1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2015 - 2022 Beijing WangXun Technology Co., Ltd. */
4 #include <linux/etherdevice.h>
5 #include <linux/netdevice.h>
6 #include <linux/if_ether.h>
7 #include <linux/if_vlan.h>
8 #include <linux/iopoll.h>
15 static int wx_phy_read_reg_mdi(struct mii_bus *bus, int phy_addr, int devnum, int regnum)
17 struct wx *wx = bus->priv;
21 /* setup and write the address cycle command */
22 command = WX_MSCA_RA(regnum) |
23 WX_MSCA_PA(phy_addr) |
25 wr32(wx, WX_MSCA, command);
27 command = WX_MSCC_CMD(WX_MSCA_CMD_READ) | WX_MSCC_BUSY;
28 if (wx->mac.type == wx_mac_em)
29 command |= WX_MDIO_CLK(6);
30 wr32(wx, WX_MSCC, command);
32 /* wait to complete */
33 ret = read_poll_timeout(rd32, val, !(val & WX_MSCC_BUSY), 1000,
34 100000, false, wx, WX_MSCC);
36 wx_err(wx, "Mdio read c22 command did not complete.\n");
40 return (u16)rd32(wx, WX_MSCC);
43 static int wx_phy_write_reg_mdi(struct mii_bus *bus, int phy_addr,
44 int devnum, int regnum, u16 value)
46 struct wx *wx = bus->priv;
50 /* setup and write the address cycle command */
51 command = WX_MSCA_RA(regnum) |
52 WX_MSCA_PA(phy_addr) |
54 wr32(wx, WX_MSCA, command);
56 command = value | WX_MSCC_CMD(WX_MSCA_CMD_WRITE) | WX_MSCC_BUSY;
57 if (wx->mac.type == wx_mac_em)
58 command |= WX_MDIO_CLK(6);
59 wr32(wx, WX_MSCC, command);
61 /* wait to complete */
62 ret = read_poll_timeout(rd32, val, !(val & WX_MSCC_BUSY), 1000,
63 100000, false, wx, WX_MSCC);
65 wx_err(wx, "Mdio write c22 command did not complete.\n");
70 int wx_phy_read_reg_mdi_c22(struct mii_bus *bus, int phy_addr, int regnum)
72 struct wx *wx = bus->priv;
74 wr32(wx, WX_MDIO_CLAUSE_SELECT, 0xF);
75 return wx_phy_read_reg_mdi(bus, phy_addr, 0, regnum);
77 EXPORT_SYMBOL(wx_phy_read_reg_mdi_c22);
79 int wx_phy_write_reg_mdi_c22(struct mii_bus *bus, int phy_addr, int regnum, u16 value)
81 struct wx *wx = bus->priv;
83 wr32(wx, WX_MDIO_CLAUSE_SELECT, 0xF);
84 return wx_phy_write_reg_mdi(bus, phy_addr, 0, regnum, value);
86 EXPORT_SYMBOL(wx_phy_write_reg_mdi_c22);
88 int wx_phy_read_reg_mdi_c45(struct mii_bus *bus, int phy_addr, int devnum, int regnum)
90 struct wx *wx = bus->priv;
92 wr32(wx, WX_MDIO_CLAUSE_SELECT, 0);
93 return wx_phy_read_reg_mdi(bus, phy_addr, devnum, regnum);
95 EXPORT_SYMBOL(wx_phy_read_reg_mdi_c45);
97 int wx_phy_write_reg_mdi_c45(struct mii_bus *bus, int phy_addr,
98 int devnum, int regnum, u16 value)
100 struct wx *wx = bus->priv;
102 wr32(wx, WX_MDIO_CLAUSE_SELECT, 0);
103 return wx_phy_write_reg_mdi(bus, phy_addr, devnum, regnum, value);
105 EXPORT_SYMBOL(wx_phy_write_reg_mdi_c45);
107 static void wx_intr_disable(struct wx *wx, u64 qmask)
111 mask = (qmask & U32_MAX);
113 wr32(wx, WX_PX_IMS(0), mask);
115 if (wx->mac.type == wx_mac_sp) {
116 mask = (qmask >> 32);
118 wr32(wx, WX_PX_IMS(1), mask);
122 void wx_intr_enable(struct wx *wx, u64 qmask)
126 mask = (qmask & U32_MAX);
128 wr32(wx, WX_PX_IMC(0), mask);
129 if (wx->mac.type == wx_mac_sp) {
130 mask = (qmask >> 32);
132 wr32(wx, WX_PX_IMC(1), mask);
135 EXPORT_SYMBOL(wx_intr_enable);
138 * wx_irq_disable - Mask off interrupt generation on the NIC
139 * @wx: board private structure
141 void wx_irq_disable(struct wx *wx)
143 struct pci_dev *pdev = wx->pdev;
145 wr32(wx, WX_PX_MISC_IEN, 0);
146 wx_intr_disable(wx, WX_INTR_ALL);
148 if (pdev->msix_enabled) {
151 for (vector = 0; vector < wx->num_q_vectors; vector++)
152 synchronize_irq(wx->msix_q_entries[vector].vector);
154 synchronize_irq(wx->msix_entry->vector);
156 synchronize_irq(pdev->irq);
159 EXPORT_SYMBOL(wx_irq_disable);
161 /* cmd_addr is used for some special command:
162 * 1. to be sector address, when implemented erase sector command
163 * 2. to be flash address when implemented read, write flash address
165 static int wx_fmgr_cmd_op(struct wx *wx, u32 cmd, u32 cmd_addr)
167 u32 cmd_val = 0, val = 0;
169 cmd_val = WX_SPI_CMD_CMD(cmd) |
170 WX_SPI_CMD_CLK(WX_SPI_CLK_DIV) |
172 wr32(wx, WX_SPI_CMD, cmd_val);
174 return read_poll_timeout(rd32, val, (val & 0x1), 10, 100000,
175 false, wx, WX_SPI_STATUS);
178 static int wx_flash_read_dword(struct wx *wx, u32 addr, u32 *data)
182 ret = wx_fmgr_cmd_op(wx, WX_SPI_CMD_READ_DWORD, addr);
186 *data = rd32(wx, WX_SPI_DATA);
191 int wx_check_flash_load(struct wx *hw, u32 check_bit)
196 /* if there's flash existing */
197 if (!(rd32(hw, WX_SPI_STATUS) &
198 WX_SPI_STATUS_FLASH_BYPASS)) {
199 /* wait hw load flash done */
200 err = read_poll_timeout(rd32, reg, !(reg & check_bit), 20000, 2000000,
201 false, hw, WX_SPI_ILDR_STATUS);
203 wx_err(hw, "Check flash load timeout.\n");
208 EXPORT_SYMBOL(wx_check_flash_load);
210 void wx_control_hw(struct wx *wx, bool drv)
212 /* True : Let firmware know the driver has taken over
213 * False : Let firmware take over control of hw
215 wr32m(wx, WX_CFG_PORT_CTL, WX_CFG_PORT_CTL_DRV_LOAD,
216 drv ? WX_CFG_PORT_CTL_DRV_LOAD : 0);
218 EXPORT_SYMBOL(wx_control_hw);
221 * wx_mng_present - returns 0 when management capability is present
222 * @wx: pointer to hardware structure
224 int wx_mng_present(struct wx *wx)
228 fwsm = rd32(wx, WX_MIS_ST);
229 if (fwsm & WX_MIS_ST_MNG_INIT_DN)
234 EXPORT_SYMBOL(wx_mng_present);
236 /* Software lock to be held while software semaphore is being accessed. */
237 static DEFINE_MUTEX(wx_sw_sync_lock);
240 * wx_release_sw_sync - Release SW semaphore
241 * @wx: pointer to hardware structure
242 * @mask: Mask to specify which semaphore to release
244 * Releases the SW semaphore for the specified
245 * function (CSR, PHY0, PHY1, EEPROM, Flash)
247 static void wx_release_sw_sync(struct wx *wx, u32 mask)
249 mutex_lock(&wx_sw_sync_lock);
250 wr32m(wx, WX_MNG_SWFW_SYNC, mask, 0);
251 mutex_unlock(&wx_sw_sync_lock);
255 * wx_acquire_sw_sync - Acquire SW semaphore
256 * @wx: pointer to hardware structure
257 * @mask: Mask to specify which semaphore to acquire
259 * Acquires the SW semaphore for the specified
260 * function (CSR, PHY0, PHY1, EEPROM, Flash)
262 static int wx_acquire_sw_sync(struct wx *wx, u32 mask)
267 mutex_lock(&wx_sw_sync_lock);
268 ret = read_poll_timeout(rd32, sem, !(sem & mask),
269 5000, 2000000, false, wx, WX_MNG_SWFW_SYNC);
272 wr32(wx, WX_MNG_SWFW_SYNC, sem);
274 wx_err(wx, "SW Semaphore not granted: 0x%x.\n", sem);
276 mutex_unlock(&wx_sw_sync_lock);
282 * wx_host_interface_command - Issue command to manageability block
283 * @wx: pointer to the HW structure
284 * @buffer: contains the command to write and where the return status will
286 * @length: length of buffer, must be multiple of 4 bytes
287 * @timeout: time in ms to wait for command completion
288 * @return_data: read and return data from the buffer (true) or not (false)
289 * Needed because FW structures are big endian and decoding of
290 * these fields can be 8 bit or 16 bit based on command. Decoding
291 * is not easily understood without making a table of commands.
