETH_RSS_HASH_NO_CHANGE &&
1799             rxfh->hfunc != ETH_RSS_HASH_TOP)
1800                 return -EOPNOTSUPP;
1801
1802         rndis_dev = ndev->extension;
1803         if (rxfh->indir) {
1804                 for (i = 0; i < ndc->rx_table_sz; i++)
1805                         if (rxfh->indir[i] >= ndev->num_chn)
1806                                 return -EINVAL;
1807
1808                 for (i = 0; i < ndc->rx_table_sz; i++)
1809                         ndc->rx_table[i] = rxfh->indir[i];
1810         }
1811
1812         if (!key) {
1813                 if (!rxfh->indir)
1814                         return 0;
1815
1816                 key = rndis_dev->rss_key;
1817         }
1818
1819         return rndis_filter_set_rss_param(rndis_dev, key);
1820 }
1821
1822 /* Hyper-V RNDIS protocol does not have ring in the HW sense.
1823  * It does have pre-allocated receive area which is divided into sections.
1824  */
1825 static void __netvsc_get_ringparam(struct netvsc_device *nvdev,
1826                                    struct ethtool_ringparam *ring)
1827 {
1828         u32 max_buf_size;
1829
1830         ring->rx_pending = nvdev->recv_section_cnt;
1831         ring->tx_pending = nvdev->send_section_cnt;
1832
1833         if (nvdev->nvsp_version <= NVSP_PROTOCOL_VERSION_2)
1834                 max_buf_size = NETVSC_RECEIVE_BUFFER_SIZE_LEGACY;
1835         else
1836                 max_buf_size = NETVSC_RECEIVE_BUFFER_SIZE;
1837
1838         ring->rx_max_pending = max_buf_size / nvdev->recv_section_size;
1839         ring->tx_max_pending = NETVSC_SEND_BUFFER_SIZE
1840                 / nvdev->send_section_size;
1841 }
1842
1843 static void netvsc_get_ringparam(struct net_device *ndev,
1844                                  struct ethtool_ringparam *ring,
1845                                  struct kernel_ethtool_ringparam *kernel_ring,
1846                                  struct netlink_ext_ack *extack)
1847 {
1848         struct net_device_context *ndevctx = netdev_priv(ndev);
1849         struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1850
1851         if (!nvdev)
1852                 return;
1853
1854         __netvsc_get_ringparam(nvdev, ring);
1855 }
1856
1857 static int netvsc_set_ringparam(struct net_device *ndev,
1858                                 struct ethtool_ringparam *ring,
1859                                 struct kernel_ethtool_ringparam *kernel_ring,
1860                                 struct netlink_ext_ack *extack)
1861 {
1862         struct net_device_context *ndevctx = netdev_priv(ndev);
1863         struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1864         struct netvsc_device_info *device_info;
1865         struct ethtool_ringparam orig;
1866         u32 new_tx, new_rx;
1867         int ret = 0;
1868
1869         if (!nvdev || nvdev->destroy)
1870                 return -ENODEV;
1871
1872         memset(&orig, 0, sizeof(orig));
1873         __netvsc_get_ringparam(nvdev, &orig);
1874
1875         new_tx = clamp_t(u32, ring->tx_pending,
1876                          NETVSC_MIN_TX_SECTIONS, orig.tx_max_pending);
1877         new_rx = clamp_t(u32, ring->rx_pending,
1878                          NETVSC_MIN_RX_SECTIONS, orig.rx_max_pending);
1879
1880         if (new_tx == orig.tx_pending &&
1881             new_rx == orig.rx_pending)
1882                 return 0;        /* no change */
1883
1884         device_info = netvsc_devinfo_get(nvdev);
1885
1886         if (!device_info)
1887                 return -ENOMEM;
1888
1889         device_info->send_sections = new_tx;
1890         device_info->recv_sections = new_rx;
1891
1892         ret = netvsc_detach(ndev, nvdev);
1893         if (ret)
1894                 goto out;
1895
1896         ret = netvsc_attach(ndev, device_info);
1897         if (ret) {
1898                 device_info->send_sections = orig.tx_pending;
1899                 device_info->recv_sections = orig.rx_pending;
1900
1901                 if (netvsc_attach(ndev, device_info))
1902                         netdev_err(ndev, "restoring ringparam failed");
1903         }
1904
1905 out:
1906         netvsc_devinfo_put(device_info);
1907         return ret;
1908 }
1909
1910 static netdev_features_t netvsc_fix_features(struct net_device *ndev,
1911                                              netdev_features_t features)
1912 {
1913         struct net_device_context *ndevctx = netdev_priv(ndev);
1914         struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1915
1916         if (!nvdev || nvdev->destroy)
1917                 return features;
1918
1919         if ((features & NETIF_F_LRO) && netvsc_xdp_get(nvdev)) {
1920                 features ^= NETIF_F_LRO;
1921                 netdev_info(ndev, "Skip LRO - unsupported with XDP\n");
1922         }
1923
1924         return features;
1925 }
1926
1927 static int netvsc_set_features(struct net_device *ndev,
