1 // SPDX-License-Identifier: GPL-2.0-only
3 * Copyright (c) 2009, Microsoft Corporation.
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 #include <linux/init.h>
12 #include <linux/atomic.h>
13 #include <linux/ethtool.h>
14 #include <linux/module.h>
15 #include <linux/highmem.h>
16 #include <linux/device.h>
18 #include <linux/delay.h>
19 #include <linux/netdevice.h>
20 #include <linux/inetdevice.h>
21 #include <linux/etherdevice.h>
22 #include <linux/pci.h>
23 #include <linux/skbuff.h>
24 #include <linux/if_vlan.h>
26 #include <linux/slab.h>
27 #include <linux/rtnetlink.h>
28 #include <linux/netpoll.h>
29 #include <linux/bpf.h>
32 #include <net/route.h>
34 #include <net/pkt_sched.h>
35 #include <net/checksum.h>
36 #include <net/ip6_checksum.h>
38 #include "hyperv_net.h"
40 #define RING_SIZE_MIN 64
42 #define LINKCHANGE_INT (2 * HZ)
43 #define VF_TAKEOVER_INT (HZ / 10)
45 /* Macros to define the context of vf registration */
46 #define VF_REG_IN_PROBE 1
47 #define VF_REG_IN_NOTIFIER 2
49 static unsigned int ring_size __ro_after_init = 128;
50 module_param(ring_size, uint, 0444);
51 MODULE_PARM_DESC(ring_size, "Ring buffer size (# of 4K pages)");
52 unsigned int netvsc_ring_bytes __ro_after_init;
54 static const u32 default_msg = NETIF_MSG_DRV | NETIF_MSG_PROBE |
55 NETIF_MSG_LINK | NETIF_MSG_IFUP |
56 NETIF_MSG_IFDOWN | NETIF_MSG_RX_ERR |
59 static int debug = -1;
60 module_param(debug, int, 0444);
61 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
63 static LIST_HEAD(netvsc_dev_list);
65 static void netvsc_change_rx_flags(struct net_device *net, int change)
67 struct net_device_context *ndev_ctx = netdev_priv(net);
68 struct net_device *vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
74 if (change & IFF_PROMISC) {
75 inc = (net->flags & IFF_PROMISC) ? 1 : -1;
76 dev_set_promiscuity(vf_netdev, inc);
79 if (change & IFF_ALLMULTI) {
80 inc = (net->flags & IFF_ALLMULTI) ? 1 : -1;
81 dev_set_allmulti(vf_netdev, inc);
85 static void netvsc_set_rx_mode(struct net_device *net)
87 struct net_device_context *ndev_ctx = netdev_priv(net);
88 struct net_device *vf_netdev;
89 struct netvsc_device *nvdev;
92 vf_netdev = rcu_dereference(ndev_ctx->vf_netdev);
94 dev_uc_sync(vf_netdev, net);
95 dev_mc_sync(vf_netdev, net);
98 nvdev = rcu_dereference(ndev_ctx->nvdev);
100 rndis_filter_update(nvdev);
104 static void netvsc_tx_enable(struct netvsc_device *nvscdev,
105 struct net_device *ndev)
107 nvscdev->tx_disable = false;
108 virt_wmb(); /* ensure queue wake up mechanism is on */
110 netif_tx_wake_all_queues(ndev);
113 static int netvsc_open(struct net_device *net)
115 struct net_device_context *ndev_ctx = netdev_priv(net);
116 struct net_device *vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
117 struct netvsc_device *nvdev = rtnl_dereference(ndev_ctx->nvdev);
118 struct rndis_device *rdev;
121 netif_carrier_off(net);
123 /* Open up the device */
124 ret = rndis_filter_open(nvdev);
126 netdev_err(net, "unable to open device (ret %d).\n", ret);
130 rdev = nvdev->extension;
131 if (!rdev->link_state) {
132 netif_carrier_on(net);
133 netvsc_tx_enable(nvdev, net);
137 /* Setting synthetic device up transparently sets
138 * slave as up. If open fails, then slave will be
139 * still be offline (and not used).
141 ret = dev_open(vf_netdev, NULL);
144 "unable to open slave: %s: %d\n",
145 vf_netdev->name, ret);
150 static int netvsc_wait_until_empty(struct netvsc_device *nvdev)
152 unsigned int retry = 0;
155 /* Ensure pending bytes in ring are read */
159 for (i = 0; i < nvdev->num_chn; i++) {
160 struct vmbus_channel *chn
161 = nvdev->chan_table[i].channel;
166 /* make sure receive not running now */
167 napi_synchronize(&nvdev->chan_table[i].napi);
169 aread = hv_get_bytes_to_read(&chn->inbound);
173 aread = hv_get_bytes_to_read(&chn->outbound);
181 if (++retry > RETRY_MAX)
184 usleep_range(RETRY_US_LO, RETRY_US_HI);
188 static void netvsc_tx_disable(struct netvsc_device *nvscdev,
189 struct net_device *ndev)
192 nvscdev->tx_disable = true;
193 virt_wmb(); /* ensure txq will not wake up after stop */
196 netif_tx_disable(ndev);
199 static int netvsc_close(struct net_device *net)
201 struct net_device_context *net_device_ctx = netdev_priv(net);
202 struct net_device *vf_netdev
203 = rtnl_dereference(net_device_ctx->vf_netdev);
204 struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
207 netvsc_tx_disable(nvdev, net);
209 /* No need to close rndis filter if it is removed already */
213 ret = rndis_filter_close(nvdev);
215 netdev_err(net, "unable to close device (ret %d).\n", ret);
219 ret = netvsc_wait_until_empty(nvdev);
221 netdev_err(net, "Ring buffer not empty after closing rndis\n");
224 dev_close(vf_netdev);
229 static inline void *init_ppi_data(struct rndis_message *msg,
230 u32 ppi_size, u32 pkt_type)
232 struct rndis_packet *rndis_pkt = &msg->msg.pkt;
233 struct rndis_per_packet_info *ppi;
235 rndis_pkt->data_offset += ppi_size;
236 ppi = (void *)rndis_pkt + rndis_pkt->per_pkt_info_offset
237 + rndis_pkt->per_pkt_info_len;
239 ppi->size = ppi_size;
240 ppi->type = pkt_type;
242 ppi->ppi_offset = sizeof(struct rndis_per_packet_info);
244 rndis_pkt->per_pkt_info_len += ppi_size;
249 static inline int netvsc_get_tx_queue(struct net_device *ndev,
250 struct sk_buff *skb, int old_idx)
252 const struct net_device_context *ndc = netdev_priv(ndev);
253 struct sock *sk = skb->sk;
256 q_idx = ndc->tx_table[netvsc_get_hash(skb, ndc) &
257 (VRSS_SEND_TAB_SIZE - 1)];
259 /* If queue index changed record the new value */
260 if (q_idx != old_idx &&
261 sk && sk_fullsock(sk) && rcu_access_pointer(sk->sk_dst_cache))
262 sk_tx_queue_set(sk, q_idx);
268 * Select queue for transmit.
270 * If a valid queue has already been assigned, then use that.
271 * Otherwise compute tx queue based on hash and the send table.
273 * This is basically similar to default (netdev_pick_tx) with the added step
274 * of using the host send_table when no other queue has been assigned.
276 * TODO support XPS - but get_xps_queue not exported
278 static u16 netvsc_pick_tx(struct net_device *ndev, struct sk_buff *skb)
280 int q_idx = sk_tx_queue_get(skb->sk);
282 if (q_idx < 0 || skb->ooo_okay || q_idx >= ndev->real_num_tx_queues) {
283 /* If forwarding a packet, we use the recorded queue when
284 * available for better cache locality.
286 if (skb_rx_queue_recorded(skb))
287 q_idx = skb_get_rx_queue(skb);
289 q_idx = netvsc_get_tx_queue(ndev, skb, q_idx);
295 static u16 netvsc_select_queue(struct net_device *ndev, struct sk_buff *skb,
296 struct net_device *sb_dev)
298 struct net_device_context *ndc = netdev_priv(ndev);
299 struct net_device *vf_netdev;
303 vf_netdev = rcu_dereference(ndc->vf_netdev);
305 const struct net_device_ops *vf_ops = vf_netdev->netdev_ops;
307 if (vf_ops->ndo_select_queue)
308 txq = vf_ops->ndo_select_queue(vf_netdev, skb, sb_dev);
310 txq = netdev_pick_tx(vf_netdev, skb, NULL);
312 /* Record the queue selected by VF so that it can be
313 * used for common case where VF has more queues than
314 * the synthetic device.
316 qdisc_skb_cb(skb)->slave_dev_queue_mapping = txq;
318 txq = netvsc_pick_tx(ndev, skb);
322 while (txq >= ndev->real_num_tx_queues)
323 txq -= ndev->real_num_tx_queues;
328 static u32 fill_pg_buf(unsigned long hvpfn, u32 offset, u32 len,
329 struct hv_page_buffer *pb)
333 hvpfn += offset >> HV_HYP_PAGE_SHIFT;
334 offset = offset & ~HV_HYP_PAGE_MASK;
339 bytes = HV_HYP_PAGE_SIZE - offset;
343 pb[j].offset = offset;
349 if (offset == HV_HYP_PAGE_SIZE && len) {
359 static u32 init_page_array(void *hdr, u32 len, struct sk_buff *skb,
360 struct hv_netvsc_packet *packet,
361 struct hv_page_buffer *pb)
364 char *data = skb->data;
365 int frags = skb_shinfo(skb)->nr_frags;
368 /* The packet is laid out thus:
369 * 1. hdr: RNDIS header and PPI
371 * 3. skb fragment data
373 slots_used += fill_pg_buf(virt_to_hvpfn(hdr),
374 offset_in_hvpage(hdr),
378 packet->rmsg_size = len;
379 packet->rmsg_pgcnt = slots_used;
381 slots_used += fill_pg_buf(virt_to_hvpfn(data),
382 offset_in_hvpage(data),
386 for (i = 0; i < frags; i++) {
387 skb_frag_t *frag = skb_shinfo(skb)->frags + i;
389 slots_used += fill_pg_buf(page_to_hvpfn(skb_frag_page(frag)),
397 static int count_skb_frag_slots(struct sk_buff *skb)
399 int i, frags = skb_shinfo(skb)->nr_frags;
402 for (i = 0; i < frags; i++) {
403 skb_frag_t *frag = skb_shinfo(skb)->frags + i;
404 unsigned long size = skb_frag_size(frag);
405 unsigned long offset = skb_frag_off(frag);
407 /* Skip unused frames from start of page */
408 offset &= ~HV_HYP_PAGE_MASK;
409 pages += HVPFN_UP(offset + size);
414 static int netvsc_get_slots(struct sk_buff *skb)
416 char *data = skb->data;
417 unsigned int offset = offset_in_hvpage(data);
418 unsigned int len = skb_headlen(skb);
422 slots = DIV_ROUND_UP(offset + len, HV_HYP_PAGE_SIZE);
423 frag_slots = count_skb_frag_slots(skb);
424 return slots + frag_slots;
427 static u32 net_checksum_info(struct sk_buff *skb)
429 if (skb->protocol == htons(ETH_P_IP)) {
430 struct iphdr *ip = ip_hdr(skb);
432 if (ip->protocol == IPPROTO_TCP)
433 return TRANSPORT_INFO_IPV4_TCP;
434 else if (ip->protocol == IPPROTO_UDP)
435 return TRANSPORT_INFO_IPV4_UDP;
437 struct ipv6hdr *ip6 = ipv6_hdr(skb);
439 if (ip6->nexthdr == IPPROTO_TCP)
440 return TRANSPORT_INFO_IPV6_TCP;
441 else if (ip6->nexthdr == IPPROTO_UDP)
442 return TRANSPORT_INFO_IPV6_UDP;
445 return TRANSPORT_INFO_NOT_IP;
448 /* Send skb on the slave VF device. */
449 static int netvsc_vf_xmit(struct net_device *net, struct net_device *vf_netdev,
452 struct net_device_context *ndev_ctx = netdev_priv(net);
453 unsigned int len = skb->len;
456 skb->dev = vf_netdev;
457 skb_record_rx_queue(skb, qdisc_skb_cb(skb)->slave_dev_queue_mapping);
459 rc = dev_queue_xmit(skb);
460 if (likely(rc == NET_XMIT_SUCCESS || rc == NET_XMIT_CN)) {
461 struct netvsc_vf_pcpu_stats *pcpu_stats
462 = this_cpu_ptr(ndev_ctx->vf_stats);
464 u64_stats_update_begin(&pcpu_stats->syncp);
465 pcpu_stats->tx_packets++;
466 pcpu_stats->tx_bytes += len;
467 u64_stats_update_end(&pcpu_stats->syncp);
469 this_cpu_inc(ndev_ctx->vf_stats->tx_dropped);
475 static int netvsc_xmit(struct sk_buff *skb, struct net_device *net, bool xdp_tx)
477 struct net_device_context *net_device_ctx = netdev_priv(net);
478 struct hv_netvsc_packet *packet = NULL;
480 unsigned int num_data_pgs;
481 struct rndis_message *rndis_msg;
482 struct net_device *vf_netdev;
485 struct hv_page_buffer pb[MAX_PAGE_BUFFER_COUNT];
487 /* If VF is present and up then redirect packets to it.