292 * So we will leave this up to the caller to read back the data
295 int wx_host_interface_command(struct wx *wx, u32 *buffer,
296 u32 length, u32 timeout, bool return_data)
298 u32 hdr_size = sizeof(struct wx_hic_hdr);
299 u32 hicr, i, bi, buf[64] = {};
304 if (length == 0 || length > WX_HI_MAX_BLOCK_BYTE_LENGTH) {
305 wx_err(wx, "Buffer length failure buffersize=%d.\n", length);
309 status = wx_acquire_sw_sync(wx, WX_MNG_SWFW_SYNC_SW_MB);
313 /* Calculate length in DWORDs. We must be DWORD aligned */
314 if ((length % (sizeof(u32))) != 0) {
315 wx_err(wx, "Buffer length failure, not aligned to dword");
320 dword_len = length >> 2;
322 /* The device driver writes the relevant command block
325 for (i = 0; i < dword_len; i++) {
326 wr32a(wx, WX_MNG_MBOX, i, (__force u32)cpu_to_le32(buffer[i]));
328 buf[i] = rd32a(wx, WX_MNG_MBOX, i);
330 /* Setting this bit tells the ARC that a new command is pending. */
331 wr32m(wx, WX_MNG_MBOX_CTL,
332 WX_MNG_MBOX_CTL_SWRDY, WX_MNG_MBOX_CTL_SWRDY);
334 status = read_poll_timeout(rd32, hicr, hicr & WX_MNG_MBOX_CTL_FWRDY, 1000,
335 timeout * 1000, false, wx, WX_MNG_MBOX_CTL);
337 /* Check command completion */
339 wx_dbg(wx, "Command has failed with no status valid.\n");
341 buf[0] = rd32(wx, WX_MNG_MBOX);
342 if ((buffer[0] & 0xff) != (~buf[0] >> 24)) {
346 if ((buf[0] & 0xff0000) >> 16 == 0x80) {
347 wx_dbg(wx, "It's unknown cmd.\n");
352 wx_dbg(wx, "write value:\n");
353 for (i = 0; i < dword_len; i++)
354 wx_dbg(wx, "%x ", buffer[i]);
355 wx_dbg(wx, "read value:\n");
356 for (i = 0; i < dword_len; i++)
357 wx_dbg(wx, "%x ", buf[i]);
363 /* Calculate length in DWORDs */
364 dword_len = hdr_size >> 2;
366 /* first pull in the header so we know the buffer length */
367 for (bi = 0; bi < dword_len; bi++) {
368 buffer[bi] = rd32a(wx, WX_MNG_MBOX, bi);
369 le32_to_cpus(&buffer[bi]);
372 /* If there is any thing in data position pull it in */
373 buf_len = ((struct wx_hic_hdr *)buffer)->buf_len;
377 if (length < buf_len + hdr_size) {
378 wx_err(wx, "Buffer not large enough for reply message.\n");
383 /* Calculate length in DWORDs, add 3 for odd lengths */
384 dword_len = (buf_len + 3) >> 2;
386 /* Pull in the rest of the buffer (bi is where we left off) */
387 for (; bi <= dword_len; bi++) {
388 buffer[bi] = rd32a(wx, WX_MNG_MBOX, bi);
389 le32_to_cpus(&buffer[bi]);
393 wx_release_sw_sync(wx, WX_MNG_SWFW_SYNC_SW_MB);
396 EXPORT_SYMBOL(wx_host_interface_command);
399 * wx_read_ee_hostif_data - Read EEPROM word using a host interface cmd
400 * assuming that the semaphore is already obtained.
401 * @wx: pointer to hardware structure
402 * @offset: offset of word in the EEPROM to read
403 * @data: word read from the EEPROM
405 * Reads a 16 bit word from the EEPROM using the hostif.
407 static int wx_read_ee_hostif_data(struct wx *wx, u16 offset, u16 *data)
409 struct wx_hic_read_shadow_ram buffer;
412 buffer.hdr.req.cmd = FW_READ_SHADOW_RAM_CMD;
413 buffer.hdr.req.buf_lenh = 0;
414 buffer.hdr.req.buf_lenl = FW_READ_SHADOW_RAM_LEN;
415 buffer.hdr.req.checksum = FW_DEFAULT_CHECKSUM;
417 /* convert offset from words to bytes */
418 buffer.address = (__force u32)cpu_to_be32(offset * 2);
420 buffer.length = (__force u16)cpu_to_be16(sizeof(u16));
422 status = wx_host_interface_command(wx, (u32 *)&buffer, sizeof(buffer),
423 WX_HI_COMMAND_TIMEOUT, false);
428 *data = (u16)rd32a(wx, WX_MNG_MBOX, FW_NVM_DATA_OFFSET);
434 * wx_read_ee_hostif - Read EEPROM word using a host interface cmd
435 * @wx: pointer to hardware structure
436 * @offset: offset of word in the EEPROM to read
437 * @data: word read from the EEPROM
439 * Reads a 16 bit word from the EEPROM using the hostif.
441 int wx_read_ee_hostif(struct wx *wx, u16 offset, u16 *data)
445 status = wx_acquire_sw_sync(wx, WX_MNG_SWFW_SYNC_SW_FLASH);
447 status = wx_read_ee_hostif_data(wx, offset, data);
448 wx_release_sw_sync(wx, WX_MNG_SWFW_SYNC_SW_FLASH);
453 EXPORT_SYMBOL(wx_read_ee_hostif);
456 * wx_read_ee_hostif_buffer- Read EEPROM word(s) using hostif
457 * @wx: pointer to hardware structure
458 * @offset: offset of word in the EEPROM to read
459 * @words: number of words
460 * @data: word(s) read from the EEPROM
462 * Reads a 16 bit word(s) from the EEPROM using the hostif.
464 int wx_read_ee_hostif_buffer(struct wx *wx,
465 u16 offset, u16 words, u16 *data)
467 struct wx_hic_read_shadow_ram buffer;
468 u32 current_word = 0;
474 /* Take semaphore for the entire operation. */
475 status = wx_acquire_sw_sync(wx, WX_MNG_SWFW_SYNC_SW_FLASH);
480 if (words > FW_MAX_READ_BUFFER_SIZE / 2)
481 words_to_read = FW_MAX_READ_BUFFER_SIZE / 2;
483 words_to_read = words;
485 buffer.hdr.req.cmd = FW_READ_SHADOW_RAM_CMD;
486 buffer.hdr.req.buf_lenh = 0;
487 buffer.hdr.req.buf_lenl = FW_READ_SHADOW_RAM_LEN;
488 buffer.hdr.req.checksum = FW_DEFAULT_CHECKSUM;
490 /* convert offset from words to bytes */
491 buffer.address = (__force u32)cpu_to_be32((offset + current_word) * 2);
492 buffer.length = (__force u16)cpu_to_be16(words_to_read * 2);
494 status = wx_host_interface_command(wx, (u32 *)&buffer,
496 WX_HI_COMMAND_TIMEOUT,
500 wx_err(wx, "Host interface command failed\n");
504 for (i = 0; i < words_to_read; i++) {
505 u32 reg = WX_MNG_MBOX + (FW_NVM_DATA_OFFSET << 2) + 2 * i;
507 value = rd32(wx, reg);
508 data[current_word] = (u16)(value & 0xffff);
511 if (i < words_to_read) {
513 data[current_word] = (u16)(value & 0xffff);
517 words -= words_to_read;
521 wx_release_sw_sync(wx, WX_MNG_SWFW_SYNC_SW_FLASH);
524 EXPORT_SYMBOL(wx_read_ee_hostif_buffer);
527 * wx_init_eeprom_params - Initialize EEPROM params
528 * @wx: pointer to hardware structure
530 * Initializes the EEPROM parameters wx_eeprom_info within the
531 * wx_hw struct in order to set up EEPROM access.
533 void wx_init_eeprom_params(struct wx *wx)
535 struct wx_eeprom_info *eeprom = &wx->eeprom;
539 if (eeprom->type == wx_eeprom_uninitialized) {
540 eeprom->semaphore_delay = 10;
541 eeprom->type = wx_eeprom_none;
543 if (!(rd32(wx, WX_SPI_STATUS) &
544 WX_SPI_STATUS_FLASH_BYPASS)) {
545 eeprom->type = wx_flash;
548 eeprom->word_size = eeprom_size >> 1;
550 wx_dbg(wx, "Eeprom params: type = %d, size = %d\n",
551 eeprom->type, eeprom->word_size);
555 if (wx->mac.type == wx_mac_sp) {
556 if (wx_read_ee_hostif(wx, WX_SW_REGION_PTR, &data)) {
557 wx_err(wx, "NVM Read Error\n");
563 eeprom->sw_region_offset = data;
565 EXPORT_SYMBOL(wx_init_eeprom_params);
568 * wx_get_mac_addr - Generic get MAC address
569 * @wx: pointer to hardware structure
570 * @mac_addr: Adapter MAC address
572 * Reads the adapter's MAC address from first Receive Address Register (RAR0)
573 * A reset of the adapter must be performed prior to calling this function
574 * in order for the MAC address to have been loaded from the EEPROM into RAR0
576 void wx_get_mac_addr(struct wx *wx, u8 *mac_addr)
582 wr32(wx, WX_PSR_MAC_SWC_IDX, 0);
583 rar_high = rd32(wx, WX_PSR_MAC_SWC_AD_H);
584 rar_low = rd32(wx, WX_PSR_MAC_SWC_AD_L);
586 for (i = 0; i < 2; i++)
587 mac_addr[i] = (u8)(rar_high >> (1 - i) * 8);
589 for (i = 0; i < 4; i++)
590 mac_addr[i + 2] = (u8)(rar_low >> (3 - i) * 8);
592 EXPORT_SYMBOL(wx_get_mac_addr);
595 * wx_set_rar - Set Rx address register
596 * @wx: pointer to hardware structure
597 * @index: Receive address register to write
598 * @addr: Address to put into receive address register
599 * @pools: VMDq "set" or "pool" index
600 * @enable_addr: set flag that address is active
602 * Puts an ethernet address into a receive address register.
604 static int wx_set_rar(struct wx *wx, u32 index, u8 *addr, u64 pools,
607 u32 rar_entries = wx->mac.num_rar_entries;
608 u32 rar_low, rar_high;
610 /* Make sure we are using a valid rar index range */
611 if (index >= rar_entries) {
612 wx_err(wx, "RAR index %d is out of range.\n", index);
616 /* select the MAC address */
617 wr32(wx, WX_PSR_MAC_SWC_IDX, index);
619 /* setup VMDq pool mapping */
620 wr32(wx, WX_PSR_MAC_SWC_VM_L, pools & 0xFFFFFFFF);
621 if (wx->mac.type == wx_mac_sp)
622 wr32(wx, WX_PSR_MAC_SWC_VM_H, pools >> 32);
624 /* HW expects these in little endian so we reverse the byte
625 * order from network order (big endian) to little endian
627 * Some parts put the VMDq setting in the extra RAH bits,
628 * so save everything except the lower 16 bits that hold part
629 * of the address and the address valid bit.
631 rar_low = ((u32)addr[5] |
632 ((u32)addr[4] << 8) |
633 ((u32)addr[3] << 16) |
634 ((u32)addr[2] << 24));
635 rar_high = ((u32)addr[1] |
636 ((u32)addr[0] << 8));
637 if (enable_addr != 0)
638 rar_high |= WX_PSR_MAC_SWC_AD_H_AV;
640 wr32(wx, WX_PSR_MAC_SWC_AD_L, rar_low);
641 wr32m(wx, WX_PSR_MAC_SWC_AD_H,
642 (WX_PSR_MAC_SWC_AD_H_AD(U16_MAX) |
643 WX_PSR_MAC_SWC_AD_H_ADTYPE(1) |
644 WX_PSR_MAC_SWC_AD_H_AV),
651 * wx_clear_rar - Remove Rx address register
652 * @wx: pointer to hardware structure
653 * @index: Receive address register to write
655 * Clears an ethernet address from a receive address register.
657 static int wx_clear_rar(struct wx *wx, u32 index)
659 u32 rar_entries = wx->mac.num_rar_entries;
661 /* Make sure we are using a valid rar index range */
662 if (index >= rar_entries) {
663 wx_err(wx, "RAR index %d is out of range.\n", index);
667 /* Some parts put the VMDq setting in the extra RAH bits,
668 * so save everything except the lower 16 bits that hold part
669 * of the address and the address valid bit.