1928                                netdev_features_t features)
1929 {
1930         netdev_features_t change = features ^ ndev->features;
1931         struct net_device_context *ndevctx = netdev_priv(ndev);
1932         struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1933         struct net_device *vf_netdev = rtnl_dereference(ndevctx->vf_netdev);
1934         struct ndis_offload_params offloads;
1935         int ret = 0;
1936
1937         if (!nvdev || nvdev->destroy)
1938                 return -ENODEV;
1939
1940         if (!(change & NETIF_F_LRO))
1941                 goto syncvf;
1942
1943         memset(&offloads, 0, sizeof(struct ndis_offload_params));
1944
1945         if (features & NETIF_F_LRO) {
1946                 offloads.rsc_ip_v4 = NDIS_OFFLOAD_PARAMETERS_RSC_ENABLED;
1947                 offloads.rsc_ip_v6 = NDIS_OFFLOAD_PARAMETERS_RSC_ENABLED;
1948         } else {
1949                 offloads.rsc_ip_v4 = NDIS_OFFLOAD_PARAMETERS_RSC_DISABLED;
1950                 offloads.rsc_ip_v6 = NDIS_OFFLOAD_PARAMETERS_RSC_DISABLED;
1951         }
1952
1953         ret = rndis_filter_set_offload_params(ndev, nvdev, &offloads);
1954
1955         if (ret) {
1956                 features ^= NETIF_F_LRO;
1957                 ndev->features = features;
1958         }
1959
1960 syncvf:
1961         if (!vf_netdev)
1962                 return ret;
1963
1964         vf_netdev->wanted_features = features;
1965         netdev_update_features(vf_netdev);
1966
1967         return ret;
1968 }
1969
1970 static int netvsc_get_regs_len(struct net_device *netdev)
1971 {
1972         return VRSS_SEND_TAB_SIZE * sizeof(u32);
1973 }
1974
1975 static void netvsc_get_regs(struct net_device *netdev,
1976                             struct ethtool_regs *regs, void *p)
1977 {
1978         struct net_device_context *ndc = netdev_priv(netdev);
1979         u32 *regs_buff = p;
1980
1981         /* increase the version, if buffer format is changed. */
1982         regs->version = 1;
1983
1984         memcpy(regs_buff, ndc->tx_table, VRSS_SEND_TAB_SIZE * sizeof(u32));
1985 }
1986
1987 static u32 netvsc_get_msglevel(struct net_device *ndev)
1988 {
1989         struct net_device_context *ndev_ctx = netdev_priv(ndev);
1990
1991         return ndev_ctx->msg_enable;
1992 }
1993
1994 static void netvsc_set_msglevel(struct net_device *ndev, u32 val)
1995 {
1996         struct net_device_context *ndev_ctx = netdev_priv(ndev);
1997
1998         ndev_ctx->msg_enable = val;
1999 }
2000
2001 static const struct ethtool_ops ethtool_ops = {
2002         .get_drvinfo    = netvsc_get_drvinfo,
2003         .get_regs_len   = netvsc_get_regs_len,
2004         .get_regs       = netvsc_get_regs,
2005         .get_msglevel   = netvsc_get_msglevel,
2006         .set_msglevel   = netvsc_set_msglevel,
2007         .get_link       = ethtool_op_get_link,
2008         .get_ethtool_stats = netvsc_get_ethtool_stats,
2009         .get_sset_count = netvsc_get_sset_count,
2010         .get_strings    = netvsc_get_strings,
2011         .get_channels   = netvsc_get_channels,
2012         .set_channels   = netvsc_set_channels,
2013         .get_ts_info    = ethtool_op_get_ts_info,
2014         .get_rxnfc      = netvsc_get_rxnfc,
2015         .set_rxnfc      = netvsc_set_rxnfc,
2016         .get_rxfh_key_size = netvsc_get_rxfh_key_size,
2017         .get_rxfh_indir_size = netvsc_rss_indir_size,
2018         .get_rxfh       = netvsc_get_rxfh,
2019         .set_rxfh       = netvsc_set_rxfh,
2020         .get_link_ksettings = netvsc_get_link_ksettings,
2021         .set_link_ksettings = netvsc_set_link_ksettings,
2022         .get_ringparam  = netvsc_get_ringparam,
2023         .set_ringparam  = netvsc_set_ringparam,
2024 };
2025
2026 static const struct net_device_ops device_ops = {
2027         .ndo_open =                     netvsc_open,
2028         .ndo_stop =                     netvsc_close,
2029         .ndo_start_xmit =               netvsc_start_xmit,
2030         .ndo_change_rx_flags =          netvsc_change_rx_flags,
2031         .ndo_set_rx_mode =              netvsc_set_rx_mode,
2032         .ndo_fix_features =             netvsc_fix_features,
2033         .ndo_set_features =             netvsc_set_features,
2034         .ndo_change_mtu =               netvsc_change_mtu,
2035         .ndo_validate_addr =            eth_validate_addr,
2036         .ndo_set_mac_address =          netvsc_set_mac_addr,
2037         .ndo_select_queue =             netvsc_select_queue,
2038         .ndo_get_stats64 =              netvsc_get_stats64,
2039         .ndo_bpf =                      netvsc_bpf,
2040         .ndo_xdp_xmit =                 netvsc_ndoxdp_xmit,
2041 };
2042
2043 /*
2044  * Handle link status changes. For RNDIS_STATUS_NETWORK_CHANGE emulate link
2045  * down/up sequence. In case of RNDIS_STATUS_MEDIA_CONNECT when carrier is
2046  * present send GARP packet to network peers with netif_notify_peers().