488 * Skip the VF if it is marked down or has no carrier.
489 * If netpoll is in uses, then VF can not be used either.
491 vf_netdev = rcu_dereference_bh(net_device_ctx->vf_netdev);
492 if (vf_netdev && netif_running(vf_netdev) &&
493 netif_carrier_ok(vf_netdev) && !netpoll_tx_running(net) &&
494 net_device_ctx->data_path_is_vf)
495 return netvsc_vf_xmit(net, vf_netdev, skb);
497 /* We will atmost need two pages to describe the rndis
498 * header. We can only transmit MAX_PAGE_BUFFER_COUNT number
499 * of pages in a single packet. If skb is scattered around
500 * more pages we try linearizing it.
503 num_data_pgs = netvsc_get_slots(skb) + 2;
505 if (unlikely(num_data_pgs > MAX_PAGE_BUFFER_COUNT)) {
506 ++net_device_ctx->eth_stats.tx_scattered;
508 if (skb_linearize(skb))
511 num_data_pgs = netvsc_get_slots(skb) + 2;
512 if (num_data_pgs > MAX_PAGE_BUFFER_COUNT) {
513 ++net_device_ctx->eth_stats.tx_too_big;
519 * Place the rndis header in the skb head room and
520 * the skb->cb will be used for hv_netvsc_packet
523 ret = skb_cow_head(skb, RNDIS_AND_PPI_SIZE);
527 /* Use the skb control buffer for building up the packet */
528 BUILD_BUG_ON(sizeof(struct hv_netvsc_packet) >
529 sizeof_field(struct sk_buff, cb));
530 packet = (struct hv_netvsc_packet *)skb->cb;
532 packet->q_idx = skb_get_queue_mapping(skb);
534 packet->total_data_buflen = skb->len;
535 packet->total_bytes = skb->len;
536 packet->total_packets = 1;
538 rndis_msg = (struct rndis_message *)skb->head;
540 /* Add the rndis header */
541 rndis_msg->ndis_msg_type = RNDIS_MSG_PACKET;
542 rndis_msg->msg_len = packet->total_data_buflen;
544 rndis_msg->msg.pkt = (struct rndis_packet) {
545 .data_offset = sizeof(struct rndis_packet),
546 .data_len = packet->total_data_buflen,
547 .per_pkt_info_offset = sizeof(struct rndis_packet),
550 rndis_msg_size = RNDIS_MESSAGE_SIZE(struct rndis_packet);
552 hash = skb_get_hash_raw(skb);
553 if (hash != 0 && net->real_num_tx_queues > 1) {
556 rndis_msg_size += NDIS_HASH_PPI_SIZE;
557 hash_info = init_ppi_data(rndis_msg, NDIS_HASH_PPI_SIZE,
562 /* When using AF_PACKET we need to drop VLAN header from
563 * the frame and update the SKB to allow the HOST OS
564 * to transmit the 802.1Q packet
566 if (skb->protocol == htons(ETH_P_8021Q)) {
569 skb_reset_mac_header(skb);
570 if (eth_type_vlan(eth_hdr(skb)->h_proto)) {
571 if (unlikely(__skb_vlan_pop(skb, &vlan_tci) != 0)) {
572 ++net_device_ctx->eth_stats.vlan_error;
576 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tci);
577 /* Update the NDIS header pkt lengths */
578 packet->total_data_buflen -= VLAN_HLEN;
579 packet->total_bytes -= VLAN_HLEN;
580 rndis_msg->msg_len = packet->total_data_buflen;
581 rndis_msg->msg.pkt.data_len = packet->total_data_buflen;
585 if (skb_vlan_tag_present(skb)) {
586 struct ndis_pkt_8021q_info *vlan;
588 rndis_msg_size += NDIS_VLAN_PPI_SIZE;
589 vlan = init_ppi_data(rndis_msg, NDIS_VLAN_PPI_SIZE,
593 vlan->vlanid = skb_vlan_tag_get_id(skb);
594 vlan->cfi = skb_vlan_tag_get_cfi(skb);
595 vlan->pri = skb_vlan_tag_get_prio(skb);
598 if (skb_is_gso(skb)) {
599 struct ndis_tcp_lso_info *lso_info;
601 rndis_msg_size += NDIS_LSO_PPI_SIZE;
602 lso_info = init_ppi_data(rndis_msg, NDIS_LSO_PPI_SIZE,
603 TCP_LARGESEND_PKTINFO);
606 lso_info->lso_v2_transmit.type = NDIS_TCP_LARGE_SEND_OFFLOAD_V2_TYPE;
607 if (skb->protocol == htons(ETH_P_IP)) {
608 lso_info->lso_v2_transmit.ip_version =
609 NDIS_TCP_LARGE_SEND_OFFLOAD_IPV4;
610 ip_hdr(skb)->tot_len = 0;
611 ip_hdr(skb)->check = 0;
612 tcp_hdr(skb)->check =
613 ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
614 ip_hdr(skb)->daddr, 0, IPPROTO_TCP, 0);
616 lso_info->lso_v2_transmit.ip_version =
617 NDIS_TCP_LARGE_SEND_OFFLOAD_IPV6;
618 tcp_v6_gso_csum_prep(skb);
620 lso_info->lso_v2_transmit.tcp_header_offset = skb_transport_offset(skb);
621 lso_info->lso_v2_transmit.mss = skb_shinfo(skb)->gso_size;
622 } else if (skb->ip_summed == CHECKSUM_PARTIAL) {
623 if (net_checksum_info(skb) & net_device_ctx->tx_checksum_mask) {
624 struct ndis_tcp_ip_checksum_info *csum_info;
626 rndis_msg_size += NDIS_CSUM_PPI_SIZE;
627 csum_info = init_ppi_data(rndis_msg, NDIS_CSUM_PPI_SIZE,
628 TCPIP_CHKSUM_PKTINFO);
630 csum_info->value = 0;
631 csum_info->transmit.tcp_header_offset = skb_transport_offset(skb);
633 if (skb->protocol == htons(ETH_P_IP)) {
634 csum_info->transmit.is_ipv4 = 1;
636 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
637 csum_info->transmit.tcp_checksum = 1;
639 csum_info->transmit.udp_checksum = 1;
641 csum_info->transmit.is_ipv6 = 1;
643 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
644 csum_info->transmit.tcp_checksum = 1;
646 csum_info->transmit.udp_checksum = 1;
649 /* Can't do offload of this type of checksum */
650 if (skb_checksum_help(skb))
655 /* Start filling in the page buffers with the rndis hdr */
656 rndis_msg->msg_len += rndis_msg_size;
657 packet->total_data_buflen = rndis_msg->msg_len;
658 packet->page_buf_cnt = init_page_array(rndis_msg, rndis_msg_size,
661 /* timestamp packet in software */
662 skb_tx_timestamp(skb);
664 ret = netvsc_send(net, packet, rndis_msg, pb, skb, xdp_tx);
665 if (likely(ret == 0))
668 if (ret == -EAGAIN) {
669 ++net_device_ctx->eth_stats.tx_busy;
670 return NETDEV_TX_BUSY;
674 ++net_device_ctx->eth_stats.tx_no_space;
677 dev_kfree_skb_any(skb);
678 net->stats.tx_dropped++;
683 ++net_device_ctx->eth_stats.tx_no_memory;
687 static netdev_tx_t netvsc_start_xmit(struct sk_buff *skb,
688 struct net_device *ndev)
690 return netvsc_xmit(skb, ndev, false);
694 * netvsc_linkstatus_callback - Link up/down notification
696 void netvsc_linkstatus_callback(struct net_device *net,
697 struct rndis_message *resp,
698 void *data, u32 data_buflen)
700 struct rndis_indicate_status *indicate = &resp->msg.indicate_status;
701 struct net_device_context *ndev_ctx = netdev_priv(net);
702 struct netvsc_reconfig *event;
705 /* Ensure the packet is big enough to access its fields */
706 if (resp->msg_len - RNDIS_HEADER_SIZE < sizeof(struct rndis_indicate_status)) {
707 netdev_err(net, "invalid rndis_indicate_status packet, len: %u\n",
712 /* Copy the RNDIS indicate status into nvchan->recv_buf */
713 memcpy(indicate, data + RNDIS_HEADER_SIZE, sizeof(*indicate));
715 /* Update the physical link speed when changing to another vSwitch */
716 if (indicate->status == RNDIS_STATUS_LINK_SPEED_CHANGE) {
719 /* Validate status_buf_offset and status_buflen.
721 * Certain (pre-Fe) implementations of Hyper-V's vSwitch didn't account
722 * for the status buffer field in resp->msg_len; perform the validation
723 * using data_buflen (>= resp->msg_len).