671 wr32(wx, WX_PSR_MAC_SWC_IDX, index);
673 wr32(wx, WX_PSR_MAC_SWC_VM_L, 0);
674 wr32(wx, WX_PSR_MAC_SWC_VM_H, 0);
676 wr32(wx, WX_PSR_MAC_SWC_AD_L, 0);
677 wr32m(wx, WX_PSR_MAC_SWC_AD_H,
678 (WX_PSR_MAC_SWC_AD_H_AD(U16_MAX) |
679 WX_PSR_MAC_SWC_AD_H_ADTYPE(1) |
680 WX_PSR_MAC_SWC_AD_H_AV),
687 * wx_clear_vmdq - Disassociate a VMDq pool index from a rx address
688 * @wx: pointer to hardware struct
689 * @rar: receive address register index to disassociate
690 * @vmdq: VMDq pool index to remove from the rar
692 static int wx_clear_vmdq(struct wx *wx, u32 rar, u32 __maybe_unused vmdq)
694 u32 rar_entries = wx->mac.num_rar_entries;
695 u32 mpsar_lo, mpsar_hi;
697 /* Make sure we are using a valid rar index range */
698 if (rar >= rar_entries) {
699 wx_err(wx, "RAR index %d is out of range.\n", rar);
703 wr32(wx, WX_PSR_MAC_SWC_IDX, rar);
704 mpsar_lo = rd32(wx, WX_PSR_MAC_SWC_VM_L);
705 mpsar_hi = rd32(wx, WX_PSR_MAC_SWC_VM_H);
707 if (!mpsar_lo && !mpsar_hi)
710 /* was that the last pool using this rar? */
711 if (mpsar_lo == 0 && mpsar_hi == 0 && rar != 0)
712 wx_clear_rar(wx, rar);
718 * wx_init_uta_tables - Initialize the Unicast Table Array
719 * @wx: pointer to hardware structure
721 static void wx_init_uta_tables(struct wx *wx)
725 wx_dbg(wx, " Clearing UTA\n");
727 for (i = 0; i < 128; i++)
728 wr32(wx, WX_PSR_UC_TBL(i), 0);
732 * wx_init_rx_addrs - Initializes receive address filters.
733 * @wx: pointer to hardware structure
735 * Places the MAC address in receive address register 0 and clears the rest
736 * of the receive address registers. Clears the multicast table. Assumes
737 * the receiver is in reset when the routine is called.
739 void wx_init_rx_addrs(struct wx *wx)
741 u32 rar_entries = wx->mac.num_rar_entries;
745 /* If the current mac address is valid, assume it is a software override
746 * to the permanent address.
747 * Otherwise, use the permanent address from the eeprom.
749 if (!is_valid_ether_addr(wx->mac.addr)) {
750 /* Get the MAC address from the RAR0 for later reference */
751 wx_get_mac_addr(wx, wx->mac.addr);
752 wx_dbg(wx, "Keeping Current RAR0 Addr = %pM\n", wx->mac.addr);
754 /* Setup the receive address. */
755 wx_dbg(wx, "Overriding MAC Address in RAR[0]\n");
756 wx_dbg(wx, "New MAC Addr = %pM\n", wx->mac.addr);
758 wx_set_rar(wx, 0, wx->mac.addr, 0, WX_PSR_MAC_SWC_AD_H_AV);
760 if (wx->mac.type == wx_mac_sp) {
761 /* clear VMDq pool/queue selection for RAR 0 */
762 wx_clear_vmdq(wx, 0, WX_CLEAR_VMDQ_ALL);
766 /* Zero out the other receive addresses. */
767 wx_dbg(wx, "Clearing RAR[1-%d]\n", rar_entries - 1);
768 for (i = 1; i < rar_entries; i++) {
769 wr32(wx, WX_PSR_MAC_SWC_IDX, i);
770 wr32(wx, WX_PSR_MAC_SWC_AD_L, 0);
771 wr32(wx, WX_PSR_MAC_SWC_AD_H, 0);
775 wx->addr_ctrl.mta_in_use = 0;
776 psrctl = rd32(wx, WX_PSR_CTL);
777 psrctl &= ~(WX_PSR_CTL_MO | WX_PSR_CTL_MFE);
778 psrctl |= wx->mac.mc_filter_type << WX_PSR_CTL_MO_SHIFT;
779 wr32(wx, WX_PSR_CTL, psrctl);
780 wx_dbg(wx, " Clearing MTA\n");
781 for (i = 0; i < wx->mac.mcft_size; i++)
782 wr32(wx, WX_PSR_MC_TBL(i), 0);
784 wx_init_uta_tables(wx);
786 EXPORT_SYMBOL(wx_init_rx_addrs);
788 static void wx_sync_mac_table(struct wx *wx)
792 for (i = 0; i < wx->mac.num_rar_entries; i++) {
793 if (wx->mac_table[i].state & WX_MAC_STATE_MODIFIED) {
794 if (wx->mac_table[i].state & WX_MAC_STATE_IN_USE) {
796 wx->mac_table[i].addr,
797 wx->mac_table[i].pools,
798 WX_PSR_MAC_SWC_AD_H_AV);
802 wx->mac_table[i].state &= ~(WX_MAC_STATE_MODIFIED);
807 /* this function destroys the first RAR entry */
808 void wx_mac_set_default_filter(struct wx *wx, u8 *addr)
810 memcpy(&wx->mac_table[0].addr, addr, ETH_ALEN);
811 wx->mac_table[0].pools = 1ULL;
812 wx->mac_table[0].state = (WX_MAC_STATE_DEFAULT | WX_MAC_STATE_IN_USE);
813 wx_set_rar(wx, 0, wx->mac_table[0].addr,
814 wx->mac_table[0].pools,
815 WX_PSR_MAC_SWC_AD_H_AV);
817 EXPORT_SYMBOL(wx_mac_set_default_filter);
819 void wx_flush_sw_mac_table(struct wx *wx)
823 for (i = 0; i < wx->mac.num_rar_entries; i++) {
824 if (!(wx->mac_table[i].state & WX_MAC_STATE_IN_USE))
827 wx->mac_table[i].state |= WX_MAC_STATE_MODIFIED;
828 wx->mac_table[i].state &= ~WX_MAC_STATE_IN_USE;
829 memset(wx->mac_table[i].addr, 0, ETH_ALEN);
830 wx->mac_table[i].pools = 0;
832 wx_sync_mac_table(wx);
834 EXPORT_SYMBOL(wx_flush_sw_mac_table);
836 static int wx_add_mac_filter(struct wx *wx, u8 *addr, u16 pool)
840 if (is_zero_ether_addr(addr))
843 for (i = 0; i < wx->mac.num_rar_entries; i++) {
844 if (wx->mac_table[i].state & WX_MAC_STATE_IN_USE) {
845 if (ether_addr_equal(addr, wx->mac_table[i].addr)) {
846 if (wx->mac_table[i].pools != (1ULL << pool)) {
847 memcpy(wx->mac_table[i].addr, addr, ETH_ALEN);
848 wx->mac_table[i].pools |= (1ULL << pool);
849 wx_sync_mac_table(wx);
855 if (wx->mac_table[i].state & WX_MAC_STATE_IN_USE)
857 wx->mac_table[i].state |= (WX_MAC_STATE_MODIFIED |
858 WX_MAC_STATE_IN_USE);
859 memcpy(wx->mac_table[i].addr, addr, ETH_ALEN);
860 wx->mac_table[i].pools |= (1ULL << pool);
861 wx_sync_mac_table(wx);
867 static int wx_del_mac_filter(struct wx *wx, u8 *addr, u16 pool)
871 if (is_zero_ether_addr(addr))
874 /* search table for addr, if found, set to 0 and sync */
875 for (i = 0; i < wx->mac.num_rar_entries; i++) {
876 if (!ether_addr_equal(addr, wx->mac_table[i].addr))
879 wx->mac_table[i].state |= WX_MAC_STATE_MODIFIED;
880 wx->mac_table[i].pools &= ~(1ULL << pool);
881 if (!wx->mac_table[i].pools) {
882 wx->mac_table[i].state &= ~WX_MAC_STATE_IN_USE;
883 memset(wx->mac_table[i].addr, 0, ETH_ALEN);
885 wx_sync_mac_table(wx);
891 static int wx_available_rars(struct wx *wx)
895 for (i = 0; i < wx->mac.num_rar_entries; i++) {
896 if (wx->mac_table[i].state == 0)
904 * wx_write_uc_addr_list - write unicast addresses to RAR table
905 * @netdev: network interface device structure
906 * @pool: index for mac table
908 * Writes unicast address list to the RAR table.
909 * Returns: -ENOMEM on failure/insufficient address space
910 * 0 on no addresses written
911 * X on writing X addresses to the RAR table
913 static int wx_write_uc_addr_list(struct net_device *netdev, int pool)
915 struct wx *wx = netdev_priv(netdev);
918 /* return ENOMEM indicating insufficient memory for addresses */
919 if (netdev_uc_count(netdev) > wx_available_rars(wx))
922 if (!netdev_uc_empty(netdev)) {
923 struct netdev_hw_addr *ha;
925 netdev_for_each_uc_addr(ha, netdev) {
926 wx_del_mac_filter(wx, ha->addr, pool);
927 wx_add_mac_filter(wx, ha->addr, pool);
935 * wx_mta_vector - Determines bit-vector in multicast table to set
936 * @wx: pointer to private structure
937 * @mc_addr: the multicast address
939 * Extracts the 12 bits, from a multicast address, to determine which
940 * bit-vector to set in the multicast table. The hardware uses 12 bits, from
941 * incoming rx multicast addresses, to determine the bit-vector to check in
942 * the MTA. Which of the 4 combination, of 12-bits, the hardware uses is set
943 * by the MO field of the MCSTCTRL. The MO field is set during initialization
946 static u32 wx_mta_vector(struct wx *wx, u8 *mc_addr)
950 switch (wx->mac.mc_filter_type) {
951 case 0: /* use bits [47:36] of the address */
952 vector = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4));
954 case 1: /* use bits [46:35] of the address */
955 vector = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5));
957 case 2: /* use bits [45:34] of the address */
958 vector = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6));
960 case 3: /* use bits [43:32] of the address */
961 vector = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8));
963 default: /* Invalid mc_filter_type */
964 wx_err(wx, "MC filter type param set incorrectly\n");
968 /* vector can only be 12-bits or boundary will be exceeded */
974 * wx_set_mta - Set bit-vector in multicast table
975 * @wx: pointer to private structure
976 * @mc_addr: Multicast address
978 * Sets the bit-vector in the multicast table.