2047  */
2048 static void netvsc_link_change(struct work_struct *w)
2049 {
2050         struct net_device_context *ndev_ctx =
2051                 container_of(w, struct net_device_context, dwork.work);
2052         struct hv_device *device_obj = ndev_ctx->device_ctx;
2053         struct net_device *net = hv_get_drvdata(device_obj);
2054         unsigned long flags, next_reconfig, delay;
2055         struct netvsc_reconfig *event = NULL;
2056         struct netvsc_device *net_device;
2057         struct rndis_device *rdev;
2058         bool reschedule = false;
2059
2060         /* if changes are happening, comeback later */
2061         if (!rtnl_trylock()) {
2062                 schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT);
2063                 return;
2064         }
2065
2066         net_device = rtnl_dereference(ndev_ctx->nvdev);
2067         if (!net_device)
2068                 goto out_unlock;
2069
2070         rdev = net_device->extension;
2071
2072         next_reconfig = ndev_ctx->last_reconfig + LINKCHANGE_INT;
2073         if (time_is_after_jiffies(next_reconfig)) {
2074                 /* link_watch only sends one notification with current state
2075                  * per second, avoid doing reconfig more frequently. Handle
2076                  * wrap around.
2077                  */
2078                 delay = next_reconfig - jiffies;
2079                 delay = delay < LINKCHANGE_INT ? delay : LINKCHANGE_INT;
2080                 schedule_delayed_work(&ndev_ctx->dwork, delay);
2081                 goto out_unlock;
2082         }
2083         ndev_ctx->last_reconfig = jiffies;
2084
2085         spin_lock_irqsave(&ndev_ctx->lock, flags);
2086         if (!list_empty(&ndev_ctx->reconfig_events)) {
2087                 event = list_first_entry(&ndev_ctx->reconfig_events,
2088                                          struct netvsc_reconfig, list);
2089                 list_del(&event->list);
2090                 reschedule = !list_empty(&ndev_ctx->reconfig_events);
2091         }
2092         spin_unlock_irqrestore(&ndev_ctx->lock, flags);
2093
2094         if (!event)
2095                 goto out_unlock;
2096
2097         switch (event->event) {
2098                 /* Only the following events are possible due to the check in
2099                  * netvsc_linkstatus_callback()
2100                  */
2101         case RNDIS_STATUS_MEDIA_CONNECT:
2102                 if (rdev->link_state) {
2103                         rdev->link_state = false;
2104                         netif_carrier_on(net);
2105                         netvsc_tx_enable(net_device, net);
2106                 } else {
2107                         __netdev_notify_peers(net);
2108                 }
2109                 kfree(event);
2110                 break;
2111         case RNDIS_STATUS_MEDIA_DISCONNECT:
2112                 if (!rdev->link_state) {
2113                         rdev->link_state = true;
2114                         netif_carrier_off(net);
2115                         netvsc_tx_disable(net_device, net);
2116                 }
2117                 kfree(event);
2118                 break;
2119         case RNDIS_STATUS_NETWORK_CHANGE:
2120                 /* Only makes sense if carrier is present */
2121                 if (!rdev->link_state) {
2122                         rdev->link_state = true;
2123                         netif_carrier_off(net);
2124                         netvsc_tx_disable(net_device, net);
2125                         event->event = RNDIS_STATUS_MEDIA_CONNECT;
2126                         spin_lock_irqsave(&ndev_ctx->lock, flags);
2127                         list_add(&event->list, &ndev_ctx->reconfig_events);
2128                         spin_unlock_irqrestore(&ndev_ctx->lock, flags);
2129                         reschedule = true;
2130                 }
2131                 break;
2132         }
2133
2134         rtnl_unlock();
2135
2136         /* link_watch only sends one notification with current state per
2137          * second, handle next reconfig event in 2 seconds.
2138          */
2139         if (reschedule)
2140                 schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT);
2141
2142         return;
2143
2144 out_unlock:
2145         rtnl_unlock();
2146 }
2147
2148 static struct net_device *get_netvsc_byref(struct net_device *vf_netdev)
2149 {
2150         struct net_device_context *net_device_ctx;
2151         struct net_device *dev;
2152
2153         dev = netdev_master_upper_dev_get(vf_netdev);
2154         if (!dev || dev->netdev_ops != &device_ops)
2155                 return NULL;    /* not a netvsc device */
2156
2157         net_device_ctx = netdev_priv(dev);
2158         if (!rtnl_dereference(net_device_ctx->nvdev))
2159                 return NULL;    /* device is removed */
2160
2161         return dev;
2162 }
2163
2164 /* Called when VF is injecting data into network stack.
2165  * Change the associated network device from VF to netvsc.
2166  * note: already called with rcu_read_lock
2167  */
2168 static rx_handler_result_t netvsc_vf_handle_frame(struct sk_buff **pskb)
2169 {
2170         struct sk_buff *skb = *pskb;
2171         struct net_device *ndev = rcu_dereference(skb->dev->rx_handler_data);
2172         struct net_device_context *ndev_ctx = netdev_priv(ndev);
2173         struct netvsc_vf_pcpu_stats *pcpu_stats
2174                  = this_cpu_ptr(ndev_ctx->vf_stats);
2175
2176         skb = skb_share_check(skb, GFP_ATOMIC);
2177         if (unlikely(!skb))
2178                 return RX_HANDLER_CONSUMED;
2179
2180         *pskb = skb;
2181
2182         skb->dev = ndev;
2183
2184         u64_stats_update_begin(&pcpu_stats->syncp);
2185         pcpu_stats->rx_packets++;
2186         pcpu_stats->rx_bytes += skb->len;
2187         u64_stats_update_end(&pcpu_stats->syncp);
2188
2189         return RX_HANDLER_ANOTHER;
2190 }
2191
2192 static int netvsc_vf_join(struct net_device *vf_netdev,
2193                           struct net_device *ndev, int context)
2194 {
2195         struct net_device_context *ndev_ctx = netdev_priv(ndev);
2196         int ret;
2197
2198         ret = netdev_rx_handler_register(vf_netdev,
2199                                          netvsc_vf_handle_frame, ndev);
2200         if (ret != 0) {
2201                 netdev_err(vf_netdev,
2202                            "can not register netvsc VF receive handler (err = %d)\n",
2203                            ret);
2204                 goto rx_handler_failed;
2205         }
2206
2207         ret = netdev_master_upper_dev_link(vf_netdev, ndev,
2208                                            NULL, NULL, NULL);
2209         if (ret != 0) {
2210                 netdev_err(vf_netdev,
2211                            "can not set master device %s (err = %d)\n",
2212                            ndev->name, ret);
2213                 goto upper_link_failed;
2214         }
2215
2216         /* If this registration is called from probe context vf_takeover
2217          * is taken care of later in probe itself.