725 if (indicate->status_buflen < sizeof(speed) ||
726 indicate->status_buf_offset < sizeof(*indicate) ||
727 data_buflen - RNDIS_HEADER_SIZE < indicate->status_buf_offset ||
728 data_buflen - RNDIS_HEADER_SIZE - indicate->status_buf_offset
729 < indicate->status_buflen) {
730 netdev_err(net, "invalid rndis_indicate_status packet\n");
734 speed = *(u32 *)(data + RNDIS_HEADER_SIZE + indicate->status_buf_offset) / 10000;
735 ndev_ctx->speed = speed;
739 /* Handle these link change statuses below */
740 if (indicate->status != RNDIS_STATUS_NETWORK_CHANGE &&
741 indicate->status != RNDIS_STATUS_MEDIA_CONNECT &&
742 indicate->status != RNDIS_STATUS_MEDIA_DISCONNECT)
745 if (net->reg_state != NETREG_REGISTERED)
748 event = kzalloc(sizeof(*event), GFP_ATOMIC);
751 event->event = indicate->status;
753 spin_lock_irqsave(&ndev_ctx->lock, flags);
754 list_add_tail(&event->list, &ndev_ctx->reconfig_events);
755 spin_unlock_irqrestore(&ndev_ctx->lock, flags);
757 schedule_delayed_work(&ndev_ctx->dwork, 0);
760 /* This function should only be called after skb_record_rx_queue() */
761 void netvsc_xdp_xmit(struct sk_buff *skb, struct net_device *ndev)
765 skb->queue_mapping = skb_get_rx_queue(skb);
766 __skb_push(skb, ETH_HLEN);
768 rc = netvsc_xmit(skb, ndev, true);
770 if (dev_xmit_complete(rc))
773 dev_kfree_skb_any(skb);
774 ndev->stats.tx_dropped++;
777 static void netvsc_comp_ipcsum(struct sk_buff *skb)
779 struct iphdr *iph = (struct iphdr *)skb->data;
782 iph->check = ip_fast_csum(iph, iph->ihl);
785 static struct sk_buff *netvsc_alloc_recv_skb(struct net_device *net,
786 struct netvsc_channel *nvchan,
787 struct xdp_buff *xdp)
789 struct napi_struct *napi = &nvchan->napi;
790 const struct ndis_pkt_8021q_info *vlan = &nvchan->rsc.vlan;
791 const struct ndis_tcp_ip_checksum_info *csum_info =
792 &nvchan->rsc.csum_info;
793 const u32 *hash_info = &nvchan->rsc.hash_info;
794 u8 ppi_flags = nvchan->rsc.ppi_flags;
796 void *xbuf = xdp->data_hard_start;
800 unsigned int hdroom = xdp->data - xdp->data_hard_start;
801 unsigned int xlen = xdp->data_end - xdp->data;
802 unsigned int frag_size = xdp->frame_sz;
804 skb = build_skb(xbuf, frag_size);
807 __free_page(virt_to_page(xbuf));
811 skb_reserve(skb, hdroom);
813 skb->dev = napi->dev;
815 skb = napi_alloc_skb(napi, nvchan->rsc.pktlen);
820 /* Copy to skb. This copy is needed here since the memory
821 * pointed by hv_netvsc_packet cannot be deallocated.
823 for (i = 0; i < nvchan->rsc.cnt; i++)
824 skb_put_data(skb, nvchan->rsc.data[i],
828 skb->protocol = eth_type_trans(skb, net);
830 /* skb is already created with CHECKSUM_NONE */
831 skb_checksum_none_assert(skb);
833 /* Incoming packets may have IP header checksum verified by the host.
834 * They may not have IP header checksum computed after coalescing.
835 * We compute it here if the flags are set, because on Linux, the IP
836 * checksum is always checked.
838 if ((ppi_flags & NVSC_RSC_CSUM_INFO) && csum_info->receive.ip_checksum_value_invalid &&
839 csum_info->receive.ip_checksum_succeeded &&
840 skb->protocol == htons(ETH_P_IP)) {
841 /* Check that there is enough space to hold the IP header. */
842 if (skb_headlen(skb) < sizeof(struct iphdr)) {
846 netvsc_comp_ipcsum(skb);
849 /* Do L4 checksum offload if enabled and present. */
850 if ((ppi_flags & NVSC_RSC_CSUM_INFO) && (net->features & NETIF_F_RXCSUM)) {
851 if (csum_info->receive.tcp_checksum_succeeded ||
852 csum_info->receive.udp_checksum_succeeded)
853 skb->ip_summed = CHECKSUM_UNNECESSARY;
856 if ((ppi_flags & NVSC_RSC_HASH_INFO) && (net->features & NETIF_F_RXHASH))
857 skb_set_hash(skb, *hash_info, PKT_HASH_TYPE_L4);
859 if (ppi_flags & NVSC_RSC_VLAN) {
860 u16 vlan_tci = vlan->vlanid | (vlan->pri << VLAN_PRIO_SHIFT) |
861 (vlan->cfi ? VLAN_CFI_MASK : 0);
863 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
871 * netvsc_recv_callback - Callback when we receive a packet from the
872 * "wire" on the specified device.
874 int netvsc_recv_callback(struct net_device *net,
875 struct netvsc_device *net_device,
876 struct netvsc_channel *nvchan)
878 struct net_device_context *net_device_ctx = netdev_priv(net);
879 struct vmbus_channel *channel = nvchan->channel;
880 u16 q_idx = channel->offermsg.offer.sub_channel_index;
882 struct netvsc_stats_rx *rx_stats = &nvchan->rx_stats;
886 if (net->reg_state != NETREG_REGISTERED)
887 return NVSP_STAT_FAIL;
889 act = netvsc_run_xdp(net, nvchan, &xdp);
891 if (act == XDP_REDIRECT)
892 return NVSP_STAT_SUCCESS;
894 if (act != XDP_PASS && act != XDP_TX) {
895 u64_stats_update_begin(&rx_stats->syncp);
896 rx_stats->xdp_drop++;
897 u64_stats_update_end(&rx_stats->syncp);
899 return NVSP_STAT_SUCCESS; /* consumed by XDP */
902 /* Allocate a skb - TODO direct I/O to pages? */
903 skb = netvsc_alloc_recv_skb(net, nvchan, &xdp);
905 if (unlikely(!skb)) {
906 ++net_device_ctx->eth_stats.rx_no_memory;
907 return NVSP_STAT_FAIL;
910 skb_record_rx_queue(skb, q_idx);
913 * Even if injecting the packet, record the statistics
914 * on the synthetic device because modifying the VF device
915 * statistics will not work correctly.
917 u64_stats_update_begin(&rx_stats->syncp);
922 rx_stats->bytes += nvchan->rsc.pktlen;
924 if (skb->pkt_type == PACKET_BROADCAST)
925 ++rx_stats->broadcast;
926 else if (skb->pkt_type == PACKET_MULTICAST)
927 ++rx_stats->multicast;
928 u64_stats_update_end(&rx_stats->syncp);
931 netvsc_xdp_xmit(skb, net);
932 return NVSP_STAT_SUCCESS;
935 napi_gro_receive(&nvchan->napi, skb);
936 return NVSP_STAT_SUCCESS;
939 static void netvsc_get_drvinfo(struct net_device *net,
940 struct ethtool_drvinfo *info)
942 strscpy(info->driver, KBUILD_MODNAME, sizeof(info->driver));
943 strscpy(info->fw_version, "N/A", sizeof(info->fw_version));
946 static void netvsc_get_channels(struct net_device *net,
947 struct ethtool_channels *channel)
949 struct net_device_context *net_device_ctx = netdev_priv(net);
950 struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
953 channel->max_combined = nvdev->max_chn;
954 channel->combined_count = nvdev->num_chn;
958 /* Alloc struct netvsc_device_info, and initialize it from either existing
959 * struct netvsc_device, or from default values.
962 struct netvsc_device_info *netvsc_devinfo_get(struct netvsc_device *nvdev)
964 struct netvsc_device_info *dev_info;
965 struct bpf_prog *prog;
967 dev_info = kzalloc(sizeof(*dev_info), GFP_ATOMIC);
975 dev_info->num_chn = nvdev->num_chn;
976 dev_info->send_sections = nvdev->send_section_cnt;
977 dev_info->send_section_size = nvdev->send_section_size;
978 dev_info->recv_sections = nvdev->recv_section_cnt;
979 dev_info->recv_section_size = nvdev->recv_section_size;
981 memcpy(dev_info->rss_key, nvdev->extension->rss_key,
984 prog = netvsc_xdp_get(nvdev);
987 dev_info->bprog = prog;
990 dev_info->num_chn = max(VRSS_CHANNEL_DEFAULT,
991 netif_get_num_default_rss_queues());
992 dev_info->send_sections = NETVSC_DEFAULT_TX;
993 dev_info->send_section_size = NETVSC_SEND_SECTION_SIZE;
994 dev_info->recv_sections = NETVSC_DEFAULT_RX;
995 dev_info->recv_section_size = NETVSC_RECV_SECTION_SIZE;
1001 /* Free struct netvsc_device_info */
1002 static void netvsc_devinfo_put(struct netvsc_device_info *dev_info)
1004 if (dev_info->bprog) {
1006 bpf_prog_put(dev_info->bprog);
1012 static int netvsc_detach(struct net_device *ndev,
1013 struct netvsc_device *nvdev)
1015 struct net_device_context *ndev_ctx = netdev_priv(ndev);
1016 struct hv_device *hdev = ndev_ctx->device_ctx;
1019 /* Don't try continuing to try and setup sub channels */
1020 if (cancel_work_sync(&nvdev->subchan_work))
1023 netvsc_xdp_set(ndev, NULL, NULL, nvdev);
1025 /* If device was up (receiving) then shutdown */
1026 if (netif_running(ndev)) {
1027 netvsc_tx_disable(nvdev, ndev);
1029 ret = rndis_filter_close(nvdev);
1032 "unable to close device (ret %d).\n", ret);
1036 ret = netvsc_wait_until_empty(nvdev);
1039 "Ring buffer not empty after closing rndis\n");
1044 netif_device_detach(ndev);
1046 rndis_filter_device_remove(hdev, nvdev);
1051 static int netvsc_attach(struct net_device *ndev,
1052 struct netvsc_device_info *dev_info)
1054 struct net_device_context *ndev_ctx = netdev_priv(ndev);
1055 struct hv_device *hdev = ndev_ctx->device_ctx;
1056 struct netvsc_device *nvdev;
1057 struct rndis_device *rdev;
1058 struct bpf_prog *prog;
1061 nvdev = rndis_filter_device_add(hdev, dev_info);
1063 return PTR_ERR(nvdev);
1065 if (nvdev->num_chn > 1) {
1066 ret = rndis_set_subchannel(ndev, nvdev, dev_info);
1068 /* if unavailable, just proceed with one queue */