980 static void wx_set_mta(struct wx *wx, u8 *mc_addr)
982 u32 vector, vector_bit, vector_reg;
984 wx->addr_ctrl.mta_in_use++;
986 vector = wx_mta_vector(wx, mc_addr);
987 wx_dbg(wx, " bit-vector = 0x%03X\n", vector);
989 /* The MTA is a register array of 128 32-bit registers. It is treated
990 * like an array of 4096 bits. We want to set bit
991 * BitArray[vector_value]. So we figure out what register the bit is
992 * in, read it, OR in the new bit, then write back the new value. The
993 * register is determined by the upper 7 bits of the vector value and
994 * the bit within that register are determined by the lower 5 bits of
997 vector_reg = (vector >> 5) & 0x7F;
998 vector_bit = vector & 0x1F;
999 wx->mac.mta_shadow[vector_reg] |= (1 << vector_bit);
1003 * wx_update_mc_addr_list - Updates MAC list of multicast addresses
1004 * @wx: pointer to private structure
1005 * @netdev: pointer to net device structure
1007 * The given list replaces any existing list. Clears the MC addrs from receive
1008 * address registers and the multicast table. Uses unused receive address
1009 * registers for the first multicast addresses, and hashes the rest into the
1012 static void wx_update_mc_addr_list(struct wx *wx, struct net_device *netdev)
1014 struct netdev_hw_addr *ha;
1017 /* Set the new number of MC addresses that we are being requested to
1020 wx->addr_ctrl.num_mc_addrs = netdev_mc_count(netdev);
1021 wx->addr_ctrl.mta_in_use = 0;
1023 /* Clear mta_shadow */
1024 wx_dbg(wx, " Clearing MTA\n");
1025 memset(&wx->mac.mta_shadow, 0, sizeof(wx->mac.mta_shadow));
1027 /* Update mta_shadow */
1028 netdev_for_each_mc_addr(ha, netdev) {
1029 wx_dbg(wx, " Adding the multicast addresses:\n");
1030 wx_set_mta(wx, ha->addr);
1034 for (i = 0; i < wx->mac.mcft_size; i++)
1035 wr32a(wx, WX_PSR_MC_TBL(0), i,
1036 wx->mac.mta_shadow[i]);
1038 if (wx->addr_ctrl.mta_in_use > 0) {
1039 psrctl = rd32(wx, WX_PSR_CTL);
1040 psrctl &= ~(WX_PSR_CTL_MO | WX_PSR_CTL_MFE);
1041 psrctl |= WX_PSR_CTL_MFE |
1042 (wx->mac.mc_filter_type << WX_PSR_CTL_MO_SHIFT);
1043 wr32(wx, WX_PSR_CTL, psrctl);
1046 wx_dbg(wx, "Update mc addr list Complete\n");
1050 * wx_write_mc_addr_list - write multicast addresses to MTA
1051 * @netdev: network interface device structure
1053 * Writes multicast address list to the MTA hash table.
1054 * Returns: 0 on no addresses written
1055 * X on writing X addresses to MTA
1057 static int wx_write_mc_addr_list(struct net_device *netdev)
1059 struct wx *wx = netdev_priv(netdev);
1061 if (!netif_running(netdev))
1064 wx_update_mc_addr_list(wx, netdev);
1066 return netdev_mc_count(netdev);
1070 * wx_set_mac - Change the Ethernet Address of the NIC
1071 * @netdev: network interface device structure
1072 * @p: pointer to an address structure
1074 * Returns 0 on success, negative on failure
1076 int wx_set_mac(struct net_device *netdev, void *p)
1078 struct wx *wx = netdev_priv(netdev);
1079 struct sockaddr *addr = p;
1082 retval = eth_prepare_mac_addr_change(netdev, addr);
1086 wx_del_mac_filter(wx, wx->mac.addr, 0);
1087 eth_hw_addr_set(netdev, addr->sa_data);
1088 memcpy(wx->mac.addr, addr->sa_data, netdev->addr_len);
1090 wx_mac_set_default_filter(wx, wx->mac.addr);
1094 EXPORT_SYMBOL(wx_set_mac);
1096 void wx_disable_rx(struct wx *wx)
1101 rxctrl = rd32(wx, WX_RDB_PB_CTL);
1102 if (rxctrl & WX_RDB_PB_CTL_RXEN) {
1103 pfdtxgswc = rd32(wx, WX_PSR_CTL);
1104 if (pfdtxgswc & WX_PSR_CTL_SW_EN) {
1105 pfdtxgswc &= ~WX_PSR_CTL_SW_EN;
1106 wr32(wx, WX_PSR_CTL, pfdtxgswc);
1107 wx->mac.set_lben = true;
1109 wx->mac.set_lben = false;
1111 rxctrl &= ~WX_RDB_PB_CTL_RXEN;
1112 wr32(wx, WX_RDB_PB_CTL, rxctrl);
1114 if (!(((wx->subsystem_device_id & WX_NCSI_MASK) == WX_NCSI_SUP) ||
1115 ((wx->subsystem_device_id & WX_WOL_MASK) == WX_WOL_SUP))) {
1116 /* disable mac receiver */
1117 wr32m(wx, WX_MAC_RX_CFG,
1118 WX_MAC_RX_CFG_RE, 0);
1122 EXPORT_SYMBOL(wx_disable_rx);
1124 static void wx_enable_rx(struct wx *wx)
1128 /* enable mac receiver */
1129 wr32m(wx, WX_MAC_RX_CFG,
1130 WX_MAC_RX_CFG_RE, WX_MAC_RX_CFG_RE);
1132 wr32m(wx, WX_RDB_PB_CTL,
1133 WX_RDB_PB_CTL_RXEN, WX_RDB_PB_CTL_RXEN);
1135 if (wx->mac.set_lben) {
1136 psrctl = rd32(wx, WX_PSR_CTL);
1137 psrctl |= WX_PSR_CTL_SW_EN;
1138 wr32(wx, WX_PSR_CTL, psrctl);
1139 wx->mac.set_lben = false;
1144 * wx_set_rxpba - Initialize Rx packet buffer
1145 * @wx: pointer to private structure
1147 static void wx_set_rxpba(struct wx *wx)
1149 u32 rxpktsize, txpktsize, txpbthresh;
1150 u32 pbsize = wx->mac.rx_pb_size;
1152 if (test_bit(WX_FLAG_FDIR_CAPABLE, wx->flags)) {
1153 if (test_bit(WX_FLAG_FDIR_HASH, wx->flags) ||
1154 test_bit(WX_FLAG_FDIR_PERFECT, wx->flags))
1155 pbsize -= 64; /* Default 64KB */
1158 rxpktsize = pbsize << WX_RDB_PB_SZ_SHIFT;
1159 wr32(wx, WX_RDB_PB_SZ(0), rxpktsize);
1161 /* Only support an equally distributed Tx packet buffer strategy. */
1162 txpktsize = wx->mac.tx_pb_size;
1163 txpbthresh = (txpktsize / 1024) - WX_TXPKT_SIZE_MAX;
1164 wr32(wx, WX_TDB_PB_SZ(0), txpktsize);
1165 wr32(wx, WX_TDM_PB_THRE(0), txpbthresh);
1168 #define WX_ETH_FRAMING 20
1171 * wx_hpbthresh - calculate high water mark for flow control
1173 * @wx: board private structure to calculate for
1175 static int wx_hpbthresh(struct wx *wx)
1177 struct net_device *dev = wx->netdev;
1178 int link, tc, kb, marker;
1181 /* Calculate max LAN frame size */
1182 link = dev->mtu + ETH_HLEN + ETH_FCS_LEN + WX_ETH_FRAMING;
1185 /* Calculate delay value for device */
1186 dv_id = WX_DV(link, tc);
1188 /* Delay value is calculated in bit times convert to KB */
1189 kb = WX_BT2KB(dv_id);
1190 rx_pba = rd32(wx, WX_RDB_PB_SZ(0)) >> WX_RDB_PB_SZ_SHIFT;
1192 marker = rx_pba - kb;
1194 /* It is possible that the packet buffer is not large enough
1195 * to provide required headroom. In this case throw an error
1196 * to user and a do the best we can.
1199 dev_warn(&wx->pdev->dev,
1200 "Packet Buffer can not provide enough headroom to support flow control. Decrease MTU or number of traffic classes\n");
1208 * wx_lpbthresh - calculate low water mark for flow control
1210 * @wx: board private structure to calculate for
1212 static int wx_lpbthresh(struct wx *wx)
1214 struct net_device *dev = wx->netdev;
1218 /* Calculate max LAN frame size */
1219 tc = dev->mtu + ETH_HLEN + ETH_FCS_LEN;
1221 /* Calculate delay value for device */
1222 dv_id = WX_LOW_DV(tc);
1224 /* Delay value is calculated in bit times convert to KB */
1225 return WX_BT2KB(dv_id);
1229 * wx_pbthresh_setup - calculate and setup high low water marks
1231 * @wx: board private structure to calculate for
1233 static void wx_pbthresh_setup(struct wx *wx)
1235 wx->fc.high_water = wx_hpbthresh(wx);
1236 wx->fc.low_water = wx_lpbthresh(wx);
1238 /* Low water marks must not be larger than high water marks */
1239 if (wx->fc.low_water > wx->fc.high_water)
1240 wx->fc.low_water = 0;
1243 static void wx_configure_port(struct wx *wx)
1247 value = WX_CFG_PORT_CTL_D_VLAN | WX_CFG_PORT_CTL_QINQ;
1248 wr32m(wx, WX_CFG_PORT_CTL,
1249 WX_CFG_PORT_CTL_D_VLAN |
1250 WX_CFG_PORT_CTL_QINQ,
1253 wr32(wx, WX_CFG_TAG_TPID(0),
1254 ETH_P_8021Q | ETH_P_8021AD << 16);
1255 wx->tpid[0] = ETH_P_8021Q;
1256 wx->tpid[1] = ETH_P_8021AD;
1257 for (i = 1; i < 4; i++)
1258 wr32(wx, WX_CFG_TAG_TPID(i),
1259 ETH_P_8021Q | ETH_P_8021Q << 16);
1260 for (i = 2; i < 8; i++)
1261 wx->tpid[i] = ETH_P_8021Q;
1265 * wx_disable_sec_rx_path - Stops the receive data path
1266 * @wx: pointer to private structure
1268 * Stops the receive data path and waits for the HW to internally empty
1269 * the Rx security block
1271 int wx_disable_sec_rx_path(struct wx *wx)
1275 wr32m(wx, WX_RSC_CTL,
1276 WX_RSC_CTL_RX_DIS, WX_RSC_CTL_RX_DIS);
1278 return read_poll_timeout(rd32, secrx, secrx & WX_RSC_ST_RSEC_RDY,
1279 1000, 40000, false, wx, WX_RSC_ST);
1281 EXPORT_SYMBOL(wx_disable_sec_rx_path);
1284 * wx_enable_sec_rx_path - Enables the receive data path
1285 * @wx: pointer to private structure
1287 * Enables the receive data path.