2218          */
2219         if (context == VF_REG_IN_NOTIFIER)
2220                 schedule_delayed_work(&ndev_ctx->vf_takeover, VF_TAKEOVER_INT);
2221
2222         call_netdevice_notifiers(NETDEV_JOIN, vf_netdev);
2223
2224         netdev_info(vf_netdev, "joined to %s\n", ndev->name);
2225         return 0;
2226
2227 upper_link_failed:
2228         netdev_rx_handler_unregister(vf_netdev);
2229 rx_handler_failed:
2230         return ret;
2231 }
2232
2233 static void __netvsc_vf_setup(struct net_device *ndev,
2234                               struct net_device *vf_netdev)
2235 {
2236         int ret;
2237
2238         /* Align MTU of VF with master */
2239         ret = dev_set_mtu(vf_netdev, ndev->mtu);
2240         if (ret)
2241                 netdev_warn(vf_netdev,
2242                             "unable to change mtu to %u\n", ndev->mtu);
2243
2244         /* set multicast etc flags on VF */
2245         dev_change_flags(vf_netdev, ndev->flags | IFF_SLAVE, NULL);
2246
2247         /* sync address list from ndev to VF */
2248         netif_addr_lock_bh(ndev);
2249         dev_uc_sync(vf_netdev, ndev);
2250         dev_mc_sync(vf_netdev, ndev);
2251         netif_addr_unlock_bh(ndev);
2252
2253         if (netif_running(ndev)) {
2254                 ret = dev_open(vf_netdev, NULL);
2255                 if (ret)
2256                         netdev_warn(vf_netdev,
2257                                     "unable to open: %d\n", ret);
2258         }
2259 }
2260
2261 /* Setup VF as slave of the synthetic device.
2262  * Runs in workqueue to avoid recursion in netlink callbacks.
2263  */
2264 static void netvsc_vf_setup(struct work_struct *w)
2265 {
2266         struct net_device_context *ndev_ctx
2267                 = container_of(w, struct net_device_context, vf_takeover.work);
2268         struct net_device *ndev = hv_get_drvdata(ndev_ctx->device_ctx);
2269         struct net_device *vf_netdev;
2270
2271         if (!rtnl_trylock()) {
2272                 schedule_delayed_work(&ndev_ctx->vf_takeover, 0);
2273                 return;
2274         }
2275
2276         vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
2277         if (vf_netdev)
2278                 __netvsc_vf_setup(ndev, vf_netdev);
2279
2280         rtnl_unlock();
2281 }
2282
2283 /* Find netvsc by VF serial number.
2284  * The PCI hyperv controller records the serial number as the slot kobj name.
2285  */
2286 static struct net_device *get_netvsc_byslot(const struct net_device *vf_netdev)
2287 {
2288         struct device *parent = vf_netdev->dev.parent;
2289         struct net_device_context *ndev_ctx;
2290         struct net_device *ndev;
2291         struct pci_dev *pdev;
2292         u32 serial;
2293
2294         if (!parent || !dev_is_pci(parent))
2295                 return NULL; /* not a PCI device */
2296
2297         pdev = to_pci_dev(parent);
2298         if (!pdev->slot) {
2299                 netdev_notice(vf_netdev, "no PCI slot information\n");
2300                 return NULL;
2301         }
2302
2303         if (kstrtou32(pci_slot_name(pdev->slot), 10, &serial)) {
2304                 netdev_notice(vf_netdev, "Invalid vf serial:%s\n",
2305                               pci_slot_name(pdev->slot));
2306                 return NULL;
2307         }
2308
2309         list_for_each_entry(ndev_ctx, &netvsc_dev_list, list) {
2310                 if (!ndev_ctx->vf_alloc)
2311                         continue;
2312
2313                 if (ndev_ctx->vf_serial != serial)
2314                         continue;
2315
2316                 ndev = hv_get_drvdata(ndev_ctx->device_ctx);
2317                 if (ndev->addr_len != vf_netdev->addr_len ||
2318                     memcmp(ndev->perm_addr, vf_netdev->perm_addr,
2319                            ndev->addr_len) != 0)
2320                         continue;
2321
2322                 return ndev;
2323
2324         }
2325
2326         /* Fallback path to check synthetic vf with help of mac addr.
2327          * Because this function can be called before vf_netdev is
2328          * initialized (NETDEV_POST_INIT) when its perm_addr has not been copied
2329          * from dev_addr, also try to match to its dev_addr.
2330          * Note: On Hyper-V and Azure, it's not possible to set a MAC address
2331          * on a VF that matches to the MAC of a unrelated NETVSC device.