1075 prog = dev_info->bprog;
1078 ret = netvsc_xdp_set(ndev, prog, NULL, nvdev);
1085 /* In any case device is now ready */
1086 nvdev->tx_disable = false;
1087 netif_device_attach(ndev);
1089 /* Note: enable and attach happen when sub-channels setup */
1090 netif_carrier_off(ndev);
1092 if (netif_running(ndev)) {
1093 ret = rndis_filter_open(nvdev);
1097 rdev = nvdev->extension;
1098 if (!rdev->link_state)
1099 netif_carrier_on(ndev);
1105 netif_device_detach(ndev);
1108 rndis_filter_device_remove(hdev, nvdev);
1113 static int netvsc_set_channels(struct net_device *net,
1114 struct ethtool_channels *channels)
1116 struct net_device_context *net_device_ctx = netdev_priv(net);
1117 struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
1118 unsigned int orig, count = channels->combined_count;
1119 struct netvsc_device_info *device_info;
1122 /* We do not support separate count for rx, tx, or other */
1124 channels->rx_count || channels->tx_count || channels->other_count)
1127 if (!nvdev || nvdev->destroy)
1130 if (nvdev->nvsp_version < NVSP_PROTOCOL_VERSION_5)
1133 if (count > nvdev->max_chn)
1136 orig = nvdev->num_chn;
1138 device_info = netvsc_devinfo_get(nvdev);
1143 device_info->num_chn = count;
1145 ret = netvsc_detach(net, nvdev);
1149 ret = netvsc_attach(net, device_info);
1151 device_info->num_chn = orig;
1152 if (netvsc_attach(net, device_info))
1153 netdev_err(net, "restoring channel setting failed\n");
1157 netvsc_devinfo_put(device_info);
1161 static void netvsc_init_settings(struct net_device *dev)
1163 struct net_device_context *ndc = netdev_priv(dev);
1165 ndc->l4_hash = HV_DEFAULT_L4HASH;
1167 ndc->speed = SPEED_UNKNOWN;
1168 ndc->duplex = DUPLEX_FULL;
1170 dev->features = NETIF_F_LRO;
1173 static int netvsc_get_link_ksettings(struct net_device *dev,
1174 struct ethtool_link_ksettings *cmd)
1176 struct net_device_context *ndc = netdev_priv(dev);
1177 struct net_device *vf_netdev;
1179 vf_netdev = rtnl_dereference(ndc->vf_netdev);
1182 return __ethtool_get_link_ksettings(vf_netdev, cmd);
1184 cmd->base.speed = ndc->speed;
1185 cmd->base.duplex = ndc->duplex;
1186 cmd->base.port = PORT_OTHER;
1191 static int netvsc_set_link_ksettings(struct net_device *dev,
1192 const struct ethtool_link_ksettings *cmd)
1194 struct net_device_context *ndc = netdev_priv(dev);
1195 struct net_device *vf_netdev = rtnl_dereference(ndc->vf_netdev);
1198 if (!vf_netdev->ethtool_ops->set_link_ksettings)
1201 return vf_netdev->ethtool_ops->set_link_ksettings(vf_netdev,
1205 return ethtool_virtdev_set_link_ksettings(dev, cmd,
1206 &ndc->speed, &ndc->duplex);
1209 static int netvsc_change_mtu(struct net_device *ndev, int mtu)
1211 struct net_device_context *ndevctx = netdev_priv(ndev);
1212 struct net_device *vf_netdev = rtnl_dereference(ndevctx->vf_netdev);
1213 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1214 int orig_mtu = ndev->mtu;
1215 struct netvsc_device_info *device_info;
1218 if (!nvdev || nvdev->destroy)
1221 device_info = netvsc_devinfo_get(nvdev);
1226 /* Change MTU of underlying VF netdev first. */
1228 ret = dev_set_mtu(vf_netdev, mtu);
1233 ret = netvsc_detach(ndev, nvdev);
1237 WRITE_ONCE(ndev->mtu, mtu);
1239 ret = netvsc_attach(ndev, device_info);
1243 /* Attempt rollback to original MTU */
1244 WRITE_ONCE(ndev->mtu, orig_mtu);
1246 if (netvsc_attach(ndev, device_info))
1247 netdev_err(ndev, "restoring mtu failed\n");
1250 dev_set_mtu(vf_netdev, orig_mtu);
1253 netvsc_devinfo_put(device_info);
1257 static void netvsc_get_vf_stats(struct net_device *net,
1258 struct netvsc_vf_pcpu_stats *tot)
1260 struct net_device_context *ndev_ctx = netdev_priv(net);
1263 memset(tot, 0, sizeof(*tot));
1265 for_each_possible_cpu(i) {
1266 const struct netvsc_vf_pcpu_stats *stats
1267 = per_cpu_ptr(ndev_ctx->vf_stats, i);
1268 u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
1272 start = u64_stats_fetch_begin(&stats->syncp);
1273 rx_packets = stats->rx_packets;
1274 tx_packets = stats->tx_packets;
1275 rx_bytes = stats->rx_bytes;
1276 tx_bytes = stats->tx_bytes;
1277 } while (u64_stats_fetch_retry(&stats->syncp, start));
1279 tot->rx_packets += rx_packets;
1280 tot->tx_packets += tx_packets;
1281 tot->rx_bytes += rx_bytes;
1282 tot->tx_bytes += tx_bytes;
1283 tot->tx_dropped += stats->tx_dropped;
1287 static void netvsc_get_pcpu_stats(struct net_device *net,
1288 struct netvsc_ethtool_pcpu_stats *pcpu_tot)
1290 struct net_device_context *ndev_ctx = netdev_priv(net);
1291 struct netvsc_device *nvdev = rcu_dereference_rtnl(ndev_ctx->nvdev);
1294 /* fetch percpu stats of vf */
1295 for_each_possible_cpu(i) {
1296 const struct netvsc_vf_pcpu_stats *stats =
1297 per_cpu_ptr(ndev_ctx->vf_stats, i);
1298 struct netvsc_ethtool_pcpu_stats *this_tot = &pcpu_tot[i];
1302 start = u64_stats_fetch_begin(&stats->syncp);
1303 this_tot->vf_rx_packets = stats->rx_packets;
1304 this_tot->vf_tx_packets = stats->tx_packets;
1305 this_tot->vf_rx_bytes = stats->rx_bytes;
1306 this_tot->vf_tx_bytes = stats->tx_bytes;
1307 } while (u64_stats_fetch_retry(&stats->syncp, start));
1308 this_tot->rx_packets = this_tot->vf_rx_packets;
1309 this_tot->tx_packets = this_tot->vf_tx_packets;
1310 this_tot->rx_bytes = this_tot->vf_rx_bytes;
1311 this_tot->tx_bytes = this_tot->vf_tx_bytes;
1314 /* fetch percpu stats of netvsc */
1315 for (i = 0; i < nvdev->num_chn; i++) {
1316 const struct netvsc_channel *nvchan = &nvdev->chan_table[i];
1317 const struct netvsc_stats_tx *tx_stats;
1318 const struct netvsc_stats_rx *rx_stats;
1319 struct netvsc_ethtool_pcpu_stats *this_tot =
1320 &pcpu_tot[nvchan->channel->target_cpu];
1324 tx_stats = &nvchan->tx_stats;
1326 start = u64_stats_fetch_begin(&tx_stats->syncp);
1327 packets = tx_stats->packets;
1328 bytes = tx_stats->bytes;
1329 } while (u64_stats_fetch_retry(&tx_stats->syncp, start));
1331 this_tot->tx_bytes += bytes;
1332 this_tot->tx_packets += packets;
1334 rx_stats = &nvchan->rx_stats;
1336 start = u64_stats_fetch_begin(&rx_stats->syncp);
1337 packets = rx_stats->packets;
1338 bytes = rx_stats->bytes;
1339 } while (u64_stats_fetch_retry(&rx_stats->syncp, start));
1341 this_tot->rx_bytes += bytes;
1342 this_tot->rx_packets += packets;
1346 static void netvsc_get_stats64(struct net_device *net,
1347 struct rtnl_link_stats64 *t)
1349 struct net_device_context *ndev_ctx = netdev_priv(net);
1350 struct netvsc_device *nvdev;
1351 struct netvsc_vf_pcpu_stats vf_tot;
1356 nvdev = rcu_dereference(ndev_ctx->nvdev);
1360 netdev_stats_to_stats64(t, &net->stats);
1362 netvsc_get_vf_stats(net, &vf_tot);
1363 t->rx_packets += vf_tot.rx_packets;
1364 t->tx_packets += vf_tot.tx_packets;
1365 t->rx_bytes += vf_tot.rx_bytes;
1366 t->tx_bytes += vf_tot.tx_bytes;
1367 t->tx_dropped += vf_tot.tx_dropped;
1369 for (i = 0; i < nvdev->num_chn; i++) {
1370 const struct netvsc_channel *nvchan = &nvdev->chan_table[i];
1371 const struct netvsc_stats_tx *tx_stats;
1372 const struct netvsc_stats_rx *rx_stats;
1373 u64 packets, bytes, multicast;
1376 tx_stats = &nvchan->tx_stats;
1378 start = u64_stats_fetch_begin(&tx_stats->syncp);
1379 packets = tx_stats->packets;
1380 bytes = tx_stats->bytes;
1381 } while (u64_stats_fetch_retry(&tx_stats->syncp, start));
1383 t->tx_bytes += bytes;
1384 t->tx_packets += packets;
1386 rx_stats = &nvchan->rx_stats;
1388 start = u64_stats_fetch_begin(&rx_stats->syncp);
1389 packets = rx_stats->packets;
1390 bytes = rx_stats->bytes;
1391 multicast = rx_stats->multicast + rx_stats->broadcast;
1392 } while (u64_stats_fetch_retry(&rx_stats->syncp, start));
1394 t->rx_bytes += bytes;
1395 t->rx_packets += packets;
1396 t->multicast += multicast;
1402 static int netvsc_set_mac_addr(struct net_device *ndev, void *p)
1404 struct net_device_context *ndc = netdev_priv(ndev);
1405 struct net_device *vf_netdev = rtnl_dereference(ndc->vf_netdev);
1406 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1407 struct sockaddr *addr = p;
1410 err = eth_prepare_mac_addr_change(ndev, p);
1418 err = dev_set_mac_address(vf_netdev, addr, NULL);
1423 err = rndis_filter_set_device_mac(nvdev, addr->sa_data);
1425 eth_commit_mac_addr_change(ndev, p);
1426 } else if (vf_netdev) {
1427 /* rollback change on VF */
1428 memcpy(addr->sa_data, ndev->dev_addr, ETH_ALEN);
1429 dev_set_mac_address(vf_netdev, addr, NULL);
1435 static const struct {
1436 char name[ETH_GSTRING_LEN];
1438 } netvsc_stats[] = {
1439 { "tx_scattered", offsetof(struct netvsc_ethtool_stats, tx_scattered) },
1440 { "tx_no_memory", offsetof(struct netvsc_ethtool_stats, tx_no_memory) },