1289 void wx_enable_sec_rx_path(struct wx *wx)
1291 wr32m(wx, WX_RSC_CTL, WX_RSC_CTL_RX_DIS, 0);
1294 EXPORT_SYMBOL(wx_enable_sec_rx_path);
1296 static void wx_vlan_strip_control(struct wx *wx, bool enable)
1300 for (i = 0; i < wx->num_rx_queues; i++) {
1301 struct wx_ring *ring = wx->rx_ring[i];
1304 wr32m(wx, WX_PX_RR_CFG(j), WX_PX_RR_CFG_VLAN,
1305 enable ? WX_PX_RR_CFG_VLAN : 0);
1309 void wx_set_rx_mode(struct net_device *netdev)
1311 struct wx *wx = netdev_priv(netdev);
1312 netdev_features_t features;
1313 u32 fctrl, vmolr, vlnctrl;
1316 features = netdev->features;
1318 /* Check for Promiscuous and All Multicast modes */
1319 fctrl = rd32(wx, WX_PSR_CTL);
1320 fctrl &= ~(WX_PSR_CTL_UPE | WX_PSR_CTL_MPE);
1321 vmolr = rd32(wx, WX_PSR_VM_L2CTL(0));
1322 vmolr &= ~(WX_PSR_VM_L2CTL_UPE |
1323 WX_PSR_VM_L2CTL_MPE |
1324 WX_PSR_VM_L2CTL_ROPE |
1325 WX_PSR_VM_L2CTL_ROMPE);
1326 vlnctrl = rd32(wx, WX_PSR_VLAN_CTL);
1327 vlnctrl &= ~(WX_PSR_VLAN_CTL_VFE | WX_PSR_VLAN_CTL_CFIEN);
1329 /* set all bits that we expect to always be set */
1330 fctrl |= WX_PSR_CTL_BAM | WX_PSR_CTL_MFE;
1331 vmolr |= WX_PSR_VM_L2CTL_BAM |
1332 WX_PSR_VM_L2CTL_AUPE |
1333 WX_PSR_VM_L2CTL_VACC;
1334 vlnctrl |= WX_PSR_VLAN_CTL_VFE;
1336 wx->addr_ctrl.user_set_promisc = false;
1337 if (netdev->flags & IFF_PROMISC) {
1338 wx->addr_ctrl.user_set_promisc = true;
1339 fctrl |= WX_PSR_CTL_UPE | WX_PSR_CTL_MPE;
1340 /* pf don't want packets routing to vf, so clear UPE */
1341 vmolr |= WX_PSR_VM_L2CTL_MPE;
1342 vlnctrl &= ~WX_PSR_VLAN_CTL_VFE;
1345 if (netdev->flags & IFF_ALLMULTI) {
1346 fctrl |= WX_PSR_CTL_MPE;
1347 vmolr |= WX_PSR_VM_L2CTL_MPE;
1350 if (netdev->features & NETIF_F_RXALL) {
1351 vmolr |= (WX_PSR_VM_L2CTL_UPE | WX_PSR_VM_L2CTL_MPE);
1352 vlnctrl &= ~WX_PSR_VLAN_CTL_VFE;
1353 /* receive bad packets */
1354 wr32m(wx, WX_RSC_CTL,
1355 WX_RSC_CTL_SAVE_MAC_ERR,
1356 WX_RSC_CTL_SAVE_MAC_ERR);
1358 vmolr |= WX_PSR_VM_L2CTL_ROPE | WX_PSR_VM_L2CTL_ROMPE;
1361 /* Write addresses to available RAR registers, if there is not
1362 * sufficient space to store all the addresses then enable
1363 * unicast promiscuous mode
1365 count = wx_write_uc_addr_list(netdev, 0);
1367 vmolr &= ~WX_PSR_VM_L2CTL_ROPE;
1368 vmolr |= WX_PSR_VM_L2CTL_UPE;
1371 /* Write addresses to the MTA, if the attempt fails
1372 * then we should just turn on promiscuous mode so
1373 * that we can at least receive multicast traffic
1375 count = wx_write_mc_addr_list(netdev);
1377 vmolr &= ~WX_PSR_VM_L2CTL_ROMPE;
1378 vmolr |= WX_PSR_VM_L2CTL_MPE;
1381 wr32(wx, WX_PSR_VLAN_CTL, vlnctrl);
1382 wr32(wx, WX_PSR_CTL, fctrl);
1383 wr32(wx, WX_PSR_VM_L2CTL(0), vmolr);
1385 if ((features & NETIF_F_HW_VLAN_CTAG_RX) &&
1386 (features & NETIF_F_HW_VLAN_STAG_RX))
1387 wx_vlan_strip_control(wx, true);
1389 wx_vlan_strip_control(wx, false);
1392 EXPORT_SYMBOL(wx_set_rx_mode);
1394 static void wx_set_rx_buffer_len(struct wx *wx)
1396 struct net_device *netdev = wx->netdev;
1397 u32 mhadd, max_frame;
1399 max_frame = netdev->mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
1400 /* adjust max frame to be at least the size of a standard frame */
1401 if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
1402 max_frame = (ETH_FRAME_LEN + ETH_FCS_LEN);
1404 mhadd = rd32(wx, WX_PSR_MAX_SZ);
1405 if (max_frame != mhadd)
1406 wr32(wx, WX_PSR_MAX_SZ, max_frame);
1410 * wx_change_mtu - Change the Maximum Transfer Unit
1411 * @netdev: network interface device structure
1412 * @new_mtu: new value for maximum frame size
1414 * Returns 0 on success, negative on failure
1416 int wx_change_mtu(struct net_device *netdev, int new_mtu)
1418 struct wx *wx = netdev_priv(netdev);
1420 WRITE_ONCE(netdev->mtu, new_mtu);
1421 wx_set_rx_buffer_len(wx);
1425 EXPORT_SYMBOL(wx_change_mtu);
1427 /* Disable the specified rx queue */
1428 void wx_disable_rx_queue(struct wx *wx, struct wx_ring *ring)
1430 u8 reg_idx = ring->reg_idx;
1434 /* write value back with RRCFG.EN bit cleared */
1435 wr32m(wx, WX_PX_RR_CFG(reg_idx),
1436 WX_PX_RR_CFG_RR_EN, 0);
1438 /* the hardware may take up to 100us to really disable the rx queue */
1439 ret = read_poll_timeout(rd32, rxdctl, !(rxdctl & WX_PX_RR_CFG_RR_EN),
1440 10, 100, true, wx, WX_PX_RR_CFG(reg_idx));
1442 if (ret == -ETIMEDOUT) {
1443 /* Just for information */
1445 "RRCFG.EN on Rx queue %d not cleared within the polling period\n",
1449 EXPORT_SYMBOL(wx_disable_rx_queue);
1451 static void wx_enable_rx_queue(struct wx *wx, struct wx_ring *ring)
1453 u8 reg_idx = ring->reg_idx;
1457 ret = read_poll_timeout(rd32, rxdctl, rxdctl & WX_PX_RR_CFG_RR_EN,
1458 1000, 10000, true, wx, WX_PX_RR_CFG(reg_idx));
1460 if (ret == -ETIMEDOUT) {
1461 /* Just for information */
1463 "RRCFG.EN on Rx queue %d not set within the polling period\n",
1468 static void wx_configure_srrctl(struct wx *wx,
1469 struct wx_ring *rx_ring)
1471 u16 reg_idx = rx_ring->reg_idx;
1474 srrctl = rd32(wx, WX_PX_RR_CFG(reg_idx));
1475 srrctl &= ~(WX_PX_RR_CFG_RR_HDR_SZ |
1476 WX_PX_RR_CFG_RR_BUF_SZ |
1477 WX_PX_RR_CFG_SPLIT_MODE);
1478 /* configure header buffer length, needed for RSC */
1479 srrctl |= WX_RXBUFFER_256 << WX_PX_RR_CFG_BHDRSIZE_SHIFT;
1481 /* configure the packet buffer length */
1482 srrctl |= WX_RX_BUFSZ >> WX_PX_RR_CFG_BSIZEPKT_SHIFT;
1484 wr32(wx, WX_PX_RR_CFG(reg_idx), srrctl);
1487 static void wx_configure_tx_ring(struct wx *wx,
1488 struct wx_ring *ring)
1490 u32 txdctl = WX_PX_TR_CFG_ENABLE;
1491 u8 reg_idx = ring->reg_idx;
1492 u64 tdba = ring->dma;
1495 /* disable queue to avoid issues while updating state */
1496 wr32(wx, WX_PX_TR_CFG(reg_idx), WX_PX_TR_CFG_SWFLSH);
1499 wr32(wx, WX_PX_TR_BAL(reg_idx), tdba & DMA_BIT_MASK(32));
1500 wr32(wx, WX_PX_TR_BAH(reg_idx), upper_32_bits(tdba));
1502 /* reset head and tail pointers */
1503 wr32(wx, WX_PX_TR_RP(reg_idx), 0);
1504 wr32(wx, WX_PX_TR_WP(reg_idx), 0);
1505 ring->tail = wx->hw_addr + WX_PX_TR_WP(reg_idx);
1507 if (ring->count < WX_MAX_TXD)
1508 txdctl |= ring->count / 128 << WX_PX_TR_CFG_TR_SIZE_SHIFT;
1509 txdctl |= 0x20 << WX_PX_TR_CFG_WTHRESH_SHIFT;
1511 ring->atr_count = 0;
1512 if (test_bit(WX_FLAG_FDIR_CAPABLE, wx->flags) &&
1513 test_bit(WX_FLAG_FDIR_HASH, wx->flags))
1514 ring->atr_sample_rate = wx->atr_sample_rate;
1516 ring->atr_sample_rate = 0;
1518 /* reinitialize tx_buffer_info */
1519 memset(ring->tx_buffer_info, 0,
1520 sizeof(struct wx_tx_buffer) * ring->count);
1523 wr32(wx, WX_PX_TR_CFG(reg_idx), txdctl);
1525 /* poll to verify queue is enabled */
1526 ret = read_poll_timeout(rd32, txdctl, txdctl & WX_PX_TR_CFG_ENABLE,
1527 1000, 10000, true, wx, WX_PX_TR_CFG(reg_idx));
1528 if (ret == -ETIMEDOUT)
1529 wx_err(wx, "Could not enable Tx Queue %d\n", reg_idx);
1532 static void wx_configure_rx_ring(struct wx *wx,
1533 struct wx_ring *ring)
1535 u16 reg_idx = ring->reg_idx;
1536 union wx_rx_desc *rx_desc;
1537 u64 rdba = ring->dma;
1540 /* disable queue to avoid issues while updating state */
1541 rxdctl = rd32(wx, WX_PX_RR_CFG(reg_idx));
1542 wx_disable_rx_queue(wx, ring);
1544 wr32(wx, WX_PX_RR_BAL(reg_idx), rdba & DMA_BIT_MASK(32));
1545 wr32(wx, WX_PX_RR_BAH(reg_idx), upper_32_bits(rdba));
1547 if (ring->count == WX_MAX_RXD)
1548 rxdctl |= 0 << WX_PX_RR_CFG_RR_SIZE_SHIFT;
1550 rxdctl |= (ring->count / 128) << WX_PX_RR_CFG_RR_SIZE_SHIFT;
1552 rxdctl |= 0x1 << WX_PX_RR_CFG_RR_THER_SHIFT;
1553 wr32(wx, WX_PX_RR_CFG(reg_idx), rxdctl);
1555 /* reset head and tail pointers */
1556 wr32(wx, WX_PX_RR_RP(reg_idx), 0);
1557 wr32(wx, WX_PX_RR_WP(reg_idx), 0);
1558 ring->tail = wx->hw_addr + WX_PX_RR_WP(reg_idx);
1560 wx_configure_srrctl(wx, ring);
1562 /* initialize rx_buffer_info */
1563 memset(ring->rx_buffer_info, 0,
1564 sizeof(struct wx_rx_buffer) * ring->count);
1566 /* initialize Rx descriptor 0 */
1567 rx_desc = WX_RX_DESC(ring, 0);
1568 rx_desc->wb.upper.length = 0;
1570 /* enable receive descriptor ring */
1571 wr32m(wx, WX_PX_RR_CFG(reg_idx),
1572 WX_PX_RR_CFG_RR_EN, WX_PX_RR_CFG_RR_EN);
1574 wx_enable_rx_queue(wx, ring);
1575 wx_alloc_rx_buffers(ring, wx_desc_unused(ring));
1579 * wx_configure_tx - Configure Transmit Unit after Reset
1580 * @wx: pointer to private structure
1582 * Configure the Tx unit of the MAC after a reset.