2332          */
2333         list_for_each_entry(ndev_ctx, &netvsc_dev_list, list) {
2334                 ndev = hv_get_drvdata(ndev_ctx->device_ctx);
2335                 if (ether_addr_equal(vf_netdev->perm_addr, ndev->perm_addr) ||
2336                     ether_addr_equal(vf_netdev->dev_addr, ndev->perm_addr))
2337                         return ndev;
2338         }
2339
2340         netdev_notice(vf_netdev,
2341                       "no netdev found for vf serial:%u\n", serial);
2342         return NULL;
2343 }
2344
2345 static int netvsc_prepare_bonding(struct net_device *vf_netdev)
2346 {
2347         struct net_device *ndev;
2348
2349         ndev = get_netvsc_byslot(vf_netdev);
2350         if (!ndev)
2351                 return NOTIFY_DONE;
2352
2353         /* set slave flag before open to prevent IPv6 addrconf */
2354         vf_netdev->flags |= IFF_SLAVE;
2355         return NOTIFY_DONE;
2356 }
2357
2358 static int netvsc_register_vf(struct net_device *vf_netdev, int context)
2359 {
2360         struct net_device_context *net_device_ctx;
2361         struct netvsc_device *netvsc_dev;
2362         struct bpf_prog *prog;
2363         struct net_device *ndev;
2364         int ret;
2365
2366         if (vf_netdev->addr_len != ETH_ALEN)
2367                 return NOTIFY_DONE;
2368
2369         ndev = get_netvsc_byslot(vf_netdev);
2370         if (!ndev)
2371                 return NOTIFY_DONE;
2372
2373         net_device_ctx = netdev_priv(ndev);
2374         netvsc_dev = rtnl_dereference(net_device_ctx->nvdev);
2375         if (!netvsc_dev || rtnl_dereference(net_device_ctx->vf_netdev))
2376                 return NOTIFY_DONE;
2377
2378         /* if synthetic interface is a different namespace,
2379          * then move the VF to that namespace; join will be
2380          * done again in that context.
2381          */
2382         if (!net_eq(dev_net(ndev), dev_net(vf_netdev))) {
2383                 ret = dev_change_net_namespace(vf_netdev,
2384                                                dev_net(ndev), "eth%d");
2385                 if (ret)
2386                         netdev_err(vf_netdev,
2387                                    "could not move to same namespace as %s: %d\n",
2388                                    ndev->name, ret);
2389                 else
2390                         netdev_info(vf_netdev,
2391                                     "VF moved to namespace with: %s\n",
2392                                     ndev->name);
2393                 return NOTIFY_DONE;
2394         }
2395
2396         netdev_info(ndev, "VF registering: %s\n", vf_netdev->name);
2397
2398         if (netvsc_vf_join(vf_netdev, ndev, context) != 0)
2399                 return NOTIFY_DONE;
2400
2401         dev_hold(vf_netdev);
2402         rcu_assign_pointer(net_device_ctx->vf_netdev, vf_netdev);
2403
2404         if (ndev->needed_headroom < vf_netdev->needed_headroom)
2405                 ndev->needed_headroom = vf_netdev->needed_headroom;
2406
2407         vf_netdev->wanted_features = ndev->features;
2408         netdev_update_features(vf_netdev);
2409
2410         prog = netvsc_xdp_get(netvsc_dev);
2411         netvsc_vf_setxdp(vf_netdev, prog);
2412
2413         return NOTIFY_OK;
2414 }
2415
2416 /* Change the data path when VF UP/DOWN/CHANGE are detected.
2417  *
2418  * Typically a UP or DOWN event is followed by a CHANGE event, so
2419  * net_device_ctx->data_path_is_vf is used to cache the current data path
2420  * to avoid the duplicate call of netvsc_switch_datapath() and the duplicate
2421  * message.
2422  *
2423  * During hibernation, if a VF NIC driver (e.g. mlx5) preserves the network
2424  * interface, there is only the CHANGE event and no UP or DOWN event.
2425  */
2426 static int netvsc_vf_changed(struct net_device *vf_netdev, unsigned long event)
2427 {
2428         struct net_device_context *net_device_ctx;
2429         struct netvsc_device *netvsc_dev;
2430         struct net_device *ndev;
2431         bool vf_is_up = false;
2432         int ret;
2433
2434         if (event != NETDEV_GOING_DOWN)
2435                 vf_is_up = netif_running(vf_netdev);
2436
2437         ndev = get_netvsc_byref(vf_netdev);
2438         if (!ndev)
2439                 return NOTIFY_DONE;
2440
2441         net_device_ctx = netdev_priv(ndev);
2442         netvsc_dev = rtnl_dereference(net_device_ctx->nvdev);
2443         if (!netvsc_dev)
2444                 return NOTIFY_DONE;
2445
2446         if (net_device_ctx->data_path_is_vf == vf_is_up)
2447                 return NOTIFY_OK;
2448
2449         if (vf_is_up && !net_device_ctx->vf_alloc) {
2450                 netdev_info(ndev, "Waiting for the VF association from host\n");
2451                 wait_for_completion(&net_device_ctx->vf_add);
2452         }
2453
2454         ret = netvsc_switch_datapath(ndev, vf_is_up);
2455
2456         if (ret) {
2457                 netdev_err(ndev,
2458                            "Data path failed to switch %s VF: %s, err: %d\n",
2459                            vf_is_up ? "to" : "from", vf_netdev->name, ret);
2460                 return NOTIFY_DONE;
2461         } else {