1441 { "tx_no_space", offsetof(struct netvsc_ethtool_stats, tx_no_space) },
1442 { "tx_too_big", offsetof(struct netvsc_ethtool_stats, tx_too_big) },
1443 { "tx_busy", offsetof(struct netvsc_ethtool_stats, tx_busy) },
1444 { "tx_send_full", offsetof(struct netvsc_ethtool_stats, tx_send_full) },
1445 { "rx_comp_busy", offsetof(struct netvsc_ethtool_stats, rx_comp_busy) },
1446 { "rx_no_memory", offsetof(struct netvsc_ethtool_stats, rx_no_memory) },
1447 { "stop_queue", offsetof(struct netvsc_ethtool_stats, stop_queue) },
1448 { "wake_queue", offsetof(struct netvsc_ethtool_stats, wake_queue) },
1449 { "vlan_error", offsetof(struct netvsc_ethtool_stats, vlan_error) },
1451 { "cpu%u_rx_packets",
1452 offsetof(struct netvsc_ethtool_pcpu_stats, rx_packets) },
1454 offsetof(struct netvsc_ethtool_pcpu_stats, rx_bytes) },
1455 { "cpu%u_tx_packets",
1456 offsetof(struct netvsc_ethtool_pcpu_stats, tx_packets) },
1458 offsetof(struct netvsc_ethtool_pcpu_stats, tx_bytes) },
1459 { "cpu%u_vf_rx_packets",
1460 offsetof(struct netvsc_ethtool_pcpu_stats, vf_rx_packets) },
1461 { "cpu%u_vf_rx_bytes",
1462 offsetof(struct netvsc_ethtool_pcpu_stats, vf_rx_bytes) },
1463 { "cpu%u_vf_tx_packets",
1464 offsetof(struct netvsc_ethtool_pcpu_stats, vf_tx_packets) },
1465 { "cpu%u_vf_tx_bytes",
1466 offsetof(struct netvsc_ethtool_pcpu_stats, vf_tx_bytes) },
1468 { "vf_rx_packets", offsetof(struct netvsc_vf_pcpu_stats, rx_packets) },
1469 { "vf_rx_bytes", offsetof(struct netvsc_vf_pcpu_stats, rx_bytes) },
1470 { "vf_tx_packets", offsetof(struct netvsc_vf_pcpu_stats, tx_packets) },
1471 { "vf_tx_bytes", offsetof(struct netvsc_vf_pcpu_stats, tx_bytes) },
1472 { "vf_tx_dropped", offsetof(struct netvsc_vf_pcpu_stats, tx_dropped) },
1475 #define NETVSC_GLOBAL_STATS_LEN ARRAY_SIZE(netvsc_stats)
1476 #define NETVSC_VF_STATS_LEN ARRAY_SIZE(vf_stats)
1478 /* statistics per queue (rx/tx packets/bytes) */
1479 #define NETVSC_PCPU_STATS_LEN (num_present_cpus() * ARRAY_SIZE(pcpu_stats))
1481 /* 8 statistics per queue (rx/tx packets/bytes, XDP actions) */
1482 #define NETVSC_QUEUE_STATS_LEN(dev) ((dev)->num_chn * 8)
1484 static int netvsc_get_sset_count(struct net_device *dev, int string_set)
1486 struct net_device_context *ndc = netdev_priv(dev);
1487 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1492 switch (string_set) {
1494 return NETVSC_GLOBAL_STATS_LEN
1495 + NETVSC_VF_STATS_LEN
1496 + NETVSC_QUEUE_STATS_LEN(nvdev)
1497 + NETVSC_PCPU_STATS_LEN;
1503 static void netvsc_get_ethtool_stats(struct net_device *dev,
1504 struct ethtool_stats *stats, u64 *data)
1506 struct net_device_context *ndc = netdev_priv(dev);
1507 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1508 const void *nds = &ndc->eth_stats;
1509 const struct netvsc_stats_tx *tx_stats;
1510 const struct netvsc_stats_rx *rx_stats;
1511 struct netvsc_vf_pcpu_stats sum;
1512 struct netvsc_ethtool_pcpu_stats *pcpu_sum;
1524 for (i = 0; i < NETVSC_GLOBAL_STATS_LEN; i++)
1525 data[i] = *(unsigned long *)(nds + netvsc_stats[i].offset);
1527 netvsc_get_vf_stats(dev, &sum);
1528 for (j = 0; j < NETVSC_VF_STATS_LEN; j++)
1529 data[i++] = *(u64 *)((void *)&sum + vf_stats[j].offset);
1531 for (j = 0; j < nvdev->num_chn; j++) {
1532 tx_stats = &nvdev->chan_table[j].tx_stats;
1535 start = u64_stats_fetch_begin(&tx_stats->syncp);
1536 packets = tx_stats->packets;
1537 bytes = tx_stats->bytes;
1538 xdp_xmit = tx_stats->xdp_xmit;
1539 } while (u64_stats_fetch_retry(&tx_stats->syncp, start));
1540 data[i++] = packets;
1542 data[i++] = xdp_xmit;
1544 rx_stats = &nvdev->chan_table[j].rx_stats;
1546 start = u64_stats_fetch_begin(&rx_stats->syncp);
1547 packets = rx_stats->packets;
1548 bytes = rx_stats->bytes;
1549 xdp_drop = rx_stats->xdp_drop;
1550 xdp_redirect = rx_stats->xdp_redirect;
1551 xdp_tx = rx_stats->xdp_tx;
1552 } while (u64_stats_fetch_retry(&rx_stats->syncp, start));
1553 data[i++] = packets;
1555 data[i++] = xdp_drop;
1556 data[i++] = xdp_redirect;
1560 pcpu_sum = kvmalloc_array(nr_cpu_ids,
1561 sizeof(struct netvsc_ethtool_pcpu_stats),
1566 netvsc_get_pcpu_stats(dev, pcpu_sum);
1567 for_each_present_cpu(cpu) {
1568 struct netvsc_ethtool_pcpu_stats *this_sum = &pcpu_sum[cpu];
1570 for (j = 0; j < ARRAY_SIZE(pcpu_stats); j++)
1571 data[i++] = *(u64 *)((void *)this_sum
1572 + pcpu_stats[j].offset);
1577 static void netvsc_get_strings(struct net_device *dev, u32 stringset, u8 *data)
1579 struct net_device_context *ndc = netdev_priv(dev);
1580 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1587 switch (stringset) {
1589 for (i = 0; i < ARRAY_SIZE(netvsc_stats); i++)
1590 ethtool_puts(&p, netvsc_stats[i].name);
1592 for (i = 0; i < ARRAY_SIZE(vf_stats); i++)
1593 ethtool_puts(&p, vf_stats[i].name);
1595 for (i = 0; i < nvdev->num_chn; i++) {
1596 ethtool_sprintf(&p, "tx_queue_%u_packets", i);
1597 ethtool_sprintf(&p, "tx_queue_%u_bytes", i);
1598 ethtool_sprintf(&p, "tx_queue_%u_xdp_xmit", i);
1599 ethtool_sprintf(&p, "rx_queue_%u_packets", i);
1600 ethtool_sprintf(&p, "rx_queue_%u_bytes", i);
1601 ethtool_sprintf(&p, "rx_queue_%u_xdp_drop", i);
1602 ethtool_sprintf(&p, "rx_queue_%u_xdp_redirect", i);
1603 ethtool_sprintf(&p, "rx_queue_%u_xdp_tx", i);
1606 for_each_present_cpu(cpu) {
1607 for (i = 0; i < ARRAY_SIZE(pcpu_stats); i++)
1608 ethtool_sprintf(&p, pcpu_stats[i].name, cpu);
1616 netvsc_get_rss_hash_opts(struct net_device_context *ndc,
1617 struct ethtool_rxnfc *info)
1619 const u32 l4_flag = RXH_L4_B_0_1 | RXH_L4_B_2_3;
1621 info->data = RXH_IP_SRC | RXH_IP_DST;
1623 switch (info->flow_type) {
1625 if (ndc->l4_hash & HV_TCP4_L4HASH)
1626 info->data |= l4_flag;
1631 if (ndc->l4_hash & HV_TCP6_L4HASH)
1632 info->data |= l4_flag;
1637 if (ndc->l4_hash & HV_UDP4_L4HASH)
1638 info->data |= l4_flag;
1643 if (ndc->l4_hash & HV_UDP6_L4HASH)
1644 info->data |= l4_flag;
1660 netvsc_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *info,
1663 struct net_device_context *ndc = netdev_priv(dev);
1664 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1669 switch (info->cmd) {
1670 case ETHTOOL_GRXRINGS:
1671 info->data = nvdev->num_chn;
1675 return netvsc_get_rss_hash_opts(ndc, info);
1680 static int netvsc_set_rss_hash_opts(struct net_device_context *ndc,
1681 struct ethtool_rxnfc *info)
1683 if (info->data == (RXH_IP_SRC | RXH_IP_DST |
1684 RXH_L4_B_0_1 | RXH_L4_B_2_3)) {
1685 switch (info->flow_type) {
1687 ndc->l4_hash |= HV_TCP4_L4HASH;
1691 ndc->l4_hash |= HV_TCP6_L4HASH;
1695 ndc->l4_hash |= HV_UDP4_L4HASH;
1699 ndc->l4_hash |= HV_UDP6_L4HASH;
1709 if (info->data == (RXH_IP_SRC | RXH_IP_DST)) {
1710 switch (info->flow_type) {
1712 ndc->l4_hash &= ~HV_TCP4_L4HASH;
1716 ndc->l4_hash &= ~HV_TCP6_L4HASH;
1720 ndc->l4_hash &= ~HV_UDP4_L4HASH;
1724 ndc->l4_hash &= ~HV_UDP6_L4HASH;
1738 netvsc_set_rxnfc(struct net_device *ndev, struct ethtool_rxnfc *info)
1740 struct net_device_context *ndc = netdev_priv(ndev);
1742 if (info->cmd == ETHTOOL_SRXFH)
1743 return netvsc_set_rss_hash_opts(ndc, info);
1748 static u32 netvsc_get_rxfh_key_size(struct net_device *dev)
1750 return NETVSC_HASH_KEYLEN;
1753 static u32 netvsc_rss_indir_size(struct net_device *dev)
1755 struct net_device_context *ndc = netdev_priv(dev);
1757 return ndc->rx_table_sz;
1760 static int netvsc_get_rxfh(struct net_device *dev,
1761 struct ethtool_rxfh_param *rxfh)
1763 struct net_device_context *ndc = netdev_priv(dev);
1764 struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev);
1765 struct rndis_device *rndis_dev;
1771 rxfh->hfunc = ETH_RSS_HASH_TOP; /* Toeplitz */
1773 rndis_dev = ndev->extension;
1775 for (i = 0; i < ndc->rx_table_sz; i++)
1776 rxfh->indir[i] = ndc->rx_table[i];
1780 memcpy(rxfh->key, rndis_dev->rss_key, NETVSC_HASH_KEYLEN);
1785 static int netvsc_set_rxfh(struct net_device *dev,
1786 struct ethtool_rxfh_param *rxfh,
1787 struct netlink_ext_ack *extack)
1789 struct net_device_context *ndc = netdev_priv(dev);
1790 struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev);
1791 struct rndis_device *rndis_dev;
1792 u8 *key = rxfh->key;
1798 if (rxfh->hfunc != ETH_RSS_HASH_NO_CHANGE &&
1799 rxfh->hfunc != ETH_RSS_HASH_TOP)
1802 rndis_dev = ndev->extension;
1804 for (i = 0; i < ndc->rx_table_sz; i++)
1805 if (rxfh->indir[i] >= ndev->num_chn)
1808 for (i = 0; i < ndc->rx_table_sz; i++)
1809 ndc->rx_table[i] = rxfh->indir[i];
1816 key = rndis_dev->rss_key;
1819 return rndis_filter_set_rss_param(rndis_dev, key);
1822 /* Hyper-V RNDIS protocol does not have ring in the HW sense.
1823 * It does have pre-allocated receive area which is divided into sections.