1584 static void wx_configure_tx(struct wx *wx)
1588 /* TDM_CTL.TE must be before Tx queues are enabled */
1589 wr32m(wx, WX_TDM_CTL,
1590 WX_TDM_CTL_TE, WX_TDM_CTL_TE);
1592 /* Setup the HW Tx Head and Tail descriptor pointers */
1593 for (i = 0; i < wx->num_tx_queues; i++)
1594 wx_configure_tx_ring(wx, wx->tx_ring[i]);
1596 wr32m(wx, WX_TSC_BUF_AE, WX_TSC_BUF_AE_THR, 0x10);
1598 if (wx->mac.type == wx_mac_em)
1599 wr32m(wx, WX_TSC_CTL, WX_TSC_CTL_TX_DIS | WX_TSC_CTL_TSEC_DIS, 0x1);
1601 /* enable mac transmitter */
1602 wr32m(wx, WX_MAC_TX_CFG,
1603 WX_MAC_TX_CFG_TE, WX_MAC_TX_CFG_TE);
1606 static void wx_restore_vlan(struct wx *wx)
1610 wx_vlan_rx_add_vid(wx->netdev, htons(ETH_P_8021Q), 0);
1612 for_each_set_bit_from(vid, wx->active_vlans, VLAN_N_VID)
1613 wx_vlan_rx_add_vid(wx->netdev, htons(ETH_P_8021Q), vid);
1616 static void wx_store_reta(struct wx *wx)
1618 u8 *indir_tbl = wx->rss_indir_tbl;
1622 /* Fill out the redirection table as follows:
1623 * - 8 bit wide entries containing 4 bit RSS index
1625 for (i = 0; i < WX_MAX_RETA_ENTRIES; i++) {
1626 reta |= indir_tbl[i] << (i & 0x3) * 8;
1628 wr32(wx, WX_RDB_RSSTBL(i >> 2), reta);
1634 static void wx_setup_reta(struct wx *wx)
1636 u16 rss_i = wx->ring_feature[RING_F_RSS].indices;
1637 u32 random_key_size = WX_RSS_KEY_SIZE / 4;
1640 /* Fill out hash function seeds */
1641 for (i = 0; i < random_key_size; i++)
1642 wr32(wx, WX_RDB_RSSRK(i), wx->rss_key[i]);
1644 /* Fill out redirection table */
1645 memset(wx->rss_indir_tbl, 0, sizeof(wx->rss_indir_tbl));
1647 for (i = 0, j = 0; i < WX_MAX_RETA_ENTRIES; i++, j++) {
1651 wx->rss_indir_tbl[i] = j;
1657 static void wx_setup_mrqc(struct wx *wx)
1661 /* Disable indicating checksum in descriptor, enables RSS hash */
1662 wr32m(wx, WX_PSR_CTL, WX_PSR_CTL_PCSD, WX_PSR_CTL_PCSD);
1664 /* Perform hash on these packet types */
1665 rss_field = WX_RDB_RA_CTL_RSS_IPV4 |
1666 WX_RDB_RA_CTL_RSS_IPV4_TCP |
1667 WX_RDB_RA_CTL_RSS_IPV4_UDP |
1668 WX_RDB_RA_CTL_RSS_IPV6 |
1669 WX_RDB_RA_CTL_RSS_IPV6_TCP |
1670 WX_RDB_RA_CTL_RSS_IPV6_UDP;
1672 netdev_rss_key_fill(wx->rss_key, sizeof(wx->rss_key));
1676 if (wx->rss_enabled)
1677 rss_field |= WX_RDB_RA_CTL_RSS_EN;
1679 wr32(wx, WX_RDB_RA_CTL, rss_field);
1683 * wx_configure_rx - Configure Receive Unit after Reset
1684 * @wx: pointer to private structure
1686 * Configure the Rx unit of the MAC after a reset.
1688 void wx_configure_rx(struct wx *wx)
1695 psrtype = WX_RDB_PL_CFG_L4HDR |
1696 WX_RDB_PL_CFG_L3HDR |
1697 WX_RDB_PL_CFG_L2HDR |
1698 WX_RDB_PL_CFG_TUN_TUNHDR;
1699 wr32(wx, WX_RDB_PL_CFG(0), psrtype);
1701 /* enable hw crc stripping */
1702 wr32m(wx, WX_RSC_CTL, WX_RSC_CTL_CRC_STRIP, WX_RSC_CTL_CRC_STRIP);
1704 if (wx->mac.type == wx_mac_sp) {
1708 psrctl = rd32(wx, WX_PSR_CTL);
1709 psrctl |= WX_PSR_CTL_RSC_ACK; /* Disable RSC for ACK packets */
1710 psrctl |= WX_PSR_CTL_RSC_DIS;
1711 wr32(wx, WX_PSR_CTL, psrctl);
1716 /* set_rx_buffer_len must be called before ring initialization */
1717 wx_set_rx_buffer_len(wx);
1719 /* Setup the HW Rx Head and Tail Descriptor Pointers and
1720 * the Base and Length of the Rx Descriptor Ring
1722 for (i = 0; i < wx->num_rx_queues; i++)
1723 wx_configure_rx_ring(wx, wx->rx_ring[i]);
1725 /* Enable all receives, disable security engine prior to block traffic */
1726 ret = wx_disable_sec_rx_path(wx);
1728 wx_err(wx, "The register status is abnormal, please check device.");
1731 wx_enable_sec_rx_path(wx);
1733 EXPORT_SYMBOL(wx_configure_rx);
1735 static void wx_configure_isb(struct wx *wx)
1737 /* set ISB Address */
1738 wr32(wx, WX_PX_ISB_ADDR_L, wx->isb_dma & DMA_BIT_MASK(32));
1739 if (IS_ENABLED(CONFIG_ARCH_DMA_ADDR_T_64BIT))
1740 wr32(wx, WX_PX_ISB_ADDR_H, upper_32_bits(wx->isb_dma));
1743 void wx_configure(struct wx *wx)
1746 wx_pbthresh_setup(wx);
1747 wx_configure_port(wx);
1749 wx_set_rx_mode(wx->netdev);
1750 wx_restore_vlan(wx);
1752 if (test_bit(WX_FLAG_FDIR_CAPABLE, wx->flags))
1753 wx->configure_fdir(wx);
1755 wx_configure_tx(wx);
1756 wx_configure_rx(wx);
1757 wx_configure_isb(wx);
1759 EXPORT_SYMBOL(wx_configure);
1762 * wx_disable_pcie_master - Disable PCI-express master access
1763 * @wx: pointer to hardware structure
1765 * Disables PCI-Express master access and verifies there are no pending
1768 int wx_disable_pcie_master(struct wx *wx)
1773 /* Always set this bit to ensure any future transactions are blocked */
1774 pci_clear_master(wx->pdev);
1776 /* Exit if master requests are blocked */
1777 if (!(rd32(wx, WX_PX_TRANSACTION_PENDING)))
1780 /* Poll for master request bit to clear */
1781 status = read_poll_timeout(rd32, val, !val, 100, WX_PCI_MASTER_DISABLE_TIMEOUT,
1782 false, wx, WX_PX_TRANSACTION_PENDING);
1784 wx_err(wx, "PCIe transaction pending bit did not clear.\n");
1788 EXPORT_SYMBOL(wx_disable_pcie_master);
1791 * wx_stop_adapter - Generic stop Tx/Rx units
1792 * @wx: pointer to hardware structure
1794 * Sets the adapter_stopped flag within wx_hw struct. Clears interrupts,
1795 * disables transmit and receive units. The adapter_stopped flag is used by
1796 * the shared code and drivers to determine if the adapter is in a stopped
1797 * state and should not touch the hardware.
1799 int wx_stop_adapter(struct wx *wx)
1803 /* Set the adapter_stopped flag so other driver functions stop touching
1806 wx->adapter_stopped = true;
1808 /* Disable the receive unit */
1811 /* Set interrupt mask to stop interrupts from being generated */
1812 wx_intr_disable(wx, WX_INTR_ALL);
1814 /* Clear any pending interrupts, flush previous writes */
1815 wr32(wx, WX_PX_MISC_IC, 0xffffffff);
1816 wr32(wx, WX_BME_CTL, 0x3);
1818 /* Disable the transmit unit. Each queue must be disabled. */
1819 for (i = 0; i < wx->mac.max_tx_queues; i++) {
1820 wr32m(wx, WX_PX_TR_CFG(i),
1821 WX_PX_TR_CFG_SWFLSH | WX_PX_TR_CFG_ENABLE,
1822 WX_PX_TR_CFG_SWFLSH);
1825 /* Disable the receive unit by stopping each queue */
1826 for (i = 0; i < wx->mac.max_rx_queues; i++) {
1827 wr32m(wx, WX_PX_RR_CFG(i),
1828 WX_PX_RR_CFG_RR_EN, 0);
1831 /* flush all queues disables */
1834 /* Prevent the PCI-E bus from hanging by disabling PCI-E master
1835 * access and verify no pending requests
1837 return wx_disable_pcie_master(wx);
1839 EXPORT_SYMBOL(wx_stop_adapter);
1841 void wx_reset_misc(struct wx *wx)
1845 /* receive packets that size > 2048 */
1846 wr32m(wx, WX_MAC_RX_CFG, WX_MAC_RX_CFG_JE, WX_MAC_RX_CFG_JE);
1848 /* clear counters on read */
1849 wr32m(wx, WX_MMC_CONTROL,
1850 WX_MMC_CONTROL_RSTONRD, WX_MMC_CONTROL_RSTONRD);
1852 wr32m(wx, WX_MAC_RX_FLOW_CTRL,
1853 WX_MAC_RX_FLOW_CTRL_RFE, WX_MAC_RX_FLOW_CTRL_RFE);
1855 wr32(wx, WX_MAC_PKT_FLT, WX_MAC_PKT_FLT_PR);
1857 wr32m(wx, WX_MIS_RST_ST,
1858 WX_MIS_RST_ST_RST_INIT, 0x1E00);
1860 /* errata 4: initialize mng flex tbl and wakeup flex tbl*/
1861 wr32(wx, WX_PSR_MNG_FLEX_SEL, 0);
1862 for (i = 0; i < 16; i++) {
1863 wr32(wx, WX_PSR_MNG_FLEX_DW_L(i), 0);
1864 wr32(wx, WX_PSR_MNG_FLEX_DW_H(i), 0);
1865 wr32(wx, WX_PSR_MNG_FLEX_MSK(i), 0);
1867 wr32(wx, WX_PSR_LAN_FLEX_SEL, 0);
1868 for (i = 0; i < 16; i++) {
1869 wr32(wx, WX_PSR_LAN_FLEX_DW_L(i), 0);
1870 wr32(wx, WX_PSR_LAN_FLEX_DW_H(i), 0);
1871 wr32(wx, WX_PSR_LAN_FLEX_MSK(i), 0);
1874 /* set pause frame dst mac addr */
1875 wr32(wx, WX_RDB_PFCMACDAL, 0xC2000001);
1876 wr32(wx, WX_RDB_PFCMACDAH, 0x0180);
1878 EXPORT_SYMBOL(wx_reset_misc);
1881 * wx_get_pcie_msix_counts - Gets MSI-X vector count
1882 * @wx: pointer to hardware structure
1883 * @msix_count: number of MSI interrupts that can be obtained
1884 * @max_msix_count: number of MSI interrupts that mac need
1886 * Read PCIe configuration space, and get the MSI-X vector count from
1887 * the capabilities table.