2462                 netdev_info(ndev, "Data path switched %s VF: %s\n",
2463                             vf_is_up ? "to" : "from", vf_netdev->name);
2464         }
2465
2466         return NOTIFY_OK;
2467 }
2468
2469 static int netvsc_unregister_vf(struct net_device *vf_netdev)
2470 {
2471         struct net_device *ndev;
2472         struct net_device_context *net_device_ctx;
2473
2474         ndev = get_netvsc_byref(vf_netdev);
2475         if (!ndev)
2476                 return NOTIFY_DONE;
2477
2478         net_device_ctx = netdev_priv(ndev);
2479         cancel_delayed_work_sync(&net_device_ctx->vf_takeover);
2480
2481         netdev_info(ndev, "VF unregistering: %s\n", vf_netdev->name);
2482
2483         netvsc_vf_setxdp(vf_netdev, NULL);
2484
2485         reinit_completion(&net_device_ctx->vf_add);
2486         netdev_rx_handler_unregister(vf_netdev);
2487         netdev_upper_dev_unlink(vf_netdev, ndev);
2488         RCU_INIT_POINTER(net_device_ctx->vf_netdev, NULL);
2489         dev_put(vf_netdev);
2490
2491         ndev->needed_headroom = RNDIS_AND_PPI_SIZE;
2492
2493         return NOTIFY_OK;
2494 }
2495
2496 static int check_dev_is_matching_vf(struct net_device *event_ndev)
2497 {
2498         /* Skip NetVSC interfaces */
2499         if (event_ndev->netdev_ops == &device_ops)
2500                 return -ENODEV;
2501
2502         /* Avoid non-Ethernet type devices */
2503         if (event_ndev->type != ARPHRD_ETHER)
2504                 return -ENODEV;
2505
2506         /* Avoid Vlan dev with same MAC registering as VF */
2507         if (is_vlan_dev(event_ndev))
2508                 return -ENODEV;
2509
2510         /* Avoid Bonding master dev with same MAC registering as VF */
2511         if (netif_is_bond_master(event_ndev))
2512                 return -ENODEV;
2513
2514         return 0;
2515 }
2516
2517 static int netvsc_probe(struct hv_device *dev,
2518                         const struct hv_vmbus_device_id *dev_id)
2519 {
2520         struct net_device *net = NULL, *vf_netdev;
2521         struct net_device_context *net_device_ctx;
2522         struct netvsc_device_info *device_info = NULL;
2523         struct netvsc_device *nvdev;
2524         int ret = -ENOMEM;
2525
2526         net = alloc_etherdev_mq(sizeof(struct net_device_context),
2527                                 VRSS_CHANNEL_MAX);
2528         if (!net)
2529                 goto no_net;
2530
2531         netif_carrier_off(net);
2532
2533         netvsc_init_settings(net);
2534
2535         net_device_ctx = netdev_priv(net);
2536         net_device_ctx->device_ctx = dev;
2537         net_device_ctx->msg_enable = netif_msg_init(debug, default_msg);
2538         if (netif_msg_probe(net_device_ctx))
2539                 netdev_dbg(net, "netvsc msg_enable: %d\n",
2540                            net_device_ctx->msg_enable);
2541
2542         hv_set_drvdata(dev, net);
2543
2544         INIT_DELAYED_WORK(&net_device_ctx->dwork, netvsc_link_change);
2545
2546         init_completion(&net_device_ctx->vf_add);
2547         spin_lock_init(&net_device_ctx->lock);
2548         INIT_LIST_HEAD(&net_device_ctx->reconfig_events);
2549         INIT_DELAYED_WORK(&net_device_ctx->vf_takeover, netvsc_vf_setup);
2550
2551         net_device_ctx->vf_stats
2552                 = netdev_alloc_pcpu_stats(struct netvsc_vf_pcpu_stats);
2553         if (!net_device_ctx->vf_stats)
2554                 goto no_stats;
2555
2556         net->netdev_ops = &device_ops;
2557         net->ethtool_ops = &ethtool_ops;
2558         SET_NETDEV_DEV(net, &dev->device);
2559         dma_set_min_align_mask(&dev->device, HV_HYP_PAGE_SIZE - 1);
2560
2561         /* We always need headroom for rndis header */
2562         net->needed_headroom = RNDIS_AND_PPI_SIZE;
2563
2564         /* Initialize the number of queues to be 1, we may change it if more
2565          * channels are offered later.
2566          */
2567         netif_set_real_num_tx_queues(net, 1);
2568         netif_set_real_num_rx_queues(net, 1);
2569
2570         /* Notify the netvsc driver of the new device */
2571         device_info = netvsc_devinfo_get(NULL);
2572
2573         if (!device_info) {
2574                 ret = -ENOMEM;
2575                 goto devinfo_failed;
2576         }
2577
2578         /* We must get rtnl lock before scheduling nvdev->subchan_work,
2579          * otherwise netvsc_subchan_work() can get rtnl lock first and wait
2580          * all subchannels to show up, but that may not happen because
2581          * netvsc_probe() can't get rtnl lock and as a result vmbus_onoffer()
2582          * -> ... -> device_add() -> ... -> __device_attach() can't get
2583          * the device lock, so all the subchannels can't be processed --
2584          * finally netvsc_subchan_work() hangs forever.
2585          *
2586          * The rtnl lock also needs to be held before rndis_filter_device_add()
2587          * which advertises nvsp_2_vsc_capability / sriov bit, and triggers
2588          * VF NIC offering and registering. If VF NIC finished register_netdev()
2589          * earlier it may cause name based config failure.