1825 static void __netvsc_get_ringparam(struct netvsc_device *nvdev,
1826 struct ethtool_ringparam *ring)
1830 ring->rx_pending = nvdev->recv_section_cnt;
1831 ring->tx_pending = nvdev->send_section_cnt;
1833 if (nvdev->nvsp_version <= NVSP_PROTOCOL_VERSION_2)
1834 max_buf_size = NETVSC_RECEIVE_BUFFER_SIZE_LEGACY;
1836 max_buf_size = NETVSC_RECEIVE_BUFFER_SIZE;
1838 ring->rx_max_pending = max_buf_size / nvdev->recv_section_size;
1839 ring->tx_max_pending = NETVSC_SEND_BUFFER_SIZE
1840 / nvdev->send_section_size;
1843 static void netvsc_get_ringparam(struct net_device *ndev,
1844 struct ethtool_ringparam *ring,
1845 struct kernel_ethtool_ringparam *kernel_ring,
1846 struct netlink_ext_ack *extack)
1848 struct net_device_context *ndevctx = netdev_priv(ndev);
1849 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1854 __netvsc_get_ringparam(nvdev, ring);
1857 static int netvsc_set_ringparam(struct net_device *ndev,
1858 struct ethtool_ringparam *ring,
1859 struct kernel_ethtool_ringparam *kernel_ring,
1860 struct netlink_ext_ack *extack)
1862 struct net_device_context *ndevctx = netdev_priv(ndev);
1863 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1864 struct netvsc_device_info *device_info;
1865 struct ethtool_ringparam orig;
1869 if (!nvdev || nvdev->destroy)
1872 memset(&orig, 0, sizeof(orig));
1873 __netvsc_get_ringparam(nvdev, &orig);
1875 new_tx = clamp_t(u32, ring->tx_pending,
1876 NETVSC_MIN_TX_SECTIONS, orig.tx_max_pending);
1877 new_rx = clamp_t(u32, ring->rx_pending,
1878 NETVSC_MIN_RX_SECTIONS, orig.rx_max_pending);
1880 if (new_tx == orig.tx_pending &&
1881 new_rx == orig.rx_pending)
1882 return 0; /* no change */
1884 device_info = netvsc_devinfo_get(nvdev);
1889 device_info->send_sections = new_tx;
1890 device_info->recv_sections = new_rx;
1892 ret = netvsc_detach(ndev, nvdev);
1896 ret = netvsc_attach(ndev, device_info);
1898 device_info->send_sections = orig.tx_pending;
1899 device_info->recv_sections = orig.rx_pending;
1901 if (netvsc_attach(ndev, device_info))
1902 netdev_err(ndev, "restoring ringparam failed");
1906 netvsc_devinfo_put(device_info);
1910 static netdev_features_t netvsc_fix_features(struct net_device *ndev,
1911 netdev_features_t features)
1913 struct net_device_context *ndevctx = netdev_priv(ndev);
1914 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1916 if (!nvdev || nvdev->destroy)
1919 if ((features & NETIF_F_LRO) && netvsc_xdp_get(nvdev)) {
1920 features ^= NETIF_F_LRO;
1921 netdev_info(ndev, "Skip LRO - unsupported with XDP\n");
1927 static int netvsc_set_features(struct net_device *ndev,
1928 netdev_features_t features)
1930 netdev_features_t change = features ^ ndev->features;
1931 struct net_device_context *ndevctx = netdev_priv(ndev);
1932 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1933 struct net_device *vf_netdev = rtnl_dereference(ndevctx->vf_netdev);
1934 struct ndis_offload_params offloads;
1937 if (!nvdev || nvdev->destroy)
1940 if (!(change & NETIF_F_LRO))
1943 memset(&offloads, 0, sizeof(struct ndis_offload_params));
1945 if (features & NETIF_F_LRO) {
1946 offloads.rsc_ip_v4 = NDIS_OFFLOAD_PARAMETERS_RSC_ENABLED;
1947 offloads.rsc_ip_v6 = NDIS_OFFLOAD_PARAMETERS_RSC_ENABLED;
1949 offloads.rsc_ip_v4 = NDIS_OFFLOAD_PARAMETERS_RSC_DISABLED;
1950 offloads.rsc_ip_v6 = NDIS_OFFLOAD_PARAMETERS_RSC_DISABLED;
1953 ret = rndis_filter_set_offload_params(ndev, nvdev, &offloads);
1956 features ^= NETIF_F_LRO;
1957 ndev->features = features;
1964 vf_netdev->wanted_features = features;
1965 netdev_update_features(vf_netdev);
1970 static int netvsc_get_regs_len(struct net_device *netdev)
1972 return VRSS_SEND_TAB_SIZE * sizeof(u32);
1975 static void netvsc_get_regs(struct net_device *netdev,
1976 struct ethtool_regs *regs, void *p)
1978 struct net_device_context *ndc = netdev_priv(netdev);
1981 /* increase the version, if buffer format is changed. */
1984 memcpy(regs_buff, ndc->tx_table, VRSS_SEND_TAB_SIZE * sizeof(u32));
1987 static u32 netvsc_get_msglevel(struct net_device *ndev)
1989 struct net_device_context *ndev_ctx = netdev_priv(ndev);
1991 return ndev_ctx->msg_enable;
1994 static void netvsc_set_msglevel(struct net_device *ndev, u32 val)
1996 struct net_device_context *ndev_ctx = netdev_priv(ndev);
1998 ndev_ctx->msg_enable = val;
2001 static const struct ethtool_ops ethtool_ops = {
2002 .get_drvinfo = netvsc_get_drvinfo,
2003 .get_regs_len = netvsc_get_regs_len,
2004 .get_regs = netvsc_get_regs,
2005 .get_msglevel = netvsc_get_msglevel,
2006 .set_msglevel = netvsc_set_msglevel,
2007 .get_link = ethtool_op_get_link,
2008 .get_ethtool_stats = netvsc_get_ethtool_stats,
2009 .get_sset_count = netvsc_get_sset_count,
2010 .get_strings = netvsc_get_strings,
2011 .get_channels = netvsc_get_channels,
2012 .set_channels = netvsc_set_channels,
2013 .get_ts_info = ethtool_op_get_ts_info,
2014 .get_rxnfc = netvsc_get_rxnfc,
2015 .set_rxnfc = netvsc_set_rxnfc,
2016 .get_rxfh_key_size = netvsc_get_rxfh_key_size,
2017 .get_rxfh_indir_size = netvsc_rss_indir_size,
2018 .get_rxfh = netvsc_get_rxfh,
2019 .set_rxfh = netvsc_set_rxfh,
2020 .get_link_ksettings = netvsc_get_link_ksettings,
2021 .set_link_ksettings = netvsc_set_link_ksettings,
2022 .get_ringparam = netvsc_get_ringparam,
2023 .set_ringparam = netvsc_set_ringparam,
2026 static const struct net_device_ops device_ops = {
2027 .ndo_open = netvsc_open,
2028 .ndo_stop = netvsc_close,
2029 .ndo_start_xmit = netvsc_start_xmit,
2030 .ndo_change_rx_flags = netvsc_change_rx_flags,
2031 .ndo_set_rx_mode = netvsc_set_rx_mode,
2032 .ndo_fix_features = netvsc_fix_features,
2033 .ndo_set_features = netvsc_set_features,
2034 .ndo_change_mtu = netvsc_change_mtu,
2035 .ndo_validate_addr = eth_validate_addr,
2036 .ndo_set_mac_address = netvsc_set_mac_addr,
2037 .ndo_select_queue = netvsc_select_queue,
2038 .ndo_get_stats64 = netvsc_get_stats64,
2039 .ndo_bpf = netvsc_bpf,
2040 .ndo_xdp_xmit = netvsc_ndoxdp_xmit,
2044 * Handle link status changes. For RNDIS_STATUS_NETWORK_CHANGE emulate link
2045 * down/up sequence. In case of RNDIS_STATUS_MEDIA_CONNECT when carrier is
2046 * present send GARP packet to network peers with netif_notify_peers().
2048 static void netvsc_link_change(struct work_struct *w)
2050 struct net_device_context *ndev_ctx =
2051 container_of(w, struct net_device_context, dwork.work);
2052 struct hv_device *device_obj = ndev_ctx->device_ctx;
2053 struct net_device *net = hv_get_drvdata(device_obj);
2054 unsigned long flags, next_reconfig, delay;
2055 struct netvsc_reconfig *event = NULL;
2056 struct netvsc_device *net_device;
2057 struct rndis_device *rdev;
2058 bool reschedule = false;
2060 /* if changes are happening, comeback later */
2061 if (!rtnl_trylock()) {
2062 schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT);
2066 net_device = rtnl_dereference(ndev_ctx->nvdev);
2070 rdev = net_device->extension;
2072 next_reconfig = ndev_ctx->last_reconfig + LINKCHANGE_INT;
2073 if (time_is_after_jiffies(next_reconfig)) {
2074 /* link_watch only sends one notification with current state
2075 * per second, avoid doing reconfig more frequently. Handle
2078 delay = next_reconfig - jiffies;
2079 delay = delay < LINKCHANGE_INT ? delay : LINKCHANGE_INT;
2080 schedule_delayed_work(&ndev_ctx->dwork, delay);
2083 ndev_ctx->last_reconfig = jiffies;
2085 spin_lock_irqsave(&ndev_ctx->lock, flags);
2086 if (!list_empty(&ndev_ctx->reconfig_events)) {
2087 event = list_first_entry(&ndev_ctx->reconfig_events,
2088 struct netvsc_reconfig, list);
2089 list_del(&event->list);
2090 reschedule = !list_empty(&ndev_ctx->reconfig_events);
2092 spin_unlock_irqrestore(&ndev_ctx->lock, flags);
2097 switch (event->event) {
2098 /* Only the following events are possible due to the check in
2099 * netvsc_linkstatus_callback()
2101 case RNDIS_STATUS_MEDIA_CONNECT:
2102 if (rdev->link_state) {
2103 rdev->link_state = false;
2104 netif_carrier_on(net);
2105 netvsc_tx_enable(net_device, net);
2107 __netdev_notify_peers(net);
2111 case RNDIS_STATUS_MEDIA_DISCONNECT:
2112 if (!rdev->link_state) {
2113 rdev->link_state = true;
2114 netif_carrier_off(net);
2115 netvsc_tx_disable(net_device, net);
2119 case RNDIS_STATUS_NETWORK_CHANGE:
2120 /* Only makes sense if carrier is present */
2121 if (!rdev->link_state) {
2122 rdev->link_state = true;
2123 netif_carrier_off(net);
2124 netvsc_tx_disable(net_device, net);
2125 event->event = RNDIS_STATUS_MEDIA_CONNECT;
2126 spin_lock_irqsave(&ndev_ctx->lock, flags);
2127 list_add(&event->list, &ndev_ctx->reconfig_events);
2128 spin_unlock_irqrestore(&ndev_ctx->lock, flags);
2136 /* link_watch only sends one notification with current state per
2137 * second, handle next reconfig event in 2 seconds.
2140 schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT);
2148 static struct net_device *get_netvsc_byref(struct net_device *vf_netdev)
2150 struct net_device_context *net_device_ctx;
2151 struct net_device *dev;
2153 dev = netdev_master_upper_dev_get(vf_netdev);
2154 if (!dev || dev->netdev_ops != &device_ops)
2155 return NULL; /* not a netvsc device */
2157 net_device_ctx = netdev_priv(dev);
2158 if (!rtnl_dereference(net_device_ctx->nvdev))
2159 return NULL; /* device is removed */
2164 /* Called when VF is injecting data into network stack.
2165 * Change the associated network device from VF to netvsc.