1889 int wx_get_pcie_msix_counts(struct wx *wx, u16 *msix_count, u16 max_msix_count)
1891 struct pci_dev *pdev = wx->pdev;
1892 struct device *dev = &pdev->dev;
1896 pos = pci_find_capability(pdev, PCI_CAP_ID_MSIX);
1898 dev_err(dev, "Unable to find MSI-X Capabilities\n");
1901 pci_read_config_word(pdev,
1902 pos + PCI_MSIX_FLAGS,
1904 *msix_count &= WX_PCIE_MSIX_TBL_SZ_MASK;
1905 /* MSI-X count is zero-based in HW */
1908 if (*msix_count > max_msix_count)
1909 *msix_count = max_msix_count;
1913 EXPORT_SYMBOL(wx_get_pcie_msix_counts);
1916 * wx_init_rss_key - Initialize wx RSS key
1917 * @wx: device handle
1919 * Allocates and initializes the RSS key if it is not allocated.
1921 static int wx_init_rss_key(struct wx *wx)
1926 rss_key = kzalloc(WX_RSS_KEY_SIZE, GFP_KERNEL);
1927 if (unlikely(!rss_key))
1930 netdev_rss_key_fill(rss_key, WX_RSS_KEY_SIZE);
1931 wx->rss_key = rss_key;
1937 int wx_sw_init(struct wx *wx)
1939 struct pci_dev *pdev = wx->pdev;
1943 wx->vendor_id = pdev->vendor;
1944 wx->device_id = pdev->device;
1945 wx->revision_id = pdev->revision;
1946 wx->oem_svid = pdev->subsystem_vendor;
1947 wx->oem_ssid = pdev->subsystem_device;
1948 wx->bus.device = PCI_SLOT(pdev->devfn);
1949 wx->bus.func = PCI_FUNC(pdev->devfn);
1951 if (wx->oem_svid == PCI_VENDOR_ID_WANGXUN) {
1952 wx->subsystem_vendor_id = pdev->subsystem_vendor;
1953 wx->subsystem_device_id = pdev->subsystem_device;
1955 err = wx_flash_read_dword(wx, 0xfffdc, &ssid);
1957 wx_err(wx, "read of internal subsystem device id failed\n");
1961 wx->subsystem_device_id = swab16((u16)ssid);
1964 err = wx_init_rss_key(wx);
1966 wx_err(wx, "rss key allocation failed\n");
1970 wx->mac_table = kcalloc(wx->mac.num_rar_entries,
1971 sizeof(struct wx_mac_addr),
1973 if (!wx->mac_table) {
1974 wx_err(wx, "mac_table allocation failed\n");
1979 bitmap_zero(wx->state, WX_STATE_NBITS);
1980 bitmap_zero(wx->flags, WX_PF_FLAGS_NBITS);
1981 wx->misc_irq_domain = false;
1985 EXPORT_SYMBOL(wx_sw_init);
1988 * wx_find_vlvf_slot - find the vlanid or the first empty slot
1989 * @wx: pointer to hardware structure
1990 * @vlan: VLAN id to write to VLAN filter
1992 * return the VLVF index where this VLAN id should be placed
1995 static int wx_find_vlvf_slot(struct wx *wx, u32 vlan)
1997 u32 bits = 0, first_empty_slot = 0;
2000 /* short cut the special case */
2004 /* Search for the vlan id in the VLVF entries. Save off the first empty
2005 * slot found along the way
2007 for (regindex = 1; regindex < WX_PSR_VLAN_SWC_ENTRIES; regindex++) {
2008 wr32(wx, WX_PSR_VLAN_SWC_IDX, regindex);
2009 bits = rd32(wx, WX_PSR_VLAN_SWC);
2010 if (!bits && !(first_empty_slot))
2011 first_empty_slot = regindex;
2012 else if ((bits & 0x0FFF) == vlan)
2016 if (regindex >= WX_PSR_VLAN_SWC_ENTRIES) {
2017 if (first_empty_slot)
2018 regindex = first_empty_slot;
2027 * wx_set_vlvf - Set VLAN Pool Filter
2028 * @wx: pointer to hardware structure
2029 * @vlan: VLAN id to write to VLAN filter
2030 * @vind: VMDq output index that maps queue to VLAN id in VFVFB
2031 * @vlan_on: boolean flag to turn on/off VLAN in VFVF
2032 * @vfta_changed: pointer to boolean flag which indicates whether VFTA
2035 * Turn on/off specified bit in VLVF table.
2037 static int wx_set_vlvf(struct wx *wx, u32 vlan, u32 vind, bool vlan_on,
2043 /* If VT Mode is set
2045 * make sure the vlan is in VLVF
2046 * set the vind bit in the matching VLVFB
2048 * clear the pool bit and possibly the vind
2050 vt = rd32(wx, WX_CFG_PORT_CTL);
2051 if (!(vt & WX_CFG_PORT_CTL_NUM_VT_MASK))
2054 vlvf_index = wx_find_vlvf_slot(wx, vlan);
2058 wr32(wx, WX_PSR_VLAN_SWC_IDX, vlvf_index);
2060 /* set the pool bit */
2062 bits = rd32(wx, WX_PSR_VLAN_SWC_VM_L);
2063 bits |= (1 << vind);
2064 wr32(wx, WX_PSR_VLAN_SWC_VM_L, bits);
2066 bits = rd32(wx, WX_PSR_VLAN_SWC_VM_H);
2067 bits |= (1 << (vind - 32));
2068 wr32(wx, WX_PSR_VLAN_SWC_VM_H, bits);
2071 /* clear the pool bit */
2073 bits = rd32(wx, WX_PSR_VLAN_SWC_VM_L);
2074 bits &= ~(1 << vind);
2075 wr32(wx, WX_PSR_VLAN_SWC_VM_L, bits);
2076 bits |= rd32(wx, WX_PSR_VLAN_SWC_VM_H);
2078 bits = rd32(wx, WX_PSR_VLAN_SWC_VM_H);
2079 bits &= ~(1 << (vind - 32));
2080 wr32(wx, WX_PSR_VLAN_SWC_VM_H, bits);
2081 bits |= rd32(wx, WX_PSR_VLAN_SWC_VM_L);
2086 wr32(wx, WX_PSR_VLAN_SWC, (WX_PSR_VLAN_SWC_VIEN | vlan));
2087 if (!vlan_on && vfta_changed)
2088 *vfta_changed = false;
2090 wr32(wx, WX_PSR_VLAN_SWC, 0);
2097 * wx_set_vfta - Set VLAN filter table
2098 * @wx: pointer to hardware structure
2099 * @vlan: VLAN id to write to VLAN filter
2100 * @vind: VMDq output index that maps queue to VLAN id in VFVFB
2101 * @vlan_on: boolean flag to turn on/off VLAN in VFVF
2103 * Turn on/off specified VLAN in the VLAN filter table.
2105 static int wx_set_vfta(struct wx *wx, u32 vlan, u32 vind, bool vlan_on)
2107 u32 bitindex, vfta, targetbit;
2108 bool vfta_changed = false;
2111 /* this is a 2 part operation - first the VFTA, then the
2112 * VLVF and VLVFB if VT Mode is set
2113 * We don't write the VFTA until we know the VLVF part succeeded.