2590          */
2591         rtnl_lock();
2592
2593         nvdev = rndis_filter_device_add(dev, device_info);
2594         if (IS_ERR(nvdev)) {
2595                 ret = PTR_ERR(nvdev);
2596                 netdev_err(net, "unable to add netvsc device (ret %d)\n", ret);
2597                 goto rndis_failed;
2598         }
2599
2600         eth_hw_addr_set(net, device_info->mac_adr);
2601
2602         if (nvdev->num_chn > 1)
2603                 schedule_work(&nvdev->subchan_work);
2604
2605         /* hw_features computed in rndis_netdev_set_hwcaps() */
2606         net->features = net->hw_features |
2607                 NETIF_F_HIGHDMA | NETIF_F_HW_VLAN_CTAG_TX |
2608                 NETIF_F_HW_VLAN_CTAG_RX;
2609         net->vlan_features = net->features;
2610
2611         netdev_lockdep_set_classes(net);
2612
2613         net->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT |
2614                             NETDEV_XDP_ACT_NDO_XMIT;
2615
2616         /* MTU range: 68 - 1500 or 65521 */
2617         net->min_mtu = NETVSC_MTU_MIN;
2618         if (nvdev->nvsp_version >= NVSP_PROTOCOL_VERSION_2)
2619                 net->max_mtu = NETVSC_MTU - ETH_HLEN;
2620         else
2621                 net->max_mtu = ETH_DATA_LEN;
2622
2623         nvdev->tx_disable = false;
2624
2625         ret = register_netdevice(net);
2626         if (ret != 0) {
2627                 pr_err("Unable to register netdev.\n");
2628                 goto register_failed;
2629         }
2630
2631         list_add(&net_device_ctx->list, &netvsc_dev_list);
2632
2633         /* When the hv_netvsc driver is unloaded and reloaded, the
2634          * NET_DEVICE_REGISTER for the vf device is replayed before probe
2635          * is complete. This is because register_netdevice_notifier() gets
2636          * registered before vmbus_driver_register() so that callback func
2637          * is set before probe and we don't miss events like NETDEV_POST_INIT
2638          * So, in this section we try to register the matching vf device that
2639          * is present as a netdevice, knowing that its register call is not
2640          * processed in the netvsc_netdev_notifier(as probing is progress and
2641          * get_netvsc_byslot fails).
2642          */
2643         for_each_netdev(dev_net(net), vf_netdev) {
2644                 ret = check_dev_is_matching_vf(vf_netdev);
2645                 if (ret != 0)
2646                         continue;
2647
2648                 if (net != get_netvsc_byslot(vf_netdev))
2649                         continue;
2650
2651                 netvsc_prepare_bonding(vf_netdev);
2652                 netvsc_register_vf(vf_netdev, VF_REG_IN_PROBE);
2653                 __netvsc_vf_setup(net, vf_netdev);
2654                 break;
2655         }
2656         rtnl_unlock();
2657
2658         netvsc_devinfo_put(device_info);
2659         return 0;
2660
2661 register_failed:
2662         rndis_filter_device_remove(dev, nvdev);
2663 rndis_failed:
2664         rtnl_unlock();
2665         netvsc_devinfo_put(device_info);
2666 devinfo_failed:
2667         free_percpu(net_device_ctx->vf_stats);
2668 no_stats:
2669         hv_set_drvdata(dev, NULL);
2670         free_netdev(net);
2671 no_net:
2672         return ret;
2673 }
2674
2675 static void netvsc_remove(struct hv_device *dev)
2676 {
2677         struct net_device_context *ndev_ctx;
2678         struct net_device *vf_netdev, *net;
2679         struct netvsc_device *nvdev;
2680
2681         net = hv_get_drvdata(dev);
2682         if (net == NULL) {
2683                 dev_err(&dev->device, "No net device to remove\n");
2684                 return;
2685         }
2686
2687         ndev_ctx = netdev_priv(net);
2688
2689         cancel_delayed_work_sync(&ndev_ctx->dwork);
2690
2691         rtnl_lock();
2692         nvdev = rtnl_dereference(ndev_ctx->nvdev);
2693         if (nvdev) {
2694                 cancel_work_sync(&nvdev->subchan_work);
2695                 netvsc_xdp_set(net, NULL, NULL, nvdev);
2696         }
2697
2698         /*
2699          * Call to the vsc driver to let it know that the device is being
2700          * removed. Also blocks mtu and channel changes.
2701          */
2702         vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
2703         if (vf_netdev)
2704                 netvsc_unregister_vf(vf_netdev);
2705
2706         if (nvdev)
2707                 rndis_filter_device_remove(dev, nvdev);
2708
2709         unregister_netdevice(net);
2710         list_del(&ndev_ctx->list);
2711
2712         rtnl_unlock();
2713
2714         hv_set_drvdata(dev, NULL);
2715
2716         free_percpu(ndev_ctx->vf_stats);
2717         free_netdev(net);
2718 }
2719
2720 static int netvsc_suspend(struct hv_device *dev)
2721 {
2722         struct net_device_context *ndev_ctx;
2723         struct netvsc_device *nvdev;
2724         struct net_device *net;
2725         int ret;
2726
2727         net = hv_get_drvdata(dev);
2728
2729         ndev_ctx = netdev_priv(net);
2730         cancel_delayed_work_sync(&ndev_ctx->dwork);
2731
2732         rtnl_lock();
2733
2734         nvdev = rtnl_dereference(ndev_ctx->nvdev);
2735         if (nvdev == NULL) {
2736                 ret = -ENODEV;
2737                 goto out;
2738         }
2739
2740         /* Save the current config info */
2741         ndev_ctx->saved_netvsc_dev_info = netvsc_devinfo_get(nvdev);
2742         if (!ndev_ctx->saved_netvsc_dev_info) {
2743                 ret = -ENOMEM;
2744                 goto out;
2745         }
2746         ret = netvsc_detach(net, nvdev);
2747 out:
2748         rtnl_unlock();
2749
2750         return ret;
2751 }
2752
2753 static int netvsc_resume(struct hv_device *dev)
2754 {
2755         struct net_device *net = hv_get_drvdata(dev);
2756         struct net_device_context *net_device_ctx;
2757         struct netvsc_device_info *device_info;
2758         int ret;
2759
2760         rtnl_lock();
2761
2762         net_device_ctx = netdev_priv(net);
2763
2764         /* Reset the data path to the netvsc NIC before re-opening the vmbus
2765          * channel. Later netvsc_netdev_event() will switch the data path to
2766          * the VF upon the UP or CHANGE event.