2166 * note: already called with rcu_read_lock
2168 static rx_handler_result_t netvsc_vf_handle_frame(struct sk_buff **pskb)
2170 struct sk_buff *skb = *pskb;
2171 struct net_device *ndev = rcu_dereference(skb->dev->rx_handler_data);
2172 struct net_device_context *ndev_ctx = netdev_priv(ndev);
2173 struct netvsc_vf_pcpu_stats *pcpu_stats
2174 = this_cpu_ptr(ndev_ctx->vf_stats);
2176 skb = skb_share_check(skb, GFP_ATOMIC);
2178 return RX_HANDLER_CONSUMED;
2184 u64_stats_update_begin(&pcpu_stats->syncp);
2185 pcpu_stats->rx_packets++;
2186 pcpu_stats->rx_bytes += skb->len;
2187 u64_stats_update_end(&pcpu_stats->syncp);
2189 return RX_HANDLER_ANOTHER;
2192 static int netvsc_vf_join(struct net_device *vf_netdev,
2193 struct net_device *ndev, int context)
2195 struct net_device_context *ndev_ctx = netdev_priv(ndev);
2198 ret = netdev_rx_handler_register(vf_netdev,
2199 netvsc_vf_handle_frame, ndev);
2201 netdev_err(vf_netdev,
2202 "can not register netvsc VF receive handler (err = %d)\n",
2204 goto rx_handler_failed;
2207 ret = netdev_master_upper_dev_link(vf_netdev, ndev,
2210 netdev_err(vf_netdev,
2211 "can not set master device %s (err = %d)\n",
2213 goto upper_link_failed;
2216 /* If this registration is called from probe context vf_takeover
2217 * is taken care of later in probe itself.
2219 if (context == VF_REG_IN_NOTIFIER)
2220 schedule_delayed_work(&ndev_ctx->vf_takeover, VF_TAKEOVER_INT);
2222 call_netdevice_notifiers(NETDEV_JOIN, vf_netdev);
2224 netdev_info(vf_netdev, "joined to %s\n", ndev->name);
2228 netdev_rx_handler_unregister(vf_netdev);
2233 static void __netvsc_vf_setup(struct net_device *ndev,
2234 struct net_device *vf_netdev)
2238 /* Align MTU of VF with master */
2239 ret = dev_set_mtu(vf_netdev, ndev->mtu);
2241 netdev_warn(vf_netdev,
2242 "unable to change mtu to %u\n", ndev->mtu);
2244 /* set multicast etc flags on VF */
2245 dev_change_flags(vf_netdev, ndev->flags | IFF_SLAVE, NULL);
2247 /* sync address list from ndev to VF */
2248 netif_addr_lock_bh(ndev);
2249 dev_uc_sync(vf_netdev, ndev);
2250 dev_mc_sync(vf_netdev, ndev);
2251 netif_addr_unlock_bh(ndev);
2253 if (netif_running(ndev)) {
2254 ret = dev_open(vf_netdev, NULL);
2256 netdev_warn(vf_netdev,
2257 "unable to open: %d\n", ret);
2261 /* Setup VF as slave of the synthetic device.
2262 * Runs in workqueue to avoid recursion in netlink callbacks.
2264 static void netvsc_vf_setup(struct work_struct *w)
2266 struct net_device_context *ndev_ctx
2267 = container_of(w, struct net_device_context, vf_takeover.work);
2268 struct net_device *ndev = hv_get_drvdata(ndev_ctx->device_ctx);
2269 struct net_device *vf_netdev;
2271 if (!rtnl_trylock()) {
2272 schedule_delayed_work(&ndev_ctx->vf_takeover, 0);
2276 vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
2278 __netvsc_vf_setup(ndev, vf_netdev);
2283 /* Find netvsc by VF serial number.
2284 * The PCI hyperv controller records the serial number as the slot kobj name.
2286 static struct net_device *get_netvsc_byslot(const struct net_device *vf_netdev)
2288 struct device *parent = vf_netdev->dev.parent;
2289 struct net_device_context *ndev_ctx;
2290 struct net_device *ndev;
2291 struct pci_dev *pdev;
2294 if (!parent || !dev_is_pci(parent))
2295 return NULL; /* not a PCI device */
2297 pdev = to_pci_dev(parent);
2299 netdev_notice(vf_netdev, "no PCI slot information\n");
2303 if (kstrtou32(pci_slot_name(pdev->slot), 10, &serial)) {
2304 netdev_notice(vf_netdev, "Invalid vf serial:%s\n",
2305 pci_slot_name(pdev->slot));
2309 list_for_each_entry(ndev_ctx, &netvsc_dev_list, list) {
2310 if (!ndev_ctx->vf_alloc)
2313 if (ndev_ctx->vf_serial != serial)
2316 ndev = hv_get_drvdata(ndev_ctx->device_ctx);
2317 if (ndev->addr_len != vf_netdev->addr_len ||
2318 memcmp(ndev->perm_addr, vf_netdev->perm_addr,
2319 ndev->addr_len) != 0)
2326 /* Fallback path to check synthetic vf with help of mac addr.
2327 * Because this function can be called before vf_netdev is
2328 * initialized (NETDEV_POST_INIT) when its perm_addr has not been copied
2329 * from dev_addr, also try to match to its dev_addr.
2330 * Note: On Hyper-V and Azure, it's not possible to set a MAC address
2331 * on a VF that matches to the MAC of a unrelated NETVSC device.
2333 list_for_each_entry(ndev_ctx, &netvsc_dev_list, list) {
2334 ndev = hv_get_drvdata(ndev_ctx->device_ctx);
2335 if (ether_addr_equal(vf_netdev->perm_addr, ndev->perm_addr) ||
2336 ether_addr_equal(vf_netdev->dev_addr, ndev->perm_addr))
2340 netdev_notice(vf_netdev,
2341 "no netdev found for vf serial:%u\n", serial);
2345 static int netvsc_prepare_bonding(struct net_device *vf_netdev)
2347 struct net_device *ndev;
2349 ndev = get_netvsc_byslot(vf_netdev);
2353 /* set slave flag before open to prevent IPv6 addrconf */
2354 vf_netdev->flags |= IFF_SLAVE;
2358 static int netvsc_register_vf(struct net_device *vf_netdev, int context)
2360 struct net_device_context *net_device_ctx;
2361 struct netvsc_device *netvsc_dev;
2362 struct bpf_prog *prog;
2363 struct net_device *ndev;
2366 if (vf_netdev->addr_len != ETH_ALEN)
2369 ndev = get_netvsc_byslot(vf_netdev);
2373 net_device_ctx = netdev_priv(ndev);
2374 netvsc_dev = rtnl_dereference(net_device_ctx->nvdev);
2375 if (!netvsc_dev || rtnl_dereference(net_device_ctx->vf_netdev))
2378 /* if synthetic interface is a different namespace,
2379 * then move the VF to that namespace; join will be
2380 * done again in that context.
2382 if (!net_eq(dev_net(ndev), dev_net(vf_netdev))) {
2383 ret = dev_change_net_namespace(vf_netdev,
2384 dev_net(ndev), "eth%d");
2386 netdev_err(vf_netdev,
2387 "could not move to same namespace as %s: %d\n",
2390 netdev_info(vf_netdev,
2391 "VF moved to namespace with: %s\n",
2396 netdev_info(ndev, "VF registering: %s\n", vf_netdev->name);
2398 if (netvsc_vf_join(vf_netdev, ndev, context) != 0)
2401 dev_hold(vf_netdev);
2402 rcu_assign_pointer(net_device_ctx->vf_netdev, vf_netdev);
2404 if (ndev->needed_headroom < vf_netdev->needed_headroom)
2405 ndev->needed_headroom = vf_netdev->needed_headroom;
2407 vf_netdev->wanted_features = ndev->features;
2408 netdev_update_features(vf_netdev);
2410 prog = netvsc_xdp_get(netvsc_dev);
2411 netvsc_vf_setxdp(vf_netdev, prog);
2416 /* Change the data path when VF UP/DOWN/CHANGE are detected.
2418 * Typically a UP or DOWN event is followed by a CHANGE event, so
2419 * net_device_ctx->data_path_is_vf is used to cache the current data path
2420 * to avoid the duplicate call of netvsc_switch_datapath() and the duplicate
2423 * During hibernation, if a VF NIC driver (e.g. mlx5) preserves the network
2424 * interface, there is only the CHANGE event and no UP or DOWN event.
2426 static int netvsc_vf_changed(struct net_device *vf_netdev, unsigned long event)
2428 struct net_device_context *net_device_ctx;
2429 struct netvsc_device *netvsc_dev;
2430 struct net_device *ndev;
2431 bool vf_is_up = false;
2434 if (event != NETDEV_GOING_DOWN)
2435 vf_is_up = netif_running(vf_netdev);
2437 ndev = get_netvsc_byref(vf_netdev);
2441 net_device_ctx = netdev_priv(ndev);
2442 netvsc_dev = rtnl_dereference(net_device_ctx->nvdev);
2446 if (net_device_ctx->data_path_is_vf == vf_is_up)
2449 if (vf_is_up && !net_device_ctx->vf_alloc) {
2450 netdev_info(ndev, "Waiting for the VF association from host\n");
2451 wait_for_completion(&net_device_ctx->vf_add);
2454 ret = netvsc_switch_datapath(ndev, vf_is_up);
2458 "Data path failed to switch %s VF: %s, err: %d\n",
2459 vf_is_up ? "to" : "from", vf_netdev->name, ret);
2462 netdev_info(ndev, "Data path switched %s VF: %s\n",
2463 vf_is_up ? "to" : "from", vf_netdev->name);
2469 static int netvsc_unregister_vf(struct net_device *vf_netdev)
2471 struct net_device *ndev;
2472 struct net_device_context *net_device_ctx;
2474 ndev = get_netvsc_byref(vf_netdev);
2478 net_device_ctx = netdev_priv(ndev);
2479 cancel_delayed_work_sync(&net_device_ctx->vf_takeover);
2481 netdev_info(ndev, "VF unregistering: %s\n", vf_netdev->name);
2483 netvsc_vf_setxdp(vf_netdev, NULL);
2485 reinit_completion(&net_device_ctx->vf_add);
2486 netdev_rx_handler_unregister(vf_netdev);
2487 netdev_upper_dev_unlink(vf_netdev, ndev);
2488 RCU_INIT_POINTER(net_device_ctx->vf_netdev, NULL);
2491 ndev->needed_headroom = RNDIS_AND_PPI_SIZE;
2496 static int check_dev_is_matching_vf(struct net_device *event_ndev)
2498 /* Skip NetVSC interfaces */
2499 if (event_ndev->netdev_ops == &device_ops)
2502 /* Avoid non-Ethernet type devices */
2503 if (event_ndev->type != ARPHRD_ETHER)
2506 /* Avoid Vlan dev with same MAC registering as VF */
2507 if (is_vlan_dev(event_ndev))
2510 /* Avoid Bonding master dev with same MAC registering as VF */
2511 if (netif_is_bond_master(event_ndev))
2517 static int netvsc_probe(struct hv_device *dev,
2518 const struct hv_vmbus_device_id *dev_id)
2520 struct net_device *net = NULL, *vf_netdev;
2521 struct net_device_context *net_device_ctx;
2522 struct netvsc_device_info *device_info = NULL;
2523 struct netvsc_device *nvdev;
2526 net = alloc_etherdev_mq(sizeof(struct net_device_context),
2531 netif_carrier_off(net);
2533 netvsc_init_settings(net);
2535 net_device_ctx = netdev_priv(net);
2536 net_device_ctx->device_ctx = dev;
2537 net_device_ctx->msg_enable = netif_msg_init(debug, default_msg);
2538 if (netif_msg_probe(net_device_ctx))
2539 netdev_dbg(net, "netvsc msg_enable: %d\n",
2540 net_device_ctx->msg_enable);
2542 hv_set_drvdata(dev, net);
2544 INIT_DELAYED_WORK(&net_device_ctx->dwork, netvsc_link_change);
2546 init_completion(&net_device_ctx->vf_add);
2547 spin_lock_init(&net_device_ctx->lock);
2548 INIT_LIST_HEAD(&net_device_ctx->reconfig_events);
2549 INIT_DELAYED_WORK(&net_device_ctx->vf_takeover, netvsc_vf_setup);
2551 net_device_ctx->vf_stats
2552 = netdev_alloc_pcpu_stats(struct netvsc_vf_pcpu_stats);
2553 if (!net_device_ctx->vf_stats)
2556 net->netdev_ops = &device_ops;
2557 net->ethtool_ops = ðtool_ops;
2558 SET_NETDEV_DEV(net, &dev->device);
2559 dma_set_min_align_mask(&dev->device, HV_HYP_PAGE_SIZE - 1);
2561 /* We always need headroom for rndis header */
2562 net->needed_headroom = RNDIS_AND_PPI_SIZE;
2564 /* Initialize the number of queues to be 1, we may change it if more
2565 * channels are offered later.