2117 * The VFTA is a bitstring made up of 128 32-bit registers
2118 * that enable the particular VLAN id, much like the MTA:
2119 * bits[11-5]: which register
2120 * bits[4-0]: which bit in the register
2122 regindex = (vlan >> 5) & 0x7F;
2123 bitindex = vlan & 0x1F;
2124 targetbit = (1 << bitindex);
2126 vfta = wx->mac.vft_shadow[regindex];
2128 if (!(vfta & targetbit)) {
2130 vfta_changed = true;
2133 if ((vfta & targetbit)) {
2135 vfta_changed = true;
2139 * Call wx_set_vlvf to set VLVFB and VLVF
2141 ret = wx_set_vlvf(wx, vlan, vind, vlan_on, &vfta_changed);
2146 wr32(wx, WX_PSR_VLAN_TBL(regindex), vfta);
2147 wx->mac.vft_shadow[regindex] = vfta;
2153 * wx_clear_vfta - Clear VLAN filter table
2154 * @wx: pointer to hardware structure
2156 * Clears the VLAN filer table, and the VMDq index associated with the filter
2158 static void wx_clear_vfta(struct wx *wx)
2162 for (offset = 0; offset < wx->mac.vft_size; offset++) {
2163 wr32(wx, WX_PSR_VLAN_TBL(offset), 0);
2164 wx->mac.vft_shadow[offset] = 0;
2167 for (offset = 0; offset < WX_PSR_VLAN_SWC_ENTRIES; offset++) {
2168 wr32(wx, WX_PSR_VLAN_SWC_IDX, offset);
2169 wr32(wx, WX_PSR_VLAN_SWC, 0);
2170 wr32(wx, WX_PSR_VLAN_SWC_VM_L, 0);
2171 wr32(wx, WX_PSR_VLAN_SWC_VM_H, 0);
2175 int wx_vlan_rx_add_vid(struct net_device *netdev,
2176 __be16 proto, u16 vid)
2178 struct wx *wx = netdev_priv(netdev);
2180 /* add VID to filter table */
2181 wx_set_vfta(wx, vid, VMDQ_P(0), true);
2182 set_bit(vid, wx->active_vlans);
2186 EXPORT_SYMBOL(wx_vlan_rx_add_vid);
2188 int wx_vlan_rx_kill_vid(struct net_device *netdev, __be16 proto, u16 vid)
2190 struct wx *wx = netdev_priv(netdev);
2192 /* remove VID from filter table */
2194 wx_set_vfta(wx, vid, VMDQ_P(0), false);
2195 clear_bit(vid, wx->active_vlans);
2199 EXPORT_SYMBOL(wx_vlan_rx_kill_vid);
2201 static void wx_enable_rx_drop(struct wx *wx, struct wx_ring *ring)
2203 u16 reg_idx = ring->reg_idx;
2206 srrctl = rd32(wx, WX_PX_RR_CFG(reg_idx));
2207 srrctl |= WX_PX_RR_CFG_DROP_EN;
2209 wr32(wx, WX_PX_RR_CFG(reg_idx), srrctl);
2212 static void wx_disable_rx_drop(struct wx *wx, struct wx_ring *ring)
2214 u16 reg_idx = ring->reg_idx;
2217 srrctl = rd32(wx, WX_PX_RR_CFG(reg_idx));
2218 srrctl &= ~WX_PX_RR_CFG_DROP_EN;
2220 wr32(wx, WX_PX_RR_CFG(reg_idx), srrctl);
2223 int wx_fc_enable(struct wx *wx, bool tx_pause, bool rx_pause)
2225 u16 pause_time = WX_DEFAULT_FCPAUSE;
2226 u32 mflcn_reg, fccfg_reg, reg;
2230 /* Low water mark of zero causes XOFF floods */
2231 if (tx_pause && wx->fc.high_water) {
2232 if (!wx->fc.low_water || wx->fc.low_water >= wx->fc.high_water) {
2233 wx_err(wx, "Invalid water mark configuration\n");
2238 /* Disable any previous flow control settings */
2239 mflcn_reg = rd32(wx, WX_MAC_RX_FLOW_CTRL);
2240 mflcn_reg &= ~WX_MAC_RX_FLOW_CTRL_RFE;
2242 fccfg_reg = rd32(wx, WX_RDB_RFCC);
2243 fccfg_reg &= ~WX_RDB_RFCC_RFCE_802_3X;
2246 mflcn_reg |= WX_MAC_RX_FLOW_CTRL_RFE;
2248 fccfg_reg |= WX_RDB_RFCC_RFCE_802_3X;
2250 /* Set 802.3x based flow control settings. */
2251 wr32(wx, WX_MAC_RX_FLOW_CTRL, mflcn_reg);
2252 wr32(wx, WX_RDB_RFCC, fccfg_reg);
2254 /* Set up and enable Rx high/low water mark thresholds, enable XON. */
2255 if (tx_pause && wx->fc.high_water) {
2256 fcrtl = (wx->fc.low_water << 10) | WX_RDB_RFCL_XONE;
2257 wr32(wx, WX_RDB_RFCL, fcrtl);
2258 fcrth = (wx->fc.high_water << 10) | WX_RDB_RFCH_XOFFE;
2260 wr32(wx, WX_RDB_RFCL, 0);
2261 /* In order to prevent Tx hangs when the internal Tx
2262 * switch is enabled we must set the high water mark
2263 * to the Rx packet buffer size - 24KB. This allows
2264 * the Tx switch to function even under heavy Rx
2267 fcrth = rd32(wx, WX_RDB_PB_SZ(0)) - 24576;
2270 wr32(wx, WX_RDB_RFCH, fcrth);
2272 /* Configure pause time */
2273 reg = pause_time * 0x00010001;
2274 wr32(wx, WX_RDB_RFCV, reg);
2276 /* Configure flow control refresh threshold value */
2277 wr32(wx, WX_RDB_RFCRT, pause_time / 2);
2279 /* We should set the drop enable bit if:
2280 * Number of Rx queues > 1 and flow control is disabled
2282 * This allows us to avoid head of line blocking for security
2283 * and performance reasons.
2285 if (wx->num_rx_queues > 1 && !tx_pause) {
2286 for (i = 0; i < wx->num_rx_queues; i++)
2287 wx_enable_rx_drop(wx, wx->rx_ring[i]);
2289 for (i = 0; i < wx->num_rx_queues; i++)
2290 wx_disable_rx_drop(wx, wx->rx_ring[i]);
2295 EXPORT_SYMBOL(wx_fc_enable);
2298 * wx_update_stats - Update the board statistics counters.
2299 * @wx: board private structure
2301 void wx_update_stats(struct wx *wx)
2303 struct wx_hw_stats *hwstats = &wx->stats;
2305 u64 non_eop_descs = 0, alloc_rx_buff_failed = 0;
2306 u64 hw_csum_rx_good = 0, hw_csum_rx_error = 0;
2307 u64 restart_queue = 0, tx_busy = 0;
2310 /* gather some stats to the wx struct that are per queue */
2311 for (i = 0; i < wx->num_rx_queues; i++) {
2312 struct wx_ring *rx_ring = wx->rx_ring[i];
2314 non_eop_descs += rx_ring->rx_stats.non_eop_descs;
2315 alloc_rx_buff_failed += rx_ring->rx_stats.alloc_rx_buff_failed;
2316 hw_csum_rx_good += rx_ring->rx_stats.csum_good_cnt;
2317 hw_csum_rx_error += rx_ring->rx_stats.csum_err;
2319 wx->non_eop_descs = non_eop_descs;
2320 wx->alloc_rx_buff_failed = alloc_rx_buff_failed;
2321 wx->hw_csum_rx_error = hw_csum_rx_error;
2322 wx->hw_csum_rx_good = hw_csum_rx_good;
2324 for (i = 0; i < wx->num_tx_queues; i++) {
2325 struct wx_ring *tx_ring = wx->tx_ring[i];
2327 restart_queue += tx_ring->tx_stats.restart_queue;
2328 tx_busy += tx_ring->tx_stats.tx_busy;
2330 wx->restart_queue = restart_queue;
2331 wx->tx_busy = tx_busy;
2333 hwstats->gprc += rd32(wx, WX_RDM_PKT_CNT);
2334 hwstats->gptc += rd32(wx, WX_TDM_PKT_CNT);
2335 hwstats->gorc += rd64(wx, WX_RDM_BYTE_CNT_LSB);
2336 hwstats->gotc += rd64(wx, WX_TDM_BYTE_CNT_LSB);
2337 hwstats->tpr += rd64(wx, WX_RX_FRAME_CNT_GOOD_BAD_L);
2338 hwstats->tpt += rd64(wx, WX_TX_FRAME_CNT_GOOD_BAD_L);
2339 hwstats->crcerrs += rd64(wx, WX_RX_CRC_ERROR_FRAMES_L);
2340 hwstats->rlec += rd64(wx, WX_RX_LEN_ERROR_FRAMES_L);
2341 hwstats->bprc += rd64(wx, WX_RX_BC_FRAMES_GOOD_L);
2342 hwstats->bptc += rd64(wx, WX_TX_BC_FRAMES_GOOD_L);
2343 hwstats->mprc += rd64(wx, WX_RX_MC_FRAMES_GOOD_L);
2344 hwstats->mptc += rd64(wx, WX_TX_MC_FRAMES_GOOD_L);
2345 hwstats->roc += rd32(wx, WX_RX_OVERSIZE_FRAMES_GOOD);
2346 hwstats->ruc += rd32(wx, WX_RX_UNDERSIZE_FRAMES_GOOD);
2347 hwstats->lxonoffrxc += rd32(wx, WX_MAC_LXONOFFRXC);
2348 hwstats->lxontxc += rd32(wx, WX_RDB_LXONTXC);
2349 hwstats->lxofftxc += rd32(wx, WX_RDB_LXOFFTXC);
2350 hwstats->o2bgptc += rd32(wx, WX_TDM_OS2BMC_CNT);
2351 hwstats->b2ospc += rd32(wx, WX_MNG_BMC2OS_CNT);
2352 hwstats->o2bspc += rd32(wx, WX_MNG_OS2BMC_CNT);
2353 hwstats->b2ogprc += rd32(wx, WX_RDM_BMC2OS_CNT);
2354 hwstats->rdmdrop += rd32(wx, WX_RDM_DRP_PKT);
2356 if (wx->mac.type == wx_mac_sp) {
2357 hwstats->fdirmatch += rd32(wx, WX_RDB_FDIR_MATCH);
2358 hwstats->fdirmiss += rd32(wx, WX_RDB_FDIR_MISS);
2361 for (i = 0; i < wx->mac.max_rx_queues; i++)
2362 hwstats->qmprc += rd32(wx, WX_PX_MPRC(i));
2364 EXPORT_SYMBOL(wx_update_stats);
2367 * wx_clear_hw_cntrs - Generic clear hardware counters
2368 * @wx: board private structure
2370 * Clears all hardware statistics counters by reading them from the hardware
2371 * Statistics counters are clear on read.
2373 void wx_clear_hw_cntrs(struct wx *wx)
2377 for (i = 0; i < wx->mac.max_rx_queues; i++)
2378 wr32(wx, WX_PX_MPRC(i), 0);
2380 rd32(wx, WX_RDM_PKT_CNT);
2381 rd32(wx, WX_TDM_PKT_CNT);
2382 rd64(wx, WX_RDM_BYTE_CNT_LSB);
2383 rd32(wx, WX_TDM_BYTE_CNT_LSB);
2384 rd32(wx, WX_RDM_DRP_PKT);
2385 rd32(wx, WX_RX_UNDERSIZE_FRAMES_GOOD);
2386 rd32(wx, WX_RX_OVERSIZE_FRAMES_GOOD);
2387 rd64(wx, WX_RX_FRAME_CNT_GOOD_BAD_L);
2388 rd64(wx, WX_TX_FRAME_CNT_GOOD_BAD_L);
2389 rd64(wx, WX_RX_MC_FRAMES_GOOD_L);
2390 rd64(wx, WX_TX_MC_FRAMES_GOOD_L);
2391 rd64(wx, WX_RX_BC_FRAMES_GOOD_L);
2392 rd64(wx, WX_TX_BC_FRAMES_GOOD_L);
2393 rd64(wx, WX_RX_CRC_ERROR_FRAMES_L);
2394 rd64(wx, WX_RX_LEN_ERROR_FRAMES_L);
2395 rd32(wx, WX_RDB_LXONTXC);
2396 rd32(wx, WX_RDB_LXOFFTXC);
2397 rd32(wx, WX_MAC_LXONOFFRXC);
2399 EXPORT_SYMBOL(wx_clear_hw_cntrs);
2402 * wx_start_hw - Prepare hardware for Tx/Rx
2403 * @wx: pointer to hardware structure
2405 * Starts the hardware using the generic start_hw function
2406 * and the generation start_hw function.
2407 * Then performs revision-specific operations, if any.
2409 void wx_start_hw(struct wx *wx)
2413 /* Clear the VLAN filter table */
2416 /* Clear the rate limiters */
2417 for (i = 0; i < wx->mac.max_tx_queues; i++) {
2418 wr32(wx, WX_TDM_RP_IDX, i);
2419 wr32(wx, WX_TDM_RP_RATE, 0);
2422 EXPORT_SYMBOL(wx_start_hw);
2424 MODULE_LICENSE("GPL");