2767          */
2768         net_device_ctx->data_path_is_vf = false;
2769         device_info = net_device_ctx->saved_netvsc_dev_info;
2770
2771         ret = netvsc_attach(net, device_info);
2772
2773         netvsc_devinfo_put(device_info);
2774         net_device_ctx->saved_netvsc_dev_info = NULL;
2775
2776         rtnl_unlock();
2777
2778         return ret;
2779 }
2780 static const struct hv_vmbus_device_id id_table[] = {
2781         /* Network guid */
2782         { HV_NIC_GUID, },
2783         { },
2784 };
2785
2786 MODULE_DEVICE_TABLE(vmbus, id_table);
2787
2788 /* The one and only one */
2789 static struct  hv_driver netvsc_drv = {
2790         .name = KBUILD_MODNAME,
2791         .id_table = id_table,
2792         .probe = netvsc_probe,
2793         .remove = netvsc_remove,
2794         .suspend = netvsc_suspend,
2795         .resume = netvsc_resume,
2796         .driver = {
2797                 .probe_type = PROBE_FORCE_SYNCHRONOUS,
2798         },
2799 };
2800
2801 /* Set VF's namespace same as the synthetic NIC */
2802 static void netvsc_event_set_vf_ns(struct net_device *ndev)
2803 {
2804         struct net_device_context *ndev_ctx = netdev_priv(ndev);
2805         struct net_device *vf_netdev;
2806         int ret;
2807
2808         vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
2809         if (!vf_netdev)
2810                 return;
2811
2812         if (!net_eq(dev_net(ndev), dev_net(vf_netdev))) {
2813                 ret = dev_change_net_namespace(vf_netdev, dev_net(ndev),
2814                                                "eth%d");
2815                 if (ret)
2816                         netdev_err(vf_netdev,
2817                                    "Cannot move to same namespace as %s: %d\n",
2818                                    ndev->name, ret);
2819                 else
2820                         netdev_info(vf_netdev,
2821                                     "Moved VF to namespace with: %s\n",
2822                                     ndev->name);
2823         }
2824 }
2825
2826 /*
2827  * On Hyper-V, every VF interface is matched with a corresponding
2828  * synthetic interface. The synthetic interface is presented first
2829  * to the guest. When the corresponding VF instance is registered,
2830  * we will take care of switching the data path.
2831  */
2832 static int netvsc_netdev_event(struct notifier_block *this,
2833                                unsigned long event, void *ptr)
2834 {
2835         struct net_device *event_dev = netdev_notifier_info_to_dev(ptr);
2836         int ret = 0;
2837
2838         if (event_dev->netdev_ops == &device_ops && event == NETDEV_REGISTER) {
2839                 netvsc_event_set_vf_ns(event_dev);
2840                 return NOTIFY_DONE;
2841         }
2842
2843         ret = check_dev_is_matching_vf(event_dev);
2844         if (ret != 0)
2845                 return NOTIFY_DONE;
2846
2847         switch (event) {
2848         case NETDEV_POST_INIT:
2849                 return netvsc_prepare_bonding(event_dev);
2850         case NETDEV_REGISTER:
2851                 return netvsc_register_vf(event_dev, VF_REG_IN_NOTIFIER);
2852         case NETDEV_UNREGISTER:
2853                 return netvsc_unregister_vf(event_dev);
2854         case NETDEV_UP:
2855         case NETDEV_DOWN:
2856         case NETDEV_CHANGE:
2857         case NETDEV_GOING_DOWN:
2858                 return netvsc_vf_changed(event_dev, event);
2859         default:
2860                 return NOTIFY_DONE;
2861         }
2862 }
2863
2864 static struct notifier_block netvsc_netdev_notifier = {
2865         .notifier_call = netvsc_netdev_event,
2866 };
2867
2868 static void __exit netvsc_drv_exit(void)
2869 {
2870         unregister_netdevice_notifier(&netvsc_netdev_notifier);
2871         vmbus_driver_unregister(&netvsc_drv);
2872 }
2873
2874 static int __init netvsc_drv_init(void)
2875 {
2876         int ret;
2877
2878         if (ring_size < RING_SIZE_MIN) {
2879                 ring_size = RING_SIZE_MIN;
2880                 pr_info("Increased ring_size to %u (min allowed)\n",
2881                         ring_size);
2882         }
2883         netvsc_ring_bytes = VMBUS_RING_SIZE(ring_size * 4096);
2884
2885         register_netdevice_notifier(&netvsc_netdev_notifier);
2886
2887         ret = vmbus_driver_register(&netvsc_drv);
2888         if (ret)
2889                 goto err_vmbus_reg;
2890
2891         return 0;
2892
2893 err_vmbus_reg:
2894         unregister_netdevice_notifier(&netvsc_netdev_notifier);
2895         return ret;
2896 }
2897
2898 MODULE_LICENSE("GPL");
2899 MODULE_DESCRIPTION("Microsoft Hyper-V network driver");
2900
2901 module_init(netvsc_drv_init);
2902 module_exit(netvsc_drv_exit);
This page took 0.196821 seconds and 4 git commands to generate.