2567 netif_set_real_num_tx_queues(net, 1);
2568 netif_set_real_num_rx_queues(net, 1);
2570 /* Notify the netvsc driver of the new device */
2571 device_info = netvsc_devinfo_get(NULL);
2575 goto devinfo_failed;
2578 /* We must get rtnl lock before scheduling nvdev->subchan_work,
2579 * otherwise netvsc_subchan_work() can get rtnl lock first and wait
2580 * all subchannels to show up, but that may not happen because
2581 * netvsc_probe() can't get rtnl lock and as a result vmbus_onoffer()
2582 * -> ... -> device_add() -> ... -> __device_attach() can't get
2583 * the device lock, so all the subchannels can't be processed --
2584 * finally netvsc_subchan_work() hangs forever.
2586 * The rtnl lock also needs to be held before rndis_filter_device_add()
2587 * which advertises nvsp_2_vsc_capability / sriov bit, and triggers
2588 * VF NIC offering and registering. If VF NIC finished register_netdev()
2589 * earlier it may cause name based config failure.
2593 nvdev = rndis_filter_device_add(dev, device_info);
2594 if (IS_ERR(nvdev)) {
2595 ret = PTR_ERR(nvdev);
2596 netdev_err(net, "unable to add netvsc device (ret %d)\n", ret);
2600 eth_hw_addr_set(net, device_info->mac_adr);
2602 if (nvdev->num_chn > 1)
2603 schedule_work(&nvdev->subchan_work);
2605 /* hw_features computed in rndis_netdev_set_hwcaps() */
2606 net->features = net->hw_features |
2607 NETIF_F_HIGHDMA | NETIF_F_HW_VLAN_CTAG_TX |
2608 NETIF_F_HW_VLAN_CTAG_RX;
2609 net->vlan_features = net->features;
2611 netdev_lockdep_set_classes(net);
2613 net->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT |
2614 NETDEV_XDP_ACT_NDO_XMIT;
2616 /* MTU range: 68 - 1500 or 65521 */
2617 net->min_mtu = NETVSC_MTU_MIN;
2618 if (nvdev->nvsp_version >= NVSP_PROTOCOL_VERSION_2)
2619 net->max_mtu = NETVSC_MTU - ETH_HLEN;
2621 net->max_mtu = ETH_DATA_LEN;
2623 nvdev->tx_disable = false;
2625 ret = register_netdevice(net);
2627 pr_err("Unable to register netdev.\n");
2628 goto register_failed;
2631 list_add(&net_device_ctx->list, &netvsc_dev_list);
2633 /* When the hv_netvsc driver is unloaded and reloaded, the
2634 * NET_DEVICE_REGISTER for the vf device is replayed before probe
2635 * is complete. This is because register_netdevice_notifier() gets
2636 * registered before vmbus_driver_register() so that callback func
2637 * is set before probe and we don't miss events like NETDEV_POST_INIT
2638 * So, in this section we try to register the matching vf device that
2639 * is present as a netdevice, knowing that its register call is not
2640 * processed in the netvsc_netdev_notifier(as probing is progress and
2641 * get_netvsc_byslot fails).
2643 for_each_netdev(dev_net(net), vf_netdev) {
2644 ret = check_dev_is_matching_vf(vf_netdev);
2648 if (net != get_netvsc_byslot(vf_netdev))
2651 netvsc_prepare_bonding(vf_netdev);
2652 netvsc_register_vf(vf_netdev, VF_REG_IN_PROBE);
2653 __netvsc_vf_setup(net, vf_netdev);
2658 netvsc_devinfo_put(device_info);
2662 rndis_filter_device_remove(dev, nvdev);
2665 netvsc_devinfo_put(device_info);
2667 free_percpu(net_device_ctx->vf_stats);
2669 hv_set_drvdata(dev, NULL);
2675 static void netvsc_remove(struct hv_device *dev)
2677 struct net_device_context *ndev_ctx;
2678 struct net_device *vf_netdev, *net;
2679 struct netvsc_device *nvdev;
2681 net = hv_get_drvdata(dev);
2683 dev_err(&dev->device, "No net device to remove\n");
2687 ndev_ctx = netdev_priv(net);
2689 cancel_delayed_work_sync(&ndev_ctx->dwork);
2692 nvdev = rtnl_dereference(ndev_ctx->nvdev);
2694 cancel_work_sync(&nvdev->subchan_work);
2695 netvsc_xdp_set(net, NULL, NULL, nvdev);
2699 * Call to the vsc driver to let it know that the device is being
2700 * removed. Also blocks mtu and channel changes.
2702 vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
2704 netvsc_unregister_vf(vf_netdev);
2707 rndis_filter_device_remove(dev, nvdev);
2709 unregister_netdevice(net);
2710 list_del(&ndev_ctx->list);
2714 hv_set_drvdata(dev, NULL);
2716 free_percpu(ndev_ctx->vf_stats);
2720 static int netvsc_suspend(struct hv_device *dev)
2722 struct net_device_context *ndev_ctx;
2723 struct netvsc_device *nvdev;
2724 struct net_device *net;
2727 net = hv_get_drvdata(dev);
2729 ndev_ctx = netdev_priv(net);
2730 cancel_delayed_work_sync(&ndev_ctx->dwork);
2734 nvdev = rtnl_dereference(ndev_ctx->nvdev);
2735 if (nvdev == NULL) {
2740 /* Save the current config info */
2741 ndev_ctx->saved_netvsc_dev_info = netvsc_devinfo_get(nvdev);
2742 if (!ndev_ctx->saved_netvsc_dev_info) {
2746 ret = netvsc_detach(net, nvdev);
2753 static int netvsc_resume(struct hv_device *dev)
2755 struct net_device *net = hv_get_drvdata(dev);
2756 struct net_device_context *net_device_ctx;
2757 struct netvsc_device_info *device_info;
2762 net_device_ctx = netdev_priv(net);
2764 /* Reset the data path to the netvsc NIC before re-opening the vmbus
2765 * channel. Later netvsc_netdev_event() will switch the data path to
2766 * the VF upon the UP or CHANGE event.
2768 net_device_ctx->data_path_is_vf = false;
2769 device_info = net_device_ctx->saved_netvsc_dev_info;
2771 ret = netvsc_attach(net, device_info);
2773 netvsc_devinfo_put(device_info);
2774 net_device_ctx->saved_netvsc_dev_info = NULL;
2780 static const struct hv_vmbus_device_id id_table[] = {
2786 MODULE_DEVICE_TABLE(vmbus, id_table);
2788 /* The one and only one */
2789 static struct hv_driver netvsc_drv = {
2790 .name = KBUILD_MODNAME,
2791 .id_table = id_table,
2792 .probe = netvsc_probe,
2793 .remove = netvsc_remove,
2794 .suspend = netvsc_suspend,
2795 .resume = netvsc_resume,
2797 .probe_type = PROBE_FORCE_SYNCHRONOUS,
2801 /* Set VF's namespace same as the synthetic NIC */
2802 static void netvsc_event_set_vf_ns(struct net_device *ndev)
2804 struct net_device_context *ndev_ctx = netdev_priv(ndev);
2805 struct net_device *vf_netdev;
2808 vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
2812 if (!net_eq(dev_net(ndev), dev_net(vf_netdev))) {
2813 ret = dev_change_net_namespace(vf_netdev, dev_net(ndev),
2816 netdev_err(vf_netdev,
2817 "Cannot move to same namespace as %s: %d\n",
2820 netdev_info(vf_netdev,
2821 "Moved VF to namespace with: %s\n",
2827 * On Hyper-V, every VF interface is matched with a corresponding
2828 * synthetic interface. The synthetic interface is presented first
2829 * to the guest. When the corresponding VF instance is registered,
2830 * we will take care of switching the data path.
2832 static int netvsc_netdev_event(struct notifier_block *this,
2833 unsigned long event, void *ptr)
2835 struct net_device *event_dev = netdev_notifier_info_to_dev(ptr);
2838 if (event_dev->netdev_ops == &device_ops && event == NETDEV_REGISTER) {
2839 netvsc_event_set_vf_ns(event_dev);
2843 ret = check_dev_is_matching_vf(event_dev);
2848 case NETDEV_POST_INIT:
2849 return netvsc_prepare_bonding(event_dev);
2850 case NETDEV_REGISTER:
2851 return netvsc_register_vf(event_dev, VF_REG_IN_NOTIFIER);
2852 case NETDEV_UNREGISTER:
2853 return netvsc_unregister_vf(event_dev);
2857 case NETDEV_GOING_DOWN:
2858 return netvsc_vf_changed(event_dev, event);
2864 static struct notifier_block netvsc_netdev_notifier = {
2865 .notifier_call = netvsc_netdev_event,
2868 static void __exit netvsc_drv_exit(void)
2870 unregister_netdevice_notifier(&netvsc_netdev_notifier);
2871 vmbus_driver_unregister(&netvsc_drv);
2874 static int __init netvsc_drv_init(void)
2878 if (ring_size < RING_SIZE_MIN) {
2879 ring_size = RING_SIZE_MIN;
2880 pr_info("Increased ring_size to %u (min allowed)\n",
2883 netvsc_ring_bytes = VMBUS_RING_SIZE(ring_size * 4096);
2885 register_netdevice_notifier(&netvsc_netdev_notifier);
2887 ret = vmbus_driver_register(&netvsc_drv);
2894 unregister_netdevice_notifier(&netvsc_netdev_notifier);
2898 MODULE_LICENSE("GPL");
2899 MODULE_DESCRIPTION("Microsoft Hyper-V network driver");
2901 module_init(netvsc_drv_init);
2902 module_exit(netvsc_drv_exit);